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Abstract: Extremely fast relaxation processes in photosyntheticmolecular com-
plexes and in chlorophyllmolecules have been observed for decades. The emer-
gence of multidimensional spectroscopic techniques with femtosecond tempo-
ral resolution resulted in the discovery of many new, previously unseen phys-
ical phenomena in these systems. These ultrafast phenomena occurring on
the timescale of tens of femtoseconds (10−15 s) have been the subject of in-
tense discussions and experimental measurements, but theoretical models of
these processes are sparse. In this thesis, a new spectroscopic theoretical model
for chlorophyll-like molecules is formulated and tested. The physical param-
eters of the model were optimised on experimental linear absorption spectra
obtained from the literature. The parameterised model was then used to re-
produce the experimental data with great precision and also to simulate ex-
cited state population dynamics using the Redfield equations, which were de-
rived, implemented and computationally optimised. The relaxation times of
the 𝑄𝑥 − 𝑄𝑦 transition in chlorophyll 𝑎 molecule were roughly estimated from
the dynamics and compared with the literature. The limitations of the new
model were studied and discussed as well.
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Preface
Photosynthesis is quite possibly themost important process that has developed
in living organisms since their origin billions of years ago (Blankenship, 2014).
It had an important role in the development of Earth’s atmosphere, the for-
mation of oceans, and—with a pinch of salt—it even indirectly provided hu-
manity with the resources to enter the iron age, followed by the industrial age
thousands of years later, as it contributed to the oxidation of iron in long past
history and the creation of iron-rich sediments humankind is steadily mining
for millennia (Thompson et al., 2019; Heard et al., 2022).

On top of that, photosynthetic molecular complexes have a cherished place
as a physical model for a plethora of physical phenomena. Because of the
general complexity of the molecular aggregates, and their overall variability
across all three domains of living organisms, there is basically always some-
thing even a specialist can be interested in. Besides, the ongoing technological
advancements are enabling us to observe and detect processes that are weaker
and faster than ever before. And at the same time, the ever-increasing power
and—most importantly—availability of computational resources are enabling
the theorists to simulate larger systems in greater detail and precision.

Photosynthetic molecular complexes have gone through a long path of bio-
physical and chemical research that successfully uncoveredmost of their struc-
ture, chemical and physical properties and provided insight into quantumme-
chanical effects that play a role behind the curtain of classical statistical physics.
Despite the intensive and decades-long research, there is still much to explore
andunderstand, as some experiments keep pointing out newphysical phenom-
ena.

An exceptional uprise of interest in the study of photosynthesis and the
energy transfer processes that are occurring there happened at the begin-
ning of our millennia as new spectroscopic techniques of high-temporal res-
olution came into popularity—and existence (see Maiuri et al. (2020); Croce
et al. (2018) for reviews). The most influential was the emergence of two-
dimensional electronic spectroscopy with femtosecond resolution (Brixner
et al., 2004), which enabled us to quantitatively measure molecular dynamics
occurring on the timescale of light travelling micrometres long distances. Pro-
cesses taking place on the femtosecond timescale (10−15 s) are usually referred
to as ultrafast1.

As the temporal resolution and achievable signal-to-noise ratio keep im-
proving, new ultrafast processes in molecules and molecular complexes are
getting identified. One such experiment was performed a couple of years
ago on a purple-bacterial photosynthetic molecular complex (Niedringhaus
et al., 2018). They identified intermolecular excitation energy transfer on the
timescale of tens of femtoseconds, which represents exceptionally (ultra)fast
dynamics. Several factors are expected to contribute to and facilitate such fast
relaxation between pigmentmolecules noncovalently bound to protein scaffold
(Policht et al., 2022).

1As a side note, the term fast is frequently used for the picosecond range (10−12 s), and the
term hyperfast for the attosecond range (10−18 s).
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One relaxation process that had been long neglected or classified as of in-
significant importance (Zakutauskaite et al., 2022) is the relaxation between the
second 𝑆2 (also denoted as 𝑄𝑥) and the first 𝑆1 (𝑄𝑦) excited electronic states
of chlorophyll molecules. Such relaxations are usually called by the term in-
ternal conversion. This transition has been observed for many decades, and by
means of the spectroscopic techniques and equipment available at those times,
it was considered almost instantaneous. Modern spectroscopic methods pro-
vided us with better estimates of the timescale, which was found to be tens to
mere hundreds of femtoseconds (Meneghin et al., 2017; Shi et al., 2005). The
mechanism of this relaxation is generally known since the active vibrational
modes of the chlorophyll molecules are roughly resonant in energy with the
electronic 𝑆2 → 𝑆1 transition (Meneghin et al., 2017).

The question that arises is if the fast relaxation observed by Niedringhaus
et al. (2018) originates in the vibrational modes as well, and, eventually, to
what extent. To shine some light onto this question in terms of theoretical ap-
proaches, a robust theoretical model of the relaxation (internal conversion) be-
tween the first two excited states of chlorophyll molecules has to be formulated
first.

After summarising the aims of this thesis and its content, the following
Chapter 1 will introduce the reader to the prior research made on this and re-
lated topics. The Chapter 2 is focused on the theoretical apparatus necessary
for constructing themodel and performing the simulations. The Chapter 3 con-
tains the results of the performed simulations with regard to the developed
model, followed by discussion at Chapter 4.

Aims of the thesis
The aim of my ongoing work is to formulate a robust theoretical model of
a chlorophyll-like molecule that would explain the ultra-fast relaxation dy-
namics between its first and second excited states (𝑆2 → 𝑆1) observed in ex-
periments (Meneghin et al., 2017; Shi et al., 2005). Since the master plan is
to use this model later—in my following research—on much larger systems
than just a single molecule (or a solution of molecules, to be precise), and on
nonlinear spectroscopic simulations, the model should be reasonably scalable
anddependence-free on other—presumably computationally very expensive—
simulations like the fields of quantum chemistry (QCh) andmolecular dynam-
ics (MD) offer (Segatta et al., 2019; Cignoni et al., 2022; Curutchet and Men-
nucci, 2017).

The last and quite possibly the most important demand on the model is to
be generally compatiblewith the “language” and already existing techniques of
theoretical spectroscopy. It’s desirable that the model will be easily adoptable
by other researchers for use in simulations of advanced spectroscopic experi-
ments as they are formulated and implemented.

To parameterise the model and validate its expected properties, linear ab-
sorption spectra were chosen to be simulated and fitted to selected experimen-
tal data.
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1. Introduction
Photosynthetic molecular complexes are very popular models for the study of
excitation energy transfer. The same applies to their integral parts—the pig-
ment molecules—as well. Since they are pigments, they generally interact with
light in the visible region of light spectra. The evolution of photosynthetic pig-
ments was governed by the organisms that were synthesising them. Consid-
ering the natural sources of light on Earth—or radiation in general—are rather
limited to only one of any greater significance—the Sun—a competition for its
availability produced myriads of chemical structures that are used by photo-
synthetic organisms. Each such pigment has its own spectral properties.

However, the chemical structure of the pigments isn’t the only feature that
affects their spectroscopic properties. The influence of their surroundings and
of neighbouring molecules is as much important (see e.g. Mennucci and Cu-
rutchet, 2011). Therefore, the information about the experimental setup, the
solvent, the structure and the size of the molecular system are all uttermost im-
portant pieces of information for a theorist reproducing the experimental data.

1.1 Pigments
Photosynthetic molecular complexes have two essential constituents: the pro-
tein and the ligands. The ligands can be of various chemical natures, and they
can play different roles in the photosynthetic machinery. The class of ligands
pertinent to our interests are the pigments. By and large, there are three ma-
jor groups of photosynthetic pigments: carotenoids, bilins, and chlorophyll.
Chlorophylls usually have the most prominent function, and hence they are by
far the most abundant pigments on Earth. To be more specific, this prominent
title is given to chlorophyll a (Chla) as it is used by almost every photosynthetic
organism in existence, throughout all domains of life (Scheer, 2003).

1.1.1 Chlorophyll a
Many different types of chlorophyll were found in nature—and some more
were synthesised artificially—but they all have a common chemical structure
and two distinctly distinguishable parts: the planar core derived from chlorine
and a phytyl chain that freely wobbles around (if the molecule is in solvent)
(Blankenship, 2014). The chemical structure of Chla can be seen in in Figure 1.1.

Only the planar part, the tetrapyrrole ring, interacts with the visible region
of light and hence is relevant for spectroscopy. An efficient spectroscopicmodel
of chlorophyll-likemoleculeswas proposed byGoutermann (Gouterman, 1961;
Gouterman et al., 1963). Hismodel, usually called the (Gouterman’s) four-orbital
model, assumed only four electronic states, as the name suggests. Namely, the
two lowest unoccupied molecular orbitals (LUMO) and the two highest occu-
piedmolecular orbitals (HOMO). In total, four electronic transitions can be de-
scribed in such a system. Two of such transitions are lower in energy, and they
have lower oscillator strength (denoted by 𝑄) than the other two (denoted by𝐵). Besides, he also noticed from experiments of his time that the transitions are
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Figure 1.1: A simplified chemical structure of Chlawhere the phytyl chain was
omitted and only the main backbone is depicted. The grey shading highlights
the extent of conjugated double bonds, which contribute significantly to the
spectroscopic properties of the molecule. The red axis denotes the orientation
of the 𝑄𝑥 and 𝑄𝑦 transitions as originally considered by Gouterman (1961);
Gouterman et al. (1963). The image was taken and edited from Björn and Ghi-
radella (2014).

perpendicularly polarised. Hence, he introduced the following notation for the
four electronic transitions that are visible in absorption spectra as four more-
or-less distinct absorption bands: 𝑄𝑦, 𝑄𝑥, 𝐵𝑥, 𝐵𝑦, sorted in energetic order from
the lowest to the highest. Even though his model has been mostly overcome
and replaced by more exact approaches stemming from higher-resolution ex-
periments and quantum chemical calculations, his notation is still in active use
in the scientific community, and it will also be used in this thesis.

1.2 Overview of the prior research
The Chla molecule was studied quite intensively in the last decade from both
the experimental and theoretical points of view. Numerous techniques of
time-resolved spectroscopy with femtosecond temporal resolution were used
to measure molecular solutions of chlorophyll molecules in order to study the𝑄𝑥 − 𝑄𝑦 transition relaxation (internal conversion).

Bricker et al. (2015) performed ultrafast transient absorption spectroscopy
measuremnts accompanied by nonadiabatic excited-state molecular dynamics
(NA-ESMD) simulation of Chla in ethanol and the 𝑄𝑥 −𝑄𝑦 relaxation timewas
identified as 128 ± 2 fs.

Meneghin et al. (2017) used two-dimensional electronic spectroscopy
(2DES) to study internal conversion of Chla soluted in methanol. They identi-
fied the overall 𝑄𝑥 −𝑄𝑦 relaxation time to be 170 fs with an intermediate step of
40 fs that involves a redistribution of energy among vibronic states of 𝑄𝑦 prior
to relaxation to the zeroth vibronic level.
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Also, femtosecond time-resolved stimulated emission pumping fluores-
cence depletion (FS-TR-SEP-FD) spectroscopy (Shi et al., 2005) and femtosec-
ond transient absorption spectroscopy (Shi et al., 2006) were used to measure
the relaxation times of the 𝑄𝑥 − 𝑄𝑦 transition. Chla in pyridine was studied
by polarisation-resolved femtosecond Vis-pump – IR-probe anisotropy spec-
troscopy (Zahn et al., 2022).

Linear absorption spectra of molecular samples in different solvents,
namely in diethyl ether (Rätsep et al., 2009; Umetsu et al., 1999; Nono-
mura et al., 1997), propan-1-ol, propan-2-ol (Reimers et al., 2013; Rätsep
et al., 2009), tetrahydrofuran (THF) (Rätsep et al., 2009), pyridine (Rätsep
et al., 2009; Umetsu et al., 1999), triethylamine (TEA) (Rätsep et al., 2019).
methanol/ethanolmixture (Reimers et al., 2013), ethyl acetate (Shi et al., 2005),
were later used to parameterize the model formulated in the following chap-
ters.

The structure of vibrational modes of Chla was studied by 2DES–Raman
spectroscopy (Meneghin et al., 2018), or by fluorescence line-narrowing spec-
troscopy (FLN) and difference FLN (ΔFLN) (Rätsep et al., 2009).

Regarding the theoretical research, the most notable contribution to the
theoretical description of 𝑄𝑥 − 𝑄𝑦 relaxation is considered to be the article
of Reimers et al. (2013). Especially due to the amount of calculations and
thoroughness in the experimental data evaluation. They proposed a model
chlorophyll-like molecule that included a single vibrational mode of Ω = 1500
cm−1 in the systemHamiltonian and a linear diabatic coupling with a coupling
constant 𝛼 = 750 cm−1 that resulted in amixing of the electronic/vibronic states
and fast 𝑄𝑥 − 𝑄𝑦 relaxation (for Chla in ethylether) of 99 fs. For comparison,
the experimentally obtained value reads 100 ± 12 fs (Shi et al., 2005).

Another important contribution, which is, however, rather overlooked and
only sparsely cited by other authors, are the works of Dong et al. (2006,
2007a,b); Niu et al. (2008). They adopted number of different approaches to
simulate various experiments. The most relevant to us (Niu et al., 2008) intro-
duced a theoretical model similar to the one proposed by Reimers et al. (2013).
Themain differencewas the form of diabatic coupling they considered. Instead
of the linear one, they used a Gaussian profile centred at the minima of excited
states’ potential energy surfaces gap. Using this approach, they calculated the𝑄𝑥−𝑄𝑦 internal conversion relaxation times of Chla for a triad of solvents (ethyl
acetate, THF, dimethylformamide (DMF)), attempting to reproduce the corre-
sponding constants obtained from experiments (Shi et al., 2005), which they
successfully did. The relaxation times they calculated were 141 fs, 147 fs, and
241 fs, in corresponding order with regard to the solvents. The experimental
data read 132 fs, 138 fs, and 226 fs (the error estimates were omitted here; Shi
et al., 2005).

Methods of QCh were also numerously used. A review of quantum chem-
ical methods used within the context of assigning 𝑄𝑥 and 𝑄𝑦 bands was
published by Reimers et al. (2014). The excited states properties of Chla
were calculated using the domain-based local pair natural orbital similarity
transformed equations of motion with coupled cluster singles and doubles
(DLPNO–STEOM–CCSD) (Sirohiwal et al., 2020) or numerous density func-
tional theory (DFT) methods (Cai et al., 2006)
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Other chlorophylls are studied aswell. For example, chlorophyll b (Chlb) in
methanol/ethanol mixture was measured by 2DES (Fresch and Collini, 2020).

Theoretical insight into the role of 𝑄𝑦 and 𝑄𝑥 states when a 2DES experi-
ment would be performed on a dimer of chlorophyll molecule was provided
by Zakutauskaite et al. (2022). A last notable piece of work that touches our
topic rather tangentially looked into the solvent-dependence of Chla 𝑄-band as
observed by 2DES (Moca et al., 2015).
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2. Theoretical background
There are numerous theoretical techniques to describe and simulate the phys-
ical and chemical properties of molecules and molecular aggregates observed
in experiments. These techniques can be roughly categorised into the follow-
ing three categories: quantum chemistry, molecular dynamics, and theoretical
spectroscopy. Even though all these approaches are in practice usually com-
bined, this thesis is restricted particularly to the latter one – theoretical spec-
troscopy.

This chapter provides insight into the origin of theoretical methods that
were used during my work. Firstly, the theory of open quantum systems is
introduced, and the method of the quantum master equations is derived. The
essential physical objects and terminology are introduced on the way. The spe-
cific quantum master equation I used—the Redfield equation—is derived, and
the limits of its validity are outlined.

The second part introduces the physical model of a chlorophyll-like
molecule that was developed. The adopted model of the environment is also
introduced and explained. The section is wrapped up by an overview of the
parameters that enter the simulations. Their physical meaning is described,
and their theoretical importance, i.e. the influence they are expected to have on
the linear absorption spectra, is estimated.

The third section focuses on theoretical spectroscopy. In particular, on
building up the tools necessary for simulating linear absorption spectra of open
quantum systems.

The fourth and final part of this chapter sheds some light on the methods
and computational optimisations I’ve implemented duringmywork. The com-
putational limits of the current state of my code are mentioned as well, and
possible improvements are outlined.

2.1 Isolated quantum systems
Before making our life difficult, let’s first focus on isolated quantum systems
that don’t interact with their surroundings. The archetypal feature of quantum
systems is the concept of discrete quantum states. A quantum system is limited
to these discrete states only or to their linear combination – superposition. The
first postulate of quantummechanics says the state and dynamics of an isolated
quantum system are in their entirety described by a wavefunction ∣𝜓(𝑡)⟩ which
solves the time-dependent Schrödinger equation:

𝜕𝜕𝑡 ∣𝜓(𝑡)⟩ = −𝑖�̂� ∣𝜓(𝑡)⟩ , (2.1)

where �̂� is the system Hamiltonian. Finding of a wavefunction is usually done
by an expansion into an already-known complete basis set:

∣𝜓(𝑡)⟩ = ∑𝑛 |𝑛⟩ ⟨𝑛∣𝜓(𝑡)⟩⏟⏟⏟⏟⏟𝑐𝑛(𝑡) , (2.2)
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where {𝑐𝑛(𝑡)} is now a set of time-dependent expansion coefficients that can be
organised into a vector. This is the reason wavefunctions are also called state
vectors.

Wavefunctions can be useful for describing small, well-defined and isolated
systems whose quantum nature is well preserved, for example, a particle scat-
tering on a potential, atomic gases, or in quantum chemistry.

However, the applicability of wavefunctions on large systems consisting of
multiple molecules (let alone interacting with each other as well as with their
surroundings, as will be mentioned further in this chapter) is very limited and,
most importantly, rather inconvenient. The problem stems from the fact that, in
our case, we are not dealing with a clearly defined quantum system but rather
a statistical ensemble. A probability weighting factor can be assigned to each
available quantum microstate. Since we are interested in the overall behaviour
and macroscopic measurable variables of the whole statistical mixture, a better
formalism than the wavefunction-oriented would be preferred.

2.1.1 Density matrix
The mathematical object that is better suited for our use case is called a density
matrix1 �̂� and it’s defined as:

�̂� = ∑𝑖 𝑤𝑖 ∣𝜓𝑖⟩⟨𝜓𝑖∣ , (2.3)

where 𝑤𝑖 is a probability of a normalized state ∣𝜓𝑖⟩. Density matrix has the
following properties (May and Kühn, 2011):

1. hermiticity: �̂�† = �̂�, where † denotes Hermite conjugate,
2. normalization: Tr{�̂�} = 1 ,

3. positive semi-definite form: ∀ |𝑛⟩ ∶ ⟨𝑛|�̂�|𝑛⟩ = ∑𝑖 𝑤𝑖∣⟨𝑛∣𝜓𝑖⟩∣2 ≥ 0 ,
4. Schwarz inequality (implied by property 3): ∀ |𝑛⟩ forming orthonormal

basis:�̂� = ∑𝑛 |𝑛⟩⟨𝑛|⏟⏟⏟⏟⏟
1

�̂� ∑𝑛′ |𝑛′⟩⟨𝑛′|⏟⏟⏟⏟⏟
1

= ∑𝑛,𝑛′ 𝑊𝑛𝑛′ ∣𝑛⟩⟨𝑛′∣ ∶ 𝑊𝑛𝑛𝑊𝑛′𝑛′ ≥ ∣𝑊𝑛𝑛′ ∣2 .

5. non-negative eigenvalues: 𝑝𝑖 ≥ 0, ∑𝑖 𝑝𝑖 = 1 (implied by property 3)
Properties 3 and 4will be used later to evaluate the correctness of time prop-

agation methods.The normalization of �̂� implies the proper interpretation of
weighing factors 𝑤𝑖 as probabilities since the relation ∑𝑖 𝑤𝑖 = 1 has to hold.
In case ∃𝑤𝑖 ∶ 𝑤𝑖 = 1, the density matrix is classified as pure since it reduces to
a single projector to state ∣𝜓𝑖⟩. In every other case, i.e. ∀𝑤𝑖 ∶ 0 ≤ 𝑤𝑖 < 1, the
density matrix is called mixed.

1In fact, the object is known by many names besides just the density matrix. The other fre-
quently used names are the statistical operator and the density operator. However, strictly speak-
ing, there is a difference in themeaning between the former and the latter two names. The term
operator should refer to a general object. In contrast, the term matrix should be understood as
a representation of the operator in some basis. Nevertheless, for the sake of simplicity, I’ll use
the terms interchangeably and, most of the time, stick with the term density matrix.

