
CHARLES UNIVERSITY

Faculty of Arts

Department of Logic

BACHELOR THESIS

Martin Georgiu

Federated learning

Thesis title in Czech: Kolaborativńı učeńı
Supervisor of the bachelor thesis: Mgr. Ing. Petr Svarny PhD

Study programme: Logic

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the cited sources,
literature and other professional sources. It has not been used to obtain another or the same
degree.

I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb.,
the Copyright Act, as amended, in particular the fact that the Charles University has the right
to conclude a license agreement on the use of this work as a school work pursuant to Section 60
subsection 1 of the Copyright Act.

In Prague date May 9th 2023 Martin Georgiu

i

I would like to thank Petr Svarny for all the help and effort he put into this thesis, particularly
for his always insightful comments and also his patience with my English. Moreover, I’m thankful
to Ema Viackova for helping out with the English grammar even as my additional questions kept
coming.

ii

Title: Federated learning

Author: Martin Georgiu

Department: Logic, Faculty of Arts, Charles University

Supervisor: Mgr. Ing. Petr Svarny PhD

Keywords in English: federated learning | machine learning | collaborative learning

Keywords in Czech: federativńı učeńı | strojové učeńı | kolaborativńı učeńı

Abstract in English:
The remarkable advancements in machine learning in recent years have been unprecedented, yet
the constant need for more and more data to train artificial neural networks (ANNs) remains. In
sectors such as healthcare, it is unrealistic to aim to create one single dataset that would consolidate
all the information about patients from various hospitals. When training ANNs, the data cannot
leave the hospital, and therefore any ANN training can be executed solely locally on the given
hospital’s data. Federated learning (FL) is a novel approach that can be used in such settings,
maintaining the system’s privacy without compromises. In this thesis, we are comparing FL against
other approaches striving for the same objective, diving into the security of FL and investigating
concrete strategies for FL. Lastly, we’ve created a fully working open-source example of skin spot
analysis trained using FL, which can also be easily extended and used with other datasets.

Abstract in Czech:
Pokrok v oblasti strojového učeńı v posledńıch letech byl bezprecedentńı, přesto je stále potřeba
stále v́ıce dat pro trénováńı umělých neuronových śıt́ı (artificial neural network, ANN). V sek-
torech jako je zdravotnictv́ı je velice těžké, většinou nereálné, vytvořit jeden soubor dat, který
by konsolidoval všechny pacientské informace z r̊uzných nemocnic. Proto lze jakékoli trénováńı
ANN provádět výhradně lokálně na datech jedné dané nemocnice. Federativńı učeńı (FL) je nový
př́ıstup, který lze v takovém prostřed́ı použ́ıt a uchovat tak uživatelská data v soukromı́. V této
práci porovnáváme FL s jinými př́ıstupy usiluj́ıćımi o stejný ćıl, zaměřujeme se na bezpečnost FL a
prozkoumáváme konkrétńı strategie pro FL. Nakonec jsme také vytvořili plně funkčńı open-source
ukázku analýzy pih natrénovanou pomoćı FL. Tu lze snadno rozš́ı̌rit a použ́ıt i s jinými soubory
dat a ćıly.

iii

https://github.com/martingeorgiu/spots_federated
https://github.com/martingeorgiu/spots_federated
https://github.com/martingeorgiu/spots_federated

Contents

1 Introduction 3

2 Federated learning approaches 5
2.1 Universal example . 5
2.2 Main issues . 5
2.3 IID vs Non-IID . 6
2.4 Cross-silo vs Cross-device approach . 6

2.4.1 Cross-device drawbacks and difficulties . 7
2.5 Standard federated learning . 7
2.6 Other approaches to federated learning . 7

2.6.1 Fully decentralized . 7
2.6.2 Split learning . 9
2.6.3 Multi-model and local fine tuning . 9
2.6.4 Secure multi-party computation . 9

3 Strategies for federated learning 11
3.1 FedAvg . 11
3.2 FedProx . 12

3.2.1 Systems heterogeneity . 12
3.2.2 Statistical heterogeneity . 12
3.2.3 Proximal term . 12

3.3 FedBN . 13
3.4 FedOpt . 14
3.5 Other possible candidates . 15

4 Security 17
4.1 Inference attacks . 18

4.1.1 Membership inference attacks . 18
4.1.2 Properties inference attacks . 18

4.2 Protecting the model . 18
4.3 Differential Privacy . 19

5 Ready-to-use example 21
5.1 HAM10000 issues . 21
5.2 Imbalanced dataset . 22

5.2.1 Proportional weights . 22
5.2.2 Reduced weights . 22
5.2.3 Alternatives for selecting weights . 22
5.2.4 Focal loss . 22
5.2.5 Other tactics . 23

5.3 Models . 24
5.4 Training results . 24

6 Conclusion 27

Bibliography 29

1

2

Chapter 1

Introduction

The progress in recent years and development in AI has been revolutionary. The steps in AI
research taken in the past decade have been incredible, and everything is speeding up even more.
In 2020, an art-generating contest (Artathon) was held. Only mere two years later, an AI art
generator, DALL-E 2, sweeps all the contestants by a long shot. While art generators are not the
focus of this thesis, it’s an excellent and ever-so-present example of the untamed growth of AI.

Even during the writing of this thesis (from October 2022 to May 2023), there were far-reaching
achievements occurring right before our eyes. On the 30th of November, ChatGPT [45] was
released, and the sudden growth of popularity and speed of adoption were rapid. Just two months
after the initial release, it reached 100 million active users. The previous record holder for the
fastest reach of 100 million active users was TikTok and it took it long nine months to reach [28].

However, the main requirement needed for making such inventions and discoveries is data. In
a few areas, relevant data is heavily and readily available to the public. That is certainly not the
case with medical data. When dealing with datasets such as medical records and images, each
piece of data needs to be stored securely and safely, ideally without exposing the contents to any
third party. In this thesis, we plan to come up with some possible solutions and ideas on how we
could create an artificial neural network for image classification from a bunch of different sources
without the need to send the data to one central location. The aim is to provide a comprehensible
summary of federated learning in a popular and understandable way by using a familiar tone. It
is expected that the reader has at least an elementary level of understanding AI and of artificial
neural networks training.

Firstly we’ll go over different ideas and define some terms in the chapter Federated learning
approaches. Then we will highlight the key strategies for federated learning and try to explain
them easily and in the context of the others in Strategies for federated learning. Next, we dive into
the overall security of federated learning, if there are any novel risks when the training is spread
between many devices and we question if even just model weight updates can be compromised
in any way, in the chapter Security. Lastly, in Ready-to-use example, we will create a working
example (https://github.com/martingeorgiu/spots_federated) in Pytorch [48] and Flower [7]
for which we provide the thinking preceding the training and especially how to tackle the dataset
imbalance. After that, we want to show and compare the training results, to see if and how much
federated learning can decrease the overall accuracy.

3

https://github.com/martingeorgiu/spots_federated

4

Chapter 2

Federated learning approaches

In this section, we would want to investigate what are the possible solutions for training a model
without the need for one central location. This thesis focuses on a few example approaches of
federated learning and does not aspire to list all of them.

2.1 Universal example
Firstly, we will propose a universal example to which we will refer throughout the thesis. Imagine
that we are building a mobile application that can analyze a photo of skin and decide whether it
contains any spots that might be signs of skin cancer and show its analysis confidence in percent-
ages. Eventually, it could evolve into a more complex analysis like other skin defect diagnoses like
Psoriasis Vulgaris and even recommend the proper treatment. From a “first-world” point of view,
this might sound strange or outright illegal as diagnosing an illness and recommending treatment
is typically something that only a qualified doctor can legally do. But also consider other, usually
poorer, countries where essential healthcare is absent or usually unaffordable, like Nigeria or USA.

The issue now is how to create such an app. The old-school approach would be to understand
what these starting skin cancers look like and what are their shapes, colours, sizes, etc. On top of
this knowledge, we would try to create some algorithms. However, every solution which is based
on a manually configured algorithm carries with itself the same problem of future changes and
corrections. What would one do when a patient would bring a photo classified by the algorithm
as carcinogenic, but after an examination later by a doctor, it was classified as harmless?

The universal answer to such a problem is ML and a trainable artificial neural network (or
ANN). But of course, it has some shortcomings. The major one is usually the amount of data
required to train it. This always depends on the complexity of the network and the goal in
question. Then there is the issue of attempting to comprehend what is the model doing under the
hood to be able to explain its decisions and reasons for a given classification. For exactly that,
there is a sub-field of AI called “explainable artificial intelligence” (XAI) and currently there is a
lot of ongoing research regarding this exact topic [53, 57]. There are some general techniques like
probing classifiers [5], knowledge distillation [47] and visualizing the model or the dataset using
tools like UMAP [38], but here aren’t any standard tools for such endeavours as every inspection
is very different from network to network and from goal to goal [57].

But the most pressing issue, especially when dealing with medical records, is to preserve the
privacy of the data in question. This can be resolved by signing an agreement with the 3rd party.
But is it the proper solution? Would a patient want to sign some data-sharing agreement so that
some company, of which he never heard before, can have access to his medical records? Usually,
we wouldn’t say so. But because there wasn’t the technology that would enable a better approach,
that is the state we are currently at. Yet in the past years, there has been quite a progress on this
exact question, and this thesis focuses mainly on the major solution, which is Federated learning.

2.2 Main issues
Before diving deep into the possible solutions, we would like to step back a bit and discuss possible
systematic issues with Federated learning. The main reason is that usually, creating an artificial
neural network is only a small portion of what an ML engineer is actually doing. The actual work
starts much earlier than that.

5

Ideally, there should be initial research on the topic to get at least more-than-amateur domain
knowledge of the topic in question. Let us adhere to the universal example we’ve described above.
In that case, and if we assume the best-case scenario, the researcher would meet a couple of
dermatologists, general practitioners, nurses, and overall everyone in charge of analyzing the spots
currently. Then he can start creating a plan for creating an app for the general public based on
the newly acquired knowledge. Let’s say he decided that the best solution for the app would be to
create a dataset containing photos of the skin lesions and use the latest ML techniques on top of
that. It will be annotated with a diagnosis (whether it is melanocytic nevi, melanoma, or others),
sex, age, and possibly many other parameters. He will work with the field experts to get these
photos and these descriptions.

