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Introduction
The magneto-optical effects play a crucial role in photonic technology, enabling
light modulators, optical rotators, isolators, sensors, and numerous spectroscopic
techniques. Lately, a significant effort was made to integrate optical isolators
directly into Si technology, which would allow connecting the photonics and elec-
tronics. While the first attempt to integrate magneto-optical isolators to Si tech-
nology was performed based on ferrimagnetic garnets together with plasmonic
technology [1], the industrially available technology is still missing. For the vis-
ible part of the spectrum, garnet technology is also used, but rather than using
plasmonic nanostructures, photonic crystals are being employed to enhance the
magneto-optical effect.

A photonic crystal is a periodic structure that exhibits similar properties for
photons as an atomic crystal does for electrons. Its periodic structure is typically
composed of various materials with different optical properties with high contrast
in refractive index in various dimensions, as shown in figure 1.2. The periodicity
in the refractive index behaves similarly as a periodic potential in atomic crystals.

Figure 1: Example of photonic crystals with various dimensions of periodicity.
Different colors represent different materials. The illustration is taken from [2]

.

Based on the wavelength of the incident light, the photon can or can not
propagate through the photonic crystal, forming allowed and forbidden photonic
bands. These bands are usually the result of destructive interference originating
from the periodic nature of the refractive index variation. Light propagating in
allowed photonic bands forms modes that can enhance a broad spectrum of phys-
ical phenomena due to their strong localization. Spectral regions corresponding
to the forbidden bands exhibit a high valuse of reflectivity since the light can not
propagate through the material. Several examples of this phenomena can include
brag-mirrors, low-loss-waveguides, or various detectors. The periodicity of the
photonic crystal should be in a scale comparable with half of the wavelength of
the incident light to form these modes. For visible light it means lattice constant
a ∈ (190, 350) nm. These dimensions are relatively complicated to fabricate. But
as long as the periodicity stays in scales comparable to the wavelength, these
phenomena still occur to some degree.

When the photonic crystal is made from a magnetic material, its optical re-
sponse can be modified by the presence of a magnetic field. Such crystal is called
a magneto-photonic crystal.

Photonic crystals can be observed even in nature, as shown in figure 2.
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Figure 2: Examples of occurrence of photonic crystals in nature. 1-dimensional
structures can be found at the green and purple neck feathers of domestic pi-
geons, another at Morpho butterflies. Colorful eyes on male peacock feathers
are the product of two-dimensional photonic crystals. 3D inverse opal structures
appearing in the green color of Parides sesostris, etc... The illustration is taken
from [3].

Furthermore, ferromagnetic shape memory alloy (FSMA) [4] such as NiMnGa
exhibits a significant deformation under the effect of the magnetic field. This
deformation leads to the change of the geometry of the photonic crystal and thus
affects its optical properties. Possible applications are magnetic field/deforma-
tion detectors, dynamic switches, optically active photonic elements, etc.

This thesis aims to (i) design and optimize the proper geometry of magneto-
photonic crystal based on ferromagnetic garnet in order to resonantly enhance
the magneto-optical response, (ii) to explore the possibility of using FSMA to
build an optically active photonic element. For this purpose, advanced numerical
modeling based on the Finite difference time domain (FDTD) method will be
used. The FDTD calculations are carried out using LUMERICAL software, and
further post-processing is done in PYTHON.

This thesis is divided into the following chapters.
Required magneto-optical variables are briefly summarized in the first chapter.

The FDTD method for magnetooptics is briefly explained in the second chapter.
Since magneto-optical effect requires off-diagonal elements in the tensor of per-
mittivity and the FDTD method operates with constitutive relation in diagonal
form, diagonalization and grid transformation are required. The third chapter is
devoted to the design and optimization of a photonic rotator. The initial design
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is based on garnet technology, and the numerical calculations are carried through
the FDTD method. Within this chapter, a great enhancement of the Faraday
rotation was found for a multi-layered photonic crystal. During an investigation
of the origin of this enhancement, strongly localized modes were found, which led
to an idea of a concentration detector, that is discussed, together with a proof
of a concept, at the end of the chapter. In the last chapter, we demonstrate a
magnetically controlled dynamic photonic crystal. Three different designs of a
deformation detector based on the change in reflectivity are shown.
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Part I

Theoretical background
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1. Light polarisation and
Magnetooptical variables

1.1 Polarisation ellipse
The light polarisation will be derived from Maxwell’s equations:

rot H − ∂t D = j (1.1)

rot E + ∂t B = 0 (1.2)

div D = ρe (1.3)

div B = 0, (1.4)

where H is the vector of magnetic field strength, D is the electric displacement
vector, j is the electric current density vector, ρe is the electric charge density, E
is the electric field strength vector, B is the magnetic flux density vector.

To describe the polarization of the light, it is better to simplify these equa-
tions by assuming a propagation in non-dispersive, non-conductive, homogenous,
isotropic medium without charge density (ideal dielectric). In this medium:

j = 0
ρe = 0

(1.5)

D = εE

B = µH ,
(1.6)

where ε is generally a permittivity tensor, and µ is generally a permeability tensor.
In this case, however, with the assumptions we made, both tensors reduce to
simple scalars. Equations 1.6 are called electromagnetic Constitutive relations.

Applying the rotation to the equation 1.2 and inserting it into equation 1.1,
using the constitutive relation and using a vector identity:

∇ × ∇ × A = ∇ · ∇A − ∆A (1.7)

with the equation 1.3, we can derive wave equation:

∆E − εµ
∂2E

∂t2
= 0. (1.8)

Comparing this equation with the standard wave equation from mathematics,
we can identify the term εµ as 1/v2, where v is the wave’s propagation speed in
the medium.
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We can define the coordinate system so that the z-direction is the direction
of the propagation of the light. Thus Ez = 0 and we consider a solution for the
remaining components in the form of plane wave:

Ex = Ex0cos
[︂
ω(t− z

v
) + δx

]︂
Ey = Ey0cos

[︂
ω(t− z

v
) + δy

]︂ (1.9)

We proceed with substitution:

τ = ω(t− z

v
). (1.10)

Multipliing the first equation in 1.9 by sinδy or cosδy and the second by sinδx or
cosδx, substructing them and manipulating the terms, we obtain the following set
of equations:

Ex

Ex0
sinδy − Ey

Ey0
sinδx = cosτ(cosδxsinδy − cosδysinδx)

Ex

Ex0
cosδy − Ey

Ey0
cosδx = sinτ(cosδxsinδy − cosδysinδx).

(1.11)

The right hand side of these equations is equal to cosτ sin(δy − δx). The
argument is a phase difference δ = δy −δx. Summing the square of both equations
in 1.11, we obtain:(︃

Ex

Ex0

)︃2
− 2 Ex

Ex0

Ey

Ey0
cosδ +

(︃
Ey

Ey0

)︃2
= sin2δ. (1.12)

The equation 1.12 is an equation of ellipse oriented so that there is an angle
ψ between the major axis of the ellipse and the x-axis. This angle fulfills the
following relation:

tg2ψ = 2Ex0Ey0

E2
x0 − E2

y0
cosδ (1.13)

This means that the endpoint of the vector E describes the ellipse that lies in
a plane perpendicular to the direction in which the light propagates. The ellipse
is called the polarisation ellipse, and it can be characterized by four parameters.
Three parameters can be used in case we are not interested in the initial phase.
One of the possible combinations of these parameters is the set described in [5],
which is visualized in figure 1.1. The polarisation vector will be defined as the
direction of the electric field E because the electric field is the dominating field
in the light-matter interaction. The rest of the field vectors B, D, and H can
then be found using Maxwell’s equations.

The polarisation ellipse is ilustrated of figure 1.1.

• ψ ∈ [−π
2 ,

π
2 ) is the azimuthal angle oriented between the x-axis and the

major axis of the ellipse.
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Figure 1.1: Polarization ellipse. The illustration is taken from [6]
.

• χ is a complementary ellipticity angle and is defined as π
2 − ε, where ε ∈

[−π
4 ,

π
4 ] is an ellipticity angle. From these angles, the elipticity e ∈ [−1, 1]

can be calculated as e = ± Eb

Ea
= tgε. Ea and Eb is the lenght of the

semi-major and semi-minor axis respectively.

• The third parameter is the amplitude A00 =
√︂
E2

a + E2
b of the field, which

measures the strength of the eliptical vibration.

• The last parameter required to describe the polarized state is the absolute
phase δ0 ∈ [−π, π), that measures the angle between the initial position of
the electric field, meaning E = E(t=0), and the major axis of the ellipse.

The focus of this thesis will revolve around the calculation of the azimuthal
angle ψ.

1.2 Magneto-Optical Effects
A magneto-optical effect is a phenomenon of the electromagnetic wave that prop-
agates through a medium exposed to a magnetic field. Such exposure induces
an optical anisotropy in the material, which can be described by off-diagonal
elements in the permittivity tensor. Such medium is called gyrotropic / gyromag-
netic [7]. An electromagnetic wave that can be decomposed into left- and right
elliptically polarized waves experiences a different refractive index for both po-
larisations, and thus each polarisation propagates with a different velocity. This
difference in the propagation speed causes one polarisation to ”lack behind” and
thus gain a phase difference compared to the other polarisation. This produces a
polarisation rotation by propagation through magnetized material. The magnetic
field can be external or internal (ferromagnetic).

The relation between the displacement vector and the electric field can be
written as:

D = εE = ε′E + iE × g
g = ε0χ

mH
(1.14)
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The ε′ is a real symmetric tensor. Pseudovector g is called gyration vector. Its
magnitude is generally significantly smaller than the eigenvalues of ε′ [7]. χm is
a magneto-optical susceptibility, which is a tensor for anisotropic media.

In this thesis, we will use the simplest case, when the g lies in the direction
of the principal axis of the ε′. We are working with materials that are isotropic
without the presence of the magnetic field. This means that they can be repre-
sented by a scalar permittivity. While under exposure to the magnetic field, the
dielectric tensor takes the form of:

ε =

⎛⎜⎝ ε1 +igz 0
−igz ε1 0

0 0 ε1

⎞⎟⎠ (1.15)

For a lossy medium, both diagonal and off-diagonal components have to be com-
plex.

1.2.1 Faraday Rotation
Faraday rotation ψ is an angle produced by the magneto-optical Kerr effect. The
angle is defined as a difference between the polarisation angle of the incoming
wave and a wave that propagate through the material:

ψf = ψout − ψin, (1.16)
where ψin is the azimuthal angle of the input wave, ψou is the azimuthal angle

of the output wave, and ψf is the rotation angle.

Figure 1.2: Schematic description of Faraday rotation of linearly polarized light.
The illustration is taken from [8]

.

Because the phase difference between left and right circular polarisation,
gained during the propagation, is proportional to the off-diagonal elements of
the permittivity tensor, which are in the first order proportional to the magnetic
field applied, the Faraday rotation can be simply characterized as:

ψf = V Bzd, (1.17)
where B is the magnetic flux density, d is the thickness of the material, and V is a
Verdent constant of the material [9]. By this definition, the rotation could exceed
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ψf = 180◦, which makes sense for homogenous materials, because reducing the
thickness of the material leads to a proportional reduction in Faraday rotation
to values under ψf = 180◦. In our case, however, the rotating structure is a 2-D
photonic crystal where reducing the thickness makes no sense, and thus we will
work only with rotations lower than 180◦.

1.2.2 Magneto-optical Kerr Effect
Another type of rotation of the polarisation is a Magneto-optical Kerr Effect
(MOKE), which is similar to the Faraday effect because it also originates from
off-diagonal elements of the permittivity tensor. MOKE, however, produces a
change in polarisation angle during a reflection from the magnetized surface.
Offdiagonal elements of the permittivity tensor produce anisotropy in permit-
tivity, which results in anisotropy in reflection coefficient and speed of light for
various directions:

c = 1
√
εµ

(1.18)

If the light in different directions can propagate with different speeds and feels
different reflection coefficients, it gains a different phase shift, which results in a
change of the polarisation angle.
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2. Magnetooptical FDTD
simulation
FDTD stands for the Finite difference time domain which is an approach to solve
Maxwell’s equations in a confined space.