10



An expectation value for some macroscopic quantity ̂𝐴 measured on a sta-
tistical ensemble of quantum systems in a wavefunction formalism can be ex-
pressed as:

⟨ ̂𝐴⟩ = ∑𝑖 𝑤𝑖 ⟨𝜓𝑖∣ ̂𝐴∣𝜓𝑖⟩ = (2.4)

= Tr{�̂� ̂𝐴} . (2.5)

The expression (2.5) represents an equivalent of (2.4) but is expressed using
the density matrix �̂�.

A specific nomenclature is associated with density matrices, which intro-
duces two important terms. The diagonal elements of a density matrix are re-
ferred to as populations since, if properly normed, they represent the probabili-
ties of individual states. The rest of the matrix elements are called coherences2.
The physical meaning of coherences is a little more perplexing than that of the
populations since they are related to the expectation values of noncommuting
operators that don’t share their eigenbases. This brings up an important piece
of information that is always necessary to carry in mind—the coherences are
entirely basis-dependent.

2.1.2 Isolated Quantum system dynamics
The general solution of the first-order differential equation (2.1) leads to an
evolution operator �̂�(𝑡 − 𝑡0) in the form of a complex exponential:

∣𝜓(𝑡)⟩ = 𝑒−𝑖�̂�(𝑡−𝑡0)⏟⏟⏟⏟⏟�̂�(𝑡−𝑡0) ∣𝜓(𝑡0)⟩ . (2.6)

The evolution operator �̂�(𝑡 − 𝑡0) is Hermitian and unitary. Thus, the evolu-
tion it describes is usually called unitary as well as it preserves the norm of the
wavefunction in time:

⟨𝜓(𝑡)∣𝜓(𝑡)⟩ = 𝑒𝑖�̂�(𝑡−𝑡0) ⟨𝜓(𝑡0)∣𝜓(𝑡0)⟩ 𝑒−𝑖�̂�(𝑡−𝑡0) = ⟨𝜓(𝑡0)∣𝜓(𝑡0)⟩ . (2.7)

If the Hamiltonian is time-dependent, which is commonly the case, the for-
mal solution of (2.1) becomes:

∣𝜓(𝑡)⟩ = �̂� exp{−𝑖 ∫𝑡
𝑡0 dτ �̂�(τ)}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟�̂�(𝑡−𝑡0)

∣𝜓(𝑡0)⟩ , (2.8)

where �̂� is a time-ordering operator3 and the object �̂� exp is usually called time-
ordered exponential.

2A mathematical separation of these two parts of a density matrix expressed in an or-
thonormal basis can be performed using the Kronecker delta symbol as follows: �̂�(𝑡) =(∑𝑖 |𝑖⟩⟨𝑖|)⏟⏟⏟⏟⏟

1

�̂�(𝑡) (∑𝑗 ∣𝑗⟩⟨𝑗∣)⏟⏟⏟⏟⏟
1

= ∑𝑖𝑗 𝑊𝑖𝑗 ∣𝑖⟩⟨𝑗∣ (𝛿𝑖𝑗 + (1 − 𝛿𝑖𝑗))⏟⏟⏟⏟⏟⏟⏟⏟⏟=1

= ∑𝑖 𝑊𝑖𝑖 |𝑖⟩⟨𝑖|⏟⏟⏟⏟⏟
populations

+ ∑𝑖,𝑗(≠𝑖) 𝑊𝑖𝑗 ∣𝑖⟩⟨𝑗∣⏟⏟⏟⏟⏟⏟⏟⏟⏟
coherences

.

3The time-ordering operator �̂� ensures the causality of integrals occurring in the expo-
nential, which can be expanded into the following infinite series: �̂� exp{−𝑖 ∫𝑡𝑡0 dτ �̂�(τ)} =1 − 𝑖 ∫𝑡𝑡0 dτ �̂�(τ) − ∫𝑡𝑡0 dτ ∫τ𝑡0 dτ′�̂�(τ)�̂�(τ′) + 𝑖 ∫𝑡𝑡0 dτ ∫τ𝑡0 dτ′ ∫τ′𝑡0 dτ″�̂�(τ)�̂�(τ′)�̂�(τ″) + …
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The Schrödinger equation (2.1) can be briskly rewritten into its alternative
form describing the time evolution of density matrices. This alternative form
is called the Liouville–von Neumann equation, or alternatively quantum Liouville
equation (May and Kühn, 2011):

𝜕𝜕𝑡�̂�(𝑡) = −𝑖 [�̂�, �̂�(𝑡)] , (2.9)

where the square brackets denote a commutator defined as:

[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 . (2.10)

The solution of (2.9) can be expressed as:

�̂�(𝑡) = �̂�(𝑡 − 𝑡0)�̂�(𝑡0)�̂�†(𝑡 − 𝑡0) , (2.11)

or alternatively by introducing a rank four tensor constructed as follows. Con-
sider the evolution of a density matrix element 𝑊𝑖𝑙:

𝑊𝑖𝑙(𝑡) = ∑𝑗𝑘 𝑈𝑖𝑗(𝑡 − 𝑡0)𝑊𝑗𝑘(𝑡0)𝑈†𝑘𝑙(𝑡 − 𝑡0) (2.12)

= ⎛⎜⎜⎝∑𝑗𝑘 𝑈𝑖𝑗(𝑡 − 𝑡0)𝑈†𝑘𝑙(𝑡 − 𝑡0)⎞⎟⎟⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝒰𝑖𝑗𝑘𝑙(𝑡−𝑡0)
𝑊𝑗𝑘(𝑡0) , (2.13)

�̂�(𝑡) = �̆�(𝑡 − 𝑡0)�̂�(𝑡0) . (2.14)

The tensor object �̆�(𝑡 − 𝑡0) introduced in (2.14) is an example of a so-called
superoperator—an “operator” that acts on a different operator. Superoperators
will be discussed and properly introduced further in the text. From now on, a
breve symbol ( ̆) will be used to denote superoperator-like objects.

However, in case the Hamiltonian is time-dependent, there is no elegant
way to write the formal solution of (2.9). The culprit is the commutator (which
is again an example of a superoperator) since the infinite series cannot be ex-
pressed as a time-ordered exponential this time, using our current notation:

�̂�(𝑡) = �̂�(𝑡0)−(𝑖)1 ∫𝑡
𝑡0 dτ[�̂�(τ), �̂�(𝑡0)]

+(𝑖)2 ∫𝑡
𝑡0 dτ ∫τ

𝑡0 dτ′[�̂�(τ), [�̂�(τ′), �̂�(𝑡0)]]
−(𝑖)3 ∫𝑡

𝑡0 dτ ∫τ
𝑡0 dτ′ ∫τ′

𝑡0 dτ″[�̂�(τ), [�̂�(τ′), [�̂�(τ″), �̂�(𝑡0)]]]
+ … .

(2.15)

To overcome this technical difficulty, an alternative formalism can be easily
adopted.
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2.1.3 Liouville space
Elements of density matrices, as well as of operators on Hilbert space, can be
reorganised into vectors. This can be done by a re-indexation procedure4:

𝑊𝑖𝑗 → 𝑊𝜎 , 𝐴𝑖𝑗 → 𝐴𝜎 . (2.16)

By doing so, we are leaving the Hilbert space and entering the so-called Li-
ouville space. Liouville space is a linear vector space, very much like the Hilbert
space. The differences between both spaces and the formal transitions between
them are summarised in the Table 2.1. Themost notable advantage of Liouville
space is the simplified notation for superoperators. Superoperators (for exam-
ple, a commutator as defined in (2.10)) can be expressed inHilbert space either
by two separate operands or alternatively by introducing a rank four tensor:

𝐴𝑖𝑗𝐵𝑗𝑘 − 𝐵𝑗𝑘𝐴𝑘𝑙 = (𝐴𝑖𝑗1𝑘𝑙 − 1𝑖𝑗𝐴𝑘𝑙) 𝐵𝑗𝑘 = (𝐴𝑖𝑘1𝑗𝑙 − 1𝑖𝑘𝐴𝑙𝑗)⏟⏟⏟⏟⏟⏟⏟⏟⏟( ̆ℒ𝐴)𝑖𝑗𝑘𝑙
𝐵𝑗𝑘 . (2.17)

The latter form can be directly translated into the Liouville space by a re-
indexation 𝑖𝑗, 𝑘𝑙 → 𝜎𝜏, transforming the tensor and reducing its rank to two.
Using this notation, the Liouville–von Neumann equation can now be simpli-
fied to: 𝜕𝜕𝑡�̂�(𝑡) = −𝑖 ̆ℒ𝐻�̂�(𝑡) , (2.18)

where ̆ℒ𝐻 = [�̂�, ⋅] is a so-called Liouville superoperator, or Liouvillian, repre-
senting a commutator with Hamiltonian. The solution of (2.18) with time-
independent Liouvillian (i.e. Hamiltonian) can be expressed as:

�̂�(𝑡) = 𝑒−𝑖 ̆ℒ𝐻(𝑡−𝑡0)⏟⏟⏟⏟⏟�̆�(𝑡−𝑡0) �̂�(𝑡0) . (2.19)

As long as the system is isolated and the Hamiltonian �̂� is Hermitian, the
evolution superoperator �̆�(𝑡 − 𝑡0) is Hermitian as well:

�̆�(𝑡) (�̆�(𝑡))† = (�̂�(𝑡) ⊗ �̂�†(𝑡)) (�̂�†(𝑡) ⊗ �̂�(𝑡)) = �̂�(𝑡)�̂�†(𝑡)⏟⏟⏟⏟⏟
1

⊗ �̂�†(𝑡)�̂�(𝑡)⏟⏟⏟⏟⏟
1

= 1 .
(2.20)

The previously troublesome case with time-dependent Liouvillian (Hamil-
tonian) written in (2.15) can now be expressed in a much simpler and more
graspable form:

�̂�(𝑡) = �̂� exp{−𝑖 ∫𝑡
𝑡0 dτ ̆ℒ𝐻(τ)}�̂�(𝑡0) . (2.21)

4Technically, it is a bijective mapping acting on indices of object elements: 𝑓 ∶ 𝑖, 𝑗 ∈ N →𝜎 ∈ N, which results in a transformation of the original object: �̂� ∈ C𝑛×𝑛 → ̃�̂� ∈ C𝑛2
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Table 2.1: Summary of differences between Hilbert and Liouville linear vector
spaces. The vectorised matrices in Liouville space are sometimes called super-
vectors, or superkets (|𝜓𝜎⟩⟩ = |𝜓𝑖⟩⟨𝜓𝑗|) and superbras (⟨⟨𝜓𝜎| = |𝜓𝑗⟩⟨𝜓𝑖|) (Gyamfi,
2020), referring to a much broadly used term of a superoperator.

Hilbert space Liouville space

wavefunction vector∣𝜓𝑖⟩ –

density matrix
matrix�̂� = ∑𝑖𝑗 𝑊𝑖𝑗 ∣𝜓𝑖⟩⟨𝜓𝑗∣ vector�̂� = ∑𝜎 𝑊𝜎|𝜓𝜎⟩⟩

operator
matrix̂𝐴 = ∑𝑖𝑗 𝐴𝑖𝑗 ∣𝑖⟩⟨𝑗∣ vector̂𝐴 = ∑𝜎 𝐴𝜎|𝜎⟩⟩

superoperator
rank four tensor[ ̂𝐴, �̂�] = 𝐴𝑖𝑗𝐵𝑗𝑘 − 𝐵𝑗𝑘𝐴𝑘𝑙 == ̆𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙

matrix̆𝐴 = ∑𝜎𝜏|𝜎⟩⟩⟨⟨𝜏|̆𝐴�̂� = ̆𝐴𝜎𝜏𝐵𝜏
2.2 Open quantum systems
Samplesmeasured by experimental physicists and chemists don’t consist of iso-
lated non-interactingmolecules very often. Themolecules we are interested in,
tend to be surrounded by an environment—a thermodynamic bath. It can be,
for example, a solvent, a protein scaffold, or just different units of ourmolecule.
Or it can be a combination of all of that. Besides, the electromagnetic vacuum
is always present, which enables us to describe effects such as spontaneous
emission and fluorescence. Quantum systems embedded and interacting with
a much larger bath are referred to as open quantum systems.

Even though the previous section 2.1 introduced essential tools for de-
scribing quantum dynamics, the tools have their limitations. First and fore-
most, both Schrödinger and Liouville–von Neumann equations describe uni-
tary, energy-conserving dynamics on Hilbert space. That’s due to the hermitic-
ity ofHamilton operators. However, our aim is to describe relaxation processes,
energy dissipation and radiative transitions. To achieve that, we need to go be-
yond the unitary evolution.

2.2.1 Introduction to open quantum systems
The simplest open quantum systems can be modelled by splitting the universe
into two parts: the quantum system we are interested in (from now on, it’ll be
referred to as the system) and the rest we are not (the bath5). There are, in gen-

5Usually called the bath, the environment, or the reservoir. I’ll stick to using the former
term.
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eral, three types of processes and interactions now happening. (1) Processes in
which the system evolves on its own, (2) processes in which the environment
evolves on its own, and finally, (3) the interaction between both. We can thus
postulate a Hamiltonian of the following form:�̂� = �̂�𝑆 + �̂�𝐵 + �̂�𝑆−𝐵 , (2.22)
where 𝐻𝑆 is the system Hamiltonian (belonging to a Hilbert space ℋ𝑆), �̂�𝐵 is
the bath Hamiltonian (∈ ℋ𝐵), and 𝐻𝑆−𝐵 is the system–bath interaction Hamil-
tonian (∈ ℋ𝑆−𝐵 = ℋ𝑆 ⊗ℋ𝐵). The Liouville–vonNeumann equation describing
the dynamics of the entire universe (represented here by the density matrix�̂�(𝑡) ∈ ℋ𝑆 ⊗ ℋ𝐵) reads:𝜕𝜕𝑡�̂�(𝑡) = −𝑖 ̆ℒ�̂��̂�(𝑡) (2.23)= −𝑖 ( ̆ℒ�̂�𝑆 + ̆ℒ�̂�𝐵 + ̆ℒ�̂�𝑆−𝐵) �̂�(𝑡) . (2.24)

2.2.2 Reduced density matrix
If we’d like to find an expectation value of some macroscopic quantity repre-
sented by an operator ̂𝐶, the general approach would be to calculate the trace:⟨ ̂𝐶⟩ = Tr{ ̂𝐶�̂�(𝑡)} . (2.25)

If this quantity depends on the system degrees of freedom (DOF) only, i.e.̂𝐶 ∈ ℋ𝑆, we can treat the system and the bath parts of the trace separately:⟨ ̂𝐶⟩ = Tr{ ̂𝐶�̂�(𝑡)} = Tr𝑆{Tr𝐵{ ̂𝐶�̂�(𝑡)}} = Tr𝑆{ ̂𝐶Tr𝐵{�̂�(𝑡)}} = Tr𝑆{ ̂𝐶 ̂𝜌(𝑡)} .
(2.26)

Since the trace over bath Tr𝐵{} has no effect on the operator ̂𝐶, we can let
it act on the total density matrix �̂�(𝑡) only. That results in a new object ̂𝜌(𝑡)
called the reduced density matrix (∈ ℋ𝑆). It’s defined as:

Tr𝐵{�̂�(𝑡)} = ∑𝛼 ⟨𝛼|�̂�(𝑡)|𝛼⟩ = ̂𝜌(𝑡) , (2.27)

where |𝛼⟩ ∈ ℋ𝐵.
2.2.3 Dynamics of open quantum systems
The concept of space reduction can be applied to Liouville–vonNeumann equa-
tion (2.24) as well since we are not particularly interested in the dynamics of
the universe, only in our system. That is, only in dynamics occurring on the
Hilbert space ℋ𝑆. Without any loss of (for us currently interesting) informa-
tion, we can trace out the bath DOF:

𝑖 𝜕𝜕𝑡Tr𝐵{�̂�(𝑡)} = Tr𝐵{ ̆ℒ�̂��̂�(𝑡)} (2.28)= Tr𝐵{ ̆ℒ�̂�𝑆�̂�(𝑡)} + Tr𝐵{ ̆ℒ�̂�𝐵�̂�(𝑡)}⏟⏟⏟⏟⏟⏟⏟=0 +Tr𝐵{ ̆ℒ�̂�𝑆−𝐵�̂�(𝑡)}⏟⏟⏟⏟⏟⏟⏟⏟⏟≡ 1𝑖 ℛ[�̂�(𝑡)](𝑡)
(2.29)

= ̆ℒ�̂�𝑆 Tr𝐵{�̂�(𝑡)}⏟⏟⏟⏟⏟̂𝜌(𝑡) +1𝑖 ℛ [�̂�(𝑡)] (𝑡) . (2.30)

15



The second term in (2.29) equals zero due to the cyclic property of trace6:

Tr𝐵{ ̆ℒ�̂�𝐵�̂�(𝑡)} = Tr𝐵{[�̂�𝐵, �̂�(𝑡)]} = Tr𝐵{�̂�𝐵�̂�(𝑡)} − Tr𝐵{�̂�(𝑡)�̂�𝐵}⏟⏟⏟⏟⏟⏟⏟=Tr𝐵{�̂�𝐵�̂�(𝑡)} = 0 ,
(2.31)

and correctly excludes the dynamics of the bath from our equation. To sum
it up, the still formally exact Liouville–von Neumann equation describing the
dynamics of a quantum subsystem embedded in an environment (bath) reads:

𝜕𝜕𝑡 ̂𝜌(𝑡) = −𝑖 ̆ℒ�̂�𝑆 + ℛ [�̂�(𝑡)] (𝑡) , (2.32)

where ℛ [�̂�(𝑡)] (𝑡) is so far a rather general object, a functional of the total
density matrix �̂�(𝑡). By comparing the original Liouville–von Neumann eq.
(2.18) with (2.32), it’s apparent that the transition from a simple unitary evo-
lution to a relaxation process of our system is realised purely by the functionalℛ. Henceforth, it will be referred to as the relaxation functional. Since it stems
from the system-bath interaction Hamiltonian �̂�𝑆−𝐵, which can be expected to
be time-dependent, the relaxation functional will depend on time as well.

There are many different ways of describing open quantum systems dy-
namics. To mention some examples, there are the quantum master equations,
stochastic approaches, hierarchical equations of motion, path-integral tech-
niques, tensor-network approaches, and even non-hermitian approaches.

All of the theories mentioned have their own drawbacks as well as cases
they can truly shine out. In this thesis, the former approach—quantummaster
equation in a weak system-bath coupling limit—was adopted as it arguably
provides the best compromise between accuracy, computational demands, and
implementation difficulty. It also provides a decent insight into the physical
processes and doesn’t lay that many limitations on the actual physical use case.