But most importantly, during this collection period, he would oversee the incoming data and
their quality as he’ll be collecting the data from practitioners. Every client has different lighting,
they might even be from different parts of the world, which means some doctors will have 95%
black people, and some others will have a majority of white people. Some of the doctors might be
well-known experts in diagnosing and treating specific lesions, so their opinion might matter more
than the opinion of others. Doctors in poorer regions might have a worse capturing device, making
the image quality of their collected images noticeably inferior. There are many other things one
could do. Therefore we definitely won’t list everything. But the point we want to make is that
this inspection before you train an artificial neural network is almost always needed. With a bit
of luck, you might train a successful network even without that, but you won’t have many hints
on how to improve the networks for the next generations and updates.

Apart from the issue portrayed in the paragraph above, the researcher can still do all the other
stuff without seeing the final data, like meeting domain experts and trying to decide the most
important parameters. However, he still cannot do the data inspection. So now the primary goal
of us researchers/developers/engineers is not to build the biggest, most extraordinary dataset on
which we can do some analysis, data mining, and build our ML models. Instead, we need to focus
more on the process in advance and know precisely what the goal is and how we want to achieve
that, as once we release it, it is a black box over which we do not have any control, and we hope
for the best.

2.3 IID vs Non-IID
IID, or “independent and identically distributed” (sometimes abbreviated i.i.d. or iid), is a term
very often used in the context of machine learning and is even more critical in federated learn-
ing. When a dataset is IID, it means that all elements in the dataset have the same probability
distribution as the others, and they are independent of each other [8].

A typical IID dataset is the output of a dice roll where the probability is the same for all
throws, and the die faces aren’t dependent on each other. On the other hand, a typical example of
a non-IID dataset could be stock prices on New York Stock Exchange. The prices are clearly not
identically distributed, as the prices of each individual company are influenced by a multitude of
factors like the company’s economic indicators or latest achievements. Also, the prices aren’t even
independent. For example, a sudden drop in the stock price of company A can boost the stock
price of competing company B.

When setting up federated learning, having highly non-IID data can substantially slow the
learning process or spoil it altogether [35]. The reason is that each individual client can have
vastly different data (as mentioned in Main issues), and the clients would aim to converge to
entirely different locations. Then combining them would make sense as the divergence would be
immense (later discussed in Strategies for federated learning).

2.4 Cross-silo vs Cross-device approach
In general, there are two approaches you can take when doing Federated learning. You can store
the data in some intermediary. In our example from the introduction, it would be the hospital,
retirement home, some clinic, etc. This way, the provider of the data, in our case the patient,
doesn’t need to extend their trust to any other party and trusts only the institution which already
collects their data, where already exists some explicit or implicit data sharing agreement. This
method is called cross-silo [32].

However, this introduces a small number of clients with all the data, implying a security breach
at a single client could expose a lot of data to the adversary. Considering the recent large-scale
cyber attack on the Czech Republic’s second-largest hospital and similar smaller incidents [30], it

6

raises the question of how secure the data truly are in such a setup. It might be argued that rather
than storing all the data in the hospital or any intermediary, it would be better to store them at
the final client, in our case, the patient’s mobile device. That is describing the second approach,
cross-device. As the name suggests, the raw data will never escape the device on which it was
taken, and that device also serves as the client for the federation learning. This way, the patient
is in the centre of the healthcare and not the institutions.

2.4.1 Cross-device drawbacks and difficulties
Although the idea of cross-device is intriguing as it rethinks where the data should be stored and
who owns them, the cross-silo approach is usually easier to set up and maintain since you have
only a few clients you need to communicate with and provide them with the training executable.

On the other hand, the cross-device approach typically involves creating a convenient mobile
app for the clients that can take care of everything that the training company needs. The app can
record, store and analyze the data and do the ANN training. This then eliminates the need for
distributing training executables and tutorials on how to run such training. Rather, the patient
benefits from high-quality image classification and the provider is in return receiving valuable
model updates from the local ANN training.

Still, there are some requirements that the device should meet, like being charged, connected
to stable Wi-Fi, etc. [32], which further complicates the training. For example, one could decide
to execute one training every day overnight in the Europe timezone (when the devices are most
likely to be charging, on Wi-Fi and idle [32]) and thus have a new updated model every day. Yet
this decision could let to systematically ignoring whole continents like Asia and the Americas as
the likelihood of devices from these areas meeting the same requirements at that moment is lower
because of the time shift.

Furthermore, this dependence on the patient’s device leads to possible disadvantaging of poorer
regions where there won’t be such widespread adoption of fast and modern smartphones as in richer
and developed nations. The issue is that the lower tier or older phones could run such local ANN
training really slowly, if at all, and therefore their model contributions would be rather insignificant.
We will discuss this more in Systems heterogeneity, but even with the introduced techniques to
tackle this like Proximal term, this can never be fully resolved and needs to be thoroughly thought
out when doing cross-device federation.

However, this thesis mainly focuses on the cross-silo approach that better follows our Universal
example, so we won’t go into further details on cross-device. For such details, there are publications
like “Advances and Open Problems in Federated Learning” and “Towards Federated Learning at
Scale: System Design”, which mainly focus on this configuration and even investigate various
possibilities of local fine-tuning.

2.5 Standard federated learning
With regard to the declared problem Universal example, we assume that in standard federated
learning, there are:

• one company which acts as a coordinator and also runs and maintains the server

• multiple individual clients, each with a unique secret training dataset.

We’ve also highlighted this Server to Clients relationship in Figure 2.1. The five main steps,
which are present in every federated learning, are represented in Figure 2.2. A detailed look at
each step will be in the next chapter Strategies for federated learning, where we will go over even
concrete functioning strategies like FedAvg, which behave exactly as portrayed in 2.1 and 2.2 and
we will even introduce some other strategies that are in some ways extending these five steps.

Nonetheless, before we do that, we will now diverge a bit and introduce some other completely
different takes on these privacy-preserving techniques.

2.6 Other approaches to federated learning
2.6.1 Fully decentralized
In contrast to Figure 2.1 in fully decentralized learning, there is no server for aggregating model
weights updates or dictating the settings of the protocol. There are only the clients who send

7

Server

Client 1
Dataset 1

Aggregated model weights

Updated model weights

Client 2
Dataset 2

Client ...
Dataset ...

Client n
Dataset n

Optional additional parameters based on the strategy in use

Figure 2.1: Diagram of Server-Client relation in standard training of ANN using Federated learning

Server starts the training,
selects a subset of available

clients and create initial
model weights

Server sends actual global
model weights

Client computes new model
weights from the server

weights and sends them to
server

Server aggregates the
clients weight

Server stops the training

Figure 2.2: Five main steps in Federated learning (inspired by [32, Section 1.1.2])

the updates to their neighbouring clients and aggregate themselves the updates received from the
neighbours [32].

Even though there are already created and researched algorithms for such decentralized train-
ing, like D2, which is a modification of standard stochastic gradient descent [59] or coordinate
descent [6], there are many systematic issues still unresolved.

First and foremost, how could one even set up such a network when there is no coordinator or
authority? This depends on the particular situation, but there always needs to be someone who
sets up the algorithm. Interestingly in contrast to the standard federated learning with a central
server, the algorithm then shouldn’t need any centralized maintenance or updating. For things
like hyperparameters, there could even be some consensus schemes so that the clients themselves
could elect a new set of hyperparameters [32].

There are also other challenges and open questions, some of which we summarize briefly here:

• Efficiency and Accuracy - while there are some publications like [71] claiming the efficiency
of the network shouldn’t be hurt by unreliable networks, it is still an open question how
much differently would a fully distributed network compare against cross-silo one assuming
we work with same data.

• Security - the fact that clients are sending model updates to each other opens up a possibility
for some malicious adversary to send intentionally bad model weights to ruin the training.

8

This technique is called model update poisoning and it is a common problem for strategies
that don’t have any intermediaries but rather communicate directly with the end devices [4]
(like the aforementioned cross-device).

• Longevity - without any centralized authority, it is hard to imagine how the network could
update itself in the future. AI training and setups are constantly evolving, and it is unclear
how that would be possible even with some election system built-in.

2.6.2 Split learning
The idea of split learning is that the ANN itself can be split between the client and the server
so that the client runs a forward pass with their private data on the first part of the split ANN
and then sends the activation values to the server where the forward pass is finished [50, 66]. The
backward pass is then executed equivalently, just the other way around.

The main issue here is the fact that you are still sending a potentially private model’s layer
activation values, which has the risk of revealing some private information about the dataset or
even concrete dataset examples. There are techniques to tackle this and make the cut layer (the
layer where the original network was split) more privacy-preserving [65], but there aren’t any
comprehensive independent benchmarks that would confirm it or deny it.

2.6.3 Multi-model and local fine tuning
Multi-model approaches (as defined in [32]) are strategies where the clients can use distinct models
from one another. This can be used even in Standard federated learning as one might not want to
distribute a newly trained model all at once but rather do the release in phases and, if possible,
monitor the usage, whether it is performing better than the previous model. Both Apple and
Google support such distribution for mobile apps in their stores for the same reasons, so that the
developer can limit the risks of releasing new versions [43].

However, the main new concept which the multi-model allows is local fine-tuning [20, 27, 58].
In general, fine-tuning refers to taking a trained model, which was usually trained on more broad
and general data and then later it is again trained using more specific data, which can result in a
better performance rather than training the model from scratch on the specific data. That way, you
can train a model on a bunch of annotated medical images (spanning from x-rays of broken bones
to MRI of the brain) and then with a focused dataset (e.g. focused on skin cancer) only fine-tune
the pre-trained model [13, 20, 22]. This is also very helpful in applications like word completion
for smartphone keyboard. Even though there are some general language rules, everyone uses a
language in a different way, so if the keyboard would be able to fine-tune itself to fit exactly the
user, it could achieve the perfect personalization [27].

2.6.4 Secure multi-party computation
Secure multi-party computation (Secure MPC, SMPC) is a subfield of cryptography that enables
multiple parties to jointly compute a given function over their private inputs while keeping these
inputs confidential[14, 32]. Nowadays, SMPCs aren’t just theoretical concepts proven mathemati-
cally like it was with pioneers like [68]. There are fully working algorithms like [3, 41, 42] some of
which are using new discoveries in cryptography like homomorphic encryption [69].

These SMPCs can be even used for training ANN using techniques like Secure aggregation [9].
There the SMPC protocol is used for a joint calculation of gradient descent during the training of
the network without the need of revealing any private dataset. Each party does their part of the
calculation on their data and no privacy is compromised [9, 42].

9

10

Chapter 3

Strategies for federated learning

Now focus more on the concrete strategies one can use when preparing for standard federated
learning. In chapter Ready-to-use example, concrete examples with results will be shown using
some of the said strategies.

