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Introduction
The existence of black holes was one of the most shocking predictions of Einstein’s
theory of general relativity. The initial seeming contradiction came from them
being vacuum solutions which nevertheless generate such a strong gravitational
field that even light cannot escape from within the horizon.

Since then, many years have passed and physicists have grown accustomed to
their concept, found new exact solutions, and even obtained experimental con-
firmation of their existence. The most famous evidence includes the detection of
gravitational waves by LIGO and images captured by the Event Horizon Tele-
scope.

However, black holes are not isolated from the rest of the universe. Through
their gravitational field, they attract matter which gathers around and creates an
accretion disc. Even if the overall charge of the accretion disc is small, its presence
and orbits can create strong currents and therefore strong magnetic fields. The
description of such a system plays an important role in astrophysics.

However, the task is very complex as it requires solving both the Einstein’s and
Maxwell’s equations. It seems almost impossible to accomplish this analytically
but one can always make simplifications to the problem until it becomes solvable.
Sufficiently simple model of an accretion disc is a massless current loop on a fixed
black hole background.

The first paper essential for solving this problem was written by Newman and
Penrose in which they introduced the Newman-Penrose (NP) formalism [1]. It is
a special tetrad formalism which uses complex null vectors. The use of complex
quantities is very convenient since they can store twice as much information as
real quantities. The six degrees of freedom of the electromagnetic tensor are thus
stored in three complex scalars.

The second essential paper came from Teukolsky [2]. He used the NP formal-
ism to study test electromagnetic fields on Kerr background and successfully ob-
tained decoupled equations for two of the three complex electromagnetic scalars.

This result of Teukolsky was then used to find the electromagnetic field of
an axisymmetrically placed current loop in a below-extreme Kerr background.
It was presented in terms of an infinite series by Chitre and Vishveshwara [3],
Petterson [4], Bičák and Dvořák [5], Znajek [6], and Moss [7]. Vlasáková then
showed that these results are equivalent and extended them to the case of an
extreme Kerr background [8]. Further extension to the background of a Kerr
naked singularity was presented in [9]. There, it can also be viewed that the
infinite sum has unsatisfactory convergence properties on the radius of the loop
everywhere, not just at the plane where the loop is located. It would thus be
useful to have a closed form of the solution.

For this task, the essential paper came from Cohen and Kegeles [10] who were
able to generalize the notion of Hertzian and Debye potentials of the electromag-
netic fields to curved backgrounds. Linet was then able to use this result to find
the Debye potential for an axially symmetric source in Kerr background [11]. The
central object is an integral expression called the superpotential. When multi-
plied by a simple functional factor, it can give the Debye potential of a ring source
by plain differentiation. The result of this integration for a below-extreme Kerr

2



background was presented in terms of elliptic integrals by Kofroň and Kotlař́ık
[12]. They further analyzed the superpotential and visualized the electromagnetic
fields of an axisymmetric current loop and a charged ring.

In this work, we shall present a largely self-contained text that takes the
most important parts of the papers mentioned above, explains all the necessary
mathematical tools, and then uses them to obtain the desired electromagnetic
fields in a closed form. In chapter 1, we summarize the necessary differential
geometry. In chapter 2, we explain the NP formalism, reproduce the derivation
of the Teukolsky’s equation, introduce the Debye potential, and then express all
the defined objects and obtained equations on Kerr background. In chapter 3, we
go through the relevant aspects of the axially symmetric potential theory and find
the integral expression for the superpotential. In chapter 4, we give the explicit
form of the superpotential on a below-extreme Kerr background in terms of elliptic
integrals. We also present original results in providing the superpotential on an
extreme Kerr background and also an extension to the background of a naked
Kerr singularity. We also visualize the magnetic field of a current loop around
a below-extreme Kerr black hole. In chapter 5, we discuss how we obtained the
superpotential and address other questions the reader might have.
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1. Differential geometry
In order to make this text as self-contained as possible, we shall summarize most
of the necessary mathematics. Assuming the reader is at least slightly familiar
with the basics of differential geometry, this chapter aims to provide a logically
advancing framework of the most relevant concepts, which help to naturally un-
derstand not just the theoretical aspect of the Newman-Penrose formalism as
a tetrad formalism, but also its practical use. It will also give the reader the
necessities required to tackle the Hertzian and Debye potentials.

We start by briefly reminding the definitions of covariant derivative, torsion,
and curvature operator. Then we move into a coordinate frame of our Lorentzian
manifold equipped with a Levi-Civita covariant derivative. Afterwards, we tran-
sition into a non-coordinate basis – a tetrad. We also define important operations
on differential forms and state the Poincaré’s theorem.

Most of the definitions and statements presented in the subchapters on co-
variant derivatives and differential forms can be found in [13], which the reader
can also consult for some of the proofs. In the subchapter on Poincaré’s theorem,
we closely follow [13].

We assume a 4-dimensional manifold equipped with a metric (M, g). F(M)
denotes smooth functions on M , X(M) is the set of vector fields, Tq

r(M) denotes
the set of tensor fields of type (q, r), and Ωr(M) is the set of r-forms on M .

1.1 Covariant derivative, curvature, and torsion
Let us have vectorfields X, Y , tensor fields of arbitrary type T1, T2, and a scalar
function f . Then the covariant derivative alongX is a map ∇X : Tq

r(M) → Tq
r(M)

that commutes with contraction and satisfies the following properties

∇X(T1 + rT2) = ∇XT1 + r∇XT2,

∇X(T1 ⊗ T2) = (∇XT1) ⊗ T2 + T1 ⊗ (∇XT2) ,
∇Xf = X[f ],

∇X+rY T1 = ∇XT1 + r∇Y T1,

(1.1)

where r ∈ R, ⊗ is the tensor product, and X[f ] denotes the directional derivative
of f along the vectorfield X. Since the covariant derivative ∇X is a linear map
in X as well, we can write

∇X = Xm∇m. (1.2)
This definition of the covariant derivative is not unique. Consider a general

covariant derivative ∇m. Let us also have another covariant derivative ∇̃m com-
patible with the basis en, meaning

∇̃men = 0. (1.3)

As a result, the computation of ∇̃mX in the basis en reduces to taking the partial
derivative of the components of X in this basis.

The difference between two covariant derivatives is given by connection coef-
ficients

∇m = ∇̃m + Γ̃m. (1.4)
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These specify how the basis changes with respect to ∇m

∇men = Γ̃k

mnek. (1.5)

Thus, if we act with ∇m on a vectorfield decomposed into the basis X = Xmem,
with the help of (1.3)–(1.5) we obtain the rule for computing ∇mX. Using ab-
stract index notation we get

∇mX
k = ∂mX

k + Γk
mnX

n. (1.6)

We could obtain the rule for the covariant differentiation of a form ω by comput-
ing ∇m (Xnωn). On the one hand, we apply the commutation of the covariant
derivative with contraction and also the Leibniz rule. On the other hand, the con-
traction itself is a scalar function. Afterwards, the generalization to an arbitrary
tensor field is trivial. We shall give the formulas for specific covariant derivatives
later.

The Lie bracket of vectorfields is also a vectorfield given by

[X, Y ][f ] = X [Y [f ]] − Y [X[f ]] . (1.7)

Next we define torsion

T (X, Y ) ≡ ∇XY − ∇YX − [X, Y ]. (1.8)

It is a multilinear map, and so we can write

Tm(X, Y ) ≡ Tm
kl X

kY l. (1.9)

Using its definition, it is straightforward to prove that it provides the commutator
of covariant derivatives acting on functions

−Tm
kl ∇mf = ∇k∇lf − ∇l∇kf. (1.10)

Clearly, one only needs ∇f = ∂f , and (∂f)g = ∂(fg) − f∂g. Writing out the
covariant derivative as in (1.4), we find that the torsion can be expressed by the
antisymmetric part of the connection coefficients

T k
mn = Γ̃k

mn − Γ̃k

nm. (1.11)

The curvature operator is defined as

R(X, Y ) ≡ ∇X∇Y − ∇Y ∇X − ∇[X,Y ]. (1.12)

It is a multilinear map, and a simple calculation can show that it is related to
torsion

Rkl = ∇k∇l − ∇l∇k + Tm
kl ∇m. (1.13)

Its action on vectorfields is expressed by the Riemann tensor

RklX
m = Rm

nklX
n. (1.14)

The action on forms is a simple consequence of Rklf = 0 combined with the
Leibniz rule Rkl(AB) = (RklA)B + A(RklB). Next, we define the Ricci tensor

Rnl ≡ Rm
nml, (1.15)
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and at last using the metric g, we obtain the scalar curvature

R ≡ gnlRnl. (1.16)

The Riemann tensor can be decomposed into its traces and a traceless part. The
traceless part is called the Weyl tensor Cm

nkl. A direct calculation of contractions
can show that the decomposition is given by

Rmnkl = Cmnkl + 1
2 (gmkRnl + gnlRmk − gnkRml − gmlRnk)

− R

6 (gmkgnl − gnkgml) . (1.17)

1.2 Levi-Civita covariant derivative
We shall assume a coordinate frame of basis vector ∂µ and basis 1-forms dxµ. The
Levi-Civita covariant derivative (from now on always denoted by ∇) is a metric
covariant derivative without torsion. The first condition means ∇g = 0.

The partial derivative is essentially a covariant derivative compatible with the
coordinate basis. Thus it can be related to the Levi-Civita covariant derivative
via connection coefficients

∇µ = ∂µ + Γµ. (1.18)
We define the connection coefficients by

∇µ∂ν = Γλ
µν∂λ. (1.19)

This gives us the rule for computing the covariant derivative of an arbitrary tensor

∇µT
ν...

λ... = ∂µT
ν...

λ... + Γν
µσT

σ...
λ... + ...− Γσ

µλT
ν...

σ... − .... (1.20)

The condition on vanishing torsion means that the connection coefficients are
symmetric in the last two indices

Γσ
[µν] = 0, (1.21)

which is a consequence of (1.11).
Evaluating 0 = ∇µgσλ, we find a relation between the metric and the connec-

tion coefficients
∂µgσλ = Γλµσ + Γσµλ. (1.22)

Writing this equation three times with cyclic exchange of indices, and then sum-
ming them as −I + II + III, we can express the connection coefficients in terms
of the first derivatives of the metric

Γκ
σλ = 1

2g
κµ (∂σgλµ + ∂λgµσ − ∂µgσλ) . (1.23)

If we contract the Riemann tensor with a vector and express this via the cur-
vature operator (1.14), we can then rewrite the Levi-Civita covariant derivatives
in terms of partial derivatives and connection coefficients (1.18). We thus obtain
the Riemann tensor expressed fully in terms of the connection coefficients and
their partial derivatives

Rµ
νσκ = ∂σΓµ

κν − ∂κΓµ
σν + Γµ

στ Γτ
κν − Γµ

κτ Γτ
σν . (1.24)
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1.3 Tetrad covariant derivative
Assume a non-coordinate basis of vectors ea. They have the coordinate compo-
nents eµ

a , which we will not explicitly write most of the time. Contraction in
the coordinate indices carried out by the metric will often be denoted by a dot
X · ω ≡ Xµωµ.

The dual basis of 1-forms is defined by the condition

ea · eb = δb
a. (1.25)

In this basis, the metric coefficients are denoted by ηab

g = ηabe
aeb. (1.26)

They can be calculated in a simple manner

ea · eb = ηab. (1.27)

We choose the tetrad in such a way that ηab = const.
Further, we define the inverse tetrad metric

ηabηbc = δa
c . (1.28)

Contracting the equation (1.25) with η, and then comparing it to (1.27), we learn
how to raise and lower tetrad indices

ea = ηabeb,

ea = ηabe
b.

(1.29)

Next, we define a tetrad covariant derivative ðaeb = 0 and the corresponding
connection coefficients

∇a = ða + γa. (1.30)
The connection coefficients are also referred to as the Ricci rotation coefficients.
We shall define them as

∇aeb = γ c
b aec, (1.31)

which means they can be calculated by evaluating the covariant derivative of our
tetrad

γabc = eb · ∇cea. (1.32)
The Levi-Civita covariant derivative of a tensor can then be written in terms of
our tetrad derivative

∇aT
b...

c... = ðaT
b...

c... + γ b
d aT

d...
c... + ...− γ d

c aT
b...

d... − .... (1.33)

Since the Levi-Civita covariant derivative is a metric covariant derivative, and
the tetrad metric components are constant, using (1.30) we learn that the Ricci
rotation coefficients are antisymmetric in the first two indices

γ(ab)c = 0. (1.34)

We shall denote the tetrad torsion by τ . Then in complete analogy with (1.10)
and (1.11) we get the commutator of the tetrad covariant derivatives

ðaðbf − ðbðaf = −τ c
abðcf, (1.35)
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and the expression of torsion in terms of the Ricci rotation coefficients

τa
bc = γ a

b c − γ a
c b. (1.36)

Next, we could write the action of the Riemann tensor on a vector field via
the curvature tensor (1.14), express the Levi-Civita covariant derivatives using
(1.33), and thus find the Riemann tensor fully in terms of the tetrad covariant
derivatives, Ricci rotation coefficients, and the tetrad torsion

Rabcd = ðcγbad − ðdγbac + τ e
cdγbae + γeacγ

e
b d − γeadγ

e
b c. (1.37)

Combining now computed relation (1.37) with (1.17), we can write the relation-
ship between Weyl, Ricci, the curvature scalar, and the Ricci rotation coefficients

Cabcd + 1
2 (gacRbd + gbdRac − gbcRad − gadRbc) − R

6 (gacgbd − gbcgad)

= ðcγbad − ðdγbac + τ e
cdγbae + γeacγ

e
b d − γeadγ

e
b c. (1.38)

1.4 Operators acting on differential forms
In this part, we will consider a manifold of an arbitrary dimension m. We allow
it to be both Riemannian and Lorentzian. Because of that, we define a special
symbol sg, whose value is +1 for Riemannian manifolds and 0 for Lorentzian
manifolds.