2.2.4 Quantum master equations
The derivation of the quantum master equation in the second order of interac-
tion is rather straightforward. We’ll begin with the expression (2.24):

𝜕𝜕𝑡�̂�(𝑡) = −𝑖 ( ̆ℒ�̂�𝑆 + ̆ℒ�̂�𝐵 + ̆ℒ�̂�𝑆−𝐵) �̂�(𝑡) . (2.33)

To simplify the equation and get rid of the terms that are sources of the
unitary evolution only, an interaction picture can be introduced. The interaction
picture is basically a form of a rotating frame since we transform the total den-
sity matrix �̂�(𝑡) with respect to both system and bath Hamiltonians (i.e. with
respect to everything else but the system-bath interaction Hamiltonian) by a

6The cyclic property of trace reads: Tr{�̂��̂�} = ∑𝑖,𝑗 ⟨𝑖∣�̂�∣𝑗⟩ ⟨𝑗∣�̂�∣𝑖⟩ = ∑𝑖,𝑗 ⟨𝑗∣𝐵∣𝑖⟩ ⟨𝑖∣�̂�∣𝑗⟩ =
Tr{�̂��̂�}. This property is applicable even in our case in which we are dealing with two ob-
jects, one spanning a single and the other spanning two Hilbert spaces: Tr𝐵{�̂�(𝑡)�̂�𝐵} =∑𝛼,𝛽 ⟨𝛼∣�̂�(𝑡)∣𝛽⟩ ⟨𝛽∣�̂�𝐵∣𝛼⟩⏟⏟⏟⏟⏟∈C

= ∑𝛼,𝛽 ⟨𝛽∣�̂�𝐵∣𝛼⟩ ⟨𝛼∣�̂�(𝑡)∣𝛽⟩ = Tr𝐵{�̂�𝐵�̂�(𝑡)} .
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negative time. Countering the complex oscillations caused by them. The total
density matrix in the interaction picture can be expressed followingly:

�̂�(𝐼)(𝑡) = �̆�†𝐵(𝑡)�̆�†𝑆(𝑡)�̂�(𝑡) = �̂�†𝐵(𝑡)�̂�†𝑆(𝑡)�̂�(𝑡)�̂�𝑆(𝑡)�̂�𝐵(𝑡) . (2.34)

The interaction Hamiltonian in the interaction picture becomes:

�̂�(𝐼)𝑆−𝐵(𝑡) = �̆�†𝐵(𝑡)�̆�†𝑆(𝑡)�̂�𝑆−𝐵(𝑡) = �̂�†𝐵(𝑡)�̂�†𝑆(𝑡)�̂�𝑆−𝐵(𝑡)�̂�𝑆(𝑡)�̂�𝐵(𝑡) . (2.35)

The Liouville–vonNeumann equation in the interaction picture then reads:
𝜕𝜕𝑡�̂�(𝐼)(𝑡) = −𝑖 ̆ℒ�̂�(𝐼)𝑆−𝐵(𝑡)�̂�(𝐼)(𝑡) (2.36)= −𝑖[�̂�(𝐼)𝑆−𝐵(𝑡), �̂�(𝐼)(𝑡)] . (2.37)

As previously stated, the system-bath interaction is expected to be weak
and can be considered as a source of perturbation to the otherwise unitarily
evolving system only. Hence, it might be appropriate to treat the system-bath
interaction within the framework of perturbation theory7. Equation (2.37) can
be formally integrated, leaving only the sought term �̂�(𝐼)(𝑡) on the left-hand-
side: �̂�(𝐼)(𝑡) = �̂�(𝐼)(𝑡0) − 𝑖 ∫𝑡

𝑡0 dτ [�̂�(𝐼)𝑆−𝐵(τ), �̂�(𝐼)(τ)] . (2.38)

The result of (2.38) can then be plugged back into (2.37). The equation in
up-to-second order in system-bath interaction then reads:

𝜕𝜕𝑡�̂�(𝐼)(𝑡) = −𝑖[�̂�(𝐼)𝑆−𝐵(𝑡), �̂�(𝐼)(𝑡0)]
+ (𝑖)2 ∫𝑡

𝑡0 dτ[�̂�(𝐼)𝑆−𝐵(𝑡), [�̂�(𝐼)𝑆−𝐵(τ), �̂�(𝐼)(τ)]] . (2.39)

Now, we reduce the equation of motion to describe the dynamics of our
system only:

𝜕𝜕𝑡Tr𝐵{�̂�(𝐼)(𝑡)} = −𝑖 Tr𝐵{[�̂�(𝐼)𝑆−𝐵(𝑡), �̂�(𝐼)(𝑡0)]}
+ (𝑖)2 ∫𝑡

𝑡0 dτTr𝐵{[�̂�(𝐼)𝑆−𝐵(𝑡), [�̂�(𝐼)𝑆−𝐵(τ), �̂�(𝐼)(τ)]]} . (2.40)

Up to this point, the equation (2.40) is still formally exact—no approxima-
tions have been made yet. However, since both the system-bath interaction
Hamiltonian and the total density matrix spread over the combined Hilbert
space ℋ𝑆 ⊗ ℋ𝐵, the cyclic property described on page 16 can’t be applied here.
To move forward, one of these objects has to be factorized into a (Kronecker)
product of two parts, each spreading only one space.

7There are several different understandings of the term perturbation theory. The most
widely perceived is the so-called Rayleigh–Schrödinger perturbation theory known from the intro-
ductory quantum mechanics courses. In our case, though, we are referring to a more general
concept of solving differential equations by an iterative expansion of the formal solution up to
a certain order.
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As mentioned in Chapter 1, an assumption about our model is that the in-
teractions within the system are larger than with the environment. Hence, we
can assume aweak system-bath coupling limit and assume that the effect of our
system on the environment is minimal. Thus, the environment stays in a state
close to its thermal equilibrium throughout the studied dynamics, and we can
introduce the following factorization, usually referred to as Born approximation
(Valkunas et al., 2013): �̂�(𝑡) ≡ �̂�𝑒𝑞 ⊗ ̂𝜌(𝑡) . (2.41)

The equilibrium bath density matrix �̂�𝑒𝑞 doesn’t evolve in time, as already
stated. As a result, it’s immune to any changes of representations/pictures:

�̂�(𝐼)(𝑡) = �̂�†𝐵(𝑡)�̂�†𝑆(𝑡) (�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)) �̂�𝑆(𝑡)�̂�𝐵(𝑡) (2.42)= (�̂�†𝐵(𝑡)�̂�𝑒𝑞�̂�𝐵(𝑡))⏟⏟⏟⏟⏟⏟⏟⏟⏟=�̂�𝑒𝑞
⊗ (�̂�†𝑆(𝑡) ̂𝜌(𝑡)�̂�𝑆(𝑡)) (2.43)

= �̂�𝑒𝑞 ⊗ ̂𝜌(𝐼)(𝑡) . (2.44)

The equation (2.40) then becomes:

𝜕𝜕𝑡Tr𝐵{�̂�(𝐼)(𝑡)} = −𝑖Tr𝐵{[�̂�(𝐼)𝑆−𝐵(𝑡), �̂�𝑒𝑞 ⊗ ̂𝜌(𝐼)(𝑡0)]}
+ (𝑖)2 ∫𝑡

𝑡0 dτTr𝐵{[�̂�(𝐼)𝑆−𝐵(𝑡), [�̂�(𝐼)𝑆−𝐵(τ), �̂�𝑒𝑞 ⊗ ̂𝜌(𝐼)(τ)]]} . . (2.45)

The first term of (2.45) can be expressed further as:

Tr𝐵{[�̂�(𝐼)𝑆−𝐵(𝑡), �̂�𝑒𝑞 ⊗ ̂𝜌(𝐼)(𝑡0)]} =Tr𝐵{�̂�(𝐼)𝑆−𝐵(𝑡)�̂�𝑒𝑞 ⊗ ̂𝜌(𝐼)(𝑡0)}− Tr𝐵{�̂�𝑒𝑞 ⊗ ̂𝜌(𝐼)(𝑡0)�̂�(𝐼)𝑆−𝐵(𝑡)} (2.46)

=Tr𝐵{�̂�(𝐼)𝑆−𝐵(𝑡)�̂�𝑒𝑞} ⊗ ̂𝜌(𝐼)(𝑡0)− ̂𝜌(𝐼)(𝑡0) ⊗ Tr𝐵{�̂�𝑒𝑞�̂�(𝐼)𝑆−𝐵(𝑡)}⏟⏟⏟⏟⏟⏟⏟⏟⏟
Tr𝐵{�̂�(𝐼)𝑆−𝐵(𝑡)�̂�𝑒𝑞}

(2.47)

= [Tr𝐵{�̂�(𝐼)𝑆−𝐵(𝑡)�̂�𝑒𝑞} , ̂𝜌(𝐼)(𝑡0)]⊗ , (2.48)

where a simplified notation for a commutator on a tensor product operation𝐴 ⊗ 𝐵 − 𝐵 ⊗ 𝐴 = [𝐴, 𝐵]⊗ was used. Since the system-bath interaction Hamil-
tonian spans over both Hilbert spaces, the commutator is generally non-zero.
By comparing equations (2.48) with (2.25), it’s apparent that the trace stands
for an expectation value—or in better wording, an averaged quantity over the
bath degrees of freedom—of the system-bath interaction:

Tr𝐵{�̂�(𝐼)𝑆−𝐵(𝑡)�̂�𝑒𝑞} = Tr𝐵{�̂�†𝐵(𝑡)�̂�†𝑆(𝑡)�̂�𝑆−𝐵(𝑡)�̂�𝑆(𝑡)�̂�𝐵(𝑡)�̂�𝑒𝑞} (2.49)

= Tr𝐵
⎧{{⎨{{⎩�̂�𝑆−𝐵(𝑡) �̂�𝑆(𝑡)�̂�𝐵(𝑡)�̂�𝑒𝑞�̂�†𝐵(𝑡)�̂�†𝑆(𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟�̂�𝑒𝑞

⎫}}⎬}}⎭ (2.50)

= ⟨�̂�𝑆−𝐵(𝑡)⟩𝐵 , (2.51)
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where the cyclic property of trace and the equilibrium property (2.43) of the
bath density matrix were used in the second line (2.50). We can see that the
entire term from the last line (2.48) would vanish if the trace equals zero. That
is, however, a reasonable claim that we can take into account in the formulation
of the system-bath interaction Hamiltonian later. Henceforth, let’s assume:

⟨�̂�𝑆−𝐵⟩𝐵 = Tr𝐵{�̂�(𝐼)𝑆−𝐵(𝑡)�̂�𝑒𝑞} ≡ 0 . (2.52)

The equation (2.45) then simplifies to:

𝜕𝜕𝑡 ̂𝜌(𝐼)(𝑡) = − ∫𝑡
𝑡0 dτ Tr𝐵{[�̂�(𝐼)𝑆−𝐵(𝑡), [�̂�(𝐼)𝑆−𝐵(τ), �̂�𝑒𝑞 ⊗ ̂𝜌(𝐼)(τ)]]} . (2.53)

Let’s also introduce at this point a formal change of integration variable𝑡 → 𝑡 − τ for reasons that will be shown shortly. Besides, we can move the
initial time 𝑡0 back to −∞ since the system is assumed to be in equilibrium
prior to 𝑡0 anyway. The result of these changes reads:

𝜕𝜕𝑡 ̂𝜌(𝐼)(𝑡) = − ∫∞
0 dτ Tr𝐵{[�̂�(𝐼)𝑆−𝐵(𝑡), [�̂�(𝐼)𝑆−𝐵(𝑡 − τ), �̂�𝑒𝑞 ⊗ ̂𝜌(𝐼)(𝑡 − τ)]]} .

(2.54)

2.2.5 Markov approximation
Equation (2.54) represents a time-non-local equation. That is, the dynamics of
the reduced density matrix ̂𝜌(𝑡 − τ) (in either interaction or Schrödinger pic-
ture, even though there is an important difference as will be discussed shortly)
at time 𝑡 depend not only on its current state—at time 𝑡—but also on all states
prior to that by a time τ. This effect is usually referred to as a system memory,
and it represents a direct consequence of the reduction of the systemperformed
in (2.40). The concept of a system memory relates to the Markov property, or
Markovianity, known from statistical physics and probabilistic theory in gen-
eral. The Liouville–von Neumann equation describing the dynamics of an en-
tire system in (2.33) represents an exact equation that is time-local, memory-
less, and Markovian. By comparison, the introduction of the reduced density
matrix and the equations ofmotion presented up to this point represented time-
non-local, memory-involving, non-Markovian equations.

In order to restore the Markovianity of equation (2.54), an approximation
has to be made. We can see there are two terms in the equation that depend
on the retarded time τ. As will be discussed in the following section, the tem-
poral dependence of the interaction Hamiltonians reflects the memory of the
environment. In case the environment is very fluid and inhomogeneous, the
temporal dependence of the object stemming from the interaction Hamiltoni-
ans can be expected to be rather short. The characteristic “bath memory” time
can be denoted by 𝜏𝐵. Let’s now have a look at the reduced density matrix̂𝜌(𝐼)(𝑡 − τ): ̂𝜌(𝐼)(𝑡 − τ) = �̂�†𝑆(𝑡 − τ) ̂𝜌(𝑡 − τ)�̂�𝑆(𝑡 − τ) . (2.55)

As already mentioned, the interaction picture counters the fast oscillations
caused by the system Hamiltonian. The equation of motion in the interaction
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picture (2.54) thus describes only the dynamics governed by the system-bath
interaction Hamiltonian. Since the interaction is assumed to be weak, the in-
duced dynamics will be slow. Therefore, it seems justifiable to expect the re-
duced density matrix in the interaction picture won’t change significantly on
the time scale given by 𝜏𝐵. Hence we can approximate the temporal depen-
dence of ̂𝜌(𝐼)(𝑡 − τ) by 𝑡 only. This is called the Markov approximation since it
recovers the Markov property of the equation of motion.

The resulting time-local equation of motion for the reduced density matrix
in the second order of system-bath interaction is by some authors8 (May and
Kühn, 2011; Valkunas et al., 2013) called the quantum master equation:

𝜕𝜕𝑡 ̂𝜌(𝐼)(𝑡) = − ∫∞
0 dτ Tr𝐵{[�̂�(𝐼)𝑆−𝐵(𝑡), [�̂�(𝐼)𝑆−𝐵(𝑡 − τ), �̂�𝑒𝑞 ⊗ ̂𝜌(𝐼)(𝑡)]]} . (2.56)

At this point, it’s possible to return from the interaction picture back to the
Schrödinger picture by using the relations from (2.34) and (2.35):

𝜕𝜕𝑡 ̂𝜌(𝑡) = −𝑖[�̂�𝑆, ̂𝜌(𝑡)] − �̂�𝑆(𝑡) ∫∞
0 dτ Tr𝐵{[�̂�†𝐵(𝑡)�̂�†𝑆(𝑡)�̂�𝑆−𝐵(𝑡)�̂�𝑆(𝑡)�̂�𝐵(𝑡),[�̂�†𝐵(𝑡 − τ)�̂�†𝑆(𝑡 − τ)�̂�𝑆−𝐵(𝑡 − τ)�̂�𝑆(𝑡 − τ)�̂�𝐵(𝑡 − τ),�̂�𝑒𝑞 ⊗ ̂𝜌(𝐼)(𝑡)]]} �̂�†𝑆(𝑡) . (2.57)

Let us expand and examine the double commutator and contract the evo-
lution operators where possible. The first term out of the four in which the
reduced density matrix sits on the most right-hand-side reads:

�̂�𝑆(𝑡)Tr𝐵{�̂�†𝑆(𝑡)�̂�†𝐵(𝑡)�̂�𝑆−𝐵�̂�𝐵(𝑡)�̂�𝑆(𝑡)�̂�†𝑆(𝑡 − τ)�̂�†𝐵(𝑡 − τ)�̂�𝑆−𝐵�̂�𝑆(𝑡 − τ)�̂�𝐵(𝑡 − τ)�̂�†𝑆(𝑡)�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)�̂�𝑆(𝑡)} �̂�†𝑆(𝑡) (2.58)

=Tr𝐵{�̂�†𝐵(𝑡)�̂�𝑆−𝐵�̂�†𝐵(−τ)�̂�†𝑆(−τ)�̂�𝑆−𝐵�̂�𝐵(𝑡 − τ)�̂�𝑆(−τ)�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)}
(2.59)=Tr𝐵{�̂�𝑆−𝐵�̂�†𝐵(−τ)�̂�†𝑆(−τ)�̂�𝑆−𝐵�̂�𝐵(−τ)�̂�𝑆(−τ)�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)} (2.60)=Tr𝐵{�̂�𝑆−𝐵�̂�(𝐼)𝑆−𝐵(−τ)�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)} . (2.61)

By repeating this procedure with each term of the expanded double com-
mutator, we obtain the following expression:

Tr𝐵{�̂�𝑆−𝐵�̂�(𝐼)𝑆−𝐵(−τ)�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)}−Tr𝐵{�̂�(𝐼)𝑆−𝐵(−τ)�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)�̂�𝑆−𝐵}−Tr𝐵{�̂�𝑆−𝐵�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)�̂�(𝐼)𝑆−𝐵(−τ)}
Tr𝐵{�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)�̂�(𝐼)𝑆−𝐵(−τ)�̂�𝑆−𝐵} .

(2.62)

8The difference and the point of transition between the term quantum master equation and
the more general term equation of motion for reduced density matrix in second-order of system-bath
interaction isn’t quite settled and well-defined.
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The final quantummaster equation in the second order of system-bath inter-
action describing the dynamics of a reduced densitymatrix under the influence
of a weakly coupled environment reads:

𝜕𝜕𝑡 ̂𝜌(𝑡) = −𝑖[�̂�𝑆, ̂𝜌(𝑡)] − ∫∞
0 dτ

+Tr𝐵{�̂�𝑆−𝐵�̂�(𝐼)𝑆−𝐵(−τ)�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)}−Tr𝐵{�̂�(𝐼)𝑆−𝐵(−τ)�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)�̂�𝑆−𝐵}−Tr𝐵{�̂�𝑆−𝐵�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)�̂�(𝐼)𝑆−𝐵(−τ)}+Tr𝐵{�̂�𝑒𝑞 ⊗ ̂𝜌(𝑡)�̂�(𝐼)𝑆−𝐵(−τ)�̂�𝑆−𝐵}
. (2.63)

2.2.6 Bath correlation function
At this point, let’s have a look at the system-bath interactionHamiltonian. Since
we factorised the total density matrix as:�̂�(𝑡) = Tr𝐵{�̂�(𝑡)} ⊗ �̂�𝑒𝑞 = ̂𝜌(𝑡) ⊗ �̂�𝑒𝑞 , (2.64)

it’d be beneficial to do the same with �̂�𝑆−𝐵, which also spans the combined
Hilbert space ℋ𝑆 ⊗ ℋ𝐵. Let’s assume the following factorization into, at this
point still rather arbitrary, system (�̂� ∈ ℋ𝑆) and bath (Φ̂ ∈ ℋ𝐵) operators:�̂�𝑆−𝐵 = ∑𝜈 �̂�𝜈 ⊗ Φ̂𝜈 . (2.65)

Another property of the interactionHamiltonian that we’ve postulated dur-
ing the derivation of the quantum master equation in (2.52) states that by av-
eraging the operator with respect to the bath, we should obtain zero:

⟨�̂�𝑆−𝐵⟩ = Tr𝐵{�̂�𝑆−𝐵�̂�𝑒𝑞} = ∑𝜈 �̂�𝜈 ⊗ Tr𝐵{Φ̂𝜈�̂�𝑒𝑞} ≡ 0 . (2.66)

Adopting the proposed form (2.65) of �̂�𝑆−𝐵, the derived quantum master
equation becomes:

𝜕𝜕𝑡 ̂𝜌(𝑡) = −𝑖[�̂�𝑆, ̂𝜌(𝑡)] − ∑𝜈𝜈′ ∫∞
0 dτ

+�̂�𝜈�̂�(𝐼)𝜈′ (−τ) ̂𝜌(𝑡) ⊗ Tr𝐵{Φ̂𝜈Φ̂(𝐼)𝜈′ (−τ)�̂�𝑒𝑞}−�̂�(𝐼)𝜈 (−τ) ̂𝜌(𝑡)�̂�𝜈′ ⊗ Tr𝐵{Φ̂(𝐼)𝜈 (−τ)�̂�𝑒𝑞Φ̂𝜈′}−�̂�𝜈′ ̂𝜌(𝑡)�̂�(𝐼)𝜈 (−τ) ⊗ Tr𝐵{Φ̂𝜈�̂�𝑒𝑞Φ̂(𝐼)𝜈′ (−τ)}+ ̂𝜌(𝑡)�̂�(𝐼)𝜈′ (−τ)�̂�𝜈 ⊗ Tr𝐵{�̂�𝑒𝑞Φ̂(𝐼)𝜈 (−τ)Φ̂𝜈′}
(2.67)

= −𝑖[�̂�𝑆, ̂𝜌(𝑡)] − ∑𝜈𝜈′ ∫∞
0 dτ

+�̂�𝜈�̂�(𝐼)𝜈′ (−τ) ̂𝜌(𝑡) ⊗ Tr𝐵{Φ̂𝜈Φ̂(𝐼)𝜈′ (−τ)�̂�𝑒𝑞}−�̂�(𝐼)𝜈 (−τ) ̂𝜌(𝑡)�̂�𝜈′ ⊗ Tr𝐵{Φ̂𝜈′Φ̂(𝐼)𝜈 (−τ)�̂�𝑒𝑞}−�̂�𝜈′ ̂𝜌(𝑡)�̂�(𝐼)𝜈 (−τ) ⊗ Tr𝐵{�̂�𝑒𝑞Φ̂(𝐼)𝜈′ (−τ)Φ̂𝜈}+ ̂𝜌(𝑡)�̂�(𝐼)𝜈′ (−τ)�̂�𝜈 ⊗ Tr𝐵{�̂�𝑒𝑞Φ̂(𝐼)𝜈 (−τ)Φ̂𝜈′}
.

(2.68)
Note that the Kronecker product symbol ⊗ was left in the expressions above
(2.66–2.68) for the sake of clarity only to visually separate the terms that origi-
nate in the system and in the bath. Strictly speaking, the symbol is completely
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redundant there since the trace over bath DOF is, by definition, reduced to the
system Hilbert space only.