Please note that all these strategies are simplified or, in some cases, a bit changed version from
their original paper. The paper is always cited, so feel free to dive into the strategies more. But our
goal was to explain only the core which you might encounter when using libraries like Flower [7].
For example, right in the following section FedAvg, we are deliberately neglecting details about B
and η, as they are more about classical training of ANNs than some Federated learning specialty.

3.1 FedAvg
Federated Averaging or FedAvg [39] is the oldest strategy studied in this thesis and most commonly
used[34, p. 5]. The original paper does a great job of explaining the strategy thoroughly, therefore
let us only summarize it and point out the key thoughts:

• R - number of rounds

• K - number of clients

• C - the fraction of clients that perform computation on each round

• E - number of training passes each client makes over its local dataset on each round

Algorithm 1 FedAvg. Simplified version from the original paper [39]. TrainModel here refers to
an arbitrary training procedure that returns model weights and can use arbitrary loss function,
optimizer, or some other techniques like mini-batching
Server executes:

Initialization: w0
for each round r = 1, 2, . . . R do

m← max(C ·K, 1)
Sr ← (random set of m clients)
mr ←

∑︁
k∈Sr

nk // Get number of all records in this round
for each client k ∈ Sr in parallel do

wk
r+1 ← ClientUpdate(k, wr)

wr+1 ←
∑︁

k∈Sr

nk

mr
wk

r+1 // Calculate weighted average for the final round weight

ClientUpdate(k, w): // Run on client k
for each local epoch e from 1 to E do

w ← TrainModel(w)
return w to server

Setting C to anything other than 1 is usually only worth it when dealing with cross-device
federations with thousands and tens of thousands of possible devices. The reason is that, even
though the computation of local weight update is done in parallel, there is still more than just
fitting the network on each client. Additional clients will still be a bigger load for the server in
terms of connectivity (most likely using the internet), processing the results, and aggregating that.

11

The saved processing power (and subsequently time) when using fewer clients can be used to have
more rounds, which is even on the intuitive level better as you are giving the fresh newly aggregated
weights to the clients more often, so you are learning and converging quicker. But of course, as
already written, this is true when dealing with large amounts of clients, and because of that, it
can be mostly used for cross-device federation. When dealing with cross-silo federation, where you
have only a few clients, you usually want to use them all.

Choosing the correct E, i.e. the number of epochs on each client per one round, depends heavily
on the dataset which will be used and especially how it is distributed. If the spread is close to being
IID (IID vs Non-IID), setting E to 5 or even more epochs can substantially speedup your learning
process [39, Figure 2] as also shown in Figure 5.5. However, if the data is not IID, choosing a
large E can not only slow down the learning speed but the final test accuracy can be decreased as
well [39, Figure 2]. The reason is that the weights calculated by each client can start converging
in different directions, so the weighted average of these weights can produce weights that will be
performing poorly (having large loss value) for all the clients [39, Figure 3].

3.2 FedProx
FedProx can be considered as an extension of FedAvg, which is trying to solve two main problems in
federated learning: systems heterogeneity and statistical heterogeneity [35]. Systems heterogeneity
is significant variability in terms of the system’s characteristics on each device in the network and
statistical heterogeneity is non-identically distributed data across the network [35].

3.2.1 Systems heterogeneity
Systems heterogeneity is a much greater problem generally when dealing with the cross-device
setting, as in the cross-silo, you can usually dictate or at least strongly recommend some exact
hardware/connectivity. But it still could be a factor when for example, dealing with a mix of
small and big public hospitals. In the small ones, you would be more than happy for some ten
years server to run the client, and in the bigger hospitals, better and newer hardware is usually
the standard.

But if we would stick to the premise of cross-device. If you are running on tens of thousands
of devices and using FedAvg, you need to set some specific E and some timeout for the clients to
finish up. If some of the clients won’t meet the timeout, their results will be dropped. This means
that you either focus on the devices which have the higher computing power and cut off the slower
ones, which obviously can lead to a huge bias. Or you will wait for almost all devices setting the
timeout quite big, but that will lead to the speedy devices wait and hang, till the slow ones are
ready.

3.2.2 Statistical heterogeneity
The second problem lies in the statistical heterogeneity, i.e. what to do when the clients have data
not distributed equally or aren’t independent (see IID vs Non-IID). Our data distribution when
trying out all different setups and techniques later here in Training results was intentionally the
same across the clients as the goal was more about seeing the best-case scenario, and we wanted
to limit the scope, and the imbalanced setting would do it even more complicated. However,
statistical heterogeneity is definitely a significant issue that cannot be overlooked as it is present
in almost every real-world data.

3.2.3 Proximal term
So what is the “do it all” solution to these real problems? The proposed change is to only add µ a
hyper-parameter (alias “proximal mu”), which will be sent to the clients from the server and the
clients will change the logic around their loss function.

First, we define the required components. We need to store the original global weights before
the training, say in g, and during the training, the new updated local weights in l. That makes
both g and l list of tensors of the same length n. We will also use function L2 norm() as a standard
Frobenius matrix norm.

Then before each loss function call, we will compute the proximal term:

proximal term =
n∑︂

i=0
L2 norm(li − gi) (3.1)

12

After that, we will call the standard loss function as previously and multiply the result by
(µ/2) ∗ proximal term, which will be our final loss value.

This way, you can effortlessly ensure that you aren’t diverging in each round from the global
weights, as you penalize the model when the weights diverge too far. Nevertheless, the concrete
approaches can vary. Even the original paper doesn’t specify the concrete implementation and
leaves the exact use up for the reader. We will more or less stick to the Flower [7] interpretation
(version 1.3.0) which uses the µ as a parameter sent to the clients. Then when implementing the
Flower client, you add the already-mentioned code to your loss function and that is pretty much
it.

However, this can be extended much more. One simple extension would be to include the
incomplete clients (clients who didn’t finish all required rounds in a given time) in the server
aggregation. When aggregating the weights, these non-complete results could have lower weights
in the weighted average, e.g. the weight can be:

client weight = finished rounds

specified rounds E
(3.2)

or similar. As we’ve already pointed out in Systems heterogeneity, this could be really helpful
as we aren’t ignoring the slow devices and with the help of µ, we are making sure that the more
performant devices aren’t skewing the training in any direction.

One approach could be to use E more as a ceiling, which only a few most powerful clients will
achieve, and all the others will finish whatever rounds they can. This way, we are utilizing almost
all devices, no matter their powerfulness, while achieving some homogeneity using the µ.

3.3 FedBN

FedBN [36] is an easy extension of FedAvg where with no added logic on the server or in the
communication itself, you can improve the convergence and speed of the training.

The standard preliminary of each ANN training is to normalize data. The idea is to have
the data nicely spread out (usually from 0 to 1) instead of having custom scales with different
distributions. A simple algorithm for that can be:

Algorithm 2 Mean and standard normalization example
images[]
for channel c = 1, 2, 3 do

m, s = mean and std(images[c])
for picture p and it’s id ipic in images[c] do

for pixel px and it’s id ipx in p do
imagec[c][ipic][ipx] = px−m

s

However, this isn’t the only stage when normalization happens. Almost every modern ANN
has batch norm layers [31], and the one we’ve used in Ready-to-use example, MobileNetV3 [26], is
no exception. In short, the normalization happens even in between the layers, as it normalizes the
output from the previous layer and sends it to the next layer. It is also trainable, so the model is
polished and improved even more with each batch round (that is why “batch norm”).

Now we have the terms explained. The idea behind FedBN is to update the batch norm layer
in the network locally, which means that we don’t send them to the server at all for aggregation.
The idea is that batch norm layers should be normalized and trained on the same data instead of
trying to normalize them using some aggregated average across all the clients. The batch norm
layers, by design, should only be there for the data normalization and not the results themselves,
so it is quite intuitive that it shouldn’t hurt the performance. Even more, it should be helpful and
improve the performance as the data can be quite different across all the clients.

Imagine, for example, that we have two clients, one is a Nordic hospital, and the second is an
Italian. The images from the Italian hospital will be much more yellowy on average as the sunshine
there is much more present than in the cold north. In this case, trying to use some aggregated
average wouldn’t make sense as it is much better for the networks to train their batch norm layers
themselves to be best for normalizing their data.

13

3.4 FedOpt
In the section about FedAvg, we were oversimplifying a bit. More precisely, the TrainModel()
function in the Algorithm 1 was doing a bit more under the hood. It was retrieving gradient
descent from a loss function, multiplying the gradient descent by a hyperparameter called learning
rate η, and this gradient was then subtracted from the original weights. These final weights were
then returned from TrainModel().

However, this notion of using an optimizer can be relatively extended. FedOpt [52] authors are
proposing this new view on FedAvg:

Algorithm 3 FedOpt Edited version of algorithm copied from [52]
Server executes:

Input: ClientOpt, ServerOpt
Initialization: w0
for round r = 0, · · · , R− 1 do

Sample a subset K of clients
for each client k ∈ K in parallel do

∆r
k ← ClientUpdate(k, wr, r)

∆r = 1
|K|

∑︁
k∈K ∆r

k

wr+1 = ServerOpt(xr,−∆r, r)
ClientUpdate(k, w, r): // Run on client k

wr
k,0 = w

for b = 0, · · · , B − 1 do
Compute an unbiased estimate gr

k,b of ∇Fk(wr
k,b)

wr
k,b+1 = ClientOpt(wr

k,b, gr
k,b, r)

∆r
k = wr

k,B − wr

return ∆r
k to server

Instead of returning the weights, we are returning the gradient in this setting, and the server
is also aggregating the gradient. The idea is that we can have some optimizer which is running
during the training itself called ClientOpt and simultaneously some optimizer, which is run on
top of the aggregated gradients called ServerOpt. The authors of FedOpt are proposing strategies
FedAdam, FedAdagrad, and FedYogi, where the idea is to use Adam, Adagrad and Yogi optimizers
respectively for the ServerOpt and the ClientOpt will use standard SGD. The advantage is that
SGD itself doesn’t require any state, so there is no added work or communication requirement for
the clients as the “stateful” optimizer is only on the server.