2.1 Brief introduction into FDTD method
The whole FDTD algorithm is reasonably complex. This section aims not to
describe the entire method but rather provide a general understanding and insight
into the problem. To write the FDTD code, the previous author’s thesis offers a
guide on writing the algorithm to run on a graphic card with CUDA architecture
using Python ([10]).

Another recommendation would be [11], where the author provides a descrip-
tive derivation of the FDTD method in 1D, 2D, and 3D in programming language
C together with some useful examples and offers an extension of this method to
other branches of physics such as quantum mechanics.

Lastly, for an in-depth understanding of this method, we recommend a book
[12], which focuses on an in-depth explanation of each component of the simula-
tion and also provides examples in Matlab.

But do not be mistaken. Although previous authors used MATLAB or C to
write the FDTD code, it is only a sub-optimal solution. With the rise of tools
such as PyTorch or Tensor Flow, it is more efficient to use these tools instead
because the evolution equation can be translated into convolutional form which
is a natural for graphic cards.

2.1.1 Analytical evolution equations
Once again, we will start with the Maxwell’s equations:

rot H − ∂t D = j

div D = ρe

rot E + ∂t B = −M

div B = ρm

(2.1)

Here H stands for the magnetic field strength vector, D is the electric displace-
ment vector, j is the electric current density vector, ρe is the electric charge
density, E is the electric field strength vector, B is the magnetic flux density
vector, M is the magnetic current density vector, and finally ρm is the magnetic
charge density. Terms M and ρm are not physical entities. Their presence in
the equations only helps to solve some problems more elegantly. We can simply
ignore them by setting their value to 0.

To describe how do these fields interact with the material, we introduce con-
stitutive relations:
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D(t) = ε(t) ∗ E(t), (2.2)
B(t) = µ(t) ∗ H(t). (2.3)

Next, we expand curl equations in 2.1 and introduce the dimension reduction. By
that, we mean that there will be no changes in material nor fields in z direction
and thus ∂

∂z
= 0:

∂Hz

∂y
− ∂Dx

∂t
= jx

−∂Hz

∂x
− ∂Dy

∂t
= jy

∂Hy

∂x
− ∂Hx

∂y
− ∂Dz

∂t
= jz

(2.4)

∂Ez

∂y
+ ∂Bx

∂t
= −Mx

−∂Ez

∂x
+ ∂By

∂t
= −My

∂Ey

∂x
− ∂Ex

∂y
+ ∂Bz

∂t
= −Mz

(2.5)

Now, we can split these sets of equations into two independent sets of equa-
tions called transversal magnetic (TM) and transversal electric (TE) modes re-
spectively:

∂Dz

∂t
= ∂Hy

∂x
− ∂Hx

∂y
− jz

∂Bx

∂t
= −∂Ez

∂y
−Mx

∂By

∂t
= ∂Ez

∂x
−My

(2.6)

∂Bz

∂t
= ∂Ex

∂y
− ∂Ey

∂x
−Mz

∂Dx

∂t
= ∂Hz

∂y
− jx

∂Dy

∂t
= −∂Hz

∂x
− jy

(2.7)

We will focus on deriving the evolution equations for TM mode only. The
procedure for TE mode is the same. The next step is to add the constitutive
relations. We will consider the simplified case of using diagonal permittivity and
permeability.

ε =

⎡⎢⎣εx 0 0
0 εy 0
0 0 εz

⎤⎥⎦ (2.8)
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µ =

⎡⎢⎣µx 0 0
0 µy 0
0 0 µz

⎤⎥⎦ (2.9)

Note that these tensors can still be time dependent. Even though the diagonal
tensor forms seem like a strict limitation, and for magnetooptics, we actually
need off-diagonal terms. There is a way around this which is described later in
this thesis.

Now we use these constitutive relations to replace B with H and D with E.
Then we introduce a form of Ohm’s law:

j = jc + ji = σeE + ji

M = Mc + Mi = σmH + Mi

(2.10)

Where σe (σm) is electric (magnetic) conductivity in a diagonal form:

σe =

⎡⎢⎣σ
e
x 0 0

0 σe
y 0

0 0 σe
z

⎤⎥⎦ (2.11)

σm =

⎡⎢⎣σ
m
x 0 0

0 σm
y 0

0 0 σm
z

⎤⎥⎦ (2.12)

Finally, we obtain:

∂Ez

∂t
= 1

εz

(︃
∂Hy

∂x
− ∂Hx

∂y
− σe

zEz − jiz

)︃
∂Hx

∂t
= 1

µx

(︃
− ∂Ez

∂y
− σm

x Hx −Mix

)︃
∂Hy

∂t
= 1

µy

(︃
∂Ez

∂x
− σm

y Hy −Miy

)︃
,

(2.13)

which is the correct form of the analytical evolution equations to proceed into
the next step.

2.1.2 Finite step approximation
This is the crucial step that stands behind the whole method. Now we replace
derivatives with differences. A derivative is defined as:

f ′(x) = lim
∆x→0

f(x+ ∆x) − f(x)
∆x . (2.14)

However, we can not make the ∆x infinitely small, the step has to be finite,
and so we can only approximate this formula. The most common way to do it is
this:

f ′(x) ≈ f(x+ ∆x) − f(x− ∆x)
2∆x . (2.15)
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Figure 2.1: YEE grid shift

Now, ∆x is fixed and represents an elementary cell size in an orthogonal grid.
Note that we are evaluating a function at x based on other function at x + ∆x
and x− ∆x, but not at x itself.

To justify this approximation, we need to choose the ∆x (and ∆t) correctly:

∆x = 2 c0∆t, (2.16)

where c0 is the speed of light in a vacuum.
This did not help much because we still need to set a ∆t so that the simulation

would have a good convergency. A way to do that is to choose ∆t so that it takes
the wave 10 - 20 time steps to propagate through a single cell in the simulation.
Note that the propagation time varies in different media, so this has to be chosen
based on the material with the highest speed of propagation.

The next step is to apply this approximation to equations 2.13. Since the
derivative uses only every other cell to evaluate a cell in the new time step and
there is a two-cell step in the fraction’s denominator (equation 2.15), we can
make the grid twice as delicate while keeping the same amount of field cells. This
results in a spatial shift of the magnetic field grid to the electric field grid:

Ez(i, j) ⇒
[︂
i∆x, j∆y

]︂
Hx(i, j) ⇒

[︂
i∆x, (j + 0.5)∆y

]︂
Hy(i, j) ⇒

[︂
(i+ 0.5)∆x, j∆y

]︂
,

(2.17)

or more illustratively shown in2.1. This shifted grid is called YEE grid [12].
Now we can transform the 2.13 into a difference equation on the YEE grid:

En+1
z (i, j) − En

z (i, j)
∆t = 1

εz(i, j)
H

n+ 1
2

y (i, j) −H
n+ 1

2
y (i− 1, j)

∆x

− 1
εz(i, j)

H
n+ 1

2
x (i, j) −H

n+ 1
2

x (i, j − 1)
∆y

−σe
z(i, j)
εz(i, j)E

n+ 1
2

z (i, j) − j
n+ 1

2
iz (i, j)
εz(i, j)

(2.18)

15



H
n+ 1

2
x (i, j) −H

n− 1
2

x (i, j)
∆t = − 1

µx(i, j)
En

z (i, j + 1) − En
z (i, j)

∆y

−σm
x (i, j)
µx(i, j)H

n
x (i, j) − Mn

ix(i, j)
µx(i, j)

(2.19)

H
n+ 1

2
y (i, j) −H

n− 1
2

y (i, j)
∆t = 1

µy(i, j)
En

z (i+ 1, j) − En
z (i, j)

∆x

−
σm

y (i, j)
µy(i, j)H

n
y (i, j) −

Mn
iy(i, j)

µy(i, j)

(2.20)

The upper index at field variables stands for the time step. We want to
use integers for indexing time steps for electric field and integers+1

2 for indexing
magnetic field. The first term on the third line in 2.18 for the electric field,
however, does not have an integer value, and the same problem stands for several
variables of the magnetic field. Thus, we approximate the value by:

E
n+ 1

2
z ≈ En

z + En+1
z

2

Hn
x ≈ H

n+ 1
2

x +H
n− 1

2
x

2

Hn
y ≈ H

n+ 1
2

y +H
n− 1

2
y

2

(2.21)

Using these substitutions, we can express the field variable in a new step from
variables of the previous time steps:

En+1
z (i, j) = 4ε0εrz(i, j)c0 − σe

z(i, j)∆x
4ε0εrz(i, j)c0 + σe

z(i, j)∆xE
n
z (i, j)

+ 2
4ε0εrz(i, j)c0 + σe

z(i, j)∆x
[︂
H

n+ 1
2

y (i, j) −H
n+ 1

2
y (i− 1, j)

]︂
− 2k

4ε0εrz(i, j)c0 + σe
z(i, j)∆x

[︂
H

n+ 1
2

x (i, j) −H
n+ 1

2
x (i, j − 1)

]︂
− 2∆x

4ε0εrz(i, j)c0 + σe
z(i, j)∆xj

n+ 1
2

iz (i, j)

(2.22)

H
n+ 1

2
x (i, j) = 4c0µ0µrx(i, j) − ∆xσm

x (i, j)
4c0µ0µrx(i, j) + ∆xσm

x (i, j)H
n− 1

2
x (i, j)

− 2k
4c0µ0µrx(i, j) + ∆xσm

x (i, j)
[︂
Ẽ

n

z (i, j + 1) − Ẽ
n

z (i, j)
]︂

− 2∆x
4c0µ0µrx(i, j) + ∆xσm

x (i, j)M
n
ix(i, j)

(2.23)
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H
n+ 1

2
y (i, j) =

4c0µ0µry(i, j) − ∆xσm
y (i, j)

4c0µ0µr(i, j) + ∆xσm
y (i, j) H

n− 1
2

y (i, j)

+ 2
4c0µ0µry(i, j) + ∆xσm

y (i, j)
[︂
Ẽ

n

z (i+ 1, j) − Ẽ
n

z (i, j)
]︂

− 2∆x
4c0µ0µry(, j) + ∆xσm

y (i, j)M
n
iy(i, j).

(2.24)

This might look a little intimidating, but these equations are rather simple from
the programming point of view. Fractions in front of the field differences can
be substituted by values that can be precomputed before the main part of the
algorithm.

Ẽ
n+1
z (i, j) = Cezez(i, j)Ẽn

z (i, j)

+ Cezhy(i, j)
[︂
H

n+ 1
2

y (i, j) −H
n+ 1

2
y (i− 1, j)

]︂
− Cezhx(i, j)

[︂
H

n+ 1
2

x (i, j) −H
n+ 1

2
x (i, j − 1)

]︂
− Cezjiz(i, j)jn+ 1

2
iz (i, j)

H
n+ 1

2
x (i, j) = Chxhx(i, j)Hn− 1

2
x (i, j)

− Chxez(i, j)
[︂
Ẽ

n

z (i, j + 1) − Ẽ
n

z (i, j)
]︂

− Chxmix(i, j)Mn
ix(i, j)

H
n+ 1

2
y (i, j) = Chyhy(i, j)Hn− 1

2
y (i, j)

+ Chyez(i, j)
[︂
Ẽ

n

z (i+ 1, j) − Ẽ
n

z (i, j)
]︂

− Chymiy(i, j)Mn
iy(i, j)

(2.25)

Equations 2.25 are the final form of the evolution equations. The field variable
in the new time step is calculated based on field variables at previous time steps.
We could modify these equations further into convolution form, but that would
only complicate its form, and the illustrative purpose would be lost.

2.1.3 Boundary conditions
Although this algorithm is fairly robust, there is still a problem at the edge of the
grid. Cells at the edge of the grid miss one or more neighboring cells to compute
the field’s value in the following time step. If left unchecked, this would produce
unwanted reflection, which would travel back into the simulation space, causing
unwanted signal in the simulation.

