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Abstract: Understanding the conversion between heat and work by heat engines
led to the discoveries of entropy and to the formulation of the Second law of clas-
sical macroscopic thermodynamics. At the microscale and mesoscale, quantum
coherences are a potential resource for various quantum processes. Quantum
coherences can be used to enhance the performance of various devices beyond
the limits demanded by classical physics. Recently many models have been es-
tablished clarifying how coherences affect the speed and irreversibility of ther-
modynamic processes and raising the question of what experimentally relevant
consequences various generalizations of the formalism of classical thermodynam-
ics to the microscopic level may have. Here we study a few of these models
in great detail. Specifically, we discuss fluctuations of coherence-enhanced heat
currents, propose a model of a heat engine that does work while being in a
steady state, and derive a condition on the rate of decoherence that specifies,
when coherence-enhanced currents provide a significant advantage over the case
without any coherence. Then we discuss coherence-inducing heat bath from the
quantum thermodynamics point of view. We show, that coherences generated
in this way provide an advantage in the extraction of work. We point out, that
there is a need to modify the Second law of thermodynamics for this system. Our
results provide new useful physical insights into the active research on the role of
coherence in quantum thermodynamics and quantum optics.
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Abstrakt: Pochopeńı přeměny tepla a práce v tepelńıch stroj́ıch vedlo k ob-
jevu entropie a k formulaci druhého zákona klasické makroskopické termody-
namiky. V mikroskopické a mesoskopické škále jsou kvantové koherence po-
tenciálńım zdrojem pro r̊uzné kvantové procesy. Kvantové koherence lze využ́ıt
ke zvýšeńı výkonu r̊uzných zař́ızeńı za hranice klasické fyziky. V posledńı době
bylo vytvořeno mnoho model̊u objasňuj́ıćıch, jak koherence ovlivňuj́ı rychlost
a nevratnost termodynamických proces̊u, a vyvolávaj́ıćıch otázku, jaké experi-
mentálně relevantńı d̊usledky mohou mı́t r̊uzná zobecněńı formalismu klasické
termodynamiky na mikroskopickou úroveň. Zde se podrobně zabýváme několika z
těchto model̊u. Konkrétně se zabýváme fluktuacemi tepelných proud̊u ześılených
koherenćı, navrhujeme model tepelného stroje, který vykonává práci, zat́ımco
je v ustáleném stavu, a taky odvozujeme podmı́nku na rychlost dekoherence,
která určuje, kdy proudy ześılené koherenćı poskytuj́ı významnou výhodu oproti
př́ıpadu bez jakékoli koherence. Dále se zabýváme tepelnou lázńı indukuj́ıćı ko-
herenci, z hlediska kvantové termodynamiky. Ukazujeme, že takto generované
koherence poskytuj́ı výhodu při źıskáváńı práce. Poukazujeme na to, že pro tento
systém je třeba upravit druhý termodynamický zákon. Naše výsledky poskytuj́ı
nové užitečné fyzikálńı poznatky pro aktivńı výzkum role koherence v kvantové
termodynamice a kvantové optice.

Kĺıčová slova: práce, teplo, kvantová koherence, tepelný stroj, dvouhladinový
systém, produkce entropie, kvantová výhoda, otevřené systémy, slabá vazba,
Lindbladova ř́ıd́ıci rovnice
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Introduction
The reason for many of the phenomena that are unique to quantum mechanics is
quantum coherence (superposition). That is the fact, that quantum systems may
be in different states at the same time. Therefore the goal of many researchers
is to use this feature to discover new quantum phenomena, that would provide a
quantum advantage in various tasks [1–6].

The theory of quantum coherence is a very wide research field. In our work, we
focus on its applications that concern quantum thermodynamics [2,7–12]. In this
area of research, one of the central questions is the effect of quantum coherences
on the performance of heat engines, and there is still no clear consensus on the
answer [2,7,8,13]. Authors of a recent work [14] have approached this problem by
separating the effects of the coherences between the states with the same energy
and the coherences between the states with different energy. Authors in [14]
presented a model that uses quantum coherences to enhance heat and particle
currents beyond the limits of classical physics. We will call this effect coherence-
enhanced currents. We will further explore this model, bringing useful physical
insight, and calculating fluctuations of the coherence-enhanced current. We will
also generalize the model to propose a new heat engine, that utilizes coherence-
enhanced particle current to increase the chemical potential of particles, while
itself being in a non-equilibrium steady state.

Every realistic system is open to unavoidable interaction with the environ-
ment, and this interaction induces irreversible processes, typically decoherence
and dissipation [15]. Therefore we also discuss the possible effects decoherence can
have on coherence-enhanced currents. And although we will show, that coherence-
enhanced currents can provide a significant quantum advantage if the decoherence
is not too fast, it is apparent that decoherence is a major obstacle for various ap-
plications that exploit quantum coherences as a resource. Therefore there is an
effort to neutralize these effects of interaction with the environment [16,17].

Another remarkable model has been introduced in Ref. [18], where it has
been shown, that it is possible to engineer an environment in such a way, that
spin interacting with it retains some of its coherences with respect to the energy
eigenbasis. This holds true even for long-time dynamics [18]. This phenomenon is
called coherence trapping. But it has some limitations: for example, it is impos-
sible to use this mechanism to trap coherences if the system has no coherences,
to begin with. The authors of [19] removed these limitations by proposing such
a system-bath interaction that does not just trap coherences, but instead forms
steady-state coherences in a generic two-level system, for every possible initial
state. We will analyze the model proposed in [19] from the perspective of quan-
tum thermodynamics. At first, we ask, whether coherences formed in this way
can provide a quantum advantage for the extraction of work from the reservoir.
Then we examine possible formulations of the second law for such types of models.
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1. Coherence-Enhanced Currents
In a recent paper [14], the authors studied the effects of quantum coherences
on particle and heat currents. They presented a model in which current was
enhanced by quantum coherences.

In classical physics, the smaller the temperature difference between the reser-
voirs, the smaller the entropy production, but at the same time the smaller the
heat current itself, while the mean heat current between two systems with the
same temperature is zero. Thus, if we want the heat engine to have some non-zero
power, it must exchange heat with the reservoirs while having different tempera-
ture, than those reservoirs. This in turn decreases the efficiency, which is why this
problem is in finite-time thermodynamics called power-efficiency trade-off, and it
concerns also small systems, that do not have well-defined temperatures [20, 21].

The paper [14] argues that due to coherence-enhanced current, it is possible to
have a finite heat current even for a temperature difference approaching 0, which
can then be used to construct a heat engine with a finite power and efficiency
arbitrarily close to the the Carnot efficiency.

In this chapter, we will bring new physical insight into what causes this effect.
At the same time, the fluctuations of this current were not discussed in the original
paper, and according to [11], there exists also a trade-off between dissipation
and fluctuations. Therefore we will investigate, what is the magnitude of the
fluctuations of coherence-enhanced currents, and discuss the possible effect that
decoherence can have on coherence-enhanced currents.

1.1 Model With Single Heat Bath
The basic model used in the paper is a two-level system that has each of the
levels N times degenerated. The system is interacting with a reservoir of inverse
temperature β. Thanks to degeneracy, this model is very convenient for us to
see different effects of coherences between states with the same energy and states
with different energy. One of the things we are going to be interested in is the
asymptotic behavior for N ≫ 1.

The system is initialized in a state where all excited states have occupation
probability pe/N and all ground states have occupation probability (1 − pe)/N =
pg/N , where pe is thus a probability of the system being in some of the excited
states.

We assume that the evolution of the system is given by the Lindblad master
equation

∂tρ = −i[H, ρ] +D(ρ) , (1.1)
where we set ℏ = 1, and D is dissipator

D(ρ) =
∑︂
ω

γ(ω)[LωρL
†
ω − 1

2{L†
ωLω, ρ}] , (1.2)

where the coefficients γ(ω) satisfy the local detailed balance relation

γ(ω)
γ(−ω) = exp(βω) (1.3)
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and Lω, L
†
ω are the Lindblad operators describing transitions between states with

energy difference ω.
Let us break this down mathematically for a better imagination. If the Hamil-

tonian is

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω0 0 0
0 . . . 0
0 0 ω0

0

0

0 0 0
0 . . . 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.4)

where the blocks are N × N as N is the degeneracy of both the ground and
excited state, then the Lindblad operators will be

Lω0 = L†
−ω0 =

⎛⎜⎜⎜⎜⎝
O 0

1 · · · 1
... . . . ...
1 · · · 1

0

⎞⎟⎟⎟⎟⎠ , (1.5)

and

L†
ω0 = L−ω0 =

⎛⎜⎜⎜⎜⎝0
1 · · · 1
... . . . ...
1 · · · 1

0 0

⎞⎟⎟⎟⎟⎠ . (1.6)

This defines the model. In the following subsections, we will calculate how
much heat will flow (and with what fluctuations) between the two-level system
and a reservoir, and also how much entropy will be produced in the process.

1.1.1 Heat Current
Without Coherences

To study the behavior of the system in a case when the initial state is without
coherences, we choose the density matrix by evenly distributing the probabilities
among the states with the same energy, i.e.

ρnc(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pe
N

0 0
0 . . . 0
0 0 pe

N

0

0

pg
N

0 0
0 . . . 0
0 0 pg

N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.7)

then the first term of (1.1) is zero and the time evolution is given just by the
dissipator D(ρ) (1.2). For Hamiltonian (1.4) the sum in (1.2) goes over two
possible energy differences ω namely ω = ω0 describes the transitions from the
excited level to the ground level and ω = −ω0 the transitions from the ground
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level to the excited level. For each of the values of ω, we have two terms. For
example, for ω = −ω0 there will be one term

γ(−ω0)L−ω0ρnc(0)L†
−ω0 = γ(−ω0)

⎛⎜⎜⎜⎜⎝
pg · · · pg
... . . . ...
pg · · · pg

0

0 0

⎞⎟⎟⎟⎟⎠ , (1.8)

where we just substituted from (1.5), (1.6), (1.7), and the second term

−γ(−ω0)
1
2{L†

−ω0L−ω0 , ρnc(0)} = γ(−ω0)

⎛⎜⎜⎜⎜⎝
0 0

0

−pg · · · −pg
... . . . ...

−pg · · · −pg

⎞⎟⎟⎟⎟⎠ . (1.9)

By analogy, for ω = ω0 we get in turn the transitions from the excited level
to the ground level

γ(ω0)[Lω0ρnc(0)L†
ω0 − 1

2{L†
ω0Lω0 , ρnc(0)}] =

= γ(ω0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−pe · · · −pe
... . . . ...