It can be shown that the traces on the first and second lines of (2.68) are
complex conjugates of the ones on the third and fourth lines:

(Tr𝐵{�̂�𝑒𝑞Φ̂(𝐼)𝜈′ (−τ)Φ̂𝜈} )∗ = ((Tr𝐵{�̂�𝑒𝑞�̂�𝐵(τ)Φ̂𝜈′�̂�†𝐵(τ)Φ̂𝜈} )⊤)†
(2.69)

= (Tr𝐵{(�̂�𝑒𝑞�̂�𝐵(τ)Φ̂𝜈′�̂�†𝐵(τ)Φ̂𝜈)⊤})†
(2.70)

= Tr𝐵{(�̂�𝑒𝑞�̂�𝐵(τ)Φ̂𝜈′�̂�†𝐵(τ)Φ̂𝜈)†} (2.71)

= Tr𝐵{Φ̂𝜈�̂�𝐵(τ)Φ̂𝜈′�̂�†𝐵(τ)�̂�𝑒𝑞} (2.72)= Tr𝐵{Φ̂𝜈Φ̂(𝐼)𝜈′ (−τ)�̂�𝑒𝑞} , (2.73)
where we used the fact that Hermitian adjoint (denoted by †) is composed
of complex conjugation (denoted by ∗) followed by transposition (denoted by⊤), the “diagonal” property of trace (Tr{𝐴𝐵})⊤ = Tr{(𝐴𝐵)⊤} = Tr{𝐴𝐵}, and
we assumed operators Φ̂ are Hermitian.

For the sake of clarity, a simplified notation of Tr𝐵{⋅} = ⟨⋅⟩𝐵 will be used
from now on. Averaging over objects at two different times defines a two-time
bath correlation function 𝐶(𝑡, 0) = 𝐶(𝑡):

Tr𝐵{Φ̂𝜈Φ̂(𝐼)𝜈′ (−τ)�̂�𝑒𝑞} = ⟨Φ̂𝜈Φ̂(𝐼)𝜈′ (−τ)⟩𝐵 (2.74)= ⟨Φ̂(𝐼)𝜈 (τ)Φ̂𝜈′⟩𝐵 = 𝐶𝜈𝜈′(τ) , (2.75)

and
Tr𝐵{�̂�𝑒𝑞Φ̂(𝐼)𝜈′ (−τ)Φ̂𝜈} = 𝐶∗𝜈𝜈′(τ) . (2.76)

From the lines (2.69) and (2.73) also follows:𝐶∗𝜈′𝜈(−𝑡) = 𝐶𝜈𝜈′(𝑡) . (2.77)

2.2.7 Redfield theory
The quantum master equation now simplifies to:

𝜕𝜕𝑡 ̂𝜌(𝑡) = −𝑖[�̂�𝑆, ̂𝜌(𝑡)] − ∑𝜈𝜈′ ∫∞
0 dτ

+�̂�𝜈�̂�(𝐼)𝜈′ (−τ) ̂𝜌(𝑡)𝐶𝜈𝜈′(τ)−�̂�(𝐼)𝜈 (−τ) ̂𝜌(𝑡)�̂�𝜈′𝐶𝜈′𝜈(τ)−�̂�𝜈′ ̂𝜌(𝑡)�̂�(𝐼)𝜈 (−τ)𝐶∗𝜈𝜈′(τ)+ ̂𝜌(𝑡)�̂�(𝐼)𝜈′ (−τ)�̂�𝜈𝐶∗𝜈′𝜈(τ)
(2.78)

= −𝑖[�̂�𝑆, ̂𝜌(𝑡)] − ∑𝜈
+�̂�𝜈Λ𝜈 ̂𝜌(𝑡)−Λ𝜈 ̂𝜌(𝑡)�̂�𝜈−�̂�𝜈 ̂𝜌(𝑡)Λ†𝜈+ ̂𝜌(𝑡)Λ†𝜈�̂�𝜈

(2.79)

= −𝑖[�̂�𝑆, ̂𝜌(𝑡)] − ∑𝜈 ([�̂�𝜈 , Λ𝜈 ̂𝜌(𝑡)] + [ ̂𝜌(𝑡)Λ†𝜈, �̂�𝜈]) (2.80)
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where the new operators are defined as

Λ𝜈 ≡ ∑𝜈′ ∫∞
0 dτ𝐶𝜈𝜈′(τ)�̂�(𝐼)𝜈′ (−τ) , (2.81)

Λ†𝜈 = ∑𝜈′ ∫∞
0 dτ�̂�(𝐼)𝜈′ (−τ)𝐶∗𝜈′𝜈(τ) . (2.82)

were introduced. Note that a re-indexation 𝜈 ↔ 𝜈′ was performed in the two
middle lines of (2.79).

The equation derived in (2.80) is themost general formof a quantummaster
equation in the second order of the system-bath interaction without specifying
pretty much any details about the model. To sum up the obtained expression,
the time-local equation of motion has essentially two contributing terms. The
commutator with the system Hamiltonian �̂�𝑆 governs the prevailing unitary
dynamics of the quantum system since we’re operating under the assumption
of weak system-bath coupling. The second term comes from the second order
of perturbation theory in the system-bath interaction. In particular, the second-
order approximation was made in the evolution superoperator that describes
the dynamics of our quantum system embedded in amuch larger environment.
The interaction itself isn’t a subject of the approximation stemming from per-
turbation theory, though. However, several other approximations and assump-
tions were made.

Firstly, we factorised the entire system into two parts—system and bath—
by performing a space reduction on the equation of motion. Secondly, we’ve
reintroduced the Markovian property by adopting the Markov approximation,
which disregards bath dynamics occurring on a long timescale. Thirdly, we
postulated the system-bath interaction averages to zero with respect to bath.
And finally, a factorisation of the system-bath interactionHamiltonianwas pos-
tulated as well.

This equation (2.80) belongs to the family of Redfield equations (Redfield,
1965). The compact and general form of the Redfield equation can be expressed
in Liouville space in the following manner:𝜕𝜕𝑡 ̂𝜌(𝑡) = −𝑖 ̆ℒ�̂�𝑆 ̂𝜌(𝑡) − ℛ̆ ̂𝜌(𝑡) , (2.83)

where ℛ̆ is the Redfield relaxation tensor. In case the upper integration limit at
(2.81) and (2.82) is set to the time 𝑡 instead of ∞, the operators become time-
dependent. By doing so, we obtain the time-dependent Redfield equation with
time-dependent Redfield relaxation tensor ℛ̆(𝑡)
2.2.8 Redfield theory in secular approximation
The Redfield relaxation superoperator can be expressed as a rank four tensor:

ℛ𝑖𝑗𝑘𝑙 , (2.84)

assuming the Einstein summation convention from now on. Since it is a (su-
per)operator, it can be represented in different bases. Themost apparent choice
of basis which provides the most insight is the basis of system Hamiltonian
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eigenstates. This basis is sometimes called the energy basis or the exciton basis.
The Redfield equation expressed in the energy basis reduces to:𝜕𝜕𝑡𝜌𝑖𝑗(𝑡) = −𝑖𝜔𝑖𝑗𝜌𝑖𝑗(𝑡) − ℛ𝑖𝑗𝑘𝑙𝜌𝑘𝑙(𝑡) , (2.85)

where 𝜔𝑖𝑗 = 𝐸𝑖 − 𝐸𝑗. The interaction picture can be once again adopted to get
rid of the first term on the right-hand-side:𝜌(𝐼)𝑗𝑘 (𝑡) = (�̂�†𝑆(𝑡))𝑖𝑗 𝜌𝑗𝑘 (�̂�𝑆(𝑡))𝑘𝑙 = 𝛿𝑖𝑗𝑒𝑖𝐸𝑗𝑡𝜌𝑗𝑘𝑒−𝑖𝐸𝑘𝑡𝛿𝑘𝑙 = 𝑒𝑖𝜔𝑗𝑘𝑡𝜌𝑗𝑘(𝑡) . (2.86)

We can now plug the following expression for 𝜌(𝑡):𝜌𝑗𝑘(𝑡) = 𝑒−𝑖𝜔𝑗𝑘𝑡𝜌(𝐼)𝑗𝑘 (𝑡) (2.87)
back to the Redfield equation, which then reads:𝜕𝜕𝑡𝜌(𝐼)𝑖𝑗 (𝑡) = −𝑒𝑖𝜔𝑖𝑗𝑡ℛ𝑖𝑗𝑘𝑙𝑒−𝑖𝜔𝑘𝑙𝑡𝜌(𝐼)𝑘𝑙 (𝑡) (2.88)= 𝑒𝑖(𝜔𝑖𝑗−𝜔𝑘𝑙)𝑡ℛ𝑖𝑗𝑘𝑙𝜌(𝐼)𝑘𝑙 (𝑡) . (2.89)

The equation (2.89) can be formally integrated which results in:

𝜌(𝐼)𝑖𝑗 (𝑡) = 𝜌(𝐼)𝑖𝑗 (𝑡0) − ℛ𝑖𝑗𝑘𝑙 ∫𝑡
0 dτ 𝑒𝑖Δ𝜔τ𝜌(𝐼)𝑘𝑙 (τ) (2.90)

≈ 𝜌(𝐼)𝑖𝑗 (𝑡0) − ℛ𝑖𝑗𝑘𝑙 ∫𝑡
0 dτ 𝑒𝑖Δ𝜔τ𝜌(𝐼)𝑘𝑙 (𝑡) (2.91)

= 𝜌(𝐼)𝑖𝑗 (𝑡0) − ℛ𝑖𝑗𝑘𝑙 1𝑖Δ𝜔 (𝑒𝑖Δ𝜔𝑡 − 1) 𝜌(𝐼)𝑘𝑙 (𝑡) , (2.92)

where we assumed 𝜌(𝐼)𝑘𝑙 (τ) ≈ 𝜌(𝐼)𝑘𝑙 (𝑡) since it evolves in the interaction picture
slowly. Besides, the differential frequency Δ𝜔 = 𝜔𝑖𝑗 − 𝜔𝑘𝑙 was also introduced
there. Let us now explore the behaviour of the result of integration performed
in (2.92) with respect to the differential frequency Δ𝜔:

limΔ𝜔→0 1𝑖Δ𝜔 (𝑒𝑖Δ𝜔𝑡 − 1) ≈ 1 + 𝑖Δ𝜔𝑡 − 1𝑖Δ𝜔 = 𝑡 . (2.93)

To sum up, if the differential frequency is close to zero, Δ𝜔 ≈ 0, the reduced
density matrix dynamic boils down to:𝜌(𝐼)𝑖𝑗 (𝑡) = 𝜌(𝐼)𝑖𝑗 (𝑡0) − ℛ𝑖𝑗𝑘𝑙𝑡𝜌(𝐼)𝑘𝑙 (𝑡) . (2.94)

In other cases, i.e. Δ𝜔 ≉ 0, the term quickly diverges from the linear depen-
dence on 𝑡, the real part of the term decreases as Δ𝜔 increases, and it also starts
to oscillate around zero. The same occurs to the imaginary part, as can be seen
in Figure 2.1.

As a result, in all the cases when the differential frequency isn’t close to
zero, the terms won’t significantly contribute to the dynamics, or they can even
be a source of numerical errors due to the quick oscillations. Hence, it sounds
reasonable to disregard all the terms of the Redfield relaxation tensor that lead
to non-cancelling frequencies.

The reduced density matrix has two types of elements—populations ∑𝑖 𝜌𝑖𝑖,
and coherences ∑𝑖,𝑗(≠𝑖) 𝜌𝑖𝑗. This leads to two sets of indices that will lead to the
oscillation cancellation or no oscillations in the first place:
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Figure 2.1: The evolution of the term 1𝑖Δ𝜔 (𝑒𝑖Δ𝜔𝑡 − 1) for different values of Δ𝜔.

i) ℛ𝑖𝑖𝑘𝑘𝜌𝑘𝑘 → 𝛿𝑖𝑗𝛿𝑘𝑙 for populations,
ii) ℛ𝑘𝑙𝑘𝑙𝜌𝑘𝑙 → 𝛿𝑖𝑘𝛿𝑗𝑙 for coherences.
The first case describes the transfer or populations:

𝜕𝜕𝑡𝜌𝑖𝑖(𝑡) = − ∑𝑗 ℛ𝑖𝑖𝑗𝑗𝜌𝑗𝑗(𝑡) , (2.95)

where ℛ𝑖𝑖𝑗𝑗 = −𝐾𝑖𝑗 is a negative value of a transfer rate from population 𝜌𝑗𝑗 →𝜌𝑖𝑖 . Since the populations of a density matrix aren’t subjects of any unitary
evolution and oscillations, the rates will be real-valued.

The second case describes the process of decoherence—attenuation of the co-
herences due to the system relaxation:

𝜕𝜕𝑡𝜌𝑖𝑗(𝑡) = −𝑖𝜔𝑖𝑗𝜌𝑖𝑗(𝑡) − ℛ𝑖𝑗𝑖𝑗𝜌𝑖𝑗(𝑡) , (2.96)

where ℛ𝑖𝑗𝑖𝑗 is a decoherence rate for a coherence 𝜌𝑖𝑗.
Setting all other elements of the Redfield tensor to zero—leaving only the

two types of elements discussed above—is called the secular approximation. The
tensor elements that describe the abovementioned population transfer and de-
coherence are referred to as secular terms, and the rest is denoted as nonsecular
terms.
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2.3 The model
As explored in the introduction, the aim of this thesis is to construct a robust
theoretical model of a chlorophyll molecule compatible with already existing
theories developed for theoretical spectroscopy and for the study of complex
molecular aggregates in general. The models that have been actively used so
far pretty much always considered chlorophyll molecules to be two-level sys-
tems. Eventually, also three-level models were used (Niu et al., 2008) if the
spectroscopic experiment demanded it.

2.3.1 Introduction
Let’s start from the beginning and outline the framework of approximations
we’ll be working with. To begin with, the Hamiltonian of a molecule, which is
a many-body system of electrons and nuclei, can be written as:

�̂�𝑆 = �̂�𝑛𝑢𝑐(R)⏟̂𝐻𝑛𝑢𝑐(R) +�̂�𝑒𝑙−𝑛𝑢𝑐(r,R) + �̂�𝑒𝑙(r|R) + �̂�𝑒𝑙−𝑒𝑙(r) + �̂�𝑛𝑢𝑐−𝑛𝑢𝑐(R)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟�̂�𝑒𝑙(r|R) (2.97)

= ∑𝛼 − 12𝑀𝛼 ∇2𝛼 + ∑𝛼<𝛽
𝑍𝛼𝑍𝛽∣𝑅𝛽 − 𝑅𝛼∣

+ ∑𝑖
⎛⎜⎜⎝− 12𝑚𝑒𝑙 ∇2𝑖 + ∑𝑗(<𝑖)

1∣𝑟𝑖 − 𝑟𝑗∣ − ∑𝛼
𝑍𝛼∣𝑟𝑖 − 𝑅𝛼∣⎞⎟⎟⎠ , (2.98)

where �̂�𝑛𝑢𝑐 represents the kinetic energy of nuclei, �̂�𝑒𝑙 is the kinetic energy of
electrons, and �̂�𝑒𝑙−𝑒𝑙, �̂�𝑒𝑙−𝑛𝑢𝑐, �̂�𝑛𝑢𝑐−𝑛𝑢𝑐 are interaction potentials between elec-
trons, between electrons and nuclei, and between nuclei, in the corresponding
order. r are cartesian coordinates of the electrons, R are coordinates of the nu-
clei, and 𝑍𝛼 and 𝑀𝛼 is a charge and a mass of 𝛼th nuclei, correspondingly.

Since the mass of nuclei is much larger than that of the electrons, by a factor
of ca 1836, the kinetic energy is by this factor smaller than that of the electrons:

𝐸𝐾,𝐽𝐸𝐾,𝑒𝑙 = 𝑝2𝐽𝑝2𝑒𝑙⏟
1

𝑚𝑒𝑙𝑚𝐽 = 11836 = 5.45 ⋅ 10−4 . (2.99)

The kinetic energy of nuclei can be thus considered by means of a pertur-
bation theory as a small perturbation to the electronic problem. The first ap-
proximation assigns nuclei a fixed position in space. For any position of the
nuclei, the electronic part of the systemwill always remain in a stationary state
given by the Schrödinger equation. That is, the electrons adiabatically react to
changes in the position of nuclei. In this framework, the reorganization of nu-
clei cannot cause excitation to a higher electronic state. The total Hamiltonian�̂�𝑆 of such a system would be diagonal in the basis of electronic eigenstates of
the electronic Hamiltonian �̂�𝑒𝑙:

�̂�𝑒𝑙 ∣𝑢(el)𝑖 ⟩ = 𝑈(𝑒𝑙)𝑖 ∣𝑢(el)𝑖 ⟩ . (2.100)
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The total wavefunction of such a system can be expanded in the basis of the
electronic eigenstates:

|Ψ⟩ = ( ∑𝑖 ∣𝑢(el)𝑖 ⟩ ⟨𝑢(el)𝑖 ∣ ) |Ψ⟩ (2.101)

= ∑𝑖 ∣𝑤(𝐽)𝑖 ⟩ ∣𝑢(el)𝑖 ⟩ , (2.102)

where state ∣𝑤(𝐽)𝑖 ⟩ represent the nuclear wavefunction. By plugging this fac-
torised form into the time-independent Schödinger equation �̂�𝑆 |Ψ⟩ = 𝐸 |Ψ⟩
and multiplying the expression from the left by ⟨𝑢(el)𝑖 ∣, we obtain:

⟨𝑢(el)𝑖 ∣ �̂� |Ψ⟩ = ⟨𝑢(el)𝑗 ∣ (�̂�𝐽 + �̂�𝑒𝑙) ⎛⎜⎝∑𝑖 ∣𝑤(𝐽)𝑖 ⟩ ∣𝑢(el)𝑖 ⟩⎞⎟⎠ (2.103)

= ∑𝑖 ⟨𝑢(el)𝑗 ∣�̂�𝐽∣𝑢(el)𝑖 ⟩ ∣𝑤(J)𝑖 ⟩ + ⟨𝑢(el)𝑗 ∣�̂�𝑒𝑙∣𝑢(el)𝑖 ⟩⏟⏟⏟⏟⏟⏟⏟𝑈(𝑒𝑙)𝑖 𝛿𝑖𝑗
∣𝑤(J)𝑖 ⟩ (2.104)

The matrix element of the kinetic energy operator can be expressed as fol-
lows:

⟨𝑢(el)𝑗 ∣�̂�𝐽∣𝑢(el)𝑖 ⟩ ∣𝑤(J)𝑖 ⟩ = ∑𝛼 − 12𝑀𝛼 ⟨𝑢(el)𝑗 ∣ (∇2𝛼 ∣𝑢(el)𝑖 ⟩ ∣𝑤(J)𝑖 ⟩ ) (2.105)

= ∑𝛼 − 12𝑀𝛼 (( ⟨𝑢(el)𝑗 ∣∇2𝛼∣𝑢(el)𝑖 ⟩ ) ∣𝑤(J)𝑖 ⟩
+ 2( ⟨𝑢(el)𝑗 ∣∇𝛼∣𝑢(el)𝑖 ⟩ )(∇𝛼 ∣𝑤(J)𝑖 ⟩ )
+ ⟨𝑢(el)𝑗 ∣𝑢(el)𝑖 ⟩⏟⏟⏟⏟⏟𝛿𝑖𝑗

(∇2𝛼 ∣𝑤(J)𝑖 ⟩ )). (2.106)

An operator of nonadiabaticity can be introduced to simplify the notation:

Θ̂𝑗𝑖 = ( ⟨𝑢(el)𝑗 ∣�̂�𝐽∣𝑢(el)𝑖 ⟩ − ∑𝛼
1𝑀𝛼 ⟨𝑢(el)𝑗 ∣∇𝛼∣𝑢(el)𝑖 ⟩ ∇𝛼) . (2.107)

The equation (2.105) can be then again summed over 𝑖 and expressed as:

∑𝑖 ⟨𝑢(el)𝑗 ∣�̂�𝐽∣𝑢(el)𝑖 ⟩ ∣𝑤(J)𝑖 ⟩ = ∑𝑖(≠𝑗) Θ̂𝑗𝑖 ∣𝑤(J)𝑖 ⟩ + (Θ̂𝑗𝑗 + �̂�𝐽) ∣𝑤(J)𝑗 ⟩ . (2.108)

The Schródinger equation describing thy dynamics of nuclei finally be-
comes:

(�̂�𝐽 + Θ̂𝑗𝑗 + 𝑈(el)𝑗⏟⏟⏟⏟⏟�̂�𝑗
) ∣𝑤(J)𝑗 ⟩ = 𝐸 ∣𝑤(J)𝑗 ⟩ − ∑𝑖(≠𝑗) Θ̂𝑗𝑖 ∣𝑤(J)𝑖 ⟩ . (2.109)

The equation (2.109) is still exact; no approximations have been introduced
yet. The operator �̂� on the left-hand-side represents a potential hypersurface,
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also known as potential energy surface (PES). At the beginning of this section,
an adiabatic Hamiltonianwas proposed to be diagonal in the eigenbasis of elec-
tronic states. That means the operator of nonadiabaticity needs to be zero. By
neglecting it, we are adopting the so-called adiabatic approximation.

