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1. Introduction

1.1 A Historical Note
The intellectual foremother of the present work is arguably Wanda Szmielew who
in her article Elementary Properties of Abelian Groups (see [12]) showed a version
of Baur–Monk Theorem for Abelian groups.

Building upon further work of Kenneth Jon Bairwise, Paul Eklof, and Gabriel
Sabbagh between 1955 and 1976, Walter Baur was the first man to prove this
result in full in his article Elmination of Quantifiers for Modules (see [2]). In-
dependently of Mr Baur, James Donald Monk gave a proof for Abelian groups
which ‘works just as well over any ring’ in the words of Mike Prest in [8].

Indeed, it is a variation on his proof, as given by Martin Ziegler, and Alessandro
Achille with Luca Ghidelli in Model Theory of Modules (see [13]) and Modules
in Model Theory (see [1]) respectively, presented in Chapter 3.

1.2 Sources
The bulk of the present work is largely based on [8], [13], [1], and, in passing, on
[9], and [4] (listed in decreasing order of significance), while the more elementary
treatment of mathematical logic made use of the remarks and definitions found
in [7], [3], and [10]. Some elementary results from other fields, such as combinat-
orics and group theory, have been sourced from [6] and [11] respectively.

1.3 Motivation
During his first encounter with Real Analysis, the young student imagines a typic-
al real-valued univariate function (or simply a function in his mind) as a sequence
of smooth hills and valleys over an uninterrupted interval. It is only with fur-
ther instruction this idealistic, human view is altered by introducing into his
thought-horizon the notions of functions so fantastically counterintuitive as those
of Weierstrass and Cantor.

By the time his education in the subject concludes, he will have had to accept
such functions are not only well-defined but, in fact, make up so much of the
function landscape it is nigh miraculous there is any room left for the ‘human’
ones.

Much like one may imagine the requirement a function be continuous every-
where yet differentiable nowhere or infinitely-differentiable everywhere yet ana-
lytic nowhere is too strong to hold for any function, one may at first be doubtful
if the requirement a first-order theory should yield a quantifier-free equivalent for
any formal writing of arbitrary complexity is likewise too strong.

By way of analogy to Real Analysis, almost every theory has this property,
or, more precisely, every theory may be extended to do so:
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Let T be any theory in the language L. Enrich both systems: L by adding
an n-ary relation symbol Rϕ for every L-formula ϕ in n free variables, and
T by adding the axiom

(∀x1, . . . , xn)ϕ(x1, . . . , xn)↔ Rϕ(x1, . . . , xn) for each formula ϕ.

The new, enriched theory on the extended language admits a full elimination
of quantifiers. Sadly, this clumsy procedure has bloated it to such a degree
nothing sensible may be said about the quantifier-free formulæ thereof.

The language and theory of modules is stark opposite: They are poor with meagre
vocabulary and all expression limited to systems of linear equations1.

They, nevertheless, satisfy the heavy requirement at least halfway. Baur–Monk
Theorem 3.3.1, whose proof in its fullness is the aim of most pages to follow, shows
every formula in the language of modules is equivalent modulo some complete
theory of modules to a Boolean combination of existential formulæ of a very
specific form. Plainly put, they admit a partial elimination of quantifiers.

1.4 Preliminaries
Herein we fix conventions used in the sections to follow; they are to be kept
at the back of one’s mind while allowing for their explicit contradiction should it
be convenient to do so.

I acknowledge the following pages give leeway to some informal treatment and
abuse of notation. For example, the simple if is used in definitions2 as opposed
to the more logically correct iff.

We shall, moreover, speak of sets of formulæ and even iterate over such sets
even though the logic assumed throughout this paper is of first order. We permit
these instances to accommodate tradition in the former and enhance brevity
in the latter. Another repeated instance of abuse will be speaking of subgroups
of modules; by this we will have in mind the subgroups of the module’s underlying
commutative group.

Notation 1.4.1 (Boldface). Given an algebraic structure A, be it a ring, a mod-
ule, etc., we denote it using boldface while its underlying set is left without any
special formatting. For example, given some ring R, its underlying set is denoted
R.