Algorithm 4 FedAdam Edited version of algorithm copied from [52]. We’ve highlighted the
addition of Adam optimizer on the server (with standard notation β1 for momentum and β2 and
τ for the RMSprop) and SGD on the client (with standard notation η for learning rate).
Server executes:

Initialization: w0, v−1 ≥ τ2, decay parameters β1, β2 ∈ [0, 1)
for round r = 0, · · · , R− 1 do

Sample a subset K of clients
for each client k ∈ K in parallel do

∆r
k ← ClientUpdate(k, wr, r)

∆r = 1
|K|

∑︁
k∈K ∆r

k

mr = β1mr−1 + (1− β1)∆r

vr = β2vr−1 + (1− β2)∆2
r

wr+1 = wr + η mr√
vr+τ

ClientUpdate(k, w, r): // Run on client k
wr

k,0 = w
for b = 0, · · · , B − 1 do

Compute an unbiased estimate gr
k,b of ∇Fk(wr

k,b)
wr

k,b+1 = wr
k,b − ηr

kgr
k,b // Standard SGD

∆r
k = wr

k,B − wr

return ∆r
k to server

14

This idea of using ServerOpt or ClientOpt can be definitely played with, and the list of
possible strategies is almost endless. You can try to have a stateful Adam optimizer and, on the
server, a simple stateless SGD, or put Adam both on the server and on the client, or you can
experiment even with some novel optimizers which can take advantage of the server position. But
this depends on your exact specific federation, dataset, client availability and many other factors.
A nice extension of this would be to mix it with FedBN as both of these extensions of FedAvg are
changing the original strategy in entirely independent stages.

3.5 Other possible candidates
There are many other approaches FedDyn [2], FedCurv [54] and it is left up for the reader to dive
deep into some if they will find them interesting. As always with machine learning, every business
case is different, every dataset is different, and all the goals are different, so it is up to the machine
learning engineer to try out the ones they see the biggest potential and do their own experiments
on their specific business case, dataset and goals.

15

16

Chapter 4

Security

One of the main reasons why we concern ourselves with federated learning is, of course, privacy.
We want our framework to preserve the privacy of the users’ private data and not compromise it
in any way.

Up to this point, we’ve assumed that the updates the users send to the server are just weights
from which the server cannot extract any information. However, this assumption is not entirely
accurate. While the data sent are indeed only model weights, the server also knows the previous
model weights, so it can subtract them and get the calculated gradient. From that adversary can
execute Inference attacks or, in the context of GAN [23], even try to generate statistically similar
images to the original images in the training set [25]. All this would go against our goal of creating
a privacy-preserving model.

In this chapter, we’ll first specify the two types of adversaries and what is their tactic to
compromise users’ data privacy. Then we will go over different types of attacks on federated
learning training, and lastly, we will show how one can protect his training against these attacks.

The security of training can be compromised in two different ways based on the motivation of
the adversary. These are:

Honest-but-Curious

Honest-but-Curious is a type of adversary who is not tampering the protocol or the data (in our
case, model weights for an ANN) to get some otherwise unobtainable data but thoroughly inspects
all the data which it receives, whether there is something valuable in them. Thus he isn’t receiving
anything more than we’re receiving, so it could seem that privacy is not compromised. But he’ll
try to do his best to get as much information as possible from all the model updates, which is not
something the client would want or agree to. In our case, it could mean that the adversary would
hack our server but wouldn’t do anything suspicious such as tinker with the model weights sent to
the clients, but he would only observe and note all weights coming from and going to the clients.

Malicious adversary

A malicious adversary is a type of adversary who is actively trying to manipulate the federated
learning protocol and retrieve some knowledge from this manipulation. There are many exploits
the adversary can use. For example, if the server controls the amount of data each client should
use for the learning, then if the server got hacked, the adversary can send them intentionally low
values. The malicious server could extract from the model’s update a lot of knowledge about one
piece of data (e.g. one image) and, in some particular settings, even the original training data
themselves.

It is important to think about both types of adversaries (honest-but-curious and malicious)
when trying to protect yourself against possible attackers. This is especially in federated learning,
where there is one server which collects model weights without seeing training data (run by, say,
company A) and many clients who each have their own data. This type of protocol needs to be
very well protected against Honest-but-Curious as if not, company A could still thoroughly observe
the incoming data without the clients’ knowledge. The protocol also needs to be protected against
Malicious adversary, so if the company goes bad and tinkers with the protocol and data, it should
not ever be able to compromise the clients’ data privacy. Hence, there should be rules to ensure
the server can’t alter the protocol like that.

17

4.1 Inference attacks
Inference attacks refer to privacy attacks in machine learning where the adversary is trying to
extract some knowledge from the model’s updates or the trained models [40]. In classical machine
learning, usually, the latter is the case as the model updates are not shared between other devices,
as is the case in federated learning. However, in a federated setting, the risk of accessing the model
updates is much more present as the updates are sent back and forth between the server aggregator
and the clients, usually over the internet, instead of running the entire training on a single machine.
Typically, these inference attacks have two types: membership or properties inference attacks [40].

4.1.1 Membership inference attacks
Membership inference attacks are a type of attack where the adversary tries to confirm whether
some specific data point (e.g. an image) was used in training. It is an actively researched topic
with multiple publications, surprisingly even in federated settings, with mixed results. Although
some authors claim that the results are staggering, usually the results are quite close to being
random and definitely not something you could use as evidence for stealing data [44, 55].

It is up for debate whether this should even be considered an attack, as it could be argued that
you should always have the option to check if the data point itself has been used for the training
or not. The reasoning is that it would be simple to verify if some data points were used for the
training even though the company in charge of the training didn’t have the required approvals,
which could be even useful in settling some lawsuits [11].

4.1.2 Properties inference attacks
Properties inference attacks are an attack where the adversary tries to deduce some properties
about the dataset (or its subset) on which the model was trained [40]. In a federated setting, this
could again be extended, focusing on the properties of individual clients’ datasets [40].

4.2 Protecting the model
A typical scenario is that you’ve trained the model for classifying moles we mentioned in Universal
example, and you want to commercialize. You are thinking of a simple application server with a
simple Rest API where you can send the image and receive what the model thinks. In the real
world, you would also need a UI for that, like a mobile application or a website, but we won’t need
that for our thought experiment.

An important objective now is to secure the model in a way that no adversary can steal it
from you. Server security when hosting some application server on the internet is a topic in and
of itself [51] (like having all the latest hotfixes and patches, all data at rest encrypted using a key
in HSM, etc.), and we won’t go into any details in this thesis. However, there are still some risks
that the adversary could try to steal the model using model extraction attacks [63].

In the “Stealing Machine Learning Models via Prediction APIs” paper, they discuss all the
options the adversary can use to extract the model when running on it on some cloud provider
with ready-made Prediction API. The issue here is in finding the perfect balance in having the
Prediction API as wide and informative as possible while not exposing too many details about the
inner workings of the hosted model. Then there is a risk of not only Inference attacks but also
compromising the knowledge of the model itself.

Nonetheless, the issue is not only concerning the cloud-hosted models with rich Prediction
API but the compromise of the model could be achieved with a more undemanding black box
approach. In that case, you train your “knockoff network” solely on the processed outputs [46].
Imagine there is an API to which you can send a photo, and it will return the most prevalent
thing in the photo (e.g. car/tree/dog/human). From this simple output, when one has a good
strategy, time and computing power, one could, over time, imitate the net response with almost
the original network’s accuracy [46]. For example, this was done publicly in breakthrough paper
Stanford Alpaca: An Instruction-Following LLaMA Model, where Stanford’s researchers took pre-
trained LLaMA model [62] and fine-tuned it using self-instruct [67] method from initially much
more advanced and capable OpenAI’s text-davinci-003 [12]. In simple terms, Stanford’s researchers
were using text-davinci-003 to generate questions for the LLaMa model and then for the evaluation
of LLaMa’s answers. Because of that, the model could learn really fast from the generated high-
quality data even on relatively small 7B parameters LLM. However, it could be argued that it isn’t
creating any new knowledge, and it only leeches on big LLMs like text-davinci-003.

18

4.3 Differential Privacy
The term differential privacy was coined by Cynthia Dwork in 2006 [17], describing a technique
for creating and maintaining privacy-preserving datasets and systems. The core principle is to add
random noise to your dataset so it doesn’t contain any private information. That means if for
example, each row in the dataset refers to one human, after this procedure, one shouldn’t be able
to connect any row to the corresponding human.

This work was heavily inspired by work from Dalenius “Towards a Methodology for Statistical
Disclosure Control” where he laid down foundations for privacy-preserving data science. The two
key goals, which were later simultaneously solved by Dwork, were to preserve the confidentiality
of the data in the dataset even if the adversary could have direct access to the dataset and remove
an option to deduce any private or sensitive information from statistical outputs of the dataset
(sums, averages, maximums, etc.).

In 2016, Abadi et al. published the paper “Deep Learning with Differential Privacy”, which was
a continuation of [16, 17, 18, 56] and introduced differentially private stochastic gradient descent
(DP-SGD) with three new parameters in comparison to standard SGD:

• Noise scale σ - A real number which can be changed as part of hyperparameter tuning.

• Noise function N - Function which takes the noise scale σ and outputs the noise which is
added to the gradient.

• Gradient norm bound C - Computed gradient for each example is clipped before adding the
noise.

The actual algorithm only extends SGD optimization:

1. Go over every example x from dataset X like you would normally do in SGD

2. Calculate a gradient gx using the loss function for a given example x

3. Clip the gradient: gx / max(1, L2 norm(gx)
C)

4. Add the noise to the gradient calculated by noise function N and configured by noise scale σ

5. The final gradient is then processed in standard SGD fashion by aggregating the gradients
and applying the learning rate parameter

Clipping the gradient is there primarily to prevent outliers from substantially standing out and
therefore increase the chance that the model will try to memorize the outliers [1, 70]. Nevertheless,
gradient clipping is a technique also used as a standalone SGD extension, used for non-privacy
reasons, as it prevents the outliers from skewing the aim of the averaged gradient [1] (it is used,
for example, in the aforementioned LLaMA: Open and Efficient Foundation Language Models).

There are already libraries like Opacus [70], which are extending standard Python ML frame-
works like PyTorch [48], with which you can easily implement differential privacy to your training
using easy-to-use API like PrivacyEngine and only initializing it with your network and optimizer.

19

20

Chapter 5

Ready-to-use example

The goal of this work, apart from being an informative guide throughout the new field of Federated
learning, is to provide a ready-to-use example on which you can easily start doing your own
networks.

Because of that, we’ve created an example project (https://github.com/martingeorgiu/
spots_federated) built on top of industry-standard libraries like Pytorch [48]. In addition to
that, we’ve decided to use Pytorch Lighting [19], which serves as an optional extension/wrap of
Pytorch and gives you code nice structure and removes loads of boilerplate.

For the federation, we’ve used Flower [7], which along with OpenFL [21], are both quite ad-
vanced libraries for federated learning with a wide range of strategies already implemented out of
the box.

Both Flower and Pytorch Lightning were quite easy to extend at any point, which came in
really handy when we wanted to improve and expand logging during training/testing/evaluation
phases. We wanted to use TensorBoard for which there was already some implementation but
we wanted to expand it. Our TensorBoard logging supports not only the final aggregated server
metric for loss and accuracy, but we were able to log the individual client losses and accuracies as
well.