At first, we define the totally antisymmetric tensor εµ1...µm with the condition
ε12...m = 1. If we raise the indices we obtain

εµ1...µm = gµ1ν1 ...gµmνmεν1...νm = det g−1εµ1...µm . (1.39)

Next, we define the generalized Kronecker delta in terms of the antisym-
metrized Kronecker deltas

δµ1...µr
α1...αr

≡ r!δµ1
[α1
...δµr

αr] = r!δ[µ1
α1 ...δ

µr]
αr
. (1.40)

The latter acts in the same way as an antisymmetrization operator

σµ1...µrδ
µ1
[α1
...δµr

αr] = σ[α1...αr]. (1.41)

When we completely contract the antisymmetrized Kronecker deltas, we get a
binomial coefficient

δα1
[α1
...δαr

αr] =
(︄
m

r

)︄
. (1.42)

Thus, the general contraction identity is

δµ1
[κ1
...δµs

κs
δνs+1

νs+1 ...δ
νr

νr] =

(︂
m
r

)︂
(︂

m
s

)︂δµ1
[κ1
...δµs

κs]. (1.43)

If the generalized Kronecker delta has the maximal number of indices, it can be
related to the totally antisymmetric tensor

εµ1...µrµr+1...µmεα1...αrαr+1...αm = det g−1δµ1...µrµr+1...µm
α1...αrαr+1...αm

. (1.44)
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Next, we express an anti-symmetric r-form in the coordinate basis

ω = 1
r!ωµ1...µrdxµ1 ∧ ... ∧ dxµr , (1.45)

and define the Hodge star operator by

∗ω =

√︂
| det g|

r!(m− r)!ωµ1...µrε
µ1...µr

νr+1...νm
dxνr+1 ∧ ... ∧ dxνm . (1.46)

Using all the mentioned properties of the generalized Kronecker delta, it is trivial
to prove

∗ ∗ ω = (−1)r(m−r)+1−sgω. (1.47)

The action of the exterior derivative in the coordinate frame can be expressed as

dω = 1
r!∂αωµ1...µrdxα ∧ dxµ1 ∧ ... ∧ dxµr ,

= 1
r!∇αωµ1...µrdxα ∧ dxµ1 ∧ ... ∧ dxµr .

(1.48)

Note that thanks to the symmetry of the last two indices of the Levi-Civita con-
nection coefficients, it does not matter whether we compute the exterior derivative
using partial derivative or Levi-Civita covariant derivative. Next we define the
co-derivative

δ ≡ (−1)mr+m+sg ∗ d ∗ . (1.49)

We remind the reader, that one of the defining properties of the exterior derivative
is d2 = 0. Thanks to (1.47), it clearly also holds δ2 = 0. The co-derivative acts
as a divergence over the first index up to a sign

δω = − 1
(r − 1)!∇

αωαα1...αr−1dxα1 ∧ ... ∧ dxαr−1 . (1.50)

At last we define the Laplacian

∆L ≡ −(d + δ)2 = −dδ − δd. (1.51)

Its action on a function has a simple form

∆Lf = (−1)sg+1 1√︂
| det g|

∂µ

(︃√︂
| det g|gµν∂νf

)︃
. (1.52)

Having already defined the Hodge dual, we can introduce the self-dual and
the anti-self-dual of an antisymmetric 2-form F by

FS = F + i ∗ F, (1.53)
FA = F − i ∗ F. (1.54)

These have the special property of being the eigentensors to the Hodge dual

∗FS = −iFS, ∗FA = iFA. (1.55)
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1.5 Poincaré’s lemma
In this part, we briefly introduce the Poincaré’s lemma. First, we will define a
few terms connected to the deformation of maps, then we shall define (co-)closed
and (co-)exact forms, and eventually give the Poincaré’s lemma. We shall also
discuss its practical consequences in the simplest case of its use.

First assume that we have some topological space X, and let R be its non-
empty subspace. If there exists a continuous map f : X → R such that f |R= idR,
then R is called a retract of X and f a retraction. Here idR denotes the identity
map on R.

Next, if there exists such a continuous map H : X × I → X that

H(x, 0) = x & H(x, 1) ∈ R for any x ∈ X,

H(x, t) = x for any x ∈ R and any t ∈ I,
(1.56)

then the space R is said to be a deformation retract of X. Moreover, if a point
a ∈ X is a deformation retract of X, then X is called contractible to a point.

Note that the parameter t in H(x, t) functions as a deformation parameter. By
moving in its parameter space from 0 to 1, we continuously shift/deform H(x, t)
from the identity map idX to a retraction.

Contractibility to a point can be easily demonstrated on the example of a disc
Da ≡ {reiϕ : ϕ ∈ [0, 2π), r ∈ [0, a]}. Then it can be easily viewed, that the point
a = 0 is a deformation retract of D. Simply notice the existence of the continuous
map HDa(reiϕ, t), which can be taken as

HDa(reiϕ, t) ≡ (1 − t)reiϕ.

Indeed, HDa(reiϕ, 0) = reiϕ, HDa(reiϕ, 1) = 0, and HDa(0, t) = 0. Obviously, this
can be generalized to an arbitrary point from the disc.

As a counterexample, consider the thick ring Da \ Db, where a > b. We will
not be able to find a continuous deformation of the identity map into a retraction
to a point. The reason is the existence of a hole in the space. In this case, the
deformation retract is – for example – a circle.

Next, an r-form ω is called closed if dω = 0, and it is called exact if there
exists an (r − 1)-form σ such that ω = dσ. In the same manner, we define the
terms co-closed and co-exact but with the exchange d ↔ δ.

Theorem 1 (Poincaré’s lemma). If a coordinate neighbourhood U of a manifold
M is contractible to a point p ∈ M , any closed r-form on U is also exact.

Any sufficiently ”physical” spacetime allows us to locally choose a neighbour-
hood U in the shape of a four-dimensional box or a ball. These are contractible,
and thus any closed form ω is exact ω = dσ. The same applies to an overlapping
neighbourhood U ′ where ω = dσ′. Since it is still the same form ω, it must be
that σ and σ′ differ on the intersection at most by an exact form σ − σ′ = dγ.
The exact form can be found by a coordinate transformation from U ′ to U or
vice-versa. Thus in practice, we shall assume we work on a neighbourhood con-
tractible to a point. Problems may occur if we use multiple neighbourhoods and
need to perform coordinate transformations on their overlaps.

Similar statement applies to co-closed and co-exact forms.
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2. Equations for electromagnetic
fields on curved background
In this chapter, we start by explaining the Newman-Penrose formalism as a special
case of the tetrad formalism. It was first introduced by Newman and Penrose in
[1], where they also elaborate on its spinor formulation. Afterwards, we follow in
the footsteps of Teukolsky [2], and use the NP formalism on the Maxwell equations
in order to find a test electromagnetic field on a curved background. Then we
move on to the Hertzian and Debye potentials. They were nicely discussed in the
classical (3+1)-formalism by Nisbet [15]. We follow the subsequent generalization
to curved background in covariant formalism, which was presented by Cohen and
Kegeles [10]. At the end, we summarize the metric and some important properties
of the Kerr spacetime, and express all the Teukolsky, NP, and Debye equations
explicitly in the Boyer-Lindquist coordinates.

2.1 Newman-Penrose formalism
The NP formalism is a tetrad formalism that uses two real null vectors l and n
in combination with two complex null vectors: m and its complex conjugate m̄.
The only non-zero scalar products are

l · n = −m · m̄ = 1. (2.1)

Thanks to (1.26) and (1.27), we can express the metric of our manifold in terms
of the tetrad

g = ln+ nl −mm̄− m̄m. (2.2)
We shall sometimes denote the tetrad vectors by ea = (l, n,m, m̄) for a = 1, 2, 3, 4.
Due to (1.25) and (2.1), the dual tetrad is ea = (n, l,−m̄,−m). Using (1.27) we
obtain the tetrad metric

ηab =

⎡⎢⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎤⎥⎥⎥⎦ . (2.3)

The inverse determined by (1.28) has identical matrix entries ηab = ηab.
The tetrad covariant derivatives are assigned special symbols ða = (D,∆, δ, δ̄).

In practice, we use the spin coefficients instead of the Ricci rotation coefficients.
For our purposes, this means we give special symbols to all the Ricci rotation
coefficients or their combinations

ϵ = 1
2(γ121 − γ341), κ = γ131, π = −γ241,

γ = 1
2(γ122 − γ342), τ = γ132, ν = −γ242,

α = 1
2(γ124 − γ344), σ = γ133, µ = −γ243,

β = 1
2(γ123 − γ343), ρ = γ134, λ = −γ244.

(2.4)
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The rest of the relations can be obtained by using antisymmetry of the Ricci
rotation coefficients in the first two indices (1.34) and by complex conjugation,
which corresponds to the interchange of indices 3 ↔ 4. These relations can be
easily inverted.

The tetrad projections of the Weyl tensor shall be referred to as the Weyl
scalars and will be defined as

Ψ0 = −C1313, Ψ2 = −C1342, Ψ4 = −C2424.

Ψ1 = −C1213, Ψ3 = −C1242,
(2.5)

To express the rest of the Weyl components in terms of the Weyl scalars, we have
to consider two conditions [16]

ηacCabcd = 0, (2.6)
C1234 + C1342 + C1423 = 0, (2.7)

which in turn give

C1343 = C1213, C3434 = C1212,

C2434 = C1242, C1314 = 0,
C1234 = C1432 − C1342, C2324 = 0,
C1212 = C1432 + C1342, C1332 = 0.

(2.8)

Depending on the Petrov type of our spacetime, there can exist such a tetrad
that some of the Weyl scalars and spin coefficients vanish. In a type D spacetime
– for us most importantly Kerr – we can choose the tetrad so that [2]

Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0,
κ = σ = ν = λ = 0.

(2.9)

For a short introduction into the Petrov classification, one can consult [17] for
the tetrad approach, and [18] for the spinor approach.

We continue in the same manner with the Ricci tensor and define the complex
Ricci scalars

Φ00 = 1
2R11, Φ11 = 1

4 (R12 +R34) ,

Φ01 = 1
2R13, Φ12 = 1

2R32,

Φ02 = 1
2R33, Φ22 = 1

2R22,

(2.10)

which satisfy
ΦAB = Φ̄BA. (2.11)

We also rename the scalar curvature

Λ = R

24 . (2.12)

Let us point out that the condition on the trace of the Ricci tensor means

R12 = 2Φ11 + 6Λ, R34 = 2Φ11 − 6Λ. (2.13)
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Next, we introduce the complex electromagnetic scalars as projections of the
electromagnetic tensor F [2]

ϕ0 = F13, ϕ1 = 1
2 (F12 + F43) , ϕ2 = F42. (2.14)

We can re-express F in terms of the complex scalars

F = [ϕ1 (n ∧ l +m ∧ m̄) + ϕ2l ∧m+ ϕ0m̄ ∧ n] + c.c., (2.15)

where c.c. stands for complex conjugation of the preceding expression. Interest-
ingly, if we do not add the complex conjugate part, we end up with the anti-self-
dual of the electromagnetic tensor

F ≡ 2 [ϕ1 (n ∧ l +m ∧ m̄) + ϕ2 l ∧m+ ϕ0 m̄ ∧ n] . (2.16)

It can be shown to satisfy the anti-self-dual condition (1.55). Most of the calcu-
lation is simple and based on the use of symmetries and on rewriting the metric
that comes up from the Hodge dual in terms of the tetrad (2.2). The single
problematic step might be proving the following relation

√
−g lµnνmλm̄τϵµνλτ = i, (2.17)

which, however, can be swiftly shown to be true by combining once again (2.2)
with a little help from a computation software. Note that the utility of the
anti-self-dual of the electromagnetic tensor lies in

F0j = Ej − iBj, j = 1, 2, 3. (2.18)

In what follows, we shall need the 31 component of the tetrad derivative
commutator (1.35). We express the torsion via the Ricci rotation coefficients
(1.36) and then replace the Ricci rotation coefficients with the spin coefficients
(2.4)

δD −Dδ = (ᾱ + β − π̄)D + κ∆ − σδ̄ − (ρ̄+ ϵ− ϵ̄) δ. (2.19)
We will also need several components of the expression (1.38) relating the Weyl
tensor, the Ricci tensor, the scalar curvature, and the Ricci rotation coefficients.
Using the definitions for projections of all the required objects (2.5), (2.10), (2.12),
and (2.4), the needed relations are

Dβ − δϵ = (α + π)σ + (ρ̄− ϵ̄)β − (µ+ γ)κ− (ᾱ− π̄)ϵ+ Ψ1, (2.20)
Dτ − ∆κ = (τ + π̄)ρ+ (τ̄ + π)σ + (ϵ− ϵ̄)τ − (3γ + γ̄)κ+ Ψ1 + Φ01, (2.21)
δρ− δ̄σ = (ᾱ + β)ρ− (3α− β̄)σ + (ρ− ρ̄)τ + (µ− µ̄)κ− Ψ1 + Φ01. (2.22)

Equation (2.20) is the difference of components 3413 and 1213. Equations (2.21)
and (2.22) are the components 1312 and 1334 respectively. The last commutation
identity we need is special for type D spacetimes [2]

[D − (p+ 1)ϵ+ ϵ̄+ qρ− ρ̄] (δ − pβ + qτ)
− [δ − (p+ 1)β − ᾱ + π̄ + qτ ] (D − pϵ+ qρ) = 0, (2.23)

where p and q are arbitrary numbers. It can be proved directly by using the
commutator (2.19) with the equations (2.20), (2.21), and (2.22) while assuming
the conditions (2.9). From now on, we shall always assume a type D spacetime
and the satisfaction of these conditions.
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2.2 Maxwell equations in NP - Teukolsky equa-
tion

Solving the Einstein-Maxwell equations is a difficult task. However, the situa-
tion gets simplified once we decide to deal with this problem only perturbatively.
Consider the fixed background to be a type D vacuum spacetime. Next, we
introduce a first-order perturbation in the form of an electromagnetic field. Con-
sidering that the electromagnetic stress-energy tensor is quadratic in the field,
the corrections to the fixed spacetime background will be of second order. As
a consequence, if we wish to work only up to the first order of the perturbation
series, it suffices to take a fixed background spacetime, and solve the Maxwell
equations for the first order perturbations.