Convention 1.4.2 (Ring R). We fix the symbol R to stand for a fixed ring
(R,+, ·,−, 0, 1) on a (nonempty) set R.

Notation 1.4.3 (Variables). We fix the variables’ set

Var = {x, y, z, u, v, v0, v1, . . . , w, w0, w1, . . .} .

1See Remark 1.4.6
2e.g. ‘An integer is said to be even if it is a multiple of 2’
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Convention 1.4.4 (Language L). Our principal language3 shall be that of right
R-modules L = (+,−, 0, r)r∈R ∪ Var ∪ {=}. Namely, L contains a binary
function-letter +, a unary function-letter −, a constant-letter 0, and a unary
function-letter r for each element r ∈ R, applied using the postfix notation ‘ r’
as a matter of convention.

Whenever we speak of well-formed formulæ, or simply formulæ, we mean L-
formulæ unless contradicted.

Notation 1.4.5 (Theory ModR). We fix the symbol ModR to stand for the
theory of right R-modules: the theory of commutative groups enriched by the
following set of axioms for each pair (r, s) ∈ R2:

(∀u, v) (u+ v)r = ur + vr (∀v) v(r + s) = vr + vs

(∀v) v(r · s) = (vr)s (∀v) v1 = v

Remark 1.4.6. L-terms are precisely R-linear combinations; since L contains
only 0 as a constant-letter and its only predicate-letter is =, any atomic L-formula
is equivalent (modulo ModR) to the homogeneous R-linear equation:

v1r1 + v2r2 + · · ·+ vnrn = 0.

A nonzero RHS may be obtained either by enriching L with constant-letters
or by a partial substitution of parameters (see Notation 2.0.6).

Convention 1.4.7 (Logical Symbols). We shall consider the standard collection
of logical symbols

∧,∨,¬,←,→,↔,∀, ∃.
To cut down on needless brackets when composing formulæ, we assign them
descending priority in the order we have listed them.

For formal purposes, we shall consider the reduced collection ∧,¬,∀ and treat
the remaining symbols as derived therefrom.

Notation 1.4.8 (Overlines). Whenever we write ϕ(v) for a formula ϕ and any
sequence v = {xα}α∈I of distinct variables from Var, we indicate that all variables
occurring free in ϕ are amongst those in v, though we do not require any of them
actually occur free in ϕ. By len v we understand the length of the sequence v.

We shall often simply write ϕ(v), ϕ(w), and so forth, without giving an explicit
enumeration of such sequences; it will be sufficient to suppose they are long
enough to contain all those variables in Var that do occur free in ϕ in concordance
with the foregoing convention

An analogous convention for sets of formulæ Φ(v),Ψ(v), . . . shall be used.

Notation 1.4.9 (≡). Whenever we wish to assign a specific formula a name, the
designation will be indicated by the binary operator ≡; e.g. if we wish to refer
to the formula (∀x)x0 = 0 by ϕ in some subsequent writing, the fact is denoted
by ϕ ≡ (∀x)x0 = 0.

3We use the term language as defined in [3]; i.e. to designate a disjoint union of
relation- and function-letters with assigned arities. The term used on en.wikipedia.org
encyclopediaofmath.org, as of June 2023, is signature.
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2. Positive-Primitive Formulæ
In this section we present an elementary introduction into the theory of positive-
primitive formulæ, or sometimes more briefly pp-fomulæ, in the language of right
R-modules. We, nevertheless, deviate from the standard definition of positive-
primitive, as found in [8], [9], [5] and others, where such formulæ are defined
outright and not as formulæ positive and primitive (variations on the respective
definitions of which may be found in in [3] and [4]), which shall be our approach1.

Definition 2.0.1 (Positive, Primitive, Positive-Primitive Formula). Let A be
a first-order language. An A-formula ϕ is said to be:

• positive if ⊢ ϕ↔ χ where χ contains no occurrences of ¬.

• primitive if ⊢ ϕ↔ ∃wψ for some A-formula ψ, which itself is a conjunction
of atomic and negations of atomic A-formulæ.