Several approaches try to eliminate these reflections. One of them is a Per-
fectly matched layer (PML) which adds an additional layer around the YEE grid,
which is made of an artificial material that matches perfectly in impedance with
the inside grid but is lossy. So the wave decays as it travels within the layer. It
reflects at the new outer boundary and travels back through the lossy medium
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again, resulting in a reduction in the reflection in several orders of magnitude.
The matching condition is set so that:

Γ = ηA − ηB

ηA + ηB

, (2.26)

where η is the impedance of respective medium:

η =
√︃
µ

ε
. (2.27)

From a practical point of view, this means that there has to be an additional
variable in the whole simulation representing this artificial loss. This variable has
to be zero inside the simulation space and gradually increase in the PML layers,
satisfying the impedance matching condition. This topic is discussed in greater
detail in [11] or [12].

There are many different types of boundary conditions. Missing cells can be
replaced by values on the opposite side of the grid, resulting in periodic bound-
ary conditions, which could be symmetric or antisymmetric. These boundary
conditions can be combined so that each side of the simulations uses different
conditions, allowing us to exploit the problem’s symmetry and reduce the simu-
lation area, which results in higher computational power.

2.1.4 Object representation
Building an object on the Yee-grid presents a new challenge. The grid is finite
and orthogonal, while the object can be oblique with dimensions that do not
match cell-size multiplicity.

Another problem is that electric and magnetic field variables are shifted in
space by half of the cell size, so approximating the object has to be done for each
field separately.

Furthermore, the method works in the time domain, which means that it
produces a whole spectrum at once. In the derivation of evolution equations,
we assumed non-dispersive material, but that is a strict restriction. In reality,
we need to specify ε(ω) and µ(ω) and somehow incorporate that into the simulation.

The first start of this problem can be simply solved by a filling factor repre-
senting how much volume each material occupies in a cell and then use a weighted
average for the calculation of the material data in that cell. This is not an ideal
solution. However, there are other approaches with faster convergency (in terms
of grid delicacy)

A more sophisticated approach would be to build the object on a more detailed
grid (10 times or more), then blur the image by convolving it by a pixel of the
final grid’s size with normalized value. Project this blurred data into the final
grid and in each cell, take the value in the middle. (Figure 2.2)

The thing that has to be kept in mind is that electric and magnetic fields
are represented by separate grids that are shifted in space, and so the process
described above has to be done for each grid separately. (See picture 2.3)

Simulating the frequency dependent optical response of a material requires
parametrization the material data by some analytical function. The function
itself modifies the evolution equation, and so in commercial software, such as
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Figure 2.2: Smoothing procedure, using the detailed grid technique and convolu-
tion. This picture is taken from [13].

Figure 2.3: Electric and magnetic field vector components spatial position in TM
mode. This picture is taken from [13].

Lumerical, the type of the parametrization function can not be changed. Lumer-
ical uses polynomial fit, but for our demonstrative purposes, we will use a Debye
formulation:

ε∗
r = εr + σ

iωε0
+ χ1

1 + iωt0
, (2.28)

where ε∗
r is the frequency-dependent relative dielectric constant, εr (sometimes

noted as εr(∞) is a constant high-frequency contribution to the dielectric func-
tion, σ is a conductivity and χ1 is a Debye fit parameter.

D(ω) = εr · E(ω) + σ

iωε0
· E(ω) + χ1

1 + iωt0
· E(ω) (2.29)

The method operates in the time domain, so we have to map the frequency
dependent terms to the time domain using a Fourier tranform:

D(t) = εr · E(t) + σ

ε0

∫︂ t

0
E(t′) · dt′ + χ1

t0

∫︂ t

0
e−(t′−t)/t0E(t′) · dt′ (2.30)

The integration starts at t′ = 0 because we assume that the simulation starts at
t = 0 and source fields are zero initially; thus, there can be no influence from
times t′ < 0.
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In discrete domain, we obtain:

Dn = εr · En + σ · ∆t
ε0

n∑︂
i=0

Ei + χ1 · ∆t
t0

n∑︂
i=0

e−∆t(n−i)/t0Ei (2.31)

Calculating the whole sums in every time step would be numerically demanding.
We can introduce additional variables that will hold the value of the sum and
update it every step:

Dn = εr · En + σ · ∆t
ε0

En + In−1 + χ1 · ∆t
t0

Ei + Sn−1

In = σ · ∆t
ε0

n∑︂
i=0

Ei = In−1 + σ · ∆t
ε0

En

Sn = χ1 · ∆t
t0

n∑︂
i=0

e−∆t(n−i)/t0Ei = e−∆t/t0Sn−1 + χ1 · ∆t
t0

Ei

(2.32)

With these equations, we can now write a En = f(Dn, In−1, Sn−1) with their
updating equations:

En = Dn − In−1 − e−∆t/t0Sn−1

εr + σ·∆t
ε0

+ χ1·∆t
t0

In = In−1 + σ · ∆t
ε0

En

Sn = e−∆t/t0Sn−1 + χ1 · ∆t
t0

Ei

(2.33)

Originaly, the core of the algorithm worked like this:

• Update En(En−1, Hn)

• Update Hn(En, Hn−1)

For dispersive medium, we can not insert the constitutive relations into the
evolution equations, and thus, the core of the algorithm looks as follows:

• Update Dn(Dn−1, Hn) Updating equation for electric field

• Update En(Dn, In) Constitutive relation for electric field

• Update In(In−1, En) Supportive equation for the first term of the material
fit

• Update Sn(Sn−1, En) Supportive equation for the second term of the ma-
terial fit

• Update Hn(Hn−1, En) Updating equation for the magnetic field
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2.1.5 Field input and output
The last thing we need to mention in this brief overview of the FDTD method is
how the wave source is implemented and how the data are collected.

The method operates in the time domain and thus offers us to calculate a
continuous part of the spectrum at once. To do so, we have to illuminate the
simulation area with a pulse that contains all the wavelengths we are interested
in.

A suitable profile of the source pulse can have a gaussian shape in the time
domain. If we apply a Fourier transform to such pulse, we end up with a rescaled
gaussian shape, but in the frequency domain. (See equation 2.35)

In this thesis, we define the Fourier transform (F .T .) as:

F (ω) = 1√
2π

∫︂ ∞

−∞
f(t) · eiωtdt

f(t) = 1√
2π

∫︂ ∞

−∞
F (ω) · e−iωtdt

(2.34)

which results in:

F .T . ae
t2
b = a√

2π

∫︂ ∞

−∞
e

t2
b · eiωtdt = ae− 1

4(bω2)
√

2
√︂

1
b

(2.35)

If we want, for example, to calculate a transmission of a simulated device, we
can record the data of a field at some point, line, or plane, calculate the Fourier
transform of the output, and then divide it by the Fourier transform of the input.

Since the FDTD provides the entire set electromagnetic field vectors value
during the whole simulation, coupling the simulation with the right kind of post-
processing makes the FDTD one of the most versatile numerical methods.

2.2 Grid attribute
The implementation of magneto-optical effects into FDTD simulations brings
in some difficulties. Material tensors in constitutive relations now have some
off-diagonal elements, but the commercial algorithm only works with diagonal
tensors. Introducing off-diagonal elements into evolution equations would lead to
a drastic increase in their complexity, and thus, the computer memory and com-
putational time requirement would also increase. Luckily, this can be avoided by
using diagonalization of the constitutive tensors utilizing a unitary transforma-
tion:

εD = UεU †, (2.36)

where

U = V †, (2.37)

while V is the eigenvector matrix of ε. We can then introduce a grid attribute
that locally rotates the grid, using the V tensor, which effectively reintroduces
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the off-diagonal terms into the simulation, and so using these two transformations
together, we get a simulation that behaves as if we would work with off-diagonal
constitutive tensor while having to work only with a diagonal version.

2.2.1 Grid attribute for MOKE
Having the matrial data ε(ω) in a form of:

ε(ω) =

⎡⎢⎣ a+ ib c+ id 0
−c− id a+ ib 0

0 0 a+ ib

⎤⎥⎦ , (2.38)

Where a, b, c, d are the functions of ω, we obtain the unitary matrix U in the
following form:

U = 1√
2

⎡⎢⎣ 0 0
√

2
i 1 0

−i 1 0

⎤⎥⎦ . (2.39)

This yields

εD =

⎡⎢⎣a+ ib 0 0
0 a+ ib− i(c+ id) 0
0 0 a+ ib+ i(c+ id)

⎤⎥⎦ , (2.40)

which is a diagonal form of a constitutive relation, suitable for efficient FDTD
simulation.

2.2.2 Grid attribute for Faraday
To simulate the Faraday effect, one option is to take a anisotropic material with
diagonal tensor and introduce a new grid attribute, that locally rotates the refer-
ence frame such that it converts the field components from Cartesian coordinates
into coordinates that represent circular polarisation. This can be done by intro-
ducing additional unitary transformation, represented by the following matrix W
[14]:

W = 1√
2

⎡⎢⎣1 0 i

0
√

2 0
1 0 −i

⎤⎥⎦ , (2.41)

In our case, however, we have a diagonally isotropic material with off-diagonal
components already introduced, and so we can use the same grid attribute as in
MOKE simulation U .

2.3 The Faraday rotation calculation
Instead of calculating the Faraday rotation directly, the polarisation ellipse has
to be calculated first. This is because the off-diagonal permittivity terms results
in generally elliptically polarized light. The azimuthal angle ψ is then used as
the Faraday rotation angle.

22



Calculating the polarisation ellipse from FDTD simulation requires a calcula-
tion of far-field components (a field outside of the simulation region, which is so
far that evanescent waves does not contribute) within the post-processing. In the
Lumerical, there is already a function for this, but for our purposes, the script
had to be modified so that the polarisation ellipse is calculated only from the first
grating order. Another required modification was the form of the output which
originally calculated the polarisation ellipse just for a single wavelength, but in
this thesis, we are interested in the whole spectrum.

The monitor (strip of the grid cells that records data) for the far-field calcu-
lation is located 3 µm below the simulation interest point. The median period of
photonic crystals investigated in this thesis is around 1000 nm, and the spectral
region in interest is around 460 nm. This is a zone where evanescent waves are
sufficiently small, and the simulation area is not yet stretched into sizes that are
hard to work with. For some simulations in higher resolution, the monitor is
placed only 1 µm under the point of interest to reduce the overall simulation area
and thus to reduce the simulation’s hardware requirements. A convergence test
was made to justify the placement of the monitor.

In other cases, the Faraday rotation could also be calculated directly from
the near field monitors, using the integration of corresponding field components
over the surface. However, in this case, no matter how far the monitor is placed,
there will always be all the grating order components of the field. This is because
we are using periodic boundary conditions, which effectively produce an infinite
sample. This is the reason to use the far-field projection with the zero grating
order filtration.

2.4 Calibration
Before heading to the photonic crystal and heterostructures simulations, we will
verify the validity of such simulations by comparing the results on simple layers of
different materials with results from another calculation approaches such as 4x4
Yeh formalism [15] for MOKE and Faraday effect and with analytical calculations
for reflectivity.

The structure we chose is a 100 nm thick layer of Ce-substituted yttrium
iron garnet (Ce:YIG) in a saturated magnetic state. Comparison of MOKE and
Faraday effect calculated by FDTD with the result of Yeh’s formalism is shown
on picture 2.4. We can see, that the spectral trends are similar except for the
spectral region between 2.8 eV - 3.2 eV of the Faraday effect. Amplitude of the
curves differ, but for the purpose of this thesis, the main focus will be placed on
the position of spectral peaks, which is the same for both FDTD simulation and
Yeh’s formalism.

There are two reasons for the difference between FDTD and Yeh’s results. One
is that the Faraday and MOKE are an indirect result of the FDTD simulation,
because the FDTD calculates the fields, while it is a direct result of Yeh’s formal-
ism. The other reason is that the experimental data cannot be used directly in
the simulation. The software automatically generates an analytical model based
on the experimental data, which is then used instead. Currently the available
model is only the polynomial fit, which can be modified for every material. Fits
of the Ce:YIG material and yttrium iron garnet (YIG) material, which will be
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used in this thesis are shown in picture 2.5 One can se several differences between
polynomial parametrization and the real data. This may be the reason for the
differences in the calculated Faraday and MOKE spectra.