The Maxwell equations are

∇[aFbc] = 0, (2.24)
−∇aFab = 4πJb. (2.25)

We write out the Levi-Civita covariant derivative in terms of the tetrad derivative
and spin coefficients. The constraint equations (2.24) become[︂

(D − 2ρ)ϕ1 − (δ̄ + π − 2α)ϕ0
]︂

− c.c. = 0,
[(δ − τ + 2β)ϕ2 − (∆ + 2µ)ϕ1] − c.c. = 0,

(δ − 2τ)ϕ1 − (∆ + µ− 2γ)ϕ0 = (D − ρ̄+ 2ϵ̄)ϕ̄2 − (δ + 2π̄)ϕ̄1,

(2.26)

whereas the source equations (2.25) are[︂
(D − 2ρ)ϕ1 − (δ̄ + π − 2α)ϕ0

]︂
+ c.c. = 4πJ1,

[(δ − τ + 2β)ϕ2 − (∆ + 2µ)ϕ1] + c.c. = 4πJ2,

(δ − 2τ)ϕ1 − (∆ + µ− 2γ)ϕ0 + (D − ρ̄+ 2ϵ̄)ϕ̄2 − (δ + 2π̄)ϕ̄1 = 4πJ3,

(D − ρ+ 2ϵ)ϕ2 − (δ̄ + 2π)ϕ1 + (δ̄ − 2τ̄)ϕ̄1 − (∆ + µ̄− 2γ̄)ϕ̄0 = 4πJ4.

(2.27)

Using the constraints (2.26) the source equations (2.27) simplify to

(D − 2ρ)ϕ1 − (δ̄ + π − 2α)ϕ0 = 2πJ1, (2.28)
(δ − τ + 2β)ϕ2 − (∆ + 2µ)ϕ1 = 2πJ2, (2.29)
(δ − 2τ)ϕ1 − (∆ + µ− 2γ)ϕ0 = 2πJ3, (2.30)
(D − ρ+ 2ϵ)ϕ2 − (δ̄ + 2π)ϕ1 = 2πJ4. (2.31)

To obtain a decoupled equation for the scalar ϕ0, we multiply the equation (2.28)
by (δ − β + ᾱ + π̄ − 2τ) from the left. We do the same with the equation (2.30)
and the expression (D − ϵ + ϵ̄ − ρ̄ − 2ρ). Next, we subtract these two equations
and use the commutation relation (2.23) with the choice p = 0 and q = −2. As
a result, we have the decoupled equation for ϕ0[︂

(D − ϵ+ ϵ̄− ρ̄− 2ρ)(∆ + µ− 2γ)

− (δ − β − ᾱ + π̄ − 2τ)(δ̄ + π − 2α)
]︂
ϕ0 = 2πJ0, (2.32)
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with the source J0 defined as

J0 = (δ − β − ᾱ + π̄ − 2τ)J1 − (D − ϵ+ ϵ̄− ρ̄− 2ρ)J3. (2.33)

At this point, we can notice that the defining conditions of the NP tetrad (2.1) are
symmetric with respect to the exchange l ↔ n andm ↔ m̄. Thus, performing this
exchange in our definitions (2.14) and (2.4) gives us the following correspondence

D ↔ ∆, τ ↔ −π,
δ ↔ δ̄, ρ ↔ −µ,
ϵ ↔ −γ, ϕ0 ↔ −ϕ2.

α ↔ −β,

(2.34)

Carrying out the substitutions (2.34) on (2.32) and (2.33), we obtain the decou-
pled equation for ϕ2[︂

(∆ + γ − γ̄ + µ̄+ 2µ)(D − ρ+ 2ϵ)

(δ̄ + α + β̄ − τ̄ + 2π)(δ − τ + 2β)
]︂
ϕ2 = 2πJ2, (2.35)

where
J2 = (∆ + γ − γ̄ + µ̄+ 2µ)J4 − (δ̄ + α + β̄ − τ̄ + 2π)J2. (2.36)

2.3 Hertzian and Debye potentials in NP
The Maxwell equations consist of two types. We have the constraints (2.24)
that restrict what our fields can look like irrespective of any sources. These
can be identically satisfied by expressing the electromagnetic tensor via suitable
potentials – the usual choice being the scalar potential φ and the vector potential
Aj. Then we have the equations that express the dependence of the field on the
sources (2.25). We can thus solve the Maxwell equations by expressing the field in
terms of potentials that identically solve the constraints and then by substituting
the potentials into the source equations. Using the remaining gauge freedom, we
can impose the Lorentz condition on these potentials and obtain separate wave
equations for both the scalar and the vector potential.

However, it can be advantageous to choose a different route. We could express
the potentials (φ,Aj) via two Hertzian vector potentials in such a way, that they
automatically satisfy the Lorentz condition. Moreover, we could use the remain-
ing gauge freedom to try to obtain the same equation for the two independent
degrees of freedom of a free electromagnetic field – the two Debye potentials.

This is most easily done in the language of differential forms. We express the
electromagnetic field in terms of the 2-form

F = 1
2Fµν dxµ ∧ dxν . (2.37)

Then, using (1.48) and (1.50) we can write the source-free Maxwell equations as

dF = 0, (2.38)
δF = 0. (2.39)
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Assuming that Poincaré’s lemma (Th. 1) holds, we can first solve the constraint
(2.38) by setting

F = dA, (2.40)
where A is the standard electromagnetic potential 1-form. The satisfaction of the
Lorentz condition can be expressed via the co-derivative

δA = 0. (2.41)

This can be achieved by setting the electromagnetic potential equal to the co-
derivative of the Hertzian potential P̃

A = δP̃ . (2.42)

So far we have the electromagnetic 2-form given by

F = dδP̃ . (2.43)

In order to satisfy the remaining equation (2.39), we could require

F = −δdP̃ , (2.44)

which then implies that the Hertzian potential can be found as a solution to the
Laplacian

∆LP̃ = 0. (2.45)
Here, we can exploit the remaining gauge freedom

dF = d(dδP̃ ) = d(dδP − dG)), (2.46)
δF = δ(−δdP̃ ) = δ(δW − δdP ), (2.47)

where G is an arbitrary 1-form, and W is an arbitrary 3-form. Put together, we
obtain

F = dδP − dG,
= δW − δdP,

∆LP = −dG− δW.

(2.48)

For a special selection of the non-zero components of P and for a suitable choice
of the gauge terms W and G, we could be able to obtain a single wave equation
for the Debye potentials. However, the existence of this path is restricted by the
properties of the spacetime. This is discussed in detail in the original article [10],
which we are following.

Note that using the complex NP formalism enables us to encode twice as much
information in any complex quantity. Thus, we will only need a single complex
scalar Debye potential.

Now we write out the equations (2.48) using tensor notation in a coordinate
frame, and express the Laplacian in terms of exterior derivative and co-derivative
(1.51). Then, thanks to (1.48) and (1.50), the exterior derivative becomes an
antisymmetrized Levi-Civita covariant derivative, and the co-derivative becomes a
minus divergence over the first index. Put together the equation for the potential
is

− ∇λ∇λPµν +
(︂
∇λ∇µ − ∇µ∇λ

)︂
Pλν +

(︂
∇ν∇λ − ∇λ∇ν

)︂
Pλµ =

∇µGν − ∇νGµ − ∇λWλµν , (2.49)
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and for the electromagnetic tensor we get

Fµν = −∇µ∇λPλν + ∇ν∇λPλµ − ∇µGν + ∇νGµ,

= ∇λ∇λPµν − ∇λ∇µPλν + ∇λ∇νPλµ − ∇λWλµν .
(2.50)

At this point, we define the components of the potential and the gauge terms

P24 ≡ ψ, W243 ≡ −2τψ + 2τ̄ ψ̄,
G2 ≡ 2τ̄ ψ̄ + 2τψ, W124 ≡ −2ρψ,
G4 ≡ 2ρψ,

(2.51)

where ψ is the complex Debye potential (we note that there is a misprint in the
definition of W in the original article [10]). All other components are zero unless
they can be obtained by complex conjugation or antisymmetry. Now we are ready
to move the equations (2.49) and (2.50) into the NP tetrad frame with the help
of (1.33) and (2.4) remembering our type D conditions (2.9). First, we write the
equations for the Debye potential. For the 24 component we obtain

− 2
[︂
(∆ − γ̄ + γ + µ̄)(D − ρ+ 2ϵ) − (δ̄ + α + β̄ − τ̄)(δ − τ + 2β)

]︂
ψ =

4
[︂
(∆ − γ̄ + γ + µ̄)ρ− (δ̄ + α + β̄ − τ̄)τ

]︂
ψ, (2.52)

and half of the sum of components 12 and 43 gives us

−
[︂
(D + ϵ+ ϵ̄+ ρ− ρ̄)(δ − τ + 2β) + (−δ + ᾱ− β − π̄ − τ)(D − ρ+ 2ϵ)

]︂
ψ =

2
[︂
(D + ϵ+ ϵ̄− ρ̄)τ − (δ + π̄ − ᾱ + β)ρ

]︂
ψ. (2.53)

Other components either vanish or are obtained by complex conjugation or an-
tisymmetry. Using the NP commutator (2.19) and the equations (2.20), (2.21),
(2.22), it can be easily shown that the second Debye equation (2.53) is identi-
cally satisfied. Simplifying (2.52), we obtain a single NP equation for the Debye
potential[︂

(∆ − γ̄ + γ + µ̄)(D + ρ+ 2ϵ) − (δ̄ + α + β̄ − τ̄)(δ + τ + 2β)
]︂
ψ = 0. (2.54)

For the complex electromagnetic scalars (2.14), we get the following expressions
in terms of the Debye potential

ϕ0 = −(D − ϵ+ ϵ̄− ρ̄)(D + ρ̄+ 2ϵ̄)ψ̄, (2.55)
ϕ1 =

[︂
(π + τ̄)(D + ρ̄+ 2ϵ̄) − (D + ϵ̄+ ϵ)(δ̄ + τ̄ + 2β̄)

]︂
ψ̄, (2.56)

ϕ2 = −(δ̄ + α + β̄ − τ̄)(δ̄ + τ̄ + 2β̄)ψ̄. (2.57)

In order to make them look as simple as possible, we had to subtract some of the
wave equations (2.49). In the case of ϕ1, we had to subtract half of the component
43, and in the case of ϕ2, we added one half of the component 24.
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2.4 Kerr spacetime
The metric of the Kerr spacetime (K, gK) can be expressed in the Boyer-Lindquist
(BL) coordinates as

ds2 =
(︃

1 − 2Mr

Σ

)︃
dt2 + 4Mar

Σ sin2 θdtdϕ− Σ
∆dr2 − Σdθ2 − A sin2 θ

Σ dϕ2, (2.58)

with the auxiliary functions defined by

∆ ≡ r2 − 2Mr + a2,

Σ ≡ r2 + a2 cos2 θ,

A ≡
(︂
r2 + a2

)︂2
− ∆a2 sin2 θ.