−pe · · · −pe

0

0

pe · · · pe
... . . . ...
pe · · · pe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(1.10)

When we sum those two contributions we get that

∂tρnc(0) = (γ(−ω0)pg − γ(ω0)pe)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1
... . . . ...
1 · · · 1

0

0

−1 · · · −1
... . . . ...

−1 · · · −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.11)

where by ∂tρnc(0) we mean the time derivative of the density matrix ρnc(t) in time
t = 0. The time derivative of the probability of the system being in an excited
state is obtained from (1.11) as the trace over the excited block

∂tpe(0) = N(γ(−ω0)pg − γ(ω0)pe) . (1.12)

Interesting choice of pe is

pe = 1(︂
1 + 1

N

)︂
eβω0 + 1

. (1.13)

In the state, with pe chosen according to (1.13), the system will be for large
N asymptotically close to equilibrium with the reservoir, and therefore for this
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choice, less entropy will be produced. Therefore this choice of pe will be crucial
for the efficiency of heat engines to asymptotically approach the Carnot efficiency.

When we substitute (1.13) into (1.12) we get the probability current for this
choice of pe

∂tpe(0) = γ(ω0)
1(︂

1 + 1
N

)︂
eβω0 + 1

. (1.14)

We define a heat current Jnc from the reservoir to the system as a time deriva-
tive of the mean energy of the system. Then from (1.14), we obtain the heat
current from the reservoir to the system

Jnc(0) = ω0∂tpe(0) = ω0γ(ω0)
1(︂

1 + 1
N

)︂
eβω0 + 1

. (1.15)

We can also write Jnc(0) = ω0γ(ω0)pe. But note that this is only true if we
choose pe according to (1.13).

From (1.12) we see that degeneracy would N times increase the magnitude of
the current for a fixed probability of the system being in an excited state, but for
the choice of pe according to (1.13) (depending on the degree of degeneracy) the
current asymptotically does not depend on degeneracy (we may write Jnc(N) =
O(1)).

With Coherences

Now let us choose a density matrix such that the probabilities are evenly dis-
tributed among the states with the same energy and all non-diagonal elements in
a given block also have this value

ρc(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pe
N

· · · pe
N... . . . ...

pe
N

· · · pe
N

0

0

pg
N

· · · pg
N... . . . ...

pg
N

· · · pg
N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.16)

i.e. as a mixture of two states

|e,+⟩ = (1, · · · , 1|0, · · · , 0)/
√
N , (1.17)

|g,+⟩ = (0, · · · , 0|1, · · · , 1)/
√
N , (1.18)

with weights pe and pg, respectively.
There are many valid measures of coherences [22]. Here we use l1 norm of

coherence, similarly, as it was done in [14]. This measure of coherences is defined
in [22] as

Cl1(ρ) =
∑︂
i ̸=j

|ρij| . (1.19)

Initial state (1.16) has the l1 norm of coherence equal to Cl1(ρc(0)) = N − 1. It
is not possible to achieve a higher l1 norm of coherence if we want the coherences
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between states with different energies to be zero. We choose the coherences be-
tween states with different energies to be zero to isolate the effect of the coherences
between the states with the same energies.

Upon plugging (1.16) into (1.1), the first term of (1.1) is zero and the time
evolution is given just by the dissipator D(ρ) (1.2). For ω = −ω0 we get the
transitions from the ground level to the excited level

γ(−ω0)[L−ω0ρc(0)L†
−ω0 − 1

2{L†
−ω0L−ω0 , ρc(0)}] =

= Nγ(−ω0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pg · · · pg
... . . . ...
pg · · · pg

0

0

−pg · · · −pg
... . . . ...

−pg · · · −pg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(1.20)

And for ω = ω0 we get the transitions from the excited level to the ground level

γ(ω0)[Lω0ρc(0)L†
ω0 − 1

2{L†
ω0Lω0 , ρc(0)}] =

= Nγ(ω0)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−pe · · · −pe
... . . . ...

−pe · · · −pe

0

0

pe · · · pe
... . . . ...
pe · · · pe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(1.21)

When we sum these two contributions we get that

∂tρc(0) = N(γ(−ω0)pg − γ(ω0)pe)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1
... . . . ...
1 · · · 1

0

0

−1 · · · −1
... . . . ...

−1 · · · −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.22)

and thus the total change in the probability that the system is excited is N times
larger than in the case without coherences. In other words, it is N2 times larger
than in the case where the energy levels are not degenerate (i.e. if the N = 1).
We have

∂tpe(0) = N2(γ(ω0)pg − γ(−ω0)pe) , (1.23)
and therefore so does the heat flow from the reservoir to the system

Jc(0) = ω0∂tpe(0) . (1.24)

This is one of the results of [14]: coherences between states with the same
energy enhance heat current between the system and the reservoir. We believe
that figure (1.1) brings some new physical intuition into why this happens.
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Figure 1.1: There are N2 channels between the ground and excited states. This is
because both of these energy levels are degenerate N times. So this fact does not
depend on the chosen initial state. But for the incoherent case (a), each of the
states has a probability of occupancy proportional to 1/N , and hence the current
through each of these channels will be O(1/N), and hence (as we see from (1.12))
for a fixed pe the resulting heat current will be N times larger than if the states
were not degenerate. For the coherent case (b) where we chose the initial state
as a mixture of states |e,+⟩ and |g,+⟩, the probabilities of occupying these two
states are independent of N and in case of this choice of states, the probabilities
between them flow through all N2 channels, and the magnitude of the current
through each of these channels is, therefore, independent of N . And hence for
a fixed pe the resulting heat current would be N2 times larger than if the levels
were not degenerate.
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If we choose pe according to (1.13) and the states as |e,+⟩ and |g,+⟩ according
to (1.17) and (1.18), Jc(0) = Nω0γ(ω0)pe and hence Jc(N) = O(N).

Also, from (1.22) we can see that there will be no decoherence between the
states with the same energy. All elements of each quadrant have the same time
derivative. And the density matrix was initially in a state where all elements in
the same block had the same value. By combining these two facts we see, that
even as these values will change, still all elements in the same block will have the
same value as each other.

Choice of Coherent State

We have seen, that coherences between states with the same energy can increase
the magnitude of the heat current. In other words, when the initial state contains
coherences, the upper bound for the current is higher than in the case when it
can not contain coherences, these bounds can be found in [14].

But we would like to point out, that coherences may not always increase this
current, on the contrary – they can also decrease it. We choose the initial state
to be a mixture of two states

|e, alter.⟩ = (1,−1, 1,−1, · · · |0, · · · , 0)/
√
N , (1.25)

|g, alter.⟩ = (0, · · · , 0|1,−1, 1,−1, · · · )/
√
N , (1.26)

with weights pe and pg respectively. The density matrix of this state ρc,alter. would
be block-diagonal, with pe/N and −pe/N (resp. pg/N and −pg/N) alternating
in blocks as squares on the chessboard (with always positive values on the diago-
nal). By substituting ρc,alter. into (1.19) we get, that it has l1 norm of coherence
Cl1(ρc,alter.(0)) = N − 1, which is same as the state ρc (1.16).

In state ρc,alter., however, for N even, after substituting in (1.1) and following
a procedure analogous to the one in subsection 1.1.1, we get that ∂tρc,alter. = 0, so
also Jc,alter.(0) = 0. Thus we see that although allowing the coherences between
the states with the same energy increases the upper bound for the heat current,
the heat current may not increase if we just add coherences to a state that had no
coherences. The heat current may as well decrease as a result of adding coherences
into a state.

1.1.2 Entropy Production
In classical thermodynamics, when there is heat current J from a reservoir with
inverse temperature βh to a reservoir with inverse temperature βc, the entropy
production is

∂tS = J(βc − βh) . (1.27)
In our case, the heat is not flowing into the reservoir, but into the system, which
has no defined temperature. But let us imagine that this system is “part of” a
reservoir and is therefore in thermal equilibrium with the reservoir. From this, we
can calculate what temperature such a reservoir would have to have, let us call it
βEF. We choose pe according to (1.13) and set it to be equal to the probability of
the system being in an excited state, if it would be in thermal equilibrium with
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a reservoir with inverse temperature βEF

pe = 1(︂
1 + 1

N

)︂
eβω0 + 1

= 1
eβEFω0 + 1 , (1.28)

from that, we can express βEF as

ln
(︃

1 + 1
N

)︃
+ βω0 = βEFω0 , (1.29)

from which we can express the ratio between the heat transferred and the entropy
produced, by substituting into (1.27)

∂tS

J
= βEF − β = 1

ω0
ln
(︃

1 + 1
N

)︃
. (1.30)

This is indeed the correct ratio which was derived in [14], where instead of
using the trick with effective temperature the authors calculated the change in the
entropy of the two-level system from the von Neumann entropy. Our derivation
aimed to demonstrate, that coherences between states with the same energy do
not affect this ratio. It is the feature of this model, that if coherences only occur
between states with the same energy (i.e., the density matrix is in energy basis
block-diagonal), there is no decoherence. Conversely, if there are any coherences
between states with different energies, these coherences will decay over time.
Then the ratio (1.30) will no longer hold, as the decoherence will contribute to
the entropy production. Therefore, one of the conclusions of the paper [14] is
that coherences between states with different energies degrade the efficiency of
heat engines.

We can calculate the entropy production, in the case without coherences,
by combining (1.15) and (1.30) as ∂tSnc(0) = γ(ω0)pe ln

(︂
1 + 1

N

)︂
= O(1/N)

and in the case with coherences by combining (1.24) and (1.30) as ∂tSc(0) =
γ(ω0)peN ln

(︂
1 + 1

N

)︂
= O(1). That is, the initial probability of the system being

in an excited state (1.13) is chosen such that if we use the initial state (1.16),
the entropy production asymptotically does not depend on the degeneracy N ,
while the magnitude of the current grows linearly with N . So it is possible to
use quantum coherence to enhance current in such a way, that does not increase
irreversibility.