We tried to use polynomials up to 10th order, but that leads to nonphysical
maxima, such as on the real part of permittivity of YIG on figure 2.5.
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(a) Magneto-optical Kerr effect

(b) Faraday effect

(c) Faraday effect

Figure 2.4: Comparison of magnetooptical effects calculated by FDTD simulation
against results of Yeh’s formalism. A simulated object is a 100 nm thick layer of
Ce-substituted yttrium iron garnet in a saturated magnetic region.
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Figure 2.5: Analytical fit of the Ce:YIG and YIG material optial parameters used
in the FDTD simulation.
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Part II

Simulation results
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3. Ce:YIG/YIG/SiO2 Photonic
crystal
We will start this chapter by simulationg a real photonic crystal that was fabri-
cated by self-assembly method and its optical and magneto-optical response was
evaluated experimentally. In doing so, we will demonstrate the limitations of the
simulations together with a way to overcome some of them. Then we will have a
look at how the magneto-optical response changes if we variate some of the ini-
tial parameters of the structure. We will show an interesting spectral feature in
Faraday rotation spectra which we will try to maximize and tune for the usage in
photonic rotators and isolators. An investigation of the origin of the spectral fea-
ture will show that such structure have a low value of transmittance for expected
applications, but it will also hint towards another application - highly sensitive
concentration detector. The new application is a highly sensitive concentration
detector.

3.1 Real sample description
First, let us try to describe a sample of a real photonic crystal. The photonic
crystal is composed of a 120 nm thick layer of Ce:YIG on another 100 nm thick
layer of YIG, placed on a substrate made of SiO2. The lattice constant a is 1000
nm and the holes are spherically-shaped in the tightest hexagonal arrangement
so that the hole radius on the surface D is 690 nm for sample 1 and 760 nm for
sample 2. Schematic description of the structure is shown in figure 3.1. The real
samples were made by self-assembly method using polystyrene spheres, which
were washed out during the fabrication.

Figure 3.1: Schema of the Ce:YIG-YIG-SiO2 photonic crystal.

This structure has two interesting properties. First, it shows a strong Faraday
effect, which could be utilized in the magneto-optical isolator. And second, its
Faraday rotation depends on the material, filling its holes, which could be utilized
as a concentration detector.

To compare the experimental and simulated Faraday spectra, we can look
at figure 3.2. There are two figures to demonstrate an angular dependence of
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linear polarization of the incident wave. Observed spectral features also suggest
that there are polycrystalic grains of various rotations. For example, the drop
in Faraday rotation at around 2.6 eV in the experimental spectrum of the actual
sample is not present in the simulation for linear polarized light light along the
x-axis, but in the simulation with source polarized at 30◦ along the x-axis, the
drop is present. Another spectral structure is around 1.6 eV, which is shifted in
amplitude, but the trend is similar for both experimental and simulated data.

(a) (b)

Figure 3.2: Comparison of Faraday rotation of an ideal structure calculated by
FDTD simulation against the measurement of a real sample. The geometry of
the sample is described on figure 3.1 with value D = 760 nm. On the left figure
(a), the incident wave is polarized in the x-axis, while on the right figure (b), it
is polarised under 30in respect to the x-axis.

This sample was made by the self-assembly method of polystyrene spheres
[16]. While this method is relatively cheap and suitable for larger samples, it
lacks precision. In this case, the sample is efficiently not a monocrystal but rather
a polycrystal with rotated grains. Another problem is that the polystyrene was
not ideally removed. Lastly, there are several point defects of larger scope. These
defects are captured by optical microscope in picture 3.3. The turquoise spots
are areas where polystyrene was not sufficiently removed. Red lines represent the
crystalographic lines and thus should be parallel. Grey dots are the bigger point
defects of other kinds.

For the reasons mentioned above, the observation of lower Faraday rotation
in the experimental spectra is expected. The local minimum at around 2.6 eV
is due to the combination of differently rotated grains of the crystal. For our
purposes, the main focus will be placed at the prominent peak position, which is
the same for both the simulation and the actual sample.

3.2 Geometry optimization
Having the sample described by simulation, we can take one step further and
try to optimize the structure. We aim to increase the Faraday rotation of this
structure to possibly 45◦. First, we will abound the self-assembly method in
favor of ion etching. This change will limit the size of an actual sample but allow
us to change the profile of the hole from spherical to cylindrical. Furthermore,
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Figure 3.3: Image of a surface of a photonic crystal from figure 3.1.

the result of this method is a well-defined photonic structure, which numerical
simulations can more precisely describe.

3.2.1 Ce:YIG/YIG photonic crystal
We will start the optimization process with similar design to the fabricated sample
and investigate the influence of its geometrical parameters. The geometry is
described in figure 3.4. The original depth hole in our previous simulations for
sample 2 is:

h = D

2 −

√︄
a

4
2

− D

4

2
= 175nm, (3.1)

where a is the lattice constant, D is the hole diameter at the surface, and h is
the maximum depth hole. In the following simulations we limited ourselves to
cylindrical holes of the diameter D and depth h with respect to the change of the
fabrication process as mentioned above.

This depth would penetrate to the YIG layer. First we focus our attention
to the depth of the hole. The hole volume is increased due to the change from
spherical holes to cylindrical, so the simulation was ranged from h = 110 nm only
to h = 170 nm. The results of the simulation are displayed in figure 3.5.

Figure 3.5 shows a clear trend hinting towards resonant depth behavior of this
photonic crystal. In order to investigate this spectral feature in Faraday rotation,
other simulations were made with higher resolution around the 2.7 eV and with
a smaller depth step (figure 3.6).

This resonance behavior seems promising, but it is a narrow spectral feature.
To check if this is not a numerical error, another calculation was done using a
Rigorous coupled-wave analysis (RCWA), a frequency-based method. It also uses
raw material data in comparison to FDTD, which operates with polynomial data
fits. Results from both simulation methods are shown in figure 3.7.
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Figure 3.4: Initial design of the photonic crystal.

Figure 3.5: Faraday rotation spectra of photonic crystal. Geometry of the pho-
tonic crystal is described in figure 3.4.

Figure 3.7 shows that both methods predict the existence of resonant depth
behavior in this hexagonal structure. However, the spectral maxima are shifted
by 86 meV. This shift is caused by the difference between material data in both
methods. Especially for the case of YIG the material data differ in this spectral
region as can be seen from figure 2.5. This could be eliminated by improving
the material data fit in the FDTD method. The improvement is not currently
possible because the software supports polynomial fits only. Although tho these
methods do not agree on the position of these features, it is more important that
both methods confirm their existence for the same hole depth range. In reality,
the peak position will depend on the fabrication quality of the sample.

Before we proceed to investigate this spectral further, we have to define a
variable that we are trying to maximize. In our case, it is a figure of merit (FoM)
that quantifies the quality of the device based on its faraday rotation and its
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Figure 3.6: Detail of Faraday rotation spectra of photonic crystal. Geometry of
the photonic crystal is described in figure 3.4.

Figure 3.7: Fadaray rotation of hexagonal photonic crystal. Spectral features
on the left are calculated by the FDTD method. Spectral features on right are
calculated by the RCWA.

transmission according to the following equation [17]:

FoM ≡ θf (deg/cm)
α(db/cm) = − θf (deg)

4.34 · ln(T ) , (3.2)

where α is an absorption coefficient defined as:

T = e−αt, (3.3)

where t is the thickness of the sample. T is its transmission, and θf is its Faraday
rotation.
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This means that if we want to maximize the figure of merit, we need to maxi-
mize the faraday rotation of the sample while keeping a high level of transmission.

Hole radius, lattice constant, and hole depth were systematically varied. Fig-
ure 3.9 shows the maximum FoM of each particular geometry. A colored dot
there represents each simulation. The dot color represents the FoM value, and
the position of the dot represents its geometry setting.

Figure 3.8: Geometry variation of hexagonal photnic crystal made of Ce:YIG and
YIG layers. Coloured scale represents the maximum of the Faraday rotation of
the particular geometry.

Figure 3.8 shows that there is a trend of resonant behavior for various geome-
try settings. The value of these FoM maxima is not exact because each geometry
setting requires delicate depth tuning, while this is only a rough geometry scan of
change of geometry configuration. The existence of such a trend suggests that the
spectral feature can be tuned for specific applications such as for optical rotators
on various wavelengths. The spectral dependence of these features is shown in
figure 3.9

Figure 3.9 shows that the investigated spectral feature shifts based on the
geometry configuration. For lattice constant ranging from 600 nm to 1200 nm and
its other corresponding parameters required to reach theresonance, we managed to
reach the desired 45◦ Faraday rotation between 2.64 eV and 2.83 eV. These ranges
are not final. From figure 3.8, it is clear that this trend continues beyond the
investigated geometry configuration. It is not a topic of this thesis to investigate
the whole resonant region as increasing the calculated structure size becomes
computationally demanding, and so it would be difficult to proceed with this
method. However, the current trend shows that simulations with larger crystal
lattice yield resonant features placed on higher energy.
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Figure 3.9: Faraday rotation of Ce:YIG and YIG photonic crystal in various
geometry configuration used in figure 3.8. The purpose of this figure is to demon-
strate the spectral dependency of the resonant features. Simulations with a larger
lattice constant produce resonant features at higher energies.

The following figure 3.10 shows the resonant area more clearly. Simulations
show that resonant behavior can be expected only while lattice constant and
hole radius are changing simultaneously. (Or at least no other resonant area
was found). With every 20 nm increase in lattice constant, there has to be a 7
nm increase in hole radius. Than the resonant depth can be found. The depth
dependency does not seem to be analytical.

3.2.2 Ce:YIG/Bi:YIG photonic crystal
In this section, the YIG mid-layer was exchanged for the Bismut doped YIG
(Bi:YIG). This middle layer can not be chosen independently. It serves as a
transition material with a lattice constant similar to the Ce:YIG. (On YIG with
the lattice constant of 12.51 ± 0.03 Å the layer of Ce:YIG grows with the lattice
constant of 12.53 ± 0.04 Å [18]) These values are only demonstrative, an actual
value of lattice constant of materials in multilayer depends on the thickness of
individual layers. For this reason, only a narrow range of materials can be used.

Since the Bi:YIG has a similar lattice constant as a YIG, it can be used as its
substituent. The magneto-optical activity should in comparison to YIG enhanced.
We did not start with this material in the first place because we did not consider
any interesting behavior for holes deeper than is the thickness of the top Ce:YIG
layer, which should have worked as the primary source of the magneto-optical
effect. Resonant features similar to the one in the previous section were found.
Once again, there is a resonant trend behavior for various geometry settings. This
trend is displayed in figure 3.11

Figure 3.12 shows that in this case, Faraday rotation of 45◦ or higher was
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Figure 3.10: Geometry variation of hexagonal photnic crystal made of Ce:YIG
and YIG layers. Coloured scale represents the maximum of the Faraday rotation
of the particular geometry. Only resonant slice being shown.

reached within the spectral region of 2.63 eV and 2.86 eV for structures with
lattice constant in the range between 600 nm and 1200 nm. This is only a slight
increase in comparison to the YIG mid-layer in terms of spectral region range.
Keep in mind that the real position of these peaks can be shifted by about 0.1
eV due to the material data fit, but at least we get the general picture about the
behavior of these features and the spectral dependency.

The uneven density of resonant structures on figure 3.9 is due to the uneven
distribution of examined geometry setups in the grid on figure 3.11. The rea-
son behind this unevenity is that at first, there were 5x5x5 simulation geometry
variations with the central point at first found resonant setup of a=1000 nm, d
= 700 nm, and h = 151 nm. Other simulations were made with a 1% difference
in these original parameters. After that, several other regions were investigated,
and finally, the trend was found and confirmed by the diagonal plane simulation
region with a finer depth step.