(2.59)

The parameter M is the mass of the Kerr center, and a is the rotation parameter
– in particular, the angular momentum per unit mass. The Kerr metric has a
curvature singularity at

Σ = 0 ⇐⇒ r = 0 & θ = π

2 . (2.60)

Thus we observe that the singularity has a ring-like character since we only en-
counter it at the equatorial plane. For a < M , the roots of ∆ give the outer r+
and inner r− horizons

r± = M ±
√
M2 − a2. (2.61)

In the special case a = M , we obtain a single horizon of the extreme Kerr space-
time. Whenever a > M , there are no real roots, and we end up with the naked
Kerr singularity. Another important surface is given by gtt = 0. There cannot
exist a stationary timelike observer below this surface – the observer is forced to
corotate with the geometry. Thus it may be called the static limit. The condition
becomes Σ = 2MrE, which then gives

rE = M +
√
M2 − a2 cos2 θ. (2.62)

It might sometimes be advantageous to transform certain expressions into
Weyl coordinates defined by

z = (r −M) cos θ,
ρ =

√
∆ sin θ.

(2.63)

It is useful to point out the character of these coordinates. If a ≤ M , the
horizon is located at ρ = 0 and z ∈ (−

√
M2 − a2,

√
M2 − a2). Therefore, the

Weyl coordinates only cover the region above the horizon of the Kerr black hole.
Moreover, the horizon is represented by a single straight line or – in the extreme
case – by a single point. If a > M , the Weyl coordinates cover also the singularity
that is located at ρ = a and z = 0, thus further pointing towards its ring-like
character. We draw the BL coordinate lines in the Weyl coordinates for a = 0.8M
in Fig. 2.1, for a = M in Fig. 2.2, and for a = 1.2M in Fig. 2.3.
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Figure 2.1: Curves of constant BL coordinates r and θ depicted in the Weyl
coordinates for Kerr spacetime M = 1, a = 0.8. The lines that become circular
away from the center are r = const., whereas the lines that become radial are
θ = const. The thick line at ρ = 0 is the horizon.

Figure 2.2: Curves of constant BL coordinates r and θ depicted in the Weyl
coordinates for extreme Kerr spacetime M = 1, a = 1. The circular lines are
r = const., whereas the radial lines are θ = const. The point ρ = 0 and z = 0 is
the extreme horizon.
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Figure 2.3: Curves of constant BL coordinates r and θ depicted in the Weyl
coordinates for hyper-extreme Kerr spacetime M = 1, a = 1.2. The lines that
become circular away from the center are r = const., whereas the lines that
become radial are θ = const. The thick point at ρ = 1.2 is the ring singularity.

Turning to the NP formalism, we will be using the same tetrad as Teukolsky
[2]

lµ =
[︄
r2 + a2

∆ , 1, 0, a∆

]︄
,

nµ = 1
2Σ

[︂
r2 + a2, −∆, 0, a

]︂
,

mµ = 1√
2(r + ia cos θ)

[︃
ia sin θ, 0, 1, i

sin θ

]︃
.

(2.64)

We can find the Ricci rotation coefficients dirrectly from (1.32) by computing
the Levi-Civita covariant derivative of our NP tetrad. The spin coefficients then
become

ρ = − 1
r − ia cos θ , β = −ρ̄cot θ

2
√

2
,

π = iaρ2 sin θ√
2
, τ = −iaρρ̄sin θ√

2
,

µ = ρ2ρ̄
∆
2 , γ = µ+ ρρ̄

r −M

2 .

α = π − β̄,

(2.65)

Since Kerr spacetime is a vacuum spacetime without cosmological constant, it has
a vanishing Ricci tensor and a zero scalar curvature. Thus, the Weyl tensor is
directly the Riemann tensor, and we can find the Weyl scalars by its projections
onto our NP tetrad. The only non-zero component is

Ψ2 = Mρ3. (2.66)
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This confirms that the Kerr spacetime is type D, and that Σ = 0 is a curvature
singularity.

The choice of our tetrad allows for some useful properties. The NP Maxwell
equations (2.28)–(2.31) take on the following form(︄

∂

∂r
− 2ρ

)︄
ϕ1 + ρ√

2

(︄
∂

∂θ
+ iaρ sin θ + cot θ

)︄
ϕ0 = 2πJ1, (2.67)

ρ∗
√

2

(︄
− ∂

∂θ
+ iaρ sin θ − cot θ

)︄
ϕ2 + ∆ρρ∗

2

(︄
∂

∂r
− 2ρ

)︄
ϕ1 = 2πJ2, (2.68)

− ρ∗
√

2

(︄
∂

∂θ
− 2iaρ sin θ

)︄
ϕ1 + ρρ∗

2

(︄
∆ ∂

∂r
+ ρ∆ + 2(r −M)

)︄
ϕ0 = 2πJ3, (2.69)(︄

∂

∂r
− ρ

)︄
ϕ2 + ρ√

2

(︄
∂

∂θ
− 2iaρ sin θ

)︄
ϕ1 = 2πJ4. (2.70)

Let us assume that our source only has the t and ϕ components

Jµ =
(︂
J t, 0, 0, Jϕ

)︂
. (2.71)

Then, the NP projections onto l and n are the same up to a factor

J2 = ∆ρρ∗

2 J1. (2.72)

Thanks to this, if we multiply the equation (2.67) by ∆ρρ̄/2, and subtract it from
(2.68), we find a simple relationship between ϕ0 and ϕ2 for this special source

ϕ2 = −ρ2∆
2 ϕ0. (2.73)

Next we would like to write down the NP decoupled equations for the scalars
ϕ0 (2.32) and ϕ2 (2.35) in Kerr spacetime. Interestingly, it can be given in terms
of the single Teukolsky’s master equation [2]
[︄

(r2 + a2)2

∆ − a2 sin2 θ

]︄
∂2ψs

∂t2
+ 4Mar

∆
∂2ψs

∂t∂ϕ
+
[︄
a2

∆ − 1
sin2 θ

]︄
∂2ψs

∂ϕ2

− ∆−s ∂

∂r

(︄
∆s+1∂ψs

∂r

)︄
− 1

sin θ
∂

∂θ

(︄
sin θ∂ψs

∂θ

)︄
− 2s

[︄
a(r −M)

∆ + i cos θ
sin2 θ

]︄
∂ψs

∂ϕ

− 2s
[︄
M(r2 − a2)

∆ − r − ia cos θ
]︄
∂ψs

∂t
+ (s2 cot2 θ − s)ψs = 4πΣSs, (2.74)

where s is the so-called spin weight and

ψ1 ≡ ϕ0, ψ−1 ≡ ρ−2ϕ2,

S1 ≡ J0 S−1 ≡ ρ−2J2.
(2.75)

In fact, this equation also describes a test scalar field (s = 0), a test neutrino
field (s = ±1/2), and even gravitational perturbations (s = ±2). However, we
are only interested in the test electromagnetic fields. In particular, we will only
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care about the fields, which are stationary and axially symmetric. In this case,
the master equation reduces to

−∆−s ∂

∂r

(︄
∆s+1∂ψs

∂r

)︄
− 1

sin θ
∂

∂θ

(︄
sin θ∂ψs

∂θ

)︄
+ (s2 cot2 θ− s)ψs = 4πΣSs, (2.76)

Next, we write down the equation for the Debye potential (2.54) and the
expressions for the electromagnetic scalars (2.55) in Kerr spacetime. Remember
that these are only for a free electromagnetic field. Assuming stationarity and
axial symmetry, the Debye equation is

−∆ ∂

∂r

(︄
∂ψ

∂r

)︄
− 1

sin θ
∂

∂θ

(︄
sin θ∂ψ

∂θ

)︄
+ 1

sin2 θ
ψ = 0. (2.77)

We can notice that it is the same as the Teukolsky equation (2.76) for the spin
weight s = −1. This correspondence holds also in the non-stationary non-axially
symmetric case. The electromagnetic scalars can be obtained from the Debye
potential via differentiation

ϕ0 = −∂2ψ̄

∂r2 , (2.78)

ϕ1 = ρ√
2

[︄
ρ

(︄
∂

∂θ
+ cot θ + ia sin θ ∂

∂r

)︄
+ ∂2

∂r∂θ
+ cot θ ∂

∂r

]︄
ψ̄. (2.79)

The scalar ϕ2 is determined by ϕ0 (2.73).
When searching for electromagnetic fields, we may encounter some unwanted

electric and magnetic charges, which arise as an artifact of the integration process.
However, we would like these charges to be removed. Thus, consider the Maxwell
equations in terms of differential forms

dF = 4πJM , (2.80)
δF = ∗ d ∗ F = 4πJ, (2.81)

where JM is the magnetic current 3-form. Applying the Hodge dual on the second
equation, we get

d ∗ F = −4π ∗ J.
We can thus combine these two equations into a single equation using the anti-
self-dual

dF = 4π(JM + i ∗ J). (2.82)
Now we simply integrate over the volume Ω with the boundary ∂Ω and use the
Stokes theorem

1
4π

∫︂
Ω

dF =
∫︂

Ω
(JM + i ∗ J) ,

↓
1

4π

∫︂
∂Ω

F = QM + iQ,

(2.83)

where QM and Q are the magnetic and electric charges respectively. Our choice
of the volume Ω shall be such that

∂Ω = {t = t0, r = r̃, θ ∈ (0, π), ϕ ∈ (0, 2π)}.
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Then, the integral becomes

1
4π

∫︂
∂Ω

F = 1
4π

∫︂
∂Ω

1
2Fµν dxµ ∧ dxν = 1

4π

∫︂ π

θ=0

∫︂ 2π

ϕ=0
Fθϕ|r→r̃ dθdϕ. (2.84)

Next, we integrate over the coordinate ϕ since we have axial symmetry. We
express the component of the anti-self-dual in terms of the complex scalars (2.16)
and also use the relation between ϕ0 and ϕ2 (2.73)

QM + iQ = −
∫︂ π

0

(︄
i sin θ(r2 + a2)ϕ1 + a√

2
sin2 θρ∆ϕ0

)︄ ⃓⃓⃓⃓
⃓
r→r̃

dθ. (2.85)

The monopole field in Kerr geometry with the charge QM + iQ is given only
by a single non-zero electromagnetic scalar [19]

ϕ1 = −1
2

Q− iQM

(r − ia cos θ)2 . (2.86)

This can be easily checked by evaluating the integral (2.85). As a consequence,
the scalar ϕ0 holds no information about the monopole field.

When we try to visualize our results, it is important to choose a reasonable
observer. An especially privileged one is the ZAMO (zero angular momentum
observer), also sometimes referred to as the locally non-rotating observer. His
worldlines draw out a circular orbit r = const., θ = const., ϕ = ωt+const., where
ω = −gϕt/gϕϕ. In Kerr spacetime, the ZAMO tetrad becomes [20]

eµ
(t) ≡

⎡⎣√︄ A

Σ∆ , 0, 0, 2Mar√
AΣ∆

⎤⎦ ,
eµ

(r) ≡

⎡⎣0,
√︄

∆
Σ , 0, 0

⎤⎦ ,
eµ

(θ) ≡
[︄
0, 0, 1√

Σ
, 0
]︄
,

eµ
(ϕ) ≡

⎡⎣0, 0, 0,
√︄

Σ
A

1
sin θ

⎤⎦ .

(2.87)

The meaning of this frame is best captured in particle motion. If a particle at
infinity with zero angular momentum with respect to the black hole starts to
freely fall towards the black hole, its momentum is conserved, and thus it is
forced to co-rotate around the black hole with the angular velocity ω.

The electromagnetic field with respect to this tetrad can be obtained by

E(j) − iB(j) = Fµνe
µ
(t)e

ν
(j). (2.88)
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3. Solutions to electromagnetic
fields on Kerr background
The goal of this chapter is to show the reader how to obtain all the information
about a test electromagnetic field of a ring source in Kerr background in terms of
a single complex Debye potential. This was first done by Linet [11]. We go step
by step over his strategy and discuss all the details.

First, we need to solve the axially symmetric stationary Teukolsky equation
in the BL coordinates. We show that after a simple transformation, the resulting
equation can be interpreted as a Laplacian in a Kerr-like family of spacetimes.
We then follow Linet and transform it into the Weyl coordinates. Afterwards,
we follow the work of Heins [21] – we interpret the equation as a cylindrical
Laplacian, derive the solution, and prove that it is completely determined by the
values on the symmetry axis. At last, we get to expressing the Debye potential.
There, we only discuss the details of Linet’s approach.