With regard to the Universal example was the HAM10000 dataset [64] quite an easy choice
as it is a fully labelled dataset with a bit over 10000 photos. There are many already working
examples using typical machine learning libraries like this Jupyter notebook [72], so they can even
be used as a nice starting point.

Disclaimer

The goal wasn’t to make the best network possible on provided data. We’ve trained an average-
performing model as a starting point to which we can compare the models trained using federation.
After that, we created the federation using a standard strategy FedAvg[39] and manually played
with some hyperparameters. The goal wasn’t to make any deep comparison of strategies as that
is usually included in the papers introducing the strategy in question [35, 36, 52] or there are
some unbiased benchmarks from others like FLamby [61]. Rather the goal was to introduce a real
example to an uninformed reader on which he could build a network of his own. The developed
example is provided for free under the BSD-3 licence, and any individual is more than encouraged
to try it out and work with it.

5.1 HAM10000 issues
However, it’s not all sunshine and roses. There are two main issues with this dataset:

1. Skin lesions example can have multiple photos from different angles.

2. Some classes are much more over-represented than others (e.g. melanocytic nevi itself is 67%
of the dataset, and there are six other classes).

The first can be resolved when creating train-validation-test data split with caution. Basically,
the main possible problem that can come up is to have two separate images of the same skin
lesion, one in the train and the second one in the validation dataset. Then, the objectivity of the
results from the validation dataset can be skewed as we cannot be sure whether the network is
learning by identifying patterns and not just memorizing the training dataset (i.e. overfitting),

21

https://github.com/martingeorgiu/spots_federated
https://github.com/martingeorgiu/spots_federated

which is usually the main purpose of the validation dataset to spot. Zhuang in Skin Lesion
Classification(Acc>90%)(Pytorch) did a great job of resolving that issue, so we will use his methods
for splitting the datasets.

The second one, however, was a harder nut to crack.

5.2 Imbalanced dataset
One of the most serious difficulties upfront was an imbalanced dataset. There are many techniques
which can tackle this issue. The easiest ones can be oversampling the underrepresented classes or,
similarly, the other way around, so undersampling the overrepresented classes. In reality, it could
mean using only half of the Melanocytic nevi photos and duplicate pictures of Dermatofibroma.
Of course, when duplicating the pictures, there should definitely be some transformations before
(like rotation, crop, colour shift, etc.), but that is needed anyway not to pass the same data in the
same form every epoch.

Initially, our loss function of choice was a popular cross-entropy loss. The results from that
were good, but they could be better. The main issue with the dataset was that the network could
see promising results from returning a low loss value for a class with the biggest representation, as
it is quite likely that it will be correct because of the dataset imbalance.

We’ve played with adding some weights to each class, and the results were better but still not
great. The issue with adding weights to your loss function is that it emphasises some classes over
another, not because they are harder to distinguish but because there are many of them. In the
example we wrote, there are two predeclared ways to use these weights.

5.2.1 Proportional weights
This was calculated by picking the one class with the lowest amount of samples, and then for all
classes, we divided that number by the number of samples in a given class. That way, only one
class (the one with the lowest amount of representations) has 1, and all of the others have weight in
the (0, 1) range. However, that promoted the underrepresented values for no reason, like whether
they are hard to distinguish, but only based on the amount.

5.2.2 Reduced weights
We still wanted to use the weights to some degree, as the imbalanced nature of the dataset was so
substantial. Therefore we’ve used the Proportional weights and took every weight to the power of
1
4 . That way, the differences weren’t as enormous as before. Originally the most represented class
had a weight of 0.019 and after this reduction 0.37.

5.2.3 Alternatives for selecting weights
The main goal of this thesis isn’t to create the greatest model overall for a mole analysis but rather
to focus on federated learning and how it can be used for training such a model. Nonetheless, we
still wanted to create a well-performing and useful model. Therefore it could be argued that the
weights shouldn’t be used for tackling imbalance at all but rather to give importance to specific
critical classes over others.

Then the natural idea would be to prioritize (to give higher weights) classes related to serious
diagnoses like cancer or pre-cancer and to give lower weights to the benign ones. This way, you are
more likely to receive false positives (in this case, positive suppose to mean a serious diagnosis, and
negative is a non-serious diagnosis) rather than false negatives. That means more people will go to
the doctor to double-check the model prediction of some serious diagnosis rather than remaining in
a false conviction that they are fine even though they might be having potentially deadly lesions.

5.2.4 Focal loss
Because of that, we’ve decided to use an extension of cross-entropy. It is called Focal loss [37]. The
great feature of this particular loss function is its ability to focus on the hard problems, which is
crucial, especially for imbalanced datasets, where you don’t know in advance (because of lack of
deep domain knowledge) whether some examples are harder than others [37].

In figure 5.1, you can see that by increasing the γ value, the loss value will be decreased overall
as the curve bends down in the entire interval (0, 1) of the probability of ground truth class. Yet
the cases with a low probability of ground truth class (i.e. the hard examples to classify) will have

22

0 0.2 0.4 0.6 0.8 1

probability of ground truth class

0

1

2

3

4

5

lo
s
s

 = 0
 = 0.5

 = 1
 = 2

 = 5

well-classified
examples

well-classified
examples

CE(pt) = − log(pt)
FL(pt) = −(1 − pt)γ log(pt)

Figure 5.1: Instructive graph from the original paper about Focal loss [37]

the loss value decreased much less than the easy ones. Also note that when γ = 0, focal loss is the
same function as cross-entropy.

5.2.5 Other tactics
We didn’t use the following tactics in the example, but this section should give you some additional
ideas for future improvements that might be used for tackling imbalanced datasets.

Undersampling

The idea is that you do not use all the examples of the over-represented class. In our case, the most
over-represented class would be Dermatofibroma, so we could even use only half of all the images
in each epoch. The great thing about this approach is that you don’t need to use the same subset
for each epoch, so you aren’t losing all the data entirely. You are just using a different subset
every time. This method is especially useful when working with large datasets when skipping some
training data wouldn’t ruin the entire training.

Figure 5.2: Undersampling

Oversampling

As the name suggests, this approach is a bit similar to the Undersampling, but only the other
way around. Instead of reducing the over-represented, you are multiplying the underrepresented.
Remember, of course, to use some random augmentation, like colour shift, random rotation or
random zoom, because otherwise, the results wouldn’t be that great as you are showing the model
a picture that it already saw and it would be more likely to overfit the model [49]. Also, it would
be a great addition if the same examples which you decide to put into the dataset more times
would be the examples which are hard to classify. That will result in an increase in the overall
difficulty of the problem, but it will try to guide the model in a better and more precise direction.

Generate pseudo new data

The idea here is to generate new images from an existing underrepresented dataset. One could
argue that this is the same as Oversampling, but the main difference is that in oversampling,

23

Figure 5.3: Oversampling

you are duplicating the image and only augmenting it somehow. Except here, you are using an
algorithm like SMOTE [33] to generate the images using the more advanced method. For example,
the already mentioned SMOTE works in the following manner: Picks an image, finds k nearest
neighbour [15] of that image and moves it a small bit in the direction of the neighbour. In this
way, you don’t get substantially different results from what you already have in the dataset, but
you’ll still get some never-seen-before pictures [33].

5.3 Models
Pytorch [48] library already contains a lot of models for image classification to choose from. Because
of limited resources, we couldn’t use some really advanced and deep models like ResNet101 [24] or
DenseNet121 [29]. Hence we’ve decided to use MobileNet V3 [26], which is much faster to train
the other mentioned with still acceptable accuracy.

5.4 Training results
To train ANNs, you need to have powerful hardware, but if you are doing it the federated way, it is
twice as true. Although you can host all the theoretical clients for the federation on one machine,
which was the way we did it, it was still much more demanding than the usual training. Because
of that, we’ve decided to test it using only three clients who were still possible to run without any
significant computation slowdown on our training machine (MacBook Pro 14 2021 M1 Pro).

We ran multiple pieces of training and found an interesting comparison of the five runs selected
in table 5.4. All the training was run with focal loss, and the parameter gamma was set to 2. Also,
we would like to point out that when testing all the different federations locally, with more and
more clients, can become tremendously demanding on computing power. Luckily Flower library
provides ways for training the model federatively but only simulating the clients under the hood [7].
That means you don’t have to run all the clients separately and individually, which saves a ton of
computing power. The “type” in the table 5.4 specifies whether the run was using simulated or
real federation, and it is clear that the time difference is enormous.

color federated type rounds clients weights epochs
per round accuracy [%] duration

n - - - reduced 50 94.9 18h 47m
y sim 100 3 reduced 1 86.1 5h 3m
y sim 25 3 reduced 5 86.6 5h 22m
y sim 40 3 proportional 1 85.0 1h 46m
y real 20 3 reduced 1 82.5 5h 8m

Figure 5.4: Test runs

The first run is there to showcase the theoretical limit of the federation, as it was accomplished
using standard Pytorch Lightning training. That means there were no rounds or clients or any
other parameter for federated learning, just 50 epochs of standard training. The fact that it
took the longest might have been caused by not properly utilizing the entire power of the training

24

Epochs

A
cc

ur
ac

y
[%

]

0.5

0.6

0.7

0.8

0.9

1.0

20 40 60 80 100

Figure 5.5: Accuracy comparison

machine and not parallelising the workload, as the CPU was only 50% busy which was significantly
lower than in federated training when it was always 90% - 95%.

Subsequently, we experimented with various available parameter settings. We found out that
choosing more than one epoch per round can, for our dataset and strategy, be a working tactic
(as mentioned in 3.1), as both and took approximately 5 hours, but the accuracy of was
noticeably better with upwards trend. The training is there to show that there isn’t really
a difference between using and not using the Flower simulation. Lastly, the accuracy difference
between and is basically non-existent, which showcases that even though we choose to use
substantially different weights for the loss function, the result remains almost the same.

25

26

Chapter 6

Conclusion

This thesis aimed first to introduce various concepts and techniques for federated learning. Initially,
we discussed different types of privacy-preserving training methods and introduced an example
to better explain these approaches. We emphasized key concepts such as IID data and cross-
silo architecture, which are important for understanding the subsequent chapter, Strategies for
federated learning. The chapter tried to cover all well-established strategies for federated learning
like FedAvg, FedOpt and many others.

In the following chapter, we’ve focused on the role of security in federated learning, exploring
potential attack vectors and their prevention methods. We also introduced the concept of differ-
ential privacy, a valuable technique for creating privacy-preserving datasets and machine-learning
models.