3.2.3 Transmision
At regular thin layers, the important parameter for FoM is the Faraday rotation
per thickness. It is generally beneficial to maximize the Faraday rotation of the
layer to reach values over 90◦. The layer can then be thinned down, resulting in
reaching the desired value of Faraday rotation and increasing transmissivity. In
this case, the thickness of each layer is defined so that a resonant behavior would
be invoked. This means that the thickness is fixed, and so we only work with
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Figure 3.11: Geometry variation of hexagonal photnic crystal made of Ce:YIG,
Bi:YIG layers. Coloured scale represents the maximum of the Faraday rotation
of the particular geometry.

Figure 3.12: Faraday rotation of Ce:YIG, Bi:YIG photonic crystal in various ge-
ometry configuration used in figure 3.11. The purpose of this figure is to demon-
strate the spectral dependency of the resonant features. Simulations with a larger
lattice constant produce resonant features at lower energies.
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a Faraday rotation of the whole structure. The FoM is defined as 3.2. It seems
that it is always possible to reach a Faraday rotation of 90◦ for a certain hole
depth. Thus the only other parameter we can focus on to improve the FoM is a
transmission of the structure.

The comparison of the transmission of the PhC discussed in this chapter is
displayed in figure 3.13. The only transmission of spectral features that reaches
the value of Faraday rotation of 45◦ or above is being shown.

(a) (b)

Figure 3.13: Transmission of spectral features that reaches the value of Faraday
rotation of 45◦ or above. Each line represents a photonic crystal in particular
geometry configuration displayed in the figure 3.8 and 3.11. In left, we have a
SiO2-YIG-Ce:YIG photonic crystal (a) while on right there is a SiO2-Bi:YIG-
Ce:YIG photonic crystal (b).

From figure 3.13 it seems that the transmission is slightly larger while using
Bi:YIG material as a mid-layer material. The discontinuity of lines in the right
picture is caused by simulating only a narrow spectral region around resonant
features to increase accuracy.

To confirm that Bi:YIG is a better material for maximizing FoM, we have to
look at transmission in maxima of resonant features. This is done in figure 3.14

Figure 3.14 now clearly shows that using Bi:YIG as a mid-layer material leads
to an increase in figure of merit. The discontinuity in Bi:YIG simulation between
2.66 eV and 2.7 eV is caused by a lower density of simulations in the sense of
geometry configurations. Only resonant features with Faraday rotation of 45◦

and above were used. There would be more data if we would make the depth
step more delicate during the geometry optimization step. For the demonstration
of individual parameters, this dataset is sufficient.

As we can see, for both materials, resonances at higher energy lead to a
dramatic drop in transmittance. For this reason, it is inefficient to keep inves-
tigating the geometrical arrangements that lead to these resonances at higher
energy. These are the configurations with the smaller lattice parameter. The
relation between resonant feature position in the spectrum and lattice parameter
of the photonic crystal is displayed in figure 3.15.

The trend observed in 3.15 seems to be linear and the same for both mid-layer
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Figure 3.14: Integral Transmission of hexagonal photonic crystals in a maximum
of their Faraday rotation. Blue markers represent SiO2-YIG-Ce:YIG photonic
crystal while red markers represent SiO2-Bi:YIG-Ce:YIG photonic crystal.

materials. For YIG mid-layer variant, we obtain:

E[eV ] = −0.0003 a [nm] + 3.0351, (3.4)

with R2 = 0.988 and for Bi:YIG variant:

E[eV ] = −0.0003 a [nm] + 3.0158, (3.5)

with R2 = 0.9592.

3.2.4 Layer thickness
Since we managed to reach a sufficient value of Faraday resonance for almost
every value of lattice parameter and the only thing limiting the value of the FoM
is the transmittance of the structure, we should look at the thicknesses of used
layers.

For this reason, we provide three additional sets of simulations. Each of these
sets uses a geometrical configuration of lattice constant a = 1000 nm, hole radius
r = 350 nm, and hole depth change to reach the resonant behavior. YIG is used
as a mid-layer material. In the first set of simulations, the thickness of the YIG
is reduced from 120 nm to 100 nm, and the thickness of Ce:YIG remains 100
nm. The maximum of the Faraday rotation is reached for the depth of 141 nm,
and the resonant peak is at 2.78 eV. In the second one, the thickness of the YIG
layer is also reduced to 100 nm, but now, the thickness of the Ce:YIG layer is
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Figure 3.15: Dependence of position of Faraday rotation resonance on lattice
parameter a in Ce:YIG/YIG/SiO2 and Ce:YIG/Bi:YIG/SiO2 photonic crystal.

also reduced, from 100 nm to 80 nm. The maximum of the Faraday rotation is
reached for the depth of 135.5 nm, and the maximum of resonance is at 2.86 eV.
In the third simulation set, the thickness of Ce:YIG stays at 100 nm, but the
thickness of the YIG layer is reduced even further to 80 nm. The maximum of
the Faraday rotation is reached for the depth of 135 nm, and the maximum of
resonance is at 2.84 eV. The resulting Faraday rotation spectra are displayed in
figure 3.16. Integral transmition of these designs with comparation to the original
design 3.1 is displayed on figure 3.17.

3.3 Resonant field profile
Reaching the values of the figure of merit as high as 18.5 seems almost suspicious.
To confirm this, we have to look at the near field inside the photonic crystal to
see what causes the resonance.

The source in this simulation is an x-polarised pulse, traveling in the z-
direction. To see the origin of the rotation, we have to look at the y-component
of the field.

The following series of figures is comparison of the field profile of a resonant
structure (figure 3.19 - 3.21) and non resonant structure (figure 3.22 - 3.24).
Visualized fields are the values of at particular frequency, integrated over the time
of the simulation. The frequencies are chosen so that the energy corresponds to
the energy smaller then then the position of the resonance, energy of the resonance
position, and energy higher than the resonance position.
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Figure 3.16: Resonant Faraday rotation of SiO2-YIG-Ce:YIG photonic crystal
with the lattice constant 1000 nm and hole radius 350 nm. The thickness of the
layers used is written on top of each figure. Depth of holes varies so that resonant
behaviour is reached.
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Figure 3.17: Integral transmission in the maximum of the resonance. For few
simulations, the initial layer thickness was changed to show that the resonance can
be found at other thicknesses and that the integral transmission can be improved.

Looking at the figure 3.18, we can see that there is actually a 180◦ shift in the
polarization which occurs around the resonance. This shift should cause a visible
difference between figures 3.21 and 3.24.

As we can see, the figure set for the resonant structure is almost identical,
without any sign of a dramatic change observed in the faraday rotation.

After a detailed investigation, we found the reason behind this problem. Ini-
tially, we tested whether the position of the transmission detector would change
the transmissivity, which we found out that it would not. But since we use peri-
odic conditions in x and y direction, the simulated structure is effectively infinite,
and so no matter how far the detector is, there will always be a contribution to
the transmission from all diffractions orders.

The figure 3.25 shows that the transmission into 0-diffraction order is around
0.1%. This means that the figure of merit does not reach values of 18.5, but
rather 2.3.

The deficient transmission is a reasonable explanation for the colossal rota-
tion but a slight difference in the near field. The initially dominant x-polarized
component is reduced due to the low transmission. The y-polarized component,
induced by the magneto-optical effect, is being induced as the wave propagates
through the material, and so it experiences minor reduction. At the output of
the photonic crystal, both of these components are comparable in value and thus
producing a significant Faraday effect ([5]).
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Figure 3.18: Faraday rotation of the structure described above. Notice that the
green and blue lines do not start at 0◦, but rather 60◦. That is because the
polarization angle at these simulations was set at 60◦, which means that this is
technically not a Faraday rotation but just the transmitted beam’s polarization
angle. The critical information on this figure is that the tails of the resonant lines
(green and orange) are actually shifted by 180◦ to the other.

3.4 Concentration detector
If we look at the figures 3.20 and 3.23, which both correspond to the crosssections
at the resonant energy, we can see that there is a prominent mode of light that is
strongly located inside of the hole of the photonic crystal. That hints towards a
significant sensitivity of such structure on the refractive index change inside the
hole. Such behavior could be exploited for the construction of a concentration
detector. For such a detector, the low overall transmittance is not a big issue.

For this reason, we tested the original resonant design of the photonic crystal.
(120 nm thick layer of Ce:YIG on a 100 nm thick mid-layer of YIG on a SiO2
substrate with cylindrical holes in a hexagonal arrangement that are 1000 nm
apart and have 700 nm in diameter. The depth of these holes is 151 nm.) The
holes were filled with a material with a refractive index, ranging from n = 1 to
n = 1.007, and we calculated the faraday rotation to see whether there is some
observable difference. The simulation results are depicted in figure 3.26.

The difference between individual curves in figure 3.26 is around 0.5◦ - 5◦,
depending on the curves and energy. This is a very promising sign because these
values are certainly detectable.

To quantify the sensitivity of this structure, we will introduce two criteria,
based on which we will select energy on which the sensitivity will be measured.
The first criterium is the device’s sensitivity, meaning how much does the Fara-
day rotation changes with the change of the refractive index inside the holes.
This can be calculated simply by making a difference between the two extreme
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(a) Vertical slice (b) Horizontal slice z = 0

(c) Horizontal slice z = 100 nm (d) Horizontal slice z = 200 nm

Figure 3.19: The profile of the y-component of the electric field inside the hole of
the structure described above. The depth of the hole is 151 nm which corresponds
to the resonant behavior in Faraday rotation. Subfigure (a) is a vertical slice
through the middle of the hole in the x-direction. Subfigure (b) is a horizontal
slice of the same field at z = 0, which is the interface between the SiO2 substrate
and the YIG. Subfigure (c) is a horizontal slice of the same field at z = 100 nm,
which is the interface between the YIG and the Ce:YIG. And finally, the subfigure
(d) is a slice of the same field at z = 200 nm, which is a slice in the Ce:YIG layer
near the upper edge. The field profile corresponds to the 578.86 nm light or 2.142
eV.

curves, meaning ϕn=1.000(E) and ϕn=1.007(E). Energy, on which the new curve,
ϕdif , reaches the maximum, would be the energy of the highest sensitivity. The
second criterium is a criterium of linearity, which says how much does the Faraday
rotation as a function of refractive index resembles a linear function on specific
energy. It is calculated as a sum of squares of differences between an average dis-
tance of neighboring curves and its actual distance. The energy of the minimum
of this function corresponds to the spectral region, where the Faraday rotation
as a function of refractive index is the most linear.

Multiplying the sensitivity function fsens(E) with an inverted linearity func-
tion flin(E) (meaning subtracting the function from its maximum), we obtain a
new function fscore(E) which works as a score to determine, which energy to use
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(a) Vertical slice (b) Horizontal slice z = 0

(c) Horizontal slice z = 100 nm (d) Horizontal slice z = 200 nm

Figure 3.20: The profile of the y-component of the electric field inside the hole of
the structure described above. The depth of the hole is 151 nm which corresponds
to the resonant behavior in Faraday rotation. Subfigure (a) is a vertical slice
through the middle of the hole in the x-direction. Subfigure (b) is a horizontal
slice of the same field at z = 0, which is the interface between the SiO2 substrate
and the YIG. Subfigure (c) is a horizontal slice of the same field at z = 100 nm,
which is the interface between the YIG and the Ce:YIG. And finally, the subfigure
(d) is a slice of the same field at z = 200 nm, which is a slice in the Ce:YIG layer
near the upper edge. The field profile corresponds to the 459.37 nm light or 2.699
eV.

for the sensitivity definition.

fsens(E) = ϕimin
(E) − ϕimax(E)
imax − 1

flin(E) =
imax−1∑︂
i=imin

(︂
ϕi+1(E) − ϕi(E) − fsens(E)

)︂2

fscore(E) = fsens(E) ·
(︂
max(flin(E)) − flin(E)

)︂
(3.6)

Lower index i is indexing individual curves representing Faraday rotation of pho-
tonic crystals with different refractive index values inside its holes.