3.1 Formulating the problem
Let us introduce Gs as the Green function of the Teukolsky equation (2.76) for
an axisymmetric and stationary solution ψs

− ∆−s ∂

∂r

(︄
∆1+s∂Gs

∂r

)︄
− 1

sin θ
∂

∂θ

(︄
sin θ∂Gs

∂θ

)︄
+
[︂
cot2 θ + s(s− 1)

]︂
Gs

= δ(r − r0)δ(cos θ − cos θ0). (3.1)

Then, we can express ψs for an arbitrary axisymmetric and stationary source Ss

via convolution

ψs = 4π
∫︂
Gs(r, θ, r0, θ0)Σ(r0, θ0)Ss(r0, θ0, rJ , θJ) sin θ0dθ0dr0, (3.2)

where rJ and θJ are the BL coordinates of the source in Kerr spacetime. Using
the substitution

Gs = − sins θ

sins θ0Σ0
Gs, (3.3)

the equation (3.1) takes on the following form

∆−s ∂

∂r

(︄
∆1+s∂Gs

∂r

)︄
+ 1

sin θ
∂

∂θ

(︄
sin θ∂Gs

∂θ

)︄
+ 2s cot θ∂Gs

∂θ

= Σδ(r − r0)δ(cos θ − cos θ0) (3.4)

We shall sometimes denote the differential operator of the left-hand-side (LHS)
by Ts

Ts[Gs] ≡ ∆−s ∂

∂r

(︄
∆1+s∂Gs

∂r

)︄
+ 1

sin θ
∂

∂θ

(︄
sin θ∂Gs

∂θ

)︄
+ 2s cot θ∂Gs

∂θ
. (3.5)
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Next, we transform the equation for Gs (3.4) into the Weyl coordinates (2.63).
For its right-hand-side (RHS) we obtain

RHS = Σδ(r − r0)δ(cos θ − cos θ0),

= Σ
sin θδ(r − r0)δ(θ − θ0),

= Σ√
∆ sin θ

(︃
∆ cos2 θ + 1

4(∆′)2 sin2 θ
)︃
δ(ρ− ρ0)δ(z − z0),

(3.6)

whereas for the LHS we get(︃
∆ cos2 θ + 1

4(∆′)2 sin2 θ
)︃(︄

∂2Gs

∂ρ2 + ∂2Gs

∂z2 + 1 + 2s
ρ

∂Gs

∂ρ

)︄
. (3.7)

Therefore, the transformed equation takes on a simple form
∂2Gs

∂z2 + ∂2Gs

∂ρ2 + 1 + 2s
ρ

∂Gs

∂ρ
= Σ
ρ0
δ(ρ− ρ0)δ(z − z0). (3.8)

The associated differential operator shall be denoted by Ws

Ws[Gs] ≡ ∂2Gs

∂z2 + ∂2Gs

∂ρ2 + 1 + 2s
ρ

∂Gs

∂ρ
. (3.9)

To finish this part, we note that there is a relationship between the funda-
mental solutions of Ts (Ws) for s and their counterparts given by the exchange
s → −s. This can be proved by direct computation. It holds

∆sTs

[︃ 1
∆s

G−s

]︃
= δ ⇐⇒ T−s[G−s] = δ (3.10)

In the Weyl coordinates the relation is just the same.

3.2 Interpretation of Ts and Ws

With the help of (1.52), it can be easily shown that the operator T0/Σ reduces
to the Laplace operator in Kerr spacetime (K, gK) when acting on f(r, θ). We
could thus try to find a generalization of the Kerr spacetime (Ks, gKs) for s ̸= 0.
For simplicity of notation, we shall omit the index Ks for the generalized metric
in the following calculations.

We start by demanding that the only non-zero r and θ components of the
metric are grr and gθθ. Then it clearly holds

grr = 1
grr

, gθθ = 1
gθθ

.

Next, we calculate the action of the Laplacian ∆Ks on a function f(r, θ). We
obtain the following expression

∆Ksf(r, θ) = − 1√
− det g

∂µ

(︃√︂
− det ggµν∂νf(r, θ)

)︃
,

= −∂rrf

grr

− 1√
− det g

∂r

(︄√
− det g
grr

)︄
∂rf

− ∂θθf

gθθ

− 1√
− det g

∂θ

(︄√
− det g
gθθ

)︄
∂θf.

(3.11)
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Thus, all we need to find are two metric components grr, gθθ, and the metric
determinant. By comparing (3.11) to Ts/Σ (3.4) we quickly identify

grr = − Σ
∆ ,

gθθ = −Σ.
(3.12)

We shall denote the unknown part of the metric determinant by γ

det g ≡ −grrgθθγ = −Σ2

∆ γ. (3.13)

Now, we substitute this back into (3.11), compare it to Ts/Σ, and obtain the
following set of conditions

2(1 + s)r −M

Σ = r −M

Σ + ∆
2Σ

∂rγ

γ
,

1 + 2s
Σ cot θ = 1

2Σ
∂θγ

γ
,

which are equivalently expressed as

(1 + 2s)∂r ln ∆ = ∂r ln γ,
2(1 + 2s)∂θ ln sin θ = ∂θ ln γ.

We can easily write down their solution in the following form

γ = ∆(1+2s) sin2(1+2s) θ. (3.14)

We thus conclude that Ts/Σ acting on a function f(r, θ) can be interpreted
as a Laplacian in a class of Kerr-like Lorentzian spacetimes (Ks, gKs) determined
only by the r and θ metric components in the BL coordinates and by the metric
determinant

grr = − Σ
∆ ,

gθθ = −Σ,
grµ = 0, µ ̸= r,

gθµ = 0, µ ̸= θ,

det g = −Σ2∆2s sin2(1+2s) θ.

(3.15)

The dimension is arbitrary as there can be other non-zero components of the
metric. However, since we are only interested in acting on axisymmetric station-
ary functions, the Laplacian of a metric diagonal in r and θ components cannot
distinguish between the additional degrees of freedom. They just have to give the
computed determinant. Although we might add that from the upcoming para-
graphs, we will see that 4 + 2s spacetime dimensions would seem most natural in
our context.

The interpretation of Ws is very simple, and the reader might see it at first
glance. However, for completeness, let us write the Laplacian in cartesian coor-
dinates in an m-dimensional Euclidean space

m∑︂
i=1

∂2φ

∂x2
i

.
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We define the spherical coordinates as follows

x1 = r sin θ1... sin θm−1,

x2 = r sin θ1... cos θm−1,

x3 = r sin θ1... cos θm−2,

...
xm = r cos θ1,

where r2 = ∑︁m
i=1 x

2
i , the bounds are given by θm−1 ∈ (0, 2π) and for the rest

θj ∈ (0, π). We transform the cartesian Laplacian into the spherical coordinates,
demand spherical symmetry of the solution, and obtain

∂2φ

∂2r
+ m− 1

r

∂φ

∂r
.

The last step is to realize, that cylindrical coordinates in 3+2s dimensions would
consist of a z coordinate along the symmetry axis and of (2 + 2s)-dimensional
spherical coordinates.

We thus conclude that Ws acting on a function f(ρ, z) can be interpreted as
a cylindrical Laplacian in 3 + 2s Euclidean dimensions.

3.3 Finding the axisymmetric Green function of
the Laplace equation

The fundamental solution to the cartesian Laplacian in m ≥ 3 dimensions

∇2
xiφ = δ(m)(x⃗), (3.16)

can be obtained by standard procedures – for example by Fourier transformation.
It can be expressed as

φ = − 1
(m− 2)Sm−1

[︄
m∑︂

i=1
x2

i

]︄1− m
2

,

where Sm−1 is the measure of a unit (m− 1)-dimensional sphere embedded in an
m-dimensional Euclidean space.

The equation (3.16) is invariant with respect to translations in the constant
direction of ξ⃗

∇2
xi = ∇2

xi−ξi ,

and thus we can write the equality

∇2
xi

[︄
m∑︂

i=1
(xi − ξi)2

]︄1− m
2

= −(m− 2)Sm−1δ
(m)(x⃗− ξ⃗). (3.17)

Now, we consider an (m− 1)-dimensional subspace. There we define the vectors
ρ⃗ ≡ (x1, ..., xm−1) and ρ⃗0 = (ξ1, ..., ξm−1). The equation (3.17) thus can be further
rewritten as

∇2
xi

[︂
(z − z0)2 + (ρ⃗(xi) − ρ⃗0)2

]︂1− m
2 = −(m−2)Sm−1δ(z−z0)δ(m−1)(ρ⃗−ρ⃗0), (3.18)
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where we have also used the notation z ≡ xm, z0 ≡ ξm. Next, we denote the
angle between ρ⃗ and ρ⃗0 as θ ≡ θ1. This corresponds to a special selection of
our coordinate system. As a consequence, we have ρ⃗ · ρ⃗0 = ρρ0 cos θ. Now, we
transform the (m− 1)-dimensional subspace into spherical coordinates
(︄

∇2
Cm

+ 1
ρ2 ∇2

Sm−2

)︄ [︂
(z − z0)2 + ρ2 + ρ2

0 − 2ρρ0 cos θ
]︂1− m

2

= −(m− 2)Sm−1δ(z − z0)
1

M
δ(ρ− ρ0)δ (θ) . (3.19)

Here, ∇2
Cm

is the cylindrical Laplacian

∇2
Cm

= Wm−3
2
,

and ∇2
Sm−2 is the Laplacian on a unit (m− 2)-dimensional sphere. The constant

M is chosen so that ∫︂
Bm−1(R)

1
M

δ(ρ− ρ0)δ(θ)dV = 1, (3.20)

with the integral being computed over an (m − 1)-dimensional ball of radius
R = ρ0 + ε for ε > 0. Therefore the volume element is

dV =
√︂

det gBm−1drdθ...dθm−2 = rm−2 sinm−3 θ sinm−4 θ2... sin θm−3drdθ...dθm−2.

Our equation still has angular dependence which we shall remove by integra-
tion over a unit (m−2)-dimensional sphere. Let us notice that the spherical part
of the Laplacian vanishes upon this integration. This can be easily demonstrated
since the only angular dependence is on θ, which means the only non-trivial part
of the spherical Laplacian will be

∇2
Sm−2f(cos θ) = 1√︂

det gSm−2

∂θ

⎛⎝
√︂

det gSm−2(︂
gSm−2

)︂
θθ

∂θf(cos θ)
⎞⎠ .

Now, since the angular measure is dΩ =
√︂

det gSm−2dθ...dθm−2, we obtain

∫︂
Sm−2

∇2
Sm−2f(cos θ)dΩ ∝

∫︂ π

0
∂θ

⎛⎝
√︂

det gSm−2(︂
gSm−2

)︂
θθ

∂θf(cos θ)
⎞⎠ dθ,

=
[︂
− sinm−2 θ sinm−4 θ2... sin θm−3∂xf(x)

]︂π
0
,

= 0.

In the case of m = 3, the integration bounds of θ are of course (0, 2π).
And so the equation (3.19) turns into the following equality

∇2
Cm

∫︂
Sm−2

[︂
(z − z0)2 + ρ2 + ρ2

0 − 2ρρ0 cos θ
]︂1− m

2 dΩ

= −(m− 2)Sm−1δ(z − z0)δ(ρ− ρ0)
∫︂

Sm−2

1
M

δ (θ) dΩ. (3.21)
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Now we rewrite the RHS. Using the definition of M (3.20)

1 =
∫︂

Bm−1

1
M

δ(ρ− ρ0)δ (θ) dV,

=
∫︂ ρ0+ε

ρ=0

∫︂
Sm−2

1
M

δ(ρ− ρ0)δ (θ) ρm−2dρdΩ,

= ρm−2
0

∫︂
Sm−2

1
M

δ (θ) dΩ,

we obtain the following simplification∫︂
Sm−2

1
M

δ (θ) dΩ = ρ2−m
0 . (3.22)

Carrying out partial integration of the LHS of (3.19) and using the equality
(3.22), we obtain the final form

∇2
Cm

∫︂ π

0

[︂
(z − z0)2 + ρ2 + ρ2

0 − 2ρρ0 cos θ
]︂1− m

2 sinm−3 θdθ

= −(m− 2)Sm−1

ρm−2
0 Sm−3

δ(z − z0)δ(ρ− ρ0). (3.23)

Since the area of a unit m-dimensional sphere is given by

Sm = 2πm+1
2

Γ
(︂

m+1
2

)︂ , (3.24)

the fundamental solution to the equation

∂2φ

∂z2 + ∂2φ

∂ρ2 + m− 2
ρ

∂φ

∂ρ
= − 2π

ρm−2
0

δ(z − z0)δ(ρ− ρ0), (3.25)

can be written as

φ =
∫︂ π

0

sinm−3 θ[︂
(z − z0)2 + ρ2 + ρ2

0 − 2ρρ0 cos θ
]︂m

2 −1 dθ. (3.26)

This in turn means that the solution to (3.8) is given by

Gs(ρ, z) = −Σ0ρ
2s
0

2π

∫︂ π

0

sin2s θ[︂
(z − z0)2 + ρ2 + ρ2

0 − 2ρρ0 cos θ
]︂ 1+2s

2
dθ. (3.27)

Transforming Gs into the BL coordinates we obtain the solution to (3.4).

3.4 Testing the fundamental solution
To make sure our solutions have the correct normalizations, we can use the fact,
that they are the Green functions to the Laplacian, on which we can apply the
generalized Stokes theorem. First we do this in the cylindrical coordinates in
Euclidean space. We omit the integration across angular degrees of freedom,
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since they trivially cancel out from both sides of the equation. We shall call the
effective volume d̃V . We obtain∫︂

Ws[Gs(ρ, z)]d̃V =
∫︂

∆WsGsd̃V,

=
∫︂

∇Ws · ∇WsGsd̃V,

=
∮︂

∇WsGs · n⃗d̃S,

=
∫︂

S+
∂zGsρ

m−2dρ−
∫︂

S−
∂zGsρ

m−2dρ+
∫︂

SI
∂ρGsρ

m−2dz.
(3.28)

For the integration set, we used a cylinder with the upper and lower cap denoted
by S±, whereas the side is given by SI.