Generally speaking, the elements of the nonadiabatic operator Θ𝑗𝑖 (𝑖 ≠ 𝑗)
can be expected to be zero if the electronic levels 𝑖, 𝑗 are well energetically sepa-
rated, which usually applies to the first excited state and the ground state (May
and Kühn, 2011). Hence, we can consider 𝑖 = 0 and Θ0𝑗 = 0. This gives us:

(�̂�𝐽 + Θ̂00 + 𝑈(el)0⏟⏟⏟⏟⏟�̂�0
−𝐸) ∣𝑤(J)0 ⟩ = 0 . (2.110)

If the diagonal element of the nonadiabatic operator Θ𝑗𝑗 is committed as
well, we arrive at the form of Hamiltonian in Born-Oppenheimer approximation:

(�̂�𝐽 + 𝑈(el)0 − 𝐸) ∣𝑤(J)0 ⟩ = 0. (2.111)

However, the first two excited states of the molecule of chlorophyll aren’t
that well energetically separated and hence a question arises whether it is ap-
propriate to assume that the elements of the nonadiabatic operator Θ𝑗𝑗 will
equal zero in the case of 𝑖 = 𝑄𝑦, 𝑗 = 𝑄𝑥. Following the previously used models
of chlorophyll molecules (Reimers et al., 2013; Niu et al., 2008), the elements
were considered nonzero between the first and second excited states. Following
the approach of Reimers et al. (2013), the nonadiabatic terms, also called sim-
ply diabatic, were assumed to be linear in bath coordinate, as will be discussed
further.

2.3.2 Model of the System
The quantum systemof our interest consists of a singlemolecule of chlorophyll-
like pigment. As discussed in Chapter 1, the two lowest-in-energy electronic
transitions are expected to play a major role and are going to be included in the
model. Along with the ground state, the molecule will be approximated by a
three-level system (the levels are generally denoted by 𝑔, 𝑒, 𝑓). The two transitions
are usually called 𝑄𝑦 (𝑔 → 𝑒) and 𝑄𝑥 (𝑔 → 𝑓), and they are roughly perpendic-
ular to each. Hence the axes names that appear in subscript. The exact value
of the angle, as well as the oscillator strength, i.e. amplitude, of the transitions,
depend on the molecular chemical structure and on the solvent. For the sake
of clarity, the corresponding electronic states will be denoted as ∣𝑔⟩ , ∣𝑄𝑦⟩ , ∣𝑄𝑥⟩.

Since our aim is to simulate and better understand the ultra-fast dynamics
that are being observed between the two excited states 𝑄𝑦 and 𝑄𝑥, it is neces-
sary to introduce to the system some kind of coupling that would bridge the
interaction between them and open the door for the fast relaxation pathway.

The energy gap between 𝑄𝑦 and 𝑄𝑥 can be effectively decreased by intro-
ducing explicit vibrational modes to the system. The reasoning for that is given
in the following subsection 2.3.3. For now, let us assume there are some vibra-
tional modes which are expressed explicitly, and then there are some others
that we will be treated otherwise.

28



The vibrational modes each belong to different Hilbert spaces that are also
different from the Hilbert space of the electronic states. The addition of the
modes to the electronic states is thus performed by a tensor product9. A similar
operation called tensor sum10 can also be defined. It can be used in formulations
of objects that spread multiple Hilbert spaces. For the sake of simplicity, this
operation will be explicitly used only sparsely, and the much simpler approach
of implying this operation by a standard addition operator + between objects
of different Hilbert spaces will be used predominantly.

For example, let’s have an arbitrarymatrix 𝐴 = (𝑎1 00 𝑎2) of dimension 𝑁𝐴 ×𝑁𝐴, and a arbitrary matrix 𝐵 of dimensions 𝑁𝐵 × 𝑁𝐵. Let’s now compare the
tensor product 𝐴 ⊗ 𝐵 with the tensor sum 𝐴 ⊕ 𝐵:

𝐴 ⊗ 𝐵 = (𝐴1𝐵 00 𝐴2𝐵)𝑁𝐴𝑁𝐵×𝑁𝐴𝑁𝐵
, (2.112)

𝐴 ⊕ 𝐵 = 𝐴 ⊗ 1 + 1 ⊗ 𝐵 (2.113)

= (𝐴1 + 𝐵 00 𝐴2 + 𝐵)𝑁𝐴𝑁𝐵×𝑁𝐴𝑁𝐵
. (2.114)

As can be seen, the addition of explicit vibrational modes to the system part
of our problem dramatically increases the dimensions of the Hamiltonian and
of the reduced densitymatrix. The resulting states that span both the electronic
and a vibrational Hilbert space can be called vibronic states.

The explicit vibrational modes will be modelled by a quantum harmonic
oscillator. Even though it’s a rather rough approximation whose validity is
limited to low excited states only around the potential minima at which the
harmonic potential is centred, it still should provide sufficient insight into the
modelled processes. The quantum harmonic oscillator Hamiltonian reads:

�̂�′𝑉𝑖 = Ω𝑉𝑖2 (�̂�2𝑉𝑖 + �̂�2𝑉𝑖) , (2.115)

where 𝑖 is the index of the explicit vibrational mode included in the system,
and 𝑁𝑉 is, from now, on, the number of such modes considered. In previous
works (Reimers et al., 2013; Niu et al., 2008), up to one mode was added. How-
ever, we decided to explore also the case when two suchmodes are introduced.
The reason for that was discussed in subsection 2.3.1.

The analytical representation of (2.115) is well-known and can be expressed
as:

�̂�′𝑉𝑖 = Ω𝑉𝑖 ( ̂𝑎† ̂𝑎 + 12) (2.116)

= 𝑁𝑖∑𝑛 Ω𝑉𝑖 (𝑛 + 12) |𝑛⟩⟨𝑛| , (2.117)

9Also known as Kronecker or direct product.
10Also known as Kronecker or direct sum

29



where ̂𝑎 and ̂𝑎† are bosonic annihilation and creation operators, in corresponding
order, defined as:

̂𝑎 = 1√2 ( ̂𝑞 + 𝑖 ̂𝑝) ,
̂𝑎† = 1√2 ( ̂𝑞 − 𝑖 ̂𝑝) . (2.118)

Besides, they obey the following relations:

[ ̂𝑎𝑖, ̂𝑎†𝑗 ] = 𝛿𝑖𝑗 , (2.119)̂𝑎 |𝑛⟩ = √𝑛 |𝑛 − 1⟩ , (2.120)̂𝑎† |𝑛⟩ = √𝑛 + 1 |𝑛 + 1⟩ , (2.121)̂𝑎 ∣∅⟩ = 0 ∣∅⟩ . (2.122)

Also note that the Hamiltonian of the harmonic oscillator expressed in its
eigenbasis in (2.117) was cropped into a finite dimension of 𝑁𝑖. The number
of the modes included can be even further differentiated separately for each
individual electronic state. Hence, notation 𝑁𝑖,𝑗, where the index 𝑖 corresponds
to different explicit modes and the index 𝑗 (∈ {𝑔, 𝑒, 𝑓} = {𝑔, �̂�𝑦, �̂�𝑥}) to different
electronic states of the system, might be more appropriate.

The addition of explicit vibrational modes to the system should also be re-
flected in the model of the bath. Even though the details about the bath are
discussed in the following subsection 2.3.3, for the sake of clarity, the interac-
tion of the explicit vibrational modes with the bath will be discussed here and
now.

The effect of the bath on the explicit vibrational modes should be caus-
ing relaxation in them. Since the Hamiltonian of the harmonic oscillator—the
model for explicit vibrational modes—is purely diagonal, see (2.117), the vi-
brational bath can be assumed to be by-one off-diagonal so that the interaction
may bridge the neighbouring energy levels. From (2.118) can be shown that
one operator that would suit our intention is the operator of position �̂�. There-
fore, the interaction with the vibrational bath will be linear in �̂�. Malý et al.
(2016) proposed the following form of the 𝑖th harmonic mode interacting with
its bath:

�̂�𝑉𝑖 = Ω𝑉𝑖2 (�̂�2𝑉𝑖 + �̂�2𝑉𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟�̂�′𝑉𝑖
−√2�̂�𝑉𝑖 ⊗ Φ̂𝐵,𝑉𝑖 (2.123)

= Ω𝑉𝑖 ( ̂𝑎† ̂𝑎 + 12) − ( ̂𝑎 + ̂𝑎†) ⊗ Φ̂𝐵,𝑉𝑖 (2.124)

= 𝑁𝑉∑𝑛=0 Ω𝑉𝑖 (𝑛 + 12) |𝑛⟩⟨𝑛| − √𝑛 + 1( |𝑛 + 1⟩⟨𝑛| + |𝑛⟩⟨𝑛 + 1| )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟�̂�𝑉𝑖
⊗Φ̂𝐵,𝑉𝑖 ,

(2.125)

where Φ̂𝐵,𝑉𝑖 is an operator of the bath which the modes are interacting with.
The form of the operator will be revealed in the following subsection 2.3.3.
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Nevertheless, just the addition of some explicit modes to the electronic
states of the molecule still doesn’t strictly result in a fast relaxation from ∣𝑄𝑥⟩ to∣𝑄𝑦⟩. The relaxation would be happening in each of the modes independently
and to their own vibrational ground states (assuming 𝜔𝑉𝑖 >> 𝑘𝐵𝑇).

To change that, the Born-Oppenheimer approximation has to be questioned.
One way to mix the ∣𝑄𝑦⟩ and ∣𝑄𝑥⟩ states is—as published by (Reimers et al.,
2013; Niu et al., 2008), for example—to introduce a linear diabatic coupling�̂�𝑒𝑙−𝑣𝑖𝑏,𝑖 between the two electronic states:

�̂�𝑒𝑙−𝑣𝑖𝑏,𝑖 = 𝛼𝑖�̂�𝑉𝑖 (∣𝑄𝑦⟩⟨𝑄𝑥∣ + ∣𝑄𝑥⟩⟨𝑄𝑦∣) , (2.126)

where 𝛼𝑖 is a constant representing the strength of the coupling, and �̂�𝑉𝑖 is a
coordinate of the 𝑖th vibrational mode explicitly included in the systemHamil-
tonian. In Figure 2.2, you can see the construction process of the systemHamil-
tonian with a single explicitly included vibrational mode.

2.3.3 Model of the bath
The standard approach for modelling the environment is to consider it as an
infinite set of harmonic oscillators. There are multiple reasons that back this
model up. Let’s elaborate on the degrees of freedom the physical environment
we are trying to model is expected to have.

The first constituent involves the vibrational degrees of freedom of both the
physical environment and the molecule (the vibrational modes explicitly in-
cluded in the system were sourced from there). Even though potential energy
surfaces pertinent to the vibrations aren’t harmonic, the actual potential can al-
ways be approximated by the harmonic one near its minima. This harmonic
approximation tends to be valid for low-excited vibrational states only since it
completely disregards the dissociation limit and incorrectly introduces equidis-
tant energy levels.

The second constituent is the electromagnetic field that opens the channel
for radiative transitions and radiative relaxation. It is purely bosonic and thus
corresponds well to the statistics of harmonic oscillators.

The third constituent of the bath is a little more conceptual and essen-
tially exists on top of the two already mentioned. Since we are dealing with
molecules or molecular aggregates in solvents, the sample is undergoing a per-
petual chaotic motion that may influence and shift the energetic transitions.
Most of the processes in concern have Gaussian distribution of fluctuations,
which corresponds to bosonic statistics and to the harmonic model once again.

Let us consider an infinite set of bath coordinates { ̂𝑞𝑘}∞𝑘 (they can be viewed
as coordinates of the vibrational normal modes) and a corresponding set of
momenta { ̂𝑝𝑘}∞𝑘 . The general bath Hamiltonian �̂�𝐵 modelled by the infinite set
of dimensionless quantum harmonic oscillators then reads:

�̂�𝐵 = ∞∑𝑘
𝜔𝑘2 ( ̂𝑝2𝑘 + ̂𝑞2𝑘) (2.127)

= ∞∑𝑘 𝜔𝑘 ⎛⎜⎜⎜⎝ ̂𝑎†𝑘 ̂𝑎𝑘⏟̂𝑛𝑘
+12⎞⎟⎟⎟⎠ . (2.128)
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Figure 2.2: A schematic representation of the systemHamiltonian construction
steps. In panel I., only electronic states of our three-level model are present.
Moving one step (and panel) right, one explicit vibrational mode was added
to the system. Its energies are depicted on the energy level diagram in panel
III. By moving to the panel labelled IV., the linear diabatic coupling 𝐻𝑒𝑙−𝑣𝑖𝑏,𝑖
is added, and the whole system Hamiltonian is diagonalised. The eigenen-
ergies of vibronic states are depicted in the right diagram V. The colour se-
lection for vibronic energy levels and hence their assignment to the diabatic
states (as indicated by non-horizontal dashed lines between energy levels of
panels III. and IV.) were based on the single most dominant contribution (i.e.
the maximum squared values of the Hamiltonian-diagonalising matrix 𝑆, such
that ̂𝑆†�̂�𝑆 ̂𝑆 = 𝐸1, were calculated). The parameters used for this exemplary
model were chosen arbitrarily and for illustration only. The parameters are in-
cluded in the appendix section A.2.

In the theory of molecular aggregates, an assumption about local, indepen-
dent baths is made based on the argument the molecules are somewhat sepa-
rated in space, and their mutual interaction through the bath can be neglected.
In our case, this argument can no longer be used since the system consists of a
single molecule. Hence, this assumption cannot be made.

As a result, a common bath coordinate can be found for all three electronic
states. However, the potentials belonging to different electronic states cannot be
expected to be perfectly aligned. The harmonic potential energy surfaces will
be thus shifted by an arbitrary constant 𝑑𝑘. We arrive at this set of equations
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defining the bath Hamiltonian for the individual electronic states:

�̂�(𝑔)𝐵 = ∞∑𝑘
𝜔𝑘2 ( ̂𝑝2𝑘 + ̂𝑞2𝑘) , (2.129)

�̂�(𝑄𝑦)𝐵 = ∞∑𝑘
𝜔𝑘2 ( ̂𝑝2𝑘 + ( ̂𝑞𝑘 − 𝑑(𝑄𝑦)𝑘 )2) (2.130)

= �̂�(𝑔)𝐵 + ∞∑𝑘
𝜔𝑘2 (𝑑(𝑄𝑦)𝑘 )2

⏟⏟⏟⏟⏟⏟⏟⏟⏟𝜆(𝑄𝑦)
− ∞∑𝑘 𝜔𝑘 ̂𝑞𝑘𝑑(𝑄𝑦)𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟Δ�̂�(𝑄𝑦)

, (2.131)

�̂�(𝑄𝑥)𝐵 = ∞∑𝑘
𝜔𝑘2 ( ̂𝑝2𝑘 + ( ̂𝑞𝑘 − 𝑑(𝑄𝑥)𝑘 )2) (2.132)

= �̂�(𝑔)𝐵 + ∞∑𝑘
𝜔𝑘2 (𝑑(𝑄𝑥)𝑘 )2⏟⏟⏟⏟⏟⏟⏟𝜆(𝑄𝑥)

− ∞∑𝑘 𝜔𝑘 ̂𝑞𝑘𝑑(𝑄𝑥)𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟Δ�̂�(𝑄𝑦)
. (2.133)

Several new quantities and operators were introduced in the equations
(2.130)–(2.133). 𝜆(𝑄𝑦) and 𝜆(𝑄𝑥) are called reorganisation energies, and they are
real-valued constants pertinent to the two electronic states denoted by 𝑄𝑦 and𝑄𝑥. The reorganisation energy represents an energetic shift occurring during
vertical transitions between the misaligned but identical potential energy sur-
faces. For a schematic representation, please see Figure 2.2. An alternative
quantity that is frequently used is the Huang-Rhys factor 𝑆 defined as:

𝑆(𝑗) = ∞∑𝑘 𝑆𝑘 = ∞∑𝑘
𝜆(𝑗)𝑘𝜔𝑘 = ∞∑𝑘

12 (𝑑(𝑗)𝑘 )2 . (2.134)

The Huang-Rhys factor 𝑆𝑘 essentially expresses the reorganisation energy𝜆𝑘 in the units of frequency 𝜔𝑘. Operators Δ�̂�(𝑄𝑦) and Δ�̂�(𝑄𝑥) represent a
system-bath interaction of the electronic state ∣𝑄𝑦⟩ and ∣𝑄𝑥⟩, correspondingly,
with the infinite set of harmonic oscillators forming the bath.

In the previous section, a formal differentiation between an electronic and
vibrational bath was introduced (the terms reflect the system degrees of free-
dom the bath is interacting with). However, the model of both of the baths will
be the same for the reasons discussed at the beginning of this section. The op-
erator Φ̂𝐵,𝑉𝑖 should be then viewed as a variant of the term Δ�̂� defined above.
That is, Φ̂𝐵,𝑉𝑖 is linear in the bath coordinate ̂𝑞𝑘. The vibrational bath that in-
teracts with 𝑖th explicit vibrational mode can be expressed in a similar manner
as the electronic one discussed so far:

�̂�(𝑉𝑖)𝐵 = �̂�(𝑔)𝐵 + 𝜆(𝑉𝑖) + Φ̂𝐵,𝑉𝑖 . (2.135)
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The Hamiltonian of the bath can be summed up as follows:

�̂�𝐵 = �̂�(𝑔)𝐵 ⊗ ∣𝑔⟩⟨𝑔∣ + �̂�(𝑄𝑦)𝐵 ⊗ ∣𝑄𝑦⟩⟨𝑄𝑦∣ + �̂�(𝑄𝑥)𝐵 ⊗ ∣𝑄𝑥⟩⟨𝑄𝑥∣
+ 𝐼∑𝑖 �̂�𝐵,𝑉𝑖 ⊗ �̂�𝑉𝑖 (2.136)

= �̂�(𝑔)𝐵 ⊗ 1𝑒𝑙 ⊗ 1𝑉 + (𝜆(𝑄𝑦) + Δ�̂�(𝑄𝑦)) ⊗ ∣𝑄𝑦⟩⟨𝑄𝑦∣
+ (𝜆(𝑄𝑥) + Δ�̂�(𝑄𝑥)) ⊗ ∣𝑄𝑥⟩⟨𝑄𝑥∣ + 𝐼∑𝑖 (𝜆(𝑉𝑖) + Φ̂𝐵,𝑉𝑖) ⊗ �̂�𝑉𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

already in �̂�𝑉𝑖
. (2.137)

In equation (2.52), we postulated the system-bath interaction Hamiltonian�̂�𝑆−𝐵 should average to zero with respect to the bath degrees of freedom:

⟨�̂�𝑆−𝐵⟩𝐵 = Tr𝐵{�̂�𝑆−𝐵�̂�𝑒𝑞} ≡ 0 , (2.138)

where �̂�𝑒𝑞 is a bath density matrix in thermal equilibrium. Using the Boltz-
mann distribution and the Hamiltonian in the form of (2.128), we can express�̂�𝑒𝑞 as follows:

�̂�𝑒𝑞 = 1𝑍 exp{−𝛽�̂�(𝑔)𝐵 } (2.139)

= 1𝑍 ∞∏𝑘 exp{−𝛽𝜔𝑘 ( ̂𝑛𝑘 + 12)} (2.140)

= 1𝑍 ∞∏𝑘
∞∑𝑛𝑘

exp{−𝛽𝜔𝑘 (𝑛𝑘 + 12)} ∣𝑛𝑘⟩⟨𝑛𝑘∣ , (2.141)

where 𝑍 = Tr𝐵{�̂�𝑒𝑞}. Similarly, the system-bath interaction term derived in
(2.133), after expressing the coordinate ̂𝑞𝑘 in terms of the annihilation and cre-
ation operators (2.118), yields:

Δ�̂�(𝑄𝑥) = − ∞∑𝑘
𝜔𝑘√2 ( ̂𝑎𝑘 + ̂𝑎†𝑘) 𝑑(𝑄𝑥)𝑘 . (2.142)

The averaging of Δ�̂�(𝑄𝑥) then yields:

⟨Δ�̂�(𝑄𝑥)⟩𝐵 = Tr𝐵⎧{⎨{⎩⎛⎜⎝− ∞∑𝑘
𝜔𝑘√2 ( ̂𝑎𝑘 + ̂𝑎†𝑘) 𝑑(𝑄𝑥)𝑘 ⎞⎟⎠ ⎛⎜⎝ 1𝑍 ∞∏𝑘′ exp{−𝛽𝜔𝑘′ ( ̂𝑛𝑘′ + 12)}⎞⎟⎠⎫}⎬}⎭

(2.143)