Faraday rotation as a function of the refractive index for the resonant geometry
of the photonic crystal described at the beginning of this section at the maximum
of the energy score function is displayed in figure 3.28. The steepness of the trend
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(a) Vertical slice (b) Horizontal slice z = 0

(c) Horizontal slice z = 100 nm (d) Horizontal slice z = 200 nm

Figure 3.21: The profile of the y-component of the electric field inside the hole of
the structure described above. The depth of the hole is 151 nm which corresponds
to the resonant behavior in Faraday rotation. Subfigure (a) is a vertical slice
through the middle of the hole in the x-direction. Subfigure (b) is a horizontal
slice of the same field at z = 0, which is the interface between the SiO2 substrate
and the YIG. Subfigure (c) is a horizontal slice of the same field at z = 100 nm,
which is the interface between the YIG and the Ce:YIG. And finally, the subfigure
(d) is a slice of the same field at z = 200 nm, which is a slice in the Ce:YIG layer
near the upper edge. The field profile corresponds to the 411.54 nm light or 3.01
eV.

is around 2.66◦/0.001n. The trend is linear only for small changes of the refractive
index, but it could definitely be used in some applications. Since the resonant
position is tuneable, we can assume that it could be tuned for various refractive
indexes as well.

3.5 Ce:YIG/YIG/SiO2 PhC sumarry
In conclusion, at the beginning of the chapter, we show that the FDTD method
can be used to some extent to model a real photonic crystal based on garnet mate-
rials (Fig 3.2). We then optimized the initial design, which led to the discovery of
resonance in Faraday rotation, reaching a total of 180◦ values (Fig 3.18). Based on
the crystal’s geometry, this spectral feature is tuneable across s specific region of
the spectrum (Fig 3.10). The mid-layer YIG material was replaced with Bi:YIG,
which led to an increase in transmissivity (Fig 3.14). We then made a brief test
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(a) Vertical slice (b) Horizontal slice z = 0

(c) Horizontal slice z = 100 nm (d) Horizontal slice z = 200 nm

Figure 3.22: The profile of the y-component of the electric field inside the hole
of the structure described above. The depth of the hole is 148 nm which does
not correspond to the resonant behavior in Faraday rotation. Subfigure (a) is a
vertical slice through the middle of the hole in the x-direction. Subfigure (b) is a
horizontal slice of the same field at z = 0, which is the interface between the SiO2
substrate and the YIG. Subfigure (c) is a horizontal slice of the same field at z
= 100 nm, which is the interface between the YIG and the Ce:YIG. And finally,
the subfigure (d) is a slice of the same field at z = 200 nm, which is a slice in the
Ce:YIG layer near the upper edge. The field profile corresponds to the 578.86
nm light or 2.142 eV.

of whether it is possible to find the resonant spectral feature for photonic crystal
with different layer thicknesses, which turned out to be successful, and it led to
even better transmission (Fig 3.17). The transmission into zero diffraction order
turned out to be significantly lower than we anticipated (Fig 3.25). This led to a
decrease of the figure of merit defined in (Eq 3.2) from 34.5 to 4.6. Investigation
of the origin of the spectral features showed potential towards the structure being
highly sensitive on a change of a refractive index inside its holes (Fig 3.23). This
turned out to be true. The Faraday rotation of this structure in the resonance is
highly sensitive with respect to the change of the refractive index (Fig 3.26). The
sensitivity reaches several degrees per thousandth of refractive index (Fig 3.28).
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(a) Vertical slice (b) Horizontal slice z = 0

(c) Horizontal slice z = 100 nm (d) Horizontal slice z = 200 nm

Figure 3.23: The profile of the y-component of the electric field inside the hole
of the structure described above. The depth of the hole is 148 nm which does
not correspond to the resonant behavior in Faraday rotation. Subfigure (a) is a
vertical slice through the middle of the hole in the x-direction. Subfigure (b) is a
horizontal slice of the same field at z = 0, which is the interface between the SiO2
substrate and the YIG. Subfigure (c) is a horizontal slice of the same field at z
= 100 nm, which is the interface between the YIG and the Ce:YIG. And finally,
the subfigure (d) is a slice of the same field at z = 200 nm, which is a slice in the
Ce:YIG layer near the upper edge. The field profile corresponds to the 459.37
nm light or 2.699 eV.
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(a) Vertical slice (b) Horizontal slice z = 0

(c) Horizontal slice z = 100 nm (d) Horizontal slice z = 200 nm

Figure 3.24: The profile of the y-component of the electric field inside the hole
of the structure described above. The depth of the hole is 148 nm which does
not correspond to the resonant behavior in Faraday rotation. Subfigure (a) is a
vertical slice through the middle of the hole in the x-direction. Subfigure (b) is a
horizontal slice of the same field at z = 0, which is the interface between the SiO2
substrate and the YIG. Subfigure (c) is a horizontal slice of the same field at z
= 100 nm, which is the interface between the YIG and the Ce:YIG. And finally,
the subfigure (d) is a slice of the same field at z = 200 nm, which is a slice in the
Ce:YIG layer near the upper edge. The field profile corresponds to the 411.54
nm light or 3.01 eV.
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Figure 3.25: Logarithmic transmission into diffraction orders of the Ce:YIG/YIG
photonic crystal in the resonant geometry settings at the resonant energy.

Figure 3.26: Faraday rotation of the photonic crystal described above. The re-
fractive index n is different for each simulation.
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Figure 3.27: Value of energy score for photonic crystal described above as defined
in equation 3.6

Figure 3.28: Sensitivity towards the change of the refractive index in the holes of
photonic crystal described above at the energy, determined by the energy score.
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4. Optically active element
An exciting property of ferromagnetic shape memory alloys, such as NiMnGa, is
that the ferromagnetic domains are coupled into two crystal variants. Applying
an external magnetic field leads to reordering of the crystal lattice, producing an
observable deformation of the structure that, according to [19] reaches around
6-10%. A photonic crystal made out of this material would have its optical prop-
erties, such as reflectivity, sensitive to the deformation’s magnitude. This means
that such a device could be used as a optically active element, deformation de-
tector or a detector of a magnetic field. In this chapter, we will try to design a
device that will be sensitive towards the deformation. We will investigate three
designs: a photonic crystal with cylindrical holes in a hexagonal pattern, cylin-
drical pillars in a square pattern, and finally, self-standing foil with cylindrical
holes in a square pattern.

4.1 Hexagonal hole pattern
The first idea was to use a concept similar to the one in the previous chapter, a
hexagonal photonic crystal on a substrate. In this case, the photonic crystal is
made out of a 50 nm thick layer of Co:NiMnGa on a 20 nm mid-layer of chromium,
which stands on a substrate made out of magnesium oxide. Into the top layer, a
hexagonal pattern of a cylindrical hole is fabricated (see figure 4.1).

The property of interest will be the reflectivity of this structure. The mid-layer
is included purely for practical reasons because it is easier to grow a Co:NiMnGa
structure on chromium than on magnesium oxide.

The optimization process itself will target the lattice constant a and the hole
radius r. There will also be a third parameter, which is the deformation. The
magnetic field is turned off in this case because the material will keep its shape.

We will model the material deformation by changing the hole profile from
circular co elliptical while keeping the total volume of the material the same. We
will do that by introducing the deformation parameter d. The hole radii can be

Figure 4.1: An elementary cell of the hexagonal hole pattern design of the opti-
cally active element. This cell is periodically repeated in the simulation.

51



described as:

r1 = r0(1 + d)

r2 = r0

1 + d
,

(4.1)

where r1 is the size of the ellipse’s major axis and r2 is the size of the minor axis
of the ellipse. We denote the hole radius parameter as r0. Note that this assumes
an ideal deformation, which occurs only in one direction and is homogenous. In
reality, the material might get deformed around other axes due to the tension, it
might crack, or some other form of defect could emerge.

4.1.1 Material input
Before we proceed to the simulation, let us have a look at the material data.

For the description of MgO material, we used data from refractive index
website. The problem is that there is only refractive index data, and so we calcu-
lated the relative permittivity simply by squaring the refractive index, assuming
relative permeability to be equal to one for the spectral region we are working
with. The extinction coefficient is not listed, so we assume it to be zero (MgO
material is not absorbent in this spectral region), making the permittivity values
real. The problem is that the real and imaginary part of the permittivity is not
independent but rather connected by Kramers-Kronig relations [20]. These rela-
tions require the whole spectrum to be known, which is impossible to measure,
so software such as LUMERICAL imitates them to some extend by their internal
models, which we have no control over. For this reason, there is a disagreement
in the imaginary part of the fitted permittivity in magnesium monoxide on fig-
ure 4.2. This disagreement is not significant and since we want to simulate only
reflection and the disagreement is in the bottom layer, this should not be an issue.

4.1.2 Design shortcomings
In the current model, we use an isotropic permittivity for the deformed
Co:NiMnGa, but the deformation could induce an anisotropy. Another potential
problem is that the layer is way too thin compared to other dimensions of the
structure. This can lead to cracks in the material. Another concern is that the
substrate will not allow the top layer to deform. For this reason, the other design
focuses on self-standing foil.

4.1.3 First data set
In the first badge of simulations, we leave the lattice constant a = 700 nm fixed
and vary only the hole radius and the deformation parameter. The data set
contains simulations of structures with a hole radius ranging from 50 nm to 290
nm with a step of 10 nm. The deformation ranges from 0 % to 15 % with a 5 %
increase.

With an increase in the radius of holes, there starts to appear a drop in
reflectivity at around 2 eV, which is maximized at a hole radius of 260 nm and
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Figure 4.2: The analytical fit of the real and imaginary part of permittivity of
materials used in the FDTD simulation for the optically active element design.
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Figure 4.3: The reflectivity of the structure with various hole radiuses without a
presence of deformations. At 1.25 eV, the highest curve represents the structure
with a hole radius of 50 nm, and as the curve gets lower, it represents structures
with a higher radius up to 300 nm. These curves are ordered at lower energies,
but at around 1.7 eV, the order gets lost as the structure with the highest radius
no longer yields the lowest reflectivity.

then starts to narrow and vanish. The vanishing may be caused by the delicacy
of the simulation of energy spectra. See figure 4.3.

The geometry with the most significant drop in reflectivity was selected to
investigate how it behaves under deformation. At this simulation resolution, the
difference in reflectivity under deformation at the hole radius of 260 nm is almost
unrecognizable. This might improve if the relative change under higher resolution
is calculated. See figure 4.4.

The change in reflectance with increasing deformation is more significant in
simulations with hole radii that produce a broader drop in reflectivity. An exam-
ple is the radius of 200 nm displayed in figure 4.5.

4.1.4 Simulation under higher resolution
Once the general behavior of the structure was known, another badge of simula-
tions was made. Using the same lattice constant and the deformation parameter
as previously, but this time the hole radius ranges only from 250 to 300 nm. The
most important change in a setting is the spectral region ranging only from 1.9
to 2.1 eV. This change increases the resolution of the spectrum, allowing us to
investigate more delicate special features if there are any.

The detailed simulation confirms that increasing the hole radius further does
not increase the drop in reflectivity. 4.6
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Figure 4.4: The reflectivity of the structure with a hole radius of 260 nm and four
different values of the deformation parameter. This radius produces the highest
drop in reflectivity.

Figure 4.5: The reflectivity of the structure with a hole radius of 200 nm and
four different values of the deformation parameter. In this case, the reflectivity
is more sensitive towards a change in the deformation parameter.
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Figure 4.6: The reflectivity of the structure with various hole radiuses without a
presence of deformations under higher detail.

A figure 4.7 is the detailed version of figure 4.4. It confirms that although this
geometric configuration maximizes the undeformed drop in reflectivity, it does
not maximize the sensitivity towards the change in deformation.

4.1.5 Optimization clasification
Before we can start optimizing the structure, we have to classify what we are
going to optimize. For this purpose, we will define a sensitivity S as a parameter
of a hole radius r0:

S(r0) =
⃓⃓⃓⃓
∂min[Rr0,d(E)]

∂d
(d = 0.05)

⃓⃓⃓⃓
, (4.2)

or in other words, we take a structure with a defined hole radius r0, we calculate
the spectral reflectivity Rr0,d(E) for various deformation parameters d, we pick
the local minimum of the reflectivity and parametrize it as a function of the
deformation parameter. Then we take the absolute value of the slope, and this
is the sensitivity S(r0) which demonstrates how much does the reflectivity in
minimum change if we deform the sample.