In the case of the BL coordinates, we integrate in the spacetime (Ks, gKs).
Once again, we omit the integration across trivial degrees of freedom and only
keep r and θ. We get∫︂ 1

ΣTs[Gs(r, θ)]dV =
∫︂

∆KsGs(r, θ)dV,

=
∮︂

∇KsGs · dΣ,

=
∮︂ (︄

1
grr

∂rGsx̂r + 1
gθθ

∂θGsx̂θ

)︄
· dΣ,

=
∫︂ π

0
∂rGs

√
−g
grr

dθ,

(3.29)

where x̂µ denotes the unit vector in the given coordinate direction. The chosen
integration surface is a sphere.

3.5 Axial uniqueness of the axisymmetric Green
function

We shall explicitly show that an axisymmetric solution to the Laplace equation
is fully determined by the values on the symmetry axis.

Let us have an axisymmetric solution to the cylindrical Laplacian (3.25)

φ(ρ, z) ≡
∫︂ π

0

sinm−3 θ[︂
(z − z0)2 + ρ2 + ρ2

0 − 2ρρ0 cos θ
]︂m

2 −1 dθ.

We perform the substitution t = cos2(θ/2) which yields

2m−2

(4ρρ0)2

∫︂ 1

0

[t(1 − t)]
m
2 −2

[Z − t]
m
2 −1 dt.

Here, Z is defined by
Z = (z − z0)2 − (ρ+ ρ0)2

4ρρ0
.

30



We shall now look at this as an Abelian integral in the complex t-plane

2m−2

(4ρρ0)
m
2 −1

∫︂
ϕ(t)

[t(1 − t)]
m
2 −2

[Z − t]
m
2 −1 dt,

where ϕ(t) = t for t ∈ (0, 1). We perform a bilinear transformation into the
λ-plane via the holomorphic map

λ = A+Bt

C +Dt
.

We would like to rewrite this transformation in terms of different parameters α,
σ1, σ2 ∈ R, and σ ≡ σ1 + iσ2, which satisfy

t(0, 0) ↔ λ(−α),
t(1, 0) ↔ λ(α),
t(Z, 0) ↔ λ(σ),
t(∞) ↔ λ(−σ̄).

Here, t(z) denotes the point z in the t-plane and similarly for the λ(z). Let
us notice that this choice is not arbitrary, but is motivated by the roots and
singularities of the integrand. As a consequence, the result will look fairly simple.
These conditions give us a system of four equations

A

C
= −α,

A+B

C +D
= α,

A+ ZB

C + ZD
= σ,

B

D
= −σ̄,

whose solution can be easily found to be

A = α + σ̄

2 D,

B = −σ̄D,

C = −α + σ̄

2α D.

At the same time, we obtain an expressions for Z

Z = (α + σ1)2 + σ2
2

4ασ1
.

Put together, the transformation takes on the form

λ =
α+σ̄

2 − σ̄t

−α+σ̄
2α

+ t
,

with the inverse transformation being

t = α + σ̄

2α
α + λ

σ̄ + λ
.
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We can find the differential in a straightforward manner

dt = (σ̄ + α)(σ̄ − α)
2α(σ̄ + λ)2 dλ.

Moving into the λ-plane the integral can be written as

1
α

m
2 −2

(︄
σ1

ρρ0

)︄m
2 −1 ∫︂ α

−α

(α2 − λ2)m
2 −2

[(σ − λ)(σ̄ + λ)]
m
2 −1 dλ.

Next, we perform another substitution λ = α cos θ which gives

∫︂ π

0

(︄
σ1α

ρρ0

)︄m
2 −1 sinm−3 θdθ

[σ2
1 + (σ2 + iα cos θ)2]

m
2 −1 .

At last, we shall specify the transformation parameters. Apparently, a nice choice
would be σ1 = ρ0, σ2 = z − z0, and α = ρ, because then the integral becomes

φ(ρ, z) =
∫︂ π

0

sinm−3 θdθ
[ρ2

0 + (z − z0 + iρ cos θ)2]
m
2 −1 .

As a consequence, we have

φ(ρ, z) =
∫︁ π

0 φ(0, z + iρ cos θ) sinm−3 dθ∫︁ π
0 sinm−3 θdθ . (3.30)

This proves, that the Green function is determined by the values on the symmetry
axis. Here ∫︂ π

0
sinm−3 θdθ = π1/2Γ

(︃
m− 2

2

)︃
Γ−1

(︃
m− 1

2

)︃
,

and so

φ(ρ, z) = π−1/2Γ−1
(︃
m− 2

2

)︃
Γ
(︃
m− 1

2

)︃ ∫︂ π

0
φ(0, z + iρ cos θ) sinm−3 dθ.

3.6 Debye potential from ϕ0

As we have already found the solution (3.27) to (3.8), using the substitution (3.3)
we can obtain the Green function to the Teukolsky equation (3.1)

Gs = ρ2s
0 sins θ

2π sins θ0

∫︂ π

0

sin2s θ[︂
(z − z0)2 + ρ2 + ρ2

0 − 2ρρ0 cos θ
]︂ 1+2s

2
dθ. (3.31)

The Debye potential can be expressed from (2.78) as the twice r-integrated scalar
ϕ0, namely

ψ̄ = −Irr(ϕ0), (3.32)

while the zeroth scalar can be expressed via its Green function. In (3.2) we simply
set s = 1

ϕ0 = 4π
∫︂
G(r, θ, r0, θ0)Σ(r0, θ0)J0(r0, θ0) sin θ0dθ0dr0. (3.33)
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As a consequence, integrating this expression twice we obtain the Debye potential

ψ̄ = −4π
∫︂
Irr(G)ΣJ0 sin θ0dθ0dr0. (3.34)

At this moment, we can identify −Irr(G) as the effective Green function of the
Debye potential

ψG ≡ −Irr(G) = sin θ
Σ0 sin θ0

Irr(G). (3.35)

Should we have the solution of T1 – meaning that the application of T1 gives
0 everywhere up to a set of measure 0 with respect to drdθ – we can use the axial
uniqueness of axisymmetric solutions. However, the derivation does not hold for
s = −1 since in the cylindrical coordinates this corresponds to dimension m = 1.
We can overcome this using (3.10) which holds also for the Teukolsky equation.
And thus the expression

1
∆ψG(r, θ) = 1

∆Σ0

sin θ
sin θ0

Irr (G(r, θ)) , (3.36)

solves the Teukolsky equation for s = 1. This means that

Ξ = 1
∆Σ0

1
sin θ0

Irr (G(r, θ)) , (3.37)

solves T1 in the BL coordinates and W1 in the Weyl coordinates. This object has
been referred to as the superpotential. It clearly holds that upon knowing the
superpotential, we obtain the effective Green function simply by

ψG = ∆ sin θΞ. (3.38)

We note that ψG is not a Green function because it does not yield δ when
inserted into the Teukolsky equation. Nevertheless, we can treat it as an effective
Green function in the sense, that the Debye potential obtained by (3.34) gives us
the desired ϕ0 scalar.

3.7 Superpotential from values on the symme-
try axis

We know the expression for G from (3.27) by setting s = 1

G = −Σ0ρ
2
0

2π

∫︂ π

0

sin2 θ[︂
(z − z0)2 + ρ2 + ρ2

0 − 2ρρ0 cos θ
]︂ 3

2
dθ.

Now, we need to write it in the BL coordinates and integrate it with respect to r
twice. This is no easy task. The problem would become much simpler if we could
integrate it on the symmetry axis in the Weyl coordinates and then spread the
solution to the rest of the space. We shall show that this step is indeed legitimate.

Since Ξ solves T1, it can be expressed by the values on the symmetry axis

ΞW (ρ, z) = C
∫︂ π

0
ΞW (0, z + iρ cosα) sin2 αdα.
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Without any problems we can write this in the BL coordinates as well

ΞBL(r, θ) = C
∫︂ π

0
ΞW

(︃
0, (r −M) cos θ + i

√︂
∆(r) sin θ cosα

)︃
sin2s αdα.

Therefore, we obtain the following equality on the symmetry axis

ΞBL(r, 0) = C
∫︂ π

0
ΞW (0, r −M) sin2s αdα = ΞW (0, r −M) = ΞW (0, z).

We can also see that the relation

ΞBL(r, θ) = 1
∆(r)Ir′r′ (GBL(r′, θ))|r′=r,

has to hold for ∀θ including θ = 0, and so

ΞBL(r, 0) = 1
∆(r)Ir′r′ (GBL(r′, 0))|r′=r.

Using the above equalities combined with a linear transformation of the integra-
tion variable r′ → r′′ = r′ −M , we get the desired result

ΞW (0, z) = 1
∆(z +M)Ir′r′ (GBL(r′, 0))|r′=z+M ,

= 1
∆W (z)Ir′r′ (GW (0, r′ −M))|r′=z+M ,

= 1
∆W (z)Ir′′r′′ (GW (0, r′′))|r′′=z,

= 1
∆W (z)Izz (GW (0, z)) .

Having shown our plans are justified, we now evaluate G on the symmetry
axis

G(0, z) = −Σ0ρ
2
0

4
1[︂

(z − z0)2 + ρ2
0

]︂ 3
2
.

Next, we integrate twice ignoring the integration constants

Izz (G(0, z)) = −Σ0

4

√︂
(z − z0)2 + ρ2

0,

which means

Ξ(0, z) = − 1
4 sin θ0

√︂
(z − z0)2 + ρ2

0

z2 −M2 + a2 .

The last step is to spread the superpotential away from the symmetry axis using
(3.30)

Ξ(ρ, z) = 1
N

∫︂ π

0

√︂
(z − z0 + iρ cos θ)2 + ρ2

0

(z + iρ cos θ)2 −M2 + a2 sin2 θdθ, (3.39)

where
N = −2π sin θ0.
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3.8 Debye potential of a ring source
In the Kerr spacetime the Teukolsky source for s = 1 (2.33) simplifies thanks to
the special properties of the chosen tetrad

J0 = (m · ∂ − 2τ)l · J − (l · ∂ − 2ρ− ρ∗)m · J. (3.40)

Given our choice of the four-current (2.71), we define the Teukolsky source for an
axisymmetric time-independent current whose only component is Jϕ

J (ϕ) = (mθ∂θ − 2τ)lϕJϕ − (lr∂r − 2ρ− ρ∗)mϕJ
ϕ. (3.41)

Similarly, we can define the Teukolsky source for an axially symmetric time-
independent charge J t by the exchange ϕ → t.

We shall need a few identities concerning the Dirac delta-function. First,
whenever we multiply a function by the Dirac delta, we immediately evaluate the
function

f(x)δ(x− x0) = f(x0)δ(x− x0) ≡ f0δ(x− x0). (3.42)
Secondly, using the Leibniz rule we can find the identity for a derivative of the
Dirac delta

f(x)δ′(x− x0) = (f(x)δ(x− x0))
′
− f

′(x)δ(x− x0), (3.43)
= f0δ

′(x− x0) − f
′

0δ(x− x0). (3.44)

Combining these two properties, we obtain our final identity for arbitrary func-
tions f , g, and h

(f∂ + g)hδ = (fh)0∂δ + (gh− h∂f)0δ. (3.45)

Now, we choose an infinitely thin ring as our axisymmetric current

Jϕ ≡ jδ(r − rJ)δ(θ − θJ). (3.46)

Using the identity (3.45) and the form of the Teukolsky source (3.41) we can find
the following equality

sin θΣJ (ϕ) = sin2 θJΣJ√
2(rJ + ia cos θJ)

(︂
−a sin θJ∂θ + i(r2

J + a2)∂r + irJ

)︂
Jϕ. (3.47)

This is exactly the effective source for the Debye potential (3.34).
Similarly, we repeat the steps with the axisymmetric charge. The only non-

zero component of the four-current for a charged infinitely thin ring will be given
by

J t = qδ(r − rJ)δ(θ − θJ). (3.48)
The needed expression can be written in the following manner

sin θΣJ (t) = sin θJΣJ√
2(rJ + ia cos θJ)

(∂θ − ia sin θJ∂r − cot θJ) J t. (3.49)

In view of earlier definitions, before we move further, we need to make the
exchange r → r0. Then, our effective sources have the structure

(NθJ
∂θ0 +NrJ

∂r0 +N) δ(r0 − rJ)δ(cos θ0 − cos θJ).
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We can thus explicitly compute the convolution for the Debye potential (3.34)
which simplifies to plain differentiation

ψ(r, θ, rJ , θJ) =
∫︂ ∞

0

∫︂ π

0
ψG(r, θ, r0, θ0)NθJ

∂θ0δ(θ0 − θJ)δ(r0 − rJ)dθ0dr0 + ...

= −
∫︂ ∞

0

∫︂ π

0
NθJ

∂θ0ψG(r, θ, r0, θ0)δ(θ0 − θJ)δ(r0 − rJ)dθ0dr0 + ...

= (−NθJ
∂θJ

−NrJ
∂rJ

+N)ψG(r, θ, rJ , θJ).
(3.50)

As a result, we obtain the Debye potential for a current loop ψJ

ψJ ≡ j sin2 θJΣJ√
2(rJ + ia cos θJ)

(︂
a sin θJ∂θJ

− i(r2
J + a2)∂rJ

+ irJ

)︂
ψG, (3.51)

and for a charged loop ψC

ψC ≡ q sin θJΣJ√
2(rJ + ia cos θJ)

(−∂θJ
+ ia sin θJ∂rJ

− cot θJ)ψG. (3.52)

There are two obvious ways to obtain the field of a current disc. One is to
choose the source as Jϕ = jδ(θ− θJ)χ[ra,rb](r), and compute the Debye potential.
Here, χ[ra,rb] is the characteristic function of the interval [ra, rb]. However, the
absence of delta function in r means that the result cannot be rewritten as a
simple differentiation of the effective Green function. It will be given by its
integration which is fairly problematic.