1.1.3 Current Fluctuations
To determine the current fluctuations, we use the energy transfer generating
function according to [23] G(λ, t) = Tr(ρ(λ, t)), where ρ(λ, t) is a dressed density
matrix whose time evolution is given by

D(ρ) =
∑︂
ω

γ(ω)[e−λωLωρ(λ, t)L†
ω − 1

2{L†
ωLω, ρ(λ, t)}] . (1.31)
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After substituting initial state (1.16), we get a time derivative analogous to (1.22)

∂tρ(λ, t) = N(γ(−ω0)eλω0pg − γ(ω0)pe)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1
... . . . ...
1 · · · 1

0

0

−e−λω0 · · · −e−λω0

... . . . ...
−e−λω0 · · · −e−λω0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(1.32)
from which we get ∂tG(λ, t) = Tr(∂tρ(λ, t)) = N2(γ(−ω0)eλω0pg − γ(ω0)pe)(1 −
e−λω0), which is formally the same as a non-degenerate two-level system with
rates

k+ = N2γ(−ω0) , (1.33)

k− = N2γ(ω0) . (1.34)

Thus we can use counting statistics similar to [24]. The matrix that describes
the evolution will be

U(λ) =
(︄

−k− k+e
λω0

k−e
−λω0 −k+

)︄
. (1.35)

Now we need to solve the dynamic equation for this matrix, namely, we solve
the differential equation ∂tp⃗(t, λ) = U(λ)p⃗(t, λ), for the initial state p0⃗ = (pe, pg).
The solution is

p⃗(t, λ) = 1
k− + k+

⎛⎝ pe
(︂
k−e

−t(k−+k+) + k+
)︂

+ pge
λω0k+

(︂
1 − e−t(k−+k+)

)︂
pee

−λω0k−
(︂
1 − e−t(k−+k+)

)︂
+ pg

(︂
k− + k+e

−t(k−+k+)
)︂⎞⎠ ,

(1.36)
from which the generating function is G(t, λ) = p1(t, λ) + p2(t, λ)

G(t, λ) = 1
k− + k+

[︂(︂
1 − e−t(k−+k+)

)︂ (︂
pee

−λω0k− + pge
λω0k+

)︂
+ C

]︂
, (1.37)

where we have denoted as C = pe
(︂
k−e

−t(k−+k+) + k+
)︂

+ pg
(︂
k− + k+e

−t(k−+k+)
)︂

the terms that do not depend on λ.
Note that for the fixed pe, the degeneracy N is present in the G(t, λ) only

trough rates k±. And if we were to substitute for those rates from (1.33) and
(1.34), all of those N would cancel out except the ones in the exponent of
e−t(k−+k+). From this, we can anticipate, that by increasing the N we will just
speed up the whole process.

Consequently, the mean heat transferred in time t will be the first derivative
of the generating function Q(t) = C1(t, λ)|λ=0 = ∂λG(t, λ)|λ=0 and from it we get
the heat current as J(t) = ∂tQ(t). Because as we will discuss, in the cycle this
system only needs to be connected to the reservoirs for very short times, namely
asymptotically τ = O(1/N2), we are only interested in the limit t → 0.

The heat transferred is

Q(t) = C1(t, λ)|λ=0 = ∂λG(t, λ)|λ=0

= 1
k− + k+

(︂
1 − e−t(k−+k+)

)︂
(−ω0pek− + ω0pgk+) ,

(1.38)
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then the current for short times

J(0) = ∂tQ(t)|t=0 = ω0(pgk+ − pek−) , (1.39)

which, when substituted for k± from (1.33) and (1.34) and pg,e according to
(1.13), gives the current Jc(0) = Nω0γ(ω0)pe, which fits with the result from
(1.24). We can also check, that if we substitute for k± values corresponding to
the case without coherences (namely k+ = Nγ(−ω0) , k− = Nγ(ω0)) we get the
current for case without coherences (1.15).

Now we derive the fluctuations of the heat current as the second cumulant of
the generating function ⟨σ2

Qc
(t)⟩ = C2(t, λ)|λ=0 = ∂2

λG(t, λ)|λ=0

⟨σ2
Qc

(t)⟩ = C2(t, λ)|λ=0 = ∂λC1(t, λ)|λ=0

= 1
k− + k+

(︂
1 − e−t(k−+k+)

)︂ (︂
ω2

0pek− + ω2
0pgk+

)︂
,

(1.40)

which has a derivative at time 0

∂t⟨σ2
Qc

(t)⟩|t=0 = ω2
0(pgk+ + pek−) , (1.41)

which, when substituted for k± from (1.33) and (1.34) and pg,e according to (1.13),
gives

∂t⟨σ2
Qc

(t)⟩|t=0 = ω2
0N

2γ(ω0)
2 + 1

N(︂
1 + 1

N

)︂
eβω0 + 1

≈ 2ω2
0N

2γ(ω0)pe . (1.42)

In this subsection, we derived the fluctuations of heat current between a
heat reservoir and the two-level system. The general result is in (1.41), and
for coherence-enhanced heat current with the choice of pe as (1.13) we got (1.42).
We can therefore for this case write ∂t⟨σ2

Qc
(t)⟩|t=0 = O(N2).

1.2 Cyclic Heat Engine
So far we calculated, that in case of coherence-enhanced heat current between the
heat reservoir and two-level system, with the choice of pe as (1.13) the heat current
will be Jc(0) = Nω0γ(ω0)pe = O(N) and its fluctuations will be ∂t⟨σ2

Qc
(t)⟩|t=0 =

2ω2
0N

2γ(ω0)pe = O(N2). This raises an interesting question: would not the work
done by a heat engine using these coherences, and this choice of pe be negligible
with respect to its own fluctuations? We will answer this question in this section.

Let us first clarify in what cycle can heat engine that is consisting of a two-
level system operate. To construct a working heat engine we need a two-level
system and a way to change the energy gap between these levels, we also need
two heat reservoirs i.e., a hot reservoir with inverse temperature βh and a cold
reservoir with inverse temperature βc > βh and a way to connect and disconnect
these reservoirs with the two-level system, so the two-level system is in each point
of the cycle connected to at most one heat reservoir.

We have to address one more aspect: so far we only used coherences to enhance
the heat current from the hot reservoir to the system, but we need to enhance the
current from the system to the cold reservoir. To do this, we just have to set the
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pe of the initial state to be pe > 1/(eβω + 1), where ω is the energy gap between
the levels and β is the inverse temperature of reservoir system is interacting with.

As we have already mentioned, if we want to achieve efficiency close to the
the Carnot efficiency, we have to choose initial states to be close to equilibrium
with a reservoir the system will interact with because in such cases dissipation
is low. Namely at the beginning of the heating step we choose pe according to
(1.13) and at the beginning of the cooling step we choose it so

pe = 1(︂
1 − 1

N

)︂
eβcω + 1

. (1.43)

If we substitute this probability to (1.23) we see, that we get coherence-enhanced
heat current of the same form, as if we choose pe according to (1.13), except in
this case, heat flows from the system to the reservoir.

Then the cycle may then look like this

1. We use the coherence-enhanced heat current to get heat current from the
hot reservoir into the system. Thus, at the beginning of this step, pe1 =
1/((1 + 1/N) eβhω1 + 1) must hold.

2. We reduce the energy gap to ω2, thus in average we are getting work. This
change is adiabatic and therefore does not change the populations of states
and takes a negligibly short time.

3. We use the coherence-enhanced heat current to get heat current out of the
system and into the cold reservoir. Thus, at the beginning of this step,
pe2 = 1/((1 − 1/N) eβcω2 + 1) must hold.

4. We increase the energy gap back to ω1, we need to apply some work to do
this, but this work is on average lower than the work we got in step 2. This
change happens also adiabatically.

We would like to point out, that work is not a quantum observable. If we wanted
to have a well-defined quantum work, we would have to, for example, perform
two measurements [25]. But performing any measurement would destroy the state
that is necessary for the engine to work as intended. Because even if we measure
into a base containing states |e,+⟩ and |g,+⟩ and thus measurement would not
change the l1 norm of coherence, we would still be unable to set pe according to
desired initial conditions at the beginning of steps 1. and 3. Therefore, we will
not perform any measurements and instead define mean work done during one
cycle from energy conservation, as it is done in [21]. In other words, mean work
done during one cycle is equal to heat extracted from the hot reservoir during
one cycle, minus heat dumped into the cold reservoir during one cycle. From now
on we will use the word “work” in this looser way.

Then the ratio of the heat transferred in step 1 and the heat transferred in
step 3 is going to be 1 − η, where by η we denoted the efficiency of the engine.
With growing N this value will approach the Carnot efficiency ηC = 1− βh

βc
as η =

ηC −O(1/N) [14], this is direct consequence of choices (1.13) and (1.43). Inverse
temperatures βh, βc are arbitrary, therefore the ratio of transferred energies is in
general sufficiently different than 1 so we can say, that work performed over one
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cycle is in the same order as transferred heat, and therefore also fluctuations of
work are in the same order as fluctuations of transferred heat.

Steps 2 and 4 take arbitrarily short times, therefore the time of one cycle
is in the same order as the duration of steps 1 and 3. We have checked the
assertions from the Supplemental Material of [14] and can confirm that as the
degeneracy N increases, the time per cycle decreases as τ = O(1/N2), while the
mean work decreases only as W̄ = O(1/N). The previous section shows that the
work variance of one cycle will be σ2

W ∼ ∂t⟨σ2
Q(t)⟩|t=0τ = O(1) so that for large

N there will indeed be W̄ ≪ σW for one cycle. But the main advantage of using
this cycle is, that the duration of it is short and therefore we can repeat the cycle
many times during some fixed time interval, therefore we are mainly interested
in how the work and its fluctuation behave from this perspective. And for some
fixed “unit time”, the total work will be Wt = W̄/τ = O(N) and its deviation
σWt =

√︂
σ2

W/τ = O(N). The good news is, that the time, that it takes work to
catch up with its fluctuations, does not asymptotically increase with N .

That is, regardless of N the work will be equal to its deviation somewhere
around “unit time”, and then it will grow faster than the deviation. That means
that answer to the question we raised at the beginning of this section is, that
the work done by a heat engine using coherence-enhanced heat current is not
negligible with respect to its own fluctuations, and therefore this mechanism
gives heat engines using it an advantage.

1.3 Nonequilibrium Steady State Heat Engine
When we connect our two-level system to two reservoirs simultaneously, it can
mediate a heat or particle current between them, and again we can use quantum
coherences to enhance this current. This was discussed in [14], what was not
discussed is, that if those reservoirs differ in both temperature and chemical
potential, we can construct an engine that will do work and yet be in a stationary
state.

Let us have two reservoirs of particles with inverse temperature and chemical
potential βR, µR and βL, µL respectively. Both of these reservoirs interact with
our system, where a transition from the ground level to the excited level means
that the particle moves from the reservoir to the two-level system, and transition
from the excited level to the ground level means that it moves from the system
to the reservoir.