• positive-primitive if ⊢ ϕ ↔ ∃wω(v, w) where ω is a conjunction of atomic
A-formulæ.

Definition 2.0.2 (Positive-Primitive L-Formula & Sentence, Prefix, Matrix).
Due to the poverty of our language L, recalling Remark 1.4.6, an L-formula of n
free variables is positive-primitive if it is equivalent to a formula of the form

Prefix⏟ ⏞⏞ ⏟
(∃w1, w2, . . . , wl)

m⋀︂
j=1

(︄
n∑︂

i=1
virij +

l∑︂
k=1

wkskj

)︄
= 0

⏞ ⏟⏟ ⏞
Matrix

,

where for each i, j, k, we have rij, skj ∈ R. The terms prefix and matrix of such
a formula are defined as indicated2; the latter term will be shown to be especially
fitting in Remark 2.0.5. Naturally, a closed positive-primitive formula is said
to be a positive-primitive sentence.

Example 2.0.3. Suppose we have two positive-primitive formulæ ϕ, ψ. Then
due to our relaxed definition of primitiveness3 ϕ∧ψ is likewise positive-primitive
(relabel the variables to forestall conflicts if necessary, join up their conjunctions
and move the existential quantifiers to a common prefix). This fact shall be
used a number of times, including in the proof of Baur–Monk Theorem 3.3.1
in Chapter 3.

Notation 2.0.4 (pp). We fix the symbol pp as shorthand for the positive-
primitive formula specified in Definition 2.0.2. One may think of it as a general
positive-primitive formula with familiar components that may be readily refer-
enced (such as rij, sij, etc).

1We do so for reasons of etymology.
2These two terms have been passed down from the given formula being in the prenex normal

form.
3Compared to [7], for example.
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Remark 2.0.5. The pp formula may be rewritten using matrix-notation as

(∃w1, . . . , wl)(v1, . . . , vn, w1, . . . , wl)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 . . . r1m

r21 r22 . . . r2m
... ... . . . ...
rn1 rn2 . . . rnm

s11 s12 . . . s1m
... ... . . . ...
sl1 sl2 . . . slm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (0, . . . , 0),

or more compactly as

(∃w) (vw)
[︄
R
S

]︄
= 0,

where [R S]T is a matrix with a block-decomposition into matrices R = (rij)n,m
i,j=1

and S = (sij)n,m
i,j=1. This gives us a new way of viewing pp. Finally, if one prefers,

the above may be further rewritten to obtain

∃w vR = w(−S).

This suggests one may think of positive-primitive formulæ as generalised divisi-
bility statements.

Notation 2.0.6. Let M |= ModR. By LA for some A ⊆ M we understand the
enriched language obtained from L by adding a constant-letter for each a ∈ A.
Of special interest may be the largest such language for any one M , denoted Lc,
especially if M is understood only tacitly.

Remark 2.0.7. It is clear from Remark 2.0.5 that positive-primitive formulæ
pertain to the solubility of R-linear equations. In the case of positive-primitive
sentences, they contain the binary information whether a system defined thereby
is soluble.

We shall now list two elegant yet trivial examples of positive-primitive formulæ.

Example 2.0.8.

(1) The positive-primitive L-formula vr = 0, where r ∈ R, is satisfied by pre-
cisely those elements a of a right R-module M annihilated by r.

(2) The positive-primitive L{a}-sentence (∃w)a = wr, where r ∈ R and a ∈ M
captures the divisibility of a by r (see Remark 4.1.4).

By working with tuples v, w, a we may generalise these conditions as conjunctions
of entrywise equalities analogous to those above. Such generalisations are clearly
other examples of positive-primitive formulæ and sentences respectively.
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2.1 pp-Definable Subgroups & Cosets
One of the staples of Linear Algebra is the subspace-oriented view of solution-sets
of systems of linear equations.

In view of Remark 2.0.5, an analogy lends itself to consideration: We shall
introduce the notion of a subspace defined by a system of linear equations (rep-
resented by a positive-primitive formula). As we shall see, these subspaces are
closed under addition and, if a few concessions on the generality of R are granted,
also closed under scalar multiplication.

Definition 2.1.1 (Positive-Primitive-Definable Set). Let ϕ(v) be a positive-
primitive formula and M |= ModR. Then those a ∈M len v for which M |= pp(a)
define a set ϕ(M ) termed positive-primitive-definable or more briefly pp-definable.
An analogous notion for a set Φ of positive-primitive formulæ follows:

ϕ(M ) Def=
{︂
a ∈M len v

⃓⃓⃓
M |= ϕ(a)

}︂
Φ(M ) Def=

{︂
a ∈M len v

⃓⃓⃓
(∀ϕ ∈ Φ) M |= ϕ(a)

}︂
.

Example 2.1.2. A real plane P in R3 may be represented by an equality of the
form ax+ by+ cz = d, where a, b, c, d are real coefficients. In this context, planes
are pp-definable sets over the module RR.

More concretely, P = ϕ(RR), where ϕ(x, y, z) ≡ xa + yb + zc = d is a positive-
primitive Lc-formula.

Definition 2.1.3 (Witness). Let A be a first-order language, A an A-structure,
and ϕ(v) a quantifier-free A-formula. Then a ∈ Alen v is termed an A-witness,
or simply a witness supposing A is clear from context, of the existential formula
∃v ϕ(v) if A |= ϕ(a) (and hence A |= ∃v ϕ(v)).

A set Φ of existential A-formulæ defined as above is said to have A-witnesses,
or simply witnesses, in A if there exists an A-witness for every ϕ ∈ Φ.

Example 2.1.4. In school-algebra over natural numbers4 a number n is said
to be composite if there exists a pair of two smaller non-unit numbers p, q such
that n = p · q. Then the pair (2, 3) is a witness for 6 being composite.

Theorem 2.1.5 (Linearity of Positive-Primitive Formulæ). If M |= ModR, then

(1) M |= pp(0).

(2) M |= pp(a) and M |= pp(b) implies M |= pp(a± b).

(3) If r ∈ R commutes with all rij, skj in pp, then M |= pp(a) implies M |=
pp(ar), where ar denotes entrywise multiplication.

Proof. Let ψ(v, w) be the matrix of

pp(v) ≡ (∃w1, w2, . . . , wl)
m⋀︂

j=1

(︄
n∑︂

i=1
virij +

l∑︂
k=1

wkskj = 0
)︄
.

4Formally the commutative semiring (N,+, ·, 0, 1).
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(1) The element (0, 0) is a witness for (∃v, w)ψ(v, w); in particular 0 is a witness
for (∃w)ψ(0, w) ≡ pp(0). Hence M |= pp(0).

(2) Suppose M |= pp(a) and M |= pp(b). Then there are some α and β such
that (a, α) and (b, β) are witnesses for (∃v, w)ψ(v, w). We observe this
implies that (a± b, α± β) is also a witness since

M |= ψ(a± b, α± β) ≡
m⋀︂

j=1

(︄
n∑︂

i=1
(ai ± bi)rij +

l∑︂
k=1

(αk ± βk)skj = 0
)︄

⇔M |=
m⋀︂

j=1

⎛⎜⎜⎜⎜⎝
(︄

n∑︂
i=1

airij +
l∑︂

k=1
αkskj

)︄
⏞ ⏟⏟ ⏞

0

±
(︄

n∑︂
i=1

birij +
l∑︂

k=1
βkskj

)︄
⏞ ⏟⏟ ⏞

0

= 0

⎞⎟⎟⎟⎟⎠ .

Then in particular, (α ± β) is a witness for (∃w)ψ(a ± b, w) ≡ pp(a ± b),
whence M |= pp(a± b).

(3) Suppose M |= pp(a) and that r commutes with all rij, skj in pp(v); there is
some b such that (a, b) is a witness for (∃v, w)ψ(v, w). Then so is (ar, br)
since

M |=
m⋀︂

j=1

(︄
n∑︂

i=1
airij +

l∑︂
k=1

bkskj = 0
)︄

⇒M |=
m⋀︂

j=1

(︄
n∑︂

i=1
airijr +

l∑︂
k=1

bkskjr = 0r
)︄

⇒M |=
m⋀︂

j=1

(︄
n∑︂

i=1
(air)rij +

l∑︂
k=1

(bkr)skj = 0
)︄
.

QED

Remark 2.1.6. Observe Theorem 2.1.5 does not generally hold for Lc-formulæ.

Definition 2.1.7 (Full R-Characteristicity). Let M |= ModR. It is said a sub-
group N of M is fully R-characteristic if, given any R-endomorphism5 f of M ,
the subgroup N is invariant under f .

Lemma 2.1.8 (pp-Definable Subgroup Existence). Let M |= ModR. Then
pp(M) is a fully R-characteristic subgroup of M len(v). In particular, it is an R-
submodule if R is commutative.

Proof. One deduces that pp(M ) is a subgroup immediately from Theorem 2.1.5.
It remains to show full R-characteristicity.

Let a ∈ pp(M ) and f be an R-endomorphism of M . Then there exists some b
5By this term we mean a function f : M →M such that f(ar + bs) = f(a)r + f(b)s.
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such that

M |=
m⋀︂

j=1

(︄
n∑︂

i=1
airij +

l∑︂
k=1

bkskj

)︄
= 0⇒M |=

m⋀︂
j=1

f

(︄
n∑︂

i=1
airij +

l∑︂
k=1

bkskj

)︄
= f(0)

⇔M |=
m⋀︂

j=1

(︄
n∑︂

i=1
f(ai)rij +

l∑︂
k=1

f(bk)skj

)︄
=0.

Hence f(a) ∈ pp(M ), proving the desired closure. If R is commutative (or rather
if all rij, sij lie in the centre of R) r is an R-endomorphism for each r ∈ R. QED

Definition 2.1.9 (Positive-Primitive-Definable Subgroup). Let M |= ModR.
The group pp(M ) is termed a positive-primitive-definable subgroup, or a pp-
definable (fully R-characteristic) subgroup. More accurately, it is a subgroup
of M len(v) pp-definable in M .

Remark 2.1.10. In view of Lemma 2.1.8, note pp defines (in the categorical
sense) a functor F from Mod-R to Ab with F (M) = pp(M) for any object
M ∈ Obj(Mod-R) and F (f) defined as the restriction-map pp(M) → pp(N )
for any R-homomorphism f : M →N .

Example 2.1.11. Let R be the ring of 2× 2 matrices over some field K and M
be the regular module over R. The ring is clearly noncommutative, and hence
does not satisfy the assumptions of the latter part of Lemma 2.1.8. We define
the positive-primitive formula

ϕ(v) ≡ (∃w)
(︄
v = w

[︄
1 0
0 0

]︄)︄
. Clearly ϕ(M ) =

[︄
K 0
K 0

]︄
=
{︄[︄
a 0
b 0

]︄ ⃓⃓⃓⃓
⃓ a, b ∈ K

}︄
.

Observe ϕ(M) is a left but not a right ideal of R and consequently not a right
submodule of the regular module M .

Corollary 2.1.11.1 (Generalised pp-Definable Subgroup Existence). Let Φ(v)
be a set of positive-primitive L-formulæ and M |= ModR. Then Φ(M ) is a fully
R-characteristic subgroup of M len(v).

Proof. Since Φ(M ) = ⋂︁ {ϕ(M ) |ϕ ∈ Φ}, the claim immediately follows from
Lemma 2.1.8. QED

Lemma 2.1.12 (pp-Definable Coset Existence). Let M |= ModR and consider
pp(v). Suppose we substitute specific values as+1, as+2, . . . , an ∈ M for the last
n− s variables in v. Then the set

pp(M , a) = {c ∈M s |M |= pp(c, a)} ,

defined by the resultant positive-primitive formula, is either empty or is a coset
of the subgroup pp(M , 0) of M s.

Proof. Observe ϕ(M , 0) indeed is a group. This easily follows from Lemma 2.1.8
and the fact M |= ϕ(c, 0) iff M |= χ(c) for the positive-primitive formula χ
derived from ϕ by omission of all virij for i > s.
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Suppose ϕ(M , a) is nonempty and let c, c′ be two, possibly nondistinct, elements
therein; then M |= ϕ(c, a), ϕ(c′, a). Consequently, M |= ϕ(c− c′, a− a) = ϕ(c−
c′, 0) by Theorem 2.1.5 whence we, in addition, infer that for any c0 ∈ ϕ(M , 0),
M |= ϕ(c+ c0, a). Hence ϕ(M , a) is a coset of ϕ(M , 0). QED

Definition 2.1.13 (pp-Definable Coset). Let a, ϕ, M be as in Lemma 2.1.12.
The resultant coset ϕ(M , a) is said to be positive-primitive-definable or more
briefly pp-definable.

2.2 The Lattice of pp-Definable Groups
Theorem 2.2.1 (pp-Definable Group Arithmetic). Let ϕ(v), ψ(v) be some pp-
formulæ and M |= ModR. Then

ϕ(M) ∩ ψ(M ) = (ϕ ∧ ψ)(M ) ϕ(M) + ψ(M ) = (ϕ+ ψ)(M)

where
(ϕ+ ψ)(v) Def≡ ∃u,w (ϕ(u) ∧ ψ(w) ∧ v = u+ w).

Proof.

(ϕ ∧ ψ) : Clearly, a ∈ ϕ(M) ∩ ψ(M)⇔ a ∈ ϕ(M) ∧ a ∈ ψ(M)⇔ a ∈ (ϕ ∧ ψ)(M).

(ϕ+ ψ) : We have a ∈ ϕ(M) +ψ(M) iff there are some b ∈ ϕ(M) and c ∈ ψ(M) such
that a = b+ c. This is equivalent with a ∈ (ϕ+ ψ)(M).

ϕ(M ) + ψ(M ) = (ϕ+ ψ)(M )

ϕ(M) ψ(M) ϕ(M ) ψ(M)

ϕ(M) ∩ ψ(M ) = (ϕ ∧ ψ)(M)

QED

Remark 2.2.2. It follows from Theorem 2.2.1 that given some M |= ModR,
the partially ordered set of all pp-definable subgroups of Mn forms a (modular)
sublattice of the lattice of all subgroups of Mn.

Example 2.2.3. Suppose R = Z and let (Z2 ⊕ Z9)Z |= ModR. The lattice of all
pp-definable subgroups of (Z2 ⊕ Z9)Z is shown below.

Gv0=0

Gv6=0 Gv9=0

Gv2=0 Gv3=0

Gv1=0

10



For every group Gϕ in the lattice, ϕ is a positive-primitive formula defining it.
In greater detail,

Z1 ≃ Gv1=0 Z2 ≃ Gv2=0 Z3 ≃ Gv3=0

Z2 × Z3 ≃ Gv6=0 Z9 ≃ Gv9=0 Z2 × Z9 ≃ Gv0=0

We see that the lattice of all pp-definable subgroups coincides with the lattice
of all subgroups of Z2 ⊕ Z9.

This is not always the case as evidenced by QZ; it can be proven that not
only are not all subgroups of Q pp-definable in QZ, but that only the trivial ones
are.

11



3. Elimination of Quantifiers

3.1 Combinatorial Lemmata
Notation 3.1.1. Let 0 < n ∈ N. Then [n] := {1, 2, . . . , n}.

Theorem 3.1.2 (Inclusion-Exclusion Principle). Let A1, A2, . . . , An be finite sets.

Then ⃓⃓⃓⃓
⃓

n⋃︂
i=1

Ai

⃓⃓⃓⃓
⃓ =

∑︂
∅≠∆⊆[n]

(−1)|∆|+1

⃓⃓⃓⃓
⃓⃓ ⋂︂
i∈∆

Ai

⃓⃓⃓⃓
⃓⃓ .

This is a well-known result. For the proof, see Theorem 3.6.2 in [6] amongst other
sources.

Corollary 3.1.2.1. Let A0, A1, A2, . . . , An be sets and A0 be finite. Then

A0 ⊆
n⋃︂

i=1
Ai ⇔

∑︂
∆⊆[n]

(−1)|∆|

⃓⃓⃓⃓
⃓⃓A0 ∩

⋂︂
i∈∆

Ai

⃓⃓⃓⃓
⃓⃓ = 0.