Finally, we developed a fully working example with which one can easily train an ANN in
a federated manner. Although the dataset was highly unbalanced, we resolved this issue using
a loss function which was less affected by the imbalance. Instead of creating a novel federated
learning framework, we built upon an existing popular solution Flower [7], which we’ve extended
and implemented some features, like proper TensorBoard support or a summary log of the training.
After that, we conducted multiple training sessions with varying parameters like epochs per round
or class weights. From that, we’ve concluded that in our specific case, having five epochs per round
was really beneficial, while the class weights ultimately had a minimal impact.

To develop a production-ready model, it would be better to first improve the non-federated
model training by further addressing the class imbalance and spending more time comparing ANN
models. We picked MobileNetV3 only based on its fast learning speed. Next, we could focus again
on the federation, potentially use more advanced strategies and try to combine the best of them.
For example, we could merge all strategies presented (FedProx, FedBN and FedOpt), as they each
enhance the underlying FedAvg in different ways. Since all tests were concluded on a laptop, we
didn’t experiment with varying numbers of clients for performance reasons. However, future work
could explore this aspect further using more suitable hardware for AI training. Another intriguing
topic would be to investigate how the model accuracy would be affected if the class distribution
across the clients would be different.

27

28

Bibliography

[1] Martin Abadi et al. “Deep Learning with Differential Privacy”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. CCS ’16. New York,
NY, USA: Association for Computing Machinery, Oct. 24, 2016, pp. 308–318. isbn: 978-1-
4503-4139-4. doi: 10.1145/2976749.2978318. url: https://doi.org/10.1145/2976749.
2978318 (visited on 05/07/2023).

[2] Durmus Alp Emre Acar et al. “Federated Learning Based on Dynamic Regularization”. In:
International Conference on Learning Representations. International Conference on Learning
Representations. Feb. 10, 2022. url: https://openreview.net/forum?id=B7v4QMR6Z9w
(visited on 01/15/2023).

[3] Toshinori Araki et al. “Generalizing the SPDZ Compiler For Other Protocols”. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Secu-
rity. CCS ’18. New York, NY, USA: Association for Computing Machinery, Oct. 15, 2018,
pp. 880–895. isbn: 978-1-4503-5693-0. doi: 10.1145/3243734.3243854. url: https:
//doi.org/10.1145/3243734.3243854 (visited on 05/09/2023).

[4] Eugene Bagdasaryan et al. “How To Backdoor Federated Learning”. In: Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics. International
Conference on Artificial Intelligence and Statistics. PMLR, June 3, 2020, pp. 2938–2948. url:
https://proceedings.mlr.press/v108/bagdasaryan20a.html (visited on 05/09/2023).

[5] Yonatan Belinkov. “Probing Classifiers: Promises, Shortcomings, and Advances”. In: Com-
putational Linguistics 48.1 (Apr. 4, 2022), pp. 207–219. issn: 0891-2017. doi: 10.1162/
coli_a_00422. url: https://doi.org/10.1162/coli_a_00422 (visited on 05/09/2023).

[6] Aurélien Bellet et al. “Personalized and Private Peer-to-Peer Machine Learning”. In: Proceed-
ings of the Twenty-First International Conference on Artificial Intelligence and Statistics.
International Conference on Artificial Intelligence and Statistics. PMLR, Mar. 31, 2018,
pp. 473–481. url: https://proceedings.mlr.press/v84/bellet18a.html (visited on
05/09/2023).

[7] Daniel J. Beutel et al. Flower: A Friendly Federated Learning Research Framework. Mar. 5,
2022. doi: 10.48550/arXiv.2007.14390. arXiv: 2007.14390 [cs, stat]. url: http:
//arxiv.org/abs/2007.14390 (visited on 01/15/2023). preprint.

[8] Joseph K. Blitzstein and Jessica Hwang. Introduction to Probability, Second Edition. CRC
Press, Feb. 8, 2019. 636 pp. isbn: 978-0-429-76674-9. Google Books: LciHDwAAQBAJ.

[9] Keith Bonawitz et al. Practical Secure Aggregation for Federated Learning on User-Held
Data. Nov. 14, 2016. doi: 10.48550/arXiv.1611.04482. arXiv: 1611.04482 [cs, stat].
url: http://arxiv.org/abs/1611.04482 (visited on 03/12/2023). preprint.

[10] Keith Bonawitz et al. “Towards Federated Learning at Scale: System Design”. In: Pro-
ceedings of Machine Learning and Systems 1 (Apr. 15, 2019), pp. 374–388. url: https:
//proceedings.mlsys.org/paper/2019/hash/bd686fd640be98efaae0091fa301e613-
Abstract.html (visited on 05/09/2023).

[11] Blake Brittain and Blake Brittain. “Getty Images Lawsuit Says Stability AI Misused Photos
to Train AI”. In: Reuters. Legal (Feb. 6, 2023). url: https://www.reuters.com/legal/
getty-images-lawsuit-says-stability-ai-misused-photos-train-ai-2023-02-06/
(visited on 04/18/2023).

[12] Tom Brown et al. “Language Models Are Few-Shot Learners”. In: Advances in Neural
Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 1877–1901.
url: https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-
Abstract.html (visited on 05/09/2023).

29

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://openreview.net/forum?id=B7v4QMR6Z9w
https://doi.org/10.1145/3243734.3243854
https://doi.org/10.1145/3243734.3243854
https://doi.org/10.1145/3243734.3243854
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://proceedings.mlr.press/v84/bellet18a.html
https://doi.org/10.48550/arXiv.2007.14390
https://arxiv.org/abs/2007.14390
http://arxiv.org/abs/2007.14390
http://arxiv.org/abs/2007.14390
http://books.google.com/books?id=LciHDwAAQBAJ
https://doi.org/10.48550/arXiv.1611.04482
https://arxiv.org/abs/1611.04482
http://arxiv.org/abs/1611.04482
https://proceedings.mlsys.org/paper/2019/hash/bd686fd640be98efaae0091fa301e613-Abstract.html
https://proceedings.mlsys.org/paper/2019/hash/bd686fd640be98efaae0091fa301e613-Abstract.html
https://proceedings.mlsys.org/paper/2019/hash/bd686fd640be98efaae0091fa301e613-Abstract.html
https://www.reuters.com/legal/getty-images-lawsuit-says-stability-ai-misused-photos-train-ai-2023-02-06/
https://www.reuters.com/legal/getty-images-lawsuit-says-stability-ai-misused-photos-train-ai-2023-02-06/
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[13] Victor Ion Butoi et al. UniverSeg: Universal Medical Image Segmentation. Apr. 12, 2023.
doi: 10.48550/arXiv.2304.06131. arXiv: 2304.06131 [cs]. url: http://arxiv.org/
abs/2304.06131 (visited on 04/30/2023). preprint.

[14] Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus Nielsen (aut). Secure Multiparty
Computation. Cambridge University Press, July 15, 2015. 385 pp. isbn: 978-1-107-04305-3.
Google Books: HpsZCgAAQBAJ.

[15] Padraig Cunningham and Sarah Jane Delany. “K-Nearest Neighbour Classifiers: 2nd Edition
(with Python Examples)”. In: ACM Computing Surveys 54.6 (July 31, 2022), pp. 1–25. issn:
0360-0300, 1557-7341. doi: 10 . 1145 / 3459665. arXiv: 2004 . 04523 [cs, stat]. url:
http://arxiv.org/abs/2004.04523 (visited on 04/21/2023).

[16] Tore Dalenius. “Towards a Methodology for Statistical Disclosure Control”. In: (1977). url:
https://ecommons.cornell.edu/handle/1813/111303 (visited on 04/17/2023).

[17] Cynthia Dwork. “Differential Privacy”. In: Automata, Languages and Programming. Ed. by
Michele Bugliesi et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2006, pp. 1–12. isbn: 978-3-540-35908-1. doi: 10.1007/11787006_1.

[18] Cynthia Dwork et al. “Calibrating Noise to Sensitivity in Private Data Analysis”. In:
Theory of Cryptography. Ed. by Shai Halevi and Tal Rabin. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2006, pp. 265–284. isbn: 978-3-540-32732-5. doi:
10.1007/11681878_14.

[19] William Falcon and The PyTorch Lightning team. PyTorch Lightning. Version 1.4. Mar. 2019.
doi: 10.5281/zenodo.3828935. url: https://github.com/Lightning-AI/lightning.

[20] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks”. In: Proceedings of the 34th International Conference on
Machine Learning. International Conference on Machine Learning. PMLR, July 17, 2017,
pp. 1126–1135. url: https://proceedings.mlr.press/v70/finn17a.html (visited on
05/09/2023).

[21] Patrick Foley et al. “OpenFL: The Open Federated Learning Library”. In: Physics in
Medicine & Biology 67.21 (Oct. 2022), p. 214001. issn: 0031-9155. doi: 10.1088/1361-
6560 / ac97d9. url: https : / / dx . doi . org / 10 . 1088 / 1361 - 6560 / ac97d9 (visited on
01/15/2023).

[22] Mohsen Ghafoorian et al. “Transfer Learning for Domain Adaptation in MRI: Application
in Brain Lesion Segmentation”. In: vol. 10435. 2017, pp. 516–524. doi: 10.1007/978-3-
319-66179-7_59. arXiv: 1702.07841 [cs]. url: http://arxiv.org/abs/1702.07841
(visited on 04/30/2023).

[23] Ian Goodfellow et al. “Generative Adversarial Networks”. In: Communications of the ACM
63.11 (Oct. 22, 2020), pp. 139–144. issn: 0001-0782. doi: 10.1145/3422622. url: https:
//dl.acm.org/doi/10.1145/3422622 (visited on 05/09/2023).

[24] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2016, pp. 770–778. doi: 10.1109/
CVPR.2016.90.

[25] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. “Deep Models Under the GAN:
Information Leakage from Collaborative Deep Learning”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’17. New York, NY,
USA: Association for Computing Machinery, Oct. 30, 2017, pp. 603–618. isbn: 978-1-4503-
4946-8. doi: 10.1145/3133956.3134012. url: https://doi.org/10.1145/3133956.
3134012 (visited on 04/23/2023).

[26] Andrew Howard et al. “Searching for MobileNetV3”. In: 2019 IEEE/CVF International
Conference on Computer Vision (ICCV). IEEE Computer Society, Oct. 1, 2019, pp. 1314–
1324. isbn: 978-1-72814-803-8. doi: 10.1109/ICCV.2019.00140. url: https://www.
computer.org/csdl/proceedings-article/iccv/2019/480300b314/1hVlGG4j720 (vis-
ited on 05/09/2023).