The second way works at the level of the field rather than the potential. Since
we are working with the first order perturbations of the electromagnetic field on
a fixed gravitational background, we can superpose the electromagnetic fields of
multiple sources. We can thus approximate the field of a disc Bd(ra, rb) located
between ra and rb by a series of current loops at rj ∈ [ra, rb] with the field Bl(rj)
as

Bd(ra, rb) ≈
N∑︂

j=1
Bl(rj). (3.53)

If we wanted an exact result, we would have to perform a limit N → ∞. Since
the disc appears as a loop at radial infinity, the infinite sum of loops has to be
regularized by their number. Otherwise, the magnetic field would be divergent.
Assuming the loops are identical, we obtain

Bd(ra, rb) = lim
N→∞
∆r→0

N∆r=rb−ra

1
N

N∑︂
j=1

Bl(ra + j∆r),

= lim
N→∞
∆r→0

N∆r=rb−ra

∑︁N
j=1 Bl(ra + j∆r)∆r

N∆r ,

= lim
N→∞
∆r→0

N∆r=rb−ra

∑︁N
j=1 Bl(ra + j∆r)∆r∑︁N

j=1 ∆r
,

=
∫︁ rb

ra
Bl(rJ)drJ∫︁ rb
ra

drJ

.
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Thus, the field of a current disc as a limit of continuous distribution of identical
loops can be written as

1
rb − ra

∫︂ rb

ra

Bl(rJ)drJ . (3.54)

At the end, the second way still relies on integration. However, this time the
integration gives the final result as opposed to giving an object one has to further
differentiate and work with.
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4. Superpotential for Kerr
background
In this chapter, we shall give explicit expressions for the Debye superpotential on
Kerr background in terms of elliptic integrals. We will also analyze the structure
of the discontinuities that arise in the superpotential. At the end, we discuss how
these discontinuities affect the magnetic field of a current loop and visualize the
results.

4.1 Explicit expressions for superpotentials
First, we define a few auxiliary functions to shorten the desired expressions

gβ ≡ ρ− i(z + β) hβ ≡ iḡβ, (4.1)
gβ(0) ≡ ρ0 − i(z0 + β) hβ(0) ≡ iḡβ(0), (4.2)
g(ρ0) ≡ ρ− ρ0 + i(z − z0), h(ρ0) ≡ iḡ(ρ0). (4.3)

The reason we use both g and h is to absorb imaginary units or signs in the
arguments. We shall also need the following definitions

d(ρ0) ≡
√︂

(ρ− ρ0)2 + (z − z0)2, (4.4)

m ≡ 4ρρ0

(ρ+ ρ0)2 + (z − z0)2 , (4.5)

µ ≡ 1
1 −m

, (4.6)

β ≡
√
M2 − a2. (4.7)

For elliptic integrals, we use these conventions

E(k) ≡
∫︂ π/2

0

√︂
1 − k sin2 θdθ, (4.8)

K(k) ≡
∫︂ π/2

0

1√
1 − k sin2 θ

dθ, (4.9)

Π(t|k) ≡
∫︂ π/2

0

1
(1 − t sin2 θ)

√
1 − k sin2 θ

dθ. (4.10)

We will need several useful limits. First, the elliptic integral Π(t|k) is discontin-
uous when crossing the real line from above in t for t > 1 [22]. However, it is
continuous from below [23]

lim
ε→0+

Π(t+ iε|k) = Π(t|k) + π
√

1 − t
√︂

1 − k
t

,

lim
ε→0−

Π(t+ iε|k) = Π(t|k).
(4.11)

Similar thing happens in the case of the argument k for k > 1 [24]. It is discon-
tinuous from above but continuous from below

lim
ε→0+

Π(t|k + iε) = 1√
k

Π
(︄
t

k

⃓⃓⃓⃓
⃓ 1
k

)︄
+ i

k

k − t
Π
(︄
t(1 − k)
t− k

⃓⃓⃓⃓
⃓ 1 − k

)︄
. (4.12)
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In the case of the elliptic integral K(k), its value at k > 1 exists only as a limit
from the complex plane onto the real axis. We get a different sign of the imaginary
part depending on whether we go from below or from above [25] (we notify the
reader that this source uses different convention for the definitions of the elliptic
integrals)

lim
ε→0−

K(k + iε) = 1√
k

[︃
K
(︃1
k

)︃
− iK

(︃
1 − 1

k

)︃]︃
. (4.13)

The same applies for the elliptic integral E(k) [25]

lim
ε→0−

E(k + iε) =
√
k
[︃
iE
(︃

1 − 1
k

)︃
+ E

(︃1
k

)︃
−
(︃

1 − 1
k

)︃
K
(︃1
k

)︃
− i

k
K
(︃

1 − 1
k

)︃]︃
. (4.14)

The superpotential (3.39) for a non-extremal Kerr black hole ΞK was obtained
in terms of elliptic integrals by Kofroň and Kotlař́ık [12]. They found it can be
written in the form

N Ξ(K) = f(ρ0) + f̄(−ρ0), (4.15)
where

f(ρ0) = 1
ρ2d(ρ0)

⎡⎣− id2(ρ0)E(µ) + 2ρ0 (4z − h(ρ0))K(µ)

− 4(z + z0)ρ0Π
(︄
h(−ρ0)
h(ρ0)

⃓⃓⃓⃓
⃓ µ
)︄

− 2ρ0
ρ2 + (z + β)2

β
Π
(︄
hβ(0)h̄(−ρ0)
h̄β(0)h̄(ρ0)

⃓⃓⃓⃓
⃓ µ
)︄

+ (β → −β)
⎤⎦.

(4.16)

Here, the addition given by (β → −β) applies only to the terms in the same line.
However, the argument µ is greater than 1 as can be seen from (4.5) and (4.6).
It would be preferred to use arguments that are less than 1 – for example to have
a well defined sign of the imaginary part of the integrals K and E. This can be
achieved by considering the limits (4.12), (4.13), and (4.14). We set ε = 0 and
use them as a transformation rule. We obtain the following expression completely
in terms of the argument m

N Ξ(K) = d(−ρ0)
ρ2 E(m) − z2 + ρ2 + (z0 + iρ0)2 − 2z(z0 − 3iρ0)

ρ2d(−ρ0)
K(m)

− 2i(z + z0)
ḡ(ρ0)

ρ2d(−ρ0)
Π
(︄

2ρ
g(−ρ0)

⃓⃓⃓⃓
⃓ m

)︄

+ i
g(ρ0)

ρ2d(−ρ0)

⎡⎣gβgβ(0)

β
Π
(︄
ḡβ(0)

ḡβ

2ρ
ḡ(−ρ0)

⃓⃓⃓⃓
⃓ m

)︄
+ (β → −β)

⎤⎦.
(4.17)

Due to (4.11), the superpotential has discontinuities that divide the region into
three parts – inner i, northern n, and southern s. The boundaries are composed of
a ray γ(K)e and two arcs γ(K)n, γ(K)s. For simplicity, we assume z0 ≥ 0 throughout.
The ray can be written as

γ(K)e : z = z0 & ρ ≥ ρ0. (4.18)
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The arcs are defined by

γ(K)n : r(K)n = 0 & min{z0, β} < z < max{z0, β},
γ(K)s : r(K)s = 0 & − β < z < z0,

(4.19)

where

r(K)n ≡ ρ2 + (z − z(K)n)2 −R2
(K)n, r(K)s ≡ ρ2 + (z − z(K)s)2 −R2

(K)s,

z(K)n ≡ 1
2
ρ2

0 + z2
0 − β2

z0 − β
, z(K)s ≡ 1

2
ρ2

0 + z2
0 − β2

z0 + β
,

R(K)n ≡ 1
2
ρ2

0 + (z0 − β)2

z0 − β
, R(K)s ≡ 1

2
ρ2

0 + (z0 + β)2

z0 + β
.

(4.20)

If z0 = β, the arc γ(K)n turns into a line segment and combines with γ(K)e into a
single ray. Next, we define the region functions

Θ(K)n ≡ Θ(z − z0) − sign(β − z0)Θ(−r(K)n)Θ ((z − z0)sign(β − z0)) , (4.21)
Θ(K)s ≡ Θ(−z + z0) − Θ(−r(K)s)Θ(−z + z0), (4.22)

Θ(K)i ≡

⎧⎪⎪⎨⎪⎪⎩
Θ(−r(K)s)

(︂
1 − Θ(−r(K)n)

)︂
, Cond. A,

Θ(−r(K)s) + Θ(−r(K)n) − Θ(−r(K)s)Θ(−r(K)n), Cond. B,
Θ(−r(K)s)Θ(−r(K)n), Cond. C,

(4.23)

where we have used

Cond. A ≡ z0 > β, (4.24)
Cond. B ≡ z0 < β & β2 − ρ2

0 − z2
0 > 0, (4.25)

Cond. C ≡ z0 < β & β2 − ρ2
0 − z2

0 ≤ 0. (4.26)

In the following, Ξγ ≡ Ξγ− −Ξγ+ shall denote the jump across the curve γ. Using
(4.11), we obtain

N Ξ(K)e = 2πz + z0

ρ2 , (4.27)

N Ξ(K)n = −π
√︂
ρ2

0 + (z0 − β)2

√︂
ρ2 + (z − β)2

βρ2 , (4.28)

N Ξ(K)s = π
√︂
ρ2

0 + (z0 + β)2

√︂
ρ2 + (z + β)2

βρ2 . (4.29)

All these can be added to Ξ(K) since they satisfy W1[Ξ] = 0. They represent
sources located beneath the horizon as can be shown by computing the charge.
However, we point out that Ξ(K)n and Ξ(K)s diverge for β → 0 which corresponds
to the extreme limit.
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Figure 4.1: Contour-plot of the superpotential Ξ(K) in the Weyl coordinates for
the values M = 1, a = 0.8, r0 = 3, θ0 = π/3. The thick black line at ρ = 0
is the outer horizon, the gray lines are the discontinuities, and the dot at the
intersection of the discontinuities is the position of the source.

Figure 4.2: Contourplot of the superpotential Ξ(K) in the BL coordinates for the
values M = 1, a = 0.8, r0 = 3, θ0 = π/3. The outer horizon is depicted by a black
half-disc, the gray lines are the discontinuities and the dot at the intersection of
the discontinuities is the position of the source.
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Figure 4.3: Contourplot of the Debye green function ψG(K) in the BL coordinates
for the values M = 1, a = 0.8, r0 = 3, θ0 = π/3. The outer horizon is depicted
by a black half-disc, the gray lines are the discontinuities and the dot at the
intersection of the discontinuities is the position of the source.

We show the contour-plots of the superpotential for the non-extremal Kerr
black hole background in both Weyl (Fig. 4.1) and BL coordinates (Fig. 4.2).
We also visualize the effective Green function (Fig. 4.3). We shall point out one
important fact. The source at (r0, θ0) looks like a ring, however, it is not the
physical current-loop whose field we were originally looking for. When we look
at how we derived the superpotential, we find that the (r0, θ0) originates from
searching for the fundamental solution of the Teukolsky equation with Dirac
distributions on the right-hand-side. The physical source, however, is given by
(2.33). This is a more complicated object created from the four-current.

We also point out that the discontinuities in the plots appear as lines, however,
we only plot the cross-section containing the symmetry axis. Every plot can thus
be imagined to be rotated around the vertical axis at ρ = 0 and the discontinuities
become surfaces.

We obtained the superpotential on an extreme Kerr background in the same
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manner as Kofroň and Kotlař́ık for the below-extreme case

N Ξ(E) = 2d(−ρ0)
ρ2 (E(m) −K(m))

+ 2ρ0

ρ2d(−ρ0)

(︄
2(ρ+ iz) + ρ0 − iz0 − ρ2 + z2

ρ0 + iz0
+ 2 ρ

2 + z2

ρ0 − iz0

)︄
K(m)

− 2i(z + z0)
ḡ(ρ0)

ρ2d(−ρ0)
Π
(︄

2ρ
g(−ρ0)

⃓⃓⃓⃓
⃓ m

)︄

− 2iρ
2
0z + z0(ρ2 + zz0 + z2)

ρ2d(−ρ0)

⎡⎣2 ḡ(ρ0)
(ρ− iz)(ρ0 − iz0)

Π
(︄
ρ0 − iz0

ρ− iz

2ρ
g(−ρ0)

⃓⃓⃓⃓
⃓ m

)︄

+ g(ρ0)
(ρ+ iz)(ρ0 + iz0)

Π
(︄
ρ0 + iz0

ρ+ iz

2ρ
ḡ(−ρ0)

⃓⃓⃓⃓
⃓ m

)︄⎤⎦.
(4.30)

It can be numerically checked that Ξ(K) → Ξ(E) for β → 0.
This time, we only have a northern and a southern region separated by the

ray
γ(E)e : z = z0 & ρ ≥ ρ0, (4.31)

and the arc
γ(E)w : r(E) = 0 & z ∈ (0, z0), (4.32)

where we defined
r(E) ≡ ρ2 + (z − z(E))2 −R2

(E),

z(E) ≡ ρ2
0 + z2

0
2z0

,

R(E) = z(E).