= − ∞∑𝑚,𝑘
𝜔𝑘𝑑(𝑄𝑥)𝑘√2𝑍𝑘 ⟨𝑚∣∣∣∣( ̂𝑎𝑘 + ̂𝑎†𝑘) ∞∑𝑛𝑘

exp{−𝛽𝜔𝑘 (𝑛𝑘 + 12)}∣∣∣∣𝑛𝑘⟩ ⟨𝑛𝑘∣𝑚⟩⏟𝛿𝑛𝑘𝑚
(2.144)

= − ∞∑𝑘,𝑛𝑘
𝜔𝑘𝑑(𝑄𝑥)𝑘√2𝑍𝑘 ⟨𝑛𝑘∣( ̂𝑎𝑘 + ̂𝑎†𝑘)∣𝑛𝑘⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟=0 exp{−𝛽𝜔𝑘 (𝑛𝑘 + 12)} (2.145)

= 0 , (2.146)
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where 𝑍𝑘 = Tr𝐵{exp{−𝛽𝜔𝑘 ( ̂𝑛𝑘 + 12)}}. The same applies to Δ�̂�(𝑄𝑦) as well.
Hence, we can see that the operator Δ�̂� complies with the already made as-
sumptions, and it can be used as a part of the system-bath interaction Hamilto-
nian. It’s also possible to fulfil the requirement (2.52) in a more general man-
ner by setting up the bath operator as a fluctuation around its averaged value.
Consider an arbitrary bath operator �̂� (∈ ℋ𝐵), then the energy gap fluctuation
operator could be constructed as follows:

Δ�̂� = �̂� − ⟨�̂�⟩𝐵 , (2.147)

since ⟨Δ�̂�⟩𝐵 = ⟨�̂� − ⟨�̂�⟩𝐵⟩𝐵 = ⟨�̂�⟩𝐵 − ⟨�̂�⟩𝐵 = 0 . (2.148)

The system-bath interaction term also satisfies another assumptionmade in
(2.65), and that is the factorisation into separate system and bath parts. In our
case, the interaction term in its entirety reads:

�̂�𝑆−𝐵 = Δ�̂�(𝑄𝑦)⏟∈ℋ𝐵
⊗ ∣𝑄𝑦⟩⟨𝑄𝑦∣⏟⏟⏟⏟⏟∈ℋ𝑆

+ Δ�̂�(𝑄𝑥)⏟∈ℋ𝐵
⊗ ∣𝑄𝑥⟩⟨𝑄𝑥∣⏟⏟⏟⏟⏟∈ℋ𝑆

. (2.149)

2.3.4 The Hamiltonian
All constituents of the total Hamiltonian have been specified by now so we can
put them together. The total Hamiltonian consists of three parts:

�̂� = �̂�𝑆 + �̂�𝐵 + �̂�𝑆−𝐵 . (2.150)

The systemHamiltonian �̂�𝑆 has three general parts—the electronic (∈ ℋ𝑒𝑙),
the vibrational (∈ ℋ𝑣𝑖𝑏), and the adiabatic coupling (∈ ℋ𝑒𝑙−𝑣𝑖𝑏 = ℋ𝑒𝑙 ⊗ ℋ𝑣𝑖𝑏).
The electronic part of our three-level system can be expressed using the ener-
gies of each state as:

�̂�𝑆,𝑒𝑙 = 𝐸𝑔 ∣𝑔⟩⟨𝑔∣ + 𝐸𝑄𝑦 ∣𝑄𝑦⟩⟨𝑄𝑦∣ + 𝐸𝑄𝑥 ∣𝑄𝑥⟩⟨𝑄𝑥∣ . (2.151)

The vibrational part, which includes 𝐼 number of vibrational modes mod-
elled by 𝑁𝑖,𝑗 states of a harmonic oscillator for 𝑗th electronic state, reads:

�̂�𝑆,𝑣𝑖𝑏 = 𝐼∑𝑖
𝑁𝑖,𝑗∑𝑛𝑖=0 Ω𝑖 (𝑛𝑖 + 12) ∣𝑛𝑖⟩⟨𝑛𝑖∣ ⊗ ∣𝑗⟩⟨𝑗∣ . (2.152)

The assumed linear diabatic coupling defined in (2.126) has the following
form as the coordinate is expressed using (2.118):

�̂�𝑒𝑙−𝑣𝑖𝑏,𝑖 = 𝛼𝑖√2 ( ̂𝑎𝑉𝑖 + ̂𝑎†𝑉𝑖) (∣𝑄𝑦⟩⟨𝑄𝑥∣ + ∣𝑄𝑥⟩⟨𝑄𝑦∣) (2.153)

= 𝛼𝑖√2
𝑁𝑖∑𝑛𝑖=0 √𝑛𝑖 + 1( ∣𝑛𝑖⟩⟨𝑛𝑖 + 1∣ + ∣𝑛𝑖 + 1⟩⟨𝑛𝑖∣ ) (∣𝑄𝑦⟩⟨𝑄𝑥∣ + ∣𝑄𝑥⟩⟨𝑄𝑦∣) ,

(2.154)
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where 𝑁𝑖 = inf {𝑁𝑖,𝑄𝑦 , 𝑁𝑖,𝑄𝑥}. The total coupling that involves all explicitly
included vibrational modes is obtained by performing a tensor summation of
the vibrational parts (�̂�𝑒𝑙−𝑣𝑖𝑏 ∈ ℋ𝑒𝑙 ⊗ ℋ𝑣𝑖𝑏 = ℋ𝑒𝑙 ⊗ (⨂𝑁𝑖𝑖 ℋ𝑣𝑖𝑏,𝑖)):

�̂�𝑒𝑙−𝑣𝑖𝑏 = 𝐼⨁𝑖 �̂�𝑒𝑙−𝑣𝑖𝑏,𝑖 . (2.155)

The system Hamiltonian is then obtained as a sum of all parts:

�̂�𝑆 = �̂�𝑆,𝑒𝑙 + �̂�𝑆,𝑣𝑖𝑏 + �̂�𝑒𝑙−𝑣𝑖𝑏 . (2.156)

2.3.5 Correlation functions & spectral densities
A quantity called bath correlation function was introduced back in subsec-
tion 2.2.6 in (2.75): 𝐶𝑗𝑗′(𝑡) = ⟨Φ̂(𝐼)𝑗 (𝑡)Φ̂𝑗′⟩𝐵 , (2.157)

where Φ̂𝑗 was considered an operator of the bath degrees of freedom of
a factorised system-bath interaction Hamiltonian, as postulated in (2.65). By
comparison with the adopted form of the system-bath interaction expressed
in (2.149), the term that corresponds to Φ̂𝜈(𝑡) is the energy gap fluctuation
operator Δ�̂�(𝑗) of the 𝑗th system state. It was defined in (2.130) as:

Δ�̂�(𝑗) = − ∞∑𝑘 𝜔𝑘 ̂𝑞𝑘𝑑(𝑗)𝑘 . (2.158)

Plugging (2.158) into (2.157) yields:

𝐶𝑗𝑗′(𝑡) = ⟨Δ�̂�(𝑗)(𝑡)Δ�̂�(𝑗′)⟩𝐵 (2.159)= ∑𝑘 ∑𝑘′ 𝜔𝑘𝜔𝑘′𝑑(𝑗)𝑘 𝑑(𝑗′) ⟨ ̂𝑞𝑘(𝑡) ̂𝑞𝑘′⟩𝐵⏟⏟⏟⏟⏟→𝛿𝑘𝑘′
𝛿𝑗𝑗′ (2.160)

= ∑𝑘 𝜔2𝑘 (𝑑(𝑗)𝑘 )2 ⟨ ̂𝑞𝑘(𝑡) ̂𝑞𝑘⟩𝐵 . (2.161)

Indices 𝑗 correspond to different parts of the system (e.g. electronic, vibra-
tional) that are interacting with the bath. In equation (2.160) we introduced
an assumption that cross-correlations between different system parts (𝑗 ≠ 𝑗′)
equal zero. The last term of (2.161) can be expressed in terms of annihilation
and creation operators using relations from (2.118):

⟨ ̂𝑞𝑘(𝑡) ̂𝑞𝑘⟩𝐵 = 12Tr𝐵{𝑒𝑖�̂�𝑡 ( ̂𝑎𝑘 + ̂𝑎†𝑘) 𝑒−𝑖�̂�𝑡 ( ̂𝑎𝑘 + ̂𝑎†𝑘) �̂�𝑒𝑞} (2.162)

= 12 ∑𝑛 ⟨𝑛| ((𝑛 + 1)𝑒𝑖𝐸𝑛𝑡 |𝑛⟩ ⟨𝑛 + 1| 𝑒𝑖(𝐸𝑛+1))𝑡 |𝑛 + 1⟩ ⟨𝑛|
+ 𝑛 𝑒𝑖𝐸𝑛𝑡 |𝑛⟩ ⟨𝑛 − 1| 𝑒−𝑖𝐸𝑛−1𝑡 |𝑛 − 1⟩ ⟨𝑛| 1𝑍 exp{−𝛽𝐸𝑛}) |𝑛⟩ (2.163)

= 12 (⟨ ̂𝑛⟩𝐵 𝑒𝑖𝜔𝑡 + (⟨ ̂𝑛⟩𝐵 + 1)𝑒−𝑖𝜔𝑡) . (2.164)
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The bath correlation function for a harmonic oscillator bath model thus
reads:

𝐶𝑗(𝑡) = ∑𝑘
𝜔2𝑘 (𝑑(𝑗)𝑘 )2

2 (⟨ ̂𝑛𝑘⟩𝐵 𝑒𝑖𝜔𝑡 + (⟨ ̂𝑛𝑘⟩𝐵 + 1) 𝑒−𝑖𝜔𝑡) . (2.165)

Using the Bose-Einstein distribution

⟨ ̂𝑛⟩𝐵 = 1𝑒𝛽𝜔 − 1 (2.166)

and the relations for hyperbolic cotangent coth 𝛽𝜔2 = 2 ⟨ ̂𝑛⟩𝐵+1, and for complex
exponential 𝑒−𝑖𝜔𝑡 = cos𝜔𝑡 − 𝑖 sin𝜔𝑡, the correlation function above can also be
expressed as follows:

𝐶𝑗(𝑡) = ∑𝑘
𝜔2𝑘 (𝑑(𝑗)𝑘 )2

2 ⎛⎜⎜⎜⎜⎜⎝ coth 𝛽𝜔𝑘2 cos𝜔𝑘𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟→ Re [𝐶(𝑡)] − 𝑖 sin𝜔𝑘𝑡⏟⏟⏟⏟⏟→ Im [𝐶(𝑡)]
⎞⎟⎟⎟⎟⎟⎠ . (2.167)

It is worth a note that the imaginary part of the correlation function doesn’t
depend on 𝛽, i.e. the temperature 𝑇. A useful quantity is the correlation func-
tion in the frequency domain:

𝐶𝑗(𝜔) = FT [𝐶𝑗(𝑡)] (2.168)= ∫∞
−∞ d𝑡 𝐶𝑗(𝑡)𝑒𝑖𝜔𝑡 (2.169)

= ∑𝑘 2𝜋𝜔2𝑘 (𝑑(𝑗)𝑘 )2
2 ( ⟨ ̂𝑛𝑘⟩𝐵 𝛿 (𝜔 + 𝜔𝑘) + ⟨ ̂𝑛𝑘 + 1⟩𝐵 𝛿 (𝜔 − 𝜔𝑘) ) .

(2.170)
Yet another useful quantity can be identified in (2.170) called the spectral

density 𝐽(𝜔):
𝐽(𝜔) = ∑𝑘

(𝑑𝑘)22 𝛿 (𝜔 − 𝜔𝑘) . (2.171)

Spectral density, as the name suggests, describes the density of available
modes of the bath at frequency 𝜔. The correlation function then simplifies to:

𝐶𝑗(𝜔) = 2𝜋𝜔2 (⟨𝑛⟩𝐵 + 1) (𝐽(𝜔) − 𝐽(−𝜔)) (2.172)

= 𝜋𝜔2 (1 + coth 𝛽𝜔2 ) (𝐽(𝜔) − 𝐽(−𝜔)) . (2.173)

By performing a Fourier transformation on the real and imaginary parts of
the correlation function separately, the following relation can be derived:𝐶(𝜔) = FT [Re [𝐶(𝑡)]] + FT [𝑖 Im [𝐶(𝑡)]] (2.174)= 𝐶′(𝜔) + 𝐶″(𝜔) (2.175)

= (1 + coth(𝛽𝜔2 )) 𝐶″(𝜔) . (2.176)
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Therefore, the correlation function in the frequency domain satisfies the de-
tailed balance condition11 since:

𝐶(𝜔) = 𝑒𝛽𝜔𝐶(−𝜔) . (2.177)

The terminology here is once again rather unsettled. The terms used so far
are based on May and Kühn (2011). It’s important to point out, though, that
some other authors (Mukamel, 1995; Valkunas et al., 2013) tend to use differ-
ent naming conventions since they use the same names for different objects. In
their case, the term spectral density is used for the imaginary part of the corre-
lation function in the frequency domain FT [𝑖 Im [ ̂𝐶(𝑡)]] ≡ ̂𝐶″(𝜔). Both forms
and definitions of the spectral density are frequently used, and they can be con-
verted between each other by a simple relation:

𝐶″(𝜔) = 2𝜋𝜔2(𝐽(𝜔) − 𝐽(−𝜔)) . (2.178)

Since the physical properties of the bath—the correlation function
included—are difficult to obtain from experiments, and the theoretical meth-
ods like molecular dynamics can be computationally very demanding, a differ-
ent approach is usually adopted here. An analytical spectral density model is
postulated and used to find the correlation function 𝐶(𝑡) afterwards.

2.3.6 Spectral density models
There are essentially two types of spectral density forms based on their general
shape. The profile can be either Gaussian or Lorentz. The most often utilised
is the Lorentz-shaped spectral density:

𝐽(𝜔) = 1𝜋 1(𝜔 − 𝜔0)2 + (2 ln 2)𝛾2 , (2.179)

or alternatively expressed as:

𝐶″(𝜔) = 4𝜔𝜔0𝛾(𝜔2 − 𝜔20 − 𝛾2)2 + 4𝜔2𝛾2 . (2.180)

𝜔0 is the central carrying frequency of the model, 𝛾 = 1τ𝑐 is a relaxation
rate, i.e. the reciprocal value of the characteristic correlation time τ𝑐 of the bath,
which relates to the friction present in the environment.

Various approximations that correspond to different limit cases of the pa-
rameters occurring in (2.180) can be made. In our case, the limit of strong fric-
tion was adopted, which is usually appropriate for baths with a macroscopic

11The detailed balance condition says, in its full generality, that system is in equilibrium if
and only if the flow of probability into a microstate is equal to the flow from the microstate. As
thermal equilibrium and thermal harmonic baths are considered, the condition can be formu-
lated around the Boltzmann factor, as every reversed process with a negative overall change
of energy is weighed by a corresponding Boltzmann factor. In the case of the thermally equili-
brated harmonic oscillator, this reads∀𝑛 > 𝑚, 𝑘𝑚←𝑛 = 𝑒𝛽(𝐸𝑛−𝐸𝑚)𝑘𝑛←𝑚, where 𝑘𝑚←𝑛 is a transfer
rate from level 𝑛 to 𝑚.
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solvent (Mukamel, 1995). The limit of 𝛾 ≫ 2𝜔0 leads to the so-called over-
damped Brownian oscillator modelwhose spectral density adopted in the simula-
tions has the following form:

𝐶″(𝜔) = 2 𝜆τ𝑐
𝜔𝜔2 + ( 1τ𝑐 )2 . (2.181)

The parameter 𝜆 represents the reorganisation energy of the bath. In the
time domain, the correlation function of an overdamped Brownian oscillator
becomes:

𝐶(𝑡) = 𝜆τ𝑐 cot( 𝛽τ𝑐 )𝑒− 𝑡τ𝑐 − 𝑖 𝜆τ𝑐 𝑒− 𝑡τ𝑐 + 4𝜆𝛽τ𝑐
∞∑𝑛=1

𝜈𝑛𝑒−𝜈𝑛𝑡
𝜈2𝑛 − ( 1τ𝑐 )2 . (2.182)

The last termwith the sum in (2.182) corresponds to the so-calledMatsubara
frequencies with 𝜈𝑛 = 2𝜋𝑛𝛽 (Weiss, 2008). The upper summation boundary is
cut off at a finite number of 𝑁𝑀𝑎𝑡𝑠. In the simulations I performed, the number
of Matsubara frequencies included in the correlations functions was fixed at a
converged value of 100.

To sum up, the overdamped Brownian oscillator model was used to rep-
resent the bath degrees of freedom. Three parameters enter its definition in
(2.182): the bath reorganisation energy 𝜆 and the correlation time τ𝑐, which
can be alternatively expressed also as a bath relaxation rate 𝛾 = 1τ𝑐 .

This model was adopted for both of the formally distinguished bath com-
ponents: the electronic and the vibrational (as assumed in subsection 2.3.2).
The reorganisation energy for the vibrational bath, however, does not have a
straightforward interpretation andmight have an unphysical meaning. To pre-
clude that, a formally redefinedmodel was used for the vibrational bath named
the scaled overdamped Brownian oscillator model. Instead of the reorganisation
energy 𝜆, which still could have been easily used as an arbitrary numerical pa-
rameter, introducing a new parameter with specific physical meaning named
(targeted) vibrational relaxation time was preferred. The idea behind this model
is to specify the relaxation time between the first excited and the ground state of
the vibrational mode the bath is interacting with. The Redfield relaxation ten-
sor (as defined in (2.80)) for the vibrational mode interacting with a standard
overdampedBrownianmodel as a bath is calculated, and the reorganisation en-
ergy that entered the standard overdamped Brownian model is then rescaled
by the ratio of the obtained relaxation time (inverse of relaxation tensor ele-
ment) and the targeted one. The newly rescaled reorganisation energy 𝜆′ then
enters the definition (2.182) to get the rescaled correlation function. Other used
parameters remain unchanged.

To conclude, this newly defined model has four parameters: the bath corre-
lation time τ𝑐, the targeted relaxation time τ𝑇, and the frequency Ω𝑉𝑖 (cf. eq.
(2.123)) andHuang-Rhys factor 𝑆𝑉𝑖 belonging to the coupled vibrationalmode
to perform the simulation. Besides, there is one additional parameter specify-
ing the number of vibrational states to be considered in the Redfield tensor
calculation. In this thesis, a converged number of 10 levels was used steadily.
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2.4 Theoretical molecular spectroscopy
Standard theoretical approaches to calculate the linear absorption spectra were
used in the simulations. The details about the theory and the derivation can be
found in, e.g., in Mukamel (1995) and Valkunas et al. (2013).

2.4.1 Introduction to theoretical molecular spectroscopy
Molecular spectroscopy has some specificities that clearly distinguish it from
other spectroscopic fields like atomic spectroscopy or condensed-matter spec-
troscopy. The most important difference comes from the size of the particles
that are interacting with the electromagnetic field we are probing the sample
with. Since the on-average size of themolecules is much smaller than thewave-
length of the light, 𝜆 ≫ ̄𝑑 (in case of Chla, the chlorin diameter is roughly 1 nm
and the usual wavelength of light used in spectroscopic experiments is in Vis-
IR region of 500–800 nm), the spatial dependence of the light can be neglected
and each molecule floating in some solvent can be considered to be placed in a
homogeneous electromagnetic field. This assumption is usually called by the
term dipole approximation. However, eachmoleculewill perceive a different field
at each given time since they are separated in space. On top of that, each of the
molecules can be oriented differently and can have a slightly different molec-
ular environment which may affect its spectroscopic properties. To sum up,
to characterise a macroscopic quantity that would describe the spectroscopic
properties of the entire sample, an averaging over all the degrees of freedom
just mentioned has to be performed:

P(r, 𝑡) = ⟨⟨⟨⟨𝝁⟩𝑟⟩Δ𝑉⟩𝐸⟩Ω , (2.183)

where P(r, 𝑡) is themacroscopic polarisation of the sample, ⟨ ⋅ ⟩ denotes averag-
ing over the dimension of each molecule (𝑟), varying energetic shifts (Δ𝑉), the
electric field (𝐸), and over different spatial orientations of the molecules (Ω).
See the great review of Andrews (2004) for more details about how it is done.

Another important approximation considers the disproportionality of
masses of electrons and nuclei and assumes that transition dipole moments
of some electronic transition don’t depend on the nuclear degrees of freedom
of the molecule. Alternatively, it is (not particularly well) interpreted as elec-
tronic transitions happening faster than the nuclear degrees of freedom (DOF)
can react and thus they appear as vertical transitions on the diagrams of en-
ergy levels and potential energy surfaces. The thing is, even when we excite
some system slowly, the approximation still holds and doesn’t depend on the
time scale. The interaction Hamiltonian between the system and the electro-
magnetic field is usually expressed in the following form:

�̂�𝑖𝑛𝑡(𝑡) = −�̂� ⋅ �̂�(𝑡) , (2.184)

which is sometimes referred to as an interaction Hamiltonian in lenght gauge,
or as an interaction Hamiltonian in dipole approximation.
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Techniques of molecular spectroscopy can be generally viewed as perturba-
tive in different orders of the interaction of the transition dipole moment op-
erator with the incoming field. The first order in interaction corresponds to
absorption spectroscopy (the resulting equation is in the second order of �̂�).
2.4.2 Linear spectroscopy
The general relation for linear absorption spectrum 𝛼(𝜔) reads:

𝛼(𝜔) = ∑𝑛 2 𝜔𝑛(𝜔)∣𝑑𝑛𝑔∣2Re [∫∞
0 d𝑡 𝑒−𝑔𝑛(𝑡)−𝑖(𝜔−𝜔𝑛𝑔)𝑡− 12 𝐾𝑛(𝑡)] , (2.185)

where 𝑔𝑛(𝑡) = ∫𝑡0 dτ ∫τ0 dτ′ 𝐶𝑛(τ′) is the so-called lineshape function12, 𝐾𝑛(𝑡) =− ∑𝑚≠𝑛 𝑅𝑚𝑔,𝑛𝑔(𝑡) is a dephasing rate obtained from the relaxation tensor 𝑅(𝑡).
However, in our case, the absorption spectrumwas calculated from simulations
by evaluating the following terms directly:

⟨ ⃗𝑑𝑔𝑛𝒰𝑛𝑔,𝑚𝑔(𝑡) ⃗𝑑𝑚𝑔⟩ = ⟨ ⃗𝑑𝑔𝑛 ⃗𝑑𝑚𝑔⟩ 𝒰𝑛𝑔,𝑚𝑔(𝑡) (2.186)

= 𝑑(𝑥)𝑛 𝑑(𝑥)𝑚 + 𝑑(𝑦)𝑛 𝑑(𝑦)𝑚 + 𝑑(𝑧)𝑛 𝑑(𝑧)𝑚3 𝒰𝑛𝑔,𝑚𝑔(𝑡) . (2.187)

As can be seen, three separate simulations have to be performed for each
cartesian element of the transition dipolematrix. The densitymatrix in thermal
equilibrium is excited by the first interaction, and it is propagated to time 𝑡
when it interacts with the secondmatrix. The results are then summed up, and
Fourier transformed. The absorption spectrum 𝛼(𝜔) is obtained bymultiplying
the previous result by 𝜔, which comes from the analysis of Maxwell equations,
and by the factor of 13 , which comes fromorientational averaging (seeAndrews,
2004).

12Not to be confused with a quantity called just a “lineshape”, usually denoted as 𝐺(𝜔)
which stands for the integral occurring in (2.185).
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2.5 Software tools
The one and only computational tool used during the project was Python pro-
gramming language and its publicly available libraries. Namely, the following
libraries were intensely used, tested, or experimentedwith: Numpy, Scipy, Cupy,
joblib, mayavi. Besides, the library quantarhei developed in the research
group was also used.

The coding part of this project went through two phases. First, a brand new
from-scratch implementation of the Redfield equations was created. The main
purpose of it was to focus on possible optimisation and look into possible ways
to accelerate the computations since large molecular systems are planned to be
computed in the near future. Twomain approaches were taken to the problem:
mathematical/physical ones in which the subjects of improvement were the
equations, and then the purely computational optimisations.

In general, the equations were expressed using tensors where possible, but
great care had to be made regarding memory utilisation. This turned out to
be a problem especially in the attempts of computing on graphics processing
unit (GPU) using CUDA, Nvidia libraries, and Cupy library. More successful
turned out to be parallelisation using, e.g. the joblib library.

Another type of optimisation to deal with the memory utilisation problems
was the implementation of Numpy-compatible class of array-like objects named
DiskArray that behaves like Numpy array but the data are stored on disk, not
only in memory.

The last optimisation that was implemented reduces the dimensions of the
systemHamiltonian, and all other pertinent operators, thus again lowering the
demands on memory. Mathematical details of this approach are in section B.1.

After lowering the computational demands necessary to perform the com-
putations, the implemented form was introduced into the quantarhei library
(so far only locally) which provides the user with many useful tools to work
with and perform simulations of open quantum systems.

There are, however, some problems that still need someone to look into.
Mainly, at this point, it is the methodology for curve-fitting and spectra opti-
misations. The approaches used so far involved either manual manipulation
with the parameters which is tremendously time-consuming, or fitting func-
tions provided by the library Scipy, which can be quite unreliable and unstable
in some cases, as will be mentioned in Chapter 3.
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3. Results
The spectroscopic model of a chlorophyll molecule was treated by the time-
dependent Redfield theory, and the linear absorption spectra were calculated
from the simulated dynamics of optical coherence elements of the system’s
density matrix. To parameterize the model, the simulated absorption spectra
were fitted to experiential data sets obtained from the literature. It is important
to stress that despite the term “parameters” being used here for the numeri-
cal values that enter the theoretical model, each of them corresponds to some
physical property or feature of the physical system. Therefore, they should not
be viewed as arbitrary numerical constants with dubious interpretations but
rather as actual physical variables.

The Chla molecule soluted in two different solvents—diethyl ether and
pyridine—was chosen to be modelled. Both data sets of the experimental lin-
ear absorption spectra measured at room temperature were taken from Rätsep
et al. (2009). The simulations were done in multiple different setups and con-
straints.

Firstly, the number of explicitly included vibrational modes in the system
Hamiltonian (𝑁𝑉) was varied from zero—which corresponds to a three-level
electronic system only—to two modes in total. Secondly, each such setup was
performed with two different constraints on the parameters.

(i) In order to be able to compare the validity of our model with other au-
thors (Reimers et al., 2013), one of the simulations was always constrained in
terms of the parameters they used and found to be optimal (see section A.1).
Only the parameters that weren’t used by them were subjected to the fitting
procedure then.

(ii) In the other simulations, any constraints on the parameters (up to an
extent, as will be mentioned shortly) were released. Only the initial guess of
the parameters remained the same as in (i).

The initial guess of parameters was obtained by manually varying the pa-
rameters. One-dimensional scans through the parameter space were used to
facilitate this procedure. After achieving acceptable—but still rather rough—
correspondence, the optimisation curve-fitting function from a Python library
Scipy was adopted to find the optimal values by means of nonlinear least-
squares method. The Table A.1 in the Appendix summarises the parameter
space for all the various setups and constraints mentioned above.

After finding the optimal values, further inspection of the parameter space
was performed by “optimising scans”. That is, the value of one particular se-
lected parameter (or a group of coupled parameters) was iteratively dragged
from its optimal value. At each point, a newoptimisation and curve-fittingwith
respect to all other parameters, i.e. excluding the one that is being scanned, was
performed by the algorithm. A new set of optimal parameters was obtained
this way, the scanned parameter was increased/decreased, and the procedure
was repeated until the scan was completed. This approach was used to scan
the relations between the parameters and possibly identify the indefiniteness
between linear absorption spectra and the set of parameters.
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3.1 Chlorophyll a in diethyl ether
To better understand the importance and function of each component included
in the model system Hamiltonian, a bottom-up approach was used, and the
simplest model stripped of any vibrational modes was simulated and fitted
first.

3.1.1 No vibrational modes

Figure 3.1: Simulated linear absorption spectra of a three-level systemmolecule
in diethyl ether. The top subfigure presents the simulated absorption spectrum
(green solid line) as compared to the experimental data of reference (black
dashed line; Rätsep et al., 2009). A shaded grey line displays the residuum of
the fit. The bottom subfigure shows the position of the two electronic transi-
tions. The black line represents the absorption spectrum plotted above.

Figure 3.1 presents the simplest case of our model—a three-level system
consisting of three electronic states and two possible transitions from the
ground state. We can clearly see that the three-level model alone simply can’t
be used with our current theoretical tools to quantitatively reproduce the ex-
perimental data. Besides, since there is no coupling included, no interaction be-
tween the two states (the systemHamiltonian is diagonal in the site basis), and
a weak system-bath coupling is assumed, the populations of the states won’t
change in time, and the system won’t relax. In order to overcome this issue, a
different theory of quantumdynamicswould need to be adopted, or the system
has to be enlarged and diversified.
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3.1.2 Single vibrational mode
A leap step ahead in terms of the Hamiltonian’s structure can be made by iden-
tifying in the bath some notable intermolecular vibrational modes that deserve
to be included in the system Hamiltonian. When a diabatic coupling between
different excited electronic states is introduced as well—Figure 3.2—the spec-
trum gains more structure (even though in this figure the spectrum wasn’t fit-
ted to see the influence of another feature better, as to be mentioned shortly).
Also, the plot of dynamics of populations represented in the eigenbasis of the
systemHamiltonian started behaving as roughly expected. That is, a relaxation
process on the timescale of hundreds of femtoseconds can be seen. However,
we can also see a general problem of reduced density matrix approaches as the
populations are leaking out of the zero to one interval.

This effect even reinforces as we add a coupling between the explicit vi-
brational modes and the bath and enable a pathway for fast relaxation within
the modes. The absorption spectra that can be obtained at this level of the
model complexity fit the experimentally obtained one rather well; see Fig-
ure 3.3. Meanwhile, the dynamics of the populations went out of control. The
adoption of the secular approximation corrects this issue as displayed in Fig-
ure 3.4. The spectra displayed in Figures 3.2–3.4 used the same set of parame-
ters as optimised in Figure 3.3.

A plethora of scans through the parameter space, with or without concur-
rent optimisation, were performed. Only a sparse selection of them can get the
space to be presented here. In Figure 3.5 and belonging Figure 3.6, an optimis-
ing scan through the value of targeted relaxation time in the vibrational modeτ𝑇,1, a parameter that enters the scaled overdamped Brownian oscillatormodel
of the bath correlation function, as defined on page 39. A one-dimensional scan
without the optimisation procedure (see section A.3 in Appendix) pointed out
that this parameter has quite some influence on the width, position, and rela-
tive separation of the absorption bands.

The influence of fixation of some parameters can be seen in the comparison
of Figure 3.6with Figure 3.8, and Figure 3.6with Figure 3.8. As long as the spec-
tral line is close to its optimum, the constraint-free optimisation gives slightly
better results. But as the difference increase, the optimisation of a higher num-
ber of parameters tends to become unstable and result in diverging.

Besides that, we can conclude that even though the parameter itself has
quite an impact on the spectra, other parameters can rather successfully com-
pensate for its changes in value.
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Figure 3.2: Linear absorption spectra of a model of Chla molecule in diethyl
ether with one explicit vibrational mode (𝑁𝑉 = 1) that doesn’t interact with
the bath. The top figure presents the simulated absorption line (green solid
line), the experimental data of reference (black dashed line; Rätsep et al., 2009),
and a residuum of the fit is shaded in grey. The middle subfigure shows the
position of energetic transition energies obtained from a diagonalised system
Hamiltonian as enumerated bars. Their colouring corresponds to the ratio of
vibronic mixing between the 𝑄𝑦 (red) and 𝑄𝑥 (blue) diabatic states. The black
line represents the absorption spectrum plotted above. The Gaussian profile
shaded in grey represents the excitation pulse (FWHM = 100 cm−1, 𝜔0 =17500 cm−1) used in the simulation to invoke excited state dynamics displayed
in the bottom subfigure. The bottom subfigure shows the simulated dynamics
of populations (in the system Hamiltonian eigenbasis) after excitation in the𝑄𝑥 region of spectra.
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Figure 3.3: The optimised linear absorption spectrum of a model of Chla
molecule in diethyl ether with one explicit vibrational mode (𝑁𝑉 = 1). For
more details on the figure, please see the caption of Figure 3.2 on page 46.
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Figure 3.4: Linear absorption spectra of a model of Chla molecule in diethyl
ether with one explicit vibrational mode (𝑁𝑉 = 1) and the secular approxima-
tion adopted. Formore details on the figure, please see the caption of Figure 3.2
on page 46.
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Figure 3.5: The results of linear absorption spectra fitting that was combined
with a scan in a single parameter—the targeted relaxation time τ𝑇,1 in the vi-
brational mode belonging to the first electronic excited state 𝑄𝑦—as described
in the text. The scanwas performedwith both positive and negative increments
of 2 fs. All obtained absorption lineshapes are displayed on top of each other
in the top subfigure. The value of the scanned parameter they belong to is en-
coded in their colour. The bottom subfigure shows essentially the same data
but in a different representation. The experimental data of reference of Chla
in diethyl ether (Rätsep et al., 2009) were subtracted from the simulated ones,
and the obtained residuum was plotted as a 2D map assigning the values of
the scanned parameter to the 𝑦-axis. The initial parameter, and thus the initial
absorption spectrum, is denoted in the figure by a white dotted line.
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Figure 3.6: An overview of selected parameters that play themajor role in spec-
ifying the shape of the spectrum as the parameter τ𝑇,1 is scanned (see also
Figure 3.5). Namely, the depicted parameters are (from left to right, top to
bottom): the targeted relaxation times in the vibrational mode belonging to
the first (τ𝑇,1) and second (τ𝑇,2) excited electronic states, the ratio of squares

of the transition dipole moments ∣ ⃗𝑑𝑦∣2
∣ ⃗𝑑𝑥∣2 , bath correlation times belonging to vi-

brations of the first (τ𝑐,1) and second (τ𝑐,2) excited el. states, bath correlation
function of the electronic part of the system (τ𝑐), Huang-Rhys factors (𝑆) for
the explicit vibrationalmode on the first and second excited electronic state, the
bath reorganization energy 𝜆, the energy of the first excited electronic state 𝐸𝑦,
the frequency of the single explicit vibrational mode Ω𝑉,1 [cm−1], and finally,
the square of the residual sum (a row-wise sum performed on the 2D map of
Figure 3.5). The dotted lines represent boundary conditions for each parame-
ter during the fitting procedure. The red cross denotes the initial position–the
initially known optimum in terms of the correspondence with the experimen-
tal data.
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Figure 3.7: The results of linear absorption spectra fitting for Chla in diethyl
ether (𝑁𝑉 = 1) without any constraints, that was combined with a scan in
a single parameter—the targeted relaxation time τ𝑇,1 in the vibrational mode
belonging to the first electronic excited state 𝑄𝑦. The scan was performed with
both positive and negative increments of 2 fs. For more details on the figure,
please see the caption of Figure 3.5 on page 49.
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Figure 3.8: An overview of selected parameters as they evolve during the scan
of parameter τ𝑇,1 combined with optimisations. No constraints were applied
to the parameters. For more details on the figure, please see the caption of
Figure 3.6 on page 50.
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3.1.3 Two vibrational modes
By adding a second vibrational mode to the system Hamiltonian, the number
of states significantly increases, as does the number of parameters entering our
model. At this point, it is desirable to start reducing the parameter space size
since the general curve-fitting algorithms generally struggle with a surplus of
free degrees of freedom. One-dimensional scans through individual parame-
ters were used to identify those parameters that have an insignificant effect on
the absorption spectrum shape. They were then fixed for optimisation.

Figure 3.9 shows pretty much perfect correspondence with the experimen-
tal data. The secular approximation introduced in Figure 3.10 shows only a
minor effect on the absorption spectrum but a major improvement on the dy-
namics.

Figure 3.9: The optimised linear absorption spectra of amodel of Chlamolecule
in diethyl ether with two explicit vibrational modes (𝑁𝑉 = 2). For more details
on the figure, please see the caption of Figure 3.2 on page 46.

The optimisation scans inτ𝑇,1 depicted in Figures 3.11–3.14 showagain how
well other parameters can adapt without much of a change in the simulated ab-
sorption spectrum. The changes in the plotted parameters also reflect show the
increased instability of the curve-fitting procedure, which persists even after
shortening the steps of the scan. Hence, it can be concluded that the instability
results from two facts. Some of the parameters entering the model have negli-
gible impact on the shape of the linear absorption spectra, and aside from that,
the sheer number of parameters added along with the second explicit vibra-
tional mode usually causes troubles to optimisation algorithms.
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Figure 3.10: Linear absorption spectra of a model of Chla molecule in diethyl
etherwith two explicit vibrationalmodes (𝑁𝑉 = 2). The secular approximation
was used in the simulation of dynamics. For more details on the figure, please
see the caption of Figure 3.2 on page 46.
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Figure 3.11: The results of linear absorption spectra simulation (Chla in diethyl
ether, 𝑁𝑉 = 2) and fittingwith constraints on the first vibrational mode as used
by Reimers et al. (2013). The fitting procedure was combined with a scan in
a single parameter—the targeted relaxation time τ𝑇,1 in the vibrational mode
belonging to the first electronic excited state 𝑄𝑦. The scan was performed with
both positive and negative increments of 2 fs. For more details on the figure,
please see the caption of Figure 3.5 on page 49.
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Figure 3.12: An overview of selected parameters as they evolve during the scan
of parameter τ𝑇,1 combined with optimisations. Constraints on the first vibra-
tional modeweremade as used by Reimers et al. (2013). This Figure belongs to
Figure 3.11. For more details on the figure, please see the caption of Figure 3.6
on page 50.
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Figure 3.13: The results of linear absorption spectra simulation (Chla in diethyl
ether, 𝑁𝑉 = 2) and fitting without any constraint. The fitting procedure was
combined with a scan in a single parameter—the targeted relaxation time τ𝑇,1
in the vibrational mode belonging to the first electronic excited state 𝑄𝑦. The
scan was performed with both positive and negative increments of 2 fs. For
more details on the figure, please see the caption of Figure 3.5 on page 49.
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Figure 3.14: An overview of selected parameters as they evolve during the scan
of parameter τ𝑇,1 combined with optimisations. No constraints were applied
to the parameters in this case. This Figure belongs to Figure 3.13. For more
details on the figure, please see the caption of Figure 3.6 on page 50.
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3.2 Chlorophyll a in pyridine
Pyridine as a solvent for Chla was chosen for its distinctly different spectro-
scopic signature when compared with the diethyl ether solvent shown in the
previous section. Instead of still quite distinguishable absorption sidebands
present in the absorption spectra of Chla in diethyl ether, pyridine renders the
spectrummuchmore uniform and considerably more difficult for curve-fitting
procedures to process. Indeed, this theory got confirmed since many of the
optimisations failed, diverged, or got stuck.

3.2.1 No vibrational modes
Let us start with the simplest case in which our model can be reduced to—
the bare three-level system. As can be again seen in Figure 3.15, the three-level
model doesn’t provide enoughmeans, when combinedwith the theoretical ap-
paratus used here, to reproduce the absorption spectrum of Chla.
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Figure 3.15: Simulated linear absorption spectra of a three-level system
molecule in pyridine solvent. For more details on the figure, please see the
caption of Figure 3.2 on page 46.

3.2.2 Single vibrational mode
Once at least a single vibrational mode is included in the model, the spectrum
can be fitted with a decent precision to the experimental data as shown in Fig-
ure 3.16. Despite the numerical artefact occurring out of the region subjected to
the fitting. However, the population dynamics are far from perfect even when
the secular approximation is adopted as depicted in Figure 3.17.
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Figure 3.16: The optimised linear absorption spectrum of a model of Chla
molecule in pyridine solvent with one explicit vibrational mode (𝑁𝑉 = 1). For
more details on the figure, please see the caption of Figure 3.2 on page 46.
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Figure 3.17: Simulated linear absorption spectrum of a model of Chlamolecule
in pyridine solvent and with one explicit vibrational mode (𝑁𝑉 = 1). The
secular approximation was adopted in the simulation. For more details on the
figure, please see the caption of Figure 3.2 on page 46.
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Figure 3.18: The results of a linear absorption spectra simulation (Chla in pyri-
dine, 𝑁𝑉 = 1) and fitting with constraints according to Reimers et al. (2013).
The fitting procedure was combined with a scan in a single parameter—the di-
abatic coupling 𝛼1, belonging to the first explicit vibrational mode included in
the systemHamiltonian. The scanwas performedwith both positive and nega-
tive increments of 2 cm−1. For more details on the figure, please see the caption
of Figure 3.5 on page 49.

63



Figure 3.19: An overview of selected parameters as they evolve during the scan
of the diabatic coupling 𝛼1, belonging to the first explicit vibrational mode
included in the system Hamiltonian, as combined with optimisations. Con-
straints on the first vibrational mode were made as used by Reimers et al.
(2013). This Figure belongs to Figure 3.11. For more details on the figure,
please see the caption of Figure 3.6 on page 50.
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3.2.3 Two vibrational modes
Two explicitly included vibrational modes result in a decent fit, as can be seen
in Figure 3.20, only the small humps at around 15600 cm−1 aren’t that resolved.
Also, note the large amount of vibronic mixing in the bottom subfigure. When
compared with the single-vibrational-mode case, there are much more states
that mix 𝑄𝑦 and 𝑄𝑥 about equally.