[27] Jeremy Howard and Sebastian Ruder. “Universal Language Model Fine-tuning for Text Clas-
sification”. In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). ACL 2018. Melbourne, Australia: Association for
Computational Linguistics, June 2018, pp. 328–339. doi: 10.18653/v1/P18-1031. url:
https://aclanthology.org/P18-1031 (visited on 05/09/2023).

30

https://doi.org/10.48550/arXiv.2304.06131
https://arxiv.org/abs/2304.06131
http://arxiv.org/abs/2304.06131
http://arxiv.org/abs/2304.06131
http://books.google.com/books?id=HpsZCgAAQBAJ
https://doi.org/10.1145/3459665
https://arxiv.org/abs/2004.04523
http://arxiv.org/abs/2004.04523
https://ecommons.cornell.edu/handle/1813/111303
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11681878_14
https://doi.org/10.5281/zenodo.3828935
https://github.com/Lightning-AI/lightning
https://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1088/1361-6560/ac97d9
https://doi.org/10.1088/1361-6560/ac97d9
https://dx.doi.org/10.1088/1361-6560/ac97d9
https://doi.org/10.1007/978-3-319-66179-7_59
https://doi.org/10.1007/978-3-319-66179-7_59
https://arxiv.org/abs/1702.07841
http://arxiv.org/abs/1702.07841
https://doi.org/10.1145/3422622
https://dl.acm.org/doi/10.1145/3422622
https://dl.acm.org/doi/10.1145/3422622
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1109/ICCV.2019.00140
https://www.computer.org/csdl/proceedings-article/iccv/2019/480300b314/1hVlGG4j720
https://www.computer.org/csdl/proceedings-article/iccv/2019/480300b314/1hVlGG4j720
https://doi.org/10.18653/v1/P18-1031
https://aclanthology.org/P18-1031

[28] Krystal Hu. “ChatGPT Sets Record for Fastest-Growing User Base - Analyst Note”. In:
Reuters. Technology (Feb. 2, 2023). url: https : / / www . reuters . com / technology /
chatgpt- sets- record- fastest- growing- user- base- analyst- note- 2023- 02- 01/
(visited on 04/23/2023).

[29] Gao Huang et al. “Densely Connected Convolutional Networks”. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, July 1,
2017, pp. 2261–2269. isbn: 978-1-5386-0457-1. doi: 10.1109/CVPR.2017.243. url: https:
//www.computer.org/csdl/proceedings-article/cvpr/2017/0457c261/12OmNBDQbld
(visited on 05/07/2023).

[30] International cyber law: interactive toolkit contributors. Brno University Hospital Ran-
somware Attack (2020). International cyber law: interactive toolkit. June 3, 2021. url:
https://cyberlaw.ccdcoe.org/w/index.php?title=Brno_University_Hospital_
ransomware_attack_(2020)&oldid=2400 (visited on 04/25/2023).

[31] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning - Volume 37. ICML’15. Lille, France:
JMLR.org, June 6, 2015, pp. 448–456.

[32] Peter Kairouz et al. “Advances and Open Problems in Federated Learning”. In: Foundations
and Trends® in Machine Learning 14.1–2 (June 22, 2021), pp. 1–210. issn: 1935-8237, 1935-
8245. doi: 10.1561/2200000083. url: https://www.nowpublishers.com/article/
Details/MAL-083 (visited on 05/07/2023).

[33] Joos Korstanje. SMOTE. Medium. Aug. 30, 2021. url: https://towardsdatascience.
com/smote-fdce2f605729 (visited on 03/01/2023).

[34] Tian Li et al. “Federated Learning: Challenges, Methods, and Future Directions”. In: IEEE
Signal Processing Magazine 37.3 (May 2020), pp. 50–60. issn: 1053-5888, 1558-0792. doi:
10.1109/MSP.2020.2975749. arXiv: 1908.07873 [cs, stat]. url: http://arxiv.org/
abs/1908.07873 (visited on 01/15/2023).

[35] Tian Li et al. “Federated Optimization in Heterogeneous Networks”. In: Proceedings of
Machine Learning and Systems 2 (Mar. 15, 2020), pp. 429–450. url: https://proceedings.
mlsys . org / paper / 2020 / hash / 38af86134b65d0f10fe33d30dd76442e - Abstract . html
(visited on 05/07/2023).

[36] Xiaoxiao Li et al. “FedBN: Federated Learning on Non-IID Features via Local Batch Nor-
malization”. In: International Conference on Learning Representations. Jan. 12, 2021. url:
https://openreview.net/forum?id=6YEQUn0QICG (visited on 05/07/2023).

[37] Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In: Focal Loss for Dense Object
Detection. Proceedings of the IEEE International Conference on Computer Vision. 2017,
pp. 2980–2988. url: https://openaccess.thecvf.com/content_iccv_2017/html/Lin_
Focal_Loss_for_ICCV_2017_paper.html (visited on 02/20/2023).

[38] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction. Sept. 17, 2020. doi: 10.48550/arXiv.1802.03426.
arXiv: 1802.03426 [cs, stat]. url: http://arxiv.org/abs/1802.03426 (visited on
04/23/2023). preprint.

[39] Brendan McMahan et al. “Communication-Efficient Learning of Deep Networks from Decen-
tralized Data”. In: Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics. Artificial Intelligence and Statistics. PMLR, Apr. 10, 2017, pp. 1273–1282.
url: https://proceedings.mlr.press/v54/mcmahan17a.html (visited on 05/07/2023).

[40] Luca Melis et al. “Exploiting Unintended Feature Leakage in Collaborative Learning”. In:
2019 IEEE Symposium on Security and Privacy (SP). 2019 IEEE Symposium on Security
and Privacy (SP). May 2019, pp. 691–706. doi: 10.1109/SP.2019.00029.

[41] Andrew Miller et al. “The Honey Badger of BFT Protocols”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’16. New York, NY,
USA: Association for Computing Machinery, Oct. 24, 2016, pp. 31–42. isbn: 978-1-4503-4139-
4. doi: 10.1145/2976749.2978399. url: https://doi.org/10.1145/2976749.2978399
(visited on 04/30/2023).

[42] Payman Mohassel and Yupeng Zhang. “SecureML: A System for Scalable Privacy-Preserving
Machine Learning”. In: 2017 IEEE Symposium on Security and Privacy (SP). 2017 IEEE
Symposium on Security and Privacy (SP). May 2017, pp. 19–38. doi: 10.1109/SP.2017.12.

31

https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://doi.org/10.1109/CVPR.2017.243
https://www.computer.org/csdl/proceedings-article/cvpr/2017/0457c261/12OmNBDQbld
https://www.computer.org/csdl/proceedings-article/cvpr/2017/0457c261/12OmNBDQbld
https://cyberlaw.ccdcoe.org/w/index.php?title=Brno_University_Hospital_ransomware_attack_(2020)&oldid=2400
https://cyberlaw.ccdcoe.org/w/index.php?title=Brno_University_Hospital_ransomware_attack_(2020)&oldid=2400
https://doi.org/10.1561/2200000083
https://www.nowpublishers.com/article/Details/MAL-083
https://www.nowpublishers.com/article/Details/MAL-083
https://towardsdatascience.com/smote-fdce2f605729
https://towardsdatascience.com/smote-fdce2f605729
https://doi.org/10.1109/MSP.2020.2975749
https://arxiv.org/abs/1908.07873
http://arxiv.org/abs/1908.07873
http://arxiv.org/abs/1908.07873
https://proceedings.mlsys.org/paper/2020/hash/38af86134b65d0f10fe33d30dd76442e-Abstract.html
https://proceedings.mlsys.org/paper/2020/hash/38af86134b65d0f10fe33d30dd76442e-Abstract.html
https://openreview.net/forum?id=6YEQUn0QICG
https://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html
https://doi.org/10.48550/arXiv.1802.03426
https://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1109/SP.2019.00029
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1109/SP.2017.12

[43] Leo N. Google Staged Rollouts & App Store Phased Release: With Less Stress. Geek Culture.
Nov. 13, 2022. url: https://medium.com/geekculture/google-staged-rollouts-app-
store-phased-release-with-less-stress-1d51dffde7a7 (visited on 04/30/2023).

[44] Milad Nasr, Reza Shokri, and Amir Houmansadr. “Comprehensive Privacy Analysis of Deep
Learning: Passive and Active White-box Inference Attacks against Centralized and Federated
Learning”. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, May 1, 2019, pp. 739–753. isbn: 978-1-5386-6660-9. doi: 10.1109/SP.2019.00065.
url: https://www.computer.org/csdl/proceedings-article/sp/2019/666000a739/
1dlwhtj4r7O (visited on 05/07/2023).

[45] OpenAI. Introducing ChatGPT. url: https://openai.com/blog/chatgpt (visited on
04/23/2023).

[46] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. “Knockoff Nets: Stealing Function-
ality of Black-Box Models”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019, pp. 4954–4963. url: https://openaccess.thecvf.
com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_
Black-Box_Models_CVPR_2019_paper.html (visited on 03/25/2023).

[47] Wonpyo Park et al. “Relational Knowledge Distillation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2019, pp. 3967–3976. url: https:
//openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational_Knowledge_
Distillation_CVPR_2019_paper.html (visited on 05/09/2023).

[48] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: Proceedings of the 33rd International Conference on Neural Information Process-
ing Systems. 721. Red Hook, NY, USA: Curran Associates Inc., Dec. 8, 2019, pp. 8026–
8037.

[49] Luis Perez and Jason Wang. The Effectiveness of Data Augmentation in Image Classification
Using Deep Learning. Dec. 13, 2017. doi: 10.48550/arXiv.1712.04621. arXiv: 1712.04621
[cs]. url: http://arxiv.org/abs/1712.04621 (visited on 04/21/2023). preprint.

[50] Ramesh Raskar. Split Learning Project: MIT Media Lab. url: https://splitlearning.
mit.edu/ (visited on 04/29/2023).

[51] Vamsi Ravula. 10 Essentials to Mitigating API Security Risks. Red Hat Developer. Oct. 20,
2022. url: https://developers.redhat.com/articles/2022/10/20/10-essentials-
mitigating-api-security-risks (visited on 04/16/2023).

[52] Sashank J. Reddi et al. “Adaptive Federated Optimization”. In: International Conference
on Learning Representations. Jan. 12, 2021. url: https://openreview.net/forum?id=
LkFG3lB13U5 (visited on 05/07/2023).

[53] Michael Ridley. “Explainable Artificial Intelligence (XAI):” in: Information Technology and
Libraries 41.2 (2 June 15, 2022). issn: 2163-5226. doi: 10.6017/ital.v41i2.14683.
url: https://ejournals.bc.edu/index.php/ital/article/view/14683 (visited on
04/23/2023).