Now the dissipator D has to sum not only over energy differences but also
over both reservoirs, the system is interacting with. We rewrite it in the following
manner

D(ρ) =
∑︂
s,A

Γs,A(ω0, µA)[Lsω0ρL
†
sω0 − 1

2{L†
sω0Lsω0 , ρ}] , (1.44)

where by s we index the sign: s = +1 represents transitions from the excited level
to the ground level and s = −1 transitions from the ground level to the excited
level, and A we index reservoirs, so it can equal either R or L. The coefficients Γ
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must satisfy the detailed balance relation conditions

Γ–,R

Γ+,R
= exp(βR(ω0 − µR)) , (1.45)

Γ–,L

Γ+,L
= exp(βL(ω0 − µL)) . (1.46)

If we initialize the two-level system in a coherent state (1.16), then we can
by analogy to (1.22), get the total rate of particles moving from the reservoir R
to the system as k+,R = N2Γ+,R(ω0, µR) and from the system to the reservoir
k–,R = N2Γ–,R(ω0, µR). Similarly the rates for the reservoir L will be k+,L =
N2Γ+,L(ω0, µL), k–,L = N2Γ–,L(ω0, µL).

We in turn want to choose a state close to equilibrium, hence (by analogy
with (1.13) and (1.43))

pe = 1(︂
1 + 1

N

)︂
eβR(ω0−µR) + 1

= 1(︂
1 − 1

N

)︂
eβL(ω0−µL) + 1

, (1.47)

this gives us the condition

βR(ω0 − µR) − βL(ω0 − µL) = ln
1 − 1

N

1 + 1
N

. (1.48)

For such conditions, particles on average flow from reservoir R to reservoir L. If
only the R reservoir was connected, the change in pe would be (by analogy with
(1.23))

∂tpe(0) = N2(Γ+,R(ω0, µR)pg − Γ–,R(ω0, µL)pe)

= NΓ–,R(ω0, µR) 1(︂
1 + 1

N

)︂
eβR(ω0−µR) + 1

, (1.49)

which is therefore the mean number of particles leaving the reservoir R per unit
time. By analogy, if only the reservoir L was connected, the change in pe would
be

∂tpe(0) = N2(Γ+,L(ω0, µL)pg − Γ–,L(ω0, µL)pe)

= −NΓ–,L(ω0, µL) 1(︂
1 − 1

N

)︂
eβL(ω0−µL) + 1

, (1.50)

which in turn is, in absolute value, the mean number of particles added to the
reservoir L per unit time.

If we want our two-level system to be in a stationary state, these two values
must be equal in absolute value (i.e. the number of particles leaving the reser-
voir R must be the same as the number of particles entering the reservoir L,
otherwise the probability of particle occupying the two-level system will change,
which makes sense), after a comparison with (1.47) this gives us a condition
Γ–,R(ω0, µR) = Γ–,L(ω0, µL). For brevity, let us denote

Γ–,R(ω0, µR) = Γ–,L(ω0, µL) = Γ . (1.51)
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For such choice of the state and properties of the reservoirs and the system, we
get a stationary particle current

Jn
R → L = ∂tnL = −∂tnR = NΓpe . (1.52)

Then we identify the work done by this engine with the increase in the chemical
potential of the particles. The power of the engine will be

P = Jn
R → L(µL − µR) = NΓpe(µL − µR) . (1.53)

Where the difference in chemical potentials of the reservoirs is given by the con-
dition (1.48). For N ≫ 1 we can neglect the right-hand side and we are left
with

µL − µR = (ω0 − µL)
(︄
βL

βR
− 1

)︄
+O

(︃ 1
N

)︃
. (1.54)

Suppose ω0 − µL > 0, then µL − µR > 0 if and only if βL > βR, and hence that is
also a condition for the work done by this heat engine to be positive. This makes
sense since the energy flows out of the reservoir R, which thus plays the role of
a heater, i.e. it must be at a higher temperature than the cooler L in order for
positive work to be done. At the same time, if we define the heat supplied by
reservoir R as the energy that the particles get when they move from the reservoir
to the system, i.e.

∂tQin = Jn
R → L(ω0 − µR) , (1.55)

we get that the efficiency of such an engine is

η = W

Qin
= P

∂tQin
= µL − µR

ω0 − µR
=

(ω0 − µL)
(︂

βL
βR

− 1
)︂

βL
βR

(ω0 − µL)
+O

(︃ 1
N

)︃

η = 1 − βR

βL
+O

(︃ 1
N

)︃
,

(1.56)

where in the penultimate step we just substituted from (1.48) and (1.54).
We see that, similarly as in the section 1.2, as N increases the efficiency of

the engine approaches the Carnot efficiency as η = ηC +O(1/N) (where O(1/N)
is negative), while the power increases as P = O(N).

The advantage of this engine over the one described in section 1.2 is that
even though it is out of equilibrium, it is in a stationary state, i.e., it does not
itself evolve in time, it only mediates the particle flow between the reservoirs.
In contrast, for the cycle described in section 1.2 to benefit from this coherence-
enhanced current, the times it is connected to the reservoirs must asymptotically
decrease as τ = O(1/N2) and we also need such a way to change the energy gap
ω, that allows us to extract work. The details, limitations, and costs of such
quantum driving were addressed in [26]. We have shown, that it is possible to
use coherence-enhanced particle current to extract work without the need for any
driving.

1.4 Effect of Decoherence
In order to discuss the effect of decoherence on the coherence-enhanced current we
will again generalize the model. We can assume, that even though our differential
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equations for density matrix (such as (1.22)) do not suggest decoherence, some
decoherence might still take place. We may model this for example by multiplying
all non-diagonal elements of the density matrix by exp(−ft), where f is some
constant, that characterizes the rate of decoherence.

In other words, according to this model, if we connect our two-level degenerate
system to two reservoirs of particles, with all parameters of reservoirs, system,
and coupling being the same as in the section 1.3, then unlike in that section, the
density matrix would not be constant but instead would evolve as

ρc,f(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pe
N

e−ft pe
N

· · · e−ft pe
N

e−ft pe
N

. . . . . . ...
... . . . . . . e−ft pe

N

e−ft pe
N

· · · e−ft pe
N

pe
N

0

0

pg
N

e−ft pg
N

· · · e−ft pg
N

e−ft pg
N

. . . . . . ...
... . . . . . . e−ft pg

N

e−ft pg
N

· · · e−ft pg
N

pg
N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(1.57)
if we wanted to get the same time evolution directly from the Lindblad master
equation (1.1), we would just need to add into a dissipator (1.2) Lindblad oper-
ators, that would describe transitions between the states with the same energy.

In this case, in rates k± there will be a change N2 → N(1+(N−1) exp(−ft)),
resulting in the particle current to change from (1.52) to Jn

R → L(t) = (1 + (N −
1) exp(−ft))Γpe. For t ≫ 1/f we get current for the incoherent case.

To say, in which cases would coherence-enhanced current make a significant
contribution, we will compute both work and its fluctuations in a general time
interval t ∈ (0, τ), and require work to be greater than its own fluctuations.

Work grows over time as

∂tW (t) = P (t) = Jn
R → L(t)(µR−µL) = (1+(N−1) exp −ft)Γpe(µR−µL) . (1.58)

By integrating this relation from time 0 to τ we get

W (τ) =
∫︂ τ

0
dt(1 + (N − 1)e−ft)Γpe(µR − µL)

=
(︄
τ + (N − 1)1 − e−fτ

f

)︄
Γpe(µR − µL) . (1.59)

In both reservoirs, the mean square deviation of the number of particles will
grow as ∂t⟨σ2

n⟩ = 2peΓN(1 + (N − 1)e−ft). Then

∂t⟨σ2
W (t)⟩ = 2peΓN(1 + (N − 1)e−ft)(µ2

R + µ2
L) . (1.60)

By integration we get

⟨σ2
W (τ)⟩ =

∫︂ τ

0
dt2(1 + (N − 1)e−ft)NΓpe(µR − µL)2

= 2
(︄
τ + (N − 1)1 − e−fτ

f

)︄
NΓpe(µR − µL)2 . (1.61)
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In both (1.59) and (1.61) we can see a term that is proportional to τ and does
not depend on f , we can therefore identify this term with incoherent contribution
(and indeed, we can trace the origin of this term back to the diagonal elements of
ρc,f(t)). Then the other term in both (1.59) and (1.61) proportional to (N−1)(1−
e−fτ )/f is the contribution of the coherence-enhanced current. We, therefore,
denote these contributions as Wcoh and ⟨σ2

Wcoh
⟩ respectively. Then

Wcoh(τ) = (N − 1)1 − e−fτ

f
Γpe(µR − µL)

⟨σ2
Wcoh

(τ)⟩ = 2(N − 1)1 − e−fτ

f
NΓpe(µR − µL)2 .

(1.62)

Then, for the coherences to make a significant contribution, we require Wcoh(τ) >√︂
⟨σ2

Wcoh
(τ)⟩. After performing limit N ≫ 1 we are left with

(︂
1 − e−fτ

)︂ Γ
f
pe(µR − µL) >

√︄
2 (1 − e−fτ ) Γ

f
pe(µR − µL)2 +O

(︃ 1
N

)︃
(︂
1 − e−fτ

)︂ Γ
f
pe > 2 +O

(︃ 1
N

)︃
.

(1.63)

There is still a dependence on the duration of the time interval τ . We can either
say, that if coherences are to make any important contribution, they must do so
on the time scale 1/f , and set τ = 1/f , or if we know the actual time, the process
will take we may set τ to be equal that time. In either case, we get some condition
on the coefficient of decoherence f , that does not depend on N explicitly.

So we see, that whether the contribution of coherence-enhanced current is
significant in the case when coherences gradually decrease, depends on how fast
the decoherence is. We derived the condition, that specifies with how fast deco-
herence do coherences have enough time, to make a significant contribution. This
is only a rough estimate, made for the specific model with some assumptions, but
it might work as a rule of thumb even in different situations.

1.5 Summary
In [14] authors proposed a way, how quantum coherences may enhance a current.
In this chapter, we studied this enhancement via three different models and we
hope, that we brought a new physical intuition into what causes this effect. One of
our models expands on models from the article showing, that coherence-enhanced
particle current can be used to construct an engine, that does work while being
in a nonequilibrium steady state.

One of the possible usages of this enhancement is, that it makes it possible
to choose an initial state to be close to equilibrium, and thus reduce entropy
production, while maintaining the magnitude of the current. Authors of [14]
propose a limit in which as the degree of degeneracy N increases, the efficiency of
the heat engine, that is using this enhancement, approaches the Carnot efficiency,
while the power of the engine increases. This is possible because the transition
rates in the two-level system scale with N as k± = O(N2).

With degeneracy alone, the rates scale only as k± = O(N). Analogously in
classical heat engine heat current is proportional to its size [20], in other words,
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if we use N identical heat engines, the resulting heat current during heating
and cooling (and therefore also resulting power) will be N times greater. Thus,
an interesting result from the paper [14] is that coherences between states with
the same energy can increase the rates by factor O(N2), which is O(N) times
more than degeneracy alone, thus increasing the heat current between the sys-
tem and the reservoir, thus improving the performance of heat engines. This
improvement does not have a classical counterpart. Or in other words, a heat
engine that utilizes coherence-enhanced currents can exceed the power-efficiency
trade-off relations for classical engines [20, 21].