Figure 3.20: Optimised Simulated linear absorption spectrum of a model of
Chla molecule in pyridine solvent and with two explicit vibrational modes
(𝑁𝑉 = 2). For more details on the figure, please see the caption of Figure 3.2
on page 46.
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Figure 3.21: Simulated linear absorption spectrum of a model of Chlamolecule
in pyridine solvent and with two explicit vibrational modes (𝑁𝑉 = 2). The
secular approximation was adopted in the simulation. For more details on the
figure, please see the caption of Figure 3.2 on page 46.
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Figure 3.22: The results of linear absorption spectra simulation (Chla in pyri-
dine, 𝑁𝑉 = 2) and fitting with constraints on the first vibrational mode as used
by Reimers et al. (2013). The fitting procedure was combined with a scan in
a single parameter—the diabatic coupling 𝛼1 belonging to the first vibrational
mode. The scan was performed with both positive and negative increments of
10 cm−1. For more details on the figure, please see the caption of Figure 3.5 on
page 49.
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Figure 3.23: An overview of selected parameters as they evolve during the scan
of parameter 𝛼1 combined with optimisations. Constraints on the first vibra-
tional modeweremade as used by Reimers et al. (2013). This Figure belongs to
Figure 3.22. For more details on the figure, please see the caption of Figure 3.6
on page 50.
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Figure 3.24: The results of linear absorption spectra simulation (Chla in pyri-
dine, 𝑁𝑉 = 2) and fitting without any constraint. The fitting procedure was
combined with a scan in a single parameter—the diabatic coupling 𝛼1 belong-
ing to the first vibrational mode. The scan was performed with both positive
and negative increments of 10 cm−1. For more details on the figure, please see
the caption of Figure 3.5 on page 49.
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Figure 3.25: An overview of selected parameters as they evolve during the scan
of parameter 𝛼1 combined with optimisations. No constraints were applied to
the parameters in this case. This Figure belongs to Figure 3.24. Formore details
on the figure, please see the caption of Figure 3.6 on page 50.

70



4. Discussion
The spectroscopic model of a chlorophyll-like molecule as formulated in Chap-
ter 2was able to quantitatively reproduce both of the selected experimental data
while all parameters remained in physically meaningful values. This is an im-
portant piece of information since the parameters seem to correctly characterise
the molecular system and thus have a physical interpretation.

However, as will be discussed shortly, the parameterised model can be only
as good for any generalisations as the experimental data that were used to op-
timise it are restrictive to the parameters. That is, the physical meaning of the
parameters of ourmodelmight not be correct if there is toomuch indefiniteness
invoked by too general experimental data. A possible answer to this question
might provide section 4.3 below.

4.1 Curve fitting
A core method used throughout this project was curve-fitting, or, to be more
precise, function-fitting to a curve. The curve that was subjected to the fitting
procedurewas just an output from some function that calculated the absorption
spectra based on the input parameters of our spectroscopic model and techni-
cal parameters of the simulation like the duration of the simulation, time step,
secular approximation, or some of the performance-improving approximations
mentioned in section 2.5. For the lack of experience in the field of multidi-
mensional optimisation techniques, an already implemented function from the
Python library Scipy, namely scipy.optimize.curve_fit, was adopted. This
function uses the nonlinear least squares method to find the best set of argu-
ments for the function.

As it turned out, it has some serious drawbacks and limitations. Firstly, a
really good initial guess of the function arguments has to be provided to re-
turn usable data. Secondly, it is very prone to stability issues. For example, in
many of the optimising scans performed, the parameters tend to jump or even
oscillate as another parameter is varied, meanwhile, other parameters instantly
dropped to the minimum or maximum value as manually set limits allowed.
This behaviour worsened as the number of parameters grew.

To overcome this issue, two approaches will be done in the following part
of the research. First, the parameter space will be scanned more thoroughly,
possiblymultidimensional, to identify asmany parameters that do not alter the
simulated experiment significantly as possible and either approximate them by
some function of another parameter or assign to them a constant value. The
second approach that will be endeavoured will be the implementation of an
entirely new function-fitting algorithm that would better suit our needs and
would enable us, in an ideal case, to assign different importance weights to
different parts of the experimental data so that those sections will be optimised
with a higher priority.
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4.2 Simulated absorption spectra
Despite the difficulties with the optimisation algorithm, all experimental data
were successfully reproducedwith great precision. Themodelwas able to func-
tion even with only one explicit vibrational level included and thus be fully
correspondent to the model used by (Reimers et al., 2013). Even though their
model was similar, and in fact, it had set foundations for the model developed
here, their method of calculation of the linear absorption was very different.
Hence, it might be reasonable to assume the model formulated here will pro-
vide credible results even if a different method for describing the quantum dy-
namics of an open quantum systemwill be used. Thiswill be one of the subjects
of our following research.

There are other aspects of the performed simulations that also need further
inspection. One of them is the spectral shift induced to the quantum system by
adding the vibrational bath to the explicitly included vibrational modes. The
shift can be seen when Figure 3.2 is compared with Figure 3.3. In the former
figure, where the vibrational bath isn’t included in the model, the absorption
bands are aligned with the transition energies from the ground state. Mean-
while, in the latter figure, the bands are red-shifted to the left from the actual
transition energies denoted by the red and blue bars. This is a consequence of
some form of “reorganisation energy” taking a toll on the energy, even though,
as discussed in subsection 2.3.6, reorganisation energy doesn’t represent the in-
tended physical quantity here as there are no transitions between states taking
places.

Another influence on spectra has the secular approximation as shown in
Figure 3.4 and Figure 3.10 for Chla in diethyl ether, and in Figure 3.17 and Fig-
ure 3.21 for Chla in pyridine. In both cases, the secular approximation had a
smaller impact on the spectra if there were more vibrational modes.

4.3 The parameter space
The parameter spaces of our model with one or two explicitly included vi-
brational levels were thoroughly explored, even though only a selection of
data was presented in Chapter 3. The remaining data and correspond-
ing scripts will be stored on the GitHub repository https://github.com/
MichalPt/MScThesis. Nevertheless, the parameter space scans presented here
have tons of information to tell us about the formulated spectroscopic model
and the relevance of simulating linear absorption spectra.

On pages 3.5–3.8, a parameter of the vibrational bath assigned to the single
explicit vibrational mode included in the system Hamiltonian, at first excited
electronic state—named targeted relaxation time τ𝑇,1 (see 39)—was scanned
while optimisation of all other parameters, to fit the simulated spectrum to the
experimental data, was performed at each consecutive step. By comparison, in
section A.3 of Appendix, essentially the same scan was performed but without
the optimisations.

Even though the parameter had quite some influence on various charac-
teristics of the calculated absorption spectrum in the second case, the first case
tells a completely different story. We can see already in Figure 3.6 with only one
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mode included that other parameters of themodel can successfully compensate
to any changes in its value. This idea is even better depicted in the two-mode
case in Figure 3.14 and Figure 3.14. We can clearly see residuum is pretty much
constant throughout the scan even though the parameters are changing only
slightly. But they are definitely changing. The most notable ones appear to be
the reorganisation energy of the electronic bath 𝜆 and also the other parameters
of the vibrational bath (τ𝑇,2, τ𝑐,1, τ𝑐,2).

A similar effect can also be seen in the case of Chla in pyridine. The dia-
batic coupling 𝛼1 assigned to the first vibrational modewas chosen to be shown
there. As far as only one vibrational mode is concerned in the model (Fig-
ure 3.18 and Figure 3.19), an optimisation scan with a smoother step of 2 cm−1
was feasible to compute in a reasonable time. The 2D map thus provides a
very detailed insight into sudden changes in lineshapes. Besides that, we can
also see a little bit smoother evolution of the parameters, as can be seen in the
other figure. In this case, however, the parameters are changing onmuch larger
timescales and some of them; namely, the Huang-Rhys factor 𝑆1, dipole mo-
ments (DIPY/X), and correlation time of the bath τ𝑐 appear to be negatively
correlated with the reorganisation energy 𝜆 .

The case of two explicit vibrational levels shows a less detailed picture of
the situation due to the higher computational cost and as well as overall higher
instability of the optimisations. Despite that, the Figures on pages 67–70 can
still tell us which parameters tend to evolve (τ𝑐,2, 𝑆2, Ω𝑉,1) and which rather
not (τ𝑐,1, 𝑆1, τ𝑇,1, 𝜆,). Hence, the part of the system that is affected the most by
the diabatic coupling and needs to optimize its parameters is the vibrational
bath of the higher-in-energy 𝑄𝑥 state.

4.4 Excited states dynamics
A separate part of the simulations was the calculation of excited state dynam-
ics to evaluate at which timescales the internal conversion between 𝑄𝑥 and 𝑄𝑦
states occur. The simulations for that were based on the same parameters as ob-
tained from the fitting of the calculated absorption spectra to the experimental
one. It is important to point out that the simulations there were performed for
the purpose of calculating absorption spectra were different from the ones that
regarded excited state dynamics. The computational details about simulating
the absorption spectra are listed in section 2.4.

As can be seen in amajority of the population dynamics presented in Chap-
ter 3, rather strong oscillations were always obtained in the evolutions. Even
after introducing the secular approximation, which should have gotten rid of
oscillatory nonsecular terms, some kind of oscillation persisted (see for exam-
ple Figure 3.21). There are several possible explanations for that.

First, a strong coupling of vibrational modes included in the system to the
vibrational bathmay render our system out of the boundaries of initial assump-
tions when deriving the Redfield equations. That is the assumption of a weak
system-bath interaction. A clue might provide testing of different theories to
describe the dynamics.
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Second, as was pointed out in section 4.3, the parameterization of themodel
based on experimental data of linear absorption spectra onlymight not provide
the correct physical form of the model. As it was discussed, many different
combinations of the parameter values can result in mostly identical absorp-
tion spectra. Hence, as it is going to be again a subject of our future research,
a possible solution for improving the dynamics of the excited state would be
to use different experimental data, or use even combinations of them, to pa-
rameterize the model. A more suitable would be models that actually capture
the processes on the femtosecond timescale such 2DES with femtosecond res-
olution, a pump-probe experiments. Especially the polarisation-resolved tech-
niques (e.g. Zahn et al., 2022)might be a source of important information about
the orientation of the transition dipole moments and about mixing of the states
due to the diabatic coupling.

4.5 Ultrafast internal conversion
Due to the problems with strong oscillation in the evolution of populations
in excited state dynamics simulations mentioned in the previous section, the
interpretation of these dynamics has to be done with great care. All the pre-
sented dynamics in secular approximation seem to have similar timescales of
relaxations to the 𝑄𝑦 state of roughly 100 fs, with much faster intermediate re-
laxations in the modes. Such a number would be in great correspondence with
both the experimental and theoretical findings, as discussed in greater detail
in section 1.2. The best correspondence would be with the results of Meneghin
et al. (2017) since they as well observed intermediate vibrations-involving re-
laxation in the 40 fs window.

Nevertheless, one shouldn’t consider these results to be the final contribu-
tion to the topic of ultrafast internal conversion in chlorophyll molecules. It
might be even the exact opposite since the thorough data about the parameter
space gathered so far, using the newly formulated model, weren’t even fully
employed yet.
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Conclusion
Anew spectroscopic model for chlorophyll-likemolecules was formulated, im-
plemented, and tested on simulations of linear absorption spectroscopic exper-
iments. The model was parameterised by fitting the simulated spectrum to the
experimental data—Chla soluted in two different solvents, diethyl ether and
pyridine—obtained from the literature (Rätsep et al., 2009). By introducing
constraints on the parameters to maximally correspond parameter-wise with
an older work that used in principle the same, but simpler version of ourmodel
(Reimers et al., 2013), the fitted simulated spectrum still well reproduced the
experimental data (see Figure 3.3, Figure 3.16) and thus confirmed the validity
of our model and its backwards compatibility with simpler models used prior
to this work.

The time-dependent Redfield theory was implemented and optimised for
performance (as discussed insection 2.5) to make calculations of larger sys-
tems feasible. The theory was used to calculate not only the linear absorption
spectra from relations presented in section 2.4, but also the excited state pop-
ulation dynamics. However, since the parameterization of the model turned
out to be too “loose” and indefinite (myriads of the physical parameters can
be changed without affecting the linear absorption spectrum as discussed in
section 4.3) with respect to the absorption spectrum, we didn’t delve in great
detail into the discussion of the energy relaxation times (i.e. transfer rates) as
it is most probably necessary to use more specific and short-timescale oriented
experiments to parameterise the model with first.

Nevertheless, the parameter space of linear absorption spectra simulations
was explored in great detail and the obtained results will be used in the follow-
ing research to better understand the relations between the parameters of the
formulated model and the system photoinduced dynamics.
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A.1 Parameter space of the physical model for vari-
ous constraints

The optimised parameters of the model are available on the GitHub repository:
https://github.com/MichalPt/MScThesis

Table A.1: Summary of the parameters that are subjected to a fitting proce-
dure. The uppermost row denotes the number of vibrational modes explicitly
included in the model. Single asterisks (∗) mark quantities, there were opti-
mised by Reimers et al. (2013) and thus were subjected to a constraint on their
value for some of the simulations presented in this thesis to compare bothmod-
els. The quantity Δ represents here an energy gap defined as Δ = 𝐸𝑥 − 𝐸𝑦. 𝜙 is
an angle in degrees between 𝑄𝑥 and 𝑄𝑦 transition dipole moments.

𝑁𝑉 0 1 2

∗𝐸 𝑔 𝐸𝑔𝑄𝑦 𝐸𝑦∗𝑄𝑥 − 𝑄𝑦 Δ
tr. dipoles 𝑄𝑦 (𝑑𝑦, 𝑑𝑥, 𝜙)𝑄𝑥

N
𝑔 – 𝑁𝑔𝑄𝑦 – 𝑁𝑦𝑄𝑥 – 𝑁𝑥∗Ω𝑉 – Ω1 (Ω1, Ω2)∗𝛼 – 𝛼1 (𝛼1, 𝛼2)

𝑆 (HR) 𝑄𝑦 – 𝑆1 (𝑆11, 𝑆12)𝑄𝑥 – 𝑆2 (𝑆21, 𝑆22)
EL BATH 𝜆τ𝑐
VIB BATH 𝑄𝑦 – ⎛⎜⎜⎜⎝

τ𝑇τ𝑐
⎞⎟⎟⎟⎠1

⎛⎜⎜⎜⎝
τ𝑇τ𝑐

⎞⎟⎟⎟⎠11
⎛⎜⎜⎜⎝

τ𝑇τ𝑐
⎞⎟⎟⎟⎠12𝑄𝑥 – ⎛⎜⎜⎜⎝

τ𝑇τ𝑐
⎞⎟⎟⎟⎠2

⎛⎜⎜⎜⎝
τ𝑇τ𝑐

⎞⎟⎟⎟⎠21
⎛⎜⎜⎜⎝

τ𝑇τ𝑐
⎞⎟⎟⎟⎠22
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A.2 Parameters of the model from Figure 2.2
• electronic energies: (0.0, 0.73, 1.0)

• number of vibrational levels: (3,4,4)

• displacement of the potential: (0, 0.4, -0.3)
Alternatively, Huang-Rhys factors can be used instead: (0, 0.16, 0.09) .

• vibrational mode frequency Ω𝑉: 0.15
• diabatic coupling 𝛼: 0.1
The Python script for the Figure 2.2 is published on my GitHub repository

at: https://github.com/MichalPt/MScThesis .
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A.3 One-dimensional scans through the parameter
space

Figure A.1: Simulated linear absorption spectra of a spectroscopic model of
Chla molecule soluted in diethyl ether, with a single explicit vibrational mode
(𝑁𝑉 = 1), for different values of the targeted relaxation time τ𝑇,1. No optimisa-
tions were performed in this case and this figure’s purpose is to only illustrate
the overall effect of the parameter in question.
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Figure A.2: Simulated linear absorption spectra of a spectroscopic model of
Chla molecule soluted in diethyl ether, with two explicit vibrational modes
(𝑁𝑉 = 2), for different values of the targeted relaxation time τ𝑇,11. No op-
timisations were performed in this case and this figure’s purpose is to only
illustrate the overall effect of the parameter in question.
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B.1 System truncation
B.1.1 Motivation
The computational resources required for simulating the dynamics of an open
quantum system are tightly dependent on the system size. That is, on the di-
mension of the systemHamiltonian. The Hamilton matrices that are being dis-
cussed in this thesis have two main components: electronic and vibrational. In
the context of chlorophyll molecules, the electronic energies that enter the ef-
fective Hamiltonian are well-defined and energetically well-separated. Hence,
the electronic energy levels form the backbone of the Hamiltonian. In contrast,
the vibrational modes included in the Hamiltonian and assigned to each of the
electronic levels are only approximations of the real vibrational modes. Real vi-
brational modes may have convoluted potential energy surfaces that would be
rather difficult to work with in the calculations. Hence, the potential surfaces
are approximated around their minima by a quadratic potential, resulting in
everyone’s favourite linear quantum harmonic oscillator. The drawback of this
harmonic approximation is the lack of an upper boundary for the vibrational
Hamilton operator.

One of this thesis aims is to simulate the absorption spectra of Chla
molecule, particularly the Q-band region of the spectra, which plays a major
role in photosynthetic light harvesting. Even though only two electronic transi-
tions lay in this spectral region, many vibrational modes are appended to those
transitions. Each one with a potentially infinite number of vibrational states
that might be further coupled.

B.1.2 Theory
The idea behind the approximation is to omit all states of the system that aren’t
directly contributing to the simulated absorption spectra. The goal is to trun-
cate the system Hamiltonian (along with other system operators) according to
its spectrum, i.e. the eigenenergies, in such a way that the Hermitian property
of the truncated Hamiltonian is preserved, as well as the remaining eigenen-
ergies. This task thus represents a Hermitian inverse eigenvalue problem: finding
a Hermitian matrix 𝐻𝑓 and a unitary matrix 𝑈𝑓 for a given set of eigenvalues 𝜆
that satisfies:

1𝜆 = 𝑈†𝑓 𝐻𝑓𝑈𝑓 . (B.1)
The approach I adopted is based on the work of Padilla et al. (2017), who

presented an algorithm that searches specifically for the closest Hermitian ma-
trix, in terms of a Euclidean norm, to a given ansatz matrix 𝐻𝑎𝑛𝑠𝑎𝑡𝑧. Only the
algorithm is described here; the mathematical proofs and the derivation of the
method can be found in the referenced paper.

Consider a complex Hermitian matrix 𝐻 of 𝑛 × 𝑛 dimension: 𝐻 ∈ C𝑛×𝑛 ∶𝐻† = 𝐻, where † denotes Hermitian conjugate. The truncation algorithm con-
sists of these steps:

1. Find the eigenenergies 𝜆 and the unitary matrix 𝑆 that diagonalizes 𝐻:𝑆†𝐻𝑆 = 𝜆1 ∶= ℎ.
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2. Sort the values of 𝜆 in increasing order and reorder the rows of matrix 𝑆
correspondingly.1

3. Based on the values of 𝜆, determine the eigenvalues you want to get rid
of and remove the rows and columns of the corresponding indices from
the Hamiltonian 𝐻 and from the diagonal matrix ℎ. If we denote objects
of truncated dimensions (i.e. 𝑚 × 𝑚) by a tilde, we obtain 𝐻 and ℎ̃.

4. Find the unitary matrix 𝑄 that diagonalizes 𝐻: 𝑄†𝐻𝑄 = Λ1.

5. Sort the values of Λ in increasing order and reorder the rows of matrix 𝑄
correspondingly.1

6. The result is obtained by transformation: 𝐻𝑓 = 𝑄ℎ̃𝑄†.
If the system truncation performed in step 3 is denoted by an action of an

operator 𝑇𝑚←𝑛 such that 𝑇𝑚←𝑛 ∶ C𝑛×𝑛 ⟶ C𝑚×𝑚, 𝑚 ≤ 𝑛, 𝐴 ∈ C𝑛×𝑛 ∶ 𝑇𝑚←𝑛𝐴 =𝐴 ∈ C𝑚×𝑚, the whole truncation algorithm can be expressed as:

𝐻𝑓 = 𝑄(𝑇𝑚←𝑛(𝑆−1𝐻𝑆))𝑄−1. (B.2)

After the truncation of the systemHamiltonian is performed, the other sys-
temoperators have to be truncated aswell. A general systemoperator𝑂 ∈ C𝑛×𝑛
would be transformed as:

𝑂𝑓 = 𝑄(𝑇𝑚←𝑛(𝑆−1𝑂𝑆))𝑄−1 . (B.3)

1This step is done by default in the previous step if the function eigh from the Python library
Numpy (Harris et al., 2020) is used for solving the eigenvalue problem.
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