[54] Neta Shoham et al. Overcoming Forgetting in Federated Learning on Non-IID Data. Oct. 17,
2019. arXiv: 1910.07796 [cs, stat]. url: http://arxiv.org/abs/1910.07796 (visited
on 03/06/2023). preprint.

[55] Reza Shokri et al. “Membership Inference Attacks Against Machine Learning Models”. In:
2017 IEEE Symposium on Security and Privacy (SP). 2017 IEEE Symposium on Security
and Privacy (SP). May 2017, pp. 3–18. doi: 10.1109/SP.2017.41.

[56] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. “Stochastic Gradient Descent
with Differentially Private Updates”. In: 2013 IEEE Global Conference on Signal and In-
formation Processing. 2013 IEEE Global Conference on Signal and Information Processing
(GlobalSIP). Austin, TX, USA: IEEE, Dec. 2013, pp. 245–248. isbn: 978-1-4799-0248-4.
doi: 10.1109/GlobalSIP.2013.6736861. url: http://ieeexplore.ieee.org/document/
6736861/ (visited on 04/18/2023).

[57] Gautam Srivastava et al. XAI for Cybersecurity: State of the Art, Challenges, Open Issues
and Future Directions. June 2, 2022. doi: 10.48550/arXiv.2206.03585. arXiv: 2206.03585
[cs]. url: http://arxiv.org/abs/2206.03585 (visited on 04/23/2023). preprint.

32

https://medium.com/geekculture/google-staged-rollouts-app-store-phased-release-with-less-stress-1d51dffde7a7
https://medium.com/geekculture/google-staged-rollouts-app-store-phased-release-with-less-stress-1d51dffde7a7
https://doi.org/10.1109/SP.2019.00065
https://www.computer.org/csdl/proceedings-article/sp/2019/666000a739/1dlwhtj4r7O
https://www.computer.org/csdl/proceedings-article/sp/2019/666000a739/1dlwhtj4r7O
https://openai.com/blog/chatgpt
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Orekondy_Knockoff_Nets_Stealing_Functionality_of_Black-Box_Models_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational_Knowledge_Distillation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational_Knowledge_Distillation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational_Knowledge_Distillation_CVPR_2019_paper.html
https://doi.org/10.48550/arXiv.1712.04621
https://arxiv.org/abs/1712.04621
https://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1712.04621
https://splitlearning.mit.edu/
https://splitlearning.mit.edu/
https://developers.redhat.com/articles/2022/10/20/10-essentials-mitigating-api-security-risks
https://developers.redhat.com/articles/2022/10/20/10-essentials-mitigating-api-security-risks
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5
https://doi.org/10.6017/ital.v41i2.14683
https://ejournals.bc.edu/index.php/ital/article/view/14683
https://arxiv.org/abs/1910.07796
http://arxiv.org/abs/1910.07796
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/GlobalSIP.2013.6736861
http://ieeexplore.ieee.org/document/6736861/
http://ieeexplore.ieee.org/document/6736861/
https://doi.org/10.48550/arXiv.2206.03585
https://arxiv.org/abs/2206.03585
https://arxiv.org/abs/2206.03585
http://arxiv.org/abs/2206.03585

[58] Chen Sun et al. “Revisiting Unreasonable Effectiveness of Data in Deep Learning Era”. In:
2017 IEEE International Conference on Computer Vision (ICCV). 2017 IEEE International
Conference on Computer Vision (ICCV). Oct. 2017, pp. 843–852. doi: 10.1109/ICCV.
2017.97.

[59] Hanlin Tang et al. “D2: Decentralized Training over Decentralized Data”. In: Proceedings of
the 35th International Conference on Machine Learning. Ed. by Jennifer Dy and Andreas
Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, July 10–15, 2018,
pp. 4848–4856. url: https://proceedings.mlr.press/v80/tang18a.html.

[60] Rohan Taori et al. Stanford Alpaca: An Instruction-Following LLaMA Model. 2023. url:
https://github.com/tatsu-lab/stanford_alpaca.

[61] Jean Ogier du Terrail et al. “FLamby: Datasets and Benchmarks for Cross-Silo Federated
Learning in Realistic Healthcare Settings”. Version 2. In: (2022). doi: 10.48550/ARXIV.
2210.04620. url: https://arxiv.org/abs/2210.04620 (visited on 04/19/2023).

[62] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models. Feb. 27,
2023. doi: 10.48550/arXiv.2302.13971. arXiv: 2302.13971 [cs]. url: http://arxiv.
org/abs/2302.13971 (visited on 04/18/2023). preprint.

[63] Florian Tramèr et al. “Stealing Machine Learning Models via Prediction APIs”. In: Pro-
ceedings of the 25th USENIX Conference on Security Symposium. SEC’16. USA: USENIX
Association, Aug. 10, 2016, pp. 601–618. isbn: 978-1-931971-32-4.

[64] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. “The HAM10000 Dataset, a Large
Collection of Multi-Source Dermatoscopic Images of Common Pigmented Skin Lesions”. In:
Scientific Data 5.1 (1 Aug. 14, 2018), p. 180161. issn: 2052-4463. doi: 10.1038/sdata.2018.
161. url: https://www.nature.com/articles/sdata2018161 (visited on 05/09/2023).

[65] Praneeth Vepakomma et al. “NoPeek: Information Leakage Reduction to Share Activations
in Distributed Deep Learning”. In: 2020 International Conference on Data Mining Workshops
(ICDMW). IEEE Computer Society, Nov. 1, 2020, pp. 933–942. isbn: 978-1-72819-012-9. doi:
10.1109/ICDMW51313.2020.00134. url: https://www.computer.org/csdl/proceedings-
article/icdmw/2020/901200a933/1rgGjECfp3W (visited on 05/09/2023).

[66] Praneeth Vepakomma et al. Split Learning for Health: Distributed Deep Learning without
Sharing Raw Patient Data. Dec. 3, 2018. doi: 10.48550/arXiv.1812.00564. arXiv: 1812.
00564 [cs, stat]. url: http://arxiv.org/abs/1812.00564 (visited on 04/29/2023).
preprint.

[67] Yizhong Wang et al. Self-Instruct: Aligning Language Model with Self Generated Instructions.
Dec. 20, 2022. doi: 10.48550/arXiv.2212.10560. arXiv: 2212.10560 [cs]. url: http:
//arxiv.org/abs/2212.10560 (visited on 04/18/2023). preprint.

[68] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets”. In: 27th Annual Sympo-
sium on Foundations of Computer Science (Sfcs 1986). 27th Annual Symposium on Founda-
tions of Computer Science (Sfcs 1986). Oct. 1986, pp. 162–167. doi: 10.1109/SFCS.1986.25.

[69] Xun Yi, Russell Paulet, and Elisa Bertino. “Homomorphic Encryption”. In: Homomorphic
Encryption and Applications. Ed. by Xun Yi, Russell Paulet, and Elisa Bertino. Springer-
Briefs in Computer Science. Cham: Springer International Publishing, 2014, pp. 27–46. isbn:
978-3-319-12229-8. doi: 10.1007/978-3-319-12229-8_2. url: https://doi.org/10.
1007/978-3-319-12229-8_2 (visited on 04/30/2023).

[70] Ashkan Yousefpour et al. Opacus: User-Friendly Differential Privacy Library in PyTorch.
Aug. 22, 2022. doi: 10.48550/arXiv.2109.12298. arXiv: 2109.12298 [cs]. url: http:
//arxiv.org/abs/2109.12298 (visited on 04/18/2023). preprint.

[71] Chen Yu et al. “Distributed Learning over Unreliable Networks”. In: Proceedings of the
36th International Conference on Machine Learning. International Conference on Machine
Learning. PMLR, May 24, 2019, pp. 7202–7212. url: https://proceedings.mlr.press/
v97/yu19f.html (visited on 05/07/2023).

[72] XINRUI ZHUANG. Skin Lesion Classification(Acc>90%)(Pytorch). May 2019. url: https:
//kaggle.com/code/xinruizhuang/skin- lesion- classification- acc- 90- pytorch
(visited on 02/19/2023).

33

https://doi.org/10.1109/ICCV.2017.97
https://doi.org/10.1109/ICCV.2017.97
https://proceedings.mlr.press/v80/tang18a.html
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/ARXIV.2210.04620
https://doi.org/10.48550/ARXIV.2210.04620
https://arxiv.org/abs/2210.04620
https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.1038/sdata.2018.161
https://doi.org/10.1038/sdata.2018.161
https://www.nature.com/articles/sdata2018161
https://doi.org/10.1109/ICDMW51313.2020.00134
https://www.computer.org/csdl/proceedings-article/icdmw/2020/901200a933/1rgGjECfp3W
https://www.computer.org/csdl/proceedings-article/icdmw/2020/901200a933/1rgGjECfp3W
https://doi.org/10.48550/arXiv.1812.00564
https://arxiv.org/abs/1812.00564
https://arxiv.org/abs/1812.00564
http://arxiv.org/abs/1812.00564
https://doi.org/10.48550/arXiv.2212.10560
https://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2212.10560
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/978-3-319-12229-8_2
https://doi.org/10.1007/978-3-319-12229-8_2
https://doi.org/10.1007/978-3-319-12229-8_2
https://doi.org/10.48550/arXiv.2109.12298
https://arxiv.org/abs/2109.12298
http://arxiv.org/abs/2109.12298
http://arxiv.org/abs/2109.12298
https://proceedings.mlr.press/v97/yu19f.html
https://proceedings.mlr.press/v97/yu19f.html
https://kaggle.com/code/xinruizhuang/skin-lesion-classification-acc-90-pytorch
https://kaggle.com/code/xinruizhuang/skin-lesion-classification-acc-90-pytorch

	Introduction
	Federated learning approaches
	Universal example
	Main issues
	IID vs Non-IID
	Cross-silo vs Cross-device approach
	Cross-device drawbacks and difficulties

	Standard federated learning
	Other approaches to federated learning
	Fully decentralized
	Split learning
	Multi-model and local fine tuning
	Secure multi-party computation

	Strategies for federated learning
	FedAvg
	FedProx
	Systems heterogeneity
	Statistical heterogeneity
	Proximal term

	FedBN
	FedOpt
	Other possible candidates

	Security
	Inference attacks
	Membership inference attacks
	Properties inference attacks

	Protecting the model
	Differential Privacy

	Ready-to-use example
	HAM10000 issues
	Imbalanced dataset
	Proportional weights
	Reduced weights
	Alternatives for selecting weights
	Focal loss
	Other tactics

	Models
	Training results

	Conclusion
	Bibliography