The calculation of the slope around the d = 0.05 is justified by the figure
4.8, which shows that we could use a linear fit as well. In some simulations,
the reflectivity of minimum diverses form the linear trend around the d = 0.15,
but that is a value that we can not expect to reach anyway since the maximum
observed deformation is around d = 0.1.

The sensitivity as a function of the hole radius is for lattice constant a = 700
nm shown in figure 4.9.
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Figure 4.7: The reflectivity of the structure with a hole radius of 260 nm and four
different values of the deformation parameter detailed. This radius produces the
highest drop in reflectivity.

Figure 4.8: The minima of reflectivity of structure with a hole radius of 210 nm
for various deformation parameters.
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Figure 4.9: Sensitivity as a function of hole radius as defined in equation 4.2 The
lattice constant a = 700 nm.

The figure 4.9 shows that from this data sample, the most efficient structure,
with the highest value of sensitivity (4.2), is the structure with a hole radius of
210 nm.

4.2 Square pillar pattern
Another type of structure that we investigate is a 500 nm thick layer of MgO
with pillars of Cr and Co:NiMnGa in square arrangement on top of it. The
lattice constant is 1600 nm, and the radius of these pillars is 300 nm. The
thickness of these materials is the same as in the previous design, which is 50 nm
of Co:NiMnGa on top of 20 nm of Cr (see figure 4.11).

For such a structure, the transmittance was calculated. (Figure 4.12)
There looks to be potentially an interesting behavior in transmission around

0.8 eV. The problem is that the material data are not valid in this spectral
region. (The fit of the material data is shown in figure 4.13). Since the laboratory
equipment does not allow measuring the material data under 1 eV, this design
was abounded. There is a possible way around this, which is changing the lattice
constant, but other projects got a higher priority, and there was a concern about
the pillars falling off due to the deformation. This is another reason to abound
the design with substrate altogether and to move to the self-standing film.
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Figure 4.10: The reflectivity of the structure with a hole radius of 210 nm for
various values of the deformation parameter. This design corresponds to the
geometry with the highest sensitivity, according to the 4.9.

Figure 4.11: An elementary cell of the squere pillar pattern design of the optically
active element. This cell is periodically repeated in the simulation.
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Figure 4.12: Reflectivity of the square lattice pillar structure with a lattice con-
stant 1600 nm. The radius of the pillars is 300 nm. The pillars are made of 50
nm layer of Co:NiMnGa on 20 nm of Cr or 500 nm thick slab of MgO.

Figure 4.13: A real part of permittivity of Co:NiMnGa material. The spectral
region in interest (Fig 4.12) is around 1.5 µm, but valid data ends at 1.1 µm. The
figure shows that the fit is unable to provide valid data in the region of interest.
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Figure 4.14: An elementary cell of the self-standing foil design of the optically
active element. This cell is periodically repeated in the simulation.

4.3 Self-standing film with Squere lattice
We will proceed with variating geometry parameters of the structure to see
how does the optical response changes. The structure is a 25 µ thick film of
Co:NiMnGa (see figure 4.14) . The lattice constant a and the hole radius r0 are
the variables that we will look at.

The first set of simulations uses parameters a ∈ [250, 1500] nm and r0 ∈
[50, 0.4 · amax] nm The result is displayed in figure 4.15.

The purpose of this figure is only to show how does the structure behaves. Or,
more specifically, whether it is possible to shift some spectral features to other
energies.

There is clear evidence for spectral features that can be detected. Namely, the
drop in reflectivity, which is narrower for lower energies and opens up for higher
energies. From this data set, three designs were selected to investigate how do
they behave under deformation. The first design has a lattice constant of 900 nm
and a hole radius of 210 nm, which produces a narrow drop in reflectivity around
1.25 eV. The second design has a lattice constant of 500 nm and a hole radius of
130 nm, which produces a reflectivity drop in the visible spectrum at around 2
eV. The third design has the reflectivity drop at even higher energies, at around
2.3 eV, but the deformation minima are no longer ordered, and so this design is
not suitable for use as a detector. (Fig 4.16)

4.4 optically active element summary
This chapter shows that ferromagnetic shape memory alloys can be used for
dynamic control of optical properties. We designed several structures that are
sensitive to deformations and change the reflectivity.

The first design is the photonic crystal with cylindrical holes in a hexagonal
pattern (figure 4.1) which produces a drop in reflectivity for specific hole radii
(figure 4.3). Under various deformation degrees, the reflectivity of the structure
changes (figure 4.10). This effect was classified and maximized 4.2.

The second design is a grid of cylindrical pillars in square arrangement (figure
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Figure 4.15: The reflectivity of a 25 µm thick film of Co:NiMnGa with cylindrical
holes in a squere pattern. The lattice parameter ranges from 250 nm to 1500 nm.
The hole radius ranges from 50 nm to 40% of the lattice parameter. Higher
curves represent structures with smaller holes, and the radius increases as we go
lower in these curves. There is an observable drop in reflectivity which position
varies. Structures with a higher value of lattice parameter have a drop in lower
energies, while structures with smaller lattice parameter values have a drop in
higher energies. The drop in reflectivity opens in higher energies.
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(a) a = 900 nm; r0 = 210 nm (b) a = 500 nm; r0 = 130 nm

(c) a = 400 nm; r0 = 110 nm

Figure 4.16: The reflectivity of 25 µm thick self-standing foil with various hole
patterns under different values of deformation.
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4.11). This design turned out to be unusable due to the absence of material
data for a certain spectral region (figure 4.13). Although, this problem could be
solved by modifying the lattice constant of the photonic crystal, this design was
abounded. Increasing the lattice constant would be difficult in FDTD simulation.

Due to some worries about integrity, the third design is a self-standing foil
with cylindrical holes in a square arrangement. This design turned out to be
spectrally flexible (figure 4.15). Three different designs were calculated for the
various spectral region (figure 4.16). The question remains whether to detect
reflectivity at a specific wavelength or locate the minimum of the reflectivity, but
that is up for the application. We believe that self-standing foil is a promissing
and suitable design for an application.
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Conclusion
The aim of this thesis was to theoretically investigate optical and magneto-optical
properties of various metamaterials in form of photonic structures. For this pur-
pose, we have created a custom script that enables us to simulate magneto-optical
effects within the FDTD algorithm. The simulation of magneto-optical effect was
tested and compared to the result of RCWA and later on a real sample.

Motivated by application in integrated photonic devices, the geometry of multi-
layered garnet photonic crystal was modified, which led to an emerge of a peak in
Faraday rotation, reaching 180◦ value. It was shown that this resonant peak can
be found at various geometries and can be spectrally tuned. The same resonance
peak was found using the RCWA method. The Faraday rotation of 45◦ or higher
was found for wavelengths between 438 nm and 472 nm. Replacing a middle layer
of the photonic crystal led to an increase of the transmission, leading to an in-
crease of the figure of merit. The figure of merit of such structure is thought to be
between 110 and 150, but an investigation of the origin of the resonant behavior
of the Faraday rotation revealed that the transmission into zero-diffraction order
is much lower. In fact, the figure of merit is only about 20.

An investigation of the origin of the Faraday rotation led to a discovery of
strongly located modes of light inside the holes of the photonic crystal. This in-
spired another potential application, which is a concentration detector. For such
device sensitivity of 2.66◦/mRIU (refractive index units) was obtained.

Finally, we have simulated three designs of a deformation detector based on
memory-shaped alloy - Co:NiMnGa. The first design was a multilayer with cylin-
drical holes in a hexagonal pattern. The potential shortcoming of this design was
that the Co:NiMnGa layer was too thin for the deformation to occur because the
substrate under it would not allow the deformation to occur. The second design
was a cylindrical pillar pattern, which would solve the deformation problem, but
an interesting behavior was found in the spectral region without the support of
material data. The third design was a self-standing foil with cylindrical holes
in a square pattern. This design showed the highest sensitivity values towards
the deformation and simultaneously solved the problem with the non-deforming
substrate. The last results opens a way for further development in this field.
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[18] Taichi Goto, Mehmet C Onbaşlı, and CA Ross. Magneto-optical properties of
cerium substituted yttrium iron garnet films with reduced thermal budget for
monolithic photonic integrated circuits. Optics express, 20(27):28507–28517,
2012.

[19] P Lázpita, G Rojo, J Gutiérrez, JM Barandiaran, and RC O’Handley. Cor-
relation between magnetization and deformation in a nimnga shape memory
alloy polycrystalline ribbon. Sensor Letters, 5(1):65–68, 2007.

[20] Valerio Lucarini, Jarkko J Saarinen, Kai-Erik Peiponen, and Erik M Varti-
ainen. Kramers-Kronig relations in optical materials research, volume 110.
Springer Science & Business Media, 2005.

67



List of Figures
1 Example of photonic crystals with various dimensions of periodic-

ity. Different colors represent different materials. The illustration
is taken from [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Examples of occurrence of photonic crystals in nature.
1-dimensional structures can be found at the green and purple
neck feathers of domestic pigeons, another at Morpho butterflies.
Colorful eyes on male peacock feathers are the product of two-
dimensional photonic crystals. 3D inverse opal structures appear-
ing in the green color of Parides sesostris, etc... The illustration is
taken from [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Polarization ellipse. The illustration is taken from [6] . . . . . . . 9
1.2 Schematic description of Faraday rotation of linearly polarized

light. The illustration is taken from [8] . . . . . . . . . . . . . . . 10

2.1 YEE grid shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Smoothing procedure, using the detailed grid technique and con-

volution. This picture is taken from [13]. . . . . . . . . . . . . . . 19
2.3 Electric and magnetic field vector components spatial position in

TM mode. This picture is taken from [13]. . . . . . . . . . . . . . 19
2.4 Comparison of magnetooptical effects calculated by FDTD simu-

lation against results of Yeh’s formalism. A simulated object is
a 100 nm thick layer of Ce-substituted yttrium iron garnet in a
saturated magnetic region. . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Analytical fit of the Ce:YIG and YIG material optial parameters
used in the FDTD simulation. . . . . . . . . . . . . . . . . . . . . 26

3.1 Schema of the Ce:YIG-YIG-SiO2 photonic crystal. . . . . . . . . . 28
3.2 Comparison of Faraday rotation of an ideal structure calculated

by FDTD simulation against the measurement of a real sample.
The geometry of the sample is described on figure 3.1 with value
D = 760 nm. On the left figure (a), the incident wave is polarized
in the x-axis, while on the right figure (b), it is polarised under
30in respect to the x-axis. . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Image of a surface of a photonic crystal from figure 3.1. . . . . . . 30
3.4 Initial design of the photonic crystal. . . . . . . . . . . . . . . . . 31
3.5 Faraday rotation spectra of photonic crystal. Geometry of the

photonic crystal is described in figure 3.4. . . . . . . . . . . . . . 31
3.6 Detail of Faraday rotation spectra of photonic crystal. Geometry

of the photonic crystal is described in figure 3.4. . . . . . . . . . . 32
3.7 Fadaray rotation of hexagonal photonic crystal. Spectral features

on the left are calculated by the FDTD method. Spectral features
on right are calculated by the RCWA. . . . . . . . . . . . . . . . . 32

3.8 Geometry variation of hexagonal photnic crystal made of Ce:YIG
and YIG layers. Coloured scale represents the maximum of the
Faraday rotation of the particular geometry. . . . . . . . . . . . . 33

68



3.9 Faraday rotation of Ce:YIG and YIG photonic crystal in various
geometry configuration used in figure 3.8. The purpose of this
figure is to demonstrate the spectral dependency of the resonant
features. Simulations with a larger lattice constant produce reso-
nant features at higher energies. . . . . . . . . . . . . . . . . . . . 34