However to create and maintain coherences is not for free, so we see, that claim
from [21], that “the power-efficiency dilemma relates to computational complex-
ity” still holds, as both quantum heat engines and quantum computers benefit
from coherences between a large number of states. More about quantum co-
herence as a resource can be found in [1, 2, 9]. To use this quantum advantage
in practice, we need to find a system with a suitable Hamiltonian, or somehow
modify this approach to some existing system. According to [10] “...it is not
straightforward to find a physical counterpart of their model. For a better inter-
pretation of the quantum phenomena, it is preferable to seek another concrete
model that provides the quantum enhancement with a physically realizable set-
ting.” So far no one has managed to use this model to construct a working engine
but as a general framework, it is very useful, because it shows different effects of
coherences between states with the same energy and coherences between states
with different energy.

The paper [14] did not mention the fluctuations of this coherence-enhanced
current, so we calculated them in our work. The main goal of our analysis was
to show, that the work done by a heat engine that uses these coherences can be
higher than these fluctuations. We have shown, that it takes a certain time for
this to happen, but that time does not asymptotically depend on N .

Article [14] does not consider any decoherence between states with the same
energy. So we explored the behavior of coherence-enhanced current if such deco-
herence took place. The main result of that section is, that we derived a condition
that estimates how fast can decoherence be, so coherence-enhanced current still
gives a significant advantage.
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2. Coherence-Inducing Heat
Bath
Let us now turn our attention to coherence generation. Namely, we shall discuss
a model introduced in [19], in which the authors write about a system whose
stationary state has non-zero coherences. The system converges to this stationary
state even if it had no coherences, to begin with. Perhaps most interestingly, this
happens just thanks to the interaction with a bosonic reservoir. In particular,
the main model in this paper is spin in a magnetic field interacting with such a
reservoir. The Hamiltonian of the full system is

H = HS +HR +HI = ω0

2 σz ⊗ 1 + 1 ⊗
∑︂

k

ωR
k b

†
kbk + (f1σz + f2σx) ⊗BR , (2.1)

where ω0 is the energy gap between the ground and excited state of the spin,
bk, b

†
k are bosonic annihilation and creation operators, ωR

k are energies of different
modes of the reservoir, f1, f2 are coupling constants and BR = ∑︁

k gk(bk + b†
k).

The density matrix of the spin can be decomposed using the Bloch vector
v⃗ = (v1, v2, v3)

ρ(v⃗) = 1
2

(︄
1 + v3 v1 − iv2
v1 + iv2 1 − v3

)︄
. (2.2)

Thus, the component of the Bloch vector in the magnetic field direction (which
is the z-direction) v3 describes the probabilities of the spin being in ground or
excited state, and the remaining two components describe the coherences. The
coherences are zero if and only if v1 = v2 = 0.

In Supplementary Material of [19] the Bloch equations for the time evolution
of this vector were derived as

∂tv⃗(t) = M(t)v⃗(t) + b⃗(t) (2.3)

where

M(t) =

⎛⎜⎝ −f 2
1γ1(t) −ω0 f1f2γ

c
1(t)

ω0 + f 2
2γ

s
1(t) −f 2

1γ1(t) − f 2
2γ

c
1(t) f1f2γ

s
1(t)

f1f2γ1(t) 0 −f 2
2γ

c
1(t)

⎞⎟⎠ (2.4)

and

b⃗(t) =

⎛⎜⎝ f1f2γ
s
2(t)

f1f2(γ2(t) − γc
2(t))

−f 2
2γ

s
2(t)

⎞⎟⎠ . (2.5)

Formulas for coefficients γ can be found in that supplement.
So we have specified the model from [19] and wrote its equations of motion.

In the rest of this chapter, we will explore the properties of this model in a
framework of quantum thermodynamics. At first, we will focus on extraction of
work and then we will discuss entropy and the Second law of thermodynamics.

2.1 Fast Work Extraction with One Heat Bath
Let us see how the spin behaves very shortly after connecting to the reservoir. We
denote a short time ∆t. Then in the previous relations the γs

1,2(∆t) ∼ sin(ω0∆t),
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i.e., γs
1,2(∆t) ≈ 0. Similarly in the γc

1,2(∆t) ∼ cos(ω0∆t) we can consider the
cosine to be approximately equal to 1 for small ∆t. So then

γc
1,2(∆t) ≈ γ1,2(∆t) =

∫︂ ∆t

0
dτ2D1,2(τ) ≈ 2D1,2(0)∆t (2.6)

where D2 is, in turn, proportional to the sine, so it goes to zero for short times.
There is a cosine in D1, that will go to 1. It remains

D1(0) = 2
∫︂ ∞

0
dωλ ωs

Ωs−1 exp
(︃

−ω

Ω

)︃
coth

(︃
ω

2T

)︃
, (2.7)

where Ω is the cutoff frequency, s is the Ohmicity parameter, T is the temperature
of the reservoir and we set kB = 1.

We see that b⃗(0) = 0 and

M(∆t) =

⎛⎜⎝−f 2
1 2D1(0)∆t −ω0 f1f22D1(0)∆t
ω0 −(f 2

1 + f 2
2 )2D1(0)∆t 0

f1f22D1(0)∆t 0 −f 2
2 2D1(0)∆t

⎞⎟⎠ . (2.8)

Note that we have made the approximation to the second order, i.e., we have
assumed that ∫︂ ∆t

0
dτ2D1(τ) sin(ω0τ) ∼ D1(0)ω0∆t2 ≪ 1/∆t

ω0D1(0)∆t3 ≪ 1 , (2.9)

but we do not neglect D1(0)∆t2, so there are linear terms left in the matrix M .
The mean energy of the spin itself is given by

⟨HS⟩ = Tr(HSρ) = Tr
(︃
ω0

2 σz
1
2(1 + v · σ)

)︃
= ω0

4 Tr(σzv3σz) = ω0

2 v3 , (2.10)

this gives the mean work done by the spin when the energy gap ω changes sud-
denly (jump-like change) from ω0 to ω1, as

W = −∆⟨HS⟩ = ⟨HS0⟩ − ⟨HS1⟩ = ω0

2 v3 − ω1

2 v3 = −∆ω
2 v3 . (2.11)

This is only the mean work deduced from energy conservation. In particular,
when we change the energy gap of the spin, its energy changes, and if the change
of the energy gap is sudden, the state of the reservoir does not change. Therefore
the energy of the reservoir does not change as well. That means, that the energy
of the spin-reservoir system changes by the same value, by which the energy of
the spin changes. Therefore we call this change in the spin-reservoir energy the
work done by the spin (or the work done on the spin, depending on the sign of
the energy).

Let us now use the above model to compare extraction of the work in cases
when f1 = 0 , f2 ̸= 0 and when f1 ̸= 0 , f2 ̸= 0. We do not discuss cases when
f2 = 0 in the same way, because in these cases we see from (2.4) and (2.5), that
v̇3 = 0. Therefore there will be no energy exchange between the spin and the
reservoir, so we can not use this case to extract work from the reservoir.
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We will assume that the initial state of the spin is given by thermalization.
Where under thermalization, we understand long-time (t → ∞) interaction of
the spin with the given reservoir.

We can formulate our task in the following way: We start with a spin, that
was coupled to the reservoir for a time t → ∞. We disconnect the spin from
the reservoir, and we ask how much work we can extract from the reservoir if we
connect this spin to the same reservoir again, but only for a short period of time.

In the case with f1 = 0 the initial state of the spin will be incoherent and also
no coherences will be created during the work extraction. On the contrary, in the
case with f1 ̸= 0, initial state will contain coherences, giving us an opportunity
to see the role coherences can play in the extraction of work.

2.1.1 Without Coherences
If f1 = 0, and and the initial state has no coherences, the evolution of v3 is given
by the differential equation

∂tv3 = −f 2
2 2D1(0)tv3 . (2.12)

The solution to this equation is v3(t) = v3(0) exp(−f 2
2D1(0)t2) (so again we see

that the approximation was to second order). We denote

f 2
2D1(0) = c > 0 (2.13)

for brevity. We are left with v3(t) = v3(0) exp(−ct2). Thus, the resulting work is

W =
∞∑︂

i=0
Wi =

∞∑︂
i=0

−ωi+1 − ωi

2 v3(0) exp(−ct2i )

= v3(0)ω0

2 + v3(0)
∞∑︂

j=1

ωj

2 (exp(−ct2j) − exp(−ct2j−1)) , (2.14)

where ti is the time of the change of the energy gap from ωi to ωi+1. Let us have
ω0 > 0, then because we assume that the initial state is a result of thermalization,
we get that [19]

v3(0) = − tanh(ω0/(2T )) < 0 . (2.15)
Thus, the first term on the right-hand side of Eq. (2.14) is negative. If ωj > 0, we
see that the given term of the sum is positive. We formally rewrite the parenthesis
in the sum

(exp(−ct2j) − exp(−ct2j−1)) = [exp(−ct2)]tj

tj−1 =
∫︂ tj

tj−1
−2ct exp(−ct2)dt . (2.16)

We can then define a piecewise-constant function ω(t) value of which is equal to
the energy gap at time t, formally ω(t) = ωj if t ∈ (tj−1, tj). We use the fact that
the boundary points of integrals occur in successive terms of the sum, once as a
lower and once as an upper bound, to express each term of the sum as integral.
Then we use the fact that the integral is additive over intervals, to rewrite the
sum of integrals as a single integral. Finally, we set t0 = 0, and if there is no
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change in energy gap at time t = 0, we can formally take ω1 = ω0

W = v3(0)ω0

2 + v3(0)
∞∑︂

j=1

ωj

2 (exp(−ct2j) − exp(−ct2j−1))

= v3(0)ω0

2 − v3(0)
∞∑︂

j=1

∫︂ tj

tj−1
ω(t)ct exp(−ct2)dt

= v3(0)ω0

2 − cv3(0)
∫︂ ∞

0
ω(t)t exp(−ct2)dt . (2.17)

Since t exp(−ct2) is positive for t > 0, the integral will have the largest value if
ω(t) is maximal. Because the prefactor −cv3(0) > 0, the work is maximal if the
integral is maximal. Therefore, the condition for maximizing work is, that ω(t)
is maximal.

For example, if we have the constraint |ω(t)| ≤ ωmax, the greatest work by the
system will be done, if we immediately change ω to ωmax and then do not change
it again. Formally, if ω(t) = ωmax. We can also calculate how much work we have
lost if we chose a suboptimal procedure

Wopt −W = −cv3(0)
∫︂ ∞

0
(ωmax − ω(t))t exp(−ct2)dt . (2.18)

We can also note that if ω0 = ωmax, it is not worth changing the energy gap
at all, and hence Wopt = 0. More generally,

Wopt = v3(0)(ω0 − ωmax)/2 . (2.19)

Finally, we remind that the time evolution (2.12) assumes a short-time limit
i.e., there is only some limited time (in the order of less than (ωmaxD1,2(0))−1

3 )
while the system behaves according to (2.12). Wopt represents an upper bound
on the work that can be extracted from the spin in this limit.

2.1.2 With Coherences
If both f1 and f2 are non-zero, the differential equations for the coherences in the
short time limit are

∂tv1 = −f 2
1 2D1tv1 − ωv2 + f1f22D1tv3 (2.20)

∂tv2 = ωv1 − (f 2
1 + f 2

2 )2D1tv2 . (2.21)

For the short-time limit, it is natural to assume that |ω| ≫ |(f 2
1 + f 2

2 )2D1t| >
|2ct| whereby all terms up to two drop out and we get a simple system of linear
differential equations for the evolution of the coherences in time. So far we have
assumed that t3ωD1(0) ≪ 1, therefore now we have two scales compared to which
the time must be small, one increasing with ω and the other decreasing. Let us
now focus on the combination of these conditions, which we will write down

ωDt3 ≪ 1; Dt
ω

≪ 1 , (2.22)

we modify the first one to make the left-hand side of the second condition appear

Dt

ω
(ωt)2 ≪ 1 , (2.23)
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and we see that ωt is not necessarily small, it just can not be too big.
With these approximations, we get a simple system of linear equations for the

evolution of the coherences

∂tv1 = −ωv2 , (2.24)
∂tv2 = ωv1 , (2.25)

that has a solution v1(t) = cos(ωt)v1(0) − sin(ωt)v2(0); v2(t) = sin(ωt)v1(0) +
cos(ωt)v2(0). If we assume, that the initial state is a result of thermalization,
then from [19] that v2(0) = 0. We denote f1f2D1v1(0) = cb, then

b = f1

f2
v1(0) , (2.26)

and the differential equation for v3 will be

∂tv3 = f1f22D1t cos(ωt+ ϕ)v1(0) − f 2
2 2D1tv3 = 2tc(b cos(ωt+ ϕ) − v3) , (2.27)

where ϕ = 0 if v2(0) = 0, but this generalization is handy when we vary ω. Then
ϕj = ∑︁j

i=1 ωi(ti − ti−1) is the phase at time tj. For the time t ∈ (tj, tj+1) we can
write this equation as

∂tv3 = 2tc(b cos(ωj+1(t− tj) + ϕj) − v3) . (2.28)

We see that at time t = 0 the right-hand side will be positive i.e., v3 will be
increasing. So, as in the case without coherences, it will be optimal to immediately
change ω to ωmax, doing the same work Wopt as in the case without coherences.
But the difference is that if f1 ̸= 0, v3 may stop increasing after some time and
start decreasing, still during the short-time limit. At that time it is worth doing
the work and in the local maximum v3max decrease ω to ω′, to in turn in the local
minimum v3min

increase ω back to ωmax, thus we will (in addition to Wopt) extract
the work of

Wc = 1
2(ωmax − ω′)(v3max − v3min

) > 0 . (2.29)

It is impossible to obtain similar work in the case without coherences, since there
(in the short-time limit) v3 is monotone.

We remind that equations (2.28) were derived for the case |ω| ≫ |2ct|, |ωct3| ≪
1, therefore it is not possible to repeat similar jumps indefinitely, on the contrary,
typically one can manage on the order of units of jumps back and forth. Also,
one cannot choose ω′ too low, since this limits the time the approximation holds.
However, since the smaller the ω′, the more work we get from the jump, it seems
to be most worthwhile to choose ω′ as the smallest possible at which a jump can
still be made.

The main result of this section is, that the coherences between the states with
different energy provide an advantage in the fast work extraction from one heat
bath.
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2.2 Examining the Model within the
Framework of the Second Law of
Thermodynamics

If we look again at subsection 2.1.1, we see that we could build an engine working
as follows:

1. we let spin thermalize (v1(0) = v2(0) = 0; v3(0) = − tanh
(︂

ω1
2T

)︂
)

2. we increase ω by ∆ω to get Wout = −∆ωv3(0)

3. turn on the interaction with the reservoir for some sufficiently short time τ
(the condition is ∂tv3(t) > 0 for t < τ)

4. reduce ω to its original value, to do this we have to do the work Win =
∆ωv3(τ). But |Win| < |Wout|, because v3 has decreased in absolute value
since step 2, so we have obtained a net positive work during one cycle

5. we let the spin thermalize again

We have gained positive work during the cycle, and at the end of the cycle, our
heat engine (spin) is in the same state as at the beginning. In other words, here
we have a cyclic heat engine interacting with a single reservoir i.e., a perpetual
motion machine of the second kind, or in other words an engine forbidden by the
Kelvin–Planck statement of the Second law of thermodynamics.

In this section, we will investigate this supposed conflict of the model from [19]
with the Second law of thermodynamics and try to explain what happens.

One possible explanation might be, that because for this heat engine to work,
the interaction must be turned on only for a sufficiently short time τ , it might be
that there is an approximation in the description used, which does not describe
short time scales accurately enough. But in paper [19] authors claim, that Bloch
equations were derived with only the assumption of weak coupling between spin
and reservoir and without secular or Born-Markov approximation, so they de-
scribe both the short-time and long-time limit well. We will come back to this
claim later.

Another explanation might be that for quantum heat engines, it is possible
to overcome the Carnot efficiency without reducing the entropy, as shown by [2].
The principle is that decoherence increases entropy. If the reservoir is initially
in a coherent state, it is possible to use these coherences as a quantum source of
work. This is in principle very similar to the Szilard Engine [27], it too can work
with an efficiency η = 1 if we do not require memory erasing (i.e. if we do not
require periodicity). But in our case, the reservoir starts in a thermal equilibrium
state (which is without any coherences), so we can not use this explanation.

Next, we will examine the role that interaction Hamiltonian HI from (2.1)
plays. Specifically, we ask how changing the coupling constants f1, f2 affects the
behavior of the system from the perspective of the production of entropy.
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2.2.1 The Role of Interaction in the Investigated Phe-
nomenon: Mathematical Derivation

In this subsection, we will calculate the time derivatives of the entropy of the
whole closed system, at first in the case with coupling constant f2 = 0 and then
in the case with coupling constant f1 = 0. But before we do that, we have to
define, what we mean by “the entropy of the whole closed system”.

We decompose the closed system as the spin and the reservoir. To derive the
equations of motion, the weak coupling, which means, the assumption that there
is no correlation between the spin and the reservoir, was used [15]. Thus the
entropy of the whole system is a sum of the entropy of the spin and the entropy
of the reservoir. And lastly, we are not interested in absolute entropy, only in its
derivatives. As the equation of motion is written in terms of the Bloch vector,
we should calculate derivatives of entropy with respect to the components of the
Bloch vector.

We start with the spin. We can write its density matrix given by the Bloch
vector

ρ(v⃗) = 1
2

(︄
1 + v3 v1 − iv2
v1 + iv2 1 − v3

)︄
, (2.30)

and then define the entropy of the spin as a Von Neumann entropy of such a
density matrix. It can be obtained from its eigenvalues, which are λ± = (1±|v⃗|)/2.
Thus

SS(v⃗) = −1 + ||v⃗|
2 ln 1 + ||v⃗|

2 − 1 − |v⃗|
2 ln 1 − |v⃗|

2 , (2.31)

and the derivatives of it with respect to the components of the Bloch vector are

∇SS(v⃗) = v⃗

|v⃗|
ln 1 − |v⃗|

1 + |v⃗|
. (2.32)

The reservoir starts in the state of thermal equilibrium and stays in thermal
equilibrium, therefore the change in the entropy of the reservoir is given only by
the change in its energy. Because the spin-reservoir system is closed, we can use
conservation of energy to get that the change of energy of the reservoir is equal
to minus the change of energy of the spin. As we have already discussed, the
mean energy of the spin is ⟨HS⟩ = ω

2 v3. Therefore if we keep the energy gap ω
constant, the energy of the reservoir will change as dQR = −ω/2dv3. Then the
derivative of the entropy of the reservoir with respect to the components of the
Bloch vector is

∇SR(v⃗) = − ω

2T e3 , (2.33)

where e3 is a unit vector in the space of the Bloch sphere, pointing in the z-
direction.

To sum up, we derived, that derivatives of “the entropy of the whole closed
system” with respect to the components of the Bloch vector are

∇S(v⃗) = v⃗

|v⃗|
ln 1 − |v⃗|

1 + |v⃗|
− ω

2T e3 . (2.34)

We can verify that at the point vT⃗ =
(︂
0, 0,− tanh

(︂
ω

2T

)︂)︂
the ∇S(vT⃗ ) = 0⃗ and the

Hessian matrix is negatively definite, thus it is a state with maximum entropy
according to our definition.
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Consequently, the total time derivative of entropy will be given by
dS
dt = ∇S(v⃗) · ∂tv⃗ , (2.35)

where the time derivative of v⃗ is obtained from (2.3).
If we set f2 = 0 in (2.4) (i.e. we turn off coupling of the reservoir with the

projection of the spin to the x-direction) we get

M(t)|f2=0 =

⎛⎜⎝−f 2
1γ1(t) −ω0 0
ω0 −f 2

1γ1(t) 0
0 0 0

⎞⎟⎠ , (2.36)

and b⃗(t) = 0. (Note that there is a typo here in [19]: the f 2
2γ

s
1(t) has been changed

to f 2
1γ

s
1(t) in the M21 element.) Then

∂tv⃗(t)|f2=0 =

⎛⎜⎝−f 2
1γ1(t)v1(t) − ω0v2(t)

ω0v1(t) − f 2
1γ1(t)v2(t)

0

⎞⎟⎠ . (2.37)

This, when substitued to (2.35) gives
dS(t)

dt |f2=0 = 1
2|v⃗|

ln 1 + |v⃗|
1 − |v⃗|

(v1(t)2 + v2(t)2)f 2
1γ1(t) . (2.38)

The only one of the factors in this product that is not non-negative trivially is
γ1(t) = 2

∫︁ t
0 dτD1(τ), where

D1(τ) = 2
∫︂ ∞

0
dω cos(ωτ) coth

(︃
ω

2T

)︃
λ
ωs

Ωs−1 e
− ω

Ω . (2.39)

There is an error in the paper [19], since the result given for D1(τ) does not fit in
0, for example. According to the paper [19], D1(0) = 2λTΩ(−T/Ω)s[ψ(s)(T/Ω) +
ψ(s)(1 + T/Ω)], But when we set τ = 0 in (2.39), we get that the D1(0) =
sΓ(s)[2(T/Ω)s+1ζ(s + 1, T/Ω) − 1], where ζ is the Hurwitz Zeta function. By
substituting in some values we can verify that these expressions do not equal. In
figure (2.1) we explain why the expression from the paper does not give accurate
results at least in some cases. It is reasonable to assume that also for times other
than 0, this formula for D1 does not give accurate results. Although we have not
been able to compute the integral generally, we do not need a specific value of
D1, it is enough to show the non-negativity of the function γ1(t). We substitute
D1 as an integral, make the substitution x = ω/Ω and swap the integrals

γ1(t) = 4λΩ2
∫︂ ∞

0
dx coth

(︄
x

Ω
2T

)︄
xse−x

∫︂ t

0
dτ cos(xΩτ)

= 4λΩ
∫︂ ∞

0
dx coth

(︄
x

Ω
2T

)︄
xs−1e−x sin(xΩt) = 4λΩ

∫︂ ∞

0
dxF (x) sin(xΩt) .

(2.40)

Since the parameter s ≤ 1, F (x) is the product of three functions that are
non-increasing and positive on the interval, and hence F (x) itself is non-increasing
and positive. Thus, if we chop the x-axis into individual periods of the sine

γ1(t) = λΩ
∞∑︂

i=0

∫︂ (i+1) 2π
Ωt

i 2π
Ωt

dxF (x) sin(xΩt) , (2.41)
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Figure 2.1: 2λTΩ(−T/Ω)s[ψ(s)(T/Ω) + ψ(s)(1 + T/Ω)] for s = 0. If D1(0) were
given by this relation, then for some combination of values it would be negative,
which in t = 0 cannot happen, because then there would be a positive value on
the diagonal of M . Then if the initial state had a component of the Bloch vector
in the x or y direction equal to 1, this component would immediately grow over 1,
which does not make physical sense. Therefore we know that this formula given
in [19] does not give accurate results, at least in t = 0. For higher times we can
no longer use this argument, D1 can be negative, just its integral γ(τ) turns out
to be positive. But even if there were a time τ > 0 such that γ(τ) < 0, nothing
guarantees that any component of the Bloch vector could be high enough at that
time to exceed 1 as a result of that. Therefore we have to derive that γ(τ) > 0
differently.

Figure 2.2: Figure representing formula (2.41) for values Ωt = 4, Ω/(2T ) = 12
and s = 1. We can see from the figure that the green areas are always larger than
the following red areas, so the resulting integral will be positive
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each term of the sum will be non-negative since the contribution in the positive
part of the period of the sine will be larger in absolute value than the one in the
negative part, we express this statement graphically in (2.2).

Thus γ1(t) ≥ 0. When we plug this information into (2.38), we see that
assuming f2 = 0, the time derivative of the entropy is non-negative. Thus it
is clear that coupling of the reservoir with the projection of the spin to the z-
direction is by itself behaving as one would expect.

But on the contrary, if we put f1 = 0 and f2 ̸= 0 in (2.4) (i.e. we turn off
coupling with the z-direction, but turn coupling with the x-direction back on),
we get

M(t)|f1=0 =

⎛⎜⎝ 0 −ω0 0
ω0 + f 2

2γ
s
1(t) −f 2

2γ
c
1(t) 0

0 0 −f 2
2γ

c
1(t)

⎞⎟⎠ , (2.42)

and b(t)|f1=0 = −e3f
2
2γ

s
2. Then

∂tv⃗(t)|f1=0 =

⎛⎜⎝ −ω0v2(t)
ω0v1(t) + f 2

2γ
s
1(t)v1(t) − f 2

2γ
c
1(t)v2(t)

−f 2
2γ

c
1(t)v3(t) − f 2

2γ
s
2(t)

⎞⎟⎠ . (2.43)

This, when plugged into (2.35) gives

dS(t)
dt |f1=0 = ω

2T f
2
2 (γc

1v3(t) + γs
2)+

+ 1
2|v⃗|

ln 1 + |v⃗|
1 − |v⃗|

f 2
2

[︂
(v2(t)2 + v3(t)2)γc

1(t) − v1(t)v2(t)γs
1(t) + v3(t)γs

2(t)
]︂
.

(2.44)

Now, we will show, that the first term of the (2.44) can be negative. The
parenthesis (γc

1(t)v3(t) + γs
2(t)) can be negative for small times since for small

times γc
1(t) = O(t) while γs

2(t) = O(t2). So there will be a time τ such that
γc

1(τ) ≫ γs
2(τ), during that time it suffices that v3(τ) is negative and also has

some non-negligible size (namely at least |v3(τ)| > |γs
2(τ)/γc

1(τ)|(≪ 1)) and
(γc

1(τ)v3(τ) + γs
2(τ)) < 0 holds.

Since the second term of (2.44) does not depend on ω, in case, that the first
bracket of (2.44) is negative, there exists an ω for which dS(t)/dt|f1=0 < 0. Thus,
we see that the interaction of the reservoir with the projection of the spin in
the x-direction is itself responsible for the decrease in entropy, as we defined it.
Note, that the ”perpetual motion machine of the second kind” we outlined at the
beginning of this section also needs f2 ̸= 0, but no condition on f1. Also, note
that coherences are not necessary. We needed a condition, that v3 < 0 but no
assumptions concerning v1, v2.

In fact, there is no need to calculate the whole evolution, if we just plug in
the state, that has the maximum entropy according to our definition (vT⃗ ) into
(2.3) we see that while for the case with f2 = 0, we get ∂tvT⃗ = 0, for f2 ̸= 0 this
is generally not the case, i.e., there may be a decrease in entropy (or rather in
what we defined as entropy). This is even a necessary property of systems that
converge to a state with steady-state coherences from any initial state (for this,
not only f2 ̸= 0 but also f1 ̸= 0 is needed in this model). If we start from a
state vT⃗ , that has no coherences and we consider it to be a state that maximizes
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the entropy of the whole system, then the resulting coherent steady state will
according to our description have lower entropy. This applies, for example, also
to models proposed in [28,29].

2.2.2 The Role of Interaction in the Investigated Phe-
nomenon: Physical Reasoning

But why does an interaction of the reservoir with the projection of the spin
into the x-direction cause this strange behavior, while the same interaction in
the z-direction does not? The only difference between the directions is that
there is a magnetic field in the z-direction, and thus the spin energy depends on
its projection into the z-direction. That does not leave much possibility as to
what the reason might be. Specifically, the issue is that the interaction with the
projection into the x-direction is pouring energy from the reservoir into the spin
even in situations where it according to our description of entropy should not.

Let us look again first at the situation with f2 = 0. In that case, the reservoir
interacts only with the spin projection in the z-direction. Information about the
z-direction will leak into the reservoir and thus decoherence will occur in the other
two directions. When we look at (2.36), we see that this is what happens (plus
precession, but this corresponds to free evolution and does not affect entropy).
And by decoherence the entropy increases.

There are a few changes in (2.42) compared to (2.36). A new off-diagonal
term is added, b⃗ ̸= 0⃗, and the constant for the diagonal terms changes a bit.
But the key change is that now into the reservoir leaks information about the
projection into the x-direction, and thus “decoherence” (not in a literal sense,
as v3 describes populations, not coherences) also occurs in the z-direction. Thus
when v3 < 0 and the interaction of the reservoir with the projection into the
x-direction reduces the magnitude of v3, it is thereby increasing the energy of the
spin. And this can occur even in cases when what we call “the entropy of the
whole closed system” is thereby reduced.

We can thus imagine a discrete version of the engine we have proposed:

1. we let spin thermalize (v1(0) = v2(0) = 0; v3(0) = − tanh
(︂

ω1
2T

)︂
)

2. we increase ω by ∆ω to get Wout = −∆ωv3(0)

3. we measure the projection of the spin in the x-direction, losing all informa-
tion about the z-direction, so now v3 = 0

4. we reduce ω to its original value, we do not need to do any work to do this,
since v3 = 0

5. we let the spin thermalize again

It would seem that this is just another implementation of the Quantum Szilard
Engine. But the difference is greater than just that the measurement comes after
the work is done, not before it (which is related to the fact that we are measuring
in a direction perpendicular to the significant one). The main difference is that
the work we get during one cycle is −v3(0)∆ω, while the work required to erase
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the memory where we store the information about the spin projection in the x-
direction (which is the only measurement during the cycle) is T ln(2), which does
not depend on ∆ω. That is, for every choice of the parameters T, ω1, there exists
a ∆ω for which we get positive work from the cycle. Specifically, we need to
increase the energy gap by

∆ω > T ln(2)
tanh

(︂
ω1
2T

)︂ . (2.45)

Note that we once again assume that f2 ̸= 0 here because otherwise, thermaliza-
tion would not affect v3, as we see from (2.37). In other words, the transition
between the ground and excited state is forbidden for f2 = 0.

Why would not this cycle behave like a perpetual motion machine in reality?
Because there is more to fully considering the measurement process than just
erasing information afterward. Generally, it is interaction with something outside
of the system, and therefore the entropy of the system can decrease as a result of
this interaction, as the system is not closed in the moment it happens.

However, when instead of measurement there is just an interaction between
the reservoir and the projection of the spin to the x-direction, there is no in-
teraction outside of the closed spin-reservoir system, so the total entropy of the
spin-reservoir system should not decrease. Moreover, if we consider, that the full
evolution of the spin-reservoir system is given by ρ̇full = −i[Hfull, ρfull], the total
entropy can not decrease regardless of the Hamiltonian [15]. Therefore we must
conclude, that there is some problem in using thermodynamic limit, or weak cou-
pling. For example, some assumption was made which is valid in the case when
the reservoir interacts only with the projection of the spin to the z-direction but
is not valid when we add interaction with projection to the x-direction.

There are two possibilities for when this could happen. One option is a pro-
jection of the dynamics of the full system onto the spin subsystem. The second
option is, that what we defined as entropy is not actual entropy, and therefore
it may decrease in time, even though entropy does not decrease in time. Let us
first discuss this second option and then come back to the first one.

What are some of the conditions, that some function S̃ must satisfy, to be
considered entropy of the system, if the time evolution was calculated accurately?
In the case when f1 = 0, f2 ̸= 0 state vT⃗ (with no coherences) is maximizing the
S̃ (at least locally) for t → ∞ because all initial states are converging to this
state. However, vT⃗ can not be maximizing the S̃ for all times, because if we
choose vT⃗ to be the initial state, the state of the spin will still evolve nontrivially,
before converging back to the initial state. In the case of f1 ̸= 0, f2 ̸= 0 the
state, that maximizes S̃ for t → ∞ must be the steady state with spin having
non-zero coherences, but again, this can not be the same for general time, as the
evolution is not trivial even in the case if we choose this state to be the initial.
So we see, that the function S̃ can not depend only on the Bloch vector, but the
state of the system has to be defined also by some other quantity (perhaps the
time). The form of S̃ must also depend on both coupling constants f1, f2, as the
resulting steady state depends on their product, and the behavior of the system
is quite different in the case when just f1 = 0 compared to the case when just
f2 = 0. This makes sense, as these constants describe the reservoir (similarly to
for example temperature).

We were not able to find the generalization of entropy that would satisfy
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these conditions. It can be however interesting research topic, that can bring
useful insights into the role of coherences in quantum thermodynamics.

Now back to the other option. If the problem is not in the definition of entropy,
it would have to be in the equation of motion for the reduced system. This was
obtained from the evolution of the full system (which conserves the entropy) by
projecting it onto the spin. We will explore what could be inconsistent in this
process, in the next subsection.

2.2.3 Redfield approximation
Not many assumptions have been made during the projection of the full evolution
onto the reduced system (as we already mentioned, Born-Markov and secular
approximations were not used). If we do not want to question weak coupling
itself, it leaves just the so-called Redfield limit [15]

∂tρ(t) = −
∫︂ t

0
dsTrR[HI(t), [HI(s), ρ(s) ⊗ ρR]] →

∂tρ(t) = −
∫︂ t

0
dsTrR[HI(t), [HI(s), ρ(t) ⊗ ρR]] .

(2.46)

This approximation changes the time argument of the reduced density matrix on
the right-hand side of its equation of motion, so the time derivative depends only
on the current state and not the previous ones. This approximation is therefore
necessary for Bloch equations to be local in time.

According to [30, 31] this approximation assumes, that the characteristic re-
laxation time of the reservoir τR is much shorter than the characteristic time over
which the state of the spin varies significantly τS. It is straightforward to assume,
that τR ∼ 1/T and τS ∼ 1/ω. Then the assumption used in deriving the Redfield
limit (2.46) can be cast symbolically as

τR ≪ τS

ω ≪ T . (2.47)

We see that upon using this assumption, all of the apparent conflicts with the
Second law of thermodynamics vanish. Namely:

• In (2.2.1) to show, that the time derivative in entropy (2.44) can be nega-
tive we first show that the first bracket is negative and then assume, that
prefactor ω/T can be arbitrarily large. But according to (2.47), this factor
is quite small.

• In [19] the steady-state coherences vanish.

Redfield limit assumes condition (2.47) in the sense that it is a sufficient
condition, but not a necessary one. Therefore we can not be sure, wheater the
results derived using the Redfield limit are valid also for cases when (2.47) does
not hold. However, it is possible that the coherence-inducing heat bath is only
artifact caused by plugging in values that are incompatible with assumptions,
that were used to derive the equations of motion.

But if this was the actual problem all along, we should ask the following
question: why coupling of the reservoir with the projection of the spin to the
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z-direction was not causing a decrease in entropy as well? The reasons for this
are similar to what we indicated in subsection 2.2.2. By approximation (2.46) we
speed up the rate at which the information about the projection of the spin into
a given direction is escaping into the reservoir (at least that is how it works in
the case of z-direction). We try to illustrate why this happens in figure 2.3. If the
direction, with which the reservoir is interacting is the z-axis, this only speeds up
decoherence. But if this is true also for the x-axis and the projection of spin into
z-direction is negative, a similar mechanism might induce a heat current from the
reservoir to the spin, which might be non-physical.

To sum up this subsection: the Redfield approximation was used in the deriva-
tion of the equations of motion in [19]. This approximation was derived in [30]
with the assumption we recast for this model as (2.47). All of the supposed
conflicts with the Second law of thermodynamics vanish upon applying this as-
sumption. However, we did not find any direct proof, that it is this approximation
that causes the counterintuitive behavior of the model presented in paper [19],
so it might all be just a coincidence. The best way to find out, wheater the
equations of motion derived in [19] describe the evolution of the system would be
to compare their predictions with some experimental data. However, no one has
constructed a system with Hamiltonian (2.1) in a laboratory yet, so this question
remains open.

2.3 Summary
In this chapter, we investigated the phenomena of coherence-inducing heat bath
that was introduced in [19]. We studied a model proposed in [19] that has a
steady state with non-zero coherences, and discussed what role these coherences
play in extracting work from the reservoir. It turned out, that in the case of fast
thermodynamic cycles with single heat bath coherences provide an advantage
over incoherent states.

However, it also seems, that it is possible to extract work from this system
periodically with only one (coherence-inducing) heat reservoir needed. In other
words, it is possible to construct an engine, which is forbidden by the Kelvin-
Planck statement of the Second law of thermodynamics. Upon further investiga-
tion, it turned out, that we can also anticipate, that any system, that converges
into a steady state with non-zero coherences from all initial states, seemingly
decreases the entropy of the whole system. We can see it from the following
construction: we prepare the reservoir in a state of thermal equilibrium and the
reduced system in such a state, that has the same populations as the final state
but zero coherences. Then the final steady state of the reduced system will have
lower von Neumann entropy than the initial one. And according to assumptions
of weak coupling the reservoir should be in the same state as it was at the begin-
ning (as there are no correlations between the reservoir and the reduced system,
and the reduced system has the same energy). Then the sum of the von Neumann
entropy of the reduced system and the entropy of the reservoir has decreased over
time.

We discussed two possible solutions for this supposed conflict with the Second
law. One is, that what we called entropy is not the actual entropy of the whole
closed system, and one has to generalize the entropy for this system. We came up
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Figure 2.3: Figure aims to show why the Redfield limit speeds up the rate at
which information about the projection of spin into a given direction is escaping
into the reservoir. We illustrate this in the case for f1 ̸= 0, f2 = 0, in this case, it
is equivalent to speeding up the decoherence. Matrix M that contains derivatives
from Bloch equation derived using Redfield limit for this case is (2.36). Because
v̇3 = 0, we ignore the z-direction in this figure. We see that free evolution is
precession with angular frequency ω0, in the figure it is represented by the black
curved dart. Decoherence induced by the reservoir contributes to evolution by
time derivative, which is proportional (with a negative constant) to the current
state. The current state is the black circle, this effect on it is represented by the
red dart. This is the result of the Redfield limit. If we want to calculate the effect
of the reservoir without using this approximation, we have to integrate along
the whole black dart. We represent the integration by adding several discrete
contributions (blue darts). We assume that each contribution is proportional to
the state at that time, we also drew them to have the same size, which is not
completely accurate, as they have to decrease as we go more to the past. But
the point is, that when we add these contributions, the result (green dart) is not
pointing straight to the center. Therefore, the state will converge faster if we
apply the Redfield limit. Or in other words, the Redfield limit can speed up the
rate at which information leaks into the reservoir. It is also clear, why in this
case this effect grows with ω0: state changes more during the same time, therefore
without the Redfield limit, we get contributions that are more different. And as
the temperature is inversely proportional to the relaxation time, the length of the
black dart, along which we have to integrate is proportional to ω0/T .

34



with some conditions, that this entropy has to satisfy to describe the evolution
of the system, but we were unable to find an explicit expression for such entropy.

Another option we discussed is, that assumption of the Redfield limit made
during the derivation of the equation of motion of the reduced system, might
be incompatible with the values that are being substituted into those equations
of motion. It is true, that upon assuming values that are compatible with the
derivation of approximations, all “conflicts with the Second law of thermodynam-
ics” vanish. However, this is not a proof, that the Redfield limit gives inconsistent
results outside of the scope of assumptions made during its derivation. Also, we
only explained, how the Redfield limit speeds up decoherence, and suggested,
that similarly, it can induce some non-physical heat currents, but this once again
does not prove, that it happens in this case. The surest way to tell, wheater the
equations of motion are accurate or not, would be to observe experimentally a
physical version of this system and compare its behavior to predictions of these
equations.

There is a third option, that the assumption of the weak coupling is incon-
sistent with the classical thermodynamics in the first place. However, this would
just mean that both equations of motion and the definition of entropy can be in-
consistent with the classical thermodynamics. Therefore we did not discuss this
option.

Although we were not able to narrow down the reasons for the counterintuitive
behavior of this system to one, we believe, that we provided a solid base for
a further investigation upon this intriguing issue. We also believe that it is
important to fully understand what causes this behavior, as this system is pushing
the boundaries of our current understanding of quantum thermodynamics.
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Conclusion
In chapter 1, we studied a model of coherence-enhanced currents proposed in
[14]. At first, we studied the model mathematically and calculated the moment-
generating function for the heat current and entropy production of coherence-
enhanced heat current in the model with a single heat bath in contact with a two-
level degenerate system. Based on these mathematical results, we have presented
a new physical insight about the cause of this coherence-induced enhancement:
probability current through a given channel is proportional to a probability of a
system being in a suitable state. Superposition enables a system to flow through
many channels while being in a single quantum state. And the probability of the
system being in this quantum state is therefore larger than in the case when the
system is just in a mixture of more states.

Then we used these results to show, that work done by a cyclic heat engine
utilizing coherence-enhanced heat current can be greater than its fluctuations
even in case of limit, when the two-level system is always close to the equilibrium
with a heat reservoir it is currently interacting with.

Furthermore, we proposed a generalization of the model from [14], that was
using coherences to enhance current between two particle reservoirs. We used this
model to create a heat engine, that does work while being in a nonequilibrium
steady state. We also derived a condition that determines with how fast decoher-
ence coherent-enhanced current still provides a significant quantum advantage.

In chapter 2, we studied a model proposed in [19], in which spin in a magnetic
field forms coherences just by interaction with the reservoir. At first, we have
shown, that coherences generated this way really provide the quantum advantage
in the extraction of work. Then we show, that we can extract work from the reser-
voir proposed in [19] periodically without any other reservoir needed. That seems
to contradict the Kelvin-Planck statement of the Second law of thermodynamics.
Therefore we studied the production of entropy induced by the interaction of the
spin and the reservoir.

However, it turned out, that either our formula for entropy is incomplete, or
the equations of motion of the spin derived in [19] are not consistent with the
used values for temperature T and energy gap ω. We were not able to find out
which of these options can be used to explain the behavior of this system. So we
discussed both of these options and hopefully provided a solid base for further
exploration of this remarkable model.

Results presented in our work provide useful physical insights into the theory
of quantum coherence and its applications. Therefore our results are potentially
useful in all areas of quantum physics, that try to exploit quantum coherences
to gain the quantum advantage, particularly in quantum thermodynamics and
quantum optics, as in our work we were mostly discussing papers concerning
these two fields.
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