(4.33)

For z0 = 0, γ(E)e and γ(E)w combine into a single ray. The region functions can
be found to be

Θ(E)n ≡

⎧⎨⎩Θ(z − z0) + Θ(−r(E)) − Θ(z − z0)Θ(−r(E)), z0 > 0,
Θ(z − z0), z0 = 0,

(4.34)

Θ(E)s ≡ 1 − Θ(E)n. (4.35)

We only have one jump satisfying W1[Ξ] = 0, and that is

N Ξ(E)e = 2πz + z0

ρ2 . (4.36)

This was expected as the other two below-extreme superpotential jumps (4.28)
and (4.29) diverged in the extreme limit.
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Figure 4.4: Contourplot of the superpotential Ξ(E) in the Weyl coordinates for
the values M = a = 1, r0 = 3, θ0 = π/3. The gray lines are the discontinuities
and the dot at the intersection of the discontinuities is the position of the source.

Figure 4.5: Contourplot of the superpotential Ξ(E) in the BL coordinates for the
values M = a = 1, r0 = 3, θ0 = π/3. The outer horizon is depicted by a black
half-disc, the gray lines are the discontinuities and the dot at the intersection of
the discontinuities is the position of the source.
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Figure 4.6: Contourplot of the Debye green function ψG(E) in the BL coordinates
for the values M = a = 1, r0 = 3, θ0 = π/3. The outer horizon is depicted
by a black half-disc, the gray lines are the discontinuities and the dot at the
intersection of the discontinuities is the position of the source.

We show the contour-plots of the superpotential for extremal Kerr background
in both Weyl (Fig. 4.4) and BL coordinates (Fig. 4.5). We also visualize the
effective Green function (Fig. 4.6).

The superpotential in the case of the Kerr naked singularity can be easily
obtained from the below-extreme case by

Ξ(N) = Ξ(K)|β→iβ. (4.37)

The discontinuity no longer divides the region. Its position can be built up by
the ray

γ(N)e : z = z0 & ρ ≥ min{ρ0, β}, (4.38)
and the arc given by

γ(N)w : r(N) = 0 & z ∈ (0, z0), (4.39)

where we used the definitions

r(N) ≡ ρ2 + (z − z(N))2 −R2
(N),

z(N) ≡ ρ2
0 + z2

0 − β2

2z0
,

R(N) =
√︂
z2

(N) + β2.

(4.40)

For z0 = 0, γ(N)e and γ(N)w combine into a single ray.
We show the contour-plots of the superpotential for the background of a Kerr

naked singularity in both Weyl (Fig. 4.7) and BL coordinates (Fig. 4.8). We also
visualize the effective Green function (Fig. 4.9).

45



Figure 4.7: Contourplot of the superpotential Ξ(N) in the Weyl coordinates for the
values M = 1, a = 1.2, r0 = 3, θ0 = π/3. The gray lines are the discontinuities
and the dot at the intersection of the discontinuities is the position of the source.

Figure 4.8: Contourplot of the superpotential Ξ(N) in the BL coordinates for the
values M = 1, a = 1.2, r0 = 3, θ0 = π/3. The gray lines are the discontinuities
and the dot at the intersection of the discontinuities is the position of the source.
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Figure 4.9: Contourplot of the Debye green function ψG(N) in the BL coordinates
for the values M = 1, a = 1.2, r0 = 3, θ0 = π/3. The gray lines are the
discontinuities and the dot at the intersection of the discontinuities is the position
of the source.

We can notice something interesting about the superpotential for naked Kerr
singularity in Fig. (4.7). We would be tempted to think that the most western
point of the discontinuity γ(N)w is the ring singularity, but it is in fact given by√
a2 −M2. The ring singularity does not produce any effect at the level of the

superpotential.

4.2 Magnetic field of a current loop
Once we have the superpotential Ξ, we mutiply it by ∆ sin θ to obtain the Debye
effective Green function ψG (3.38). Next we perform differentiation in order to
calculate the Debye potential for a current loop ψJ (3.51). At this point, we can
get to computing the Maxwell tensor. By further differentiation, we first get the
electromagnetic scalars (2.78), (2.73), and then the anti-self-dual (2.16). At the
end, we project this onto the ZAMO tetrad (2.88). For simplicity, we shall only
consider the case of the equatorial plane zJ = 0.

If we compute the magnetic field directly corresponding to the superpotentials
ΞK , ΞE, and ΞN , we find that it is discontinuous when crossing the equatorial
plane for r > rJ . This can be viewed in Fig. 4.10. Moreover, if we calculate the
charge at different points, we find that it is generally non-zero, dependent on r,
and asymptotically constant. This points to the presence of sources other than
the current loop.
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Figure 4.10: Plot of the magnetic field of a current loop in Kerr background
computed from the superpotential Ξ(K). It is visualized with respect to the ZAMO
observer for the values M = 1, a = 0.8, r0 = 4, θ0 = π/2, j = −1. We present the
streamlines of the vectorfield B⃗ and the contours of |B|2 in a logarithmic scale.

Here we bring attention to the discontinuities in the superpotential which we
presented earlier. The superpotential jumps all have vanishing ϕ0 and their charge
is located beneath the horizon. Thus, the superpotentials have differential charges
in different regions and this causes discontinuities in the magnetic field. Therefore,
using the jumps and the region functions, we would like to remove some of the
discontinuities so as to obtain a continuous magnetic field with charge contained
below the horizon or near the singularity. This charge then can be removed by
the addition of an appropriate monopole field.

In the work of Kofroň and Kotlař́ık, they used the superpotential

Ξ(K) − Ξ(K)sΘ(K)s + Ξ(K)nΘ(K)n. (4.41)

This solves the mentioned problems, however, the jumps in the extreme limit β →
0 diverge, dominate the expression, and do not approach the extreme background
solution. We present two different configurations that resolve the discontinuities
and charge distribution

Ξ(K)
s = Ξ(K) + Ξ(K)sΘ(K)i + 1

2Ξ(K)e
(︂
Θ(K)n − Θ(K)s − Θ(K)i

)︂
, (4.42)

Ξ(K)
n = Ξ(K) − Ξ(K)nΘ(K)i + 1

2Ξ(K)e
(︂
Θ(K)n − Θ(K)s + Θ(K)i

)︂
. (4.43)
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It is clear that these converge to the solution in the extreme background since
the divergent part is located only in the inner region that vanishes in the extreme
limit. Moreover, both of these choices give rise to the same magnetic field which
can be verified numerically. The superpotentials for the extreme case and the
case of a naked singularity can be chosen as

Ξ(E) = Ξ(E) + 1
2Ξ(E)e (Θ(z) − Θ(−z)) , (4.44)

Ξ(N) = Ξ(N) + 1
2Ξ(N)e (Θ(z) − Θ(−z)) . (4.45)

At last, all the charge is situated below the horizon or below r̃ < rJ in the case
of naked singularity. We can compute the charge by (2.85) and subtract the
monopole field given by the scalar (2.86).

We visualize the resulting magnetic field of a current loop on Kerr background
in Fig. (4.11). In this case, we have used Ξ(K)

s and have also removed the excess
charge.

Figure 4.11: Plot of the magnetic field of a current loop in Kerr background
computed from the superpotential Ξ(K)

s . It is visualized with respect to the ZAMO
observer for the values M = 1, a = 0.8, r0 = 4, θ0 = π/2, j = −1. We present the
streamlines of the vectorfield B⃗ and the contours of |B|2 in a logarithmic scale.
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5. Discussion
Here, we would like to address a few questions that might occur to the reader.
First, we explain how exactly we obtained the superpotential, and we also mention
what problems we encountered along the way. Then, we point out the difference
between the numerical evaluation of the integral that gives the superpotential
(3.39), and the explicit expressions for the superpotential in terms of elliptic
integrals. At the end, we discuss alternative approaches.

5.1 Notes on finding the superpotential
When analytically integrating the expression for the superpotential (3.39) on an
extreme Kerr background, we followed the same route as Kofroň and Kotlař́ık
in [12]. Since Mathematica 13.1 cannot perform the integration (nor definite or
indefinite), we had to carry it out in Maple 2019. As Maple gave the wrong
result for the definite integral (the result was not real, nor did it satisfy W1), we
were forced to settle for an indefinite one. This produced a fairly long result con-
taining elliptic integrals. Here, we came across another problem. When taking
derivatives of the elliptic integrals in Maple, we obtained errors. Moreover, when
plotting the Π(t|k) integrals, there were additional discontinuities which were not
supposed to be there. We thus had to translate the result into Mathematica.
There, we were able to verify by differentiation that we had obtained the correct
indefinite integral. What was left to do was to perform the desired limits of the
primitive function. However, some limits of the elliptic integrals are not imple-
mented correctly in Mathematica (a fact one is warned about on the Wolfram
website). Therefore, the limits had to be done manually. At the end, after plenty
of simplifications, we obtained the desired expression that was real and satisfied
W1.

5.2 Superpotential - analytical vs. numerical in-
tegration

Should we numerically compute the values of the superpotential given by (3.39),
and compare them to our expressions in terms of elliptic integrals (4.17), (4.30),
(4.37), we would find they do not always match. Recall that the superpotential
has a structure of discontinuities. We find that the reason for the occasional
inconsistency is that the location of the discontinuities got shifted upon expressing
the original integral via elliptic integrals. Thus the solutions covering the different
regions are the same, but the shapes of the regions change.

Below, we show plots of the numerically calculated superpotentials N Ξ for
Kerr background (Fig. 5.1), extreme Kerr background (Fig. 5.2) and for the
background of a naked Kerr singularity (Fig. 5.3). The position of the discon-
tinuities is independent of the location of the source. This is quite the opposite
when compared to the results of analytic integration where the location of the
source served as a meeting point of different discontinuities.

50



Figure 5.1: Contour-plot of the numerically computed superpotential N Ξ in the
Weyl coordinates for the values M = 1, a = 0.8, ρ0 = 3, z0 = 1. The black lines
are discontinuities.

Figure 5.2: Contour-plot of the numerically computed superpotential N Ξ in the
Weyl coordinates for the values M = 1, a = 1, ρ0 = 3, z0 = 1. The black line is
a discontinuity.
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Figure 5.3: Contour-plot of the numerically computed superpotential N Ξ in the
Weyl coordinates for the values M = 1, a = 1.2, ρ0 = 3, z0 = 1. The black line
is a discontinuity.

5.3 Alternative approaches
First, let us address a seeming contradiction in our approach. We obtained the
Debye potential by integrating ϕ0 which was determined by the Teukolsky equa-
tion containing sources. However, the relationship between the Debye potential
and the electromagnetic scalar assumed vacuum Maxwell’s equations. This should
not pose a problem since the source is an infinitesimal ring and thus the vacuum
equations hold everywhere up to a single point in the cross-section spanned by r
and θ. Thus, the sources of ϕ0 effectively act as a boundary condition that gives
us the Debye potential of the ring source.

An alternative approach would be to find the Debye potential using Maxwell’s
equations with sources J . These would then come into the Debye wave equation in
the form of a source co-potential j given by J = δj. In the vacuum case, we were
able to find such a gauge of the Debye potential that only a single independent
component of the wave equation remained. This should not be possible whenever
sources are present since only the vacuum electromagnetic field has two degrees of
freedom. We would thus expect that the gauge freedom of the sources δ(j + δσ)
can only nullify two independent components. We would subsequently require
another Debye potential determined by a different equation. These were presented
by Cohen and Kegeles in [10] – equations (CK:5.8) or (CK:5.10). However, we
are not familiar with their Green functions in Kerr spacetime.

On a different note, we could also look at a similar problem regarding the grav-
itational field of a rotating thin disc around a Schwarzschild black hole treated
by Č́ıžek and Semerák in [26] (or in later review [27]). The scheme to obtaining
the field relies on writing the metric in a form that satisfies all the necessary sym-
metries and boundary conditions. The metric is thus described by four functions
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B, ω, ν, and ζ, which are determined by the Einstein’s equations. The solution
for B is simple and chosen in a conventional manner. A crucial step is finding
the Green functions of ω and ν which were originally known only in the form of
a series. They were able to show that the the infinite series can be written in a
closed form using elliptic integrals. At last, ζ can be obtained by integration from
ω and ν. One can see a similarity in the electromagnetic counterpart. There, the
series solutions came from solving the Teukolsky equation for ϕ0 from which one
can swiftly obtain ϕ2. The problem lies in calculating ϕ1 from the Maxwell’s
equations. This was accomplished in the infinite series approach but remains
fairly problematic in general. We thus performed the integration by using the
Debye potential approach combined with the axisymmetric potential theory.
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Conclusion
In this text, we have put together all the results from topics related to electro-
magnetic fields of current loops around black holes – which are necessary to find
the magnetic field in a closed form – and presented them in a compact logical
framework. We have also provided original results: the Debye superpotential
for electromagnetic field of a stationary axially symmetric source in the extreme
Kerr background, and an extension of the superpotential from the below-extreme
background to the background of a Kerr naked singularity.
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