3.10 Geometry variation of hexagonal photnic crystal made of Ce:YIG
and YIG layers. Coloured scale represents the maximum of the
Faraday rotation of the particular geometry. Only resonant slice
being shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.11 Geometry variation of hexagonal photnic crystal made of Ce:YIG,
Bi:YIG layers. Coloured scale represents the maximum of the Fara-
day rotation of the particular geometry. . . . . . . . . . . . . . . . 36

3.12 Faraday rotation of Ce:YIG, Bi:YIG photonic crystal in various
geometry configuration used in figure 3.11. The purpose of this
figure is to demonstrate the spectral dependency of the resonant
features. Simulations with a larger lattice constant produce reso-
nant features at lower energies. . . . . . . . . . . . . . . . . . . . 36

3.13 Transmission of spectral features that reaches the value of Faraday
rotation of 45◦ or above. Each line represents a photonic crystal in
particular geometry configuration displayed in the figure 3.8 and
3.11. In left, we have a SiO2-YIG-Ce:YIG photonic crystal (a)
while on right there is a SiO2-Bi:YIG-Ce:YIG photonic crystal (b). 37

3.14 Integral Transmission of hexagonal photonic crystals in a maxi-
mum of their Faraday rotation. Blue markers represent SiO2-YIG-
Ce:YIG photonic crystal while red markers represent SiO2-Bi:YIG-
Ce:YIG photonic crystal. . . . . . . . . . . . . . . . . . . . . . . . 38

3.15 Dependence of position of Faraday rotation resonance on lattice
parameter a in Ce:YIG/YIG/SiO2 and Ce:YIG/Bi:YIG/SiO2 pho-
tonic crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.16 Resonant Faraday rotation of SiO2-YIG-Ce:YIG photonic crystal
with the lattice constant 1000 nm and hole radius 350 nm. The
thickness of the layers used is written on top of each figure. Depth
of holes varies so that resonant behaviour is reached. . . . . . . . 40

3.17 Integral transmission in the maximum of the resonance. For few
simulations, the initial layer thickness was changed to show that
the resonance can be found at other thicknesses and that the inte-
gral transmission can be improved. . . . . . . . . . . . . . . . . . 41

3.18 Faraday rotation of the structure described above. Notice that
the green and blue lines do not start at 0◦, but rather 60◦. That
is because the polarization angle at these simulations was set at
60◦, which means that this is technically not a Faraday rotation
but just the transmitted beam’s polarization angle. The critical
information on this figure is that the tails of the resonant lines
(green and orange) are actually shifted by 180◦ to the other. . . . 42

69



3.19 The profile of the y-component of the electric field inside the hole
of the structure described above. The depth of the hole is 151 nm
which corresponds to the resonant behavior in Faraday rotation.
Subfigure (a) is a vertical slice through the middle of the hole in
the x-direction. Subfigure (b) is a horizontal slice of the same field
at z = 0, which is the interface between the SiO2 substrate and
the YIG. Subfigure (c) is a horizontal slice of the same field at z =
100 nm, which is the interface between the YIG and the Ce:YIG.
And finally, the subfigure (d) is a slice of the same field at z = 200
nm, which is a slice in the Ce:YIG layer near the upper edge. The
field profile corresponds to the 578.86 nm light or 2.142 eV. . . . . 43

3.20 The profile of the y-component of the electric field inside the hole
of the structure described above. The depth of the hole is 151 nm
which corresponds to the resonant behavior in Faraday rotation.
Subfigure (a) is a vertical slice through the middle of the hole in
the x-direction. Subfigure (b) is a horizontal slice of the same field
at z = 0, which is the interface between the SiO2 substrate and
the YIG. Subfigure (c) is a horizontal slice of the same field at z =
100 nm, which is the interface between the YIG and the Ce:YIG.
And finally, the subfigure (d) is a slice of the same field at z = 200
nm, which is a slice in the Ce:YIG layer near the upper edge. The
field profile corresponds to the 459.37 nm light or 2.699 eV. . . . . 44

3.21 The profile of the y-component of the electric field inside the hole
of the structure described above. The depth of the hole is 151 nm
which corresponds to the resonant behavior in Faraday rotation.
Subfigure (a) is a vertical slice through the middle of the hole in
the x-direction. Subfigure (b) is a horizontal slice of the same field
at z = 0, which is the interface between the SiO2 substrate and
the YIG. Subfigure (c) is a horizontal slice of the same field at z =
100 nm, which is the interface between the YIG and the Ce:YIG.
And finally, the subfigure (d) is a slice of the same field at z = 200
nm, which is a slice in the Ce:YIG layer near the upper edge. The
field profile corresponds to the 411.54 nm light or 3.01 eV. . . . . 45

3.22 The profile of the y-component of the electric field inside the hole
of the structure described above. The depth of the hole is 148 nm
which does not correspond to the resonant behavior in Faraday
rotation. Subfigure (a) is a vertical slice through the middle of
the hole in the x-direction. Subfigure (b) is a horizontal slice of
the same field at z = 0, which is the interface between the SiO2
substrate and the YIG. Subfigure (c) is a horizontal slice of the
same field at z = 100 nm, which is the interface between the YIG
and the Ce:YIG. And finally, the subfigure (d) is a slice of the same
field at z = 200 nm, which is a slice in the Ce:YIG layer near the
upper edge. The field profile corresponds to the 578.86 nm light
or 2.142 eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

70



3.23 The profile of the y-component of the electric field inside the hole
of the structure described above. The depth of the hole is 148 nm
which does not correspond to the resonant behavior in Faraday
rotation. Subfigure (a) is a vertical slice through the middle of
the hole in the x-direction. Subfigure (b) is a horizontal slice of
the same field at z = 0, which is the interface between the SiO2
substrate and the YIG. Subfigure (c) is a horizontal slice of the
same field at z = 100 nm, which is the interface between the YIG
and the Ce:YIG. And finally, the subfigure (d) is a slice of the same
field at z = 200 nm, which is a slice in the Ce:YIG layer near the
upper edge. The field profile corresponds to the 459.37 nm light
or 2.699 eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.24 The profile of the y-component of the electric field inside the hole
of the structure described above. The depth of the hole is 148 nm
which does not correspond to the resonant behavior in Faraday
rotation. Subfigure (a) is a vertical slice through the middle of
the hole in the x-direction. Subfigure (b) is a horizontal slice of
the same field at z = 0, which is the interface between the SiO2
substrate and the YIG. Subfigure (c) is a horizontal slice of the
same field at z = 100 nm, which is the interface between the YIG
and the Ce:YIG. And finally, the subfigure (d) is a slice of the same
field at z = 200 nm, which is a slice in the Ce:YIG layer near the
upper edge. The field profile corresponds to the 411.54 nm light
or 3.01 eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.25 Logarithmic transmission into diffraction orders of the
Ce:YIG/YIG photonic crystal in the resonant geometry settings at
the resonant energy. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.26 Faraday rotation of the photonic crystal described above. The
refractive index n is different for each simulation. . . . . . . . . . 49

3.27 Value of energy score for photonic crystal described above as de-
fined in equation 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.28 Sensitivity towards the change of the refractive index in the holes
of photonic crystal described above at the energy, determined by
the energy score. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 An elementary cell of the hexagonal hole pattern design of the
optically active element. This cell is periodically repeated in the
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 The analytical fit of the real and imaginary part of permittivity
of materials used in the FDTD simulation for the optically active
element design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 The reflectivity of the structure with various hole radiuses without
a presence of deformations. At 1.25 eV, the highest curve repre-
sents the structure with a hole radius of 50 nm, and as the curve
gets lower, it represents structures with a higher radius up to 300
nm. These curves are ordered at lower energies, but at around 1.7
eV, the order gets lost as the structure with the highest radius no
longer yields the lowest reflectivity. . . . . . . . . . . . . . . . . . 54

71



4.4 The reflectivity of the structure with a hole radius of 260 nm and
four different values of the deformation parameter. This radius
produces the highest drop in reflectivity. . . . . . . . . . . . . . . 55

4.5 The reflectivity of the structure with a hole radius of 200 nm and
four different values of the deformation parameter. In this case, the
reflectivity is more sensitive towards a change in the deformation
parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 The reflectivity of the structure with various hole radiuses without
a presence of deformations under higher detail. . . . . . . . . . . . 56

4.7 The reflectivity of the structure with a hole radius of 260 nm and
four different values of the deformation parameter detailed. This
radius produces the highest drop in reflectivity. . . . . . . . . . . 57

4.8 The minima of reflectivity of structure with a hole radius of 210
nm for various deformation parameters. . . . . . . . . . . . . . . 57

4.9 Sensitivity as a function of hole radius as defined in equation 4.2
The lattice constant a = 700 nm. . . . . . . . . . . . . . . . . . . 58

4.10 The reflectivity of the structure with a hole radius of 210 nm for
various values of the deformation parameter. This design corre-
sponds to the geometry with the highest sensitivity, according to
the 4.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.11 An elementary cell of the squere pillar pattern design of the op-
tically active element. This cell is periodically repeated in the
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.12 Reflectivity of the square lattice pillar structure with a lattice con-
stant 1600 nm. The radius of the pillars is 300 nm. The pillars
are made of 50 nm layer of Co:NiMnGa on 20 nm of Cr or 500 nm
thick slab of MgO. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.13 A real part of permittivity of Co:NiMnGa material. The spectral
region in interest (Fig 4.12) is around 1.5 µm, but valid data ends
at 1.1 µm. The figure shows that the fit is unable to provide valid
data in the region of interest. . . . . . . . . . . . . . . . . . . . . 60

4.14 An elementary cell of the self-standing foil design of the optically
active element. This cell is periodically repeated in the simulation. 61

4.15 The reflectivity of a 25 µm thick film of Co:NiMnGa with cylindri-
cal holes in a squere pattern. The lattice parameter ranges from
250 nm to 1500 nm. The hole radius ranges from 50 nm to 40%
of the lattice parameter. Higher curves represent structures with
smaller holes, and the radius increases as we go lower in these
curves. There is an observable drop in reflectivity which position
varies. Structures with a higher value of lattice parameter have a
drop in lower energies, while structures with smaller lattice param-
eter values have a drop in higher energies. The drop in reflectivity
opens in higher energies. . . . . . . . . . . . . . . . . . . . . . . . 62

4.16 The reflectivity of 25 µm thick self-standing foil with various hole
patterns under different values of deformation. . . . . . . . . . . . 63

72



List of Abbreviations
FDTD - Finite difference Time domain
FDMA - Ferromagnetic shape memory alloy
MOKE - Magneto-optical Kerr effect
CUDA - Compute Unified Device Architecture
PML - Perfectly matching layer
YIG - Yttrium iron garnet
Ce:YIG - Cerium doped Yttrium iron garnet
Bi:YIG - Bismuth doped Yttrium iron garnet
RCWA - Rigorous coupled wave analysis
FoM - Figure of Merit
RIU - Refractive index unit

73


	Introduction
	I Theoretical background
	Light polarisation and Magnetooptical variables
	Polarisation ellipse
	Magneto-Optical Effects
	Faraday Rotation
	Magneto-optical Kerr Effect


	Magnetooptical FDTD simulation
	Brief introduction into FDTD method
	Analytical evolution equations
	Finite step approximation
	Boundary conditions
	Object representation
	Field input and output

	Grid attribute
	Grid attribute for MOKE
	Grid attribute for Faraday

	The Faraday rotation calculation
	Calibration


	II Simulation results
	Ce:YIG/YIG/SiO2 Photonic crystal
	Real sample description
	Geometry optimization
	Ce:YIG/YIG photonic crystal
	Ce:YIG/Bi:YIG photonic crystal
	Transmision
	Layer thickness

	Resonant field profile
	Concentration detector
	Ce:YIG/YIG/SiO2 PhC sumarry

	Optically active element
	Hexagonal hole pattern
	Material input
	Design shortcomings
	First data set
	Simulation under higher resolution
	Optimization clasification

	Square pillar pattern
	Self-standing film with Squere lattice
	optically active element summary

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations


