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Abstract:

In this thesis, we explore classes of mappings suitable for models in Nonlinear
Elasticity. We investigate whether, given the presence of certain desirable proper-
ties, there exists an element within the class that exhibits pathological behaviour.
In the presented papers, we primarily focus on subclasses of Sobolev mappings,
particularly weak closures of homeomorphisms with additional properties. These
properties typically manifest themselves in the form of an additional term in the
energy functional.

We show that weak limits of Sobolev homeomorphisms in 𝑊 1,𝑛⊗1 satisfy the so-
called (𝐼𝑁𝑉 ) condition if the integrability of the reciprocals of the Jacobians is
sufficiently high. This result is sharp and we present a counterexample for cases
of lower integrability. The (𝐼𝑁𝑉 ) condition is also preserved under weak limits
when we add a term dependent on the cofactor matrix of the derivative, as its
integrability provides some regularity for the inverses of the homeomorphisms
in the sequence. Furthermore, we show that assumptions on regularity of the
inverses can also ensure a.e. differentiability of the limit.

Other topics investigated in this thesis include the sizes of critical sets violat-
ing the Luzin (𝑁) condition in the case of Sobolev homeomorphisms and the
(dis)continuity of mappings of generalized distortion, where we present both pos-
itive results and counterexamples in the planar case.
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Outline

This thesis consists of Ąve papers, which were or are to be published indepen-
dently, and of introductory texts which set them into the wider context. The text
is divided into four units:

• Introduction gives the general background for Sobolev mappings, limits
of homeomorphisms and Calculus of Variations.

• On the Luzin (𝑁) condition gives the background for

– Hausdorff measure of critical set for Luzin N condition; A. Doležalová,
M. Hrubešová and T. Roskovec, Journal of Mathematical Analysis and
Applications, Volume 493, Issue 2, 2021.

• On the generalized distortion gives the background for

– Mappings of generalized Ąnite distortion and continuity; A. Doležalová,
I. Kangasniemi and J. Onninen, preprint arXiv:2210.14141, 2022. Ac-
cepted to Journal of the London Mathematical Society.

• On the (𝐼𝑁𝑉 ) condition gives the background for

– Weak limit of homeomorphisms in 𝑊 1,𝑛⊗1 and (INV) condition; A.
Doležalová, S. Hencl and J. Malý, preprint arXiv:2112.08041, 2021.

– Weak limit of homeomorphisms in 𝑊 1,𝑛⊗1: invertibility and lower
semicontinuity of energy; A. Doležalová, S. Hencl and A. Molchanova,
preprint arXiv:2212.06452, 2022.

– Differentiability almost everywhere of weak limits of bi-Sobolev homeo-
morphisms; A. Doležalová and A. Molchanova, preprint arXiv:2302.07578,
2023.

The publication status is as of April 2023.
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Introduction

The key question investigated in this thesis is the following: Given a class of
mappings with nice properties, does there exist an element of the class which
exhibits a pathological behaviour of some kind? Questions of this type appear
naturally in Calculus of Variations and Nonlinear Elasticity, see the pioneering
work of Ball [2] and Ciarlet and Nečas [7], among many others. In the research
presented in this thesis, we focus on (sub)classes of Sobolev mappings.

The motivation for such a question comes from the standard machinery of
Calculus of Variations. We take an open set Ω ⊖ 𝑅𝑛 as our elastic body in
its original state and Ω′ ⊖ 𝑅𝑛 in the deformed one. We seek for a mapping
𝑓 : Ω ⊃ Ω′ which describes the deformation of Ω onto Ω′. Often we ask our
mapping to satisfy some boundary condition, which might correspond to the
observed behaviour of the material on the boundary of the body. The energy of
the deformation 𝑓 is expressed as a functional in a form

ℰ(𝑓) =
∫︁

Ω
𝐹 (𝐷𝑓) 𝑑𝑥.

Such energy is independent of translations or rotations, i.e., 𝐹 (𝑅𝐴) = 𝐹 (𝐴)
for every rotation 𝑅 : R𝑛 ⊃ R𝑛. Note that the energy does not depend only
on the norm of the derivative ♣𝐷𝑓 ♣, but it can for example contains terms with
the Jacobian 𝐽𝑓 of the mapping. We usually expect that 𝐹 (𝐷𝑓) ⊃ ∞ when
♣𝐷𝑓 ♣ ⊃ ∞ and also 𝐹 (𝐷𝑓) ⊃ ∞ as 𝐽𝑓 ⊃ 0. This corresponds to the intuition
that both stretching and compressing the material should cost some amount of
energy.

When modelling an elastic deformation, there are several restrictions we want
to apply on our classes of functions so that the exhibited behaviour is reasonable
from the physical point of view. Such restriction might be for example that we do
not want to create any matter during elastic deformation nor lose it. That can be
mathematically formulated as the Luzin (𝑁) and (𝑁⊗1) condition. Similarly, we
want to keep the orientation of the material. We also want to prevent the inter-
penetration of matter or to keep the deformation reversible in some sense, leading
to different notions of invertibility. Whereas for diffeomorphisms we know that
the sign of the Jacobian and of the topological degree coincide [17, Section 3.2],
that does not have to be true even for Sobolev homeomorphisms [5]. Therefore
it makes sense to both ask that our deformation has nonnegative Jacobian a.e.
as well as investigate the topological degree.

The standard process Ąnds a sequence of functions 𝑓𝑘 which minimizes our
energy functional. If this sequence is bounded in the Sobolev space 𝑊 1,𝑝(Ω,R𝑛)
for 𝑝 ∈ (1,∞), we can extract a weakly converging subsequence and Ąnd its weak
limit 𝑓 . As the approximations 𝑓𝑘 are often nice (i.e., have the aforementioned
properties), we want to investigate whether the weak limit preserves these prop-
erties in order to have a physically relevant solution. One usual choice in our
work is to take 𝑓𝑘 ∈ 𝑊 1,𝑝(Ω,R𝑛) to be homeomorphisms satisfying the Luzin (𝑁)
condition with 𝐽𝑓𝑘

> 0 a.e. That is because such mappings should be in our class
of possible solutions as those are very reasonable deformations.

Another property that we would like our function spaces or classes to have is
the possibility of some discontinuities Ű but only of special kinds. Experiments
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showed that cavitations may happen in an elastic body [16]. At the same time,
we do not want our body to be completely shattered. This balance lead to a
widespread use of Sobolev spaces.

In Chapter 1 we investigate the Luzin (𝑁) condition. For 𝑝 small enough, even
homeomorphisms from 𝑊 1,𝑝(Ω,R𝑛) can violate this condition, and thus create
matter. We study in the size of the critical set from which the new material is
created in Paper I.

Chapter 2 is dedicated to mappings of generalized distortion. We search
for conditions under such mappings can exhibit discontinuities and when the
continuity is assured. Such conditions, as well as a conjecture closing the gap
between them, are presented in Paper II.

The last part of this thesis, Chapter 3, is dedicated to the (𝐼𝑁𝑉 ) condition.
Pioneered by Müller and Spector [25] and later developed by Conti and De Lellis
[6], this property ensures, roughly speaking, that inside of a ball stays inside the
image of the sphere and, vice versa, the outside of the ball is mapped outside of
the image of the sphere. Whereas for 𝑝 > 𝑛⊗ 1 the class of 𝑊 1,𝑝-mappings satis-
fying the (𝐼𝑁𝑉 ) condition is weakly closed [25], it is not true for the borderline
case 𝑝 = 𝑛 ⊗ 1 [6]. In Papers III and IV we present sufficient conditions under
which all mappings from the weak closure of homeomorphisms satisfy (𝐼𝑁𝑉 ).
Paper III also provides a new counterexample, thus showing that the assump-
tion there is sharp. In Paper V, we investigate the differentiability of limits of
homeomorphisms in 𝑊 1,𝑛⊗1(Ω,R𝑛) under an assumption on the regularity of the
inverse mappings.
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1. On the Luzin (𝑁) condition

1.1 Introduction

Let Ω ⊆ R𝑛 be an open set and let 𝑓 : Ω ⊃ R𝑛 be a mapping. We say that 𝑓
satisĄes the Luzin (𝑁) condition if

for every 𝐸 ⊖ Ω with ♣𝐸♣ = 0 we have ♣𝑓(𝐸)♣ = 0

and that 𝑓 satisĄes the Luzin (𝑁⊗1) condition if

for every 𝐸 ⊖ Ω with ♣𝑓(𝐸)♣ = 0 we have ♣𝐸♣ = 0.

These two conditions are important in models of Nonlinear Elasticity: The Ąrst
one prevents creation of matter, whereas the second one prevents its loss. (Note
that the Luzin (𝑁⊗1) condition is often replaced by the assumption 𝐽𝑓 > 0 a.e.,
which is more suitable for the Calculus of Variations approach.) They also play
a crucial role in the abstract setting of Sobolev spaces, as they are tightly tied to
the validity of the area and co-area formula and the change-of-variables formula
(for details see [17, Section A.8]).

Similarly to the case of the continuity, if 𝑓 ∈ 𝑊 1,𝑝(Ω,R𝑛) for 𝑝 > 𝑛, we know
that 𝑓 satisĄes the (𝑁) condition (see Marcus and Mizel [24]). If we restrict
ourselves to homeomorphisms, this holds true even for 𝑓 ∈ 𝑊 1,𝑛(Ω,R𝑛) (see
Reshetnyak [28]). Both of these results are sharp, as was shown in [27] and [23].
Moreover, Malý and Martio [23] and Kauhanen [22] studied the size of the critical
set of measure zero which is enlarged to a set of positive measure.

To compare sizes of sets of measure zero, we use general Hausdorff measures
determined by gauge functions. A continuous function ℎ : [0,∞) ⊃ [0,∞) is
called a gauge function if it is nondecreasing and ℎ(0) = 0. Such function then
deĄnes the corresponding Hausdorff measure ℋℎ in the following way: Let 𝐸 ⊖
R𝑛, then

ℋℎ(𝐸) := lim
Ó⊃0+

∏︀

∐︁inf

∏︁

⨄︁

⎩

∞
∑︁

𝑖=1

ℎ(diam𝑈𝑖) : 𝐸 ⊖
⋃︁

𝑖

𝑈𝑖, diam(𝑈𝑖) < Ó

⎫

⋀︁

⋂︁

∫︀

̂︀ .

This allows us to compare sizes of sets on a Ąner scale than with the classical
Hausdorff measures. Note that we obtain the classical Hausdorff measure when
choosing ℎ(𝑡) = 𝑡Ð, so we indeed reĄne the classical scale of measures. In literature
there might be small differences in the deĄnition, however, the difference lies only
in a multiplicative constant. Since we want to distinguish whether the set has
zero measure or Ąnite positive measure, the precise choice plays no role.

Beside reĄning the scale for measuring sizes of sets, we can also get closer
to 𝑊 1,𝑛(Ω,R𝑛) than by just taking 𝑊 1,𝑝(Ω,R𝑛), 𝑝 < 𝑛. One can for example
consider only functions 𝑓 ∈

⎸

𝑝<𝑛 𝑊
1,𝑝. We go a step further and use the grand

Sobolev space 𝑊 1,𝑛)(Ω,R𝑛) (see [15] and [20] for details). Where the Sobolev
space 𝑊 1,𝑝(Ω,R𝑛) uses the Lebesgue norm to have ♣♣𝑓 ♣♣1,𝑝 = ♣♣𝑓 ♣♣𝑝 + ♣♣𝐷𝑓 ♣♣𝑝, the
Grand Lebesgue space 𝑊 1,𝑝)(Ω,R𝑛) uses the norm ♣♣ ≤ ♣♣𝑝) which is deĄned as

♣♣𝑓 ♣♣𝑝) = sup
0<𝜀<𝑝⊗1

(︃

𝜀

♣Ω♣

∫︁

Ω
♣𝑓 ♣𝑝⊗𝜀

⎜
1

𝑝⊗𝜀

.
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We have 𝑊 1,𝑛 ⊊ 𝑊 1,𝑛)(Ω,R𝑛) ⊊
⎸

𝑝<𝑛 𝑊
1,𝑝, so this space indeed enables us to

get closer to the borderline case.

1.2 Results of Paper I

In Paper I, we studied the following questions: Given a homeomorphism 𝑓 ∈ 𝑊 1,𝑝,
𝑝 < 𝑛, we know that it can violate the (𝑁) condition and that the Hausdorff
dimension of the critical set might be any number 𝑑 ∈ [0, 𝑛). If we reĄne the scales
both on the side of function spaces (and use the grand Sobolev spaces) and of
gauge functions, can we get similar results or is there a fundamental bound? This
is motivated by the fact that 𝑊 1,𝑛-mappings satisfy the (𝑁) condition outside of
a set of measure zero [23], so there is a kind of jump in the size of the critical set
when we take 𝑝 = 𝑛.

We can look at the problem also in this way: We take a class of nice mappings
(homeomorphisms from the grand Sobolev space) and we want to know whether
we can Ąnd functions which behave badly. One type of bad behaviour is mapping
a very small set (i.e., not only of Lebesgue 𝑛-dimensional measure zero, but small
in the language of Hausdorff measures) onto a big set. Another type is that the
function is nice, but to obtain the (𝑁) condition we need to omit a big set (again,
on the scale of Hausdorff measures), therefore there is no universal bound for the
size of omitted set as in the 𝑊 1,𝑛 case.

We approach this problem with the help of PonomarevŠs construction from
[27]. There are two main results, summarized in Theorems 1.1 and 1.2 in Paper II.
The Ąrst one constructs a mapping 𝑓 ∈ 𝑊 1,𝑛) which violates the (𝑁) condition
on a set of big measure. In that case, our assumptions on the gauge function
ℎ allow it to be e.g. 𝑡𝑛 log log log . . . (1/𝑡), and therefore in some sense we can
get as close to the Lebesgue measure as we wish. This shows that there is no
universal bound such that after omitting a suitable set of Ąnite ℋℎ measure the
(𝑁) condition would be satisĄed.

Theorem A. Let 𝑄0 = [⊗1, 1]𝑛, á : (0,∞) ⊃ [1,∞) be a continuous decreasing
function such that lim𝑡⊃0+ á(𝑡) = ∞ and for all 𝑝 ∈ (0, 1] there exists 𝑥𝑝 ∈ (0, 1)
such that for all 𝑡 ∈ (0, 𝑥𝑝) we have

1

á(𝑝𝑡)
> 𝑡𝑛.

Let ℎ : [0,∞) ⊃ [0,∞) be a gauge function, i.e., a continuous non-decreasing
function such that ℎ(0) = 0, satisfying ℎ(𝑡) = 𝑡𝑛á(𝑡) on (0,∞). Then there exists
a homeomorphism 𝑓 : 𝑄0 ⊃ 𝑄0 such that

1. 𝑓 is the identity on the boundary of 𝑄0,

2. 𝑓 ∈ 𝑊 1,𝑛)(𝑄0, 𝑄0),

3. 𝐽𝑓 > 0 a.e. in 𝑄0,

4. if 𝐸 ⊖ 𝑄0 with ℋℎ(𝐸) = 0, then ♣𝑓(𝐸)♣ = 0,

5. there exists a set 𝐶𝐴 such that ℋℎ(𝐶𝐴) ∈ (0,∞), ♣𝐶𝐴♣ = 0 and ♣𝑓(𝐶𝐴)♣ > 0.
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The second result holds for any gauge function ℎ and shows that indeed we
can Ąnd 𝑓 ∈ 𝑊 1,𝑛) such that the Luzin (𝑁) condition is violated on a set of zero
ℋℎ measure, and therefore 𝑓 , despite being from a function space very close to
𝑊 1,𝑛, stretches a very small set onto a set of positive Lebesgue measure.

Theorem B. Let 𝑄0 = [⊗1, 1]𝑛 and let ℎ : [0,∞) ⊃ [0,∞) be a gauge function,
i.e., a continuous non-decreasing function such that ℎ(0) = 0. Then there exists
a homeomorphism 𝑓 : 𝑄0 ⊃ 𝑄0 such that

1. 𝑓 is the identity on the boundary of 𝑄0,

2. 𝑓 ∈ 𝑊 1,𝑛)(𝑄0, 𝑄0),

3. 𝐽𝑓 > 0 a.e. in 𝑄0,

4. there exists a set 𝐶𝐴 ⊖ 𝑄0 such that ℋℎ(𝐶𝐴) = 0, ♣𝐶𝐴♣ = 0 and ♣𝑓(𝐶𝐴)♣ > 0.
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2. On the generalized distortion

2.1 Introduction

In this chapter, we consider 𝑓 : R𝑛 ⊃ R𝑛 to be a mapping from the space
𝑊 1,𝑛

𝑙𝑜𝑐 (R𝑛,R𝑛) which satisĄes

♣𝐷𝑓(𝑥)♣𝑛 ⊘ 𝐾(𝑥)𝐽𝑓 (𝑥) + Σ(𝑥) (2.1)

for a.e. 𝑥 ∈ R𝑛, where the assumptions on 𝐾 : R𝑛 ⊃ [1,∞] and Σ : R𝑛 ⊃ [0,∞]
are to be speciĄed. We call 𝑓 a mapping of generalized distortion.

This topic was already investigated by Simon [29], Astala, Iwaniec and Martin
[1] and Kangasniemi and Onninen [21]. The motivation for this property stems
from the well known results regarding each of the terms in the inequality: If we
consider

♣𝐷𝑓(𝑥)♣𝑛 ⊘ 𝐾(𝑥)𝐽𝑓 (𝑥)

and assume 𝐾 to be Ąnite a.e., we obtain mappings of Ąnite distortion and there-
fore we have the continuity of mapping 𝑓 (see [17, Section 2.1]). Similarly, for

♣𝐷𝑓(𝑥)♣𝑛 ⊘ Σ(𝑥)

and Σ ∈ 𝐿𝑝
𝑙𝑜𝑐(R

𝑛), 𝑝 > 𝑛, we also have the continuity of 𝑓 as in that case
𝑓 ∈ 𝑊 1,𝑝

𝑙𝑜𝑐 (R𝑛). However, a combination of these two terms is not enough to
give us the continuity in the general case. This can be easily seen by taking
𝑓 : 𝐵(0, 1/2) ⊃ R𝑛 as

𝑓(𝑥) = 𝑓(𝑥1, . . . , 𝑥𝑛) :=

(︃

log log log

(︃

1

♣𝑥♣

⎜

, 0, . . . , 0

⎜

.

We set 𝐾 := 1 and Σ(𝑥) := ♣𝐷𝑓(𝑥)♣𝑛 =
[︁

log
(︁

1
♣𝑥♣

⎡

log log
(︁

1
♣𝑥♣

⎡]︁⊗𝑛
. This example

shows that we need to make stronger assumptions on 𝐾 and Σ in order to have
continuous functions.

2.2 Results of Paper II

In Paper II, we follow up on the work of Kangasniemi and Onninen [21] and
investigate the assumptions on 𝐾 and Σ under which is 𝑓 continuous.

The case with 𝐾 ∈ ℒ∞
𝑙𝑜𝑐(R

𝑛) and Σ logÛ(𝑒+Σ) ∈ ℒ1
𝑙𝑜𝑐(R

𝑛) is completely solved
as there is a sharp assumption on Û under which 𝑓 is continuous, see Theorem C
and Figure A. The sharpness can be proven by taking 𝑓 : 𝐵(0, 1/2) ⊃ R𝑛 as the
triple logarithm mentioned above.

Theorem C. Suppose that 𝑓 ∈ 𝑊 1,𝑛
𝑙𝑜𝑐 (Ω,R𝑛) satisĄes (2.1) in Ω, with

𝐾 ∈ 𝐿∞
𝑙𝑜𝑐(Ω) and Σ logÛ (𝑒+ Σ) ∈ 𝐿1

𝑙𝑜𝑐(Ω),

for some Û > 𝑛⊗ 1. Then 𝑓 has a continuous representative.
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𝑛⊗ 1 Û

NO
log log log

YES
proof

Figure A: Continuity in the case 𝐾 ∈ ℒ∞
𝑙𝑜𝑐(R

𝑛) and Σ logÛ(𝑒+ Σ) ∈ ℒ1
𝑙𝑜𝑐(R

𝑛).

When slightly relaxing the assumption on 𝐾, the situation becomes more
complicated. By having counterexamples for the planar case, we are able to
approach from both sides, however, there is still a gap remaining, see Section 1.2
in Paper II and Figure C.

Theorem D. Let Ω ⊆ R𝑛 be a domain, and let 𝑓 ∈ 𝑊 1,𝑛
𝑙𝑜𝑐 (Ω,R𝑛) satisfy (2.1)

with

exp(Ú𝐾) ∈ 𝐿1
𝑙𝑜𝑐(Ω) and Σ logÛ (𝑒+ Σ) ∈ 𝐿1

𝑙𝑜𝑐(Ω),

for some Û > Ú > 𝑛+ 1. Then 𝑓 has a continuous representative.

Theorem E. For every Û ∈ (0, 2), there exist a domain Ω ⊆ R2 and a Sobolev
map 𝑓 ∈ 𝑊 1,2(Ω,R2) such that 0 ∈ Ω, 𝑓 ∈ 𝐶(Ω ∖ ¶0♢,R2), lim𝑥⊃0 ♣𝑓(𝑥)♣ = ∞
satisfying (2.1) with

exp(Ú𝐾) ∈ 𝐿1(Ω) and Σ logÛ(𝑒+ Σ) ∈ 𝐿1(Ω)

for every Ú > 0.

This counterexample is based on dividing the circle into a cusp and the re-
maining part, see Figure B. On the cusp, we can ask for Σ being the leading term
and its higher integrability is ensured by the shape of the cusp (given by Ò). On
the remaining part, 𝐾𝐽𝑓 is the leading term. One can think of the mapping as
pinching the center of the disc and dragging it to inĄnity, while the rest of the
circle is stretched along accordingly.

𝐴1

𝐵1𝐵2

𝐴2

𝜃 = Ò(𝑟)

𝜃 = ⊗Ò(𝑟)

𝜃 = Þ ⊗ Ò(𝑟)

𝜃 = ⊗Þ + Ò(𝑟)

Figure B: The regions in the cusp counterexample. The Jacobian is positive on
𝐴1 and 𝐴2 and negative on 𝐵1 and 𝐵2.

The construction of the counterexamples is in detail described in Section 4
and 5 of Paper II. These examples are also used in the case that we loosen the
assumptions on 𝐾 even more and ask it to be in 𝐿𝑝

𝑙𝑜𝑐 only. In that case, the
problem still stands open. We are at least able to formulate a conjecture and
support it by the counterexamples in the planar case (see Section 1.4 in Paper
II).
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Ú

Û

𝑛

𝑛

𝑛+ 1

𝑛+ 1

YES
proof

NO

the cusp counterexample

Figure C: Continuity in the case 𝑛 = 2, exp(Ú𝐾) ∈ ℒ1
𝑙𝑜𝑐(R

𝑛) and Σ logÛ(𝑒+ Σ) ∈
ℒ1

𝑙𝑜𝑐(R
𝑛).

Theorem F. Let 𝑝, 𝑞 ∈ (1,∞). If 𝑝⊗1 + 𝑞⊗1 ⊙ 1, then there exists a domain
Ω ⊆ R2 and a Sobolev map 𝑓 ∈ 𝑊 1,2(Ω,R2) such that 0 ∈ Ω, 𝑓 ∈ 𝐶(Ω ∖ ¶0♢,R2),
lim𝑥⊃0 ♣𝑓(𝑥)♣ = ∞ satisfying (2.1) with

𝐾 ∈ 𝐿𝑝(Ω) and
Σ

𝐾
∈ 𝐿𝑞(Ω). (2.2)

Conjecture G. Let 1 ⊘ 𝑝, 𝑞 ⊘ ∞. Suppose that 𝑓 ∈ 𝑊 1,𝑛
𝑙𝑜𝑐 (Ω,R𝑛) satisĄes (2.1)

with 𝐾 ⊙ 1, Σ ⊙ 0,

𝐾 ∈ 𝐿𝑝
𝑙𝑜𝑐(Ω), and

Σ

𝐾
∈ 𝐿𝑞

𝑙𝑜𝑐(Ω), where
1

𝑝
+

1

𝑞
< 1 .

Then 𝑓 has a continuous representative.

Note that in the borderline cases 𝑝 = 1, 𝑞 = ∞ and 𝑝 = ∞, 𝑞 = 1 we have
discontinuous examples: the triple logarithm construction from above and the
spiral counterexample.

𝑟 = ℎ(𝜃)

𝑟 = 𝑔(𝜃)

Figure D: The two spirals.

Roughly speaking, we cut the spiral in Figure D along the blue line and stretch
it (that creates the blow-up at 0). To preserve continuity elsewhere, we fold the
spiral along the red line and slightly stretch one side. The precise deĄnition can
be found in Section 5 of Paper II.

We also investigate the following version of the inequality

♣𝐷𝑓(𝑥)♣𝑛 ⊘ 𝐾(𝑥)𝐽𝑓 (𝑥) + Σ(𝑥)♣𝑓(𝑥) ⊗ 𝑦0♣,

where 𝑦0 ∈ R𝑛, and obtain analogies of the aforementioned results.
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3. On the (𝐼𝑁𝑉 ) condition

3.1 Introduction

To prevent the interpenetration of matter, we want to impose some assumptions
on our classes of mappings. A necessary assumption for using the Calculus of
Variations approach is that this class is weakly closed so that the minimizer is
still in the class. Optimally it would also allow for cavitations as they appear in
Nonlinear Elasticity. Therefore e.g. the class of Sobolev homeomorphisms is not
a good class, as it it nor weakly closed not it allows for cavitations. However, we
can Ąnd an inspiration in their properties as illustrated in Figure E: Whenever
we take two disjoint closed balls, their images are also disjoint and the inside of
the ball is mapped into the image of the sphere. There are also no big jumps
on the boundary. This makes sense for homeomorphisms as they are very nice
mappings; we translate this property into more general language.

Figure E: An illustration of the desired and undesired behaviour. It is possible
to create cavitations, but we donŠt want to Ąll them with material from another
part of the body. Similarly we want to avoid big jumps on the spheres or spilling
out of the material.

To talk about the image of a ball and inside of the image of a sphere we use
the classical topological degree. We deĄne the topological image of an open set
𝐴 under a continuous mapping 𝑓 : Ω ⊃ R𝑛 as

im𝑇 (𝑓, 𝐴) = ¶𝑦 ∈ R𝑛 : deg(𝑓, 𝐴, 𝑦) ̸= 0♢.

For general Sobolev mappings 𝑓 ∈ 𝑊 1,𝑝(Ω,R𝑛), this is not enough. For 𝑝 > 𝑛⊗1
we have continuity on almost every sphere, so in that case we can use the classical
degree. We then deĄne the (𝐼𝑁𝑉 ) condition:

Definition H. Let 𝑓 ∈ 𝑊 1,𝑝(Ω,R𝑛) ∩ 𝐿∞(Ω,R𝑛), 𝑝 > 𝑛 ⊗ 1. We say that 𝑓
satisĄes (𝐼𝑁𝑉 ) in the ball 𝐵 ⊆⊆ Ω if

(i) its trace on 𝜕𝐵 is in 𝑊 1,𝑝 ∩ 𝐿∞(𝜕𝐵,R𝑛);

(ii) 𝑓(𝑥) ∈ im𝑇 (𝑓,𝐵) for a.e. 𝑥 ∈ 𝐵;

(iii) 𝑓(𝑥) /∈ im𝑇 (𝑓,𝐵) for a.e. 𝑥 ∈ Ω ∖𝐵.

11



We say that 𝑓 satisĄes the (𝐼𝑁𝑉 ) condition if for every 𝑎 ∈ Ω there is 𝑟𝑎 > 0
such that for ℋ1-a.e. 𝑟 ∈ (0, 𝑟𝑎) it satisĄes (𝐼𝑁𝑉 ) in 𝐵(𝑎, 𝑟).

The theory for 𝑝 > 𝑛⊗ 1 was developed by Müller and Spector in [25]. They
showed that the class of Sobolev mappings with (𝐼𝑁𝑉 ) is weakly closed and that
mappings with nonzero Jacobian satisfying (𝐼𝑁𝑉 ) exhibit other good properties
like being one-to-one a.e. or having degree only 1, 0 or ⊗1 with respect to a.e.
sphere.

However, in some models the energy functional contains the term ♣𝐷𝑓 ♣𝑛⊗1

(the Dirichlet energy ♣𝐷𝑓 ♣2 in the physically most relevant case 𝑛 = 3). This case
was studied by Conti and De Lellis in [6]. As we do not have continuity on a.e.
sphere, they used a generalization of the classical topological degree. For a ball
𝐵 ⊆ Ω and 𝑓 ∈ 𝑊 1,𝑛⊗1 ∩ 𝐿∞(Ω,R𝑛) it is deĄned as the distribution satisfying

∫︁

R𝑛
Deg(𝑓,𝐾, 𝑦)å(𝑦) 𝑑𝑦 =

∫︁

𝜕𝐾
(u ◇ 𝑓) ≤ (Λ𝑛⊗1𝐷á𝑓)Ü 𝑑ℋ𝑛⊗1

for every test function å ∈ 𝐶∞
𝑐 (R𝑛) and every 𝐶∞ vector Ąeld u on R𝑛 with

div u = å. It is possible to show that it is actually a BV function. As it is
deĄned only up to a set of measure zero, we deĄne the topological image as

im𝑇 (𝑓, 𝐴) = ¶𝑧 ∈ R𝑛 : density of the set ¶𝑦 ∈ R𝑛 : Deg(𝑓, 𝐴, 𝑦) ̸= 0♢ at 𝑧 is 1♢.

That enables us to work with the (𝐼𝑁𝑉 ) condition even in the borderline case
𝑝 = 𝑛⊗1 when we replace deg by Deg. Conti and De Lellis showed that mappings
with (𝐼𝑁𝑉 ) and positive Jacobian a.e. again have many nice properties, but
the crucial one is missing: In 𝑊 1,𝑛⊗1(Ω,R𝑛), it is possible to Ąnd a sequence
of bilipschitz homeomorphisms which converges weakly to a mapping violating
the (𝐼𝑁𝑉 ) condition. Without the class being weakly closed we cannot use
the standard machinery of Calculus of Variations. The question of additional
assumptions which would deĄne a weakly closed subclass of mappings with (𝐼𝑁𝑉 )
in 𝑊 1,𝑛⊗1(Ω,R𝑛) gave rise to Papers III and IV. Another approach was taken in
the research of Barchiesi, Henao, Mora-Corral and Rodiac [3, 4], where they
investigate axially symmetric mappings.

3.2 Results of Paper III

In Paper III, we work with the following energy functional

ℰ(𝑓) =
∫︁

Ω

(︁

♣𝐷𝑓 ♣𝑛⊗1 + 𝜙(𝐽𝑓 )
⎡

,

where 𝜙 satisĄes

𝜙 is a positive convex function on (0,∞) with lim
𝑡⊃0+

𝜙(𝑡) = ∞, 𝜙(𝑡) = ∞ for 𝑡 ⊘ 0

and there exists 𝐴 > 0 with

𝐴⊗1𝜙(𝑡) ⊘ 𝜙(2𝑡) ⊘ 𝐴𝜙(𝑡), 𝑡 ∈ (0,∞).

The Ąrst condition corresponds to the intuition that squeezing material from
all sides and thus shrinking the body costs energy. As a special case of more
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general setting, we show that for 𝜙(𝑡) = 𝑡⊗𝑎 there is a sharp exponent 𝑎 such that
either the weak limit of homeomorphisms satisfy the (𝐼𝑁𝑉 ) condition (if we are
above the critical exponent) or that we have a counterexample which violates the
(𝐼𝑁𝑉 ) condition (below the critical exponent). Note that the assumptions 𝐽𝑓𝑚

>
0 a.e. and the boundary condition makes intuitively sense as they correspond to
not changing the orientation of matter and to the observed data on the surface
of the deformed body.

Theorem I. Let 𝑛 ⊙ 3, 𝑎 = 𝑛⊗1
𝑛2⊗3𝑛+1

and Ω,Ω′ ⊆ R𝑛 be Lipschitz domains. Let
𝜙 = 𝑡⊗𝑎 for 𝑡 ∈ (0,∞). Let 𝑓𝑚 ∈ 𝑊 1,𝑛⊗1(Ω,R𝑛), 𝑚 = 0, 1, 2 . . . , be a sequence of

homeomorphisms of Ω onto Ω
′

with 𝐽𝑓𝑚
> 0 a.e. such that

sup
𝑚

ℰ(𝑓𝑚) < ∞.

Assume further that 𝑓𝑚 = 𝑓0 on 𝜕Ω for all 𝑚 ∈ N. Let 𝑓 be a weak limit of 𝑓𝑚

in 𝑊 1,𝑛⊗1(Ω,R𝑛) , then 𝑓 satisĄes the (𝐼𝑁𝑉 ) condition.

Theorem J. Let 𝑛 = 3 and 𝑎 < 2. Then there exist homeomorphisms 𝑓𝑚 of
𝐵(0, 10) to 𝐵(0, 10) such that 𝑓𝑚 ∈ 𝑊 1,2(𝐵(0, 10), 𝐵(0, 10)), 𝑓𝑚 is an identity
mapping on 𝜕𝐵(0, 10) with 𝐽𝑓𝑚

> 0 a.e. and

sup
𝑚

∫︁

Ω

(︃

♣𝐷𝑓𝑚♣𝑛⊗1 +
1

(𝐽𝑓𝑚
)𝑎

⎜

𝑑𝑥 < ∞,

whose weak limit 𝑓 does not satisfy the (𝐼𝑁𝑉 ) condition.

This counterexample is in principle different from the one in [6]. We also show
that the strong and weak closures of homeomorphisms in 𝑊 1,2(Ω,R𝑛) for 𝑛 = 3
are different, which stands in contrast to the planar case (see [14] and [19]).

Theorem K. Let 𝑛 = 3. There is a mapping 𝑓 ∈ 𝑊 1,2(𝐵(0, 10), 𝐵(0, 10)) which
is a weak limit of Sobolev 𝑊 1,2 homeomorphisms 𝑓𝑚 of 𝐵(0, 10) to 𝐵(0, 10) with
𝑓𝑚(𝑥) = 𝑥 on 𝜕𝐵(0, 10) and 𝐽𝑓𝑚

> 0 a.e., but there are no homeomorphisms ℎ𝑚

of 𝐵(0, 10) to 𝐵(0, 10) such that ℎ𝑚 ⊃ 𝑓 strongly in 𝑊 1,2(𝐵(0, 10),R3).

3.3 Results of Paper IV

In Paper IV we continued our research of (𝐼𝑁𝑉 ) in the case 𝑊 1,𝑛⊗1(Ω,Ω′). Both
known examples of limits of homeomorphisms which violates (𝐼𝑁𝑉 ) have in-
verses a.e., however, those are only BV mappings. Therefore we presented an
assumption on the adjoint of the derivative which ensures that the inverses of the
homeomorphisms converge weakly in 𝑊 1,1(Ω′,Ω). Namely we take the energy
functional

ℰ(𝑓) =
∫︁

Ω

(︁

♣𝐷𝑓 ♣𝑛⊗1 + 𝐴(♣ cof 𝐷𝑓 ♣) + 𝜙(𝐽𝑓 )
⎡

,

where 𝐴 is a positive convex function on (0,∞) with superlinear growth and 𝜙
is as before, i.e. a positive convex function on (0,∞) which has a blow-up at 0.
We proved that if the energy of the sequence is bounded, the limit satisĄes the
(𝐼𝑁𝑉 ) condition.
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Theorem L. Let 𝑛 ⊙ 3 and Ω, Ω′ ⊆ R𝑛 be bounded domains. Let 𝜙 and 𝐴
satisfy the conditions mentioned above. Let 𝑓𝑚 ∈ 𝑊 1,𝑛⊗1(Ω,R𝑛), 𝑚 = 0, 1, 2 . . . ,
be a sequence of homeomorphisms of Ω onto Ω′ with 𝐽𝑓𝑚

> 0 a.e., such that 𝑓𝑚

satisĄes the Luzin (𝑁) condition and

sup
𝑚

ℰ(𝑓𝑚) < ∞.

Assume further that 𝑓𝑚 = 𝑓0 on 𝜕Ω for all 𝑚 ∈ N. Let 𝑓 be a weak limit of 𝑓𝑚

in 𝑊 1,𝑛⊗1(Ω,R𝑛), then 𝑓 satisĄes the (𝐼𝑁𝑉 ) condition.

Moreover, under the additional assumption lim𝑡⊃∞
𝜙(𝑡)

𝑡
= ∞ our 𝑓 satisĄes

the Luzin (𝑁) condition and we have lower semicontinuity of energy

ℰ(𝑓) ⊘ lim inf
𝑚⊃∞

ℰ(𝑓𝑚).

Assuming further that ♣𝜕Ω′♣ = 0 we have

for a.e. 𝑥 ∈ Ω we have ℎ(𝑓(𝑥)) = 𝑥 and for a.e. 𝑦 ∈ Ω′ we have 𝑓(ℎ(𝑦)) = 𝑦,

where ℎ is a weak limit of (some subsequence of) 𝑓⊗1
𝑘 in 𝑊 1,1(Ω′,R𝑛).

We also showed that with some additional assumptions on the energy func-
tional, the functional in question both in Paper III and in Paper IV is weakly
lower semicontinuous, and therefore we can use the standard methods of Calculus
of Variations.

3.4 Results of Paper V

In Paper V, we keep working with the regularity of the inverses. We proved
that if 𝑓𝑚 are homeomorphisms in 𝑊 1,𝑛⊗1(Ω,Ω′) and the inverses 𝑓⊗1

𝑚 are in
𝑊 1,𝑝(Ω′,Ω) for some 𝑝 > 𝑛 ⊗ 1, the differentiability of both the weak limit and
its a.e. inverse is guaranteed. This result complements the already-known fact
that any Sobolev homeomorphism from 𝑊 1,𝑝 for 𝑝 > 𝑛 ⊗ 1 is differentiable a.e.
(see [31] and [26]) and that in the borderline case 𝑝 = 𝑛⊗ 1 there are several sets
of assumptions which guarantee that, too (see [18], [30] and [32]). Notably, there
exists a Sobolev homeomorphism 𝑓 such that both 𝑓 and 𝑓⊗1 are in 𝑊 1,𝑛⊗1 but
both of them are nowhere differentiable [8]. That justiĄes our stronger assumption
on the integrability of the inverse.

Theorem M. Let 𝑛 ⊙ 2, 𝑝 > 𝑛 ⊗ 1, Ω, Ω′ ⊆ R𝑛 be bounded domains and
𝑓𝑚 ∈ 𝑊 1,𝑛⊗1(Ω,R𝑛), 𝑚 = 0, 1, 2 . . . , be homeomorphisms of Ω onto Ω′ with
𝐽𝑓𝑘

> 0 a.e. and

sup
𝑚

ℰ(𝑓𝑚) = sup
𝑚

∫︁

Ω
♣𝐷𝑓𝑚(𝑥)♣𝑛⊗1𝑑𝑥+

∫︁

Ω′

♣𝐷𝑓⊗1
𝑚 (𝑦)♣𝑝𝑑𝑦 < ∞.

Assume that 𝑓 : Ω ⊃ R𝑛 is a weak limit of ¶𝑓𝑚♢𝑚∈N in 𝑊 1,𝑛⊗1(Ω,R𝑛) with 𝐽𝑓 > 0
a.e. and ℎ : Ω′ ⊃ R𝑛 is a weak limit of ¶𝑓⊗1

𝑚 ♢𝑚∈N in 𝑊 1,𝑝(Ω′,R𝑛) with 𝐽ℎ > 0
a.e. Then for a.e. 𝑥 ∈ Ω we have ℎ(𝑓(𝑥)) = 𝑥 and for a.e. 𝑦 ∈ Ω′ we have
𝑓(ℎ(𝑦)) = 𝑦, and both 𝑓 and ℎ are differentiable almost everywhere.
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HAUSDORFF MEASURE OF CRITICAL SET FOR LUZIN N CONDITION

ANNA DOLEŽALOVÁ, MARIKA HRUBEŠOVÁ, AND TOMÁŠ ROSKOVEC

Abstract. It is well-known that there is a Sobolev homeomorphism f ∈ W 1,p([−1, 1]n, [−1, 1]n)
for any p < n which maps a set C of zero Lebesgue n-dimensional measure onto a set of positive
measure. We study the size of this critical set C and characterize its lower and upper bounds
from the perspective of Hausdorff measures defined by a general gauge function.

1. Introduction

1.1. Motivation and history. By Ω ⊂ Rn we denote a nonempty domain of finite measure, n
stands for dimension and Ln denotes Lebesgue n-dimensional measure. A function f : Ω → Rn,
Ω ⊆ Rn, is said to satisfy the Luzin N condition if, for every E ⊆ Ω, we have

Ln(E) = 0 =⇒ Ln (f(E)) = 0.

Analogously, f fulfils the Luzin N−1 condition if, for every E ⊆ Ω, we have

Ln (f(E)) = 0 =⇒ Ln(E) = 0.

These are crucial properties in models of mechanics of solids and other physical models. The
Luzin N condition (also known as the Luzin property or the N property) prohibits the “cre-
ation of matter” by deformation and the Luzin N−1 condition prohibits the “disappearance
of matter”. From the mathematical point of view, these conditions are bound to the ques-
tion of validity of the change of variables formula with minimal regularity requirements, see
[5, Theorem 8.4], [18, Theorem 2.5, Chapter 5] and [21]. Also, for Sobolev spaces the validity
of the Luzin N condition is equivalent to the validity of the area formula, see [49] and [39],
for connections of conditions with the co–area formula in Sobolev spaces see [38], [36] or [24,
Section A.8].
Concerning the characterization of the validity of the Luzin N condition, Reshetnyak [48]

proved the validity of the condition N for Sobolev homeomorphisms in W 1,n, Marcus and Mizel
[40] proved its validity for Sobolev mappings in W 1,p for p > n. To show the optimality of these
results, Ponomarev [46] (see also the later paper [47]) provided a Sobolev homeomorphism
violating the Luzin N condition for W 1,p, 1 ≤ p < n and Malý and Martio [37] used the older
Cesari construction [9] to get a continuous W 1,n mapping violating the Luzin N condition.
The results concerning validity of the condition N on finer scales such as the Sobolev–Lorentz
spaces of the spaces with derivatives in Banach function spaces is studied in [27] by Kauhanen,
Koskela, and Malý.
The characterization of the validity of the Luzin N−1 condition differs a lot from the N

condition case. It is possible to construct a homeomorphism that compresses a set in order
to map a set of positive measure onto a set of zero measure in any W 1,p, i.e., to violate the
N−1 condition. The Sobolev norm is not crucial, so the concept of distortion and the class of
the mappings with finite distortion is needed. The positive result and its optimality are given
by Kauhanen, Koskela, and Malý in [26] and [32], some border cases are further covered by
Kleprĺık in [30].
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1



2 ANNA DOLEŽALOVÁ, MARIKA HRUBEŠOVÁ, AND TOMÁŠ ROSKOVEC

Let us mention that the counterexample constructions violating the Luzin N condition by
Ponomarev and by Cesari are fundamentally different. The counterexample violating the
Luzin N−1 condition is based on the construction by Ponomarev.

1.2. Ponomarev construction and its refinements. We focus on the example given by
Ponomarev, i.e., the homeomorphism in W 1,p([−1, 1]n, [−1, 1]n) for p < n, which maps the
Cantor type set CA of measure zero onto the Cantor type set CB of positive measure. The
detailed construction is presented in Section 3. The original construction considers the Lebesgue
n-dimensional measure and the Sobolev space W 1,p. However, this may be refined, we may ask
about the size of the small Cantor type set CA with respect to the Hausdorff measure Hh based
on a gauge function h. We also may consider homeomorphisms in some other spaces, in general,
in some spaces strictly bigger than W 1,n and defined in finer than Sobolev scales, such as grand
Sobolev spaces W 1,n) (see 2. Preliminaries for its definition) or Sobolev–Orlicz spaces. The
choice of the grand Sobolev space W 1,n) is optimal in some sense in the perspective of spaces
based on the integrability of weak derivative, see [26].
It is well-known that the Hausdorff dimension of CA may be zero (see [37]), but Kauhanen

[28] also studied the largest possible dimension of CA. Obviously, the Hausdorff measure for
the gauge function h(t) = tn should be still zero, otherwise the example does not violate the
Luzin N condition. It was shown in [37, Theorem G] that for a mapping in W 1,n we can
always find a critical set C of Hausdorff dimension 0 such that outside of C the Luzin N
condition holds. On the other hand, Kauhanen [28] showed that for any number d < n there
exists f for which it is necessary to omit a set of Hausdorff dimension d to be sure that the
Luzin N condition holds outside of this exceptional set. His homeomorphism f belongs to
the grand Sobolev space W 1,n) and the result is obtained by the choice of the gauge function
hs(t) = tn logs log(4 + 1/t) for s > 0. No optimality of the choice of hs is discussed, but the
result still answers the question of the possible Hausdorff dimension of the exceptional set, as
there is no universal constant d < n such that for each f ∈ W 1,n) the Luzin N condition holds
if we omit a set of Hausdorff dimension d. We study the Hausdorff measure of the critical set
in more general scales, not only the powers, resulting in the following statement:

Theorem 1.1. Let Q0 = [−1, 1]n, τ : (0,∞) → [1,∞) be a continuous decreasing function such
that limt→0+ τ(t) = ∞ and for all p ∈ (0, 1] there exists xp ∈ (0, 1) such that for all t ∈ (0, xp)
we have

1

τ(pt)
> tn.

Let h : [0,∞) → [0,∞) be a gauge function, i.e., a continuous non-decreasing function such that
h(0) = 0, satisfying h(t) = tnτ(t) on (0,∞). Then there exists a homeomorphism f : Q0 → Q0

such that

(1) f is the identity on the boundary of Q0,
(2) f ∈ W 1,n)(Q0, Q0),
(3) Jf > 0 a.e. in Q0,
(4) if E ⊆ Q0 with Hh(E) = 0, then Ln(f(E)) = 0,
(5) there exists a set CA such that Hh(CA) ∈ (0,∞), Ln(CA) = 0 and Ln(f(CA)) > 0.

This is especially interesting for τ(t) being a slowly decreasing function for small t, such as
log log log . . . (1/t). We can get as close to the power-type gauge function h(t) = tn as desired.
This theorem extends the result from [28] in two ways: The statement holds for more general
gauge functions, and whereas the previous result does not rule out the possibility that there
exists a set of zero Hausdorff measure which is mapped onto a set of positive Lebesgue measure,
we show that this is not possible (cf. [28, Theorem 1.1, property (d)] and property (4) here).
In other words, we prove that there exists a mapping such that the set where the Luzin N
condition is broken must be of positive Hausdorff measure.
We also study the other endpoint of the Hausdorff scale. Past results claim the size of the

exceptional set to be possibly very small, but up to our knowledge, the results consider only
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gauge functions in the form of power h(t) = tα. We prove that the exceptional set CA can be
small in any possible scale of gauge functions.

Theorem 1.2. Let Q0 = [−1, 1]n and let h : [0,∞) → [0,∞) be a gauge function, i.e., a
continuous non-decreasing function such that h(0) = 0. Then there exists a homeomorphism
f : Q0 → Q0 such that

(1) f is the identity on the boundary of Q0,
(2) f ∈ W 1,n)(Q0, Q0),
(3) Jf > 0 a.e. in Q0,
(4) there exists a set CA ⊆ Q0 such that Hh(CA) = 0, Ln(CA) = 0 and Ln(f(CA)) > 0.

This theorem is interesting for h very rapidly increasing near 0, typically with a non-finite
one-sided derivative. We can construct a Ponomarev-type homeomorphism such that the critical
set violating the Luzin N condition is of measure 0 for the corresponding Hausdorff measure.
This theorem extends previously known result (see [37]) that the dimension of the critical set
may have Hausdorff dimension 0.

1.3. Further applications of the Luzin N condition and related questions. Let us
introduce some closely related topics, applications, and development. We intend to promote
papers and books that are essential for the topic, but we also point out some less known recent
results.
From the historical point of view, the Peano curve [45] presented in 1890 is probably the

oldest and the most known case of violating the Luzin N condition in some sense. The Cesari
construction [9] can be interpreted as the Peano curve.
A question close to the Luzin N−1 condition is the validity of the Morse–Sard theorem in

various settings, based on works of Morse [42] and Sard [52]. In a simplified version, it states
that for a sufficiently smooth function, the image of the set where its Jacobian is zero has to
be of zero Lebesgue measure. This principle has been extended, relaxed, and developed in
many directions and applications. Naturally, one wishes to state the size of the image more
subtly using the Hausdorff dimension. One can transfer the case from the Euclidean space
into manifolds, see [53]. Also, the assumption of Ck smoothness may be relaxed, so Lipschitz
mappings [2], Hölder spaces [6], Sobolev spaces [10, 16], or BV spaces [7] are also studied. Note
that this list is picking just some highlights, and many other particular settings and applications
were published recently, such as the application to PDEs in chemistry [56] or the application
in studies of the Besicovitch–Federer projection theorem [17, 19].
The other closely related question is the problem of the composition of operators and the

regularity of the inverse operator. The composition may produce outcomes with unexpected
and unusual properties if the Luzin N or N−1 condition is not met, as it is often exploited to
construct counterexamples. The boundedness and integrability of the distortion are studied to
provide the validity of the Luzin N−1 condition. We recommend the following classical books
on this topic [3], [24], [50], [54], and [49].
Another topic involving the Luzin N condition is the question of the equivalence between

the pointwise Jacobian and the distributive Jacobian, first asked by Ball [4]. It is interesting
since this equivalence is often assumed. By its characterization, we may either replace this
assumption in a statement or alternate its proof. This question was addressed by Müller [43],
by Iwaniec and Sbordone [25], and by Greco [20] mostly by integrability properties. The
integrability requirements may be significantly relaxed in case of the validity of the Luzin N
condition, as shown by D’Onofrio, Hencl, Malý, and Schiattarella [11] based on the previous
research by Henao and Mora-Corral [22].
There is also a very interesting way to fail both of these conditions with such a restrictive

setting as a Sobolev or even bi-Sobolev homeomorphism satisfying Jf = 0 a.e. Such examples
can map a full measure set to a zero measure set and a zero measure set to a full measure set.
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Also, these mappings provide a tool to construct other homeomorphisms with highly counter-
intuitive properties concerning the preservation of matter or orientation, the change of the sign
of the Jacobian and others, see [23], [12], [8], [14], [44] or [35].
At the end of this section, we shortly present recent development concerning the research of

the Luzin N condition itself. For a survey of the development, see Koskela, Malý, and Zürcher
[33]. For refinement by studying the modulus of continuity and the size of the critical set, see
[34]. The paper concerning the failure of the Luzin N condition by Kauranen and Koskela [29]
extended the classical result [37] and it was also later used by Zapadinskaya [55] to transfer
the knowledge from the Euclidian case into more general metric measure spaces. Also, the
counterexample of Ponomarev is refined with additional regularity such that it still violates the
Luzin N condition (see [51]) or the N−1 condition (see [31]). In papers studying the Luzin N
condition in view of Hausdorff dimension, the term (α− β) N condition is used, see [1, 15].

2. Preliminaries

By a gauge function h : [0,∞) → [0,∞) we denote a function satisfying

(1) h is non-decreasing,
(2) h(0) = 0,
(3) h is continuous.

By the Hausdorff measure Hh(A) of a set A ⊆ Rn we understand

Hh(A) = lim
δ→0+

(︄

inf

{︄

∞
∑︂

i=1

h(diamUi) : A ⊆
⋃︂

i

Ui; diam(Ui) < δ

}︄)︄

.

The definition may slightly differ in literature. The limit can be replaced by the supremum
over positive δ. Some authors choose the covering system Ui to consist of general open sets,
and others use the definition with the coverings just by open balls. Note that for the most
classical case h(t) = tα we write Hα instead of Htα .
By the Hausdorff dimension of a set A we understand

dimH(A) = inf
d≥0

{Hd(A) = 0}.

We claim that our examples belong to the grand Sobolev space W 1,n). This space is intro-
duced in [25] by Iwaniec and Sbordone, we refer to [13] for a survey of the notion. The grand
Lebesgue norm is

∥f∥q) = sup
0<ε<q−1

(︃

ε

|Ω|

∫︂

Ω

|f |q−ε

)︃
1

q−ε

.

This norm defines the grand Lebesgue space Lq)(Ω), a Banach function space that is very close
to Lq, the sharp inclusions explaining the relations between function spaces of interest are

Lq(Ω) ⊊ Lq log−1(L)(Ω) ⊊ Lq)(Ω) ⊊
⋂︂

α>1

Lq log−α(L)(Ω) ⊊
⋂︂

1<p<q

Lp(Ω),

for the proofs of the inclusions see [20, Section 3]. The last inclusion is not proven there, but it
may be easily proven by inequalities of the corresponding Young functions, the sharpness may

be verified by the choice of function such as f(t) = t−
1

q on Ω = (0, 1). The grand Sobolev space
is a set of such functions that the function itself and all its partial derivatives up to the desired
rank belong to the corresponding grand Lebesgue space. We emphasize that usage of this
modern tool allows for sharpening our result and extending the possibilities of the Ponomarev
construction in the same way it was presented also in [28], as previously less fine Lebesgue
scales were used in the foundation papers [46, 48]. The finer Lorentz scale was used in [27] in
the study of the different case, the validity of the Luzin N condition for the Sobolev mappings.
In this text we use the notation A ≲ B and A ≈ B. By A ≲ B we denote that there exists

a constant K independent of parameters and depending only on the dimension and the gauge
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function h such that A ≤ KB. A ≈ B denotes both A ≲ B and B ≲ A hold. We use the
notation ∥x∥∞ for the maximum norm of the vector x and Qa,r = {x ∈ Rn : ∥x− a∥∞ < r} for
the open n-dimensional cube of center a and edge length 2r.

3. Ponomarev construction

We describe the Ponomarev construction in a general way with notation consistent with its
description in [24, Theorem 4.10]. We obtain a Sobolev homeomorphism f : (−1, 1)n → (−1, 1)n

with Jf > 0 a.e. violating the Luzin N condition.
Let V be the vertices of the cube [−1, 1]n. Let Vk = V × V × · · · × V, k ∈ N, be a set of

indices and let us consider two strictly decreasing sequences ak and bk such that

(1) a0 = 1, b0 = 1,
(2) limk→∞ ak = 0,
(3) limk→∞ bk > 0.

Note that this setting aims to break the Luzin N condition. In order to break the Luzin N−1

condition we demand limk→∞ ak > 0 and limk→∞ bk = 0 instead. However, in order to make the
resulting mapping interesting, we have to set ak and bk carefully and check the crucial property,
the integrability of the distortion.
Let us define z0 = z̃0 = 0 and

rk = 2−kak and r̃k = 2−kbk.

We start with Q(z0, r0) = (−1, 1)n and proceed by induction. For v = [v1, v2, v3, . . . , vk] ∈ Vk

we denote w(v) = [v1, v2, . . . , vk−1] ∈ Vk−1 and we define

zv = zw(v) +
rk−1

2
vk = z0 +

k
∑︂

i=1

ri−1

2
vi.

For simplicity we write w instead of w(v). Around the center zv we define an outer and inner
cube

Q′
v
= Q

(︂

zv,
rk−1

2

)︂

and Qv = Q (zv, rk) , respectively.

f1

f2

Figure 1. First two steps in the Ponomarev construction of f . Above: f1 maps
⋃︁

v∈V Qv onto
⋃︁

v∈V Q̃v
. Below: f2 maps

⋃︁

v∈V2 Qv onto
⋃︁

v∈V2 Q̃v
.
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In the k-th step of the construction, we use indices v ∈ Vk and produce 2nk cubes Qv, which
are copies of the same cube.
We get a Cantor-type set CA defined as

CA =
∞
⋂︂

k=1

⋃︂

v∈Vk

Qv = Ca × Ca × · · · × Ca,

where Ca is a Cantor-type set contained in the line segment [−1, 1]. Its construction is illustrated
on the left-hand side of Figure 1.
Analogously for the image we define the first cube as Q̃(z0, r0) = (−1, 1)n and centers as

z̃v = z̃w +
r̃k−1

2
vk = z̃0 +

k
∑︂

i=1

r̃i−1

2
vi,

and we define a structure of cubes by

Q̃
′

v
= Q(z̃v,

r̃k−1

2
) and Q̃

v
= Q(z̃v, r̃k).

We further define CB as

CB =
∞
⋂︂

k=1

⋃︂

v∈Vk

Q̃
v
= Cb × Cb × · · · × Cb,

where Cb is again a Cantor-type set contained in the line segment [−1, 1].
Concerning the Lebesgue measure of both CA and CB, we obtain

Ln(CA) = lim
k→∞

Ln

(︄

⋃︂

v∈Vk

Qv

)︄

= lim
k→∞

2nk(2rk)
n = lim

k→∞
2nk−nk2nank = 0,

Ln(CB) = lim
k→∞

2nk(2r̃k)
n = lim

k→∞
2nk−nk2nbnk = 2n( lim

k→∞
bk)

n > 0.

Our goal is to define a sequence of homeomorphism fk : [−1, 1]n → [−1, 1]n such that its limit
f is a homeomorphism mapping CA onto CB, as we demonstrate in Figure 1. We start with
f0(x) = x. To define f1, we map Qv onto Q̃

v
homogenously with respect to the centres zv and

z̃v for all v ∈ V. We define f1 from Q′
v
\Qv onto Q̃

′

v
\ Q̃

v
radially for the supremum norm with

respect to the centres zv and z̃v. In the general step, we keep fk = fk−1 on [−1, 1]n\(⋃︁
v∈Vk Q′

v
).

It remains to define fk inside the copies of Q′
v
. We use the homogeneous mapping of Qv onto

Q̃
v
and the radial mapping of Q′

v
\ Qv onto Q̃

′

v
\ Q̃

v
, both with respect to centres zv and z̃v,

see Figure 2.

fk

Figure 2. The mapping fk transforms Qv onto Q̃
v
(the gray area) and Q′

v
\Qv

onto Q̃
′

v
\ Q̃

v
(the white area), v ∈ Vk.

Formally, we define

fk(x) =

⎧

⎪

⎨

⎪

⎩

fk−1(x) for x /∈ ⋃︁
v∈Vk Q′

v
,

fk−1(zv) + (αk∥x− zv∥∞ + βk)
x−zv

∥x−zv∥∞
for x ∈ Q′

v
\Qv,v ∈ Vk,

fk−1(zv) +
r̃k
rk
(x− zv) for x ∈ Qv,v ∈ Vk,
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where αk and βk are chosen for fk to map the annulus Q′
v
\Qv onto the annulus Q̃

′

v
\ Q̃

v
, i.e.,

such that

(3.1) αkrk + βk = r̃k and αk

rk−1

2
+ βk =

r̃k−1

2
.

Note that such fk maps

(3.2)
⋃︂

v∈Vj

Qv onto
⋃︂

v∈Vj

Q̃
v

for all j ≤ k. Since fk is continuous and a one-to-one mapping between compact spaces, it is a
homeomorphism.
We need to estimate the derivatives of fk in Qv and Q′

v
\Qv for v ∈ Vk. For x ∈ Qv we get

|Dfk| =
r̃k
rk

=
bk
ak

.

For x ∈ Q′
v
\ Qv we should consider two possible directions of partial derivatives, based on

which coordinate determines the norm ∥x− zv∥∞. Without loss of generality, suppose it is the
first coordinate, the set containing points with more coordinates like that is of zero Lebesgue
measure and does not change further calculations and estimates. For x ∈ Q′

v
\Qv we estimate

(3.3)

|Dx1
fk| =

⃓

⃓

⃓

⃓

Dx1

(︃

(αk∥x− zv∥∞ + βk)
x− zv

∥x− zv∥∞

)︃⃓

⃓

⃓

⃓

≤ αk,

|Dxi
fk| =

⃓

⃓

⃓

⃓

Dxi

(︃

(αk∥x− zv∥∞ + βk)
x− zv

∥x− zv∥∞

)︃⃓

⃓

⃓

⃓

≤ αk +
βk

∥x− zv∥∞
, i ̸= 1.

Therefore, each mapping fk belongs to W 1,∞ (however, the sequence is not bounded there).
The limit mapping f is absolutely continuous on almost all lines which are parallel to the

coordinate axes, since almost all lines do not intersect the Cantor set CA. Hence f is Lipschitz
on such lines. Also, f maps CA onto CB, based on (3.2). Its pointwise partial derivatives on
Q′

v
\Qv for v ∈ Vk are the same as those of fk. In the end, we estimate

∥Df∥pp =
∞
∑︂

k=1

∑︂

v∈Vk

∫︂

Q′

v
\Qv

|Df |p.

We should also check that the Jacobian is positive almost everywhere. Since Jf is equal to Jfk
on the sets Q′

v
\ Qv and the union of these sets has full measure, it is enough to verify the

positivity of Jfk , which can be done by a straightforward calculation.

Remark 3.1. The choice ak =
1

k+1
and bk =

1
2
(1+ 1

k+1
) provides a pointwise estimate |Df | ≲ k

for x ∈ Q′
v
\ Qv, Ln(Q

′
v
\ Qv) ≈ 2−nk 1

kn+1 , and |Df | ∈ Lp if p < n. Note that these estimates
can be adjusted to the special choice of ak and bk and they differ in literature.

4. Proof of Theorem 1.1 and Theorem 1.2

We now present the estimate for the norm of the derivative for a fairly general choice of ak
and bk. We show that for this choice, the resulting mapping belongs to the grand Sobolev space
W 1,n)(Q0, Q0).
Let ak be an arbitrary monotone positive sequence with a0 = 1 and limk→∞ ak = 0 and set

bk =
1

2
(1 + ak).

This together with (3.1) implies

αk = 2−1 and βk = 2−k−1
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for k ≥ 1. For further use we prepare the pointwise estimate of |Dfk(x)| for x ∈ Q′
v
\Qv,

v ∈ Vk based on (3.3). We get

|Dfk(x)| ≈ max
i∈{1,...,n}

{|Dxi
fk|} = max

{︃

αk, αk +
βk

∥x− zv∥∞

}︃

≲
βk

∥x− zv∥∞
.

The following estimate is universal for both Theorem 1.1 and Theorem 1.2 and may be used
for any ak, bk satisfying the properties above. Using the fact that for each k we have 2nk annuli
with the same size, between which the function differs only by translation, we calculate

sup
0<ε≤n−1

ε

∫︂

(−1,1)n
|Df |n−ε = sup

0<ε≤n−1
ε

(︄

∞
∑︂

k=1

∑︂

v∈Vk

∫︂

Q′

v
\Qv

|Dfk|n−ε

)︄

≲ sup
0<ε≤n−1

ε
∞
∑︂

k=1

2nk
∫︂

Q(0,
rk−1

2 )\Q(0,rk)

(︃

βk

∥x∥∞

)︃n−ε

dx

≲ sup
0<ε≤n−1

ε
∞
∑︂

k=1

2nk
∫︂ 2−kak−1

2−kak

(︃

2−k−1

t

)︃n−ε

tn−1 dt

= sup
0<ε≤n−1

ε
∞
∑︂

k=1

2nk
∫︂ 2−kak−1

2−kak

2(−k−1)(n−ε)t−1+ε dt

≲ sup
0<ε≤n−1

ε
∞
∑︂

k=1

(︂

2(k+1)ε
[︁

ε−1tε
]︁2−kak−1

2−kak

)︂

= sup
0<ε≤n−1

∞
∑︂

k=1

2(k+1)ε
(︁

2−εkaεk−1 − 2−εkaεk
)︁

= sup
0<ε≤n−1

2ε
∞
∑︂

k=1

(aεk−1 − aεk) ≲ sup
0<ε≤n−1

(︂

aε0 − lim
k→∞

aεk

)︂

= sup
0<ε≤n−1

aε0 = 1 < ∞,

since the limit of aεk is zero. Therefore f ∈ W 1,n)(Q0, Q0).

Proof of Theorem 1.2. We choose ak satisfying the conditions above (i.e., monotone positive
with limit 0 and a0 = 1) such that for every integer k ≥ 1 we have

h(cn2
−kak) < 2−2nk,

where cn = 2
√
n; we can do so, since h is non-decreasing continuous and limt→0+ h(t) = 0. Set

bk = (1+ak)/2 as before. The Ponomarev type construction described in Section 3 ensures the
properties (1) and (3) and the choice of parameters gives us (2). It remains to prove (4). Since

CA ⊆
⋃︂

v∈Vk

Qv

for an arbitrary k, from the definition of Hausdorff measure we have

Hh(CA) ≤ lim sup
k→∞

∑︂

v∈Vk

h(diamQv) = lim sup
k→∞

2nkh(cnrk) ≤ lim
k→∞

2−nk = 0.

Also Ln(CA) = 0 and Ln(f(CA)) = Ln(CB) > 0 as was shown in Section 3. □

Proof of Theorem 1.1. The proof is divided into several steps.

(i) Choice of ak
We claim that we can find a decreasing sequence ak satisfying the properties from
Section 3 such that ankτ(2

−kcnak) ≈ 1. Since τ is continuous and bounded by 1 from
below, for every parameter p there has to be a point tp ∈ (0, 1] such that 1/τ(ptp) = tnp
and 1/τ(pt) > tn on (0, tp). We set ak = t2−k . To show that it is a monotone sequence,
let us have p1 > p2 and elaborate. From the monotonicity of τ we have

tnp1 =
1

τ(p1tp1)
>

1

τ(p2tp1)
.
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This implies that tp2 must be smaller than tp1 , since 1/τ(p2t) > tn on (0, tp2). Now
choose ε > 0 and find p small enough such that 1/τ(pt) < εn for t ∈ (0, 1]. Since
tp ∈ (0, 1], we have tnp < εn. This ensures that the limit of ak is zero. With this choice

of the sequence ak, for any U subsystem of Vk we obtain

(4.1)
∑︂

u∈U

h(diamQu) = #Uh(2−kcnak) ≈ #U2−nkankτ(2
−kcnak) ≈ 2−nk#U,

where #U denotes the number of elements of the system.
(ii) Properties (1) – (3)

By setting bk = (1 + ak)/2 and proceeding as in Section 3, we obtain a Sobolev homeo-
morphism f which satisfies properties (1) – (3).

(iii) 0 < Hh(CA) < ∞
We immediately see from (4.1) that the Hausdorff measure of CA is finite, since

Hh(CA) ≤ lim sup
k→∞

∑︂

v∈Vk

h(diamQv) ≈ lim
k→∞

2−nk#Vk = 1.

The other inequality is proven in several steps. We mimic the proof from [28, Lemma 3.2],
which is inspired by [41, Section 4.10]. Since CA is a compact set, it is enough to prove
that for any finite open covering {Uj} of CA we have

(4.2)
∑︂

j

h(diamUj) ≳ 1.

We may assume that there exists xj ∈ CA ∩ Uj for each j. Therefore B(xj, diamUj) =
Bj ⊇ Uj and

∑︂

j

h(diamUj) =
∑︂

j

h(diamBj/2) =
∑︂

j

2−n(diamBj)
nτ(diamBj/2)

≥
∑︂

j

2−n(diamBj)
nτ(diamBj) =

∑︂

j

2−nh(diamBj),

so we may consider only coverings by balls in (4.2). We now wish to show that for every
l ∈ N and j we have

∑︂

v∈Vl,
Qv⊆Bj

h(diamQv) ≲ h(diamBj).

This can be proven by taking Qv0
⊆ Bj for some v0 ∈ Vl and m the smallest integer

such that Qu0
⊆ Bj for some u0 ∈ Vm (obviously, m ≤ l). Set

U = {u ∈ Vm : Qu ∩Bj ̸= ∅}.

Since Bj is centered at a point from CA, from the definition of m we obtain

rm ≲ diamBj ≲ rm−1.

Therefore there exists an upper bound for the number of pairwise disjoint cubes of side
length rm−1, which have a non-empty intersection with Bj, and this upper bound is
independent of j and m. Since the size of U is at most 2n times this number, we have
an (independent) upper bound for #U, too.
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Together with (4.1) it provides

h(diamBj) ≥ h(diamQu0
) ≳

∑︂

u∈U

h(diamQu) ≈ 2−nm#U

= 2−nl#{v ∈ Vl : Qv ⊆ Qu,u ∈ U}
≈
∑︂

u∈U

∑︂

v∈Vl,
Qv⊆Qu

h(diamQv) ≥
∑︂

v∈Vl,
Qv⊆Bj

h(diamQv).

Finally, since CA is compact, there exists k0 such that for every Qv ∈ Vk, k ≥ k0, we
can find j such that Qv ⊆ Bj. For such k we have

∑︂

j

h(diamBj) ≳
∑︂

j

∑︂

v∈Vk,
Qv⊆Bj

h(diamQv) ≥
∑︂

v∈Vk

h(diamQv) ≈ 1.

This combined gives us the desired property that Hh(CA) > 0. Combined with the
fact that f(CA) = CB we have (5) (the Lebesgue measure properties are obvious from
previous sections).

(iv) Construction of mapping z
For each point x ∈ CA we can find vx from VN such that

x =
⋂︂

j

Q(vx)j .

The correspondence between x and vx is one-to-one. Let πi denote the projection of
v ∈ V to its i-th coordinate. Define ci : CA → {−1, 1}N which (in each coordinate) tells
whether we chose a cube “on the right-hand side or on the left-hand side”, i.e.,

ci(x) = {πi((vx)j)}∞j=1.

Next consider a function Bin : {−1, 1}N → [0, 1], which takes a sequence u and interprets
it as the number 0.u1+1

2
u2+1

2
. . . written in the binary system. This is obviously onto,

however, it is not injective (because for example both (0, 1, 1, 1, . . . ) and (1, 0, 0, 0, . . . )
are mapped to 1/2). We denote

z(x) = (Bin(c1(x)), . . . ,Bin(cn(x))) : CA → [0, 1]n.

Then z is onto and it is injective outside of the set

S = {x ∈ CA : Bin(ci(x)) = k/2j for some i ∈ {1, . . . , n}, j ∈ N0 and k ∈ {0, . . . , 2j}}
= {x ∈ CA : ci(x) is constant from some index j0 ∈ N for some i ∈ {1, . . . , n}},
which consists of the preimages of boundaries of dyadic cubes in [0, 1]n.

(v) Image of Hh under z
We start with showing that Hh(S) = 0 and Ln(z(S)) = 0. The second statement follows
simply from the fact that the boundary of a dyadic cube is a set of (Lebesgue) measure
zero and z(S) is their countable union. The first statement is proven in a similar way
since S is a countable union of the sets in the form

Si,j,k = {x ∈ CA : Bin(ci(x)) = k/2j}
for i ∈ {1, . . . , n}, j ∈ N0 and k ∈ {0, . . . , 2j}. These are (up to a permutation of
coordinates and a translation) equal to {0}×Ca × · · · ×Ca and Hh(Si,j,k) = 0, because
Hh(CA) < ∞ and CA contains uncountably many pairwise disjoint copies of {0}×Ca×
· · · × Ca.
Now we show the equality of the measures

z(Hh) =
(︁

Hh(CA)
)︁

Ln.
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For any open dyadic cube D of edge length 2−j take the corresponding v ∈ Vj. Then
Ln(D) = 2−jn and Hh(z−1(D)) = Hh(Qv ∩ CA) = 2−jnHh(CA), because z−1(D) =
Qv ∩ CA \ S ′, where S ′ is a suitable subset of S.
The system

D = {D ∪ S ′ : D is an open dyadic cube and S ′ is a measurable subset of S}
is closed under finite intersections and the sigma algebra generated by D contains all
Borel sets in [0, 1]n. Since z(Hh) =

(︁

Hh(CA)
)︁

Ln on elements from D, they are the same
on [0, 1]n.

(vi) Property (4)
We can analogously construct z̃ : CB → [0, 1]n for which

z̃(Ln) = (Ln(CB))Ln.

Then from the fact that f(Qv) = Q̃
v
for an arbitrary v it follows that z̃ ◦ f = z, i.e.,

the following diagram commutes:

CB

CA [0, 1]n

f z̃

z

The injectivity of z is broken only on S andHh(S) = 0 and Ln(z(S)) = 0 (analogously
for z̃). We conclude that for an arbitrary measurable E ⊆ CA we have

Hh(E) = 0 ⇐⇒ Ln(z(E)) = 0 ⇐⇒ Ln(z̃(f(E))) = 0 ⇐⇒ Ln(f(E)) = 0.

The Luzin N condition holds outside of CA since f is locally Lipschitz there, and any
set with finite measure Hh is of zero Lebesgue measure. Therefore property (4) holds.

□
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[55] A. Zapadinskaya. Hölder continuous Sobolev mappings and the Lusin N property. Illinois J. Math.,

58(2):585–591, 2014.
[56] E. Zatorska. On the flow of chemically reacting gaseous mixture. J. Differential Equations, 253(12):3471–

3500, 2012.

Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Praha, Czech
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MAPPINGS OF GENERALIZED FINITE DISTORTION AND

CONTINUITY

ANNA DOLEŽALOVÁ, ILMARI KANGASNIEMI, AND JANI ONNINEN

Abstract. We study continuity properties of Sobolev mappings f ∈
W 1,n

loc (Ω,Rn), n ≥ 2, that satisfy the following generalized őnite distor-
tion inequality

|Df(x)|n ≤ K(x)Jf (x) + Σ(x)

for almost every x ∈ R
n. Here K : Ω → [1,∞) and Σ: Ω → [0,∞) are

measurable functions. Note that when Σ ≡ 0, we recover the class of
mappings of őnite distortion, which are always continuous. The continu-
ity of arbitrary solutions, however, turns out to be an intricate question.
We fully solve the continuity problem in the case of bounded distortion
K ∈ L∞(Ω), where a sharp condition for continuity is that Σ is in the
Zygmund space Σ logµ(e + Σ) ∈ L1

loc(Ω) for some µ > n − 1. We also
show that one can slightly relax the boundedness assumption on K to
an exponential class exp(λK) ∈ L1

loc(Ω) with λ > n+1, and still obtain
continuous solutions when Σ logµ(e+ Σ) ∈ L1

loc(Ω) with µ > λ. On the
other hand, for all p, q ∈ [1,∞] with p−1 + q−1 = 1, we construct a
discontinuous solution with K ∈ Lp

loc(Ω) and Σ/K ∈ Lq
loc(Ω), including

an example with Σ ∈ L∞

loc(Ω) and K ∈ L1
loc(Ω).

1. Introduction

Let Ω be a connected, open subset of R
n with n ≥ 2. Recall that a

differential inclusion is a condition requiring that, for almost every (a.e.)

x ∈ Ω, a weakly differentiable mapping f ∈ W 1,1
loc (Ω,R

m) satisőes Df(x) ∈
F (x, f(x)) where F is a function from Ω×R

m to subsets of m×n-matrices.
Here, we are searching for differential inclusions under which a Sobolev map
f ∈ W 1,n

loc (Ω,R
n) has a continuous representative. More speciőcally, we are

interested in ones which are motivated by the Geometric Function Theory,
with connections to mathematical models of Nonlinear Elasticity.
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A. Doležalová is a Ph.D. student in the University Centre for Mathematical Modelling,

Applied Analysis and Computational Mathematics (Math MAC) and was supported by
the grant GA CR P201/21-01976S and by the project Grant Schemes at CU, reg. no.
CZ.02.2.69/0.0/0.0/19 073/0016935. J. Onninen was supported by the NSF grant DMS-
2154943.

1



2 ANNA DOLEŽALOVÁ, ILMARI KANGASNIEMI, AND JANI ONNINEN

This leads us to consider the differential inclusions given by the set func-
tions

(1.1) Mn(K,Σ): x ↦→ {A ∈ R
n×n : |A|n ≤ K(x) detA+Σ(x)} ,

where K : Ω → [1,∞) and Σ: Ω → [0,∞) are given measurable functions.
Here and in what follows, |A| stands for the operator norm of matrix A ∈
R
n×n; that is, |A| = sup{|Ah| : h ∈ S

n−1}. We also use the shorthand
G ∈ Mn(K,Σ) if G : Ω → R

n×n satisőes G(x) ∈ Mn(K,Σ)(x) for a.e.
x ∈ Ω. Now, our continuity problem reads as follows.

Problem 1.1. Find a necessary and sufficient condition on the functions K
and Σ which guarantees that if f ∈W 1,n

loc (Ω,R
n) with Df ∈ Mn(K,Σ), then

f has a continuous representative.

A necessary condition for Problem 1.1 is that Σ must at least to lie in the
Zygmund space L logµ Lloc(Ω) for some µ > n− 1: that is,

(1.2) Σ logµ(e+Σ) ∈ L1
loc(Ω) µ > n− 1 .

Indeed, the mapping f : Bn(0, 1) → R
n deőned by

(1.3) f(x) =

(︃

log log log
ee

|x| , 0, . . . , 0
)︃

has detDf ≡ 0 and |Df |n logn−1(e+|Df |n) ∈ L1(Bn(0, 1)), but lim
x→0

|f(x)| =
∞.

1.1. Results for bounded K. When Σ ≡ 0 and K ∈ L∞(Ω), Mn(K, 0)
recovers the mappings of bounded distortion, also known as quasiregular
mappings; a mapping f : Ω → R

n is K-quasiregular for K ∈ [1,∞) if

f ∈ W 1,n
loc (Ω,R

n) with |Df(x)|n ≤ K detDf(x) for a.e. x ∈ Ω. Homeo-
morphic K-quasiregular mappings are called K-quasiconformal. The őrst
breakthrough in the theory of mappings of bounded distortion was Reshet-
nyak’s theorem on Hölder continuity: a K-quasiregular mapping is locally
1/K-Hölder continuous, see [23] and [24, Corollary II.1]. Such Hölder conti-
nuity properties of quasiconformal mappings in the plane were earlier estab-
lished by Morrey [21].

Other differential inclusions of the type Mn(K,Σ) with K ∈ L∞(Ω) have
also arisen naturally in different contexts. For instance, Simon [26] developed
a local regularity theory for minimal graphs of functions u : R2 → R such
that the Gauss map of the graph of u satisőes

(1.4) |Df(x)|2 ≤ K detDf(x) + Σ

where 1 ≤ K < ∞ and 0 ≤ Σ < ∞ are given constants. Recall that the
Gauss map takes the points of a surface S ⊂ R

n to the unit normal vector
in S

n−1. In particular, the Gauss map automatically satisőes (1.4) when u
is a solution of any equation of mean curvature type [26, (1.9) (ii)]. Similar
results for simply connected surfaces embedded in R

3 are due to Schoen and
Simon [25]. The main result in [26] enabling the regularity theory states
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that a local W 1,2-solution to (1.4) between embedded 2D-surfaces is Hölder
continuous; see also [9, Ch. 12].

This Hölder continuity result has been generalized for unbounded Σ as
well. Precisely, if K ∈ L∞ and Σ ∈ Lp

loc(Ω) for some p > 1, then a mapping

f ∈ W 1,n
loc (Ω,R

n) with Df ∈ Mn(K,Σ) has a Hölder continuous represen-
tative. For the planar case, see the proof of [3, Theorem 8.5.1] by Astala,
Iwaniec and Martin, and for the more general case n ≥ 2, see the argument
in [18, Section 3] by Kangasniemi and Onninen. While the planar argu-
ment of Astala, Iwaniec and Martin relies on complex potential theory, the
higher dimensional proof is closer to that of Simon [26], mimicking the lines
of reasoning by Morrey [21] and Reshetnyak [23] in the case of mappings of
bounded distortion.

However, despite yielding sharp results on the Lp-scale, the Morrey-type
decay argument used in [18, Section 3] does not give a sharp result if one
moves to the Zygmund space setting Σ ∈ L logµ Lloc(Ω). In particular, the
decay argument shows continuity when µ > n, but the optimal regularity
assumption for Σ is in fact µ > n − 1, precisely the minimal necessary
condition stated in (1.2). This optimal regularity theorem is our őrst main
result.

Theorem 1.2. Suppose that f ∈ W 1,n
loc (Ω,R

n) and Df(x) ∈ Mn(K,Σ)(x)
a.e. in Ω, with

K ∈ L∞
loc(Ω) and Σ logµ (e+Σ) ∈ L1

loc(Ω),

for some µ > n− 1. Then f has a continuous representative.

Furthermore, under the assumptions of Theorem 1.2, the local modulus
of continuity

(1.5) ωf (x0, r) = sup{|f(x0)− f(x)| : x ∈ Ω , |x− x0| ≤ r}

is majorized by C log−(µ−n+1)/n(1/r) for x0 ∈ Ω and small r > 0. By

considering functions of the form f(x) = (log−α |x|−1 , 0, . . . , 0) with α > 0,
it is easy to see that the above exponent (µ− n+ 1)/n is sharp.

Theorem 1.2 is obtained by proving the following sharp higher integrability
result for Df on the Zygmund scale.

Theorem 1.3. Suppose that f ∈W 1,n
loc (Ω,R

n) and Df ∈ Mn(K,Σ) with

K ∈ L∞
loc(Ω) and Σ logµ (e+Σ) ∈ L1

loc(Ω),

for some µ ≥ 0. Then |Df |n logµ(e+ |Df |) ∈ L1
loc(Ω).

It is worth noting that the sharp local 1/K-Hölder continuity result for
spatial K-quasiregular mappings cannot be obtained from known higher in-
tegrability results. Indeed, while K-quasiregular mappings have been shown
to belong to the Sobolev space W 1,pn

loc (Ω,Rn) for some p > 1 [8, 20], the
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sharp exponent p = p(n,K) remains unknown when n ≥ 3. A well-known
conjecture asserts that

(1.6) p(n,K) =
K

K − 1
.

In a seminal work, Astala [2] established the sharp exponent in the planar
case.

This conjecture also has a counterpart for mappings f ∈ W 1,n
loc (Ω,R

n)
with Df ∈ Mn(K,Σ). Indeed, if ∥K∥L∞(Ω) ≤ K◦, we expect that f ∈
W 1,pn

loc (Ω,Rn) whenever Σ ∈ Lp
loc(Ω) for all p ≤ p(n,K◦), where p(n,K◦)

is as in (1.6). This is the maximal amount of higher integrability of Df
possible when Σ ∈ Lp

loc(Ω), which can be seen by taking f = (g, 0, . . . , 0) and

Σ = |∇g|n, where g is any function in W 1,pn
loc (Ω) \

⋃︁

q>nW
1,qn
loc (Ω). However,

similar to the quasiregular theory, current tools are only enough to prove a
result like this with an unknown value of p(n,K◦).

Theorem 1.4. For given n ≥ 2 and K◦ ∈ [1,∞), there exists a value

p(n,K◦) > 1, such that if f ∈W 1,n
loc (Ω,R

n) and Df ∈ Mn(K,Σ) with

∥K∥L∞(Ω) ≤ K◦ and Σ ∈ Lp
loc(Ω),

for some p ∈ [1, p(n,K◦)), then |Df |n ∈ Lp
loc(Ω).

1.2. Results for general K. In the last 20 years, systematic studies of
mappings of őnite distortion have emerged in the őeld of geometric func-
tion theory. Recall that a mapping f ∈ W 1,n

loc (Ω,R
n) has őnite distortion if

|Df(x)|n ≤ K(x) detDf(x) a.e. on Ω for some measurable K : Ω → [1,∞):
that is, if Df ∈ Mn(K, 0). Thus, the class of mappings of őnite distor-
tion extends the theory of mappings of bounded distortion to the degenerate
elliptic setting, [14, 12]. There one őnds applications in materials science,
particularly in nonlinear elasticity. The mathematical models of nonlinear
elasticity have been pioneered by Antman [1], Ball [4] and Ciarlet [6].

In general, some bounds on the distortion are needed to obtain a full
theory, analogous to the theory of quasiregular maps. The continuity prop-
erty, however, follows without any restriction on the distortion function K.
Precisely, if K : Ω → [1,∞) is any measurable function, then a Sobolev

mapping f ∈ W 1,n
loc (Ω,R

n) with Df ∈ Mn(K, 0) has a continuous represen-
tative [10, 15].

Surprisingly, the continuity problem becomes a lot more challenging when
Σ ̸≡ 0. Our next result shows that the solutions need not be continuous even
in the case of bounded Σ if the distortion K is just a measurable function.

Theorem 1.5. There exist a domain Ω ⊂ R
2 and a Sobolev map f ∈

W 1,2(Ω,R2) such that 0 ∈ Ω, f ∈ C(Ω \ {0},R2), limx→0 |f(x)| = ∞, and
Df ∈ M2(K,Σ) with

Σ ∈ L∞(Ω) and K ∈ L1(Ω) .
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On the other hand, it is well known that mappings of exponentially in-
tegrable distortion behave in many ways like quasiregular mappings [12].
For instance, if a nonconstant Sobolev mapping f : Ω → R

n satisőes Df ∈
Mn(K, 0) with exp(λK) ∈ L1(Ω) and λ > 0, then f is both discrete
and open [19]. Moreover, the local modulus of continuity ωf (x0, r) of f

is majorized up to a multiplicative constant by log−λ/n(1/r) if x0 ∈ Ω and
r > 0 is sufficiently small [15]. This raises a natural question in the general
case Df ∈ Mn(K,Σ): is there a version of the continuity result of Theo-
rem 1.2 where the boundedness assumption K ∈ L∞

loc(Ω) has been relaxed
to exp(λK) ∈ L1

loc(Ω) for some λ > 0. The next result shows that this is not
the case for arbitrary λ > 0.

Theorem 1.6. For every µ ∈ (0, 2), there exist a domain Ω ⊂ R
2 and

a Sobolev map f ∈ W 1,2(Ω,R2) such that 0 ∈ Ω, f ∈ C(Ω \ {0},R2),
limx→0 |f(x)| = ∞, and Df ∈ M2(K,Σ) with

exp(λK) ∈ L1(Ω) and Σ logµ(e+Σ) ∈ L1(Ω)

for every λ > 0.

Nevertheless, it is possible to obtain a modulus of continuity in the case
with exp(λK) ∈ L1

loc(Ω) and Σ logµ(e+ Σ) ∈ L1
loc(Ω), if one assumes λ and

µ to be sufficiently large.

Theorem 1.7. Let Ω ⊂ R
n be a domain, and let f ∈ W 1,n

loc (Ω,R
n) and

Df ∈ Mn(K,Σ) with

exp(λK) ∈ L1
loc(Ω) and Σ logµ (e+Σ) ∈ L1

loc(Ω),

for some µ > λ > n+ 1. Then f has a continuous representative.
In particular, for all x0 ∈ Ω and sufficiently small r > 0, we have the

following local modulus of continuity estimate:

ωf (x0, r) ≤ C log−α(1/r) where α =
λ− n− 1

n
.

1.3. Single-value theory. Understanding the pointwise behavior of quasi-
regular mappings motivates us to study a variant of the differential inclusion
of Mn(K,Σ). In particular, given K,Σ: Ω → R

n and y0 ∈ R
n, we deőne a

map Mn(K,Σ, y0) from Ω× R
n to subsets of Rn×n by

(1.7) Mn(K,Σ, y0) :

(x, y) ↦→ {A ∈ R
n×n : |A|n ≤ K(x) detA+ |y − y0|nΣ(x)}.

Consequently, we obtain a differential inclusion by requiring that Df(x) ∈
Mn(K,Σ, y0)(x, f(x)) for a.e. x ∈ Ω, which we again denote by the short-
hand Df ∈ Mn(K,Σ, y0).

For K ∈ L∞(Ω), the differential inclusion Df ∈ Mn(K,Σ, y0) leads to the
theory of quasiregular values developed by the last two authors in [18] and
[17]. This term is motivated by the fact that for bounded K ∈ L∞(Ω), solu-
tions of Df ∈ Mn(K,Σ, y0) satisfy a single-value version of the celebrated
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Reshetnyak’s theorem at y0. Precisely, if f ∈ W 1,n
loc (Ω,R

n) is non-constant
and Df ∈ Mn(K,Σ, y0) with K ∈ [1,∞) constant and Σ ∈ Lp

loc(Ω) for some
p > 1, then f is continuous, f−1{y0} is discrete, the local index i(x, f) is
positive in f−1{y0}, and every neighborhood of a point of f−1{y0} is mapped
to a neighborhood of y0: see [17, Theorem 1.2].

Notably, the additional term |f − y0|n in the differential inclusion Df ∈
Mn(K,Σ, y0) causes no additional difficulty in our continuity problem on

the Lp-scale. Indeed, if f ∈ W 1,n
loc (Ω,R

n) and Df ∈ Mn(K,Σ, y0) with
Σ ∈ Lp

loc(Ω), p > 1, one can deőne Σ0 = |f − y0|nΣ and conclude using
the Sobolev embedding theorem that Σ0 ∈ Lq

loc(Ω) for every q ∈ [1, p). The
question then reduces to the continuity of solutions of Df ∈ Mn(K,Σ0).

The sharpness of such an approach, however, becomes an issue when one
moves to the Zygmund space scale of (1.2). Indeed, if f ∈ W 1,n

loc (Ω,R
n)

satisőes Df ∈ Mn(K,Σ, y0) with Σ logµ(e + Σ) ∈ L1
loc(Ω), then it can be

shown using the Moser-Trudinger inequality that Σ0 = |f − y0|nΣ satisőes
Σ0 log

µ−n+1(e + Σ0) ∈ L1
loc(Ω). Theorem 1.2 hence yields that f has a

continuous representative if µ− n+ 1 > n− 1, i.e. µ > 2n− 2.
This result for µ > 2n − 2, however, turns out to be far from opti-

mal. This is because, by an iteration argument using Theorem 1.3, this
gap from (1.2) can be entirely eliminated. Again the mapping f(x) =
(log log log(ee/ |x|), 0, . . . , 0) on B

n(0, 1) shows that the following theorem
is sharp.

Theorem 1.8. Let Ω be a domain in R
n. Suppose that a Sobolev mapping

f ∈W 1,n
loc (Ω,R

n) satisőes Df ∈ Mn(K,Σ, y0) with K : Ω → [1,∞), Σ: Ω →
[0,∞) and y0 ∈ R

n. If

K ∈ L∞
loc(Ω) and Σ logµ (e+Σ) ∈ L1

loc(Ω),

for some µ > n− 1, then f has a continuous representative.

However, in the case of Df ∈ Mn(K,Σ, y0) with exponentially integrable
K, the use of this trick is prevented as our results are not based on higher in-
tegrability. Hence, the current best bound in this case is the following result,
given by the above Moser-Trudinger -argument combined with Theorem 1.7.

Theorem 1.9. Let Ω be a domain in R
n. Suppose that a Sobolev mapping

f ∈W 1,n
loc (Ω,R

n) satisőes Df ∈ Mn(K,Σ, y0) with K : Ω → [1,∞), Σ: Ω →
[0,∞) and y0 ∈ R

n. If

exp(λK) ∈ L1
loc(Ω) and Σ logµ (e+Σ) ∈ L1

loc(Ω),

for some µ > λ+ n− 1 > 2n, then f has a continuous representative.
In particular, for all x0 ∈ Ω and sufficiently small r > 0, we have the

following local modulus of continuity estimate:

ωf (x0, r) ≤ C log−α(1/r) where α =
λ− n− 1

n
.
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1.4. Lp-integrable K. In the case where K ∈ Lp
loc(Ω) with p ∈ [1,∞], we

conjecture that Problem 1.1 has a positive answer if Σ ∈ Lq
loc(Ω) for any

q > p∗, where p∗ is the Hölder conjugate of p. In fact, we conjecture that
a stronger statement is true, where Σ ∈ Lq

loc(Ω) can be replaced by the
hypothesis Σ/K ∈ Lq

loc(Ω).

Conjecture 1.10. Let 1 ≤ p, q ≤ ∞. Suppose that f ∈ W 1,n
loc (Ω,R

n),
Df ∈ Mn(K,Σ) with K ≥ 1, Σ ≥ 0,

K ∈ Lp
loc(Ω), and

Σ

K
∈ Lq

loc(Ω), where
1

p
+

1

q
< 1 .

Then f has a continuous representative.

In order to justify the assumption p−1 + q−1 < 1 of Conjecture 1.10, we
point out that we have a discontinuous example in the case p = 1, q = ∞ due
to Theorem 1.5. Moreover, in the case q = 1, p = ∞, the triple logarithm
map (1.3) provides a discontinuous example. The necessity of the assumption
for the remaining cases 1 < p <∞ is then given by the following example.

Theorem 1.11. Let p, q ∈ (1,∞). If p−1 + q−1 ≥ 1, then there exists
a domain Ω ⊂ R

2 and a Sobolev map f ∈ W 1,2(Ω,R2) such that 0 ∈ Ω,
f ∈ C(Ω \ {0},R2), limx→0 |f(x)| = ∞, and Df ∈ M2(K,Σ) with

(1.8) K ∈ Lp(Ω) and
Σ

K
∈ Lq(Ω).

Furthermore, we give several versions of Theorem 1.11 where (1.8) is re-
placed by a condition of the type

K ∈ Lp(Ω) and Σ ∈ Ls(Ω),

see Theorems 4.1 and 5.1 for details.

2. Results based on higher integrability

In this section, we prove the continuity results that are based on higher
integrability: Theorems 1.2, 1.3, 1.4, and 1.8.

2.1. Higher integrability on the Lp-scale. The higher integrability result
of Theorem 1.4 is essentially the same as [17, Lemma 6.1], with only minor
tweaks to account for the non-constant K. We regardless recall the argument
for the convenience of the reader, as we require the reverse Hölder inequality
proven during the argument for our later proof of Theorem 1.3.

If B = B
n(x, r) is a ball and c ∈ (0,∞), then we denote cB = B

n(x, cr).
Similarly, if Q = x + (−r, r)n ⊂ R

n is a cube and c ∈ (0,∞), we denote
cQ = x+ (−cr, cr)n.

Lemma 2.1. Suppose that f ∈W 1,n
loc (Ω,R

n) and Df ∈ Mn(K,Σ) with

K ∈ L∞(Ω) and Σ ∈ L1
loc(Ω).
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Then for every cube Q such that 2Q ⊂ Ω, we have the reverse Hölder in-
equality

(︃

−
∫︂

Q
|Df |n

)︃ n
n+1

≤ C(n) ∥K∥
n

n+1

L∞(Ω)

(︄

−
∫︂

2Q
|Df |

n2

n+1 +

(︃

−
∫︂

2Q
Σ

)︃ n
n+1

)︄

.

Proof. Let Q be such a cube. Choose a cutoff function η ∈ C∞
0 (2Q) such

that 0 ≤ η ≤ 1, η ≡ 1 on Q, and |∇η| ≤ C1(n) |2Q|−1/n. By using the
distortion estimate |Df |n ≤ KJf + Σ, the assumption that K ≥ 1, and a
Caccioppoli-type inequality given for instance in [14, Lemma 8.1.1], we have

−
∫︂

Q
|Df |n ≤ ∥K∥L∞

|Q|

∫︂

Ω

|Df |n ηn
K

≤
∥K∥L∞(Ω)

|Q|

∫︂

Ω
Jfη

n +
∥K∥L∞(Ω)

|Q|

∫︂

Ω

Σηn

K

≤
C2(n) ∥K∥L∞(Ω)

|Q|

∫︂

Ω
|Df |n−1 ηn−1 |f − c| |∇η|+

∥K∥L∞(Ω)

|Q|

∫︂

Ω
Σηn.

By using |∇η| ≤ C1(n) |2Q|−1/n, η ≤ 1, and |2Q| = 2n |Q|, we hence obtain
that

−
∫︂

Q
|Df |n ≤ C3(n) ∥K∥L∞

(︄

1

|Q|
1
n

−
∫︂

2Q
|Df |n−1 |f − c|+−

∫︂

2Q
Σ

)︄

.

Hölder and Sobolev-Poincaré inequalities then yield that

1

|Q|
1
n

−
∫︂

2Q
|Df |n−1 |f − c|

≤
(︃

−
∫︂

2Q
|Df |

n2

n+1

)︃
n2

−1

n2 1

|Q|
1
n

(︃

−
∫︂

2Q
|f − c|n2

)︃ 1
n2

≤
(︃

−
∫︂

2Q
|Df |

n2

n+1

)︃
n2

−1

n2

C4(n)

(︃

−
∫︂

2Q
|Df |

n2

n+1

)︃
n+1

n2

= C4(n)

(︃

−
∫︂

2Q
|Df |

n2

n+1

)︃
n+1
n

.

Thus, the claimed estimate follows by using the elementary inequality a+b ≤
(a1/p + b1/p)p for a, b ≥ 0, p ≥ 1 □

We then recall the statement of Theorem 1.4 and give the short remaining
parts of the proof.

Theorem 1.4. For given n ≥ 2 and K◦ ∈ [1,∞), there exists a value

p(n,K◦) > 1, such that if f ∈W 1,n
loc (Ω,R

n) and Df ∈ Mn(K,Σ) with

∥K∥L∞(Ω) ≤ K◦ and Σ ∈ Lp
loc(Ω),

for some p ∈ [1, p(n,K◦)), then |Df |n ∈ Lp
loc(Ω).
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Proof. Due to f satisfying the reverse Hölder inequality given in Lemma 2.1,
the claimed result follows immediately from the version of Gehring’s lemma
given in [13, Proposition 6.1]. The upper bound of higher integrability given
there depends only on the constants of the reverse Hölder inequality, which
in turn depend only on n and ∥K∥L∞(Ω). □

2.2. Higher integrability on the Zygmund space scale. For the Zyg-
mund space version of our main result, we need a corresponding variant of
Gehring’s lemma. We expect this to be known, but are not aware of any
references that would directly give the version we need. Hence, we provide a
proof here of the relevant version of Gehring’s lemma, with the proof modeled
on the arguments used in [13, Section 3].

Lemma 2.2. Let G,H ∈ Lp(Rn) be non-negative functions satisfying the
reverse Hölder inequality

(︃

−
∫︂

Q
Gp

)︃ 1
p

≤ C

(︃

−
∫︂

2Q
Gq

)︃ 1
q

+

(︃

−
∫︂

2Q
Hp

)︃ 1
p

,

for all cubes Q ⊂ R
n, where 1 ≤ q < p < ∞ and C ≥ 1 is a constant. Then

for every µ > 0, we have
∫︂

Rn

Gp logµ(e+G) ≤ a

∫︂

Rn

Gp + b

∫︂

Rn

Hp logµ(e+H),

with a = a(C, n, µ, p, q) ≥ 1 and b = b(C, n, µ, p, q) ≥ 1.

We start the proof with the following estimate which directly follows from
[13, Section 3].

Lemma 2.3. Let G,H ∈ Lp(Rn) be non-negative functions satisfying the
reverse Hölder inequality

(︃

−
∫︂

Q
Gp

)︃ 1
p

≤ C

(︃

−
∫︂

2Q
Gq

)︃ 1
q

+

(︃

−
∫︂

2Q
Hp

)︃ 1
p

,

for all cubes Q ⊂ R
n, where 1 ≤ q < p < ∞ and C ≥ 1 is a constant. Then

for every t > 0, we have

(2.1)

∫︂

G−1(t,∞)
Gp ≤ αtp−q

∫︂

G−1(t,∞)
Gq + β

∫︂

H−1(t,∞)
Hp,

with α = α(n,C, p, q) > 1 and β = β(n,C, p, q) > 0.

Proof. This estimate is [13, Proof of Lemma 3.1, estimate (3.11)], where in

the notation used therein we’ve chosen Φ(t) = tF (t) = tp/q with F (t) =

tp/q−1, g = Gq, and h = Hq. □

Proof of Lemma 2.2. We assume őrst that µ ̸= 1; for µ = 1, see the remark
at the end of the proof. We deőne an auxiliary function

Aµ(t) =
p− q

µ
logµ(t) +

µ

µ− 1
logµ−1(t).
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The purpose of this speciőc choice is that

(2.2) tp−q log(t)A′
µ(t) =

d

dt
(tp−q logµ(t)).

We may select a constant M > 1 large enough that Aµ and A′
µ are positive

on [M,∞), and also large enough that

(2.3) Aµ(t)−
α

log(M)
logµ(t) ≥ p− q

2µ
logµ(e+ t) for all t ∈ [M,∞),

where α is from (2.1). Let L > M . We multiply both sides of (2.1) with
A′

µ(t), and integrate over [M,L] with respect to t. By a use of the Fubini-
Tonelli theorem, the left hand side yields

∫︂ L

M
A′

µ(t)

∫︂

G−1(t,∞)
Gp(x) dx dt

=

∫︂

G−1(L,∞)
Gp(x)

∫︂ L

M
A′

µ(t) dt dx+

∫︂

G−1[M,L]
Gp(x)

∫︂ G(x)

M
A′

µ(t) dt dx

=

∫︂

G−1(L,∞)
Aµ(L)G

p +

∫︂

G−1[M,L]
GpAµ(G)−

∫︂

G−1(M,∞)
Aµ(M)Gp.

By the same computation for the Hp-term, we get the upper bound

∫︂ L

M
A′

µ(t)

∫︂

H−1(t,∞)
Hp(x) dx dt

=

∫︂

H−1(L,∞)
Aµ(L)H

p +

∫︂

H−1[M,L]
HpAµ(H)−

∫︂

H−1(M,∞)
Aµ(M)Hp

≤
∫︂

H−1(L,∞)
Aµ(H)Hp +

∫︂

H−1[M,L]
HpAµ(H) ≤ 2

∫︂

H−1[M,∞)
HpAµ(H).

For the Gq-term, we use (2.2) and similar computations to obtain that

∫︂ L

M
A′

µ(t)t
p−q

∫︂

G−1(t,∞)
Gq(x) dx dt

≤ 1

log(M)

∫︂ L

M
A′

µ(t)t
p−q log(t)

∫︂

G−1(t,∞)
Gq(x) dx dt

=
1

log(M)

∫︂ L

M

d

dt
(tp−q logµ(t))

∫︂

G−1(t,∞)
Gq(x) dx dt

≤
∫︂

G−1(L,∞)

Lp−q logµ(L)Gq

log(M)
+

∫︂

G−1[M,L]

Gp logµ(G)

log(M)
.
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In total, we have
∫︂

G−1(L,∞)
Aµ(L)G

p +

∫︂

G−1[M,L]
GpAµ(G)

≤ Aµ(M)

∫︂

G−1(M,∞)
Gp +

α

log(M)

∫︂

G−1(L,∞)
Lp−q logµ(L)Gq

+
α

log(M)

∫︂

G−1[M,L]
Gp logµ(G) + 2β

∫︂

H−1[M,∞)
HpAµ(H).

Note that on G−1(L,∞), we have Lp−q ≤ Gp−q. By applying this and
subtracting the α/ log(M)-terms from both sides of the above estimate, we
obtain
∫︂

G−1(L,∞)

(︃

Aµ(L)−
α logµ(L)

log(M)

)︃

Gp+

∫︂

G−1[M,L]

(︃

Aµ(G)−
α logµ(G)

log(M)

)︃

Gp

≤ Aµ(M)

∫︂

G−1(M,∞)
Gp + 2β

∫︂

H−1[M,∞)
HpAµ(H).

We then apply (2.3), and conclude that
∫︂

G−1[M,L]
Gp logµ(e+G)

≤
∫︂

G−1(L,∞)
Gp logµ(e+ L) +

∫︂

G−1[M,L]
Gp logµ(e+G)

≤ 2µAµ(M)

p− q

∫︂

G−1(M,∞)
Gp +

4µβ

p− q

∫︂

H−1[M,∞)
HpAµ(H).

Notably, this upper bound is independent on L. Since we have 0 ≤ Aµ(H) ≤
Aµ(e + H) ≤ ((p − q)/µ + µ/ |µ− 1|) logµ(e + H) in H−1[M,∞), letting
L→ ∞ gives us

∫︂

G−1[M,∞)
Gp logµ(e+G) ≤ a0

∫︂

Rn

Gp + b

∫︂

Rn

Hp logµ(e+H),

with a0, b dependent only on α, β, p, q, µ. The őnal desired claim then follows
by combining the previous estimate with

∫︂

G−1[0,M)
Gp logµ(e+G) ≤ logµ(e+M)

∫︂

Rn

Gp.

We őnally comment on the case µ = 1. In this case, we must instead
deőne A1(t) = (p − q) log(t) + log log(t), which yields (2.2) for µ = 1. The
rest of the proof goes through essentially similarly in this case. □

With Lemma 2.2 proven, we may proceed to prove Theorem 1.3. We again
recall the statement.

Theorem 1.3. Suppose that f ∈W 1,n
loc (Ω,R

n) and Df ∈ Mn(K,Σ) with

K ∈ L∞
loc(Ω) and Σ logµ (e+Σ) ∈ L1

loc(Ω),
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for some µ ≥ 0. Then |Df |n logµ(e+ |Df |) ∈ L1
loc(Ω).

Proof. We select a ball B = B
n(x0, r) with r ≤ 1 such that B ⊂ Ω. By using

Lemma 2.1, we obtain that |Df | and Σ satisfy a reverse Hölder inequality
for all cubes Q with 2Q ⊂ B. It was shown in the proof of [13, Proposition
6.1] that in this case, the functions G,H : Rn → [0,∞) deőned by

G(x) = dist(x,Rn \B) |Df(x)|
n2

n+1

H(x) = dist(x,Rn \B)Σ
n

n+1 + χB(x)

(︃∫︂

B
Σ

)︃ n
n+1

satisfy a reverse Hölder inequality in all of Rn. In particular, it follows from
Lemma 2.2 that

(2.4)

∫︂

Rn

G
n+1
n logµ(e+G) ≤ a

∫︂

Rn

G
n+1
n + b

∫︂

Rn

H
n+1
n logµ(e+H).

We then assume 0 < ε < r, and denote Bε = {x ∈ B : dist(x,Rn\B) > ε}.
We note that for t ≥ 1, and p ≥ 1, we may estimate using Bernoulli’s
inequality that

e+ εtp = e(1 + εe−1tp) ≥ eε(1 + e−1tp)ε = (e+ tp)ε ≥ (e+ t)ε.

Hence, for every point x ∈ Bε, we have either |Df(x)| ≤ 1 and thus also
|Df(x)|n logµ (e+ |Df(x)|) ≤ logµ(e+ 1), or

G
n+1
n logµ(e+G) ≥ ε

n+1
n |Df |n logµ(e+ ε |Df |

n2

n+1 )

≥ ε
n+1
n

+µ |Df |n logµ(e+ |Df |).

Consequently,
∫︂

Bε

|Df |n logµ(e+ |Df |) ≤ |Bε| logµ(e+1)+ ε−
n+1
n

−µ

∫︂

Rn

G
n+1
n logµ(e+G).

On the other hand, G(n−1)/n ≤ |Df |n χB ∈ L1(Rn). For the H-term

of (2.4), we have H ≡ 0 outside B and H ≤ Σn/(n+1) + C in B with

C = ∥Σ∥n/(n+1)
L1(B)

< ∞. We recall that we have the elementary inequality

log(e+a+b) ≤ log(e+a)+log(e+b) for a, b ≥ 0, and that Σn/(n+1) ≤ 1+Σ.
Hence, we may estimate

∫︂

Rn

H
n+1
n logµ(e+H) ≤

∫︂

B
(Σ

n
n+1 + C)

n+1
n logµ

(︁

e+Σ
n

n+1 + C
)︁

≤
∫︂

B
2

n+1
n

+µ
(︁

Σ+ C
n+1
n

)︁(︁

logµ(e+Σ) + logµ(e+ C + 1)
)︁

<∞.

It follows that |Df |n logµ(e + |Df |) has őnite integral over Bε, which com-
pletes the proof of the claim. □
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2.3. Embedding theorems. As stated in the introduction, Theorem 1.2
is a direct corollary of combining Theorem 1.3 with a suitable version of
Morrey’s inequality for Zygmund spaces. Recall that the classical Morrey’s
inequality implies that if p > n, then elements of W 1,p

loc (Ω) have a locally
Hölder continuous representative, with Hölder exponent 1 − n/p. For a
Zygmund space version, we refer to e.g. [16, Theorem 3.1], which gives us
the following.

Theorem 2.4. Let Ω ⊂ R
n be a domain, and let f ∈W 1,n

loc (Ω) satisfy

|Df |n logµ(e+ |Df |) ∈ L1
loc(Ω),

where µ > n − 1. Then f has a continuous representative. In particular,
whenever 0 < r < R and Bn(x,R) ⊂ Ω, the modulus of continuity ωf (x0, r)
deőned in (1.5) satisőes

ωf (x, r) ≤ C(Df, µ, x,R) log
µ−n+1

n

(︃

1 +
2R

r

)︃

,

where

C(Df, µ, x,R) = −
∫︂

Bn(x,R)
|Df |n logµ

(︄

e+
|Bn(x, r)| |Df |
∥Df∥nLn(Bn(x,R))

)︄

.

Hence, by combining Theorems 1.3 and 2.4, the proof of Theorem 1.2 is
complete.

Due to us requiring it in the following subsection, we also recall the corre-
sponding result for µ ∈ [0, n−1). In this case, f is not necessarily continuous,
but does satisfy an exponential Sobolev embedding theorem. We refer to e.g.
[5, Theorem 2, Example 1] for the following result; note also that the case
µ = 0 corresponds to the classical Moser-Trudinger inequality.

Theorem 2.5. Let Ω ⊂ R
n be a domain, and let f ∈W 1,n

loc (Ω) satisfy

|Df |n logµ(e+ |Df |) ∈ L1
loc(Ω),

where 0 ≤ µ < n− 1. Then there exists λ > 0 such that

exp(λ |f |
n

n−1−µ ) ∈ L1
loc(Ω).

2.4. Continuity for (1.7) with bounded K. The őnal result we prove in
this section is Theorem 1.8. For the proof, we require the following lemma
on the integrability of products of functions.

Lemma 2.6. Let Ω ⊂ R
n be measurable, let µ, ν, λ > 0 be such that ν ≤ µ,

and let f, g : Ω → [0,∞] be measurable functions such that

f logµ(e+ f) ∈ L1
loc(Ω), exp

(︁

λg
1
ν

)︁

∈ L1
loc(Ω).

Then fg logµ−ν(e+ fg) ∈ L1
loc(Ω).

We begin the proof of Lemma 2.6 by recalling the proof of the following
elementary inequality. See e.g. [12, Lemmas 2.7, 6.2] for similar results and
proofs.
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Lemma 2.7. Let a, b ≥ 0, and κ, λ > 0. Then

ab < exp
(︂

λa
1
κ

)︂

+ C(κ, λ)b logκ(e+ b),

where C(κ, λ) ≥ 0.

Proof. Note that there exists a constant A = A(κ) such that

(2.5) exp(t) ≥ At2κ.

If ab ≤ exp(a1/κλ), then the claim is clear. Hence, we assume that ab >

exp(a1/κλ), with a goal of showing that ab < C(κ, λ)b logκ(e+ b).
By combining this assumption with (2.5), we have

a = a−1a2 ≤ a−1

(︄

exp(a1/κλ)

Aλ2κ

)︄

< a−1

(︃

ab

Aλ2κ

)︃

=
b

Aλ2κ
.

Consequently, we have

exp(a1/κλ) < ab <
b2

Aλ2κ
<

(e+ b)2

Aλ2κ
.

Taking logarithms yields

a1/κλ < log
(e+ b)2

Aλ2κ
= log

1

Aλ2κ
+ 2 log(e+ b).

In particular

a <

⃓

⃓

⃓

⃓

1

λ
log

1

Aλ2κ
+

2

λ
log(e+ b)

⃓

⃓

⃓

⃓

κ

≤ 2κ

λκ

⃓

⃓

⃓

⃓

log
1

Aλ2κ

⃓

⃓

⃓

⃓

κ

+
4κ

λκ
logκ(e+ b).

And hence, we obtain the desired estimate

ab <

(︃

2κ

λκ

⃓

⃓

⃓

⃓

log
1

Aλ2κ

⃓

⃓

⃓

⃓

κ)︃

b+

(︃

4κ

λκ

)︃

b logκ(e+ b)

≤
(︃

2κ

λκ

⃓

⃓

⃓

⃓

log
1

Aλ2κ

⃓

⃓

⃓

⃓

κ

+
4κ

λκ

)︃

b logκ(e+ b).

□

Proof of Lemma 2.6. We őrst observe that fg ∈ L1
loc(Ω). Indeed, Lemma

2.7 yields that fg ≤ exp(λg1/ν) + Cf logν(e + f), where both terms on the
right hand side are integrable by ν ≤ µ.

We then further estimate using Lemma 2.7

(2.6) fg logµ−ν(e+ fg)

≤ exp
(︂

2−1λg
1
ν

)︂

logµ−ν(e+ fg) + C1f log
ν(e+ f) logµ−ν(e+ fg).

We have exp
(︂

2−1λg
1
ν

)︂

∈ L2
loc(Ω), and also logµ(e+ f) ∈ L2

loc(Ω). It follows

that the őrst term on the right hand side of (2.6) is locally integrable. For
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the second term, we estimate e+ fg ≤ (e+ f)(e+ g), and hence

(2.7) f logν(e+ f) logµ−ν(e+ fg)

≤ C2

(︁

f logµ(e+ f) + f logν(e+ f) logµ−ν(e+ g)
)︁

.

The őrst term on the right hand side of (2.7) is locally integrable by assump-
tion. For the second term, we again use Lemma 2.7, this time with κ = µ−ν
and λ = 1. We get

f logν(e+ f) logµ−ν(e+ g)

≤ e+ g + C3f log
ν(e+ f) logµ−ν(e+ f logµ−ν(e+ f))

≤ e+ g + C4f log
µ(e+ f)

+ C4f log
ν(e+ f) logµ−ν(e+ logµ−ν(e+ f)),

where the right hand side is locally integrable by the local integrability of g
and f logµ(e+ f). Hence, the claim follows. □

We’re now ready to prove Theorem 1.8. We again recall the statement for
convenience.

Theorem 1.8. Let Ω be a domain in R
n. Suppose that a Sobolev mapping

f ∈W 1,n
loc (Ω,R

n) satisőes Df ∈ Mn(K,Σ, y0) with K : Ω → [1,∞), Σ: Ω →
[0,∞) and y0 ∈ R

n. If

K ∈ L∞
loc(Ω) and Σ logµ (e+Σ) ∈ L1

loc(Ω),

for some µ > n− 1, then f has a continuous representative.

Proof. Let q = µ − (n − 1) > 0. By slightly shrinking µ, we may assume
that n − 1 is not an integer multiple of q. By our assumption, we have
|Df |n ≤ KJf +Σ′, where Σ′ = Σ |f − y0|n.

By the Moser-Trudinger inequality (case q = 0 of Theorem 2.5), there
exists λ0 > 0 such that

exp
(︂

λ0 |f − y0|
n

n−1

)︂

∈ L1
loc(Ω).

Combining this with our assumption that Σ logµ(e + Σ) ∈ L1
loc(Ω) and re-

calling that q = µ− (n− 1), we can thus use Lemma 2.6 to conclude that

Σ′ logq(e+Σ′) ∈ L1
loc(Ω).

Using Theorem 1.3, we hence conclude that

|Df |n logq(e+ |Df |) ∈ L1
loc(Ω).

If q > n − 1, we are now done, since Theorem 2.4 implies that f has a
continuous representative. Otherwise, we proceed to iterate this argument.
Indeed, since |Df |n logq(e+|Df |) ∈ L1

loc(Ω), Theorem 2.5 yields us a slightly
better estimate

exp
(︂

λ1 |f − y0|
n

(n−1)−q

)︂

∈ L1
loc(Ω)
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for some λ1 > 0. Lemma 2.6 then yields that

Σ′ log2q(e+Σ′) = Σ′ logµ−((n−1)−q)(e+Σ′) ∈ L1
loc(Ω),

from which we get that

|Df |n log2q(e+ |Df |) ∈ L1
loc(Ω).

Then next iteration of this argument then yields |Df |n log3q(e + |Df |) ∈
L1
loc(Ω), the next iteration after that yields |Df |n log4q(e+ |Df |) ∈ L1

loc(Ω),
et cetera.

We may continue this iteration until |Df |n logkq(e + |Df |) ∈ L1
loc(Ω),

where k is the smallest positive integer such that kq > n − 1. Indeed, we
assumed n − 1 not to be an integer multiple of q, so (k − 1)q is a valid
exponent for Theorem 2.5. Moreover, we also must have kq < µ, since
kq = (k − 1)q + q < (n − 1) + q = µ. Hence, it follows that f has a
continuous representative by Theorem 2.4. □

3. Direct continuity results

In this section, we prove Theorems 1.7 and 1.9. The method is a gen-
eralization of the approach used in [18, Section 3]. In particular, we prove
a decay estimate for the integral of |Df |n over balls, which then implies
continuity by using a chain of balls argument as in [11].

We begin by recalling an estimate that is used in the proofs of similar
continuity results for mappings of őnite distortion; see e.g. [22, Section 3] or
[12, Theorem 5.18]. We give the proof for the convenience of the reader.

Lemma 3.1. Let Ω ⊂ R
n be a domain, and let exp(K) ∈ Lλ(Ω) with λ > 0.

Then there exist constants C = C(Ω,K, λ) > 0 and R0 = R0(Ω,K, λ) as
follows: if x ∈ Ω, R < min(R0, d(x, ∂Ω)) and r ∈ (0, R/e3), then

∫︂ R

r
s−1

(︄

−
∫︂

∂Bn(x,s)
Kn−1

)︄− 1
n−1

ds ≥ λ

n

(︃

log log
C

rn
− log log

Ce2

Rn

)︃

.

Proof. We denote Bs = B
n(x, s). We let k be the largest integer such that

rek ≤ R. Since r < R/e3, we must have k ≥ 3. We deőne the function

K̃ = max(K, (n−2)λ−1), where we still have exp(K̃) ∈ Lλ
loc(Ω). We estimate

K ≤ K̃, perform a change of variables, and split the integral into a sum as
follows:

∫︂ R

r
s−1

(︃

−
∫︂

∂Bs

Kn−1

)︃− 1
n−1

ds ≥
k−1
∑︂

i=1

∫︂ i+1+log r

i+log r

(︄

−
∫︂

∂Bet

K̃
n−1

)︄− 1
n−1

dt.

We then use Jensen’s inequality a total of three times, with the convex

functions τ ↦→ τ−1, τ ↦→ exp(λτ
1

n−1 ) and τ ↦→ exp(τ). Note that τ ↦→
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exp(λτ
1

n−1 ) is only convex for τ ≥ ((n − 2)λ−1)n−1, but the range of K̃
n−1

is in this region. The resulting estimate is

∫︂ i+1+log r

i+log r

(︄

−
∫︂

∂Bet

K̃
n−1

)︄− 1
n−1

dt ≥

⎛

⎝

∫︂ i+1+log r

i+log r

(︄

−
∫︂

∂Bet

K̃
n−1

)︄ 1
n−1

dt

⎞

⎠

−1

≥ λ

(︄

∫︂ i+1+log r

i+log r
log

(︄

−
∫︂

∂Bet

exp(λK̃)

)︄

dt

)︄−1

≥ λ log−1

∫︂ i+1+log r

i+log r

(︄

−
∫︂

∂Bet

exp(λK̃)

)︄

dt.

Now we may estimate

log−1

∫︂ i+1+log r

i+log r

(︄

−
∫︂

∂Bet

exp(λK̃)

)︄

dt = log−1

∫︂ rei+1

rei

(︃

−
∫︂

∂Bs

exp(λK̃)

)︃

ds

s

= log−1

∫︂ rei+1

rei

1

ωn−1sn

(︃∫︂

∂Bs

exp(λK̃)

)︃

ds ≥ log−1
∥exp(λK̃)∥L1(Ω)

ωn−1(rei)n
.

We then select C = ∥exp(λK̃)∥L1(Ω)/ωn−1. The sum of the above terms over
i can now be estimated by

k−1
∑︂

i=1

∫︂ i+1+log r

i+log r

(︄

−
∫︂

∂Bet

K̃
n−1

)︄− 1
n−1

dt ≥ λ

k−1
∑︂

i=1

log−1 C

(rei)n

≥ λ

∫︂ k−1

0
log−1 C

(ret)n
dt ≥ λ

∫︂ R/e2

r
s−1 log−1 C

sn
ds

=
λ

n

(︃

log log
C

rn
− log log

Ce2

Rn

)︃

.

The claim hence holds, assuming that log log(Ce2/Rn) is well deőned; this
is the case if we select Rn

0 = Ce. □

We then consider the following abstract differential inequality of real func-
tions, and show that it yields a decay condition. This is a more general
version of [18, Lemma 3.2], which is essentially given by the case Ψ(r) = r
and Γ(r) = Crα.

Lemma 3.2. Let A > 0, and let Φ: [0, R] → [0, S], Ψ: [0, R] → [0,∞), and
Γ: [0, R] → [0,∞) be absolutely continuous increasing functions such that
Φ(0) = 0. Suppose that

Φ(r) ≤ A
Ψ(r)

Ψ′(r)
Φ′(r) + Γ(r)
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for a.e. r ∈ (0, R), where A > 0. Then there exists a constant C =
C(A,R, S,Ψ,Γ) ≥ 0 such that we have

Φ(r) ≤ Γ(r) + CΨA−1
(r)

(︃

1 +

∫︂ R

r

Γ′(s)

ΨA−1(s)
ds

)︃

for all r ∈ [0, R].

Proof. We őnd an integrating factor for the terms involving Φ:

− d

ds
(Ψ−A−1

(s)Φ(s)) =

(︃

Φ(s)−A
Ψ(s)

Ψ′(s)
Φ′(s)

)︃

(︂

A−1Ψ−A−1−1(s)Ψ′(s)
)︂

≤ −Γ(s)
d

ds
Ψ−A−1

(s).

We then integrate on both sides over [r,R], and use integration by parts:

Ψ−A−1
(r)Φ(r)−Ψ−A−1

(R)Φ(R) ≤ −
∫︂ R

r
Γ(s)

(︃

d

ds
Ψ−A−1

(s)

)︃

ds

= Γ(r)Ψ−A−1
(r)− Γ(R)Ψ−A−1

(R) +

∫︂ R

r

Γ′(s)

ΨA−1(s)
ds.

Multiplying by ΨA−1
(r) and moving the negative term to the right hand side

yields the desired

Φ(r) ≤ Γ(r) +
S − Γ(R)

ΨA−1(R)
ΨA−1

(r) + ΨA−1
(r)

∫︂ R

r

Γ′(s)

ΨA−1(s)
ds.

□

Combining Lemmas 3.1 and 3.2 allows us to show the following decay
estimate.

Lemma 3.3. Let Ω ⊂ R
n be a connected domain. Let f ∈W 1,n(Ω,Rn) and

Df ∈ Mn(K,Σ) with exp(λK) ∈ L1(Ω) and Σ logµ (e+Σ) ∈ L1(Ω), where
µ > λ > 0. Then there exists R0 = R0(Ω, λ,K) > 0 as follows: for any
choice of x ∈ Ω and R ∈ (0, R0) such that Bn(x,R) ⊂ Ω, we have

∫︂

Bn(x,r)

|Df |n
K

≤ C log−λ r−1.

for all r ∈ (0, R/e3), where C = C(Ω, λ, µ,K,Σ, R, ∥Df∥Ln(Ω)). Notably, C

is independent of x.

Proof. We choose R0 < e−1 such that Lemma 3.1 holds for R < R0: note
that this choice depends only on Ω, λ, and K. We őx a point x ∈ Ω and a
radius R < R0 such that B

n(x,R) ⊂ Ω, and we denote Br = B
n(x, r) for all

r ∈ [0, R]. We then deőne a function Φ: [0, R] → [0,∞) by

Φ(r) =

∫︂

Br

|Df |n
K

.
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By using the deőnition of Mn(K,Σ), we may estimate Φ(r) by
∫︂

Br

|Df |n
K

≤
∫︂

Br

Jf +

∫︂

Br

Σ

K
.

For the őrst term on the right hand side, we apply the isoperimetric in-
equality of Sobolev maps, see e.g. [24, Lemma II.1.2 and (II.1.7)], followed
by a use of Hölder’s inequality. The result is

∫︂

Br

Jf ≤ 1

n n−1
√
ωn−1

(︃∫︂

∂Br

|Df |n−1

)︃ n
n−1

≤ 1

n n−1
√
ωn−1

(︃∫︂

∂Br

Kn−1

)︃ 1
n−1

∫︂

∂Br

|Df |n
K

=
r

n

(︃

−
∫︂

∂Br

Kn−1

)︃ 1
n−1

∫︂

∂Br

|Df |n
K

for a.e. r ∈ [0, R]. For the other term, using K ≥ 1, Σ logµ+ (Σ) ∈ L1(Ω), and

r ≤ R < R0 < e−1, we estimate that
∫︂

Br

Σ

K
≤
∫︂

Br

Σ ≤
∫︂

{z∈Br:Σ(z)≤r−1}
Σ+

∫︂

{z∈Br:Σ(z)>r−1}
Σ

≤
∫︂

{z∈Br:Σ(z)≤r−1}
r−1 +

∫︂

{z∈Br:Σ(z)>r−1}

Σ logµΣ

logµ r−1

≤ voln(Br)

r
+ log−µ r−1

∫︂

Br

Σ logµ(e+Σ) ≤ C1 log
−µ r−1

for some C1 = C1(n, µ,Σ, R) ≥ 0. In conclusion, we have

(3.1) Φ(r) ≤ r

n

(︃

−
∫︂

∂Br

Kn−1

)︃ 1
n−1

Φ′(r) + C1 log
−µ r−1

for all r ∈ (0, R).
We then deőne

Ψ(r) = exp

(︄

−
∫︂ R

r
s−1

(︃

−
∫︂

∂Bs

Kn−1

)︃− 1
n−1

ds

)︄

.

A simple computation by chain rule hence reveals that

Ψ′(r) = Ψ(r)r−1

(︃

−
∫︂

∂Br

Kn−1

)︃− 1
n−1

for all r ∈ (0, R). In particular, (3.1) now reads as

Φ(r) ≤ 1

n

Ψ(r)

Ψ′(r)
Φ′(r) + C1 log

−µ r−1.

We also note that since K ≥ 1, we have Φ(r) ≤ S for all r ∈ [0, R] with
S = ∥Df∥Ln(Ω). Hence, we are in position to apply Lemma 3.2, which yields
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that

(3.2) Φ(r) ≤ C1 log
−µ r−1 + C2

(︃

Ψn(r) +

∫︂ R

r

Ψn(r)

Ψn(s)

ds

s logµ+1(s−1)

)︃

when r ∈ [0, R/e3], for some C2 = C2(Ω, λ, µ,K,Σ, R, ∥Df∥Ln(Ω)).

Lemma 3.1 yields that for r ∈ (0, R/e3), we have

Ψn(r) ≤ exp

(︃

−nλ
n

(︃

log log
C3

rn
− log log

C3e
2

Rn

)︃)︃

=

(︃

log(C3e
2R−n)

log(C3r−n)

)︃λ

≤ C4 log
−λ r−1,

where C3 = C3(Ω, λ,K) and C4 = C4(Ω, λ,K,R). Since µ > λ, we also have

log−µ r−1 ≤ C5 log
−λ r−1

for all r ∈ (0, R/e3], where C5 = C5(µ, λ,R). Hence, in order to obtain the
claimed decay estimate for Φ from (3.2), it remains to estimate the term
with the integral.

For this, we let r ∈ (0, R/e3), and split the integral into two parts:

∫︂ R

r

Ψn(r)

Ψn(s)

ds

s logµ+1(s−1)

=

∫︂ e3r

r

Ψn(r)

Ψn(s)

ds

s logµ+1(s−1)
+

∫︂ R

e3r

Ψn(r)

Ψn(s)

ds

s logµ+1(s−1)
.

In the range of the latter integral, we have r < s/e3, which allows us to use
Lemma 3.1 again to estimate

Ψn(r)

Ψn(s)
= exp

(︄

−n
∫︂ s

r
t−1

(︃

−
∫︂

∂Bt

Kn−1

)︃− 1
n−1

dt

)︄

≤
(︃

log(C3e
2s−n)

log(C3r−n)

)︃λ

.

Hence, by using the fact that µ− λ > 0, and the fact that s−1 log−1−t(s−1)
is integrable for t > 0, the second integral can now be estimated by

∫︂ R

e3r

Ψn(r)

Ψn(s)

ds

s logµ+1(s−1)
≤
∫︂ R

e3r

(︃

log(C3e
2s−n)

log(C3r−n)

)︃λ
ds

s logµ+1(s−1)

≤
(︃∫︂ R

0

ds

s log−λ(C3e2s−n) logµ+1(s−1)

)︃

log−λ C3

rn
≤ C6 log

−λ r−1

where C6 = C6(Ω, λ, µ,K,R). On the other hand, for the őrst integral, we
may merely use the fact that Ψ is increasing to estimate that Ψn(s) ≥ Ψn(r),
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which again combined with µ > λ yields that

∫︂ e3r

r

Ψn(r)

Ψn(s)

ds

s logµ+1(s−1)
≤
∫︂ e3r

r

ds

s logµ+1(s−1)

=
1

µ

(︃

log−µ 1

e3r
− log−µ 1

r

)︃

≤ C7 log
−λ r−1

where C7 = C7(µ, λ,R). The proof of the claimed estimate is hence complete.
□

We then proceed to prove Theorem 1.7. We again begin by recalling the
statement.

Theorem 1.7. Let Ω ⊂ R
n be a domain, and let f ∈ W 1,n

loc (Ω,R
n) and

Df ∈ Mn(K,Σ) with

exp(λK) ∈ L1
loc(Ω) and Σ logµ (e+Σ) ∈ L1

loc(Ω),

for some µ > λ > n+ 1. Then f has a continuous representative.
In particular, for all x0 ∈ Ω and sufficiently small r > 0, we have the

following local modulus of continuity estimate:

ωf (x0, r) ≤ C log−α(1/r) where α =
λ− n− 1

n
.

Proof. Fix a ball B = B
n(x,R) such that B is compactly contained in Ω and

R < R0, with R0 given by Lemma 3.3. Let A ⊂ B be the set of all Lebesgue
points of f in B. We show őrst that the restriction of f to A∩Bn(x,R/(4e3))
is continuous. For this, let y, z ∈ A ∩ B

n(x,R/(4e3)).
We may select a two-sided sequence balls Bi ⊂ B, i ∈ Z in the fol-

lowing way: B0 = B
n((y + z)/2, r0) with r0 = |y − z| ∈ (0, R/(2e3)),

Bi = B
n(y, e−|i|r0) for i ∈ Z>0, Bi = B

n(z, e−|i|r0) for i ∈ Z<0. We denote
the integral average of f over Bi by fBi

∈ R
n; since y and z are Lebesgue

points, we have

(3.3) lim
i→∞

fBi
= f(y), lim

i→−∞
fBi

= f(z).

Moreover, since B
n(y,R/2) and B

n(z,R/2) and B
n((y + z)/2, R/2) are all

contained in B and ri < (R/2)/e3, Lemma 3.3 yields for every i ∈ Z that

(3.4)

∫︂

Bi

|Df |n
K

≤ C1 log
−λ 1

ri
= C1

(︃

log
1

|y − z| + |i|
)︃−λ

,

with C1 = C1(B, λ, µ,K,Σ, R/2, ∥Df∥Ln(B)) independent of y, z, and i.

We then estimate |fBi+1 − fBi
|. We present the case i ≥ 0, as the case

i < 0 is similar but with i and i − 1 switched. Since Bi+1 ⊂ Bi and the
radius of Bi+1 is e−1 times the radius of Bi, we have by the Sobolev-Poincaré
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inequality that

⃓

⃓fBi+1 − fBi

⃓

⃓ ≤ −
∫︂

Bi+1

|f − fBi
| ≤ e−n−

∫︂

Bi

|f − fBi
|

≤ C2(n)ri

(︃

−
∫︂

Bi

|Df |n−1

)︃ 1
n−1

.

We then use Hölder’s inequality to estimate that

ri

(︄

−
∫︂

Bri

|Df |n−1

)︄ 1
n−1

≤ ri

(︄

−
∫︂

Bri

|Df |n
K

)︄ 1
n
(︄

−
∫︂

Bri

Kn−1

)︄ 1
n2

−n

=
1

n
√
ωn

(︄

∫︂

Bri

|Df |n
K

)︄ 1
n
(︄

−
∫︂

Bri

Kn−1

)︄ 1
n2

−n

.

Applying the decay estimate (3.4), we hence have that

⃓

⃓fBi+1 − fBi

⃓

⃓ ≤ C3

(︄

−
∫︂

Bri

Kn−1

)︄ 1
n2

−n
(︃

log
1

|y − z| + |i|
)︃−λ

n

,

where C3 = C3(B, λ, µ,K,Σ, ∥Df∥Ln(B)). We then estimate the average

integral term. For this, we again deőne K̃ = max(K, (n − 2)λ−1) as in

Lemma 3.1, and use Jensen’s inequality with the function τ ↦→ exp(λτ
1

n−1 ).
This yields the estimate

(3.5)

(︄

−
∫︂

Bri

Kn−1

)︄ 1
n2

−n

≤ λ−
1
n log

1
n

(︄

−
∫︂

Bri

exp(λK̃)

)︄

≤ λ−
1
n log

1
n

(︄

∥exp(λK̃)∥L1(B)

ωnrni

)︄

≤ C4 log
1
n
1

ri
= C4

(︃

log
1

|y − z| + |i|
)︃ 1

n

,

where C4 = C4(B, λ,K).
Now, by (3.3) and a telescopic sum argument, we obtain that

(3.6) |f(y)− f(z)| ≤
∞
∑︂

i=−∞

⃓

⃓fBi+1 − fBi

⃓

⃓ ≤ 2
∞
∑︂

i=0

C5

(︃

log
1

|y − z| + i

)︃
1−λ
n

,

with C5 = C5(B, λ, µ,K,Σ, ∥Df∥Ln(B)). We then denote a = log(1/ |y − z|),
noting that a > 1 since |y − z| < R < R0 < e−1. Since we also assume that
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λ > n+1, we have that i ↦→ (a+i)(1−λ)/n is decreasing, and we may estimate

∞
∑︂

i=0

(a+ i)
1−λ
n ≤ a

1−λ
n +

∫︂ ∞

0
(a+ t)

1−λ
n dt

= a−
λ−1
n +

n

λ− n− 1
a−

λ−n−1
n ≤ λ− 1

λ− n− 1
a−

λ−n−1
n .

In conclusion,

(3.7) |f(y)− f(z)| ≤ 2C5

∞
∑︂

i=0

(a+ i)
1−λ
n

≤ 2C5
λ− 1

λ− n− 1
a−

λ−n−1
n = C6 log

−λ−n−1
n

1

|y − z| ,

with C6 = C6(B, λ, µ,K,Σ, ∥Df∥Ln(B)).

We hence have obtained the desired modulus of continuity for all Lebesgue
points y, z ∈ A ∩ B

n(x,R/(4e3)). Now, if y ∈ B
n(x,R/(4e3)) \ A, we

can then use the fact that A has full measure in B
n(x,R/(4e3)) to select

yj ∈ A ∩ B
n(x,R/(4e3)) such that yj → y as j → ∞. By (3.7), (f(yj)) is a

Cauchy sequence, and therefore convergent. We select f(y) = limj→∞ f(yj);
doing this for all y ∈ B

n(x,R/(4e3)) \ A only changes the values of f in a
set of measure zero, and doesn’t change f(y) in points y where f is con-
tinuous. Now, by passing to the limit, we see that (3.7) applies to all
y, z ∈ B

n(x,R/(4e3)). Hence, f has a continuous representative with the
desired modulus of continuity. □

Theorem 1.9 then follows as an immediate corollary of already proven
results.

Theorem 1.9. Let Ω be a domain in R
n. Suppose that a Sobolev mapping

f ∈W 1,n
loc (Ω,R

n) satisőes Df ∈ Mn(K,Σ, y0) with K : Ω → [1,∞), Σ: Ω →
[0,∞) and y0 ∈ R

n. If

exp(λK) ∈ L1
loc(Ω) and Σ logµ (e+Σ) ∈ L1

loc(Ω),

for some µ > λ+ n− 1 > 2n, then f has a continuous representative.
In particular, for all x0 ∈ Ω and sufficiently small r > 0, we have the

following local modulus of continuity estimate:

ωf (x0, r) ≤ C log−α(1/r) where α =
λ− n− 1

n
.

Proof. Since Σ logµ (e+Σ) ∈ L1
loc(Ω), and since exp(A |f |n/(n−1)) ∈ L1

loc(Ω)

for some A > 0 by Theorem 2.5, we have Σ |f |n logµ−n+1 (e+Σ |f |n) ∈
L1
loc(Ω) by Lemma 2.6, where µ − n + 1 > λ > n + 1. Hence, the claim

follows by applying Theorem 1.7. □
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4. Counterexamples based on cusps

In this section, we consider our őrst type of counterexample, which yields
Theorems 1.6 and 1.11. Our construction will be in a planar disk D(r0) with
center at the origin and radius r0. Our constructed mapping f : D(r0) → R

2

has a őrst coordinate function of − log log |z|−1, which is well deőned in
D(r0) \ {0} as long as r0 is small enough. We split the disk D(r0) into two
regions D(r0) = A ∪ B with different deőnitions of the second coordinate

function, where in A we aim to have Jf (x) ≥ 0 with |Df(x)|2 ≤ KJf (x),

and in B we try to obtain Jf (x) ≤ 0 and |Df(x)|2 + K |Jf (x)| ≤ Σ. The
region B will form a cusp at the origin.

4.1. The two regions. Let Ω = D(r0), where we assume that r0 ≤ e−e.
We begin by assuming that γ is an absolutely continuous increasing function
γ : [0, r0) → [0, 1) such that γ(0) = 0. We specify γ later in the text, as
we use different choices of γ to prove different theorems. We will use polar
coordinates (r, θ) on the domain side in Ω, where θ ∈ (−π, π].

The regions A,B ⊂ Ω will consist of two sub-regions A = A1 ∪ A2 and
B = B1 ∪ B2 each. We let B1 be the cusp-like region of Ω bounded by the
curves θ = γ(r) and θ = −γ(r). Similarly, we let A1 be the region bounded
by the curves θ = γ(r) and θ = π − γ(r). The region B2 is the reŕection
−B1 of B1 across the origin, and similarly A2 = −A1. See Figure 1 for an
illustration.

A1

B1B2

A2

θ = γ(r)

θ = −γ(r)
θ = π − γ(r)

θ = −π + γ(r)

Figure 1. The regions A1, A2, B1 and B2.

4.2. The function f in the region A. We őrst deőne f in the region A1.
There, using polar coordinates on the domain side and Cartesian coordinates
on the target side, we have

(4.1) f(r, θ) = (− log log r−1, h(r)θ)

for some absolutely continuous increasing function h : [0,∞) → [0,∞). We
again specify h later.

Hence, we obtain a matrix of derivatives
[︃

∂rf1 r−1∂θf1
∂rf2 r−1∂θf2

]︃

=

[︃

r−1 log−1 r−1 0
h′(r)θ r−1h(r)

]︃

.
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In particular,

(4.2) |Df(r, θ)|2 ≤ 1

r2 log2 r−1
+ [h′(r)θ]2 +

h2(r)

r2

and

(4.3) Jf (r, θ) =
h(r)

r2 log r−1
≥ 0.

We then simply pick K = |Df |2 /Jf and Σ ≡ 0.
On A2, we deőne f(z) = f(−z). Since z ↦→ −z is an orientation-preserving

isometry in the plane, it follows that (4.2) and (4.3) remain true in A2.

4.3. The function f in the region B. We wish that our function f is
continuous outside the origin. Hence, our boundary values in B1 must match
the ones given by A1 and A2. For this, we deőne the second coordinate of f
as a linear interpolation of these boundary values. That is, we deőne in B1

that

(4.4) f(r, θ) =

(︃

− log log r−1, h(r)

(︃

π + 2θ − πθ/γ(r)

2

)︃)︃

.

Indeed, in the cases θ = γ(r) and θ = −γ(r), the second coordinate has the
correct boundary values of h(r)γ(r) and h(r)(π − γ(r)), respectively.

The derivatives of the őrst coordinate of f remain unchanged from domain
A. For the other terms in the matrix of derivatives, we őrst get

(4.5) ∂rf2 =
(︂π

2
+ θ
)︂

h′(r)− πθ

2

d

dr

(︃

h(r)

γ(r)

)︃

.

Then, by γ(r) < 1, we get

(4.6) r−1∂θf2 =
h(r)

r

(︃

1− π

2γ(r)

)︃

< −
(︂π

2
− 1
)︂ h(r)

rγ(r)
.

In particular, we have that r−1∂θf2 < 0, and consequently Jf < 0 in B1.

Hence, in B1, we select K = − |Df |2 /Jf ≥ 1, and Σ = 2 |Df |2.
Similarly as for A2, we may deőne f in B2 by f(z) = f(−z), and all our

considerations will also apply to B2.

4.4. Fixing the parameters. We have now outlined the construction, but
have left the functions h and γ undetermined. The theorems we wish to
prove follow with different choices of h and γ.

Throughout the rest of this paper, given two functions f, g : X → R, we
use the notation f ≲ g if there exists a constant C > 0 such that f ≤ Cg.
We also denote f ≈ g if f ≲ g ≲ f . Several of the uses of these symbols
are based on the elementary fact that if f, g : [a,∞) → (0,∞), a ∈ R, are
continuous and lim supt→∞ f(t)/g(t) <∞, then f ≲ g.

We now recall the statement of Theorem 1.11, and then give its proof.



26 ANNA DOLEŽALOVÁ, ILMARI KANGASNIEMI, AND JANI ONNINEN

Theorem 1.11. Let p, q ∈ (1,∞). If p−1 + q−1 ≥ 1, then there exists
a domain Ω ⊂ R

2 and a Sobolev map f ∈ W 1,2(Ω,R2) such that 0 ∈ Ω,
f ∈ C(Ω \ {0},R2), limx→0 |f(x)| = ∞, and Df ∈ M2(K,Σ) with

K ∈ Lp(Ω) and
Σ

K
∈ Lq(Ω).

Proof. Let p, q ∈ (1,∞), and let ε > 0. We select r0 = e−e and

h(r) = r2p
−1
, γ(r) = log−ε r−1.

Indeed, when r < e−e, we have 0 ≤ γ(r) < e−ε < 1.
In A1, we have by (4.2) that

|Df(r, θ)|2 ≤ 1

r2 log2 r−1
+

(︃

4π2

p2
+ 1

)︃

r−2+2p−1
≲

1

r2 log2 r−1
.

Hence, |Df | ∈ L2(A). By also referring to (4.3), we have in A1 the estimate

K(r, θ) =
|Df(r, θ)|2
Jf (r, θ)

≲
1

r2p−1 log r−1
.

We hence estimate that
∫︂

A
Kp = 2

∫︂ e−e

0

∫︂ π−γ(r)

γ(r)
Kp(r, θ)r dθ dr

≲

∫︂ e−e

0
r−1 log−p r−1 dr <∞,

showing that K ∈ Lp(A).
We then consider points (r, θ) in B1. By (4.5) and |θ| ≤ γ(r) < 1 ≤ π, we

have

|∂rf2(r, θ)|2 =
⃓

⃓

⃓

⃓

2θ + π

p
r2p

−1−1 +
πθ logε r−1

2
r2p

−1−1

(︃

2

p
− ε

log r−1

)︃⃓

⃓

⃓

⃓

2

≲ r4p
−1−2

(︁

1 + log−2+2ε r−1
)︁

.

Furthermore, by (4.6),
⃓

⃓r−1∂θf2(r, θ)
⃓

⃓

2
≲ r4p

−1−2 log2ε r−1.

The exponent 4p−1 − 2 in the above bounds is greater than −2. Hence, we
have the overall estimate

(4.7) |Df(r, θ)|2 ≈ 1

r2 log2 r−1

whenever (r, θ) ∈ B1. In particular, we have |Df | ∈ L2(B1), and conse-
quently |Df | ∈ L2(Ω). Moreover, we have

−Jf (r, θ) =
(︂π

2
logε r−1 − 1

)︂

r2p
−1−2 log−1 r−1,

so by logε r−1 > 1 we get the two-sided estimate

(4.8) − Jf (r, θ) ≈ r2p
−1−2 logε−1 r−1.
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Combined with (4.7), this yields

|Df(r, θ)|2
−Jf (r, θ)

= K(r, θ) ≈ 1

r2p−1 log1+ε r−1
.

Since p(2p−1) = 2 and p(1 + ε) > 1, we see that K ∈ Lp(B), and hence
K ∈ Lp(Ω).

It hence remains to consider the integral (Σ/K)q over B. Since we chose

Σ = |Df |2 and K = |Df |2 /(−Jf (x)), we have Σ/K = −Jf (x). Hence, by

(4.8), we have Σ/K ≲ r2p
−1−2 logε−1 r−1. We note that since B is a cusp,

this majorant in fact has a better degree of integrability over B than it has
over Ω. In particular, we may estimate that

∫︂

B

Σq

Kq
≲

∫︂ e−e

0

∫︂ γ(r)

−γ(r)

r dθ dr

r2q−2p−1q logq−qε r−1

≤ 2

∫︂ e−e

0

dr

r2q−2p−1q−1 logq−(q−1)ε r−1
.

For integrability, we require 2q − 2p−1q − 1 ≤ 1, which is equivalent to
q−1 ≥ 1−p−1. Moreover, in the extremal case q−1+p−1 = 1, we also require
q− (q−1)ε > 1, which is equivalent to ε < 1. Hence, any choice of ε ∈ (0, 1)
will give us the desired example. □

Our next result is the version of this example with the highest degree of
integrability for Σ. This is by a different choice of h and γ, and hence this
gain in the regularity of Σ comes at a cost in the regularity of Σ/K.

Theorem 4.1. Let p, s ∈ (1,∞). If (p + 1)−1 + s−1 ≥ 1, then there exists
a domain Ω ⊂ R

2 and a Sobolev map f ∈ W 1,2(Ω,R2) such that 0 ∈ Ω,
f ∈ C(Ω \ {0},R2), limx→0 |f(x)| = ∞, and Df ∈ M2(K,Σ) with

K ∈ Lp(Ω) and Σ ∈ Ls(Ω).

Proof. Let p, q ∈ (1,∞), and let ε > 0. This time we choose

h(r) = r2p
−1
, γ(r) = r2p

−1
log r−1.

We may select an r0 ≤ e−e such that γ is increasing on [0, r0] and γ(r0) < 1.
The veriőcation that K ∈ Lp(A) is unchanged from the previous lemma.

The difference arises when applying (4.5) and (4.6). Indeed, since |θ| ≤
r2p

−1
log r−1 ≤ 1, we obtain.

|∂rf2(r, θ)|2 =
⃓

⃓

⃓

⃓

2θ + π

p
r2p

−1−1 +
πθ

2
r−1 log−2 r−1

⃓

⃓

⃓

⃓

2

≲ r4p
−1−2 + r−2 log−4 r−1,

and
⃓

⃓r−1∂θf2(r, θ)
⃓

⃓

2
≲ r−2 log−2 r−1.
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In all of the previously computed terms, either the exponent of r is greater
than −2, or the exponent of r is −2 and the exponent of the logarithm is
at most −2. Hence, we still have (4.7) unchanged. For Jf , we compute
similarly as in the last lemma, and instead get

(4.9) − Jf (r, θ) ≈ r−2 log−2 r−1

when (r, θ) ∈ B. In particular, K = |Df |2 /(−Jf ) ∈ L∞(B).
It remains to estimate the integral of Σs = (2 |Df |)s over B. Computing

similarly as in the previous lemma, we get

∫︂

B
Σs ≲

∫︂ r0

0

∫︂ γ(r)

−γ(r)

r dθ dr

r2s log2s r−1

≤ 2

∫︂ r0

0

dr

r2s−2p−1−1 log2s−1 r−1
.

For this to converge, since the exponent of the logarithm satisőes 2s− 1 > 1
due to s > 1, we only require 2s − 2p−1 − 1 ≤ 1. Rearranging yields s ≤
1 + p−1 = (p + 1)∗, where (p + 1)∗ is the Hölder conjugate of p + 1. In
particular, this is equivalent with (p+ 1)−1 + s−1 ≥ 1. □

The remaining result which relies on this example type is Theorem 1.6.
This is achieved by selecting both h and γ to be powers of logarithms, with
a suitable choice of corresponding exponents.

Theorem 1.6. For every µ ∈ (0, 2), there exist a domain Ω ⊂ R
2 and

a Sobolev map f ∈ W 1,2(Ω,R2) such that 0 ∈ Ω, f ∈ C(Ω \ {0},R2),
limx→0 |f(x)| = ∞, and Df ∈ M2(K,Σ) with

exp(λK) ∈ L1(Ω) and Σ logµ(e+Σ) ∈ L1(Ω)

for every λ > 0.

Proof. Let λ ∈ (0,∞). We may assume µ > 1, as an example for a given µ
also works for all smaller µ. We choose

h(r) = log−ν r−1, γ(r) = log1−ν r−1,

Where ν ∈ (µ, 2). Since ν > µ > 1 by assumption, γ is increasing, and we
may hence choose r0 = e−e as γ(e−e) = e1−ν < 1.

In A1, (4.2) yields due to ν > 1 that

|Df(r, θ)|2 ≤ 1

r2 log2 r−1
+

ν

r2 log2ν+2 r−1
+

1

r2 log2ν r−1
≲

1

r2 log2 r−1
.

Hence, clearly |Df | ∈ L2(A). Moreover, Jf = r−2 log−1−ν r−1, so

K(r, θ) ≤ C logν−1 r−1
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for some C > 0. The exponential integrals of K are all őnite by the estimate
∫︂

A
exp(λK) ≤ 2π

∫︂ e−e

0
exp(Cλ logν−1 r−1)r dr

= 2π

∫︂ e−e

0
r1−Cλ logν−2 r−1

dr <∞,

since limr→0+ Cλ log
ν−2 r−1 = 0 due to ν < 2.

In B1, (4.5) and (4.6) combined with |θ| ≤ log1−ν r−1 ≤ 1 ≤ π result in

|∂rf2(r, θ)|2 =
⃓

⃓

⃓

⃓

2νθ + πν

2
r−1 log−ν−1 r−1 +

πθ

2
r−1 log−2 r−1

⃓

⃓

⃓

⃓

2

≲ r−2
(︁

log−2−2ν r−1 + log−4 r−1
)︁

and
⃓

⃓r−1∂θf2(r, θ)
⃓

⃓

2
≲ r−2 log−2 r−1.

As logt r−1 is increasing with respect to t when r < e−e, we again have

|Df(r, θ)|2 ≤ C ′

r2 log2 r−1

in B1 for some C ′ > 0. For the Jacobian, we instead get

(4.10) − Jf (r, θ) ≈ r−2 log−2 r−1.

In particular, our choice K = |Df |2 /(−Jf ) is in L∞(B), concluding expo-
nential integrability of K in all of Ω for all choices of λ.

The last step is to estimate the integral of Σ logµ(e + Σ) over B1, where

Σ = 2 |Df |2. We estimate using (e+ ab) ≤ (e+ a)(e+ b) for a, b ≥ 0 that

log(e+Σ) ≤ log

(︃

e+
2C ′

r2 log2 r−1

)︃

≤ log

(︃

e+
2C ′

log2 r−2

)︃

+ 2 log(e+ r−1),

and hence, as γ(r) = log1−ν r−1, we get
∫︂

B
Σ logµ(e+Σ) = 2

∫︂ e−e

0

∫︂ γ(r)

−γ(r)
Σ(r, θ) logµ(e+Σ(r, θ))r dθ dr

≲

∫︂ e−e

0

logµ(e+ 2C ′ log−2 r−1) + logµ(e+ r−1)

r log2−(1−ν) r−1
dr.

When r → 0, we have log−2 r−1 → 0. Hence, for small r, the largest term in
the numerator is logµ(e+ r−1). Since r−1 > ee, we have r−2 − r−1 − e ≥ 0.
Hence, we may estimate

logµ(e+ r−1)

r log2−(1−ν) r−1
≤ 2µ

r log1+(ν−µ) r−1
,

which is integrable over [0, e−e] due to our assumption ν > µ. Thus,
Σ logµ(e+Σ) ∈ L1(B), and consequently Σ logµ(e+Σ) ∈ L1(Ω). □
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5. Counterexamples based on spirals

In this section, we construct a counterexample built around the case
Σ ∈ L∞(Ω), which will give us Theorem 1.5. Furthermore, if K ∈ Lp

loc(Ω)
with p ∈ [1, 2], then this counterexample also yields an alternate proof of
Theorem 1.11. In exchange for failing when p > 2, this alternate counterex-
ample has a better optimal integrability for Σ when p <

√
2; that is, it

improves Theorem 4.1 for such values of p. Moreover, this improved integra-
bility of Σ is achieved simultaneously with the optimal integrability of Σ/K,
whereas the construction of Theorem 1.11 involves a trade-off between the
integrabilities of Σ and Σ/K.

Theorem 5.1. Suppose that p ∈ [1, 2], q ∈ [1,∞], and p−1+ q−1 ≥ 1. Then
there exist a domain Ω ⊂ R

2 and a Sobolev map f ∈ W 1,2(Ω,R2) such that
0 ∈ Ω, f ∈ C(Ω \ {0},R2), limx→0 |f(x)| = ∞, and Df ∈ M2(K,Σ) with

K ∈ Lp(Ω),
Σ

K
∈ Lq(Ω), and Σ ∈ L

q
2 (Ω).

We again construct our example in a planar region Ω ⊂ R
2 with a point

of discontinuity at the origin, and we retain our strategy from the previous
section of splitting Ω into two regions A and B, where |Df |2 ≤ KJf in A

and |Df |2 + K |Jf | ≤ Σ in B. Notably, when Σ is bounded from above
by a constant, f ends up being Lipschitz under the path length metric in
B. Hence, if we wish that f escapes to inőnity along B, the region B must
somehow be inőnitely long. This pushes us towards a construction where A
and B are two interlocking inőnitely long spirals centered at the origin.

5.1. Preliminaries: Lambert’s W -function. We begin by recalling a spe-
cial function that is of great use to us in our construction. Namely, Lambert’s
W -function is the inverse function W = ψ−1 of the function ψ(t) = tet. The
W -function has two branches on the real line. In this paper, we assume W
to be the positive branch:

W : [−e−1,∞) → [−1,∞), W (t)eW (t) = t.

We collect into the following lemma the elementary properties of the W -
function that we use. For a general reference on the W -function, see e.g.
[7].

Lemma 5.2. The W -function satisőes the following.

(1) W is strictly increasing on [−e−1,∞).
(2) W (0) = 0, and hence W (t) > 0 if t > 0.
(3) We have W (t log t) = log t if t ≥ e−1.
(4) The derivative of W is given on (−e−1,∞) by

W ′(t) =
W (t)

t(1 +W (t))
=

1

t+ eW (t)
.
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5.2. Construction. We deőne two spirals in polar coordinates. The őrst
one is the spiral r = g(θ), where

g(θ) =
1

θ log θ
, θ ∈ [θ0,∞),

where θ0 ≥ 2π is some starting angle. The second one is given by r = h(θ),
where

h(θ) =
g(θ) + g(θ + 2π)

2
, θ ∈ [θ0,∞);

that is, the spiral r = h(θ) lies exactly halfway between the successive points
where the spiral r = g(θ) meets a speciőc ray from the origin. Using the
standard symbol i for the complex imaginary unit, we deőne our domain
Ω ⊂ C by

Ω = {reiθ : 0 ≤ r < g(θ), θ ∈ (θ0, θ0 + 2π]}.
See Figure 2 for an illustration of Ω and the spirals.

r = h(θ)

r = g(θ)

Figure 2. The two spirals r = g(θ) and r = h(θ), with the
domain Ω highlighted in gray.

We parametrize Ω in the following way: let

U = {(r, θ) ∈ R
2 : θ ≥ θ0, g(θ + 2π) ≤ r < g(θ)},

in which case the map (r, θ) ↦→ reiθ maps U bijectively to Ω \ {0}. Let
α ∈ (0, 1]. We deőne f : Ω \ {0} → C on the two regions between the spirals
r = g(θ) and r = h(θ) in terms of polar coordinates (r, θ) ∈ U : when
h(θ) ≤ r < g(θ), we deőne the complex-valued output of f by

f(r, θ) = ϕ(r)− i log log θ,

where ϕ(r) : [0, r0] → R is an increasing absolutely continuous function to
be őxed later, with r0 > θ−1

0 log−1 θ0. In the other region where g(θ+2π) ≤
r < h(θ), we instead deőne

f(r, θ) = ϕ(r)− i logW

(︃

1

2r − g(θ + 2π)

)︃

.

This deőnes f on all of Ω \ {0}.
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We brieŕy verify that f is indeed continuous on Ω \ {0}. If r = h(θ), then

logW

(︃

1

2r − g(θ + 2π)

)︃

= logW

(︃

1

2h(θ)− g(θ + 2π)

)︃

= logW

(︃

1

g(θ)

)︃

= logW (θ log θ) = log log θ,

which veriőes that f is continuous on the spiral r = h(θ). On the other
hand, if r = g(θ + 2π), then

logW

(︃

1

2r − g(θ + 2π)

)︃

= logW

(︃

1

g(θ + 2π)

)︃

= logW ((θ + 2π) log(θ + 2π)) = log log(θ + 2π),

which veriőes continuity of f on the spiral r = g(θ). Hence, f is continuous
on Ω \ {0}.

5.3. The first region. We then compute |Df | and Jf in the region B ⊂ Ω
where h(θ) < r < g(θ) in terms of our polar coordinate parametrization. In
polar coordinates, the derivative matrix of f becomes
[︃

∂r Re(f) r−1∂θ Re(f)
∂r Im(f) r−1∂θ Im(f)

]︃

=

[︃

ϕ′(r) 0
0 −r−1θ−1 log−1 θ

]︃

=

[︃

ϕ′(r) 0
0 −r−1g(θ)

]︃

.

Since we moreover have r ≥ h(θ) = (g(θ)+g(θ+2π))/2 ≥ g(θ)/2, we obtain
the upper bound

r−1g(θ) ≤ 2.

Hence, we have the estimate

|Df(r, θ)|2 ≤ 4 + (ϕ′(r))2.

Note especially that |Df | is bounded in B when ϕ is Lipschitz. Moreover,
we have |Df | ∈ L2(B) as long as r(ϕ′(r))2 ∈ L1([0, r0]).

On the other hand, Jf (r, θ) = −r−1ϕ′(r)g(θ), which is negative since
ϕ(r) is increasing. Furthermore, −Jf (r, θ) is bounded from above by 2ϕ′(r).

Hence, in order to achieve the desired condition |Df |2 + K |Jf | ≤ Σ, we
arrive at the following valid choices for Σ and K:

(5.1) Σ(r, θ) = 6 + 3(ϕ′(r))2, K(r, θ) = max(ϕ′(r), 1).

5.4. The second region. Next, we consider the region A ⊂ Ω where we
have g(θ+2π) ≤ r < h(θ) in terms of our polar coordinate parametrization.
We still have ∂r Re(f) = ϕ′(r) and ∂θ Re(f) = 0, which are square integrable
whenever r(ϕ′(r))2 ∈ L1([0, r0]). The next step is then to compute ∂r Im(f)
and ∂θ Im(f). We use the shorthands

τ = θ + 2π, u = (2r − g(τ))−1.
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For ∂r Im(f), we have ∂ru = −2u2, and we may hence use Lemma 5.2 to
obtain

∂r (− logW (u)) = − 1

W (u)

W (u)

u(1 +W (u))

(︁

−2u2
)︁

=
2u

1 +W (u)
.

For ∂θ Im(f), we have ∂θu = −u2 · (−g′(τ)) = −u2(1 + log(τ))/(τ2 log2 τ),
and hence Lemma 5.2 similarly yields

∂θ (− logW (u)) =
(1 + log τ)u

(1 +W (u))τ2 log2 τ
.

We thus arrive at the derivative matrix
[︃

∂r Re(f) r−1∂θ Re(f)
∂r Im(f) r−1∂θ Im(f)

]︃

=

⎡

⎣

ϕ′(r) 0
2u

1 +W (u)

(1 + log τ)u

r(1 +W (u))τ2 log2 τ

⎤

⎦ .

To estimate these derivatives, we note that g(τ) ≤ 2r − g(τ) ≤ g(θ) in
our region. Inverting all terms, it follows that θ log θ ≤ u ≤ τ log τ . Since
W is increasing and W (t log t) = log t, we hence have log θ ≤ W (u) ≤ log τ .
Moreover, recalling the notation from the beginning of Section 4.4, it is
reasonably easy to see that log(θ) ≈ log(τ) and g(θ) ≈ g(τ) for θ ∈ [θ0,∞).
In particular, we have

u ≈ θ log θ and W (u) ≈ log θ.

We can then estimate |∂r Im f(r, θ)| from both sides by

2θ log θ

1 + log τ
≤ |∂r Im f(r, θ)| ≤ 2τ log τ

1 + log θ
,

implying that

(5.2) |∂r Im f(r, θ)| ≈ θ.

To bound r−1∂θ Im(f), we őrst use the above estimates to obtain

1

θ log θ
≲

θ log θ

τ2 log2 τ
≤ ∂θ Im f(r, θ) ≤ 1 + log τ

τ log τ(1 + log θ)
≲

1

θ log θ
.

That is, ∂θ Im f(r, θ) ≈ g(θ). Then, since g(τ) ≤ r < h(θ) ≤ g(θ) in our
domain, and since g(τ) ≈ g(θ), we in fact have r ≈ g(θ). Hence,

(5.3)
∂θ Im f(r, θ)

r
≈ 1.

In particular, the function r−1∂θ Im(f) is bounded and hence clearly square
integrable over A.

Next, we check the square integrability of ∂r Im(f). We begin by inves-
tigating the integral of an arbitrary function of θ over A under our chosen
parametrization. Letting F : [θ0,∞) → [0,∞), we use polar integration to
get

∫︂

A
F (θ) =

∫︂ ∞

θ0

∫︂ h(θ)

g(τ)
F (θ)r dr dθ ≤

∫︂ ∞

θ0

(h(θ)− g(τ))
F (θ)

θ log θ
dθ.
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Moreover, we have

h(θ)− g(τ) =
g(θ) + g(θ + 2π)

2
− g(θ + 2π) =

g(θ)− g(θ + 2π)

2

=
1

2

(︃

1

θ log θ
− 1

(θ + 2π) log(θ + 2π)

)︃

=
(θ + 2π) log(θ + 2π)− θ log θ

2θ(θ + 2π) log θ log(θ + 2π)

=
2π log(θ + 2π) + θ log(1 + 2π/θ)

2θ(θ + 2π) log θ log(θ + 2π)
≲

1

θ2 log θ
.

Note in particular that in the last step of the above computation, we have
θ log(1 + 2π/θ) = log((1 + 2π/θ)θ) → log exp(2π) = 2π as θ → ∞, so hence
the dominant term in the numerator is 2π log(θ + 2π). We thus őnish our
estimate as follows:

(5.4)

∫︂

A
F (θ) ≤

∫︂ ∞

θ0

(h(θ)− g(τ))
F (θ)

θ log θ
dθ ≲

∫︂ ∞

θ0

F (θ)

θ3 log2 θ
.

Now, since |∂r Im(f)|2 ≲ θ2 by (5.2), we conclude that |∂r Im(f)| ∈ L2(A)
by taking F (θ) = θ2 in (5.4), and observing that the resulting integrand
θ−1 log−2 θ has a őnite integral. We thus conclude that if r(ϕ′(r))2 ∈
L1([0, r0]), then f ∈ W 1,2(Ω \ {0},C), and consequently f ∈ W 1,2(Ω,C)
by removability of isolated points for planar W 1,2-spaces.

It remains to őnd suitable choices of K and Σ. We choose Σ ≡ 0 in this
region, in which case we require K ≥ |Df |2 /Jf . By (5.2) and (5.3), we have

|Df(r, θ)|2 ≲ (ϕ′(r))2 + θ2.

On the other hand, we have

Jf (r, θ) ≳ ϕ′(r).

Consequently, we may choose Σ and K so that

(5.5) Σ(r, θ) = 0, K(r, θ) ≈ ϕ′(r) +
θ2

ϕ′(r)
+ 1.

5.5. The results. It remains now to state our choices of ϕ and the resulting
counterexamples. We begin with Theorem 1.5, recalling őrst its statement.

Theorem 1.5. There exist a domain Ω ⊂ R
2 and a Sobolev map f ∈

W 1,2(Ω,R2) such that 0 ∈ Ω, f ∈ C(Ω \ {0},R2), limx→0 |f(x)| = ∞, and
Df ∈ M2(K,Σ) with

Σ ∈ L∞(Ω) and K ∈ L1(Ω) .

Proof. We use the above construction with θ0 = 2π, r0 = 1, and

ϕ(r) = r.

Notably, ϕ is Lipschitz, and consequently the resulting map f is Lipschitz
in B. This choice indeed satisőes r(ϕ′(r))2 = r ∈ L1([0, 1]), so |Df | ∈
L2(Ω \ {0}). Moreover, by (5.1), both Σ and K are constant in the region
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B. Since Σ ≡ 0 in the other region A, we have Σ ∈ L∞(Ω). For K ∈ L1(Ω),
since ϕ′ is constant, it suffices by (5.5) to show that

∫︂

A
θ2 <∞.

But this is true by (5.4) with yet again F (θ) = θ2. Finally, as x → 0, the
imaginary part of f(x) clearly tends to inőnity. □

The remaining result to prove is Theorem 5.1.

Proof of Theorem 5.1. The case q = ∞ is exactly the result of Theorem 1.5.
Hence, we may assume that q ∈ [1,∞).

We use the above construction, this time with the choice

ϕ(r) =

∫︂ r

0
t2p

−1−2 log−7/4+p−1
t−1 dt.

Note that by p ∈ [1, 2], we have 2p−1−2 ≥ −1. Moreover, the case 2p−1−2 =
−1 corresponds to p = 2, in which case −7/4 + p−1 = −5/4 < −1. Hence,
the integral used to deőne ϕ(r) is őnite for all r > 0 small enough, and we
may hence choose r0 and θ0 so that ϕ(r) is a őnite-valued increasing function
on [0, r0]. By our choice of ϕ, we have

(5.6) ϕ′(r) = r2p
−1−2 log−7/4+p−1

r−1.

We őrst determine the degree of integrability of ϕ′(|x|) over Ω, as this
is used for many parts in the veriőcation that our example is as desired.
Indeed, if s ∈ [1,∞), we have by (5.6) that

(5.7)

∫︂

Ω

(︁

ϕ′(|x|)
)︁s

≲

∫︂ r0

0

dr

r2s−2sp−1−1 log7s/4−sp−1
r−1

.

This integral is őnite if 2s−2sp−1−1 ≤ 1, which is equivalent to p−1+s−1 ≥
1. Note that in the extremal case p−1+s−1 = 1, the őniteness of the integral
also requires that 7s/4 − sp−1 > 1; however, this condition rearranges to
p−1 + s−1 < 7/4, which holds in the extremal case since p−1 + s−1 = 1.

We have Σ(x) ≤ 6+3(ϕ′(|x|))2 and Σ(x)/K(x) ≤ 6+3ϕ′(|x|) inB by (5.1),
and we also have Σ = Σ/K ≡ 0 in A. Hence, (5.7) with s = q yields that

Σ/K ∈ Lq(Ω) and Σ ∈ Lq/2(Ω) if p−1 + q−1 ≥ 1. Moreover, |Df | ∈ L2(Ω)
was shown to be equivalent with r(ϕ′(r))2 ∈ L1([0, r0]): referring to (5.7)
with s = 2, this is true if p−1 + 2−1 ≥ 1, which holds due to our assumption
that p ≤ 2. As our last application of (5.7), we have by (5.1) that K ∈ Lp(B)
if ϕ′(r) ∈ Lp(B): this is true if 2p ≤ 4, which again holds by our assumption
that p ≤ 2.

It remains to show that K ∈ Lp(A). For this, it suffices by (5.5) to show
the Lp-integrability of ϕ′(r) and θ2/ϕ′(r) over A. Since K(r, θ) ≥ ϕ′(r) in
B, the ϕ′(r)-term is covered by the same argument as used previously for
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K ∈ Lp(B). For the other term, we again use (5.4). Indeed, we have

(︃

θ2

ϕ′(r)

)︃p

=
θ2pr2p−2

log−7p/4+1 r−1

≤ θ2p(θ log θ)2−2p

log−7p/4+1((θ + 2π) log(θ + 2π))
≲

θ2

logp/4−1(θ)

for all θ ∈ [θ0,∞). Selecting F (θ) = θ2 log1−p/4(θ), the resulting integrand

θ−1 log−1−p/4(θ) in (5.4) is integrable whenever −1 − p/4 < −1, which is
clearly true. We conclude that K ∈ Lp(Ω), completing the proof. □
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WEAK LIMIT OF HOMEOMORPHISMS IN W 1,n−1 AND (INV)
CONDITION

ANNA DOLEŽALOVÁ, STANISLAV HENCL, AND JAN MALÝ

Abstract. Let Ω,Ω′ ⊂ R3 be Lipschitz domains, let fm : Ω → Ω′ be a sequence of
homeomorphisms with prescribed Dirichlet boundary condition and supm

∫︁
Ω
(|Dfm|2 +

1/J2

fm
) < ∞. Let f be a weak limit of fm in W 1,2. We show that f is invertible a.e.,

more precisely it satisfies the (INV) condition of Conti and De Lellis and thus it has all
the nice properties of mappings in this class.

Generalization to higher dimensions and an example showing sharpness of the condi-
tion 1/J2

f ∈ L1 are also given. Using this example we also show that unlike the planar

case the class of weak limits and the class of strong limits of W 1,2 Sobolev homeomor-
phisms in R3 are not the same.

1. Introduction

In this paper, we study classes of mappings that might serve as classes of deformations
in Nonlinear Elasticity models. Let Ω ⊂ Rn be a domain set and let f : Ω → Rn be
a mapping. Following the pioneering papers of Ball [3] and Ciarlet and Nečas [10] we
ask if our mapping is in some sense injective as the physical ‘non-interpenetration of the
matter’ indicates that a deformation should be one-to-one. We are led to study nonlinear
classes of mappings based on integrability of gradient minors ([2], [3], [36], [17], [33]), on
distortion ([34], [23], [20]) or on finiteness of some energy functional ([2], [16], [11], [19],
[14]). The list of citations is far from being representative and the reader is encouraged to
see also references therein. Our aim is to study injectivity properties of the mapping f .
One can follow the ideas of Ball [3] and assume that our mapping has finite energy and
that the energy functional

∫︁
Ω
W (Df) contains special terms (like powers of Df , adjDf

and Jf ). Under quite strong assumptions, any mapping with finite energy and reasonable
boundary data is a homeomorphism ([3], [20]). However, is not realistic to insist on this
requirement as in some real physical deformations cavitations or even fractures may occur.
Thus we need conditions which guarantee that our mapping is injective a.e. but on some
small set cavities may arise.
This was nicely settled in the the work of Müller and Spector [31] where they studied

a class of mappings that satisfy Jf > 0 a.e. together with the (INV) condition (see also
e.g. [6, 14, 19, 32, 37, 38, 39]). Informally speaking, the (INV) condition means that
the ball B(x, r) is mapped inside the image of the sphere f(S(a, r)) and the complement

Ω\B(x, r) is mapped outside f(S(a, r)) (see Preliminaries for the formal definition). From
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Key words and phrases. limits of Sobolev homeomorphisms, invertibility.
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[31] we know that mappings in this class are one-to-one a.e. and that this class is weakly
closed which makes it suitable for variational approach. Moreover, any mapping in this
class has many desirable properties, it maps disjoint balls into essentially disjoint sets,
deg(f, B, ·) ∈ {0, 1} for a.e. ball B, its distributional determinant equals to the absolutely
continuous part Jf plus a countable sum of positive multiples of Dirac measures (these
corresponds to created cavities) and so on.
In all results in the previous paragraph the authors assume that f ∈ W 1,p(Ω,Rn)

for some p > n − 1. However in some real models for n = 3 one often works with
integrands containing the classical Dirichlet term |Df |2 and thus this assumption is too
strong. Therefore Conti and De Lellis [11] introduced the concept of (INV) condition
also for W 1,n−1 ∩ L∞ (see also [4] and [5] for some recent work) and studied Neohookean
functionals of the type

(1.1)

∫︂

Ω

(︁
|Df(x)|2 + φ(Jf (x))

)︁
dx

for n = 3, where φ is convex, limt→0+ φ(t) = ∞ and limt→∞
ϕ(t)
t

= ∞. They proved that
mappings in the (INV) class that satisfy Jf > 0 a.e. have nice properties like mappings
in [31] but unfortunately this class is not weakly closed and therefore cannot be used in
variational models easily. Our main aim is to fix this and to show that for suitable φ the
validity of the (INV) condition is preserved also for the weak limit. Note that for p > n−1
we know that f is continuous on a.e. sphere and thus it is easy to define what is ”inside
of the image of the sphere f(S(a, r))” and we can define (INV) easily. In the situation
f ∈ W 1,n−1 ∩ L∞ mappings do not need to be continuous on spheres and it is necessary
to use topological degree for some classes of discontinuous mappings (in our case, W 1,n−1

on a sphere) which was introduced by Brezis and Nirenberg [7] (see also [11]).
Let us note that homeomorphisms clearly satisfy the (INV) condition and their weak

limits in W 1,p, p > n− 1, also satisfy (INV) (see [31, Lemma 3.3]). Moreover, cavitation
can be written as a weak limit (even strong limit) of homeomorphisms. Therefore the
class of weak limits of Sobolev homeomorphisms is a suitable class for variational models
involving cavitation and we can expect some invertibility properties in this class. This
is clear for p > n − 1 because of the (INV) condition but it can fail in the limiting case
of limit of W 1,n−1 homeomorphisms as shown e.g. in Bouchala, Hencl and Molchanova
[8]. The class of weak limits of Sobolev homeomorphisms was recently characterized in
the planar case by Iwaniec and Onninen [24, 25] and De Philippis and Pratelli [13]. The
situation in higher dimension is much more difficult and deserves further study.
Our main result is the following theorem which shows that weak limits of W 1,n−1

homeomorphisms are invertible a.e. (and much better) under suitable integrability of
1/Jf . We denote

(1.2) F(f) =

∫︂

Ω

(︁
|Df |n−1 + φ(Jf )

)︁
dx,

where
(1.3)

φ is a positive convex function on (0,∞) with lim
t→0+

φ(t) = ∞, φ(t) = ∞ for t ≤ 0

and there is A > 0 with

(1.4) A−1φ(t) ≤ φ(2t) ≤ Aφ(t), t ∈ (0,∞).



WEAK LIMIT OF HOMEOMORPHISMS IN W
1,n−1 AND (INV) CONDITION 3

We need to further assume that all fm have the same Dirichlet boundary condition.

Theorem 1.1. Let n ≥ 3, a = n−1
n2−3n+1

and Ω,Ω′ ⊂ Rn be Lipschitz domains. Let φ
satisfy (1.3), (1.4) and

φ(t) ≥ 1

ta
for every t ∈ (0,∞).

Let fm ∈ W 1,n−1(Ω,Ω′), m = 0, 1, 2 . . . , be a sequence of homeomorphisms of Ω onto Ω
′

with Jfm > 0 a.e. such that

(1.5) sup
m

F(fm) <∞.

Assume further that fm = f0 on ∂Ω for all m ∈ N. Let f be a weak limit of fm in
W 1,n−1(Ω,Rn) , then f satisfies the (INV) condition.

As a corollary this weak limit f satisfies all the nice properties (see [11, Section 3 and 4]):
it is one-to-one a.e., it maps disjoint balls into essentially disjoint sets, deg(f, B, ·) ∈ {0, 1}
for a.e. ball B, its distributional determinant equals to the absolutely continuous part Jf
plus a countable sum of positive multiples of Dirac measures and so on.
In fact our result is even more general and instead of integrability of 1/Ja

f it is enough

to assume that its distortion Kf = |Df |n/Jf is integrable with power 1
n−1

(see Theorem
3.1 below). This seems to be connected with the result of Koskela and Malý [27] about
the validity of Lusin (N−1) condition for mappings of finite distortion.

In our new paper [12] we use Theorem 1.1 as a main step in showing that we can use
Calculus of Variations approach in this context. We show that there is an energy minimizer
of certain polyconvex functional in the class of weak limits of W 1,n−1 homeomorphisms.
In our next result we improve the counterexample from [11, Theorem 6.3.]. Similarly to

[11] we show that the weak limit of homeomorphisms (that automatically satisfy (INV))
can fail to satisfy (INV). Moreover, the degree of the limit f can be −1 on a set of positive
measure even though Jfm > 0 a.e. and deg(fm, B, ·) ∈ {0, 1}. Let us note here that we
automatically have Jf ≥ 0 a.e. for the weak limit once Jfm > 0 a.e. (see Hencl and
Onninen [22]) and since our φ tends to ∞ at 0 we also have Jf > 0 a.e. from Lemma 2.3
in [12]. Primarily we show that at least in dimension n = 3 our condition J−2

f ∈ L1 from
Theorem 1.1 is sharp (example in [11] gives smaller integrability of 1/Jf ). We expect
that our result is sharp in all dimensions but we have not pursued this as n = 3 is the
physically relevant dimension.

Theorem 1.2. Let n = 3 and a < 2. Then there exist homeomorphisms fm of B(0, 10) to
B(0, 10) such that fm ∈ W 1,2(B(0, 10), B(0, 10)), fm is an identity mapping on ∂B(0, 10)
with Jfm > 0 a.e. and

sup
m

∫︂

Ω

(︃
|Dfm|n−1 +

1

(Jfm)
a

)︃
dx <∞,

whose weak limit f does not satisfy the (INV) condition.

It was shown by Iwaniec and Onninen in [25] that in the planar case n = 2 the class
of weak limits of homeomorphisms and the class of strong limits of homeomorphisms are
the same for any p ≥ 2. The same result for 1 ≤ p < 2 was later shown by De Philippis
and Pratelli in [13]. This is very useful in Calculus of Variations as we can approximate
the minimizer of the energy not only in the weak but also in the strong convergence. We
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show that the situation is much more difficult in higher dimension and the result is not
true in general. We show (see Theorem 3.1 (b) below) that each strong limit of W 1,n−1

homeomorphisms satisfies the (INV) condition. Together with Theorem 1.2 this implies
the following result.

Theorem 1.3. Let n = 3. There is a mapping f ∈ W 1,2(B(0, 10), B(0, 10)) which is a
weak limit of Sobolev W 1,2 homeomorphisms fm of B(0, 10) to B(0, 10) with fm(x) = x on
∂B(0, 10) and Jfm > 0 a.e., but there are no homeomorphisms hm of B(0, 10) to B(0, 10)
such that hm → f strongly in W 1,2(B(0, 10),R3).

Again we expect that there are similar examples in W 1,n−1 in higher dimension. How-
ever, we do not see any simple way to generalize this counterexample to other Sobolev
spaces W 1,p for p ̸= n− 1.

2. Preliminaries

2.1. Convention. In what follows, we assume that Sobolev mappings are represented in
the best way for our purposes. For example, if we consider a trace of a Sobolev mapping
f on a k-dimensional surface S, then we assume that f is represented as the trace on S.
If f has a continuous representative f̄ on S, then we assume that f = f̄ on S.

2.2. Shapes and Figures. In what follows we will work with open sets of a simple
geometric nature called shapes. Our shapes will be of three types

(a) balls,
(b) full cuboids,
(c) a hollowed cuboid is the difference Q \ B, where Q is a full cuboid and B ⊂⊂ Q is a

ball (see the set H on Fig. 1 below).

A figure is the interior of a finite union of closed full cuboids with pairwise disjoint
interiors; it may be disconnected.

2.3. Boundary gradient and cofactors. Let K ⊂ Rn be a shape and f be a smooth
mapping on a neighbourhood of K. Then we can derive a useful degree formula (cf. (2.2)
below) involving (cofDf(x))ν(x), x ∈ ∂K; here ν(x) denotes the exterior normal to B
at x and cof A is the cofactor matrix of A (which is the transpose of the adjugate matrix
adjA and which satisfies cof A AT = (detA)Id). If f is a Sobolev mapping only, we can
find “good shapes” with the property that f is Sobolev regular on their boundaries. Let
x ∈ ∂K, in case of a cuboid we exclude points of edges. Then, instead of the expression
(cofDf(x))ν(x) we need a replacement relying on the tangential gradient Dτf . This can
be given using some tools from the multilinear algebra, for details see [15] and [33]. We
consider a linear subspace V of Rn and a linear mapping L : V→ Rn. Then the operator
Λn−1L is defined by

(2.1) Λn−1L(y1 ∧ y2 ∧ · · · ∧ yn−1) = Ly1 ∧ Ly2 ∧ · · · ∧ Lyn−1.

If the dimension k of V is less that n− 1, this operator is trivial. If k = n, and A is the
matrix representing L, it can be shown that Λn−1L is represented by cof A. Therefore
both sides of (2.1) depend only on values of L on the linear hull of y1,y2, . . .yn−1. We
may identify the wedge product with the cross product through the Hodge star operator.
Thus, in our case when V is the tangent space Tx(∂K), Λn−1Tx(∂K) is the one-dimensional
space of multiples of ν(x) and L = Dτf(x), the required expression (Λn−1L)ν can be
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computed (avoiding exterior algebra objects) as (cof A)ν where A is a matrix of any
operator L̄ : Rn → Rn which extends L, i.e.

L̄y = Ly, y ∈ Tx(∂K).

This also shows compatibility with the formula for smooth mappings where the extension
L̄ appears naturally as the full gradient Df(x).

2.4. Degree for continuous mappings. Let Ω ⊂ Rn be a bounded open set. Given a
smooth map f : Ω → Rn and y0 ∈ Rn\f(∂Ω) such that Jf (x) ̸= 0 for each x ∈ Ω∩f−1(y0),
we can define the topological degree as

deg(f,Ω, y0) =
∑︂

Ω∩f−1(y)

sgn(Jf (x)).

By uniform approximation, this definition can be extended to an arbitrary continuous
mapping f : Ω → Rn and y0 ∈ Rn \ f(∂Ω). Note that the degree depends only on values
of f on ∂Ω.
If f : Ω → Rn is a homeomorphism, then either deg(f,Ω, y) = 1 for all y ∈ f(Ω) (f

is sense preserving), or deg(f,Ω, y) = −1 for all y ∈ f(Ω) (f is sense reversing). If, in
addition, f ∈ W 1,n−1(Ω,Rn), then this topological orientation corresponds to the sign of
the Jacobian. More precisely, we have

Proposition 2.1 ([21]). Let f ∈ W 1,n−1(Ω,Rn) be a homeomorphism on Ω with Jf > 0
a.e. Then

deg(f,Ω, y) = 1, y ∈ f(Ω).

2.5. Degree for W 1,n−1∩L∞ mappings. If K is a shape or a figure, f ∈ W 1,n−1(∂K)∩
C(∂K), |f(∂K)| = 0, and u ∈ C1(Rn,Rn), then

(2.2)

∫︂

Rn

deg(f,K, y) divu(y) dy =

∫︂

∂K

(u ◦ f) · (Λn−1Dτf)ν dHn−1,

see [31, Proposition 2.1].
Let M(Rn) = C0(R

n)∗ be the space of all signed Radon measures on Rn. By (2.2) we
see that deg(f,K, ·) ∈ BV (Rn) and

(2.3) ∥D deg(f,K, ·)∥M(Rn) ≤ C∥Λn−1Dτf∥L1(∂K) ≤ C∥Dτf∥n−1
Ln−1(∂K).

Following [11] (see also [7]) we need a more general version of the degree on the boundary
of a shape which works for mappings in W 1,n−1 ∩L∞ that are not necessarily continuous.
Although only the three dimensional case on balls is discussed on [11], the arguments pass
in the general case as well. The definition is in fact based on (2.2).

Definition 2.2. Let K ⊂ Rn be a shape and let f ∈ W 1,n−1(∂K,Rn) ∩ L∞(∂K,Rn).
Then we define Deg(f,K, ·) as the distribution satisfying

(2.4)

∫︂

Rn

Deg(f,K, y)ψ(y) dy =

∫︂

∂K

(u ◦ f) · (Λn−1Dτf)ν dHn−1

for every test function ψ ∈ C∞
c (Rn) and every C∞ vector field u on Rn satisfying divu =

ψ.
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As in [11] it can be verified that the right hand side does not depend on the way ψ is
expressed as divu. Indeed, this works if f is smooth. If we approximate f by a sequence
(fm)m of smooth functions in the usual mollification way, then u ◦ fm → u ◦ f weakly* in
L∞, Λn−1Dτfm → Λn−1Dτf strongly in L1, hence the right hand side of (2.2) converges
well. In fact, the distribution Deg(f,K, ·) can be represented as a BV function by the
following lemma.

Lemma 2.3. Let K be a shape. Let (fm)m be a sequence of continuous Sobolev map-
pings which converges to a limit function f strongly in W 1,n−1(∂K,Rn) and is bounded in
L∞(∂K,Rn). Then Deg(f,K, ·) is an integer valued function in BV (Rn) and deg(fm, K, ·) →
Deg(f,K, ·) strongly in L1(Rn).

Proof. Let ψ be a smooth test function and u be a smooth vector field such that divu = ψ.
As above we observe that u ◦ fm → u ◦ f weakly* in L∞ and Λn−1Dτfm → Λn−1Dτf
strongly in L1. Hence we observe that deg(fm, K, ·) → Deg(f,K, ·) in distributions. By
(2.3), the sequence deg(fm, K, ·) is bounded in BV (Rn), so that the limit is in BV as well
and the convergence is weak* in BV . By the compact embedding and the L∞ bound of
fm we have deg(fm, K, ·) → Deg(f,K, ·) in L1(Rn). It also follows that Deg(f,K, ·) is
integer valued. □

Remark 2.4. Let K be a shape and f ∈ W 1,n−1(∂K) ∩ C(K). If |f(∂K)| = 0, then
Deg(f,K, y) = deg(f,K, y) for a.e. y ∈ Rn. We use different symbols to distinguish and
emphasize that deg is defined pointwise on Rn \ f(∂K), whereas Deg is determined only
up to a set of measure zero.

Assume that f, g ∈ W 1,n−1(∂K,Rn)∩L∞(∂K,Rn). From the embedding of BV spaces

into L
n

n−1 [1, Theorem 3.47], the definition of BV norm [1, Definition 3.4] and (2.4) (note
that by approximation it must hold also for ψ = divu, u ∈ C1

0(R
n)) we obtain

(2.5)

⃓⃓{︁
y ∈ Rn : Deg(f,K, y) ̸= Deg(g,K, y)

}︁⃓⃓n−1

n ≤ ∥Deg(f,K, ·)−Deg(g,K, ·)∥
L

n
n−1

≤ C
⃦⃦
D(Deg(f,K, ·)−Deg(g,K, ·))

⃦⃦
M(Rn)

= C sup
{︂∫︂

Rn

(Deg(f,K, y)−Deg(g,K, y)) divu(y) dy :

u ∈ C1
0(R

n), ∥u∥L∞ ≤ 1
}︂

≤ C

∫︂

∂K∩{f ̸=g}

(︁
|Dτf(x)|n−1 + |Dτg(x)|n−1

)︁
dHn−1(x).

2.6. (INV) condition. Analogously to [11] (see also [31]) we define the (INV) class.

Definition 2.5. Let B ⊂ Rn be a ball and let f ∈ W 1,n−1(∂B,Rn) ∩ L∞(∂B,Rn). We
define the topological image of B under f , imT (f, B) as the set of all points where the
density of the set {y ∈ Rn : Deg(f, B, y) ̸= 0} is one.

Definition 2.6. Let f ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn). We say that f satisfies (INV) in
the ball B ⊂⊂ Ω if

(i) its trace on ∂B is in W 1,2 ∩ L∞;
(ii) f(x) ∈ imT (f, B) for a.e. x ∈ B;
(iii) f(x) /∈ imT (f, B) for a.e. x ∈ Ω \B.
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We say that f satisfies (INV) if for every a ∈ Ω there is ra > 0 such that for H1-a.e.
r ∈ (0, ra) it satisfies (INV) in B(a, r).

Remark 2.7. If f , in addition, satisfies Jf > 0 a.e., then preimages of sets of zero measure
have zero measure and thus we can characterize the (INV) condition in a simpler way.
Namely, such a mapping satisfies the (INV) condition in the ball B ⊂⊂ Ω if and only if

(i) its trace on ∂B is in W 1,2 ∩ L∞;
(ii) Deg(f, B, f(x)) ̸= 0 for a.e. x ∈ B;
(iii) Deg(f, B, f(x)) = 0 for a.e. x ∈ Ω \B.

2.7. Estimates of measure of preimages.

Lemma 2.8. Let Ω ⊂ Rn be an open set of finite measure and f ∈ W 1,1
loc (Ω;R

n) satisfy
Jf ̸= 0 a.e. Then for every ε > 0 there is δ > 0 such that for every measurable set F ⊂ Rn

we have

|F | < δ =⇒ |f−1(F )| < ε.

Proof. Assume for contradiction that there are ε > 0 and Fj with |Fj| < 1
2j

such that
|f−1(Fj)| ≥ ε, j = 1, 2, . . . . Then the set

E :=
∞⋂︂

k=1

∞⋃︂

j=k

Fj with f
−1(E) =

∞⋂︂

k=1

∞⋃︂

j=k

f−1(Fj)

satisfies |E| = 0 but |f−1(E)| ≥ ε. We can find a set A ⊂ f−1(E) of full measure such
that Jf ̸= 0 on A and such that change of variables formula

∫︂

A

|Jf (x)| dx =

∫︂

f(A)

N(f,Ω, y) dy.

holds on A (see [15] or the proof of [20, Theorem A.35] for η = χf(A)). Now the left hand
is positive as Jf ̸= 0 and |A| > 0 and the right side is zero as |f(A)| ⊂ E and |E| = 0.
This gives us a contradiction. □

Let Ω ⊂ Rn be open, A ⊂ Ω be measurable and let g ∈ W 1,1
loc (Ω;R

n) be one-to-one.
Without any additional assumption we have (see e.g. [20, Theorem A.35] for η = χg(A))

(2.6)

∫︂

A

|Jg(x)|dx ≤ |g(A)|.

Lemma 2.9. Given C1 <∞, there exists a function Φ: (0,∞) → (0,∞) with

lim
s→0+

Φ(s) = 0

such that the following holds: Let g ∈ W 1,n−1(Ω,Rn) be a one-to-one mapping with
∥g∥L∞ ≤ C1 and F(g) ≤ C1, where F is as in (1.2) with φ satisfying (1.3). Then
for each measurable set A ⊂ Ω we have

(2.7) Φ(|A|) ≤ |g(A)|.
Proof. Choose t0 > 0 such that φ is decreasing on (0, t0) and write t = φ−1

L (s) if

(2.8) φ(t) = s and 0 < t < t0.
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Then, either |g(A)|
|A| ≥ t0, or we use that φ is decreasing on (0, t0], area formula (2.6) and

the Jensen inequality to obtain

φ
(︂ |g(A)|

|A|
)︂
≤ φ

(︂∫︁
A
|Jg|

|A|
)︂
≤ −
∫︂

A

φ(Jg) dx ≤ C1

|A| .

This implies that

(2.9) |g(A)| ≥ Φ(|A|),
where

Φ(s) =

{︄
sφ−1

L

(︂
C1

s

)︂
, s < C1

ϕ(t0)
,

t0s, s ≥ C1

ϕ(t0)
,

and φ−1
L is the left partial inverse function defined by (2.8).

□

We need the following observation from [12, Lemma 2.3] to show that the limit mapping
in Theorem 1.1 satisfies Jf ̸= 0.

Lemma 2.10. Let Ω ⊂ Rn be open, and let fk ∈ W 1,1(Ω,Rn) be a sequence of homeomor-
phisms with Jfk > 0 a.e. such that fk → f ∈ W 1,1(Ω,Rn) pointwise a.e. Assume further
that

sup
k

∫︂

Ω

φ(Jfk(x)) dx <∞,

where φ satisfies (1.3). Then Jf ̸= 0 a.e.

2.8. Minimizers of the tangential Dirichlet integral. In our main proof we have a
sphere (or cuboid) K in Rn and on this sphere we have a small (n− 2)-dimensional circle
which is a boundary of an open spherical cap S ⊂ K. Our map f is in W 1,n−1 so we
can choose the sets so that f is continuous on the small circle S \ S. Our mapping f can
have a big oscillation on S so we need to replace it by a reasonable mapping. We do this
by choosing a minimizer of the tangential Dirichlet energy over this cap S which has the
same value on the circle S \ S. In fact we need this even for more general shapes than
spheres and circles.
Let K ⊂ Rn be a shape. We say that a relatively open set S ⊂ ∂K satisfies the exterior

ball condition if for each z ∈ S \ S there exists a ball B(z′, r) with z′ ∈ ∂K such that
z ∈ ∂B(z′, r) and B(z′, r) ∩ S = ∅.
Theorem 2.11. Let K ⊂ Rn be a shape. Let S ⊂ ∂K be a connected relatively open
subset of ∂K which does not contain points of edges. Let T be the relative boundary of
S with respect to K. Suppose that diamS < r

4n
and that S satisfies the exterior ball

condition. Let f = (f 1, . . . , fn) ∈ W 1,n−1(∂K,Rn) be continuous on T . Then there exists
a unique function h = (h1, . . . , hn) ∈ C(S) ∩W 1,n−1(S,Rn) such that each coordinate hi

minimizes
∫︁
S
|Dτu|n−1 dHn−1 among all functions u ∈ f i +W 1,n−1

0 (S). We have h = f
on T , the function h satisfies the estimate

(2.10) diamh(S) ≤ √
n diam f(T ).

and we have Ln(h(S)) = 0. Moreover, if fm are continuous and converge to f uniformly
on T , then hm converge to h uniformly on S, where hm are minimizers corresponding to
boundary values fm.
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Proof. We give the proof for the case of a ball K = B. In case of a full cuboid everything
is much simpler as S is flat, and the same references for properties of minimizers are valid.
In case of a hollowed cuboid, S is a part of the boundary of a cuboid or of a sphere. The
part Ln(h(S)) = 0 is proven in [12].
Choose z = (z1, . . . , zn) ∈ S. We may assume that B = B(0, 1) and that zn ≥ 1√

n
. Let

Π be the projection x ↦→ x̂ := (x1, . . . , xn−1). For each x ∈ S we have xn > 0 and

|x̂| ≤ |ẑ|+ |x̂− ẑ| ≤
√︃

1− 1

n
+

1

4n
≤ 1− 1

4n
.

If u ∈ W 1,n−1(S) and û(x̂) = u(x̂,
√︁
1− |x̂|2), then

|Dτu|2 = |Dû|2 − (x̂ ·Dû)2.

Indeed, we can extend u to the neighbourhood of S in Rn as u(x) = u(x̂,
√︁
1− |x̂|2) and

then Du = (D1û, . . . , Dn−1û, 0). We clearly have

|Du|2 = |Dτu|2 + |Dνu|2 = |Dτu|2 + |(Du · ν)|2,
and for the unit ball we have Du · ν = Dû · x̂ as ∂u

∂xn
= 0.

Note that

ξ ↦→ |ξ|2 − (x̂ · ξ)2, ξ ∈ Rn−1,

is a positive definite quadratic form whenever |x̂| < 1 and

|ξ|2 − (x̂ · ξ)2 ≥ (1− |x̂|2)|ξ|2.
The functional

∫︂

S

|Dτu|n−1 dHn−1 =

∫︂

Π(S)

(|Dû|2 − (x̂ ·Dû)2)n−1

2 dx̂

thus satisfies the axioms of Chapter 5 in [18]. The existence and uniqueness of the
minimizer follows from [18, Theorem 5.28]. The continuity up to the boundary follows
from [18, Theorem 6.6 and Theorem 6.31]. The oscillation estimate (2.10) follows from
the maximum principle [18, Theorem 6.5]. The uniform convergence of a sequence of
solutions can be obtained from the comparison principle [18, Lemma 3.18], namely, if u,
v are continuous scalar minimizers and u ≤ v on T , then u ≤ v on S. □

2.9. Mappings of finite distortion. Let n ≥ 2 and Ω ⊂ Rn be a domain. The mapping

f ∈ W 1,1
loc (Ω,

˜︁Rn) is said to be a mapping of finite distortion if Jf (x) ≥ 0 a.e. in Ω,
Jf ∈ L1

loc(Ω) and Df(x) vanishes a.e. in the zero set of Jf (x) (note that the last condition
automatically holds if Jf > 0 a.e.). With such a mapping f we may associate the distortion
function as

Kf (x) =

{︄ |Df(x)|n
Jf (x)

if Jf (x) > 0

1 if Jf (x) = 0.

See [23] and [20] and references given there for the introduction to the theory of mappings
of finite distortion.
Let f ∈ W 1,1(Ω,Rn) be a mapping of finite distortion with Kf ∈ L

1

n−1 and u ∈ C1(Rn).
Then the following crucial estimate from Koskela and Malý [27, (2.1)] holds (see [27] for
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detailed proof)

(2.11)

∫︂

Ω

|D(u ◦ f(x))| dx ≤
∫︂

Ω

|Du(f(x))| |Df(x)| dx

≤
∫︂

Ω

|Du(f(x))| (Kf (x)Jf (x))
1

n dx

≤
(︂∫︂

Ω

|Du(f(x))|nJf (x) dx
)︂ 1

n
(︂∫︂

Ω

K
1

n
n

n−1

f (x) dx
)︂n−1

n

≤ ∥Du∥Ln(f(Ω))∥K
1

n−1

f ∥
n−1

n

L1(Ω).

2.10. Extension properties of Lipschitz domains. It is well known that Lipschitz
domains are Sobolev extension domains, see Calderón [9] and Stein [35]. The Sobolev
extension property holds even for so called uniform domains, see Jones [26]. For nice
recent progress in the field of Sobolev extension see Koskela, Rajala and Zhang [28].

Much less is known if we want to extend a Sobolev homeomorphism on Ω (Ω ⊂ Rn

Lipschitz) and require injectivity at least on a neighbourhood of Ω. Such a result would
simplify the proof of our main theorem. Unfortunately, we are aware only of planar result
and thus we bypass the absence of such a tool in a series of auxiliary results (Lemma 2.12,
Theorem 2.13, Lemma 3.6). Note that the planar result due to Koski and Onninen [29]
deals in fact with a more difficult problem of extension from the boundary. If we do not
start from a function given on the interior, we cannot use any kind of reflection.

Lemma 2.12. Let Ω′ ⊂ Rn be a Lipschitz domain. Then there exist a Lipschitz mapping
ℓ : Ω′ → Rn and δ > 0 with the following properties:

(a) x ∈ ∂Ω′ =⇒ ℓ(x) = x,
(b) dist(x, ∂Ω′) < δ =⇒ ℓ(x) /∈ Ω′.

Proof. By the definition of a Lipschitz domain, there exist open sets Ui ⊂ Rn, unit vectors
vi ∈ Rn, Lipschitz mappings Πi : Ui → ∂Ω′ ∩ Ui, i = 1, . . . ,m, and R, ρ > 0 with the
following properties

(i) for each x ∈ Ui there exists λ ∈ (−R,R) such that x = Πi(x) + λvi,
(ii) for each x ∈ Ui∩∂Ω′ and t ∈ (0, 2R) we have Πi(x) = x, x+tvi ∈ Rn\Ω′, x−tvi ∈ Ω′.
(iii) {x ∈ Rn : dist(x, ∂Ω′) ≤ ρ} ⊂ ⋃︁i Ui.

For each z ∈ Ω′ with dist(z, ∂Ω′) ≤ ρ find Bz = B(z, rz) such that there exists i = i(j) ∈
{1, . . . ,m} with B(z, (m + 1)rz) ⊂ Ui. Using compactness of {z ∈ Rn : dist(z, ∂Ω′) ≤ ρ}
select finite covering of this sets by balls B(zj, rj), j = 1, . . . , p with the property that
rj = rzj and find a smooth partition of unity (ωj)j on {z ∈ Rn : dist(z, ∂Ω′) ≤ ρ} such
that {ωj > 0} = B(zj, rj), j = 1, . . . , p. Set r = min{R/(m + 1), ρ, r1, . . . , rp} and find
δ > 0 such that for each x ∈ Ui, i = 1, . . . ,m, we have

dist(x, ∂Ω) < δ =⇒ |x− Πi(x)| < r.

Set
ηi(x) =

∑︂

j : i(j)=i

ωj, i = 1, . . . ,m,

ℓ(x) = x+m
m∑︂

i=1

ηi(x)(Πi(x)− x) if x ∈ Ω
′
and dist(x, ∂Ω′) ≤ δ
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and extend ℓ in a Lipschitz way to Ω′. Then ℓ is a Lipschitz mapping which is identity
on ∂Ω′.
Fixing x ∈ Ω′ with dist(x, ∂Ω′) ≤ δ, we must prove that ℓ(x) /∈ Ω′. We find i0 ∈

{1, . . . ,m} such that

ηi0(x) ≥ 1/m.

We may assume that i0 = 1 and that x ∈ supp ηi if and only if i ∈ {1, . . . , k} for some
k ∈ {1, . . . ,m}. Write

x1 := x+mη1(x)(Π1(x)− x) = Π1(x) + (mη1(x)− 1)(|Π1(x)− x|)v1.

Since

(mη1(x)− 1)(|Π1(x)− x|) ≤ mr ≤ R,

we have x1 /∈ Ω′. We have x1 ∈ B(x,mη1(x)r). If k = 1, we are done.
Now, we proceed by induction. Write

xq = x+m
∑︂

i≤q

ηi(x)(Πi(x)− x), q ≤ k.

By induction hypothesis we have xq−1 /∈ Ω′, Further,

xq−1 ∈ B(x,m(η1(x) + · · ·+ ηq−1(x))r) ⊂ B(x,mr).

We find jq such that i(jq) = q and |x− zjq | ≤ rjq . Then

|xq−1 − zjq | ≤ mr + rjq ≤ (m+ 1)rjq

and thus we have xq−1 ∈ Uq. This means that xq−1 is of the form Πq(xq−1) + λvq with
λ < R. Since mηq(x)(Πq(x) − x) = λ′vq with 0 ≤ λ′ ≤ mr ≤ R, we have xq =
Πq(xq−1) + (λ + λ′)vq with λ + λ′ < 2R and it follows that xq /∈ Ω′. We conclude that
ℓ(x) = xk /∈ Ω′. □

Theorem 2.13. Let Ω,Ω′ be Lipschitz domains and f be a W 1,p-homeomorphism of Ω
onto Ω′. Then there exist Ω0 ⊃ Ω, Ω′

0 ⊃ Ω′, and a continuous W 1,p-mapping f̃ : Ω0 → Ω′
0

such that f̃ = f on Ω and f̃ maps Ω0 \ Ω to Ω′
0 \ Ω′.

Proof. We use Lemma 2.12 to Ω′ and we keep the notation from Lemma 2.12. Let
f ∗ : Rn → Rn be the usual W 1,p-extension of f , by its construction it follows that f ∗

is continuous. Find τ > 0 such that

dist(x,Ω) < τ =⇒ dist(f ∗(x), ∂Ω′) < δ.

Set
Ω0 = {x : dist(x,Ω) < τ},

f̃(x) =

{︄
f ∗(x), x ∈ Ω or f ∗(x) /∈ Ω′,

ℓ(f ∗(x)), x ∈ Ω0 \ Ω and f ∗(x) ∈ Ω′,

and Ω′
0 = f̃(Ω0).

It is easily verified that f̃ has the desired properties. We use the chain rule (see e.g. [40,
Theorem 2.1.11] or [1, Theorem 3.16]) to prove the Sobolev regularity of the composition.

□
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3. Limit of homeomorphisms satisfies (INV)

Recall that our energy (1.1) is given by

F(f) =

∫︂

Ω

(|Df |n−1 + φ(Jf )) dx,

where φ is a positive convex function on (0,∞) that satisfies (1.3) and (1.4).

Theorem 3.1. Let n ≥ 3, Ω,Ω′ ⊂ Rn be Lipschitz domains and let φ satisfy (1.3) and
(1.4).
Let fm ∈ W 1,n−1(Ω,Ω′), m = 0, 1, 2, . . . , be a sequence of homeomorphisms with Jfm > 0

a.e. Let fm converge weakly in W 1,n−1(Ω,Rn) to a limit function f . Assume further that
we have either

(a) fm are homeomorphisms of Ω onto Ω′ such that fm = f0 on ∂Ω, for all m ∈ N,

(3.1) F(fm) ≤ C1

and

(3.2) ∥K
1

n−1

fm
∥1 ≤ C1,

or
(b) fm converge strongly in W 1,n−1(Ω,Rn) to f and Jf > 0 a.e.

Then f satisfies (INV).

Our main theorem follows easily from this more general result.

Proof of Theorem 1.1. Assumption (1.5) clearly implies (3.1) and by the Young inequality

ab ≤ 1

p
ap +

1

p′
bp

′

for a ≥ 0, b ≥ 0, p > 1

used for p = (n−1)2

n
(and thus p′ = (n−1)2

n2−3n+1
) we obtain

∫︂

Ω

K
1

n−1

fm
dx =

∫︂

Ω

|Dfm|
n

n−1
1

J
1

n−1

fm

dx ≤ 1

p

∫︂

Ω

|Dfm|n−1 dx+
1

p′

∫︂

Ω

1

J
n−1

n2
−3n+1

fm

dx.

The conclusion now follows from Theorem 3.1. □

Remark 3.2. Using the Young inequality with p = (n−1)2

n(1−ε)
(and thus p′ = (n−1)2

n2−3n+1+nε
)

we obtain a similar inequality for lower powers of Kfm , i.e., the counterexample from
Theorem 1.2 shows that assuming

∥K
1−ε
n−1

fm
∥1 ≤ C1

is also not enough to preserve the (INV) condition under weak limits.

Definition 3.3. Let Ω ⊂ Rn be open and let fm ∈ W 1,n−1(Ω,Rn) be homeomorphisms
that converge to a limit function f weakly inW 1,n−1(Ω,Rn). We say that a shapeK ⊂⊂ Ω
is a good shape (in particular, good ball or good cuboid) with respect to (fm)m if the
following properties are satisfied.

(i) The trace of f on ∂K is in W 1,n−1(∂K,Rn). In what follows we assume that f is
represented to coincide with this trace on ∂K.
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(ii) If K is a full cuboid or a hollowed cuboid, the the trace of f on each (n−2)-
dimensional edge E of K is in W 1,n−1(E) and the trace representative of f on the
closed (n− 2)-dimensional skeleton of K is continuous.

(iii) |fm(∂K)| = 0 for all m ∈ N.
(iv) There is a subsequence of fm such that the convergence fmk

→ f occurs weakly in
W 1,n−1(∂K,Rn) andHn−1-a.e. on ∂K, (and therefore deg(fmk

, K, ·) forms a bounded
sequence in BV .)

Lemma 3.4. Let Ω ⊂ Rn be open and let fm ∈ W 1,n−1(Ω,Rn) be homeomorphisms that
converge to a limit function f weakly in W 1,n−1(Ω,Rn). Let B(x0, r0) ⊂ Ω. Then B(x0, r)
is a good ball with respect to (fm)m for a.e. r ∈ (0, r0).

Proof. By slicing analogous to the proof of the ACL property we obtain that the trace of
f on ∂B is inW 1,n−1(∂B(x0, r),R

n) for a.e. r > 0. Images of spheres by fm are disjoint as
fm are one-to-one and thus |fm(∂B(x0, r))| = 0 for a.e. r > 0. The fact that deg(fm, B, ·)
forms a bounded sequence in BV follows from Section 2.5.
By the Fubini theorem and by the Fatou theorem

(3.3)

∫︂ r0

0

lim inf
m→∞

(︂∫︂

∂B(x0,r)

|Dτfm|n−1 dHn−1
)︂
dr ≤ lim inf

m→∞

∫︂

B(x0,r0)

|Dfm|n−1 ≤ C1.

The last inequality implies that for a.e. r

lim inf
m→∞

(︂∫︂

∂B(x0,r)

|Dτfm|n−1 dHn−1
)︂
<∞

and we can choose a subsequence for which the limes inferior turns to the limit. Thus, we
have a bounded sequence in W 1,n−1(∂B(x0, r)) and we select a weakly convergent subse-
quence. Since W 1,n−1 is compactly embedded into Ln−1 we obtain that this subsequence
converge to f in Ln−1. Up to a subsequence we can thus assume that it converges to f
pointwise Hn−1-a.e. on ∂B. □

Lemma 3.5. Let Ω ⊂ Rn be a bounded open and let fm ∈ W 1,n−1(Ω,Rn) be homeomor-
phisms that converge to a limit function f weakly in W 1,n−1(Ω,Rn). Let δ > 0. Then
there exist partitions

t01 < t11 < · · · < tm1

1 ,

t02 < t12 < · · · < tm2

2 ,

. . .

t0n < t1n < · · · < tmn

1

such that
Ω ⊂ (t01, t

m1

1 )× · · · × (t0n, t
mn

n ),

each tji − tj−1
i < δ and each

Q = (tj1−1
1 , tj11 )× (tj2−1

1 , tj21 )× · · · × (tjn−1
1 , tjn1 )

with 1 ≤ ji ≤ mi, i = 1, . . . , n, is a good cuboid with respect to (fm)m provided that Q ⊂ Ω.

Proof. The proof is analogous to the proof of Lemma 3.4 with the additional difficulty
that we must take care of the W 1,n−1-regularity (which implies continuity for a suitable
representative by the Morrey estimates) on the (n−2)-dimensional edges. Therefore we
select the partition points tji subsequently for i = 1, 2, . . . , n in such a way that the Sobolev
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regularity on the intersections of {x ∈ Ω: xi = tji} with all {x ∈ Ω: xi = tj
′

i′ } for all i′ < i
and j′ ∈ {1, . . . ,mi′} is controled. □

In the main proof we assume that the (INV) condition fails. Hence we can find a ball
B ⊂ Ω such either something from outside of B is mapped into the topological image of
the ball or something from inside of B is mapped outside of topological image, i.e. that
the set

{x ∈ Ω \B : f(x) ∈ imT (f, B)}(or {x ∈ B : f(x) /∈ imT (f, B)}) has positive measure.

At the same time we need to show that also something from inside of B is mapped inside
the topological image and something from outside of B is mapped outside, i.e. that the
following set have positive measure

{x ∈ Ω \B : f(x) /∈ imT (f, B)}(or {x ∈ B : f(x) ∈ imT (f, B)}).
This second condition seems to be believable but unfortunately we need the follow-
ing technical Lemma to show its existence (note that we replace f(x) ∈ imT (f, B) by
Deg(f, B, f(x)) ̸= 0 in (3.6)). The main idea to show this is simple, we extend our
f, fm : Ω → Ω′ to mappings f ∗, f ∗

m : Ω1 → Ω′
1 with Ω1 ⊋ Ω so that other conditions holds

for these extensions. Now it is not difficult to see that for many points

x ∈ Ω1 \ Ω we have f(x) /∈ imT (f, B).

Moreover, we do another important observation there. In the proof of the main theorem
we assume that (INV) condition fails and thus either (ii) or (iii) of Definition 2.6 fail. We
show that if (ii) fails for some ball then (iii) fails for some other shape. It follows that
we can assume in the proof of main theorem that (iii) fails.

Lemma 3.6. Let n ≥ 3, Ω,Ω′ ⊂ Rn be Lipschitz domains, let φ satisfy (1.3) and (1.4).

Let fm ∈ W 1,n−1(Ω,Ω′), m = 0, 1, 2, . . . , be a sequence of homeomorphisms of Ω onto Ω
′

such that fm = f0 on ∂Ω, Jfm > 0 a.e., and

(3.4) F(fm) ≤ C1,

which converges weakly in W 1,n−1(Ω,Rn) to a limit function f . Assume that f does not
satisfy (INV).
Then we can find domains Ω1 ⊃ Ω,Ω′

1 ⊂ Rn, such that fm extend toW 1,n−1-homeomorphisms

f ∗
m : Ω1 → Ω

′
1 with f ∗

m = f ∗
0 on Ω1 \ Ω,

(3.5) sup
m∈N

∫︂

Ω1

φ(Jf∗

m
) dx <∞ and sup

m∈N

∫︂

Ω1

K
1

n−1

f∗

m
dx <∞,

and we can find a good shape K ⊂⊂ Ω1 for the sequence f ∗
m and the limit function f ∗

such that both sets

(3.6) {x ∈ Ω1 \K : Deg(f ∗, K, f ∗(x)) ̸= 0} and {x ∈ Ω1 \K : Deg(f ∗, K, f ∗(x)) = 0}
have positive measure.

Proof. DenoteH = {x ∈ Rn : x1 < 0}. Denote the reflection (x1, x2 . . . , xn) ↦→ (−x1, x2, . . . , xn)
by R. Since domains Ω,Ω′ are Lipschitz and we can find a joint localization of both,
there exist k pairs of open sets Ui, Vi ⊂ Rn and of bilipschitz mappings Φi : Ui → Rn,
Ψi : Vi → Rn with i ∈ {1, . . . , , k} such that

(i) the sets Ui cover ∂Ω,
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(ii) f0(Ui) ⊂ Vi,
(iii) for each x ∈ U i we have x ∈ Ω iff Φi(x) ∈ H,
(iv) for each x ∈ V i we have x ∈ Ω′ iff Ψi(x) ∈ H,
(v) x ∈ Φi(Ui) \H =⇒ R(x) ∈ Φi(Ui),
(vi) x ∈ Ψi(Vi) ∩H =⇒ R(x) ∈ Ψi(Vi).

Then we can construct “Lipschitz reflections” near ∂Ω and ∂Ω′,

RΦ
i = Φ−1

i ◦R ◦ Φi,

RΨ
i = Ψ−1

i ◦R ◦Ψi.

Let us fix i ∈ {1, . . . , k}. Then for any m we can extend fm, j = 0, 1, . . . , to a Sobolev
homeomorphism f ∗

m : Ω ∪ Ui → Rn setting

f ∗
m(x) =

{︄
fm(x), x ∈ Ω,

RΨi

i (f0(R
Φ
i (x))), x ∈ Ui \ Ω.

Also we use the limit function

(3.7) f ∗ =

{︄
f(x), x ∈ Ω,

f ∗
0 (x), x ∈ Ui \ Ω.

The Sobolev regularity and continuity are preserved by composition with the bilipschitz
mappings. We use the property (1.4) of φ and F(f0) <∞ to verify that

sup
m∈N

∫︂

Ω1

φ(Jf∗
m
) dx <∞ and sup

m∈N

∫︂

Ω1

K
1

n−1

f∗
m
dx <∞.

Now we look for a good shape K as in the statement of the theorem. Since f does not
satisfy (INV) on Ω we can use Lemma 3.4 and Remark 2.7 to find an (arbitrarily small)
good ball B(c, r) ⊂ Ω such that either

{x ∈ Ω \B : Deg(f, B, f(x)) ̸= 0}
or

(3.8) A := {x ∈ B : Deg(f, B, f(x)) = 0}
have positive measure. Since B is small we can assume that 3

√
n diamB < dist(B, ∂Ω).

In the first case we find y0 ∈ ∂Ω′ such that y is a boundary point of the convex hull
ˆ︁Ω′ of Ω′, find i ∈ {1, . . . , k} such that y0 ∈ Vi and extend fm and f to Ω1 as in (3.7),

where Ω1 = Ω ∪ Ui. Notice that for all y ∈ f(Ω1) \ ˆ︁Ω′ we have Deg(f, B, y) = 0. This
can be obtained by approximation. Namely, by the Mazur lemma there exist convex
combinations gm of fm such that gm → f strongly in W 1,n−1(Ω,Rn). All the functions

gm have values in ˆ︁Ω′ and therefore

deg(gm, B, y) = 0, y /∈ ˆ︁Ω′.

Now we use Lemma 2.3 and (2.2) to deduce that

(3.9) Deg(f ∗, B, f ∗(x)) = 0 for a.e. x ∈ Ω1 \ (f ∗
0 )

−1( ˆ︁Ω′).

Hence our conclusion holds for this ball B, but of course for Ω1 instead of Ω.
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The second case, namely that the set A has positive measure, is more tricky. By

Theorem 2.13 there exist Ω0 ⊃ Ω, Ω′
0 ⊃ Ω

′
, and a continuous W 1,n−1-mapping f̃ 0 : Ω0 →

Ω′
0 such that f̃ 0 = f0 on Ω and f̃ 0 maps Ω′ \ Ω to Ω′

0 \ Ω0. We set

f̃m(x) =

{︄
f̃ 0(x), x ∈ Ω0 \ Ω,
fm(x), x ∈ Ω

and f̃(x) =

{︄
f̃ 0(x), x ∈ Ω0 \ Ω,
f(x), x ∈ Ω.

We use Lemma 3.5 to construct a partition Q of a neighbourhood of Ω into good
cuboids with respect to the extended functions. Moreover, we may assume that each
cuboid Q ∈ Q intersects Ω and is so small that it satisfies

(3.10) diamQ < diamB and Q ∩ ∂Ω ̸= ∅ =⇒ Q ⊂ Ω0 ∩ Ui for some i.

We define the figure F as (see Fig. 1)

F =
⋃︂

Q∈Q
Q.

Figure 1. We cover Ω by a set of good cuboids F and B by full cuboids P .

Using dist(B, ∂Ω) > 3
√
n diamB and (3.10) we find Q′ ⊂ Q such that the figure P

with
P :=

⋃︂

Q∈Q′

Q

is itself a full cuboid and
B ⊂ P ⊂⊂ Ω.

We will consider the hollowed cuboid

H = P \B.
Denote

Q′′ = {Q ∈ Q : Q ∩ P = ∅}.
We have (see Fig. 1)

(3.11) deg(f̃ , F, y) = 1, y ∈ Ω′.
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Indeed, f̃ = f̃ 0 on ∂F , f0 is a sense preserving homeomorphism on Ω and

deg(f̃ 0, F, y) = deg(f0,Ω, y) + deg(f̃ 0, F \ Ω, y).

Here we use the additivity property of the degree and the fact that deg(f̃ 0, F \ Ω, y) = 0
as

y /∈ f̃ 0(F \ Ω).
Note that the additivity property of the degree defined by (2.4) follows from the fact that
the normals on boundary parts of adjacent surfaces are opposite and thus cancellation
occurs. Further by (3.8)

Deg(f, B, y) = 0, y ∈ f(A).

Now, by (3.11)
(3.12)

1 = Deg(f̃ , F, y) = Deg(f, B, y)+Deg(f,H, y)+
∑︂

Q∈Q′′

Deg(f̃ , Q, y), for a.e. y ∈ f(A).

By (3.12) there exists a good shape K such that K ∩ B = 0 and deg(f̃ , B, y) ̸= 0 for
a.e. y ∈ f(A), namely either K = H or K ∈ Q′′. If K ⊂⊂ Ω, we can proceed as in the
preceding case (see (3.9)) and add a suitable Ui to Ω. Let K ∩ ∂Ω ̸= ∅. Then we find i
such that K ⊂⊂ Ui and as in the preceding case extend fm as fm

∗ and f as f ∗ to Ω ∪ Ui

as in (3.7). We now claim that that

(3.13) Deg(f ∗, K, f(x)) ̸= 0 for a.e. x ∈ A.

We start with showing that

(3.14) Deg(f ∗, K, y) = Deg(f̃ , K, y) ̸= 0 for a.e. y ∈ f(A).

To this end we first use a homotopy

h(y, t) = Ψ−1
i

(︂
Ψi(f̃ 0(y)) + t

(︁
Ψi(f

∗
0 (y))−Ψi(f̃ 0(y))

)︁)︂

to prove that

(3.15) deg(f̃ 0, K, y) = deg(f ∗
0 , K, y), y ∈ Ω′.

Let ψ be a smooth function supported in Ω′ and u be a smooth function satisfying
divu = ψ. Then by (3.15) we have

∫︂

∂K\Ω
(u ◦ f ∗

0 ) · (Λn−1Dτf
∗
0 )ν dHn−1

=

∫︂

∂K

(u ◦ f ∗
0 ) · (Λn−1Dτf

∗
0 )ν dHn−1 −

∫︂

∂K∩Ω
(u ◦ f0) · (Λn−1Dτf0)ν dHn−1

=

∫︂

∂K

(u ◦ f̃ 0) · (Λn−1Dτ f̃ 0)ν dHn−1 −
∫︂

∂K∩Ω
(u ◦ f0) · (Λn−1Dτf0)ν dHn−1

=

∫︂

∂K\Ω
(u ◦ f̃ 0) · (Λn−1Dτ f̃ 0)ν dHn−1.
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Hence∫︂

∂K

(u ◦ f ∗) · (Λn−1Dτf
∗)ν dHn−1

=

∫︂

∂K\Ω
(u ◦ f ∗

0 ) · (Λn−1Dτf
∗
0 )ν dHn−1 +

∫︂

∂K∩Ω
(u ◦ f) · (Λn−1Dτf)ν dHn−1

=

∫︂

∂K\Ω
(u ◦ f̃ 0) · (Λn−1Dτ f̃ 0)ν dHn−1 +

∫︂

∂K∩Ω
(u ◦ f) · (Λn−1Dτf)ν dHn−1

=

∫︂

∂K

(u ◦ f̃) · (Λn−1Dτ f̃)ν dHn−1.

We thus proved (3.14). Then, by Lemma 2.8 we have

Deg(f ∗, K, f(x)) = Deg(f̃ , K, f(x)) ̸= 0 for a.e. x ∈ A.

which establishes (3.13).

Figure 2. We add to Ω′ two disjoint sets Vi and V
′
i .

Now, we need to extend the function to a still larger set Ω1 (see Fig. 2). Similarly to the

first step, we find i′ ∈ {1, . . . , k} and a point y0 ∈ ∂Ω′∩∂ ˆ︁Ω′ such that y0 ∈ Vi′ (recall that
ˆ︁Ω′ denotes the convex hull of Ω′). We set Ω1 = Ω ∪ Ui ∪ Ui′ and extend fm and f to f ∗

m

and f ∗ using “Lipschitz reflection” on both Ui and Ui′ . To make it possible, we require in
addition that Vi ∩ Vi′ = ∅. This can be achieved if the covering of the boundary is chosen
fine enough. If we consider the strongly converging convex combinations gm

∗, we observe

that gm
∗(x) ∈ ˆ︁Ω′ if x ∈ Ω and gm

∗(x) ∈ Vi′ if x ∈ Ui′ \ Ω. Therefore gm∗(x) /∈ Vi′ \ ˆ︁Ω′ for
x ∈ K and thus

Deg(f ∗, K, f(x)) = 0 for a.e. x ∈ Ui′ \ (f ∗
0 )

−1( ˆ︁Ω′).

□

Proof of Theorem 3.1. Step 1. Outline of the proof: We give here a short informal sum-
mary of the proof first. Case (b) is proven by a simplified version of the proof of Case
(a), as thanks to the strong convergence we do not need the assumption on integrability
of the distortion and Jacobian of fm.
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We start by assuming that f violates the (INV) condition and that ”something from
outside is mapped inside the topological image”. We find a good shape K with respect
to (fm)m such that

U \K = {x ∈ Ω \K : Deg(f,K, f(x)) ̸= 0}
is of positive measure. (In the most simple case, K may be one of the balls which
violate the (INV) condition.) Those are the points which originally were outside of K
but f mapped them into the topological image of K. We cover the boundary of K by a
(n−2)-dimensional ”cage” or ”skeleton” made of parts of (n−2)-dimensional circles. On
this skeleton our functions are Hölder continuous. On the rest of the boundary of K we
replace them by gm and g which are continuous. One can think of it as of having prescribed
deformation of the skeleton and gm and g being a suitable continuous extensions of it on
∂K. The differences between the topological images of fm and gm (or [ and g) create
bubbles of some kind, through which the material can leave the topological image of K or
enter it from the outside (see Figure 3). The neck of such bubble must be getting thinner
and thinner as m grows, since in the end the topological image ”skips” it completely (see
Figure 4). We find two balls BU and BV of the same sizes outside of K such that a big
parts of them lie in U and V , respectively. Since most of BU is then mapped inside the
topological image of K but BV is mapped outside of it, the lines connecting these two
balls must pass through the thin neck of the bubble. That gives a contradiction with our
assumption on the integrability of the distortion, as the necks are getting smaller and
smaller, but the material of the lines cannot be deformed that much.
Step 2. Finding a good shape K: We assume for contradiction that f does not satisfy

the (INV) condition. Assume first Case (a). Since (INV) fails for f , by Lemma 3.6 we
may assume (passing if necessary to a different domain and different mapping) that there
is a good shape K with respect to (fm)m such that both sets U \ K and V \ K have
positive measure, where

(3.16) U = {x ∈ Ω: Deg(f,K, f(x)) ̸= 0}, V = {x ∈ Ω: Deg(f,K, f(x)) = 0}.
In Case (b), we find a good ball K such that (INV) is violated on K. Since either (ii)

or (iii) from Definition 2.6 fails, by Remark 2.7 we have that either U \ K has positive
measure, or V ∩K has positive measure. We will handle the former case, the latter one
being similar.
Step 3. Finding a skeleton of ∂K: Now, we handle Cases (a) and (b) together. Since

fm converge weakly in W 1,n−1 and W 1,n−1 is compactly embedded into Ln−1 on each ball
B ⊂⊂ Ω, we obtain that fm converge to f in Ln−1 at least locally. Up to a subsequence
we can thus assume that fm → f pointwise a.e. Using Lemma 2.10 we thus obtain
that Jf ̸= 0 a.e. (for Case (a), as we assume it in Case (b)). Passing if necessary to a
subsequence we find a constant C2 such that

∫︂

∂K

(|Dτf |n−1 + |Dτfm|n−1) dHn−1 < C2, m ∈ N.

Choose ε > 0 small enough whose exact value is specified later. Find ρ ∈ (0, 1
16n
r0) such

that for each z ∈ ∂K we have

(3.17)

∫︂

∂K∩B(z,2ρ)

|Dτf |n−1 dHn−1 < εn−1.
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Now, we distinguish three possibilities according to the form of the shape K. We define
sets Tj ⊂ ∂K which form a ”skeleton” of ∂K. Their key property will be that the diameter
of their image under f is small, namely

(3.18) diam f(Tj) ≤ C3ε.

First, let K be a ball. For each z ∈ ∂K we find ρz ∈ (ρ, 2ρ) such that

ρ

∫︂

∂K∩∂B(z,ρz)

|Dτf |n−1 dHn−2 < εn−1.

Analogously to the definition of the good ball we can also assume that fm → f occurs
Hn−2-a.e. on ∂K ∩ ∂B(z, ρz) and that

lim inf
m→∞

∥fm∥W 1,n−1(∂K∩∂B(z,ρz)) <∞.

It follows that up to a subsequence (see e.g. [31, Lemma 2.9])

(3.19) fm → f weakly in W 1,n−1 and also uniformly on ∂K ∩ ∂B(z, ρz).

Note that on the (n−2) dimensional space ∂K∩∂B(z, ρz) we have embedding into Hölder

functions W 1,n−1 ↪→ C0,1−n−2

n−1 and thus f is continuous there and we have the estimate

(3.20) diam f(∂K ∩ ∂B(z, ρz)) ≤ C(ρz)
1−n−2

n−1

(︂∫︂

∂K∩∂B(z,ρz)

|Dτf |n−1 dHn−2
)︂ 1

n−1 ≤ C3ε.

Using a Vitali type covering, we find Bj = B(zj, ρj) such that ρj = ρzj ,

∂K ⊂
⋃︂

j

B(zj, ρj)

and the balls B(zj,
1
5
ρj) are pairwise disjoint. Here j = 1, . . . , jmax. Note that the mul-

tiplicity of the covering is estimated by a constant N1 depending only on the dimension
since ρz ∈ (ρ, 2ρ) for every z. Furthermore, the balls in the Vitali covering theorem are
chosen inductively so we can also assume using (3.19) that for a subsequence (chosen in
a diagonal argument)

(3.21) fm → f weakly in W 1,n−1 and uniformly on ∂K ∩ ∂B(zj, ρj) for each j.

Given j, denote

Sj = ∂K ∩ Bj \
⋃︂

l<j

Bl.

Note that Sj obviously satisfies the exterior ball condition of Subsection 2.8. Let Tj denote
the relative boundary of Sj with respect to ∂K. From (3.20) we have (3.18).
If K is a full cuboid, similarly to the proof of Lemma 3.5 we find partitions of

each face of K to (n−1)-dimensional (full) cuboids Sj such that, denoting the relative
boundaries of Sj with respect to K by Tj, we have diamSj < ρ and

ρ

∫︂

Tj

|Dτf |n−1 dHn−2 ≤ εn−1.

We can also assume that fm → f occurs Hn−2-a.e. on Tj and that

lim inf
m→∞

∥fm∥W 1,n−1(Tj) <∞.
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Figure 3. 2D representation of the sets Fj. Tj corresponds to points on
f(∂K) (of course in Rn they are (n − 2)-dimensional), hj is represented
by dashed lines connecting these points (of course these are minimizers
of (n − 1)-energy in higher dimensions and not lines) and Fj is created
“between” hj(Sj) and f(Sj).

It follows that up to a subsequence (see e.g. [31, Lemma 2.9])

(3.22) fm → f weakly in W 1,n−1(Tj) and also uniformly on Tj.

By embedding we also have continuity and Hölder estimates similar to (3.20) of f on Tj,
in particular (3.18).
If K is a hollowed cuboid, we construct the skeleton of flat and round parts of the

boundary combining the methods used for a ball and a cuboid, obtaining sets Tj with the
desired property (3.18).
Step 4. Replacing f by g with similar degree: Now we consider the shapes together.

For each j we define hj on Sj such that hj minimizes coordinate-wise the tangential
(n − 1)-Dirichlet integral among functions with boundary data f on Tj (see Theorem
2.11). We define hj = f on ∂K \ Sj. Also we define the function g on ∂K as g = hj on
each Sj. Set (see Fig. 3)

F = {y ∈ Ω′ : Deg(f,K, y) ̸= deg(g,K, y)},
Fj = {y ∈ Ω′ : Deg(f,K, y) ̸= Deg(hj, K, y)}.

Then

y ∈
⋃︂

j

Fj for a.e. y ∈ F
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(this can be viewed e.g. by using (2.2)) and, by (2.5), (3.17), and the minimizing property∫︁
Sj
|Dτhj|n−1 dHn−1 ≤ C

∫︁
Sj
|Dτf |n−1 dHn−1 we have

∑︂

j

|Fj| ≤ C
∑︂

j

(︂∫︂

Sj

(|Dτf |n−1 + |Dτhj|n−1) dHn−1
)︂ n

n−1

≤ C
∑︂

j

(︂∫︂

Sj

|Dτf |n−1 dHn−1
)︂ n

n−1

≤ Cε
∑︂

j

∫︂

Sj

|Dτf |n−1 dHn−1 ≤ CC2ε.

Step 5. Concluding the proof for Case (b): Now, we distinguish the cases again. As-

sume (b). Since Jf ̸= 0 a.e. we can choose ε small enough so that using Lemma 2.8 we
obtain

(3.23) |f−1(F )| ≤
⃓⃓
⃓f−1

(︂⋃︂

j

Fj

)︂⃓⃓
⃓ ≤ κ.

We can find δ = δ(κ) > 0 such that there exists a set Z ⊂ Ω such that Jf > 2δ on Ω \ Z
and |Z| < κ/2. Since (up to a subsequence) Jfm → Jf pointwise a.e., we can find m big
enough such that Jfm > δ on Ω \ Z ′, where |Z ′| < κ. Then we can pass to a subsequence
so that we have Jfm > 1/δ on Ω′ \ Z ′

(3.24) |f−1
m (F )| ≤ |Z ′|+ |f−1

m (F \fm(Z ′))| ≤ κ+
⃓⃓
⃓f−1

m

(︂⋃︂

j

Fj \fm(Z ′)
)︂⃓⃓
⃓ ≤ κ+

CC2ε

δ
≤ 2κ

for all m ∈ N when ε is chosen small enough. Fix m ∈ N and note that

for every x ∈ U \K we have deg(fm, K, fm(x)) = 0 since fm is a homeomorphism.

Using the definitions of U (3.16)

U \K ⊂ {deg(fm, K, fm(x)) = 0, Deg(f,K, f(x)) ̸= 0}
⊂ {deg(fm, K, fm(x)) ̸= Deg(f,K, fm(x))} ∪ {Deg(f,K, fm(x)) ̸= deg(g,K, fm(x))}
∪ {deg(g,K, fm(x)) ̸= deg(g,K, f(x))} ∪ {Deg(g,K, f(x)) ̸= Deg(f,K, f(x))}.

We already know by (3.23) and (3.24) that

{Deg(f,K, fm(x)) ̸= Deg(g,K, fm(x))} ∪ {Deg(g,K, f(x)) ̸= Deg(f,K, f(x))} < 3κ.

Now, since the components of Rn \ g(∂K) are open and fm → f a.e., we can assume that
m is so large that

|{deg(g,K, fm(x)) ̸= deg(g,K, f(x))}| < κ.

Finally, since fm → f strongly, for m large enough we have by Lemma 2.3

|{deg(fm, K, ·) ̸= Deg(f,K, ·)}| < Φ(κ),

so that by (2.7)

|{deg(fm, K, fm(·)) ̸= Deg(f,K, fm(·))}| < κ.

Altogether, |U \K| < 5κ. Since |U \K| > 0 we can choose κ small enough, so that we
have a contradiction. The case |V ∩K| > 0 is done analogously.
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Figure 4. Definition of BU and BV . Images of most of the points u ∈ BU

lies inside f(∂B). On the other hand, for fm(∂B) (see dotted line) both
points f(u) and f(v) are outside for high enough m and most of the points
in BU and BV .

Step 6. Finding balls BU and BV which are mostly in U and V : From now on, we con-
sider only Case (a). We can use Lemma 3.6 and (3.16) and we can thus assume that
both U \K and V \K have positive measure.
Let Π be the orthogonal projection onto the hyperplane {x ∈ Rn : x1 = 0}. Assume

that κ ∈ (0, 1
6
) is so small that for each ball B and each measurable set E we have

(3.25) |B \ E| < 5κ|B| =⇒ |Π(E)| ≥ 7

8
|Π(B)|.

Using Lebesgue density arguments, we find r > 0 small enough and balls BU = B(xU , r)
and BV = B(xV , r) such that

(3.26)
|BU \ U | ≤ κ|BU |,
|BV \ V | ≤ κ|BV |

and the convex hull of BU ∪ BV is contained in Ω \K. We may assume that xV − xU is
a multiple of e1 (see Fig. 4).
Choosing ε small enough we can assume using Lemma 2.8 that

(3.27) |f−1(F )| ≤
⃓⃓
⃓f−1

(︂⋃︂

j

Fj

)︂⃓⃓
⃓ ≤ κ|BU |.

Step 7. Replacing fm by gm with similar degree: Find a compact set H ⊂ Ω′ \ g(∂K)
such that

(3.28) Ω′ \H < Φ(κ|BU |).
For each m ∈ N and j ∈ {1, . . . , jmax} let gm,j be defined in Sj as the coordinate-wise
minimizer of the (n−1)-Dirichlet integral among functions with boundary data fm on Tj.
We define gm,j as fm on ∂K \ Sj. We also define gm on ∂K as gm,j on each Sj.
Since fm → f = g uniformly on Tj by (3.21) (or (3.22)), we have gm → g uniformly on

∂K using Theorem 2.11. Hence we find m ∈ N such that gm(∂K) does not intersect H
and

(3.29) deg(gm, K, ·) = deg(g,K, ·) in H.
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Also, we require

|fm − f | = |fm − g| < ε on all Tj.

Similarly as in Fig. 3 (but using fm instead of f) we define

E = {y ∈ Ω′ : deg(fm, K, y) = 0 ̸= deg(gm, K, y)},
Ej = {y ∈ Ω′ : deg(fm, K, y) = 0 ̸= deg(gm,j, K, y)}.

Then

y ∈
⋃︂

j

Ej for a.e. y ∈ E.

Using (2.5) and the minimizing property
∫︁
Sj
|Dτgm,j|n−1 dHn−1 ≤ C

∫︁
Sj
|Dτfm|n−1 dHn−1,

we obtain

|Ej|1−
1

n ≤ C

∫︂

Sj

|Dτfm|n−1 dHn−1.

Step 8. Not that many big bubbles where fm and gm have different degree: Choose a >
0 and set

J+ = {j :
∫︂

Sj

|Dτfm|n−1 dHn−1 > a},

J− = {j :
∫︂

Sj

|Dτfm|n−1 dHn−1 ≤ a}.

Hence

(3.30)

∑︂

j∈J−

|Ej| ≤ C
∑︂

j∈J−

(︂∫︂

Sj

|Dτfm|n−1 dHn−1
)︂ n

n−1

≤ Ca
1

n−1

∑︂

j∈J−

∫︂

Sj

|Dτfm|n−1 dHn−1

≤ Ca
1

n−1

∫︂

∂K

|Dτfm|n−1 dHn−1 ≤ C4a
1

n−1 ,

where C4 = CC2. We fix a such that

(3.31) C4a
1

n−1 ≤ Φ(κ|BU |).
We set

W = f−1
m

(︂ ⋃︂

j∈J−

Ej

)︂
.

and using (2.9), (3.30) and (3.31) we obtain

(3.32) |W | < κ|BU |.
We have

(3.33) #J+ ≤M :=
C2

a
.

Step 9. A big part of BU is mapped into big bubbles, a big part of BV stays away from them:
Now, consider the situation in BU and BV . Set

X = {x ∈ BU \W : deg(gm, K, fm(x)) ̸= 0},
Y = {x ∈ BV \W : deg(gm, K, fm(x)) = 0}.
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Using definition of X, definition of U (3.16) and (3.29)

BU \X ⊂ W ∪ (BU \ U) ∪ {x ∈ BU : deg(gm, K, fm(x)) = 0, Deg(f,K, f(x)) ̸= 0}
⊂ W ∪ (BU \ U) ∪ {x ∈ BU : deg(g,K, fm(x)) = 0, Deg(f,K, f(x)) ̸= 0} ∪ {fm(x) /∈ H}
⊂ W ∪ (BU \ U) ∪ {deg(g,K, f(x)) ̸= Deg(f,K, f(x))}∪
∪ {deg(g,K, fm(x)) ̸= deg(g,K, f(x))} ∪ {fm(x) /∈ H}.

Then by (3.26), (3.32) and (3.27)

|W ∪ (BU \ U)| < 2κ|BU | and
|{deg(g,K, f(x)) ̸= Deg(f,K, f(x))}| < κ|BU |.

Since the set {y : deg(g,K, y) = 0} is open and fm → f a.e., we can take m so large that

|{deg(g,K, fm(x)) ̸= deg(g,K, f(x))}| < κ|BU |.
Finally using (3.28) and (2.7) (for fm since

∫︁
φ(Jfm)) ≤ C1) we obtain

|{fm(x) /∈ H}| ≤ κ|BU |
and all these inequalities together give us

|BU \X| ≤ 5κ|BU |.
Similarly using

BV \ Y ⊂ W ∪ (BV \ V ) ∪ {x ∈ BV : deg(gm, K, fm(x)) ̸= 0, Deg(f,K, f(x)) = 0}
⊂ W ∪ (BV \ V ) ∪ {deg(g,K, f(x)) ̸= Deg(f,K, f(x))}∪
∪ {deg(g,K, fm(x)) ̸= deg(g,K, f(x))} ∪ {fm(x) /∈ H}.

we obtain
|BV \ Y | ≤ 5κ|BV |.

Step 10. Concluding the proof for Case (a): By (3.25) we have

|Π(BU ∩X)| > 7

8
|Π(BU)|, |Π(BV ∩ Y )| > 7

8
|Π(BV )|,

so that

(3.34) |P | > 3

4
|Π(BV )|,

where
P = Π(BU ∩X) ∩ Π(BV ∩ Y ).

Consider the segment parallel to the x1-axis that connects x
′ ∈ BU∩X with x′′ ∈ BV∩Y .

We have
deg(gm, K, fm(x

′)) ̸= deg(gm, K, fm(x
′′)) = 0.

Since x′′, x′ /∈ W = f−1
m (
⋃︁

j∈J− Ej) there exists j ∈ J+ such that (see Fig. 5)

deg(gm,j, K, fm(x
′)) ̸= deg(gm,j, K, fm(x

′′))).

Hence there exists x between x′′ and x′ such that fm(x) ∈ ∂Ej (see Fig. 5). Since
∂Ej ⊂ fm(Sj) ∪ gm(Sj) and fm(x) /∈ fm(∂K) as x ∈ Ω \K and fm is a homeomorphism,
it follows that fm(x) ∈ gm(Sj). Using (3.34) and (3.33) we can fix j0 ∈ J+ such that

⃓⃓
⃓Π
(︁
{x ∈ Ω \K : fm(x) ∈ gm(Sj0)}

)︁⃓⃓
⃓ ≥ 3

4M
|Π(BU)|.
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Figure 5. 2D representation of the segment [x′, x′′] and its image (see
dotted curves). fm(∂K) is a full curve, Tj corresponds to points on fm(∂K),
gm is represented by dashed lines connecting these points.

Note that diam gm(Sj0) < Cε by (3.18) and Theorem 2.11. Now, choose β > 0 and use

ε > 0 so small that the W 1,n
0 (Ω′)-capacity of gm(Sj0) in Ω′ is smaller than βn. It follows

that we can find smooth u ∈ W 1,n
0 (Ω′) such that u has compact support, u ≡ 1 on gm(Sj0)

and ∫︂

Ω′

|Du|n dy ≤ βn.

It is clear that for each a ∈ Π
(︁
{x ∈ Ω \ K : fm(x) ∈ gm(Sj0)}

)︁
, where fm is absolutely

continuous on the segment Π−1(a) ∩ Ω, we have
∫︂

Π−1(a)∩Ω
|Du ◦ fm| ≥ 1

since the function is changing value from 0 to 1. Therefore, by (2.11),

(3.35)
3

4M
|Π(BU)| ≤

∫︂

Ω

|D(u ◦ fm)| dx ≤ ∥Du∥Ln(Ω′)∥K
1

n−1

fm
∥

n−1

n

L1(Ω) ≤ βC
n−1

n

1 .

Given β > 0, in the course of the construction we derive ε, then ρ and m. On the other
hand, BU , κ, a, M and thus all the left hand side of (3.35) do not depend on β. Thus,
by a suitable choice of β we obtain a contradiction. □

4. Counterexample - sharpness of the condition 1
J2
f

∈ L1

We use the notation A ≲ B for A ≤ C · B, where C is a positive constant which may
depend on the dimension n and exponents a and p, but not on ε nor any of the variables.
By A ≈ B we mean A ≲ B and B ≲ A.
We first recall some elementary inequalities that we use often in this section. For every

y ∈ [0, 1] and p ∈ (1
2
, 1) we have

1− yp≤1− y

and since the function yp is concave and its derivative is p at 1

yp ≤ 1 + p(y − 1).
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Therefore for every p ∈ (1
2
, 1) we have

(4.1) 1− yp ≈ 1− y for every y ∈ [0, 1].

We also use the fact that
(4.2)

sin(α) ≈ α on [0, π/2], sin(α) ≈ α(π − α) on [0, π] and cos(π/2− α) ≈ α on [0, π/2].

Note that for α ∈ (0, π) we have the following elementary estimate

(4.3)
1

sinα
≲

1

α(π − α)
=

1

π

(︃
1

α
+

1

π − α

)︃
.

Proof of Theorem 1.2. Step 1. Geometrical explanation: We fix a parameter ε > 0
small enough, we construct a homeomorphism fε and later we choose fm as fε for ε = 1/m.
We define the mapping from spherical coordinates (r, α, β) to spherical coordinates. We
first define it on B(0, 2), i.e. for r ∈ (0, 2), α ∈ (0, π) and β ∈ (−π, π). Then we extend
it to B(0, 10) \ B(0, 2) so that f(x, y, z) = (x, y,−z) on ∂B(0, 10) and then we compose
it with a proper reflection. The mapping has the form

fε ((r, α, β)) = (r̃(r, α, ε), α̃(r, α, ε), β) ,

i.e. it is enough to define it in the xz-plane and then rotate the picture around the z-axis
both in the domain and in the target.
To improve the readability we first give the informal idea about the behaviour of the

mapping using pictures and later we give exact formulas. In Figure 6 we show the be-
haviour of fε for ε = 1/m on different spheres in the xz-plane. The outer sphere ∂B(0, 2)
is mapped onto some drop-shape with [0, 0, 0] at the very top and this shape is actually
the same for all ε > 0. The behaviour on spheres inside is described for spheres of radius
1
2
and 3

2
. Each sphere ∂B(0, r) inside is divided into two parts - the inner part Ir denoted

in a dotted curve and the outer part Or denoted by a full curve. The boundary between
these two regions W is denoted by the thin blue dashed curve and is very important for
the behaviour of our map. The image fm(Or) is some outer half-drop (denoted by a full
curve on the right part of the picture) and the image fm(Ir) is some inner half-drop (de-
noted by a dotted curve) so that the image fm(B(0, r)) looks like a ”horseshoe”. These
horseshoes are nested, i.e. fm(B(0, r1)) ⊂ fm(B(0, r2)) for r1 < r2, so that the whole
map fm could be a homeomorphism. Let us describe what happens for ε → 0+, that
is, m → ∞. The tips of all horseshoes (the upper two parts) are approaching the point
[0, 0, 0] on the very top. At the same time W (boundary between inner and outer parts of
spheres) is changing drastically but only on B(0, 1). The small ”pie” on the bottom has
very small angle which disappears as ε → 0+ so in the limit there are no outer parts Or

for r < 1. It is actually possible to do so with bounded W 1,2 energy - on each ∂B(0, r),
0 < r < 1, we map something like 2D ball or radius δ (in fact a small spherical cap) to
something like 2D ball of radius 1 with energy

∫︁
B2(0,δ)

|Dh|2 ≈ H2(B2(0, δ))|1
δ
|2 ≈ 1.

The behaviour of limit mapping is depicted in Figure 7. We will show that fm forms a
bounded sequence inW 1,2 (and also that

∫︁
1
Ja
f

is bounded) so there is a subsequence which

converges weakly to the pointwise limit f . All ”horseshoes” f(B(0, r)) have two tips that

go up to the point [0, 0, 0]. Let us describe in details the behaviour of f on B(0, 1
2
) and

why the limit fails to satisfy the (INV) condition there. The boundary ∂B(0, 1
2
) has only

inner part I 1

2

and there is no outer part so the image f(∂B(0, 1
2
)) consists only from the
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W

W̃

B 1

2

B 3

2

B2

fm

[0, 0, 0]

fm(B2)

Figure 6. Mapping fm and its behaviour on spheres of radius 1
2
, 3

2
and 2.

W
B 1

2

B 3

2

B2

f

fT (B 1

2

)
f(B2)

Figure 7. Limit mapping f and its behaviour on spheres of radius 1
2
, 3

2
and 2.

dotted orange drop on the right-hand side of the picture. It follows that fT (B(0, 1
2
)) is

equal to the inner part of this (rotated) drop and it is not difficult to check that the degree
actually equals −1 there as we have changed the orientation of the sphere. However for
x ∈ B(0, 1

2
) we know that f(x) does not belong to to fT (B(0, 1

2
)) as it is mapped outside
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of this drop, in fact for fm we had the outer drop fm(Or) and fm(B(0, r)) lies between
fm(Or) and fm(Ir) so in the limit outside of f(Ir) (which is the limit of fm(Ir)).
Step 2. Formal definitions: We first define the set W between the inner and outer

parts of ∂B(0, r) and then we divide B(0, 2) into different regions accordingly. We set
r1ε = 1 + ε

π−ε
and

Sε =

{︄
π − εr, 0 < r < r1ε ,

(2− r)π, r1ε < r < 2

and our W is defined as (see the blue curve in Fig. 8)

W :=
{︂
(r, α) : α = Sε

}︂
.

This formula corresponds to the blue curve on the right half of Fig. 8 while the blue curve
on the left side is created by rotation around the z-axes. Note that r1ε → 1 as ε → 0.
Given a < 2 we fix p ∈

(︁
1
2
, 1
)︁
such that

A1 W

A2

D2

B

CD1

Figure 8. Definition of W and different areas.

(4.4) a(1− 3p) > −1.

Now we define the ”thickness between the blue curve and the red curve” as

δ(ε, r) =

{︄
ε1/pr 0 < r < r1ε ,

c0ε
1/p(2− r)λ r1ε < r < 2,

where

(4.5) λ =
2

1 + a− 3ap
≥ 2

1 + a− 3a/2
=

2

1− a/2
> 2 and c0 =

π

π − ε
· (π − ε)λ

(π − 2ε)λ
≈ 1,

so that δ is continuous at r1ε . Finally, we define the red curve on the picture as

W̃ :=
{︂
(r, α) : α = S̃ε

}︂
. where S̃ε = Sε − δ(ε, r).
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Now we can define the regions in Fig. 8 as

A1 :=
{︂
(r, α) : r ∈

(︁
0, r1ε

)︁
, α < S̃ε

}︂
,

B :=
{︂
(r, α) : r ∈

(︁
0, r1ε

)︁
, S̃ε < α < Sε

}︂
,

D1 :=
{︁
(r, α) : r ∈

(︁
0, r1ε

)︁
, Sε < α

}︁
,

A2 :=
{︂
(r, α) : r ∈

(︁
r1ε , 2

)︁
, α < S̃ε

}︂
,

C :=
{︂
(r, α) : r ∈

(︁
r1ε , 2

)︁
, S̃ε < α < Sε

}︂
and

D2 :=
{︁
(r, α) : r ∈

(︁
r1ε , 2

)︁
, Sε < α

}︁
.

Note that we always define only the part of the region in the right part of Fig. 8 and the
corresponding left-part is created by rotation around the z-axes (or mirroring).

Our mapping fε : (r, α, β) ↦→ (r̃, α̃, β̃) is defined as

(4.6)

r̃ = Rε(r, α) cos(Tε(r, α))

α̃ = Rε(r, α)Tε(r, α)

β̃ = β,

where we defineRε and Tε below. Informally speaking, we deform a sphere into a horseshoe
with inner and outer part. Were those half-circles, it would be natural to parametrize
them in polar coordinates. However, as we work with half-drops, we use another way.
Our Rε ∈ [0, 1] could be viewed as some ”radius of the drop in the image” and Tε ∈ [0, π

2
]

corresponds to some ”angle or parametrization of the boundary of the drop”, but instead
of using [Rε cosTε, Rε sinTε] as in the case of polar coordinates we use [Rε cosTε, RεTε]
as it fits us better. We want to keep our formulas as simple as possible: we define the
functions piecewise on regions A1, A2, B, C,D1, D2. We keep Rε to be the same as our limit
mapping on A1 and D2 and very close on A2 and D1. We use B and C to continuously
connect the values on these regions (by a linear convex combination).

We define our Rε ∈ [0, 1] as

Rε =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2−r
3
, on A1,√︂

π−2ε
π−ε

·
√
2−r
3
, on A2,

2
3
+ εr

3π
, on D1,

1+r
3
, on D2,

2−r
3

· S−α
δ(ε,r)

+
(︁
2
3
+ εr

3π

)︁ (︂
1− S−α

δ(ε,r)

)︂
, on B,√︂

π−2ε
π−ε

·
√
2−r
3

· S−α
δ(ε,r)

+ 1+r
3

(︂
1− S−α

δ(ε,r)

)︂
, on C,

Note that Rε is continuous and the values on boundaries between regions (like for r = r1ε)
agree. To define Tε we need two additional auxiliary functions. The first one ξε ∈ [0, 1]
measures how close we are to the critical strip between the blue line W and the red line
W̃ and is equal to 0 exactly on the strip:

ξε(r, α) =

⎧
⎪⎨
⎪⎩

1− α
S̃ε
, on A1 ∪ A2 (i.e., on α < S̃ε),

0, on B ∪ C (i.e., on S̃ε ≤ α ≤ Sε),

1− π−α
π−Sε

, on D1 ∪D2 (i.e., on Sε < α).
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Let us define r0ε =
ε−2ε2

1−ε2
≈ ε so that functions r

ε
and 1− (2− r)ε are equal at this point.

The second one (recall that p ∈ (1
2
, 1) and λ > 2 were chosen in (4.4) and (4.5))

ψ(ε, r) =

⎧
⎪⎨
⎪⎩

r
ε

for r ∈ [0, r0ε ],

1− ε(2− r) for r ∈ [r0ε , r
1
ε ],

1−
(︁
π−2ε
π−ε

)︁1−λp
ε(2− r)λp for r ∈ [r1ε , 2],

is influencing the shape of the “horseshoes” (see Fig. 6). For ψ(ε, r) = 1 the horseshoe is
coming up to the point [0, 0, 0] so we want limε→0+ ψ(ε, r) = 1, but ψ(ε, r) < 1 (to have
injectivity). Moreover, the definition ψ(ε, 0) = 0 and ψ(ε, r) small for r small ensures
that for really small r our horseshoes are small so that fε is continuous at the origin.
We set

Tε =
π

2
(1− ξpε )ψ(ε, r) ∈

[︂
0,
π

2

]︂
.

Note that for ξε close to 0 (i.e. close to blue-red strip) and for ψ(ε, r) close to 1 we have
Tε close to π

2
and thus by (4.6) we obtain that r̃ is close to 0, i.e. the image of our point

is close to [0, 0, 0]. Note that our fε is continuous up to the boundary of B(0, 2). For
simplicity of notation we sometimes omit the subscript ε and we write only R, ξ and T
and not Rε, ξε and Tε.
Step 3. Continuity and injectivity: It is easy to check that our fε is continuous on

all regions. Moreover, it is not difficult to check that on boundaries between two regions
the values are the same from both sides and hence our fε is continuous.
It is also not difficult to check that fε restricted to each boundary ∂A1, ∂A2, ∂D1,

∂D2, ∂B and ∂C is a homeomorphism. For that purpose we will extend Rε and Tε on
S(0, 2) ∪ {[0, 0, 0]}:

Rε = 1, ψ(ε, r) = 1, ξε(r, α) =
α

π
on S(0, 2) \ {[0, 0, 2]}

Rε = 0, Tε = 0 on {[0, 0, 2]}

Rε =
2

3
, Tε = 0 on {[0, 0, 0]}.

There are two points where the extension of ξ is not defined, points [0, 0, 0] and [0, 0, 2].
Apart from them we have continuous functions.
Let us now prove the injectivity on the boundaries, firstly in the planar setting. Assume

we have (R1, T 1) = (R2, T 2), we want to show that the preimages are the same.
1. R1 = 0 or R1 = 2/3: The only possible preimages in those cases are the points [0, 0, 2]

or [0, 0, 0], respectively.
2. R ∈ (0, 1] \ {2/3}: In this case we have R and T determined by the previously used

formulas. Also we can uniquely describe the preimage by its polar coordinates (r, α) ∈
(0, 2]× [0, π].

• ∂A1, ∂A2, ∂D1, ∂D2: Since R is independent of α and injective with respect to r,
R1 = R2 implies r1 = r2. That gives ψ1 = ψ2 ̸= 0. From that and T 1 = T 2

we have ξ1 = ξ2. Again, for fixed r on each of those domains we have that ξ is
injective with respect to α. Together this gives α1 = α2.

• ∂B, ∂C: Here we have that T is independent of α and injective, as ψ is injective
with respect to r. So we know that r1 = r2. Since R for fixed r is a convex
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combination of two distinct numbers, it is therefore injective with respect to α
and we are done.

Now we address the mapping (R, T ) ↦→ (r̃, α̃) = (R cosT,RT ). We claim that it is
injective for (R, T ) ∈ ((0, 1] × [0, π/2]) ∪ {(0, 0)}. Let us have (R1, T 1), (R2, T 2) such
that (r̃1, α̃1) = (r̃2, α̃2). If (r̃1, α̃1) = (0, 0), we know that R1 = R2 = 0, T 1 = T 2 = 0
and the result follows. If α̃1 = 0 and r̃1 is positive, it follows that T 1 = T 2 = 0 and
R1 = R2 = r̃1. Otherwise since cosT is decreasing and T is increasing, we have that
cosT/T : (0, π/2] → [0,∞) is strictly monotone. Since

cos(T 1)

T 1
=
r̃1

α̃1 =
r̃2

α̃2 =
cos(T 2)

T 2
,

we obtain T 1 = T 2, and so R1 = R2.
When we add the third dimension and rotate, the injectivity does not change and hence

our fε is a homeomorphism on boundaries of different regions. Below we estimate the
integrability of J−a

fε
and in those estimates we show (as a by-product) that Jfε ̸= 0 in all

the regions. By Inverse Mapping Theorem it follows that fε is locally a homeomorphism
and since it is a homeomorphism on the boundaries we obtain that it is a homeomorphism
in each of the regions (see e.g. [30]). Moreover, it is a homeomorphism on ∂B(0, 2) and

thus a homeomorphism on B(0, 2).
Step 4. Integrability of |Df ε|2 and J−a

fε
on A1 ∪ A2 ∪D1 ∪D2:

Estimate from spherical to spherical coordinates: For mappings from spherical to spher-
ical coordinates that are rotationally symmetric with respect to β, we have
(4.7)∫︂

B(0,2)

∥Df ε∥2 = 2π

∫︂ 2

0

∫︂ π

0

[︂
(∂rr̃)

2 + (r̃∂rα̃)
2 +

(︃
∂αr̃

r

)︃2

+

(︃
r̃∂αα̃

r

)︃2

+

(︃
r̃ sin(α̃)

r sinα

)︃2]︂
·

· r2 sinα dα dr

≈
∫︂ 2

0

∫︂ π

0

[︂
r2α(π − α)

[︁
(∂r(R cosT ))2 + (R cosT∂r(RT ))

2
]︁

+ α(π − α)
[︁
(∂α(R cosT ))2 + (R cosT∂α(RT ))

2
]︁
+

(R cosT sin(RT ))2

α(π − α)

]︂
dα dr

and

(4.8)

∫︂

B(0,2)

|Jfε
|−a = 2π

∫︂ 2

0

∫︂ π

0

|∂rr̃ · ∂αα̃− ∂rα̃ · ∂αr̃|−a |r̃2 sin(α̃)|−a|r2 sinα|1+a dα dr

= 2π

∫︂ 2

0

∫︂ π

0

|∂rR · ∂αT − ∂rT · ∂αR|−aR−a| cosT + T sinT |−a·

· |R2(cosT )2 sin(RT )|−a|r2 sinα|1+a dα dr

≈
∫︂ 2

0

∫︂ π

0

|∂rR · ∂αT − ∂rT · ∂αR|−aR−3a|(cosT )2 sin(RT )|−a|r2 sinα|1+a dα dr.

Note that the term | cosT +T sinT | is bounded both from below and above for T ∈ [0, π
2
]

so we can estimate it by a constant.
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Estimate on A1 ∩ {r > r0ε}: On this set we have 0 < α < π − εr − ε
1

p r,

Rε =
2− r

3
and Tε =

π

2

(︃
1−

(︃
1− α

π − εr − ε
1

p r

)︃p)︃
(1− (2− r)ε).

Let us first estimate
(4.9)

|∂αTε| =
π

2
p

(︃
1− α

π − εr − ε
1

p r

)︃p−1
1

π − εr − ε
1

p r
(1− (2− r)ε) ≈ (π − εr − ε

1

p r − α)p−1

and

|∂rTε| =
π

2

(︃
1−

(︃
1− α

π − εr − ε
1

p r

)︃p)︃
ε+

+
π

2
p

(︃
1− α

π − εr − ε
1

p r

)︃p−1
α

(π − εr − ε
1

p r)2
(ε+ ε1/p)(1− (2− r)ε)

≲ ε(π − εr − ε
1

p r − α)p−1.

Using cos(π
2
− y) ≈ y we get

(4.10)

cosT = cos

[︃
π

2

(︃
1−

(︃
1− α

π − εr − ε
1

p r

)︃p)︃
(1− (2− r)ε)

]︃

≈
(︃
1− α

π − εr − ε
1

p r

)︃p

+ (2− r)ε.

Now we use R ≈ 1, the previous line, (4.2) and RT ≤ π/2, (4.1) and p > 1
2
to estimate

(R cosT sin(RT ))2

α(π − α)
≈

(︂(︂
1− α

π−εr−ε
1
p r

)︂p
+ (2− r)ε

)︂2
T 2

α(π − α)

≲

(︂(︂
1− α

π−εr−ε
1
p r

)︂2p
+ ε2

)︂

(π − α)

(︂
1−

(︂
1− α

π−εr−ε
1
p r

)︂p)︂2

α

≲
(π − α− εr − ε

1

p r)2p + ε2

π − α

α2

α
≤ 1 +

ε2

π − α
.

With the help of these estimates, using (4.7) and p > 1
2
we get that

∫︂

A1∩{r>r0ε}
∥Df ε∥2 ≲

∫︂ r1ε

r0ε

∫︂ π−εr−ε
1
p r

0

[︂
α(π − α)

[︁
|∂rR|2 + |∂rT |2 + |∂αT |2

]︁
+

+
(R cosT sin(RT ))2

α(π − α)

]︂
dα dr

≲

∫︂ r1ε

0

∫︂ π−εr−ε
1
p r

0

(︃
1 + (π − εr − ε

1

p r − α)2p−2 +
ε2

(π − α)

)︃
dα dr

≲ 1 + ε2
∫︂ r1ε

0

− log(εr) dr ≲ 1.
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It remains to estimate the Jacobian on A1 using (4.8), ∂αR = 0 and R ≈ 1

∫︂

A1∩{r>r0ε}
|Jfε

|−a
≲

∫︂ r1ε

r0ε

∫︂ π−εr−ε
1
p r

0

|∂αT |−a
⃓⃓
(cosT )2 sin(RT )

⃓⃓−a ⃓⃓
r2 sinα

⃓⃓1+a
dα dr.

We estimate using (4.1) and R ≈ 1

⃓⃓
⃓⃓ sinα

sinRT

⃓⃓
⃓⃓
a

≲

⃓⃓
⃓⃓
⃓⃓

α

1−
(︁
1− α

π−εr−ε
1
p r

)︁p

⃓⃓
⃓⃓
⃓⃓

a

≲ 1.

Further using (4.10) we obtain

1

cosT
≲

(︃
1− α

π − εr − ε
1

p r

)︃−p

≈ (π − εr − ε
1

p r − α)−p.

Together with (4.9) these estimates give us

∫︂

A1∩{r>r0ε}
|Jfε

|−a
≲

∫︂ r1ε

r0ε

∫︂ π−εr−ε
1
p r

0

|∂αT |−a
⃓⃓
cosT

⃓⃓−2a
dα dr

≲

∫︂ r1ε

0

∫︂ π−εr−ε
1
p r

0

|(π − εr − ε
1

p r − α)p−1|−a
⃓⃓
(π − εr − ε

1

p r − α)p
⃓⃓−2a

dα dr

and our choice of p in (4.4) implies that this integral is finite.

Estimate on A1 ∩ {r < r0ε}: On this set we have 0 < α < π− εr− ε
1

p r, 0 < r < r0ε ≈ ε
and

Rε =
2− r

3
and Tε =

π

2

(︃
1−

(︃
1− α

π − εr − ε
1

p r

)︃p)︃
r

ε
.

Again we first estimate

|∂αTε| =
π

2
p

(︃
1− α

π − εr − ε
1

p r

)︃p−1
1

π − εr − ε
1

p r
· r
ε
≈ r

ε
(π − εr − ε

1

p r − α)p−1

and using (4.1)

(4.11)

|∂rTε| =
π

2

(︃
1−

(︃
1− α

π − εr − ε
1

p r

)︃p)︃
1

ε
+

+
π

2
p

(︃
1− α

π − εr − ε
1

p r

)︃p−1
α

(π − εr − ε
1

p r)2
(ε+ ε

1

p )
r

ε

≈ α

ε
+
(︂
π − εr − ε

1

p r − α
)︂p−1

rα ≲
1

ε

(︂
π − εr − ε

1

p r − α
)︂p−1

.

Using (4.2), R ≈ 1 and (4.1) we estimate the last term of the derivative

(R cosT sin(RT ))2

α(π − α)
≲

R2T 2

α(π − α)
≲

(︃
1−

(︃
1− α

π−εr−ε
1
p r

)︃p)︃2
r2

ε2

α(π − α)
≲

r2

ε2(π − α)
.
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With the help of these estimates, using (4.7) and ∂αR = 0 we get

∫︂

A1∩{r<r0ε}
∥Df ε∥2 ≲

∫︂ r0ε

0

∫︂ π−εr−ε
1
p r

0

[︃
r2
[︁
|∂rR|2 + |∂rT |2

]︁
+ |∂αT |2 +

(R cosT sin(RT ))2

α(π − α)

]︃
dα dr

≲

∫︂ r0ε

0

∫︂ π−εr−ε
1
p r

0

[︄
1 +

r2(π − εr − ε
1

p r − α)2p−2

ε2
+

r2

ε2(π − α)

]︄
dα dr

and the first part of the integral is finite since p > 1
2
and r ≲ ε. The second one we can

estimate as

1

ε2

∫︂ r0ε

0

r2
∫︂ π−εr−ε

1
p r

0

1

π − α
dα dr ≲

1

ε2

∫︂ r0ε

0

ε2(− log(εr)) dr ≲ 1.

It remains to estimate the Jacobian on A2 using (4.8), ∂αR = 0 and R ≈ 1

∫︂

A1∩{r<r0ε}
|Jfε

|−a
≲

∫︂ rε

0

∫︂ π−εr−ε
1
p r

0

|∂αT |−a
⃓⃓
(cosT )2 sin(RT )

⃓⃓−a|r2 sinα|1+a dα dr.

Using (4.11) we obtain

|∂αT | ≳ (π − εr − ε
1

p r − α)p−1αr

and using R ≈ 1 and (4.1) we have

sin(RT ) ≈ RT ≈ T ≈ α
r

ε
.

Moreover, using again cos(π
2
− y) ≈ y we get

cosT ≈ π

2
− T ≈

(︃
1− α

π − εr − ε
1

p r

)︃p

+
(︂
1− r

ε

)︂

≥
(︃
1− α

π − εr − ε
1

p r

)︃p

≳ (π − εr − ε
1

p r − α)p.

Combining these estimates we obtain
∫︂

A1∩{r<r0ε}
|Jfε

|−a
≲

≲

∫︂ r0ε

0

∫︂ π−εr−ε
1
p r

0

1

(π − εr − ε
1

p r − α)ap−aαara
· |r2 sinα|1+a

(π − εr − ε
1

p r − α)2ap
· εa

αara
dα dr.

As before (see (4.4)) the power of (π − εr − ε
1

p r − α) is bigger than −1 and this term is
integrable. Using sinα ≤ α we obtain that the power of α is −a− a+1+ a = 1− a > −1
and this term is also integrable. The power of r is −a− a+ 2 + 2a and the power of ε is
positive so the whole integral is bounded.
Estimate on A2: We have 0 < α < S̃ = (2− r)π − c0ε

1/p(2− r)λ, 1 < r1ε < r < 2,

Rε =

√︃
π − 2ε

π − ε
·
√
2− r

3
and Tε =

π

2

(︂
1−

(︂
1− α

S̃

)︂p)︂
ψ,

where ψ = 1−
(︁
π−2ε
π−ε

)︁1−λp
ε(2− r)λp and λ = 2

1+a−3ap
> 2.
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Since

∂r

(︂α
S̃

)︂
=
α
(︁
π − λc0ε

1/p(2− r)λ−1
)︁

S̃
2 ≈ α

S̃
2 ,

and λp− 1 > 0, we have

|∂rT | =
π

2
p
(︂
1− α

S̃

)︂p−1α
(︁
π − c0ε

1/p(2− r)λ−1
)︁

S̃
2 ψ +

π

2

(︂
1−

(︂
1− α

S̃

)︂p)︂
∂rψ

≲
(︂ S̃ − α

S̃

)︂p−1 α

S̃
2 + 1 ≲

(︂ S̃ − α

S̃

)︂p−1 1

S̃
+ 1

and

|∂αT | =
π

2

⃓⃓
⃓⃓
⃓−p

(︃
1− α

S̃

)︃p−1
1

S̃
ψ

⃓⃓
⃓⃓
⃓ ≈

(︄
S̃ − α

S̃

)︄p−1
1

S̃
.

Using (4.1) we know that

T ≈ 1−
(︃
1− α

S̃

)︃p

≈ α

S̃
and

(4.12)
π

2
− T ≈ (1− ψ) +

(︃
1− α

S̃

)︃p

ψ ≈ (1− ψ) +

(︃
1− α

S̃

)︃p

,

so together with (4.3), R ≤ 1 and α < S̃ < S̃ + c0ε
1/p(2− r)λ ≤ π we get

(R cosT sin(RT ))2

α(π − α)
≲
T 2(π

2
− T )2

α(π − α)
≈

α2

S̃
2

(︂
(1− ψ) +

(︂
1− α

S̃

)︂p)︂2

α(π − α)

≲
α2

S̃
2
α
+

(1− ψ)2 +
(︂

S̃−α
S̃

)︂2p

π − α
≲

1

S̃
+
ε2(2− r)2λp

π − α
+

(S̃ − α)2p

S̃
2p
(π − α)

≲
1

S̃
+
ε2(2− r)2λp

ε1/p(2− r)λ
+

(S̃ − α)2p

S̃
2p
(S̃ − α)

≲
1

S̃
.

Therefore using (4.7), ∂αR = 0, α < S̃ < S ≈ (2− r) and p > 1/2 gives
∫︂

A2

∥Df ε∥2 ≲
∫︂ 2

r1ε

∫︂ S̃

0

[︃
α(π − α)

[︁
(∂rR)

2 + (∂rT )
2 + (∂αT )

2
]︁
+

(R cosT sin(RT ))2

α(π − α)

]︃
dα dr

≲

∫︂ 2

1

∫︂ S̃

0

[︄
α(π − α)

[︄
1

2− r
+

(S̃ − α)2p−2

S̃
2p + 1 +

(S̃ − α)2p−2

S̃
2p

]︄
+

1

S̃

]︄
dα dr

≲

∫︂ 2

1

[︄
1 +

S̃

S
+

∫︂ S̃

0

α
(S̃ − α)2p−2

S̃
2p dα

]︄
dr ≲

∫︂ 2

1

[︄
1 + S̃

S̃
2p−1

S̃
2p

]︄
dr ≲ 1.

Considering the Jacobian estimate, due to the fact that ∂αR = 0 we can rewrite (4.8) as
∫︂

A2

|Jfε
|−a ≈

∫︂ 2

r1ε

∫︂ S̃

0

|∂rR · ∂αT |−aR−3a|(cosT )2 sin(RT )|−a|r2 sinα|1+adαdr.
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We estimate (using again (4.2) and (4.1))

sin(RT ) ≈ RT ≈
√
2− r

(︂
1−

(︂
1− α

S̃

)︂p)︂
≈ α

S̃

√
2− r

and from (4.12)

cos(T ) ≈ π

2
− T ≈

(︂
1− α

S̃

)︂p
+ (1− ψ) ≳

(︂
1− α

S̃

)︂p
.

Together this gives

∫︂

A2

|Jfε
|−a

≲

≲

∫︂ 2

r1ε

∫︂ S̃

0

⃓⃓
⃓ 1√

2− r

(︂(S̃ − α)p−1

S̃
p

)︂⃓⃓
⃓
−a 1

√
2− r

3a

(︂
1− α

S̃

)︂−2ap(︂α
S̃

√
2− r

)︂−a

α1+adα dr

≲

∫︂ 2

1

∫︂ S̃

0

(S̃ − α)a−3apS̃
3ap+a

(2− r)
−3a
2 dα dr

=

∫︂ 2

1

S̃
3ap+a

(2− r)
−3a
2

∫︂ S̃

0

(S̃ − α)a−3apdα dr ≲ 1,

since a− 3ap > −1 and S̃ < S ≈ (2− r).
Estimate on D1 ∩ {r > r0ε}: On this set we have S = π − εr < α < π and

Rε =
2

3
+
εr

3π
and Tε =

π

2

(︃
1−

(︃
1− π − α

εr

)︃p)︃
(1− (2− r)ε) .

Let us first estimate

(4.13) |∂αTε| =
π

2
p

(︃
1− π − α

εr

)︃p−1
1

εr
(1− (2− r)ε) ≈ (α− π + εr)p−1 1

εprp

and using π − α < εr

|∂rTε| =
⃓⃓
⃓⃓
⃓
π

2

(︃
1−

(︃
1− π − α

εr

)︃p)︃
ε− π

2
p

(︃
1− π − α

εr

)︃p−1
π − α

εr2
(1− (2− r)ε)

⃓⃓
⃓⃓
⃓

≲
ε1−p(α− π + εr)p−1

rp
.

Now using sinRT ≤ RT , (4.1) and π − α < εr we have

(R cosT sin(RT ))2

α(π − α)
≲

R2T 2

α(π − α)
≲

(︁
1−

(︁
1− π−α

εr

)︁p)︁2

α(π − α)
≲

(π−α)2

ε2r2

α(π − α)
≤ 1

αεr
≲

1

εr
.
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With the help of these estimates we use (4.7), π−α < εr, p > 1
2
and elementary integration

to obtain

∫︂

D1∩{r>r0ε}
∥Df ε∥2 ≲

∫︂ r1ε

r0ε

∫︂ π

π−εr

[︂
α(π − α)

[︁
|∂rR|2 + |∂rT |2 + |∂αT |2

]︁
+

+
(R cosT sin(RT ))2

α(π − α)

]︂
dα dr

≲

∫︂ r1ε

0

∫︂ π

π−εr

[︃
(π − α)(α− π + εr)2p−2 1

ε2pr2p
+

1

εr

]︃
dα dr

≲

∫︂ r1ε

0

1

ε2p−1r2p−1

∫︂ π

π−εr

(α− π + εr)2p−2 dα dr +

∫︂ r1ε

0

1

εr
(εr) dr

≲

∫︂ r1ε

0

1

ε2p−1r2p−1
(εr)2(p−1)+1 dr + 1 ≈ 1.

Now we estimate the Jacobian on D1 using (4.8), ∂αR = 0 and R ≈ 1 as

∫︂

D1∩{r>r0ε}
|Jfε

|−a ≲

∫︂ r1ε

0

∫︂ π

π−εr

|∂αT |−a
⃓⃓
(cosT )2 sin(RT )

⃓⃓−a|r2 sinα|1+a dα dr.

Using (4.13) we estimate |∂αT |, further using (4.1)

sin(RT ) ≈ T ≈ 1−
(︃
1− π − α

εr

)︃p

≈ π − α

εr
.

As usual we estimate using cos(π
2
− y) ≈ y that

cosT ≈
(︃
1− π − α

εr

)︃p

+ (2− r)ε ≳ (α− π + εr)p
1

εprp
.

Combining these estimates with | sinα
π−α

| ≤ 1 and | sinα| ≤ εr we get

∫︂

D1∩{r>r0ε}
|Jfε

|−a ≲

∫︂ r1ε

r0ε

∫︂ π

π−εr

εaprap

(α− π + εr)ap−a

ε2apr2ap

(α− π + εr)2ap
(εr)a

(π − α)a
r2+2a| sinα|aεr dα dr

≲ ε3ap+a+1

∫︂ r1ε

0

r3ap+a+2+2a

∫︂ π

π−εr

(α− π + εr)a−3ap dα dr

and this integral is bounded using (4.4).
Estimate on D1 ∩ {r < r0ε}: On this set we have π − εr < α < π and 0 < r < r0ε ≈ ε

and

Rε =
2

3
+
εr

3π
and Tε =

π

2

(︃
1−

(︃
1− π − α

εr

)︃p)︃
r

ε
.

Let us first estimate

(4.14) |∂αTε| =
π

2
p

(︃
1− π − α

εr

)︃p−1
1

εr
· r
ε
≈ (α− π + εr)p−1 r

1−p

ε1+p
.
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and using π − α < εr

|∂rTε| =
⃓⃓
⃓⃓
⃓
π

2

(︃
1−

(︃
1− π − α

εr

)︃p)︃
1

ε
− π

2
p

(︃
1− π − α

εr

)︃p−1
π − α

εr2
· r
ε

⃓⃓
⃓⃓
⃓

≲
1

ε
+ (α− π + εr)p−1ε1−pr1−p1

ε
=

1

ε
+ (α− π + εr)p−1 r

1−p

εp
.

Now using (4.1), sinRT ≤ RT , α ≈ 1 and π − α < εr we have

(R cosT sin(RT ))2

α(π − α)
≲

R2T 2

α(π − α)
≲

(︁
1−

(︁
1− π−α

εr

)︁p)︁2 r2

ε2

α(π − α)
≲

(π−α)2

ε2r2
· r2

ε2

α(π − α)
≲

r

ε3
.

With the help of these estimates we use (4.7), π − α < εr, p > 1
2
, r < r0ε ≈ ε and

elementary integration to obtain
∫︂

D1∩{r<r0ε}
∥Df ε∥2 ≲

∫︂ r0ε

0

∫︂ π

π−εr

[︂
α(π − α)

[︁
|∂rR|2 + |∂rT |2 + |∂αT |2

]︁
+

+
(R cosT sin(RT ))2

α(π − α)

]︂
dα dra

≲

∫︂ r0ε

0

∫︂ π

π−εr

[︃
1 +

π − α

ε2
+ (π − α)(α− π + εr)2p−2 r

2−2p

ε2+2p
+

r

ε3

]︃
dα dr

≲ 1 +

∫︂ r0ε

0

∫︂ π

π−εr

[︃
εr

ε2
+ (α− π + εr)2p−2 r

3−2p

ε1+2p

]︃
dα dr +

∫︂ r0ε

0

r

ε3
(εr) dr

≲ 1 +

∫︂ r0ε

0

[︃
ε2r2

ε2
+
r3−2p

ε1+2p
(εr)2p−2+1

]︃
dr + 1 ≈ 1.

Now we estimate the Jacobian on D1 using (4.8), ∂αR = 0 and R ≈ 1 as
∫︂

D1∩{r<r0ε}
|Jfε

|−a ≲

∫︂ r0ε

0

∫︂ π

π−εr

|∂αT |−a
⃓⃓
(cosT )2 sin(RT )

⃓⃓−a|r2 sinα|1+a dα dr.

Using (4.14) we estimate |∂αT |, further using (4.1) we get

sin(RT ) ≈ T ≈
[︃
1−

(︃
1− π − α

εr

)︃p]︃
r

ε
≈ π − α

εr
· r
ε
=
π − α

ε2
.

As usual we estimate using cos(π
2
− y) ≈ y that

cosT ≈
(︃
1− π − α

εr

)︃p

+
(︂
1− ε

r

)︂
≳

(α− π + εr)p

εprp
.

Combining these estimates with | sinα
π−α

| ≤ 1 and | sinα| ≤ εr we get

∫︂

D1∩{r<r0ε}
|Jfε

|−a ≲

∫︂ r0ε

0

∫︂ π

π−εr

εap+arap−a

(α− π − εr)ap−a

ε2apr2ap

(α− π − εr)2ap
ε2a

(π − α)a
|r2|1+a| sinα|aεr dα dr

≲ ε3ap+3a+1

∫︂ r0ε

0

r3ap−a+2+2a+1

∫︂ π

π−εr

(α− π − εr)a−3ap dα dr

and this integral is bounded using (4.4).
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Estimate on D2: We have S = (2− r)π < α < π, r1ε < r < 2 and

Rε =
1 + r

3
and Tε =

π

2

(︃
1−

(︃
1− π − α

π − (2− r)π

)︃p)︃
ψ,

where ψ = 1−
(︁
π−2ε
π−ε

)︁1−λp
ε(2− r)λp and λ = 2

1+a−3ap
> 2.

First notice that similarly as before, since π − α < π − (2− r)π = (r − 1)π,

|∂rT | =
π

2

⃓⃓
⃓−p

(︂
1− π − α

π − (2− r)π

)︂p−1 π(π − α)

(π − (2− r)π)2
ψ +

(︂
1−

(︂
1− π − α

π − (2− r)π

)︂p)︂
∂rψ
⃓⃓
⃓

≲
(α− (2− r)π)p−1(π − α)

(r − 1)p+1
+ 1 ≲

(α− (2− r)π)p−1

(r − 1)p
+ 1,

|∂αT | =
π

2

⃓⃓
⃓−p

(︂
1− π − α

π − (2− r)π

)︂p−1 1

π − (2− r)π
ψ
⃓⃓
⃓ ≈ (α− (2− r)π)p−1

(r − 1)p
.

To estimate the following term, we again use (4.2), (4.3) and (4.1) and 0 < α− (2−r)π <
π − (2− r)π = (r − 1)π:

(R cosT sin(RT ))2

α(π − α)
≲
T 2(π

2
− T )2

α(π − α)
≈

(︂
1−

(︂
1− π−α

π−(2−r)π

)︂p)︂2 (︂
(1− ψ) +

(︂
1− π−α

π−(2−r)π

)︂p
ψ
)︂2

α(π − α)

≈

(︂
1−

(︂
1− π−α

π−(2−r)π

)︂)︂2

π − α
+

(︂
(1− ψ)2 +

(︂
1− π−α

π−(2−r)π

)︂2p)︂

α

≲
π − α

(π − (2− r)π)2
+

(1− ψ)2 +
(︂

α−(2−r)π
π−(2−r)π

)︂2p

α

≲
1

r − 1
+
ε2(2− r)2λp

2− r
+

(α− (2− r)π)2p−1

(π − (2− r)π)2p
≲

1

r − 1
.

Now we can use all those estimates to integrate (4.7)
∫︂

D2

∥Df ε∥2 ≲
∫︂ 2

r1ε

∫︂ π

(2−r)π

[︂
α(π − α)

[︁
(∂rR)

2 + (∂rT )
2 + (∂αT )

2
]︁
+

+
(R cosT sin(RT ))2

α(π − α)

]︂
dα dr

≲

∫︂ 2

r1ε

∫︂ π

(2−r)π

[︃
α(π − α)

[︃
1 +

(α− (2− r)π)2p−2

(r − 1)2p

]︃
+

1

r − 1

]︃
dα dr

≲

∫︂ 2

r1ε

[︃
1 +

π − (2− r)π

r − 1
+

∫︂ π

(2−r)π

(α− (2− r)π)2p−2(π − α)

(r − 1)2p
dα

]︃
dr

≲

∫︂ 2

r1ε

[︃
1 +

(π − (2− r)π)2p

(r − 1)2p

]︃
dr ≲ 1.

To integrate the Jacobian, we estimate (using again (4.2) and (4.1))

sin(RT ) ≈ RT ≈
(︂
1−

(︂
1− π − α

π − (2− r)π

)︂p)︂
≈ π − α

r − 1
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and

cos(T ) ≈ π

2
− T ≳

(︂
1− π − α

π − (2− r)π

)︂p
.

Since ∂αR = 0 and R ≈ 1 we have using (4.8)
∫︂

D2

|Jfε
|−a ≈

∫︂ 2

r1ε

∫︂ π

(2−r)π

|∂αT |−a |(cosT )2 sin(RT )|−a|r2 sinα|1+a dα dr

≲

∫︂ 2

r1ε

∫︂ π

(2−r)π

⃓⃓
⃓⃓(α− (2− r)π)p−1

(r − 1)p

⃓⃓
⃓⃓
−a (︂

1− π − α

π − (2− r)π

)︂−2ap(︂π − α

r − 1

)︂−a

(π − α)1+a dα dr

≲

∫︂ 2

r1ε

∫︂ π

(2−r)π

(α− (2− r)π)a−3ap(r − 1)a+3ap dα dr ≲

∫︂ 2

r1ε

(π − (2− r)π)1+a−3ap dr ≲ 1.

Step 5. Integrability of |Df ε|2 and J−a
fε

on B ∪ C:
Estimate on B ∩ {r > r0ε}: On this set we have S̃ε = π − εr − ε

1

p r < α < π − εr = Sε

and

Rε =

(︃
2

3
+
εr

3π

)︃
α− (π − εr − ε

1

p r)

ε
1

p r
+

2− r

3
· π − εr − α

ε
1

p r
and Tε =

π

2
(1− (2− r)ε).

Let us first estimate

(4.15) |∂αRε| =
(︃
2

3
+
εr

3π

)︃
1

ε
1

p r
+

2− r

3
· −1

ε
1

p r
=
ε1−

1

p

3π
+

1

3ε
1

p

≈ 1

ε
1

p

.

and with the help of π − εr − ε
1

p r < α < π − εr

(4.16)
|∂rRε| =

⃓⃓
⃓ ε
3π

· α− (π − εr − ε
1

p r)

ε
1

p r
+

(︃
2

3
+
εr

3π

)︃
π − α

ε
1

p r2

+
−1

3
· π − εr − α

ε
1

p r
+

2− r

3
· α− π

ε
1

p r2

⃓⃓
⃓ ≲ ε

ε
1

p r
.

Further we estimate for π − εr − ε
1

p r < α < π − εr

(R cosT sin(RT ))2

α(π − α)
≲

(π
2
− T )2

π − α
≲
ε2

εr
.

Now using (4.7) (note that each term with ∂αR always contains also cosT ≈ π
2
− T ≈ ε)

we obtain using π − α ≈ εr and 1
2
< p < 1

∫︂

B∩{r>r0ε}
∥Df ε∥2 ≲

∫︂ r1ε

r0ε

∫︂ π−εr

π−εr−ε
1
p r

[︂
α(π − α)

[︁
|∂rR|2 + |∂rT |2 + | cosT · ∂αR|2

]︁
+

+
(R cosT sin(RT ))2

α(π − α)

]︂
dr dα

≲

∫︂ r1ε

0

(ε
1

p r)(εr)

[︃
ε2

ε
2

p r2
+ 1 +

ε2

ε
2

p

]︃
dr +

∫︂ r1ε

0

∫︂ π−εr

π−εr−ε
1
p r

ε

r
dr dα

≲ 1 +

∫︂ r1ε

0

ε3−
1

p dr +

∫︂ r1ε

0

ε
1

p r · ε
r
dr ≈ 1.
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Now we estimate the Jacobian on B using (4.8), ∂αT = 0, cosT ≈ π
2
− T ≈ ε, sinRT ≈ 1

and (4.4) as

∫︂

B∩{r>r0ε}
|Jfε

|−a ≲

∫︂ r1ε

r0ε

∫︂ π−εr

π−εr−ε
1
p r

|∂αR · ∂rT |−a
⃓⃓
(cosT )2 sin(RT )

⃓⃓−a|r2 sinα|1+a dα dr

≲

∫︂ r1ε

0

∫︂ π−εr

π−εr−ε
1
p r

⃓⃓
⃓ 1
ε

1

p

ε
⃓⃓
⃓
−a

ε−2a dα dr =

∫︂ r1ε

0

(ε
1

p r)ε
a
p
−aε−2a dr

≲

∫︂ r1ε

0

ε
1+a
p

−3a dr ≲ 1.

Estimate on B ∩ {r < r0ε}: On this set we have S̃ε = π − εr − ε
1

p r < α < π − εr = Sε

and

Rε =

(︃
2

3
+
εr

3π

)︃
α− (π − εr − ε

1

p r)

ε
1

p r
+

2− r

3
· π − εr − α

ε
1

p r
and Tε =

π

2
· r
ε
.

We can use the same estimates (4.15) and (4.16) as before. Further we estimate for

π − εr − ε
1

p r < α < π − εr

(R cosT sin(RT ))2

α(π − α)
≲

T 2

π − α
≲

r2

ε2

εr
=

r

ε3
.

Now using (4.7), π − α ≈ εr and r0ε ≈ ε we obtain

∫︂

B∩{r<r0ε}
∥Df ε∥2 ≲

∫︂ r0ε

0

∫︂ π−εr

π−εr−ε
1
p r

[︂
α(π − α)

[︁
|∂rR|2 + |∂rT |2 + |∂αR|2

]︁
+

+
(R cosT sin(RT ))2

α(π − α)

]︂
dα dr

≲

∫︂ r0ε

0

(ε
1

p r)(εr)

[︃
ε2

ε
2

p r2
+

1

ε2
+

1

ε
2

p

]︃
dr +

∫︂ r0ε

0

∫︂ π−εr

π−εr−ε
1
p r

r

ε3
dα dr

≲ 1 + ε1−
1

p

∫︂ r0ε

0

r2 dr +

∫︂ r0ε

0

(ε
1

p r)
r

ε3
dr ≈ 1.

Now we estimate the Jacobian on B using (4.8), ∂αT = 0, sinRT ≈ T ≈ r
ε
and

cosT ≈ π

2
− T ≈ ε− r

ε
and ε− r0ε = ε− ε− 2ε2

1− ε2
≈ ε2

as
∫︂

B∩{r<r0ε}
|Jfε

|−a ≲

∫︂ r0ε

0

∫︂ π−εr

π−εr−ε
1
p r

|∂αR · ∂rT |−a
⃓⃓
(cosT )2 sin(RT )

⃓⃓−a|r2 sinα|1+a dα dr

≲

∫︂ r0ε

0

∫︂ π−εr

π−εr−ε
1
p r

⃓⃓
⃓⃓ 1
ε

1

p

· 1
ε

⃓⃓
⃓⃓
−a

ε2a

(ε− r)2a
· ε

a

ra
|r2|1+a dα dr

≲ ε
a
p
+4a

∫︂ r0ε

0

1

(ε− r)2a
dr ≲ ε

a
p
+4a(ε− r0ε)

1−2a ≈ ε
a
p
+4aε2−4a ≲ 1.
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Estimate on C: We have (2− r)π − δ(ε, r) = S̃ < α < S = (2− r)π, r1ε < r < 2,

Rε =

√︃
π − 2ε

π − ε
·
√
2− r

3
· (2− r)π − α

δ(ε, r)
+

1 + r

3

(︃
α− (2− r)π + δ(ε, r)

δ(ε, r)

)︃

and

Tε =
π

2
ψ =

π

2

(︂
1−

(︂π − 2ε

π − ε

)︂1−λp

ε(2− r)λp
)︂
,

where λ = 2
1+a−3ap

and δ(ε, r) = c0ε
1/p(2− r)λ. Here it is crucial that

(4.17) λp ≥ 2

1 + a− 3a/2
· 1
2
≥ 1

and

(4.18) cosT ≈ π

2
− T ≈ 1− ψ ≈ ε(2− r)λp ≈ δp.

We first estimate

∂rδ = −λc0ε1/p(2− r)λ−1 =
−λ
2− r

δ,

so

∂r

(︃
(2− r)π − α

δ

)︃
=

−πδ + ((2− r)π − α) −λπ
(2−r)π

δ

δ2
= −π

1 + λ (2−r)π−α
(2−r)π

δ
.

Then we can use it to estimate

|∂rR| =
⃓⃓
⃓
√︃
π − 2ε

π − ε
· 1

6
√︁
(2− r)

· (2− r)π − α

δ
+

√︃
π − 2ε

π − ε
·
√
2− r

3

(︂
−π

1 + λ (2−r)π−α
(2−r)π

δ

)︂

+
α− (2− r)π + δ

3δ
+

1 + r

3
· π

1 + λ (2−r)π−α
(2−r)π

δ

⃓⃓
⃓ ≲ 1√

2− r
+

1

δ
+ 1 +

1

δ
≲

1√
2− r

+
1

δ

and

|∂αR| =
−
√︂

π−2ε
π−ε

√︁
(2− r) + 1 + r

3δ
≈ 1

δ
.

Since |∂αT | = 0, using (4.7), (4.18), (4.17) and (4.3) we obtain
∫︂

C

∥Df ε∥2 ≲
∫︂ 2

r1ε

∫︂ (2−r)π

(2−r)π−δ

[︂
| cosT · ∂rR|2 + |∂rT |2 + | cosT · ∂αR|2+

+
(R cosT sin(RT ))2

α(π − α)

]︂
dα dr

≲

∫︂ 2

r1ε

∫︂ (2−r)π

(2−r)π−δ

[︃(︃
1

2− r
+

1

δ2

)︃
δ2p + ε2(2− r)2λp−2 +

δ2p

δ2
+

1

α
+

1

π − α

]︃
dα dr

≲

∫︂ 2

r1ε

∫︂ (2−r)π

(2−r)π−δ

[︃
δ2p

2− r
+
δ2p

δ2
+ 1 +

1

α
+

1

π − α

]︃
dα dr

≈ 1 +

∫︂ 2

r1ε

[︃
δ2p+1

2− r
+ δ2p−1 + log

(︃
(2− r)π

(2− r)π − δ

)︃
+ log

(︃
π − (2− r)π + δ

π − (2− r)π

)︃]︃
dr,
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now since δ ≤ (2 − r)π/2 and ε < εr < π − (2 − r)π (recall that π − εr > (2 − r)π for
r > r1ε)

≲ 1 +

∫︂ 2

r1ε

(2− r)2λp+λ

2− r
+ 1 + log

(︂ (2− r)π

(2− r)π/2

)︂
+ log

(︂
1 +

δ

εr

)︂
dr

≲ 1 +

∫︂ 2

r1ε

(2− r)2λp+λ−1 + log (2) + log
(︂
1 +

ε1/p

ε

)︂
dr ≲ 1.

Considering the Jacobian estimate, due to the fact that ∂αT = 0 we can rewrite (4.8)
as ∫︂

C

|Jfε
|−a ≈

∫︂

(r,α)

|∂αR · ∂rT |−aR−3a|(cosT )2 sin(RT )|−a|r2 sin(α)|1+adrdα.

Also we need

sin(RT ) ≈ RT ≈ R =

√︃
π − 2ε

π − ε
·
√
2− r

3
· (2− r)π − α

δ
+

1 + r

3

(︂α− (2− r)π + δ

δ

)︂

≥ C
[︂√

2− r · (2− r)π − α

δ
+
√
2− r

(︂α− (2− r)π + δ

δ

)︂]︂
= C

√
2− r.

Together with (4.18), δ ≈ ε1/p(2− r)λ and (4.4) it yields
∫︂

C

|Jfε
|−a ≈

∫︂ 2

r1ε

∫︂ (2−r)π

(2−r)π−δ

⃓⃓
⃓⃓ε(2− r)λp−1

δ

⃓⃓
⃓⃓
−a

R−4aδ−2ap sin1+a α dα dr

≲

∫︂ 2

r1ε

∫︂ (2−r)π

(2−r)π−δ

δa−2ap

εa
(2− r)a−λap

(︁√
2− r

)︁−4a
dα dr ≈

∫︂ 2

r1ε

δ1+a−2ap

εa(2− r)a+λap
dr

≈
∫︂ 2

r1ε

ε(1+a−2ap)/p(2− r)λ(1+a−2ap)

εa(2− r)a+λap
dr =

∫︂ 2

r1ε

ε(1+a−3ap)/p(2− r)λ(1+a−3ap)−a dr

≲

∫︂ 2

r1ε

(2− r)2−adr ≲ 1,

since λ = 2
1+a−3ap

.

Step 6. Extension to B(0, 10) \ B(0, 2): Our mapping f ε : B(0, 2) → R3 is defined
on the sphere ∂B(0, 2) in polar coordinates as

f(2, α, β) = (cosT, T, β)

where

T = T (ε, α) =
π

2

(︂
1−

(︂α
π

)︂p)︂
.

We define it on B(0, 10) \ B(0, 2) as a simple interpolation between (r, π − α, β) on
∂B(0, 10) and this mapping on ∂B(0, 2), i.e. for r ∈ [2, 10] we set

f ε(r, α, β) =

(︃
r − 2

8
10 +

10− r

8
cosT,

r − 2

8
(π − α) +

10− r

8
T, β

)︃
.

Note that this is independent of ε and that the mapping (10, π − α, β) on ∂B(0, 10) is
actually the identity mapping up to reflection (x, y, z) → (x, y,−z), so after we compose
it with this reflection as mentioned in Step 1 we obtain the identity on the boundary. Our
mapping f ε is a homeomorphism on ∂B(0, 10) and ∂B(0, 2), so similarly to Step 3 it is
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enough to show that Jfε
̸= 0 to obtain that it is a homeomorphism on B(0, 10) \B(0, 2).

Using first line of (4.8) it is enough to show that

0 ̸=∂rr̃∂αα̃− ∂αr̃∂rα̃

=
1

82

[︂
(10− cosT ) (2− r + (10− r)∂αT )− ((10− r)(− sinT )∂αT ) (π − α− T )

]︂

=
1

82

[︂
(10− cosT ) + (π − α− T ) sinT

]︂
(10− r)∂αT +

1

82
(10− cosT )(2− r).

Since ∂αT < 0 and −∂αT > p
2
≥ 1

4
for p ∈ [1

2
, 1] (and α ∈ [0, π]) we obtain

−82 (∂rr̃∂αα̃− ∂αr̃∂rα̃) ≥
[︂
(10− 1) + (π − π − π

2
)
]︂
(10− r)

1

4
+ (10− 1)(r − 2) ≥ 1.

To obtain integrability of J−a
fε

it is thus enough to use first line of (4.8) and show the
finiteness of ∫︂

B(0,10)\B(0,2)

⃓⃓
r2 sinα

⃓⃓1+a

⃓⃓
r̃ sin α̃

⃓⃓a dr dα dβ.

Since
r̃ ≥ cosT ≥ Cαp

and using (4.1)

(4.19)
α̃ =

r − 2

8
(π − α) +

10− r

8

π

2

(︂
1−

(︂α
π

)︂p)︂

≈ r − 2

8
(π − α) +

10− r

8

(︂
1− α

π

)︂
≈ π − α

we obtain the convergence easily as a < 2 and 1
2
< p < 1.

It remains to show the finiteness of
∫︁
|Df ε|2 on B(0, 10) \ B(0, 2) using first line of

(4.7). Since |∂rr̃| ≤ C and |∂rα̃| ≤ C it is easy to estimate first two terms. Further r ≈ 1
and

|∂αr̃|+ |∂αα̃| ≤ C + C|∂αT | ≤ C + Cαp−1

give us boundedness of
∫︂ 10

2

∫︂ π

0

[︂(︃∂αr̃
r

)︃2

+

(︃
r̃∂αα̃

r

)︃2]︂
r2 sinα dα dr ≤ C

∫︂ π

0

(α)2p−2α dα.

Using (4.19) it is easy to show convergence of the last term
∫︂ 10

2

∫︂ π

0

(︂ r̃ sin α̃
r sinα

)︂2
r2 sinα dα dr.

We thus showed that when we extend fε, the energy 1.2 stays uniformly bounded for the
whole sequence.
Step 7. Violation of the (INV) condition: Our limit mapping f violates the

(INV) condition on B(0, r) for every r ∈ (0, 1). This can be easily seen as the mapping is
continuous on S(0, r), so we can consider the classical topological degree. We have

R =
2− r

3
and T =

π

2

(︃
1−

(︃
π − α

π

)︃p)︃

on B(0, 1) \ {0}. The image of S(0, r) is only the inner drop, so its topological image
is the inside of this drop. However, when we take 0 < r1 < r2 < 1, we can see that
the smaller sphere is mapped onto a bigger drop, which contains the smaller drop (=
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image of the bigger ball). This shows that the material from S(0, r2) is ejected outside
of imT (f, B(0, r2)), which itself is enough to break the (INV) condition. Moreover, the
material which is mapped into imT (f, B(0, r2)) was originally outside of B(0, r2).

□

Proof of Theorem 1.3. The mapping here is the same as mapping f from Theorem 1.2
which is a weak limit of homeomorphism fm from that statement. However, it does not
satisfy the (INV) condition and hence Theorem 3.1 (b) implies that it cannot be obtained
as strong limit of homeomorphisms hm ∈ W 1,2. □
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WEAK LIMIT OF HOMEOMORPHISMS IN W 1,n−1: INVERTIBILITY

AND LOWER SEMICONTINUITY OF ENERGY

ANNA DOLEŽALOVÁ, STANISLAV HENCL, AND ANASTASIA MOLCHANOVA

Abstract. Let Ω, Ω′ ⊂ Rn be bounded domains and let fm : Ω → Ω′ be a sequence of
homeomorphisms with positive Jacobians Jfm > 0 a.e. and prescribed Dirichlet boundary
data. Let all fm satisfy the Lusin (N) condition and supm

∫︁

Ω
(|Dfm|n−1+A(| cof Dfm|)+

ϕ(Jf )) < ∞, where A and ϕ are positive convex functions. Let f be a weak limit of
fm in W 1,n−1. Provided certain growth behaviour of A and ϕ, we show that f satisfies
the (INV) condition of Conti and De Lellis, the Lusin (N) condition, and polyconvex
energies are lower semicontinuous.

1. Introduction

In this paper, we study classes of mappings that might serve as classes of deformations
in Continuum Mechanics models. Let Ω ⊂ Rn be a domain, i.e., a non-empty connected
open set, and let f : Ω → Rn be a mapping with Jf > 0 a.e. Following the pioneering
papers of Ball [2] and Ciarlet and Nečas [11] we ask if our mapping is in some sense injective
as the physical “non-interpenetration of the matter” indicates that a deformation should
be one-to-one. We continue our study from [17] and suggest studying the class of weak
limits of Sobolev homeomorphism. We show that under natural assumptions on energy
functional these limits are also invertible a.e. and that the energy functional is weakly
lower semicontinuous which makes it a suitable class for variational approach.
Concerning invertibility we use the (INV) condition which was introduced for W 1,p-

mappings, p > n− 1, by Müller and Spector [33] (see also e.g. [4, 24, 25, 34, 36, 37, 38]).
Informally speaking, the (INV) condition means that the ball B(x, r) is mapped inside

the image of the sphere f(S(a, r)) and the complement Ω \ B(x, r) is mapped outside
f(S(a, r)) (see Preliminaries for the formal definition). From [33] we know that mappings
in this class with Jf > 0 a.e. are one-to-one a.e. and that this class is weakly closed.
Moreover, any mapping in this class has many desirable properties, it maps disjoint balls
into essentially disjoint balls, deg(f, B, ·) ∈ {0, 1} for a.e. ball B, under an additional
assumption its distributional Jacobian equals to the absolutely continuous part of Jf plus
a countable sum of positive multiples of Dirac measures (these corresponds to created
cavities) and so on.
In all results in the previous paragraph the authors assume that f ∈ W 1,p(Ω,Rn) for

some p > n− 1. However, in some real models for n = 3 one often works with integrands

2000 Mathematics Subject Classification. 46E35.
Key words and phrases. limits of Sobolev homeomorphisms, invertibility.
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containing the classical Dirichlet term |Df |2 and thus this assumption is too strong.
Therefore, for n = 3, Conti and De Lellis [12] introduced the concept of (INV) condition
also for W 1,2 ∩ L∞ (see also [5] and [6] for some recent work) and studied Neohookean
functionals of the type

∫︂

Ω

(︁

|Df(x)|2 + φ(Jf (x))
)︁

dx,

where φ is convex, limt→0+ φ(t) = ∞ and limt→∞
ϕ(t)
t

= ∞. They proved that mappings
in the (INV) class that satisfy Jf > 0 a.e. have nice properties like mappings in [33], but
this class is not weakly closed and hence cannot be used in variational models easily. To
fix this problem we add an additional term to the energy functional and we work only
with the class of weak limits of homeomorphisms.
Let us note that homeomorphisms clearly satisfy the (INV) condition and so do their

weak limits in W 1,p, p > n − 1 (see [33, Lemma 3.3]). Unfortunately, this is not true
anymore in the limiting case of limit of W 1,n−1 homeomorphisms as shown by Conti and
De Lellis [12] (see also Bouchala, Hencl and Molchanova [7]). Let us also note that the
class of weak limits of Sobolev homeomorphisms was recently characterized in the planar
case by Iwaniec and Onninen [28, 29] and De Philippis and Pratelli [16]. Our paper
contributes to the study of this class in higher dimensions n ≥ 3.
In our paper, we study the energy functional

F(f) =

∫︂

Ω

(︁

|Df(x)|n−1 + A(| cofDf(x)|) + φ(Jf (x))
)︁

dx

where

(1.1) φ is a positive convex function on (0,∞) with lim
t→0+

φ(t) = ∞,

(1.2) lim
t→∞

φ(t)

t
= ∞

and

(1.3) A is a positive convex function on (0,∞) with lim
t→∞

A(t)

t
= ∞.

We further assume that our homeomorphisms have the same Dirichlet boundary data and
that they satisfy the Lusin (N) condition, i.e. that for every E ⊂ Ω with |E| = 0 we have
|f(E)| = 0. Our main result is the following:

Theorem 1.1. Let n ≥ 3 and Ω, Ω′ ⊂ Rn be bounded domains. Let φ and A satisfy (1.1)
and (1.3). Let fm ∈ W 1,n−1(Ω,Rn), m = 0, 1, 2 . . . , be a sequence of homeomorphisms of
Ω onto Ω′ with Jfm > 0 a.e., such that fm satisfies the Lusin (N) condition and

(1.4) sup
m

F(fm) <∞.

Assume further that fm = f0 on ∂Ω for all m ∈ N. Let f be a weak limit of fm in
W 1,n−1(Ω,Rn), then f satisfies the (INV) condition.
Moreover, under the additional assumption (1.2) our f satisfies the Lusin (N) condition

and we have lower semicontinuity of energy

(1.5) F(f) ≤ lim inf
m→∞

F(fm).
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Assuming further that |∂Ω′| = 0 we have

for a.e. x ∈ Ω we have h(f(x)) = x and for a.e. y ∈ Ω′ we have f(h(y)) = y,

where h is a weak limit of (some subsequence of) f−1
k in W 1,1(Ω′,Rn).

Let us comment on our assumptions. Each homeomorphism fm : Ω → Ω′, fm ∈
W 1,n−1(Ω,Rn) with Jfm > 0 a.e. satisfies f−1

m ∈ W 1,1(Ω′,Rn) (see [13]). Moreover (see
e.g. [13] or [18]), we have

∫︂

Ω′

|Df−1
m (y)| dy ≤

∫︂

Ω

|Dfm(x)|n−1 dx

and hence (1.4) implies that there is a subsequence of f−1
m which converges weak-∗ to

some h ∈ BV (Ω′,Rn). Using

(1.6) sup
m

∫︂

Ω

A(| cofDfm(x)|) dx <∞

we get that Df−1
m are equiintegrable (see Theorem 2.5 below) and hence (up to a subse-

quence) f−1
m converge to h ∈ W 1,1(Ω′,Rn) weakly in W 1,1(Ω′,Rn). This assumption (1.6)

is also crucial in our proof of the (INV) condition as it implies that image fm(A) of small
set A ⊂ ∂B(c, r) is “uniformly” small in m and therefore cannot enclose some big set that
would like to escape from f(∂B(c, r)) violating the (INV) condition.

The condition

sup
m

∫︂

Ω

φ(Jfm(x)) dx <∞ with lim
t→0+

φ(t) = ∞
(︂

resp. lim
t→∞

φ(t)

t
= ∞

)︂

implies that small sets have uniformly small preimages (resp. small sets have uniformly
small images) and these conditions are quite standard in the theory. Moreover, we need
to assume that fm maps null sets to null sets (by the Lusin (N) condition), which is again
natural as our deformation cannot create a new material from “nothing”. Let us note
that this is crucial for the lower semicontinuity of our functional. In Lemma 4.5 below
we construct a series of homeomorphisms that do not satisfy the Lusin (N) condition
as they map some null set to a set of positive measure a, though they satisfy all other
assumptions, converge weakly to f(x) = x and

∫︂

(0,1)n
Jfm(x) dx = 1− a < 1 =

∫︂

(0,1)n
Jf (x) dx

and hence lower semicontinuity fails at least for some polyconvex functionals. Similarly, if
we omit the condition (1.2), we can construct a counterexample to semicontinuity of some
functional if all fm satisfy (N) but f does not. The lower semicontinuity of functionals
below the natural W 1,n energy has attracted a lot of attention in the past and we refer
the reader e.g. to Ball and Murat [3], Malý [31], Dal Maso and Sbordone [15] and Celada
and Dal Maso [9] for further information.
Let us note one disadvantage of our approach. In the previous models [12], [33] it was

possible to model also the cavitation, i.e., the creation of small holes. Unfortunately, this
is not possible for us as the condition (1.2) together with (1.4) tells us that fm cannot
map small sets onto big sets. However, this is exactly what is needed to be done by
our approximating homeomorphisms around the point where the cavity is created by f .
On the other hand, the condition (1.2) is crucial for us in order to prove the Lusin (N)
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condition for f and this condition is the key for the proof and the validity of the lower
semicontinuity of our functional.
Let us briefly comment on the structure of this paper. We recall the definition of the

degree and of the (INV) condition in the Preliminaries and we prove the equiintegrability
of Df−1

m there. Our proof of (INV) condition for f uses some techniques and results
that we have developed in our previous paper [17] on this topic. We recall some of
those in the Preliminaries and then we give a detailed proof of the (INV) condition using
some of those techniques in Section 3. In Sections 4.1–4.3 we use the (INV) condition
to prove that f satisfies the (N) condition and that h (W 1,1 weak limit of f−1

m ) is the
“a.e. inverse” of f . Then we use the (N) condition to prove the lower semicontinuity
of our polyconvex functional in Section 4.2 and we show some counterexamples to lower
semicontinuity without our assumption (1.2) in Section 4.4. Finally, we return to the
result of [17] where we have shown (INV) under different assumptions and we show that
the lower semicontinuity of energy is valid also there if we additionally assume that fm
satisfy (N) and that we have (1.2). In the last Section 5 we give a quick application of
our result in Calculus of Variations.

2. Preliminaries

2.1. Change of variables estimates.

Let Ω ⊂ Rn be open, A ⊂ Ω be measurable and let g ∈ W 1,1
loc (Ω;R

n) be one-to-one.
Without any additional assumption we have (see e.g. [26, Theorem A.35] for η = χg(A))

(2.1)

∫︂

A

|Jg(x)| dx ≤ |g(A)|.

Moreover, for general g satisfying the Lusin (N) condition we have (see e.g. [26, Theorem
A.35] for η = χg(A))

(2.2)

∫︂

A

|Jg(x)| dx =

∫︂

Rn

N(g, A, y) dy,

where N(g, y, A) is defined as a number of preimages of y under g in A.
Analogous change of variables formula holds also for mappings h : Ω → Rn, Ω ⊂ Rn−1.

For Lipschitz h we have (see e.g. [20, Theorem 3.2.3])

(2.3)

∫︂

A

Jn−1h(x) dx =

∫︂

Rn

N(f, A, y) dHn−1(y),

where A ⊂ Ω is measurable, N(f, A, y) denotes the number of preimages f−1(y) in a set A
and Jn−1h is the (n−1)-dimensional Jacobian of h, i.e. it consists of sizes of (n−1)×(n−1)
subdeterminants. We know that each h ∈ W 1,1(Ω,Rn) is approximatively differentiable
a.e. (see e.g. [1, Theorem 3.83]) and for each approximately differentiable function we can
exhaust Ω up to a set of measure zero by sets so that the restriction of h is Lipschitz
continuous on those sets (see [20, Theorem 3.1.8 and Theorem 3.1.4]). It follows that
(2.3) holds for Sobolev mapping h ∈ W 1,1(Ω,Rn) if we know that for every E ⊂ Ω with
Hn−1(E) = 0 we haveHn−1(h(E)) = 0. In general the area formula (2.3) holds for Sobolev
h only up to a set of (n − 1)-dimensional measure zero E ⊂ Ω (see also [22, Chapter 3,
Section 1.5, Theorem 1 and Corollary 2]).
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Lemma 2.1. Given C1 < ∞ and φ satisfying (1.1), there exist monotone functions
Φ, Ψ: (0,∞) → (0,∞) with

lim
s→0+

Φ(s) = 0 and lim
s→0+

Ψ(s) = 0

such that: Let g ∈ W 1,1(Ω,Rn) be a one-to-one mapping with
∫︁

Ω
φ(Jg) ≤ C1. Then for

each measurable set A ⊂ Ω we have

(2.4) Φ(|A|) ≤ |g(A)|.
If we moreover assume that the Lusin (N) condition holds for g and that (1.2) holds, then
also

(2.5) |g(A)| ≤ Ψ(|A|).
Proof. The proof of (2.4) can be found in the proof of [17, Lemma 2.9] (we omit here
the assumption on ∥g∥L∞ as it is not necessary). The proof of (2.5) follows from De la
Vallee Pousin theorem [30, Theorem B.103] applied to |Jg| and the fact that the Lusin
(N) condition implies an equality in (2.1). Note that we can assume that both Φ and Ψ
are monotonous. □

The following lemma was shown in [17, Lemma 2.8].

Lemma 2.2. Let Ω ⊂ Rn be an open set of finite measure and f ∈ W 1,1
loc (Ω;R

n) satisfy
Jf ̸= 0 a.e. Then for every ε > 0 there is δ > 0 such that for every measurable set F ⊂ Rn

we have

|F | < δ =⇒ |f−1(F )| < ε.

In order to apply the previous lemma we use the following observation.

Lemma 2.3. Let Ω ⊂ Rn be open, and let fk ∈ W 1,1(Ω,Rn) be a sequence of homeomor-
phisms with Jfk > 0 a.e. such that fk → f ∈ W 1,1(Ω,Rn) pointwise a.e. Assume further
that

sup
k

∫︂

Ω

φ(Jfk(x)) dx <∞,

where φ satisfies (1.1). Then Jf ̸= 0 a.e.

Proof. Assume by contradiction that

E := {x ∈ Ω : Jf (x) = 0} satisfies |E| > 0.

As usual we find a set E0 ⊂ E with |E0| = |E| such that the (N) condition holds on E0

for f (see e.g. [26, proof of Theorem A.35]). Moreover, we assume that fk(x) → f(x) for
every x ∈ E0. By (2.2) we obtain

|f(E0)| = 0.

We find an open set G ⊂ Ω such that

f(E0) ⊂ G and |G| < 1
2
Φ
(︁

1
2
|E0|

)︁

,

where Φ comes from Lemma 2.1. Since fk(x) → f(x) we can find k0(x) such that for
every k ≥ k0(x) we have fk(x) ∈ G. It follows that

E0 =
∞
⋃︂

k0=1

Ek0 , where Ek0 = {x ∈ E0 : fk(x) ∈ G for every k ≥ k0}.
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These sets are nested and hence we can fix k0 such that |Ek0 | > 1
2
|E0|. It follows that

fk0(Ek0) ⊂ G with |Ek0 | > 1
2
|E0| and |G| < 1

2
Φ
(︁

1
2
|E0|

)︁

which contradicts (2.4).
□

Theorem 2.4. Let B(c, R) ⊂ Rn and let g ∈ W 1,n−1(B(c, R),Rn) be a homeomorphism.
Then for a.e. r ∈ (0, R) we know that g ∈ W 1,n−1(∂B(c, r),Rn) and that g satisfies the
Lusin (N) condition on the sphere ∂B(c, r), i.e.,

for every E ⊂ ∂B(c, r) with Hn−1(E) = 0 we have Hn−1(g(E)) = 0.

Moreover, for such r and every relatively open set E ⊂ ∂B(c, r) we have

(2.6) Hn−1(g(E)) ≤ C(r)

∫︂

E

| cofDg| dHn−1.

Proof. The fact that g ∈ W 1,n−1(∂B(c, r),Rn) for a.e. r is standard and follows e.g. by
using the ACL condition (on circles and not lines). The part about the validity of Lusin
(N) condition on a.e. sphere follows from [13, Lemma 4.1].
Let us have a homeomorphism h ∈ W 1,1(Rn−1,Rn) which satisfies the Lusin (N) con-

dition. Then the area formula (2.3) implies that for every measurable set E ⊂ Rn−1 we
have

Hn−1(h(E)) =

∫︂

E

|Jn−1h(x)| dx,

where Jn−1h is the (n − 1)-dimensional Jacobian, i.e. it consists of all (n − 1) × (n − 1)
subdeterminants. To obtain the wanted estimate we simply do a bilipschitz change of
variables (locally) from round ∂B(c, r) to flat Rn−1 and the result for h implies our estimate
(2.6) for g. Of course the constant in the bilipschitz change of variables might depend on
r so our constant in (2.6) could depend on r. □

2.2. Equiintegrability of Df−1
m . The following theorem tells us that our mappings fm

from Theorem 1.1 have equiintegrable Df−1
m . It follows that up to a subsequence f−1

m

converge weakly to some h ∈ W 1,1(Ω′,Rn), see [30, Theorem B.103] and [14, Lemma 1.2
in Chapter 2.1].

Theorem 2.5. Let Ω, Ω′ ⊂ Rn be domains. Let functions φ and A satisfy (1.1) and

(1.3). Then there is a continuous monotone function B with limt→∞
B(t)
t

= ∞ such that:
Let fm ∈ W 1,n−1(Ω,Ω′) be homeomorphisms with Jfm(x) > 0 a.e., Jf−1

m
(y) > 0 a.e. and

sup
m

∫︂

Ω

(︁

|Dfm(x)|n−1 + A(| cofDfm(x)|) + φ(Jfm(x))
)︁

dx <∞.

Then

sup
m

∫︂

Ω′

B
(︁

|Df−1
m (y)|

)︁

dy <∞.

Proof. Let us write A(t) = ta(t), B(t) = tb(t) and assume that b is a suitable function
such that b(t) ≤ a(t),

(2.7) b(st) ≤ b(s) + b(t),
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and B is continuous and monotone with superlinear growth. We give a detailed construc-
tion of such b below. By differentiation of f−1

m (fm(x)) = x we obtain

Df−1
m (fm(x))Dfm(x) = I and Jf−1

m
(fm(x))Jfm(x) = 1

for a.e. x (see [21, Lemma 2.1]). Using the previous line, (2.7), (2.1) and A·cof A = detA·I
we have

∫︂

Ω′

B(|Df−1
m (y)|) dy =

∫︂

Ω′

|Df−1
m (y)|b(|Df−1

m (y)|)
Jf−1

m
(y)

Jf−1
m
(y)

dy

≤
∫︂

Ω

|Df−1
m (fm(x))| b(|Df−1

m (fm(x))|)
1

Jf−1
m
(fm(x))

dx

=

∫︂

Ω

|(Dfm(x))−1| b(|(Dfm(x))−1|)Jfm(x) dx

=

∫︂

Ω

| cofDfm(x)| b
(︃

| cofDfm(x)|
1

Jfm(x)

)︃

dx

≤
∫︂

Ω

| cofDfm(x)| b(| cofDfm(x)|) dx+
∫︂

Ω

| cofDfm(x)| b
(︃

1

Jfm(x)

)︃

dx.

From B(t) = tb(t) ≤ A(t) we obtain that the first term is uniformly bounded. By the
Young inequality, we estimate the second term
∫︂

Ω

| cofDfm(x)| b
(︃

1

Jfm(x)

)︃

dx ≤
∫︂

Ω

A(| cofDfm(x)|) dx+
∫︂

Ω

A′

(︃

b

(︃

1

Jfm(x)

)︃)︃

dx

where A′ is the fixed conjugate function to our convex function A (see [23, Chapter 2.4]).
If we ask also for

b(t) ≤ (A′)−1(φ(1
t
))

for large t, we have

A′

(︃

b

(︃

1

Jfm(x)

)︃)︃

≤ φ(Jfm(x)) + C

for every t and we are finished.
Now we find such function b. We define auxiliary functions ψ and b and take ψ and b

which are smaller than their counterparts and monotone continuous. Let us set

ψ(t) =
a(t)

log(t)

for t > 1. It is continuous and from the continuity and positivity of a on (0,∞) we know
that limt→1+ ψ(t) = ∞. Therefore we can define

ψ(t) =

{︄

1, 1 ≤ t < t0 = min{s > 1 : ψ(s) = 1},
min{ψ(s), s ∈ [t0, t]}, t0 ≤ t,

which is a positive continuous nonincreasing function less or equal to ψ.
Define

b(t) =

{︄

0, 0 < t ≤ 1,

ψ(t) log(t), 1 < t <∞.
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Since ψ is continuous nonincreasing bounded on (1,∞), b is also continuous and (2.7)
holds for s, t ≥ 1 (since ψ is nonincreasing and log satisfies (2.7)) and s, t < 1 (since
b(st) = 0). Moreover we have b(t) ≤ a(t). Now we check that

lim
t→∞

b(t) = lim
t→∞

ψ(t) log(t) = ∞.

Either limt→∞ ψ(t) > 0 and the statement holds, or limt→∞ ψ(t) = 0. In the later case,
we can find a sequence t0 < t1 < t2 . . . such that

tk = min{s > t0 : ψ(s) = 1/k}
and tk → ∞ (since ψ is positive). Then on [t0, tk] we have ψ(t) ≥ 1/k = ψ(tk) =
a(tk)/ log(tk) and consequentially

lim inf
t→∞

b(t) = lim inf
k→∞

min
t∈[tk,tk+1]

b(t) = lim inf
k→∞

min
t∈[tk,tk+1]

ψ(t) log(t) ≥ lim inf
k→∞

ψ(tk+1) log(tk)

≥ lim inf
k→∞

log(tk)

k + 1
≥ 1

2
lim inf
k→∞

log(tk)

k
=

1

2
lim inf
k→∞

a(tk) = ∞.

Now we want to resolve (2.7) for s < 1, t ≥ 1. If st ≤ 1, it is clear. In the other case,
we need b(st) ≤ b(t) which we do not have for b in general as it does not have to be
monotonous. Therefore we define

b(t) = inf
s∈[t,∞)

b(s).

That function is clearly monotone, continuous, smaller than b and tends to∞. For s, t < 1
(2.7) is still trivial. For s < 1, t ≥ 1 it follows from monotonicity. For s, t ≥ 1 we find
s0 = max{r : b(r) = b(s)} and t0 analogously. Obviously from the definition of b we have
s ≤ s0, t ≤ t0. Then we have

b(st) ≤ b(s0t0) ≤ b(s0t0) ≤ b(s0) + b(t0) = b(s) + b(t).

Now we know that B(t) = tb(t) is continuous nonnegative non-decreasing with B(0) = 0

and limt→∞
B(t)
t

= ∞.
The last step is to show that we can ask

b(t) ≤ (A′)−1(φ(1
t
))

for large t. We can use a similar procedure as before (replacing a by min{a, (A′)−1}),
since limt→∞(A′)−1(t) = ∞ (A′ is convex, negative in 0 and positive for large values, so
going to ∞ — and so does its inverse, too).

□

2.3. Degree for continuous mappings. Let Ω ⊂ Rn be a bounded open set. Given a
continuous map f : Ω → Rn and y ∈ Rn \ f(∂Ω), we can define the topological degree as

deg(f,Ω, y) =
∑︂

Ω∩f−1(y)

sgn(Jf (x))

if f is smooth in Ω and Jf (x) ̸= 0 for each x ∈ Ω ∩ f−1(y). By uniform approximation,
this definition can be extended to an arbitrary continuous mapping f : Ω → Rn. Note
that the degree depends only on values of f on ∂Ω.
If f : Ω → Rn is a homeomorphism, then either deg(f,Ω, y) = 1 for all y ∈ f(Ω) (f

is sense preserving), or deg(f,Ω, y) = −1 for all y ∈ f(Ω) (f is sense reversing). If, in
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addition, f ∈ W 1,n−1(Ω,Rn), then this topological orientation corresponds to the sign of
the Jacobian. More precisely, we have

Proposition 2.6 ([27]). Let f ∈ W 1,n−1(Ω,Rn) be a homeomorphism on Ω with Jf > 0
a.e. Then

deg(f,Ω, y) = 1, y ∈ f(Ω).

2.4. Degree for W 1,n−1 ∩ L∞ mappings. Let B be a ball, f ∈ W 1,n−1(∂B,Rn) ∩
C(∂B,Rn), |f(∂B)| = 0, and u ∈ C1(Rn,Rn), then (see [33, Proposition 2.1])

(2.8)

∫︂

Rn

deg(f, B, y) divu(y) dy =

∫︂

∂B

(u ◦ f) · (Λn−1Dτf)ν dHn−1,

where Dτf denotes the tangential gradient and Λn−1Dτf is the restriction of cofDf to
the corresponding subspace (see [17] for details).
Let M(Rn) = C0(R

n)∗ be the space of all signed Radon measures on Rn. By (2.8) we
see that deg(f, B, ·) ∈ BV (Rn) and

(2.9) ∥D deg(f, B, ·)∥M(Rn) ≤ C∥Λn−1Dτf∥L1(∂B) ≤ C∥Dτf∥n−1
Ln−1(∂B).

Following [12] (see also [8]) we need a more general version of the degree which works
for mappings in W 1,n−1 ∩ L∞ that are not necessarily continuous. Although only the
three-dimensional case is discussed in [12], the arguments pass in the general case as well.
The definition is in fact based on (2.8).

Definition 2.7. Let B ⊂ Rn be a ball and let f ∈ W 1,n−1(∂B,Rn) ∩ L∞(∂B,Rn). Then
we define Deg(f, B, ·) as the distribution satisfying

(2.10)

∫︂

Rn

Deg(f, B, y)ψ(y) dy =

∫︂

∂B

(u ◦ f) · (Λn−1Dτf)ν dHn−1

for every test function ψ ∈ C∞
c (Rn) and every C∞ vector field u on Rn satisfying divu =

ψ.

As in [12] (see also [17]) it can be verified that the right-hand side does not depend on
the way ψ is expressed as divu and that the distribution Deg(f, B, ·) can be represented
as a BV function.
Assume that f , g ∈ W 1,n−1(∂B,Rn) ∩ L∞(∂B,Rn). As in [17, (2.5)] we obtain the

following version of some “weak isoperimetric inequality”

(2.11)

⃓

⃓

{︁

y ∈ Rn : Deg(f, B, y) ̸= Deg(g, B, y)
}︁⃓

⃓

n−1

n ≤

≤ C

∫︂

∂B∩{f ̸=g}

(︁

|Dτf(x)|n−1 + |Dτg(x)|n−1
)︁

dHn−1(x).

We need also the classical isoperimetric inequality (see e.g. [19, Theorem 2 in section
5.6.2 and Theorem 2 in section 5.7.3]). Let E ⊂ Rn be and open set with finite perimeter.
Then

(2.12) |E|1− 1

n ≤ CHn−1(∂E).

Remark 2.8. Let B be a ball and f ∈ W 1,n−1(∂B,Rn)∩C(B,Rn). If |f(∂B)| = 0, then
Deg(f, B, y) = deg(f, B, y) for a.e. y ∈ Rn. We use different symbols to distinguish and
emphasize that deg is defined pointwise on Rn \ f(∂B), whereas Deg is determined only
up to a set of measure zero.
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2.5. (INV) condition. Analogously to [12] (see also [33]) we define the (INV) class.
Let A ⊂ Ω ⊂ Rn. We say that x ∈ Rn is a point of density one (or just point of density)

of a set A if

lim
r→0+

|B(x, r) ∩ A|
|B(x, r)| = 1.

It is well-known that a.e. x ∈ A is a point of density of A.

Definition 2.9 (geometrical image). Let Ω ⊂ Rn be open, f : Ω → Rn be a function
which is approximately differentiable almost everywhere. Given a set A ⊂ Ω we call the
geometrical image of A through f the set given by f (Ωd ∩ A), where Ωd denotes the set
where f is approximatively differentiable. Further on, we denote this geometrical image
by f(A) (since f is nevertheless defined only up to a set of measure zero).

Definition 2.10 (topological image). Let B ⊂ Rn be a ball and let f ∈ W 1,n−1(∂B,Rn)∩
L∞(∂B,Rn). We define the topological image of B under f , imT (f, B), as the set of all
points of density one of the set {y ∈ Rn : Deg(f, B, y) ̸= 0}.
Definition 2.11 ((INV) condition). Let f ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn). We say that f
satisfies (INV) in a ball B ⊂⊂ Ω if

(i) its trace on ∂B is in W 1,n−1(∂B,Rn) ∩ L∞(∂B,Rn);
(ii) f(x) ∈ imT (f, B) for a.e. x ∈ B;
(iii) f(x) /∈ imT (f, B) for a.e. x ∈ Ω \B.

We say that f satisfies (INV) if for every a ∈ Ω there is ra > 0 such that for H1-
a.e. r ∈ (0, ra) it satisfies (INV) in B(a, r).

Remark 2.12. If f , in addition, satisfies Jf > 0 a.e., then preimages of sets of measure
zero are of measure zero and thus we can characterize the (INV) condition in a simpler
way. Namely, such a mapping satisfies the (INV) condition in the ball B ⊂⊂ Ω if and
only if

(i) its trace on ∂B is in W 1,n−1(∂B,Rn) ∩ L∞(∂B,Rn);
(ii) Deg(f, B, f(x)) ̸= 0 for a.e. x ∈ B;
(iii) Deg(f, B, f(x)) = 0 for a.e. x ∈ Ω \B.

Definition 2.13. Let f ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn). The distributional Jacobian of f
is the distribution defined by setting

DetDf(φ) := −
∫︂

Ω

f1(x)J(φ, f2, ..., fn)(x) dx for all φ ∈ C∞
C (Ω),

where J(φ, f2, ..., fn) is the classical Jacobian defined as the determinant of the Jacobi
matrix Dg of g = (φ, f2, . . . , fn).

We need the following lemmata from [12]. They are stated there only for n = 3 but it
is clear from the proofs that everything works also in higher dimensions.

Lemma 2.14 (Lemma 3.8, [12]). Let f ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn), with Jf ̸= 0 on
Ωd, and choose B ⊂ Ω such that f satisfies (INV) on B. Then f(B) ⊂ imT (f, B), and
f(Rn\B) ⊂ Rn \ imT (f, B).

Lemma 2.15 (Lemma 4.3, [12]). Let f ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn). Suppose that
condition (INV) holds for f , and that Jf > 0 a.e. Then,

(i) DetDf ≥ 0, hence it is a Radon measure;



WEAK LIMIT OF HOMEOMORPHISMS IN W
1,n−1 11

(ii) the absolutely continuous part of DetDf with respect to Ln has density Jf ;
(iii) for every a ∈ Ω and for a.e. r ∈ (0, ra),

(2.13) DetDf(B(a, r)) = | imT (f, B(a, r))|.
2.6. Minimizers of the tangential Dirichlet integral. In our main proof, we have
a sphere ∂B in Rn and on this sphere we have a small (n − 2)-dimensional circle which
is a boundary of an open spherical cap S ⊂ ∂B. Our map f is in W 1,n−1, therefore we
can choose the sets so that f is continuous on the (n− 2)-dimensional circle S \ S. Our
mapping f can have a big oscillation on S so we need to replace it with a reasonable
mapping. We do this by choosing a minimizer of the tangential Dirichlet energy over this
cap S which has the same value on the circle S \ S. In fact, we need this even for more
general shapes than spheres and circles.
We say that a relatively open set S ⊂ ∂B satisfies the exterior ball condition if for

each z ∈ S \ S there exists a ball B(z′, r) with z′ ∈ ∂B such that z ∈ ∂B(z′, r) and
B(z′, r) ∩ S = ∅. The following Theorem was shown in [17, Theorem 2.10]:

Theorem 2.16. Let B ⊂ Rn be a ball. Let S ⊂ ∂B be a connected relatively open subset
of ∂B. Let T be the relative boundary of S with respect to ∂B. Suppose that diamS < r

4n

and that S satisfies the exterior ball condition. Let f = (f 1, . . . , fn) ∈ W 1,n−1(∂B,Rn)
be continuous on T . Then there exists a unique function h = (h1, . . . , hn) ∈ C(S,Rn) ∩
W 1,n−1(S,Rn) such that each coordinate hi minimizes

∫︁

S
|Dτu|n−1 dHn−1 among all func-

tions u ∈ f i +W 1,n−1
0 (S,Rn). We have h = f on T , the function h satisfies the estimate

(2.14) diamh(S) ≤
√
n diam f(T )

and we have Ln(h(S)) = 0. Moreover, let fm be continuous and converge to f uniformly
on T , then hm converge to h uniformly on S, where hm are minimizers corresponding to
boundary values fm.

Proof. Everything except Ln(h(S)) = 0 was shown already in [17, Theorem 2.10].
It is standard that the change of variable formula holds for Sobolev mappings up to a

null set (see (2.3) and the paragraph after) and hence using h ∈ W 1,n−1 there is N ⊂ S
with Hn−1(N) = 0 such that

Hn−1
(︁

h(S \N)
)︁

<∞ and hence Ln
(︁

h(S \N)
)︁

= 0.

We claim that h is pseudomonotone, i.e. there is C > 0 such that for each spherical cap
A ⊂ S we have

diamh(A) ≤ C diam f(∂A)

(here ∂A is the relative (n − 2)-dimensional boundary with respect to ∂B). This fact
follows from (2.14), i.e., we consider the corresponding minimizer on A with respect to
boundary data h|∂A. By the uniqueness of this minimizer we obtain that h|A is this mini-
mizer and (2.14) holds for A and ∂A (instead of S and T ) gives us the pseudomonotonicity.
Let us now consider a mapping g := P ◦ h : S → Rn−1, where P is the projection to the
hyperplane {x1 = 0}. It is easy to see that g ∈ W 1,n−1 and that g is continuous and
pseudomonotone. By the result of Malý and Martio [32, Theorem A] and Hn−1(N) = 0
we obtain that

Hn−1
(︁

g(N)
)︁

= 0 and hence Ln
(︁

h(N)
)︁

= 0.

□
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3. Proof of Theorem 1.1: (INV) condition

Proof of Theorem 1.1: (INV) condition. Assume on the contrary that f does not satisfy
the (INV) condition. Then we can find a center c such that for H1-positively many radii
r > 0 our f maps either something from B(c, r) outside of imT (f, B(c, r)) or something
outside of B(c, r) inside of imT (f, B(c, r)). We treat the first case in detail and at the end
we briefly explain the analogous second case.
Step 1. Outline of the proof: We assume that f does not satisfy (INV) and hence there

is c ∈ Ω such that the set
(3.1)
{r : B(c, r) ⊂ Ω, ∃Vr ⊂ B(c, r) with |Vr| > 0 and Deg(f, B(c, r), f(x)) = 0 for all x ∈ Vr}
has positive (one-dimensional) measure.
Let us now briefly explain the idea of the proof. We know that fm converge to f weakly

in W 1,n−1 and thus up to a subsequence strongly in Ln−1 and a.e. We can thus imagine
that fm is really close to f both on some fixed ∂B(c, r) and on Vr. The situation is
illustrated in Fig. 1.

S(c, r)

Vr
fm(S(c, r))f(Vr)

f(S(c, r))

Figure 1. Behaviour of mappings f (in black) and fm (in green) on S(c, r)
and Vr.

That means f(Vr) is outside of imT (f, B(c, r)) but fm(Vr) lies inside fm(∂B(c, r)) since
fm is a homeomorphism. It follows that fm(∂B(c, r)) is close to f(∂B(c, r)) in most of the
places but it makes a “bubble” (or several bubbles) around fm(Vr) which is really close
to f(Vr).
Firstly, we define those bubbles and then we show that the number of bubbles that

contain a big part of fm(Vr) is uniformly bounded and hence in one of them we have a
big portion of the volume of fm(Vr) (and that |fm(Vr)| ≥ C using (1.1) and (1.4)). Since
fm(Vr) is quite big (in one of the big bubbles) we obtain that the boundary of the bubble
has big Hn−1 measure. However, this boundary is essentially image of some very small set
(as small as we wish for m big enough) on ∂B under fm and using (2.6) we obtain that
the integral of | cofDfm| over this small set is big. This contradicts the equiintegrability
of | cofDfm| which results in supm

∫︁

∂B(c,r)
A(| cofDfm|) dHn−1 <∞.

Step 2. Replacement of f on ∂B(c, r) with continuous g that has similar degree:

We need to apply plenty of techniques and results developed in [17]. For the convenience
of the reader, we include most of the details in the current proof.
We fix B(c, R) ⊂⊂ Ω. Since fm converge weakly in W 1,n−1, which is compactly embed-

ded into L(n−1)∗ , and so into Ln−1, we obtain that fm converge to f in Ln−1(B(c, R)). Up
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to a subsequence we can thus assume that fm → f pointwise a.e. and by Lemma 2.3 we
obtain Jf ̸= 0 a.e. We fix r ∈ (0, R) (and pass to a subsequence if necessary, see e.g. [33,
Lemma 2.9]) such that

fm → f weakly in W 1,n−1(∂B(c, r),Rn) and Hn−1-a.e. on ∂B(c, r)

and such that there exists a constant C2 so that

(3.2)

∫︂

∂B(c,r)

(|Dτf |n−1 + |Dτfm|n−1) dHn−1 < C2 for all m ∈ N.

Moreover, using Theorem 2.4 we can assume that all fm ∈ W 1,n−1(∂B(c, r),Rn) satisfy
the (N) condition on ∂B(c, r). Analogously to the proof of [33, Lemma 2.9] we use the
Fatou Lemma and (1.4) to deduce
∫︂ R

0

lim inf
m→∞

∫︂

∂B(c,r)

A(| cofDfm|) dHn−1 dϱ ≤ lim inf
m→∞

∫︂ R

0

∫︂

∂B(c,r)

A(| cofDfm|) dHn−1 dϱ <∞.

Choosing further r so that the lim inf on the lefthand side is finite and thus (passing again
to a subsequence) we have

(3.3)

∫︂

∂B(c,r)

A
(︁

| cofDfm|
)︁

dHn−1 < C2 for all m ∈ N.

We set B := B(c, r) and choose ε > 0 small enough with the exact value to be specified
later. Find ρ ∈ (0, min{ 1

16n
r, ε

2
}) such that for each z ∈ ∂B we have

(3.4)

∫︂

∂B∩B(z,2ρ)

|Dτf |n−1 dHn−1 < εn−1

(we can do that since the integral over the whole ∂B is finite). For each fixed z ∈ ∂B we
find ρz ∈ (ρ, 2ρ) such that

(3.5) ρ

∫︂

∂B∩∂B(z,ρz)

|Dτf |n−1 dHn−2 < εn−1,

which is possible because the length of (ρ, 2ρ) is ρ, combined with (3.4). Moreover, we
can also choose ρz such that fm → f occurs Hn−2-a.e. on ∂B ∩ ∂B(z, ρz) and that

lim inf
m→∞

∥fm∥W 1,n−1(∂B∩∂B(z,ρz),Rn) <∞.

It follows that up to a subsequence (depending on z and ρz, see e.g. [33, Lemma 2.9])

(3.6) fm → f weakly in W 1,n−1 and also uniformly on ∂B ∩ ∂B(z, ρz).

Note that on the (n−2)-dimensional space ∂B∩∂B(z, ρz) we have embedding into Hölder

functions W 1,n−1 ↪→ C0,1−n−2

n−1 , thus f is continuous there and we have the estimate

(3.7) diam f(∂B ∩ ∂B(z, ρz)) ≤ C(ρz)
1−n−2

n−1

(︃
∫︂

∂B∩∂B(z,ρz)

|Dτf |n−1 dHn−2

)︃
1

n−1

≤ C3ε.

Using the Vitali type covering, we find Bj = B(zj, ρj) such that ρj = ρzj ,

∂B ⊂
⋃︂

j

B(zj, ρj)
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and the balls B(zj,
1
5
ρj) are pairwise disjoint. Here j = 1, . . . , jmax. Furthermore, the

balls in the Vitali covering theorem are chosen inductively so we can also assume using
(3.6) that for a subsequence (chosen in a diagonal argument)

(3.8) fm → f weakly in W 1,n−1 and uniformly on ∂B ∩ ∂B(zj, ρj) for each j.

Given j, denote

Sj = ∂B ∩ Bj \
⋃︂

l<j

Bl.

Note that Sj satisfies the exterior ball condition of Subsection 2.6. Let Tj denote the
relative boundary of Sj with respect to ∂B.
For each j we define hj on Sj such that hj minimizes coordinate-wise the tangential

(n − 1)-Dirichlet integral among functions with boundary data f on Tj (see Theorem
2.16). We define hj = f on ∂B \ Sj. Also we define the function g on ∂B as g = hj on
each Sj. Set (see Fig. 2)

F = {y ∈ Ω′ : Deg(f, B, y) ̸= deg(g, B, y)},
Fj = {y ∈ Ω′ : Deg(f, B, y) ̸= Deg(hj, B, y)}.

Let us recall that by Theorem 2.16 we have Ln(g(Sj)) = 0 and hence Remark 2.8 gives
us deg g = Deg g.

×

×

×
× ×

×
×

×

××××
g(∂B)

f(∂B)

Fj

Figure 2. Behaviour of mappings f (in black) and g (red) on ∂B in 2D
representation. Tj corresponds to points on f(∂B) (of course in Rn they
are (n− 2)-dimensional), g is represented by dashed lines connecting these
points (of course these are minimizers of (n−1)-energy in higher dimensions
and not lines) and the gray set Fj is created “between” g(Sj) and f(Sj).

It is not difficult to find out that

y ∈
⋃︂

j

Fj for a.e. y ∈ F
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(this can be viewed e.g. by using (2.8)). Now, by (2.11), (3.4), and the minimizing
property

∫︁

Sj
|Dτhj|n−1 dHn−1 ≤ C

∫︁

Sj
|Dτf |n−1 dHn−1 we have

(3.9)

∑︂

j

|Fj| ≤ C
∑︂

j

(︂

∫︂

Sj

(|Dτf |n−1 + |Dτhj|n−1) dHn−1
)︂

n
n−1

≤ C
∑︂

j

(︂

∫︂

Sj

|Dτf |n−1 dHn−1
)︂

n
n−1

≤ Cε
∑︂

j

∫︂

Sj

|Dτf |n−1 dHn−1 ≤ CC2ε.

It follows that f and g have the same degree up to a very small set. It is more convenient
for us to work with g since for this continuous mapping on ∂B we can use the classical
degree deg and not Deg as for f .

Step 3. Replacement of fm on ∂B(c, r) with continuous gm that is close to g:

From Theorem 2.16 we know that Ln(hj(Sj)) = 0 for each j and thus |g(∂B)| = 0. It
follows that we can find a compact set H ⊂ Ω′ \ g(∂B) such that

(3.10) Ω′ \H < Φ( 1
10
|Vr|),

where Φ comes from Lemma 2.1. For each m ∈ N and j ∈ {1, . . . , jmax} let gm,j be defined
in Sj as the coordinate-wise minimizer of the (n − 1)-Dirichlet integral among functions
with boundary data fm on Tj. We define gm,j as fm on ∂B \Sj. We also define gm on ∂B
as gm,j on each Sj.
Since fm → f = g uniformly on Tj by (3.8), we have gm → g uniformly on ∂B using

Theorem 2.16. Hence we find m ∈ N such that gm(∂B) does not intersect H and

(3.11) deg(gm, B, ·) = deg(g, B, ·) in H.

Also, we require

(3.12) |fm − f | = |gm − g| < ε on all Tj.

With the help of (2.14) and (3.7) (which holds also for Tj) this implies that

|gm − g| < Cε on ∂B.

Similarly as in Fig. 2 (but using fm instead of f), we define

(3.13)
E = {y ∈ Ω′ : deg(fm, B, y) = 1 ̸= deg(gm, B, y)},
Ej = {y ∈ Ω′ : deg(fm, B, y) = 1 ̸= deg(gm,j, B, y)},

see Fig. 3.
Let us note that these sets Ej are exactly those bubbles discussed in the first step (see

Fig. 1). Then

y ∈
⋃︂

j

Ej for a.e. y ∈ E.

Using (2.11) and the minimizing property
∫︁

Sj
|Dτgm,j|n−1 dHn−1 ≤

∫︁

Sj
|Dτfm|n−1 dHn−1,

we obtain

(3.14) |Ej|1−
1

n ≤ C

∫︂

Sj

|Dτfm|n−1 dHn−1.

Step 4. Not that many big bubbles where fm and gm have different degree:



16 ANNA DOLEŽALOVÁ, STANISLAV HENCL, AND ANASTASIA MOLCHANOVA

×

×

×
×

× × ×
×

××××
gm(∂B)

fm(∂B)

Ej

Figure 3. Behaviour of mappings fm (in black) and gm (red) on ∂B in 2D
representation.

Choose a > 0 and set

J+ = {j :
∫︂

Sj

|Dτfm|n−1 dHn−1 > a},

J− = {j :
∫︂

Sj

|Dτfm|n−1 dHn−1 ≤ a}.

Note that (3.14) implies that |Ej| are small for j ∈ J−. Hence using (3.2)

(3.15)

∑︂

j∈J−

|Ej| ≤ C
∑︂

j∈J−

(︂

∫︂

Sj

|Dτfm|n−1 dHn−1
)︂

n
n−1

≤ Ca
1

n−1

∑︂

j∈J−

∫︂

Sj

|Dτfm|n−1 dHn−1

≤ Ca
1

n−1

∫︂

∂B

|Dτfm|n−1 dHn−1 ≤ C4a
1

n−1 ,

where C4 = CC2. We fix a such that

(3.16) C4a
1

n−1 ≤ Φ
(︁

1
10
|Vr|

)︁

.

We set

W = f−1
m

(︂

⋃︂

j∈J−

Ej

)︂

.

and using Lemma 2.1, (3.15) and (3.16) we obtain

Φ(|W |) ≤ |fm(W )| =
⃓

⃓

⃓

⋃︂

j∈J−

Ej

⃓

⃓

⃓
≤ C4a

1

n−1 ≤ Φ
(︁

1
10
|Vr|

)︁

.

From the monotonicity of Φ we get

(3.17) |W | ≤ 1
10
|Vr|.
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From (3.2) we have

(3.18) #J+ ≤M :=
C2

a
.

It follows that we have only boundedly many Ej, j ∈ J+, where the size of the bubble
|Ej| could be big. This bound depends on |Vr| and Φ (and hence φ) and C2 but it does
not depend on m nor on ε. We could have plenty of other small bubbles Ej, j ∈ J−, but
(3.17) implies that the union of their preimages is really small.
Step 5. Big part of fm(Vr) lies in big bubbles:
Set

Y = {x ∈ Vr \W : deg(gm, B, fm(x)) = 0}.
With the help of (3.11) we have

Vr \ Y ⊂W ∪ {x ∈ Vr : Deg(f, B, f(x)) ̸= 0}∪
∪ {x ∈ Vr : deg(gm, B, fm(x)) ̸= 0, Deg(f, B, f(x)) = 0}

⊂W ∪ {x ∈ Vr : Deg(f, B, f(x)) ̸= 0}∪
∪ {x ∈ Vr : deg(g, B, f(x)) ̸= Deg(f, B, f(x))}∪
∪ {x ∈ Vr : deg(g, B, fm(x)) ̸= deg(g, B, f(x))} ∪ {x ∈ Vr : fm(x) /∈ H}.

From (3.17) and (3.1) we obtain

⃓

⃓W ∪ {x ∈ Vr : Deg(f, B, f(x)) ̸= 0}
⃓

⃓ ≤ 1

10
|Vr|

as the second set is empty. Using (3.9) we have
⃓

⃓

{︁

y ∈ Ω′ : deg(g, B, y) ̸= Deg(f, B, y)
}︁⃓

⃓ = |F | ≤ CC2ε.

Using Lemmata 2.2 and 2.3 we obtain that (for ε small enough)

⃓

⃓

{︁

x ∈ Vr : deg(g, B, f(x)) ̸= Deg(f, B, f(x))
}︁⃓

⃓ ≤ 1

10
|Vr|.

Since the sets {y : deg(g, B, y) = 0} and {y : deg(g, B, y) = 1} are open and fm → f
a.e., we can take m so large that

(3.19)
⃓

⃓

{︁

x ∈ Vr : deg(g, B, fm(x)) ̸= deg(g, B, f(x))
}︁⃓

⃓ <
1

10
|Vr|.

Finally using (3.10) and (2.4) (as in (3.17)) we obtain

|{x ∈ Vr : fm(x) /∈ H}| ≤ 1

10
|Vr|

and all these inequalities together give us

(3.20) |Vr \ Y | ≤ 1

2
|Vr|.

It follows that for many points x ∈ Vr we have

deg(gm, B, fm(x)) = 0,

but

deg(fm, B, fm(x)) = 1
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since fm is a homeomorphism and x ∈ Vr ⊂ B. Therefore

(3.21)
⃓

⃓{x ∈ Vr : fm(x) ∈ Ej for some j ∈ J+}
⃓

⃓ ≥ 1

2
|Vr|.

Step 6. Integral
∫︁

Sj
| cofDfm| is big on a small set Sj for some j ∈ J+:

Using (3.18) and (3.21) we fix j ∈ J+ such that for

U := {x ∈ Vr : fm(x) ∈ Ej} we have
⃓

⃓U
⃓

⃓ ≥ 1

2#J+
|Vr| ≥ C|Vr|.

From Lemma 2.1 (2.4) we obtain that

(3.22) |fm(U)| ≥ 2δ,

where δ is constant which does not depend on m or ε.
From the definition of Ej (see (3.13) and Fig. 3) we obtain that Ej is an open set and

∂Ej ⊂ fm(Sj) ∪ gm(Sj).

We know that (see (3.7), (3.12) and (2.14))

diam(gm(Sj)) ≤ Cε

and thus we can find a ball B0 of radius Cε such that gm(Sj) ⊂ B0. Now the set

Ẽj := Ej \B0

is open,
∂Ẽj ⊂ fm(Sj) ∪ ∂B0.

and using (3.22) we obtain that

|Ẽj| ≥ 2δ − Cεn > δ

once ε is small enough.
It is not difficult to show that the set Ẽj has finite perimeter, and therefore we can use

the isoperimetric inequality (2.12) and Theorem 2.4 to get

δ1−
1

n ≤ |Ẽj|1−
1

n ≤ CHn−1(∂Ẽj) ≤ C
(︁

Hn−1(fm(Sj)) +Hn−1(∂B0)
)︁

≤ C(r)
(︂

∫︂

Sj

| cofDfm| dHn−1 + C0ε
n−1

)︂

.

It follows that for ε sufficiently small we get

1

2
δ1−

1

n ≤ C(r)

∫︂

Sj

| cofDfm| dHn−1

and this estimate on Sj (with diamSj ≤ ε) clearly contradicts the uniform integrability
of | cofDfm| given by (3.3).
Step 7. Something from outside of B(c, r) goes inside imT (f, B(c, r)):

This case works analogously. We can find a ball B(c, r) and Vr ⊂ Ω \ B(c, r) such
that its big part is mapped inside the topological images of B(c, r). Therefore, fm creates
bubbles inside. We can define Fj, F , Ej and E in a similar way and conclude.

□

Recall that the symmetric difference of two sets S, T ⊂ Rn is defined as

S△T := (S \ T ) ∪ (T \ S).
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Lemma 3.1. Let n ≥ 3, Ω,Ω′ ⊂ Rn be bounded domains and let φ satisfy (1.1) and (1.2).
Let fm ∈ W 1,n−1(Ω,Ω′), m = 0, 1, 2 . . . , be a sequence of homeomorphisms of Ω onto Ω′

with Jfm > 0 a.e. such that

sup
m

∫︂

Ω

(︂

|Dfm|n−1 + φ(Jfm)
)︂

dx <∞.

Assume further that fm = f0 on ∂Ω for all m ∈ N. Let f be a weak limit of fm in
W 1,n−1(Ω,Rn) and B ⊆ Ω be a ball such that f satisfies (INV) in B,

• fm → f weakly in W 1,n−1(∂B,Rn),
• fm → f Hn−1-a.e. on ∂B,
•
∫︁

∂B
(|Dτf |n−1 + |Dτfm|n−1) dHn−1 < C.

Then it holds that

(3.23) |fk(B)△ imT (f, B)| k→∞→ 0.

Proof. Let us assume by contradiction that we have a subsequence fmk
such that

|fmk
(B)△ imT (f, B)| > 4λ > 0.

We show that then f does not satisfy (INV).
For simplicity, we pass to that subsequence and keep the notation fm. We consequen-

tially choose a further subsequence such that fm(x) → f(x) a.e. on B and, again passing
to subsequences if neccessary, given ε > 0 we find g as in the proof of Theorem 1.1 such
that
(3.24)
| imT (f, B)△{y ∈ Ω′ : deg(g, B, y) ̸= 0}| ≤ |{y ∈ Ω′ : deg(g, B, y) ̸= Deg(f, B, y)}| ≤ ε.

Let us split into two cases: either | imT (f, B) \ fm(B)| > 2λ or |fm(B) \ imT (f, B)| > 2λ
for infinitely many m and thus we can assume that this is true for all m.
In the first case we find

Um ⊆ Ω \B such that fm(Um) ⊆ imT (f, B) and |fm(Um)| > 2λ.

We can assume that ε < λ and hence we can find U ′
m ⊆ Um such that

fm(U
′
m) ∩

(︁

imT (f, B)△{y ∈ Ω′ : deg(g, B, y) ̸= 0}
)︁

= ∅

and |fm(U ′
m)| > λ. We know from (2.5) that |U ′

m| > Ψ−1(λ). Therefore,

|U | > Ψ−1(λ)/2, where U = lim supU ′
m =

∞
⋂︂

k=1

∞
⋃︂

m=k

U ′
m.

Using Theorem 2.16 (as |h(S)| = 0 there) and (3.24) we have
⃓

⃓∂{y ∈ Ω′ : deg(g, B, y) ̸= 0})
⃓

⃓ = 0 and
⃓

⃓imT (f, B)△{y ∈ Ω′ : deg(g, B, y) ̸= 0}
⃓

⃓ < ε

and according to Lemmata 2.3 and 2.2 their preimages under f are arbitrarily small
(depending on ε). Hence we can set ε to be small enough such that |U ′| > Ψ−1(λ)/2,
where

U ′ = U \
[︂

f−1
(︂

∂{y ∈ Ω′ : deg(g, B, y) ̸= 0} ∪
(︁

imT (f, B)△{y ∈ Ω′ : deg(g, B, y) ̸= 0}
)︁

)︂]︂

.

For every x ∈ U ′ we have a subsequence fmk
such that x ∈ U ′

mk
and thus

fmk
(x) ∈ imT (f, B) ∩ {y ∈ Ω′ : deg(g, B, y) ̸= 0}.
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Since fm → f pointwise a.e., we have for a.e. x ∈ U ′ that

f(x) ∈ {y ∈ Ω′ : deg(g, B, y) ̸= 0}.
However, from the definition of U ′ we know that actually

f(x) ∈ {y ∈ Ω′ : deg(g, B, y) ̸= 0},
and since

x /∈ f−1
(︁

imT (f, B)△{y ∈ Ω′ : deg(g, B, y) ̸= 0}
)︁

,

we have that f(x) ∈ imT (f, B) for every x ∈ U ′. That contradicts (INV).
We deal with the second case analogously. We find

Um ⊆ B such that fm(Um) ∩ imT (f, B) = ∅ and |fm(Um)| > 2λ.

We define the following sets in the same way and arrive to

fmk
(x) ∈

(︁

Ω′ \ imT (f, B)
)︁

∩
(︁

Ω′ \ {y ∈ Ω′ : deg(g, B, y) ̸= 0}
)︁

.

Again, x is not in the f -preimage of

∂{y ∈ Ω′ : deg(g, B, y) ̸= 0} nor of imT (f, B)△{y ∈ Ω′ : deg(g, B, y) ̸= 0},
and therefore f(x) /∈ imT (f, B) for a set of a positive measure, which contradicts (INV).

□

4. Proof of Theorem 1.1: (N) condition, lower semicontinuity and

injectivity a.e.

4.1. Lusin (N) condition.

Lemma 4.1. Let fm ∈ W 1,n−1(Ω,Rn) be a sequence of homeomorphisms with Jfm > 0
a.e. such that fm satisfies the Lusin (N) condition and the sequence of Jacobians Jfm
is equiintegrable. Assume that f ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn) is a weak limit of fm in
W 1,n−1(Ω,Rn) such that for every a ∈ Ω there is ra > 0 such that for H1-a.e. r ∈ (0, ra)
it satisfies (3.23) and (INV) in B(a, r). Then,

(i) the distributional Jacobian DetDf ≥ 0 is a Radon measure;
(ii) DetDf is absolutely continuous w.r.t. Lebesgue measure: for any set E ⊂ Ω with

|E| = 0, it holds that DetDf(E) = 0;
(iii) f satisfies the Lusin (N) condition.

Proof. The first item (i) is stated in Lemma 2.15 (i).
Let E ⊂ Ω with |E| = 0 be given. Fix δ > 0 and let c(n) be a constant from Besicovitch

covering theorem. Since E is a set of measure zero, there exists an open set U ⊂ Ω such
that E ⊂ A and |U | < δ

c(n)
. Consider a covering of E by balls B(a, r̃a) for all a ∈ E such

that B(a, r̃a) ⊂ U , f satisfies (INV) in B(a, r̃a) and (3.23) holds on this ball. By the
Bezicovitch Theorem (e.g. [26, Theorem A.2]), we can find at most countable collection
of balls Bk := B(ak, r̃k) such that

E ⊂
⋃︂

k

Bk ⊂ U and
⋃︂

k

Bk =

c(n)
⋃︂

j=1

⋃︂

Bi∈Aj

Bi,

where subcollections Aj consists of disjoined balls Bi and a constant c(n) depends only
on the dimension n.
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Note that since (3.23) is valid for one ball of the covering, it stays true for a finite union

of such balls
⋃︁M

k=1Bk: for any ε > 0 and m big enough it holds that

(4.1)
⃓

⃓

⃓
fm

(︂

M
⋃︂

k=1

Bk

)︂

△
(︂

M
⋃︂

k=1

imT (f, Bk)
)︂⃓

⃓

⃓
≤ ε

3c(n)
.

Then, by Lemma 2.15 (iii) we have

DetDf
(︂

M
⋃︂

k=1

Bk

)︂

= DetDf
(︂

c(n)
⋃︂

j=1

⋃︂

Bi∈Aj ,i≤M

Bi

)︂

≤
c(n)
∑︂

j=1

DetDf
(︂

⋃︂

Bi∈Aj ,i≤M

Bi

)︂

≤
c(n)
∑︂

j=1

⃓

⃓

⃓

⋃︂

Bi∈Aj ,i≤M

imT (f, Bi)
⃓

⃓

⃓
≤ c(n)

⃓

⃓

⃓

M
⋃︂

k=1

imT (f, Bk)
⃓

⃓

⃓
.

To prove (ii), we fix ε > 0 and δ > 0 such that

(4.2) Ψ(t) <
ε

3 c(n)
for any t < δ,

where Ψ is given by Lemma 2.1 (note that in the proof of this part of lemma we have
used only equiintegrability of Jfm and Lusin (N) condition for fm). Since

⋃︁

k Bk ⊂ U and
|U | < δ we have using (2.5)

∑︂

k∈N

|Bk| < δ, and therefore
⃓

⃓

⃓
fm

(︂

M
⋃︂

k=1

Bk

)︂⃓

⃓

⃓
<

ε

3 c(n)
for any m ∈ N.

Relying on (4.1)–(4.2), for M big enough there exists m such that

DetDf(E) ≤ DetDf
(︂

⋃︂

k∈N

Bk

)︂

≤ DetDf
(︂

M
⋃︂

k=1

Bk

)︂

+
ε

3
≤ c(n)

⃓

⃓

⃓

M
⋃︂

k=1

imT (f, Bk)
⃓

⃓

⃓
+
ε

3

≤ c(n)
⃓

⃓

⃓
fm

(︂

M
⋃︂

k=1

Bk

)︂⃓

⃓

⃓
+ c(n)

⃓

⃓

⃓
fm

(︂

M
⋃︂

k=1

Bk

)︂

△
(︂

M
⋃︂

k=1

imT (f, Bk)
)︂⃓

⃓

⃓
+
ε

3
≤ ε.

For (iii) it is enough to notice that |f(B)| ≤ | imT f(B)| by Lemma 2.14. Hence

|f(E)| ≤
⃓

⃓

⃓

M
⋃︂

k=1

imT (f, Bk)
⃓

⃓

⃓
+
ε

3

≤
⃓

⃓

⃓
fm

(︂

M
⋃︂

k=1

Bk

)︂
⃓

⃓

⃓
+
⃓

⃓

⃓
fm

(︂

M
⋃︂

k=1

Bk

)︂

△
(︂

M
⋃︂

k=1

imT (f, Bk)
)︂
⃓

⃓

⃓
+
ε

3
≤ ε.

Since ε > 0 has been chosen arbitrary, we conclude DetDf(E) = |f(E)| = 0.
□

4.2. Lower semicontinuity. The main obstacle to obtain the lower semicontinuity of F
is to ensure weak convergence of Jacobians. One usually has to assume higher regularity
of f ∈ W 1,n (see e.g. [9, 15, 31]) but this is not available for us.
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Lemma 4.2. Let fm ∈ W 1,n−1(Ω,Rn) be a sequence of homeomorphisms with Jfm > 0
a.e., such that fm satisfies the Lusin (N) condition and the sequence of Jacobians Jfm
is equiintegrable. Assume that f ∈ W 1,n−1(Ω,Rn) ∩ L∞(Ω,Rn) is a weak limit of fm in
W 1,n−1(Ω,Rn) such that for every a ∈ Ω there is ra > 0 such that for H1-a.e. r ∈ (0, ra)
it satisfies (3.23) and (INV) in B(a, r). Then there exists a subsequence {Jfkm}m∈N of
{Jfk}k∈N such that Jfkm ⇀ Jf weakly in L1(Ω).

Proof. By the Dunford–Pettis Theorem (e.g. [30, Theorem B.103]) there exist a (non-
relabeled) subsequence Jfm and a function j ∈ L1(Ω) s.t. Jfm → j weakly in L1(Ω), and
hence for any measurable set E ⊂ Ω

∫︂

E

Jfm(x) dx→
∫︂

E

j(x) dx.

Let B be such that f satisfies the (INV) condition and (3.23) in B, then by the area
formula (2.1) and (3.23) we have

∫︂

B

Jfm(x) dx = |fm(B)| → | imT (f, B)|.

On the other hand, by Lemma 2.15 (ii)–(iii) and Lemma 4.1 (ii), we know that

Det f(B) =

∫︂

B

Jf (x) dx = | imT f(B)|.

Therefore, for all such balls, it holds that
∫︂

B

j(x) dx = | imT (f, B)| =
∫︂

B

Jf (x) dx,

which in turn implies j(x) = Jf (x) for a.e. x ∈ Ω. □

Lemma 4.3. Under conditions of Theorem 1.1, the functional F is lower semicontinuous
with respect to weak convergence, i.e., (1.5) holds.

Proof. Weak convergence fk → f inW 1,n−1 implies weak convergence (up to subsequence)
in L1 of all minors detl(Dfm) of order l ≤ n− 2 (see e.g. [35, Lemma 5.10]):

∥ detl(Dfm)∥L1(Ω) ≤ C∥Dfm∥lLn−1 ≤ CM
l

n−1 .

Weak convergence of detn−1(Dfk) = cofDfk in L1 follows by the standard argument,
provided uniform integrability (1.3) (see [2, Theorem 6.2] or [10, Theorem 7.5-1]). The
equiintegrability of Jfm follows from (1.2) by the de la Valée Poussin Theorem (e.g. [30,
Theorem B.104]). Moreover, conditions of Lemma 3.1 are fulfilled (see Step 2 of the
proof in Section 3). Therefore, Lemmata 3.1 and 4.2 ensure Jfm → Jf weakly in L1,
which now allows us to use De Giorgi Theorem [14, Theorem 3.23] to conclude the lower
semicontinuity (1.5) of F . □

4.3. Injectivity almost everywhere. One of the main reasons to consider the (INV)
condition is that it implies injectivity a.e. [12, Lemma 3.7], [33, Lemma 3.4], as discussed
in Introduction. In the setting of this paper, we can say even more.

Lemma 4.4. Let conditions of Theorem 1.1 be fulfilled and let h be a weak limit of f−1
m

in W 1,1(Ω′,Rn). Then h(f(x)) = x for a.e. x ∈ Ω and under additional assumption
|∂Ω′| = 0 we have f(h(y)) = y for a.e. y ∈ Ω′.
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Proof. From Theorem 2.5 we obtain that there is a subsequence of f−1
m which converges

weakly in W 1,1 to some h and we work with this subsequence here.
Recall that we know that Jf (x) > 0 for a.e. x ∈ Ω. Since f satisfies (N) we can use

(2.2) (for A = f−1(E)) to obtain that

(4.3) |f−1(E)| = 0 for every E ⊂ Rn with |E| = 0.

Therefore, for a.e. x ∈ Ω we know that f(x) is a Lebesgue point of h.
Moreover, we claim that for a.e. x ∈ Ω and every η > 0 there exists a ball B = B(a, r)

such that f satisfies (INV) and (3.23) in B and

(4.4) x ∈ B, r < η, and f(x) ∈ imT (f, B) is a point of density 1 of imT (f, B).

Indeed, choose a countable set of balls

B :=
{︁

B(c, ri) : c ∈ Qn ∩ Ω, ri ∈ [2−i−1, 2−i) for all i ∈ N

and f satisfies (INV) and (3.23) in B(c, ri)
}︁

.

For every Bj ∈ B we know that a.e. point of imT (f, Bj) is a point of density 1 and with
the help of (4.3) we can find a null set Σj such that

f(x) ∈ imT (f, Bj) for each x ∈ Bj \ Σj and f(x) is a point of density of imT (f, Bj).

Then Σ :=
⋃︁

j Σj is a null set and for every x ∈ Ω \ Σ we have (4.4) for some ball Bj.

Let us first prove that h(f(x)) = x a.e. We pick x such that f(x) is a Lebesgue point
of h and f(x) is a point of density of imT (f, B) for some ball B = B(a, r) satisfying (4.4).
Now we can find a ball B̃ around f(x) so that

1

|B̃|

∫︂

B̃

|h(z)− h(f(x))| dz < r/2 and
⃓

⃓

⃓

{︁

y ∈ B̃ : y ∈ imT (f, B)
}︁

⃓

⃓

⃓
> 0.9|B̃|.

Using convergence f−1
m to h in L1

loc(Ω
′,Rn) and (3.23), we fix m big enough so that

∫︂

B̃

|f−1
m (z)− h(z)| dz < r|B̃|/2 and |fm(B)△ imT (f, B)| < 0.1|B̃|.

Combining the estimates, we obtain

1

|B̃|

∫︂

B̃

|f−1
m (z)− h(f(x))| dz < r and

⃓

⃓

⃓

{︁

y ∈ B̃ : y ∈ fm(B)
}︁

⃓

⃓

⃓
> 0.8|B̃|.

We claim that this implies

(4.5) h(f(x)) ∈ B(a, 4r),

since otherwise we get a contradiction from

1

|B̃|

∫︂

B̃

|f−1
m (z)− h(f(x))| dz ≥ 1

|B̃|

∫︂

{y∈B̃: y∈fm(B)}

⃓

⃓h(f(x))− a− (f−1
m (z)− a)

⃓

⃓ dz

≥ 0.8(4r − r) > r.

Since r > 0 is chosen arbitrary, we conclude from (4.5) that h(f(x)) = x for a.e. x ∈ Ω.
It is not difficult to see that f(Ω) ⊂ Ω′. From Lemma 4.2 and change of variables (2.2)

we know that

|Ω′| = lim
k→∞

|fk(Ω)| = lim
k→∞

∫︂

Ω

Jfk(x) dx =

∫︂

Ω

Jf (x) dx =

∫︂

Rn

N(f,Ω, y) dy.
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From the a.e.-injectivity [12, Lemma 3.7] of f together with the (N) condition for f we
now obtain

|Ω′| =
∫︂

Rn

N(f,Ω, y) dy =

∫︂

f(Ω)

1 dy = |f(Ω)|.

Since f(Ω) ⊂ Ω′ and |∂Ω′| = 0 we obtain that a.e. point y ∈ Ω′ lies in f(Ω) and
N(f,Ω, y) = 1 there.
The other equality f(h(y)) = y for a.e. y ∈ Ω′ now follows easily. We know h(f(x)) = x

holds for a.e. x ∈ Ω and that f satisfies the (N) condition. Hence for a.e. y ∈ f(Ω) we
can pick x ∈ Ω such that f(x) = y and h(f(x)) = x. Now

f(h(y)) = f(h(f(x))) = f(x) = y.

Note that in this proof we do not need a Sobolev regularity but only f−1
m → h in L1

loc. □

Proof of Theorem 1.1. Theorem 1.1 now follows from result in Section 3, Lemma 4.1,
Lemma 4.4 and Lemma 4.3. □

4.4. Counterexamples to lower semicontinuity. The following example shows that
one has to ask the condition (N) for fm to conclude lower semicontinuity of a quasiconvex
functional, even if φ and A satisfy (1.1) and (1.3).

Lemma 4.5 (Counterexample for lsc). Let p < n, then there exist φ and A that satisfy
(1.1) and (1.3) and homeomorphisms fm, f : [0, 1]

n → [0, 1]n such that Jfm, Jf > 0 a.e.,
(1.4) is fulfilled, fm = id on ∂([0, 1]n) and fm converge to f weakly in W 1,p([0, 1]n,Rn).
However, fm does not satisfy the Lusin (N) condition for all m ∈ N and

∫︂

(0,1)n
Jf (x) dx > lim inf

m→∞

∫︂

(0,1)n
Jfm(x) dx.

Proof. Take any A(t) ≤ Ctβ, where C > 0 and β > 1 are some constants, and take φ
which behaves like an identity around 1 and satisfies (1.1). Consider a Ponomarev-type
map g : [0, 1]n → [0, 1]n, g ∈ W 1,p([0, 1]n,Rn) which maps a Cantor-set CA of measure zero
to a Cantor-set CB = g(CA) of positive measure, and which is identical on ∂([0, 1]n). Such
a map can be found by the standard construction, see [26, Chapter 4.3] with

ak =
1

kα
and bk = 1 +

1

kαn
where 0 < α < min

{︃

n

p
,

n

(n− 1)β

}︃

.

Referring the reader to [26, Chapter 4.3] for details, we just notice that on the k-th level
we have

|Dg| ≈ max

{︃

bk
ak
,
bk−1 − bk
ak−1 − ak

}︃

≈ kα, Jg ≈
(︃

bk
ak

)︃n−1

· bk−1 − bk
ak−1 − ak

≈ 1,

| cofDg| ≤ C|Dg|n−1 ≈ kα(n−1) and |{k-th level}| ≈ 2−kn 1

kn+1
.
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It follows that the map g has finite energy since
(4.6)
∫︂

(0,1)n
|Dg(x)|p dx ≤ C

∞
∑︂

k=1

2kn2−kn 1

kn+1
kαp <∞,

∫︂

(0,1)n
A(| cofDg(x)|) dx ≤ C

∫︂

(0,1)n
| cofDg(x)|β dx ≤ C

∞
∑︂

k=1

2kn2−kn 1

kn+1
kαβ(n−1) <∞,

∫︂

(0,1)n
φ(Jg(x)) dx <∞, and

∫︂

(0,1)n
K

1

n−1

g (x) dx ≤
∫︂

(0,1)n
|Dg(x)| n

n−1 dx <∞.

We set f1 = g and we divide the cube [0, 1]n into mn equal cubes both in the domain
and in the target. Fix one of those mn small cubes Qz := {x ∈ [0, 1]n : ∥x − z∥∞ < 1

2m
}

with a center point z and define fm|Qz
: Qz → Qz as a scaled and translated copy of g

fm(x) :=
1

m
g
(︁

m(x− z)
)︁

+ z.

It is easy to see by change of variables that
∫︂

(0,1)n
|Dfm|p dx =

∫︂

(0,1)n
|Dg|p dx

and analogously for other integrals in (4.6). It follows that supm F(fm) = F(g) < ∞
and hence there is a subsequence which converges weakly in W 1,n−1. Since fm → f := id
pointwise, identity is a weak limit of fm.
By construction, g maps the Cantor-set CA to the Cantor-set CB, where CA is a set

where g fails the Lusin (N) condition. Hence, for every m ∈ N and for each Qz it holds
that

∫︂

Qz

Jfm(x) dx =
1− |CB|
mn

.

Therefore,
∫︂

(0,1)n
Jfm(x) dx = 1− |CB| < 1 =

∫︂

(0,1)n
Jf (x) dx,

so the lower semicontinuity fails at least for this quasiconvex functional. □

Figure 4. f3 and its action on Q( 1

6
, 1
2)
.
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4.5. (N) condition and lower semicontinuity in the context of [17]. In our previous
result [17] we have shown that limit of homeomorphisms in W 1,n−1 satisfy the (INV)
condition under different assumptions. Instead of

∫︁

A(| cofDfm|) ≤ C we assumed the
integrability of the distortion function. Here we show that even in that case we can obtain
that the corresponding functional is lower semicontinuous and that f satisfies (N) under
the additional assumptions that all fm satisfy (N) and that (1.2) holds (these assumptions
were not in [17]). As in [17] we assume that there is A > 0 with

(4.7) A−1φ(t) ≤ φ(2t) ≤ Aφ(t), t ∈ (0,∞).

Theorem 4.6. Let n ≥ 3, Ω, Ω′ ⊂ Rn be Lipschitz domains and let φ satisfy (1.1) and
(4.7). Let fm ∈ W 1,n−1(Ω,Ω′), m = 0, 1, 2 . . . , be a sequence of homeomorphisms of Ω
onto Ω′ with Jfm > 0 a.e. such that

sup
m

∫︂

Ω

(︂

|Dfm(x)|n−1 + φ(Jfm(x)) +
(︂ |Dfm(x)|n

Jfm(x)

)︂
1

n−1
)︂

dx <∞.

Assume further that fm = f0 on ∂Ω for all m ∈ N. Let f be a weak limit of fm in
W 1,n−1(Ω,Rn) , then f satisfies the (INV) condition.
Moreover, under the additional assumptions (1.2) and that all fm satisfy the Lusin

(N) condition we obtain that our f satisfies the Lusin (N) condition and we have lower
semicontinuity of energy

(4.8) G(f) :=
∫︂

Ω

(︂

|Df(x)|n−1 + φ(Jf (x)) +
(︂ |Df(x)|n

Jf (x)

)︂
1

n−1
)︂

≤ lim inf
m→∞

G(fm).

Further

for a.e. x ∈ Ω we have h(f(x)) = x and for a.e. y ∈ Ω′ we have f(h(y)) = y,

where h is a weak-∗ limit of (some subsequence of) f−1
m in BV (Ω′,Rn).

Proof. The fact that the limit f satisfies the (INV) condition follows from [17, Theorem
3.1 a)] and Lemma 2.3.
As in Step 2 of Section 3, we know that for every center and almost every radius the

corresponding ball satisfies the conditions of Lemma 3.1. Thus,

(4.9) |fm(B)△ imT (f, B)| k→∞→ 0.

Further, the (N) condition of f and a lower semicontinuity of G follow from Lem-
mata 4.1–4.2, provided with (4.9). To prove the lower semicontinuity of G, we just note
that the function

g(x, y) = xn−1 + x
n

n−1y−
1

n−1 + φ(y)

is convex, and as in Lemma 4.3 use the De Giorgi Theorem [14, Theorem 3.23] again. Let
us note that our functional depends only on |Df | and detDf , but not on cofDf , so we
do not need to care about convergence of (n− 1)× (n− 1) subdeterminants here.
Further, from [18, Corollary 4.2] we conclude that there exists a subsequence of f−1

m

which converges weakly-∗ in BV to some h, in particular f−1
m → h in L1

loc. Injectivity
almost everywhere of both f and h is then obtained by following the lines of proof of
Lemma 4.4. □
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5. Application to Calculus of Variations

Let n ≥ 3 and Ω, Ω′ ⊂ Rn be bounded domains, e.g. representing the reference and
deformed configurations in nonlinear elasticity. Define the energy functional

(5.1) E(f) :=
∫︂

Ω

W (Df(x)) dx,

where W : Rn×n → R is a polyconvex function, i.e., W can be expressed as a convex
function of the minors of its argument, satisfying

(5.2) W (F ) ≥
{︄

C
(︁

|F |n−1 + φ(detF ) + A(| cof F |)− 1
)︁

, if detF > 0,

∞, if detF ≤ 0,

for some C > 0 and for some positive functions A and φ. Consider a homeomorphism f0
from Ω onto Ω′ such that E(f0) <∞, and the following sets of admissible functions:

Hf0(Ω,R
n) :=

{︂

f : Ω → Rn : f is a homeomorphism of Ω onto Ω′ satisfying

the Lusin (N) condition, f = f0 on ∂Ω, and E(f) ≤ E(f0)
}︂

and

Hw

f0
(Ω,Rn) :=

{︂

f : Ω → Rn : there are fm ∈ Hf0(Ω,R
n) with

fm ⇀ f weakly in W 1,n−1(Ω,Rn)
}︂

.

Note that Hw

f0
(Ω,Rn) is weakly (sequentially) closed and hence it is a suitable set of

mappings for variational approach:

Proposition 5.1. Let gm ∈ Hw

f0
(Ω,Rn) and assume that gm ⇀ g weakly inW 1,n−1(Ω,Rn).

Then g ∈ Hw

f0
(Ω,Rn). In particular, there exists a sequence fm ∈ Hf0(Ω,R

n) such that

fm ⇀ g weakly in W 1,n−1(Ω,Rn), g = f0 on ∂Ω, and supm E(fm) ≤ E(f0) <∞.

Proof. Since W 1,n−1 is reflexive and separable we can find {Li}i∈N ⊂ (W 1,n−1)∗ which is
dense. We can assume (passing to a subsequence) that

|Li(gm − g)| < 1

k
for every i ∈ {1, . . . ,m}.

For every gm we can find a sequence in Hf0(Ω,R
n) which converges weakly and thus we

can fix fm ∈ Hf0(Ω,R
n) such that

|Li(gm − fm)| <
1

m
for every i ∈ {1, . . . ,m}.

It follows that for every i ∈ N we have

lim
m→∞

Li(fm) = Li(g).

Since fm(x) ∈ Ω′ ⊂ B(0, R) for all x ∈ Ω, ∥Dfm∥Ln−1 ≤ E(fm) ≤ E(f0) result in
∥fm∥W 1,n−1 ≤M for all m and some constant M > 0, so we easily obtain that

lim
m→∞

L(fm) = L(g) for every L ∈ (W 1,n−1)∗.

Note further that the set f0 + W 1,n−1
0 (Ω,Rn) is closed and convex and thus weakly

closed, therefore, g = f0 on ∂Ω. □
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Proposition 5.2. Let g, gm ∈ Hw

f0
(Ω,Rn) and assume that gm ⇀ g weakly inW 1,n−1(Ω,Rn).

Then (up to subsequence) Jgm ⇀ Jg weakly in L1(Ω).

Proof. Let us first prove that for every ball B, such that f satisfies the (INV) condition
and (3.23) in B,

(5.3) lim
m→∞

| imT (gm, B)| = | imT (g, B)|.

Fix such a ball B for all m ∈ N and ε > 0. In view of Lemma 3.1, for any m ∈ N there
exists a sequence fm,k ∈ Hf0(Ω,R

n) such that

|fm,k(B)△ imT (gm, B)| ≤ ε

2
.

Using the diagonal procedure as in Proposition 5.1, we find a sequence fm,k(m) ∈ Hf0(Ω,R
n)

with fm,k(m) ⇀ g weakly in W 1,n−1. Again by Lemma 3.1 it holds that

|fm,k(m)(B)△ imT (g, B)| ≤ ε

2

for m big enough. Combining these two inequalities, we obtain (5.3).
Now the proof follows proof of Lemma 4.2, since for every a ∈ Ω there is ra > 0 such

that for H1-a.e. r ∈ (0, ra) the mapping g satisfies (3.23) and (INV) in B(a, r). □

Theorem 5.3. Let n ≥ 3 and Ω, Ω′ ⊂ Rn be bounded domains, let also W : Rn×n → R be
a polyconvex function satisfying (5.2) for some functions A and φ satisfying (1.1)–(1.3)
and a constant C > 0. Assume further that f0 is a homeomorphism from Ω onto Ω′ such
that E(f0) <∞, where E is the energy defined by (5.1). Then there exists f ∈ Hw

f0
(Ω,Rn)

such that

E(f) = inf
{︁

E(h) : h ∈ Hw

f0
(Ω,Rn)

}︁

.

Moreover, f satisfies the (INV) condition and the Lusin (N) condition.

Proof. Let fm be a minimizing sequence for E , then fm form a bounded sequence in
W 1,n−1, and hence using Proposition 5.1 there is f ∈ Hw

f0
(Ω,Rn) such that (up to a

subsequence) fm ⇀ f weakly in W 1,n−1. Provided with Proposition 5.2, we obtain that
E is lower semicontinuous in Hw

f0
(Ω,Rn) following the proof of Lemma 4.3.

Proposition 5.1 and Theorem 1.1 imply thus that f satisfies the (INV) and the (N)
conditions and also that

E(f) ≤ lim inf
m→∞

E(fm) = lim
m→∞

E(fm) = inf
{︁

E(h) : h ∈ Hw

f0
(Ω,Rn)

}︁

≤ E(f).

□

Remark 5.4. Let us note that it is not clear if the two following infima

inf
{︁

E(h) : h ∈ Hf0(Ω,R
n)
}︁

and inf
{︁

E(h) : h ∈ Hw

f0
(Ω,Rn)

}︁

,

are equal or not since the space Hf0(Ω,R
n) is not compact.

Analogously we can use the results of [17] and Section 4.5 to obtain the following
theorem.
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Theorem 5.5. Let n ≥ 3 and Ω, Ω′ ⊂ Rn be Lipschitz domains, let also W : Rn×n → R

be a polyconvex function satisfying

W (F ) ≥

⎧

⎨

⎩

C
(︂

|F |n−1 + φ(detF ) +
(︂

|F |n

detF

)︂
1

n−1 − 1
)︂

, if detF > 0,

∞, if detF ≤ 0,

for some function φ satisfying (1.1)–(1.2) and (4.7), and a constant C > 0. We assume
that W may be represented as a convex function of subdeterminants of order strictly less
than n − 1 and of detF , i.e., it is not a function of subdeterminants of order n − 1.
Assume further that f0 is a homeomorphism from Ω onto Ω′ such that E(f0) <∞, where
E is the energy defined by (5.1). Then there exists f ∈ Hw

f0
(Ω,Rn) such that

E(f) = inf
{︁

E(h) : h ∈ Hw

f0
(Ω,Rn)

}︁

.

Moreover, f satisfies the (INV) condition and the Lusin (N) condition.

Proof. The proof is analogous to the proof of Theorem 5.3. The only difference is that
in the proof of lower semicontinuity we do not have (1.3) and therefore we cannot prove
weak convergence of cofDfm as in the proof of Lemma 4.3. However, we do not need this
as our W “does not depend” on (n− 1)× (n− 1) subdeterminants. □
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Ann. Inst. H. Poincaré C Anal. Non Linéaire, vol. 11, no. 6, pp. 661–691, 1994.

[10] P. G. Ciarlet, Mathematical Elasticity, Vol. I : Three-Dimensional Elasticity, Series “Studies in
Mathematics and its Applications”. 1988.
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DIFFERENTIABILITY ALMOST EVERYWHERE OF WEAK LIMITS

OF BI-SOBOLEV HOMEOMORPHISMS

ANNA DOLEŽALOVÁ AND ANASTASIA MOLCHANOVA

[Reshetnyak’s] synthesis of classical function theory and Sobolev function classes

was so fruitful that it was given a special name: quasiconformal analysis.

A. D. Aleksandrov, 1999 Russ. Math. Surv. 54 1069

Abstract. This paper investigates the differentiability of weak limits of bi-Sobolev
homeomorphisms. Given p > n− 1, consider a sequence of homeomorphisms fk with
positive Jacobians Jfk > 0 almost everywhere and supk(∥fk∥W 1,n−1 + ∥f−1

k ∥W 1,p) <

∞. We prove that if f and h are weak limits of fk and f−1

k , respectively, with positive
Jacobians Jf > 0 and Jh > 0 a.e., then h(f(x)) = x and f(h(y)) = y both hold a.e.
and f and h are differentiable almost everywhere.

1. Introduction

Let Ω and Ω′ be domains, i.e. non-empty connected open sets, in R
n and f ∈

W 1,p(Ω,Rn) be a mapping from Ω to Ω′. According to classic results of Geometric
analysis, if p > n, the mapping f is differentiable almost everywhere. This result
was established in 1941 for n = 2 by Cesari [4] and later generalized to arbitrary n
by Calderón [2]. The a.e.-differentiability of continuous and monotone mappings was
studied from a geometrical perspective by Väisälä [29] and Reshetnyak [24, 25, 26]. This
includes mappings with bounded distortion, also known as quasiregular mappings, and
mappings with finite distortion (even for p = n). Further details on these results can
be found in [25, 29]. The results also extend to W 1,1-homeomorphisms in dimension
n = 2, as shown by Gehring and Lehto [10], and W 1,p-homeomorphisms with p > n−1
if n ≥ 3, see Väisälä [29] (also Onninen [22, Theorem 1.2 and Example 1.3]).
For W 1,n−1-Sobolev homeomorphisms with n ≥ 3, the a.e.-differentiability was es-

tablished by considering the integrability of the inner distortion KI ∈ L1(Ω), where
Jf (x) := detDf(x) is the Jacobian, adjDf is the adjugate matrix of Df and

KI :=
| adjDf |n

Jf (x)n−1
,

see [28]. This condition on integrability of distortion is sharp, meaning for any δ ∈ (0, 1)
and n ≥ 3 there exists a homeomorphism f ∈ W 1,n−1((−1, 1)n,Rn) such that KI ∈
Lδ((−1, 1)n) and f is not classically differentiable on a set of positive measure [14].
The a.e.-differentiability of W 1,n−1-Sobolev maps also holds for continuous, open, and
discrete mappings of finite distortion with nonnegative Jacobian if a particular weighted

2010 Mathematics Subject Classification. 46E35.
Key words and phrases. limits of Sobolev homeomorphisms, differentiability.
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distortion function is integrable [30]. The condition KI ∈ L1(Ω) essentially means that
f−1 ∈ W 1,n(f(Ω),Rn) [20, Theorem 1.1]. Together with the oscillation estimate from
[23, Lemma 2.1] we then obtain that for almost all x ∈ Ω

lim sup
r→0+

oscB(x,r) f

r
< ∞,

and hence f is differentiable in x by the Stepanov Theorem. Thus, instead of as-
sumptions for distortion, we can directly consider bi-Sobolev homeomorphisms. The
inverse mapping theorem (see e.g. [12, Theorem A.29]) states that if f ∈ W 1,n−1,
Jf > 0 a.e., and f−1 ∈ W 1,p with p > n − 1, then both f and f−1 are differentiable
almost everywhere (for a more general approach, the reader is referred to [31]). How-
ever, Csörnyei, Hencl, and Malý constructed in Example 5.2 in [5] a homeomorphism
f ∈ W 1,n−1((−1, 1)n,Rn), n ≥ 3, with Jf > 0 a.e. that is nowhere differentiable and
its inverse f−1 ∈ W 1,n−1((−1, 1)n,Rn) is also nowhere differentiable.

In this work, we examine the a.e.-differentiability of a class of weak limits of home-

omorphisms. This class of mappings is well suited for the calculus of variations ap-
proach and may serve as deformations in Continuum Mechanics models. For further
information, refer to [15, 17, 19]. Weak limits of Sobolev homeomorphisms have re-
ceived significant attention in recent years, with various studies conducted, including
[1, 3, 6, 7, 8, 9, 13, 16].

Here we consider the energy functional

E(f) :=

✂
Ω

|Df(x)|n−1 dx+

✂
Ω′

|Df−1(y)|p dy

for bi-Sobolev mappings f : Ω → Ω′ such that f is invertible almost everywhere, f ∈
W 1,n−1(Ω,Rn), and f−1 ∈ W 1,p(Ω′,Rn) for some p > n− 1.

The main result, which is proven in Section 1.2, reads as follows.

Theorem 1.1. Let n ≥ 2, p > n − 1, Ω, Ω′ ⊂ R
n be bounded domains and fk ∈

W 1,n−1(Ω,Rn), k = 0, 1, 2 . . . , be homeomorphisms of Ω onto Ω′ with Jfk > 0 a.e. and

sup
k

E(fk) < ∞.

Assume that f : Ω → R
n is a weak limit of {fk}k∈N in W 1,n−1(Ω,Rn) with Jf > 0 a.e.

and h : Ω′ → R
n is a weak limit of {f−1

k }k∈N in W 1,p(Ω′,Rn) with Jh > 0 a.e. Then for

a.e. x ∈ Ω we have h(f(x)) = x and for a.e. y ∈ Ω′ we have f(h(y)) = y, and both f
and h are differentiable almost everywhere.

Let us note the following result, which better suits the Calculus of Variations ap-
proach since it formulates the assumptions only for fk.

Corollary 1.2. Let n ≥ 2, p > n − 1, Ω, Ω′ ⊂ R
n be bounded domains and ϕ be a

positive convex function on (0,∞) with

(1.1) lim
t→0+

ϕ(t) = ∞ and lim
t→∞

ϕ(t)

t
= ∞.

Let fk ∈ W 1,n−1(Ω,Rn), k = 0, 1, 2 . . . , be homeomorphisms of Ω onto Ω′ with Jfk > 0
a.e. such that supk F(fk) < ∞, where

F(f) :=

✂
Ω

|Df(x)|n−1 +
| adjDf(x)|p

Jp−1
f (x)

+ ϕ(Jf (x)) dx.

Assume that f : Ω → R
n is a weak limit of {fk}k∈N in W 1,n−1(Ω,Rn) and h : Ω′ → R

n

is a weak limit of {f−1
k }k∈N in W 1,p(Ω′,Rn). Then for a.e. x ∈ Ω we have h(f(x)) = x
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and for a.e. y ∈ Ω′ we have f(h(y)) = y, and both f and h are differentiable almost

everywhere.

2. Preliminaries

By B(c, r), we denote the open euclidean ball with centre c ∈ R
n and radius r > 0,

and S(c, r) stands for the corresponding sphere.

2.1. Topological image and (INV) condition. Although a weak limit of homeomor-
phisms may not be a homeomorphism, it may possess an invertibility property known
as the (INV) condition. The (INV) condition states, informally, that a ball B(x, r)

is mapped inside the image of the sphere f(S(x, r)) and the complement Ω \ B(x, r)
is mapped outside f(S(x, r)). This concept was introduced for W 1,p-mappings, where
p > n− 1, by Müller and Spector [21], although the fact that a ball B(x, r) is mapped
inside the image of a sphere f(S(a, r)) was known in literature before as monotonic-

ity, see [25] and [32, ➜2]. Suppose that f : S(y, r) → R
n is continuous, we define the

topological image of B(x, r) as

(2.1) fT (B(x, r)) := {z ∈ R
n \ f(S(x, r)) : deg(f, S(x, r), z) ̸= 0}

and the topological image of x as

fT (x) :=
⋂︂

r>0,r ̸∈Nx

f ∗T (B(x, r)) ∪ f ∗(S(x, r)),

where Nx is a null set from the definition just below.

Definition 2.1. A mapping f : Ω → R
n satisfies the (INV) condition, provided that

for every x ∈ Ω there exist a constant rx > 0 and an L1-null set Nx such that for all
r ∈ (0, rx) \Nx, the restriction f |S(x,r) is continuous and

(i) f(z) ∈ fT (B(x, r)) ∪ f(S(x, r)) for a.e. z ∈ B(x, r),
(ii) f(z) ∈ R

n \ fT (B(x, r)) for a.e. z ∈ Ω \B(x, r).

Let us note that for a particular representative of a Sobolev mapping, Definition 2.1
allows for some points to escape their destiny, e.g. a null-set inside the ball may be
mapped outside the image of this ball. Thus, we also consider a stronger version of the
(INV) condition.

Definition 2.2. A mapping f : Ω → R
n satisfies the strong (INV) condition, provided

that for every x ∈ Ω there exist a constant rx > 0 and an L1-null set Nx such that for
all r ∈ (0, rx) \Nx the restriction f |S(x,r) is continuous and

(i) f(z) ∈ fT (B(x, r)) ∪ f(S(x, r)) for every z ∈ B(x, r),
(ii) f(z) ∈ R

n \ fT (B(x, r)) for every z ∈ Ω \B(x, r).

2.2. Precise, super-precise, and hyper-precise representative of a Sobolev

mapping. Let 1 ≤ p ≤ n and f ∈ W 1,p(Rn), then the precise representative of f is
given by

(2.2) f ∗(a) :=

⎧

⎨

⎩

lim
r→0+

1

|B(a, r)|

✂
B(a,r)

f(x) dx if the limit exists,

0 otherwise.

Note that the representative f ∗ is p-quasicontinuous (see remarks after [21, Proposi-
tion 2.8]).
Let now f : Ω → R

n be a W 1,p-weak limit of homeomorphisms fk : Ω → R
n with

p ∈ (n−1, n] for n > 2 or p ∈ [1, 2] for n = 2. Then by [1, Theorem 5.2] there exists an
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Hn−p-null set NC ⊂ Ω and a representative f ∗∗ of f such that f ∗∗ is continuous at every
x ∈ Ω\NC, a set-valued image fT (x) is a singleton for every y ∈ Ω\NC, f ∗∗ = f ∗ capp-

a.e., and f ∗∗ can be chosen so that f ∗∗(x) ∈ fT (x) for every x ∈ Ω. We will call f ∗∗ a
super-precise representative of f .
The hyper-precise representative f̃ is defined as

(2.3) f̃(a) := lim sup
r→0+

1

|B(a, r)|

✂
B(a,r)

f(x) dx.

We need the following monotonicity property of mappings satisfying the strong (INV)
condition.

Lemma 2.3. Let n ≥ 2 and Ω′ ⊂ R
n be a bounded domain. If h : Ω′ → R

n satisfies

the strong (INV) condition, then h is monotone for almost all radii, i.e. for y ∈ Ω′

there exists an L1-null set Ny such that for all r ∈ (0, ry)\Ny it holds that oscB(y,r) h ≤
oscS(y,r) h.

If, moreover, h ∈ W 1,p(Ω′,Rn) with p > n − 1, then for any r ∈
(︁

0, ry
2

)︁

the following

estimate holds

oscB(y,r) h ≤ Cr

(︃

r−n

✂
B(y,2r)

|Dh|p
)︃1/p

.

Proof. Let Ny be a set from Definition 2.2. Then for y ∈ Ω′ and r ∈ (0, ry) \ Ny it
holds that h is continuous on the sphere S(y, r) and h(z) ∈ hT (B(y, r))∪h(S(y, r)) for

every z ∈ B(y, r). In this case, h(S(y, r)) is a compact set and hT (B(y, r)) ⊆ R
n \ A,

where A is the unbounded component of Rn \ h(S(y, r)) (since by the basic properties
of the topological degree [12, p. 48(d)] we have deg(h, S(y, r), ξ) = 0 for all ξ ∈ A),
and therefore oscB(y,r) h ≤ oscS(y,r) h.

Further, for y ∈ Ω′ and r > 0, and for a.e. t ∈ [r, 2r), it holds that

oscB(y,r) h ≤ oscB(y,t) h ≤ oscS(y,t) h.

Then by the Sobolev embedding theorem on spheres [12, Lemma 2.19], following the
proof of [12, Theorem 2.24], we obtain that

oscB(y,r) h ≤ oscS(y,t) h ≤ Ct

(︃

t−n+1

✂
S(y,t)

|Dh|p
)︃1/p

≤ Cr

(︃

r−n

✂
B(y,2r)

|Dh|p
)︃1/p

.

□

Remark 2.4. In case p > n, h∗ = h∗∗ = h̃ is the continuous representative of h
and h∗ is differentiable almost everywhere [2] and satisfies the Lusin (N) condition
in Ω [18]. Moreover, due to compact embedding of W 1,p into the Hölder space C0,α,
weak convergence in W 1,p implies uniform convergence on compact sets. With these
properties, the subsequent analysis becomes simplified, and the details are left to the
reader.

3. A.e.-invertibility of f

Since a limit of homeomorphisms may not be a homeomorphism, we need to define
a weaker notion of inverse mapping. First recall that a mapping f : Ω → Ω′ is called
injective a.e. in domain if there exists a null set Σ ⊂ Ω, |Σ| = 0, such that the
restriction f |Ω\Σ : Ω \ Σ → f(Ω \ Σ) is injective. A mapping f : Ω → Ω′ is called
injective a.e. in image if there exists a null set Σ′ ⊂ Ω′, |Σ′| = 0, such that for any
y ∈ f(Ω) \ Σ′ the preimage f−1(y) := {x ∈ Ω : f(x) = y} consists of only one point.
Note that if f is injective a.e. in image and satisfies the (N)−1 condition, then f is
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injective a.e. in domain. If instead f is injective a.e. in domain, f satisfies the (N)
condition, and |Ω′| = |f(Ω)| then f is injective a.e. in image. We say that h : Ω′ → Ω
is the a.e.-inverse to f : Ω → Ω′ if for a.e. x ∈ Ω we have h(f(x)) = x and for a.e.
y ∈ Ω′ we have f(h(y)) = y. Note that if f satisfies the (N)−1 condition, then f is
injective a.e. in image if and only if there exists the a.e.-inverse to f .

The following lemma provides some additional conditions that guarantee the a.e.-
invertibility of f in our setting.

Lemma 3.1. Let n ≥ 2, Ω and Ω′ be bounded domains in R
n, p > n − 1, and let

fk ∈ W 1,n−1(Ω,Rn) be homeomorphisms of Ω onto Ω′ with Jfk > 0. Let also f : Ω → R
n

be a weak limit of {fk}k∈N in W 1,n−1(Ω,Rn) with Jf > 0 a.e. Assume also that the

sequence {f−1
k }k∈N converges W 1,p-weakly to h : Ω′ → R

n with Jh > 0 a.e. Then

h∗∗(f(x)) = x a.e. in Ω and f(h∗∗(y)) = y a.e. in Ω′.

Proof. Let p > n−1, and fix a representative of f , which we denote by the same symbol.
If needed, we pass to a subsequence so that fk → f and f−1

k → h pointwise a.e. Since
h is a W 1,p-weak limit of Sobolev homeomorphisms with p > n − 1, the super-precise
representative h∗∗ satisfies the strong (INV) condition [1, Theorem 5.2 and Lemma 5.3].
Then there exists a set G′

1 ⊂ Ω′ of full measure |G′
1| = |Ω′|: Jh∗∗(y) > 0 for all y ∈ G′

1,
h∗∗ is injective in G′

1 (see [21, Lemma 3.4] and [1, Theorem 1.2]) and f−1
k (y) → h∗∗(y)

for all y ∈ G′
1.

Step 1. h∗∗(f(x)) = x a.e.: By Lemma 2.3, we know that oscB(y,r) h
∗∗ −→

r→0
0 for

a.e. y ∈ Ω′. Since Jf > 0 a.e. (and therefore f satisfies the (N)−1 condition),
oscB(f(x),r) h

∗∗ −→
r→0

0 for a.e. x ∈ Ω.

Let G1 ⊂ f−1(G′
1) be a set such that |G1| = |Ω| and for all x ∈ G1 it holds that

fk(x) → f(x) and oscB(f(x),r) h
∗∗ −→

r→0
0.

For x ∈ G1 and r > 0, by the pointwise convergence of fk in x ∈ G1 and f−1
k in

f(x) ∈ G′
1, we can find k0 ∈ N big enough such that

fk(x) ∈ B(f(x), r) and f−1
k (f(x)) ∈ B(h∗∗(f(x)), r)

for all k ≥ k0. Moreover, by [21, Lemma 2.9] (though it is formulated for the precise
representative h∗, it holds also for the super-precise representative h∗∗ with analogous
proof), there exists a subsequence {fkj}j∈N (that depends on r) and a number j0 ∈ N

big enough such that

oscS(f(x),r) f
−1
kj

≤ oscS(f(x),r) h
∗∗ + r

for all j ≥ j0.
Then we have

|f−1
kj

(fkj(x))− h∗∗(f(x))| ≤ |f−1
kj

(fkj(x))− f−1
kj

(f(x))|+ |f−1
kj

(f(x))− h∗∗(f(x))|

≤ oscB(f(x),r) f
−1
kj

+ r ≤ oscS(f(x),r) f
−1
kj

+ r

≤ oscS(f(x),r) h
∗∗ + r + r ≤ oscB(f(x),2r) h

∗∗ + 2r.

Therefore, by definition of G1,

|x− h∗∗(f(x))| = |f−1
kj

(fkj(x))− h∗∗(f(x))| ≤ lim
r→0

(oscB(f(x),2r) h
∗∗ + 2r) = 0

for all x ∈ G1, which concludes Step 1.
Step 2. f(h∗∗(y)) = y a.e.: We know that h∗∗ is injective a.e. on G′

1 and both f and

h∗∗ satisfies the (N)−1 condition, so when we set

G′
2 :=

(︁

G′
1 ∩ (h∗∗)−1(G1)

)︁

\ (h∗∗)−1(f−1(Ω′ \G′
1)),
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we know it is a set of full measure. Let us take y ∈ G′
2. Since f

−1
k is a homeomorphism

onto Ω, we can find yk ∈ Ω′ such that f−1
k (yk) = h∗∗(y). Therefore,

yk = fk(f
−1
k (yk)) = fk(h

∗∗(y)) → f(h∗∗(y)),

so yk converges to some ỹ = f(h∗∗(y)). We apply h∗∗ to both sides to get h∗∗(ỹ) =
h∗∗(f(h∗∗(y))). From y ∈ G′

2 we have that h∗∗(y) ∈ G1. Since h∗∗(f(x)) = x on G1

we get h∗∗(ỹ) = h∗∗(f(h∗∗(y))) = h∗∗(y). Now we can have either ỹ ∈ G′
1 or ỹ /∈ G′

1.
In the first case, ỹ = y as h∗∗ is injective on G′

1, so f(h∗∗(y)) = y. In the other case,
f(h∗∗(y)) ∈ Ω′ \G′

1, which is a contradiction to y ∈ G′
2.

□

Remark 3.2. If p > n, equality h∗∗(f(x)) = x can be derived easily from

|x− h∗∗(f(x))| ≤ |f−1
k (fk(x))− f−1

k (f(x))|+ |f−1
k (f(x))− h∗∗(f(x))|,

using uniform convergence f−1
k ⇒ h∗∗ (up to subsequence) and the Morrey inequality

for f−1
k . The other relation f(h∗∗(y)) = y follows the same way as above.

Remark 3.3. Since both f and h satisfy the (N)−1 condition, the identities h(f(x)) = x
a.e. in Ω and f(h(y)) = y a.e. in Ω′ hold for arbitrary representatives.

4. Differentiability

First, let us notice the following well-known fact.

Lemma 4.1. Let n ≥ 2, p > n − 1 and Ω′ be a bounded domain in R
n. If h ∈

W 1,p
loc (Ω

′,Rn) satisfies the strong (INV) condition, then h is differentiable a.e. in Ω′.

Proof. By Lemma 2.3 we have

oscB(y,r) h ≤ Cr

(︃

r−n

✂
B(y,2r)

|Dh|p
)︃1/p

,

which implies by setting r = |z − y| that

lim sup
z→y

|h(z)− h(y)|

|z − y|
≤ C|Dh(y)| < ∞

for any Lebesgue point y of |Dh|p and, therefore, h is differentiable a.e. by the Stepanov
theorem [27], see also [12, Theorem 2.23].

□

We also need the following modification of [12, Lemma A.29], which gives us the
a.e.-differentiability of mapping f from Theorem 1.1 – but the derivative is only with
respect to a set of full measure.

Lemma 4.2. Let n ≥ 2 and Ω, Ω′ be bounded domains in R
n. Let Λ ⊂ Ω, Λ′ ⊂ Ω′ be

sets of full measure and h : Ω′ → Ω such that h : Λ′ → Λ = h(Λ′) is differentiable with

respect to the relative topology in Λ′, i.e. induced by the topology in R
n, and Jh(y) > 0

for all y ∈ Λ′. Assume also that h|Λ′ is injective, and the inverse mapping f := h−1 is

continuous in Λ with respect to the relative topology in Λ. Then f is differentiable on

Λ with respect to the relative topology in Λ and Df(x) = (Dh(f(x)))−1
for all x ∈ Λ.

Proof. Since h : Λ′ → Λ is a homeomorphism, the proof of this lemma follows the lines
of the proof of [12, Lemma A.29]. We present it here for the convenience of the reader.
By the differentiability of h we know that for y ∈ Λ′

(4.1) lim
ȳ→y, ȳ∈Λ′

h(ȳ)− h(y)−Dh(y)(ȳ − y)

|ȳ − y|
= 0.
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For x̄, x ∈ Λ denote ȳ = f(x̄), y = f(x) ∈ Λ′, then

h(ȳ)− h(y) = h(f(x̄))− h(f(x)) = x̄− x.

Since Jh(y) > 0 we obtain for ȳ close enough to y that

|x̄− x| = |h(ȳ)− h(y)| ≈ |Dh(y)(ȳ − y)| ≈ |ȳ − y|.

Then from (4.1) it follows

0 = lim
ȳ→y, ȳ∈Λ′

(Dh(y))−1 (h(ȳ)− h(y)−Dh(y)(ȳ − y))

|y′ − y|
=

lim
ȳ→y, ȳ∈Λ′

(Dh(y))−1 (h(ȳ)− h(y))− (ȳ − y)

|y′ − y|
≈

lim
x̄→x, x̄∈Λ

(Dh(f(x)))−1 (x̄− x)− (f(x̄)− f(x))

|x̄− x|
,

which concludes the proof.
□

The following proposition is a version of an inverse function theorem.

Proposition 4.3. Let n ≥ 2, p > n− 1, Ω and Ω′ be bounded domains in R
n, Λ ⊂ Ω

and Λ′ ⊂ Ω′ be sets of full measure and h ∈ W 1,p(Ω′,Ω) satisfy the strong (INV)
condition and be differentiable with Jh(y) > 0 for any y ∈ Λ′. Assume also that the

restriction h|Λ′ : Λ′ → Λ is one-to-one for any y ∈ Λ′. Then for any y0 ∈ Λ′ there

exists a sequence {rm}m∈N ↘ 0 such that the topological image hT (B(y0, rm)) contains
B
(︁

h(y0),
rm
3

)︁

.

Ω′

S(0, rm)

h
S(0, rm)

h(S(0, rm))

Ω

Figure 1. Mapping h maps the red sphere S(0, rm) to h(S(0, rm))
(blue); the grey ball B(0, rm/3) does not intersect h(S(0, rm)), since its
distance from 0 is at least rm/2 (denoted by the dotted sphere).
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Proof. Without loss of generality, by a translation and a linear change of variables, we
may assume that y0 = 0, h(y0) = 0, and Dh(y0) = Id. Since h is differentiable at 0, it
holds that h(y) = y + o(|y|) if y → 0. That means that there exists r0 > 0 such that

(4.2) |h(y)− y| ≤
|y|

2
for all y ∈ B(0, r0) ⊂ Ω′.

Consider a sequence {rm}m∈N ↘ 0 such that h is continuous on S(0, rm) and Def-
inition 2.2 (i–ii) is fulfilled. Let now z ∈ B

(︁

0, rm
3

)︁

⊂ Ω, the inequality (4.2) im-
plies z /∈ h(S(0, rm)). Since dist(z, S(0, rm)) > rm/2, from (4.2) we know that 1 =
deg(z, Id, S(0, rm)) = deg(z, h, S(0, rm)). Therefore, B

(︁

0, rm
3

)︁

⊂ hT (B(0, rm)), see
Figure 1 for illustration. □

The closing theorem of this section concludes the differentiability part of Theo-
rem 1.1.

Theorem 4.4. Let n ≥ 2, p > n − 1, Ω and Ω′ be bounded domains in R
n and

fk ∈ W 1,n−1(Ω,Rn) be homeomorphisms of Ω onto Ω′ with Jfk > 0. Let f : Ω → R
n

be a weak limit of {fk}k∈N in W 1,n−1(Ω,Rn) with Jf > 0 a.e. Assume also that the

sequence {f−1
k }k∈N converges W 1,p-weakly to h : Ω′ → R

n with Jh > 0 a.e. Then h∗∗ is

differentiable a.e. in Ω′ and f̃ is differentiable a.e. in Ω.

Proof. We again pass to a subsequence (if needed) so that fk → f and f−1
k → h

pointwise a.e. Since h is a W 1,p-weak limit of Sobolev homeomorphisms with p > n−1,
the super-precise representative h∗∗ satisfies the strong (INV) condition [1, Theorem
5.2 and Lemma 5.3], is injective a.e. (see [21, Lemma 3.4] and [1, Theorem 1.2]) and
continuous on almost all spheres [11, Lemma 2.19]. By Lemma 4.1, h is differentiable
a.e. in Ω′. Moreover, since Jh(y) > 0 a.e. in Ω′, by the change-of-variable formula we
conclude that h satisfies the (N)−1 condition.
Step 1. Finding sets Λ, Λ′: Let f be an arbitrarily fixed representative, and let us

introduce good sets G ⊂ Ω, G′ ⊂ Ω′ as

G := {x ∈ Ω : h∗∗(f(x)) = x} ⊂ Ω and G′ := {y ∈ Ω′ : f(h∗∗(y)) = y} ⊂ Ω′.

It is easy to check that f(G) = G′, h∗∗(G′) = G, and by Lemma 3.1, |G| = |Ω|,
|G′| = |Ω′|. And we define bad sets Σ ⊂ G, Σ′ ⊂ G′ as

Σ :=G \ {x ∈ Ω : Jf (x) > 0, fk(x) → f(x)},

Σ′ :=G′ \ {y ∈ Ω′ : h∗∗ is differentiable in y, Jh∗∗(y) > 0, f−1
k (y) → h∗∗(y)}.

Clearly |Σ| = |Σ′| = 0. Then very good sets Λ ⊂ G, Λ′ ⊂ G′ are defined by

Λ′ := G′ \ (Σ′ ∪ f−1(Σ)) and Λ := h∗∗(Λ′).

By Lemma 3.1 and (N)−1 condition for f and h∗∗, it is not difficult to see that |Λ′| =
|G′| = |Ω′|, |Λ| = |Ω| and f(Λ) = Λ′.
Step 2. f |Λ is continuous: The restriction f |Λ : Λ → Λ′ is continuous with respect to

the relative topology in Λ. Indeed, let f |Λ be not continuous in some point x0 ∈ Λ,
then there exists a sequence {xk}k∈N ⊂ Λ, xk → x0, but f(xk) ↛ f(x0). We set
yk := f(xk) ∈ Λ′ and y0 := (h∗∗)−1(x0) = f(x0). Since h∗∗|Λ′ = (f |Λ)

−1, we have
h∗∗(yk) → h∗∗(y0), but yk ↛ y0.

By Proposition 4.3 there exists a sequence {rm}m∈N ↘ 0 such that

B
(︂

h∗∗(y0),
rm
3

)︂

⊂ (h∗∗)T (B(y0, rm)).
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Let m and k0 ∈ N be big enough so that infinitely many yk are outside of B(y0, rm)
for k ≥ k0 and h∗∗(yk0) ∈ B

(︁

h∗∗(y0),
rm
6

)︁

. Passing to a subsequence, we can, for now,
assume that yk /∈ B(y0, rm) for all k. Then we can find r > 0 such that

B(yk0 , r) ∩B(y0, rm) = ∅

and, since h∗∗|Λ′ is continuous,

h∗∗(B(yk0 , r) ∩ Λ′) ⊂ B
(︂

h∗∗(yk0),
rm
6

)︂

.

Summarizing the above, we obtain

h∗∗(B(yk0 , r) ∩ Λ′) ⊂ B
(︂

h∗∗(yk0),
rm
6

)︂

⊂ B
(︂

h∗∗(y0),
rm
3

)︂

⊂ (h∗∗)T (B(y0, rm)).

Thus, for every

z ∈ (B(yk0 , r) ∩ Λ′) ⊂ (Ω′ \B(y0, rm))

it holds that h∗∗(z) ∈ (h∗∗)T (B(y0, rm)), the latter contradicts to the strong (INV)
condition for h∗∗, since a set of positive measure B(yk0 , r)∩Λ′ from outside of the ball
B(y0, rm) is mapped inside the topological image of this ball.
Therefore, f is continuous on Λ with respect to the relative topology, and by

Lemma 4.2, we conclude that f is differentiable on Λ with respect to the relative
topology.

Step 3. f̃ is differentiable a.e.: It is left to show that a hyper-precise representative

f̃ , given by (2.3), is differentiable at x0 ∈ Λ with respect to Ω. Since Λ is a set of
full measure and f is continuous on Λ with respect to the relative topology, any point
x ∈ Λ is a Lebesgue point of f , and therefore f̃ = f on Λ.
Fix x0 ∈ Λ and ε > 0. By differentiability of f on Λ with respect to the relative

topology, there exists s > 0 such that for any x ∈ B(x0, s) ∩ Λ it holds that

(4.3)
|f(x)− f(x0)−Df(x0)(x− x0)|

|x− x0|
=

|f̃(x)− f̃(x0)−Df(x0)(x− x0)|

|x− x0|
<

ε

2
,

where Df(x0) denotes the derivative Df |Λ(x0) with respect to the relative topology.

To prove differentiability of f̃ , we need to show that for an arbitrary x′ close to x0 it
holds that

(4.4)
|f̃(x′)− f̃(x0)−Df(x0)(x

′ − x0)|

|x′ − x0|
< ε.

If x′ ∈ Λ, (4.4) follows immediately from (4.3). In the other case, roughly speaking,

we want to find a point z ∈ Λ such that |f̃(x′)−f̃(z)|
|x′−x0|

and |x′−z|
|x′−x0|

are small, and so we can

estimate

|f̃(x′)− f̃(x0)−Df(x0)(x
′ − x0)|

|x′ − x0|

≤
|f̃(x′)− f̃(z)|+ |Df(x0)(x

′ − z)|

|x′ − x0|
+

|f̃(z)− f̃(x0)−Df(x0)(z − x0)|

|x′ − x0|
< ε.

Now we prove the above paragraph rigorously. Let x′ ∈ B
(︁

x0,
s
2

)︁

. By (2.3), there

exists a sequence {rk}k∈N ↘ 0 such that rk < 2−k|x′ − x0| and

(4.5)

⃓

⃓

⃓

⃓

f̃(x′)−
1

|B(x′, rk)|

✂
B(x′,rk)∩Λ

f̃(x) dx

⃓

⃓

⃓

⃓

< 2−k|x′ − x0|.
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In the following, we proceed coordination-wise for i ∈ {1, . . . , n}. Denote by aik and bik
points in B(x′, rk) ∩ Λ such that

f̃ i(a
i
k) ≥

1

|B(x′, rk)|

✂
B(x′,rk)∩Λ

fi(x) dx− 2−k|x′ − x0|,(4.6)

f̃ i(b
i
k) ≤

1

|B(x′, rk)|

✂
B(x′,rk)∩Λ

fi(x) dx+ 2−k|x′ − x0|.(4.7)

If there is an equality in (4.6) or (4.7), we define xi
k as aik or bik, correspondingly.

Otherwise, by continuity of f̃ i on Λ, there exist two balls B(aik, ρ(a
i
k)) and B(bik, ρ(b

i
k)),

contained in B(x′, rk), such that (4.6) holds for any a ∈ B(aik, ρ(a
i
k))∩Λ and (4.7) holds

for any b ∈ B(bik, ρ(b
i
k))∩Λ. Without loss of generality, we may assume aik = (0, . . . , 0)

and bik = (b1, 0, . . . , 0). Let us now consider the lines ld := (t, d2, . . . , dn) connecting
B(aik, ρ(a

i
k)) and B(bik, ρ(b

i
k)). Since Λ is of full measure, for Ln−1-a.e. d := (d2, . . . , dn)

a line ld contains xa ∈ B(aik, ρ(a
i
k)) ∩ Λ and xb ∈ B(bik, ρ(b

i
k)) ∩ Λ, and L1(ld \ Λ) = 0.

Moreover, f̃ i ∈ W 1,n−1 and hence f̃ i is absolutely continuous on Ln−1-a.e. ld. Therefore,
by the intermediate value property, there is a point cik ∈ ld such that

(4.8)

⃓

⃓

⃓

⃓

f̃ i(c
i
k)−

1

|B(x′, rk)|

✂
B(x′,rk)∩Λ

f̃ i(x) dx

⃓

⃓

⃓

⃓

≤ 2−k|x′ − x0|.

Moreover, there exists xi
k ∈ ld ∩ Λ ⊂ B(x′, rk) such that

(4.9) |f̃(cik)− f̃(xi
k)| ≤ 2−k|x′ − x0|.

Then, by (4.5), (4.8), and (4.9),

(4.10) |f̃ i(x
i
k)− f̃ i(x

′)| ≤ |f̃ i(x
i
k)− f̃ i(c

i
k)|+ |f̃ i(c

i
k)− f̃ i(x

′)| < 2−k+2|x′ − x0|.

Further,
(4.11)

|f̃ i(x
′)− f̃ i(x0)−Dfi(x0)(x

′ − x0)|

|x′ − x0|

≤
|f̃ i(x

′)− f̃ i(x
i
k)|+ |Dfi(x0)(x

′ − xi
k)|

|x′ − x0|
+

|f̃ i(x
i
k)− f̃ i(x0)−Dfi(x0)(x

i
k − x0)|

|x′ − x0|
.

Since xi
k ∈ B(x′, rk) and (4.10) holds, the first term in (4.11) can be estimated as

|f̃ i(x
′)− f̃ i(x

i
k)|+ |Dfi(x0)(x

′ − xk)|

|x′ − x0|
≤ 2−k+2 + 2−k|Df(x0)|.

While to estimate the second term in (4.11), we note that

|xi
k − x0| ≤ |xi

k − x′|+ |x′ − x0| ≤ (1 + 2−k)|x′ − x0| ≤ 2|x′ − x0| ≤ s,

since xi
k ∈ B(x′, rk). And hence, by (4.3), we conclude

|f̃ i(x
i
k)− f̃ i(x0)−Dfi(x0)(x

i
k − x0)|

|x′ − x0|
≤

2|f̃ i(x
i
k)− f̃ i(x0)−Dfi(x0)(x

i
k − x0)|

|xi
k − x0|

≤ ε.

Summarizing the above, we obtain that for x0 ∈ Λ and any ε > 0 there exists s > 0
such that for any x′ ∈ B

(︁

x0,
s
2

)︁

it holds

|f̃ i(x
′)− f̃ i(x0)−Dfi(x0)(x

′ − x0)|

|x′ − x0|
≤ lim inf

k→∞
(2−k(4 + |Dfi(x0)|) + ε) = ε.

Therefore, f̃ i is differentiable in any x0 ∈ Λ with respect to Ω and, moreover, Df̃ i(x0) =
Dfi|Λ(x0).
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□

5. Proofs of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. Theorem 1.1 immediately follows from Lemma 3.1 and Theo-
rem 4.4. □

Proof of Corollary 1.2. Let us first note that following the proof of [20, Theorem 1.1]
with substituting n by p, we obtain✂

Ω′

|Df−1
k |p(y) dy ≤

✂
Ω

| adjDfk|
p(x)

(Jfk(x))
p−1

dx.

Hence, E(fk) ≤ F(fk) and the sequence {f−1
k }k∈N is bounded in W 1,p(Ω′,Rn) and

passing to a subsequence if needed, there exists a weak limit h. Moreover, by [8,
Lemma 2.3] and (1.1), the inequality✂

Ω

ϕ(Jf (x)) dx ≤ C

guarantees that Jf > 0 a.e. in Ω and Jh > 0 a.e. in Ω′. To finish the proof, we apply
Theorem 1.1. □
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