Proof. By application of the Inclusion-Exclusion Principle:

∑︂
∆⊆[n]

(−1)|∆|

⃓⃓⃓⃓
⃓⃓A0 ∩

⋂︂
i∈∆

Ai

⃓⃓⃓⃓
⃓⃓ = 0⇔

∑︂
∅̸=∆⊆[n]

(−1)|∆|

⃓⃓⃓⃓
⃓⃓A0 ∩

⋂︂
i∈∆

Ai

⃓⃓⃓⃓
⃓⃓+ |A0| = 0

⇔
∑︂

∅̸=∆⊆[n]
(−1)|∆|+1

⃓⃓⃓⃓
⃓⃓A0 ∩

⋂︂
i∈∆

Ai

⃓⃓⃓⃓
⃓⃓− |A0| = 0

⇔
∑︂

∅̸=∆⊆[n]
(−1)|∆|+1

⃓⃓⃓⃓
⃓⃓ ⋂︂
i∈∆

Ai ∩ A0

⃓⃓⃓⃓
⃓⃓ = |A0|

3.1.2⇔
⃓⃓⃓⃓
⃓

n⋃︂
i=1

Ai ∩ A0

⃓⃓⃓⃓
⃓ = |A0|

⇔ A0 ⊆
n⋃︂

i=1
Ai.

QED

3.2 Group-Theoretical Lemmata
It is perhaps well-reflective of the origins of Baur–Monk Theorem in group theory
nearly seventy years ago, that a good deal of mathematical labour needed for its
proof remains with groups.

Since the requirement groups be commutative is not needed in this section, we dis-
card it for generality’s sake. This will be reflected in the newly adopted product-
notation for groups (though the additive notation will be readopted in the sub-
sequent sections).
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Definition 3.2.1 (Cover, Thin Cover). Let A,A1, A2, . . . , An be sets. It is said
A1, A2, . . . , An form a cover of A if A ⊆ ⋃︁n

i=1 Ai. Moreover, the cover is said to be
thin if removing any one union-component would unmake it.

Lemma 3.2.2 (Coset Disjointness). Let H ≤ G be groups. Then for each a, b
in G, either aH = bH or aH ∩ bH = ∅.

Proof. Lemma 14.7 in [11]. QED

Lemma 3.2.3 (Index Frolics). Let H1,H2, . . . ,Hn ≤H ≤ G be groups (permis-
sibly indistinct) and a1, a2, . . . , an ∈ G be coefficients such that they form the thin
cover (even equality)

H =
n⋃︂

i=1
aiHi.

Then

(1) Every index [H : Hi] is finite.

(2) [H : Hi] ≤ n for at least one i ∈ [n].

(3) [H : Hi] ≤ n! for every i ∈ [n].

Proof. Denote by r the number of distinct groups amongst the H1,H2, . . . ,Hn.

(1) The proof is by induction on r.

Base Case. Suppose r = 1. Then H = a1H1 ∪ a2H1 ∪ · · · ∪ anH1. Since the cosets
are disjoint (as per Lemma 3.2.2) we have

[H : H1] = |{aH1 | a ∈ H}| ≤ n <∞.

Note we actually did not need not have assumed the cover’s thinness
to show the foregoing.

Induction Step. Fix j ∈ [n]. Since r ≥ 2 and the cover is thin, H\⋃︁ {aiHi |Hi = Hj} ≠
∅; let g ∈ H \ ⋃︁ {aiHi |Hi = Hj}.

We claim
gHj ⊆ H \

⋃︂
{aiHi |Hi = Hj} .

Towards a contradiction, suppose gHj = aiHj(= aiHi) (recall any two
cosets are either disjoint or equal). Then there are some h1, h2 ∈ Hj

such that

gh1 = aih2 ⇒ g = ai h2h
−1
1⏞ ⏟⏟ ⏞

∈Hj

∈ aiHj. A contradiction.

Hence the inclusion holds and thus

gHj ⊆ H \
⋃︂
{aiHi |Hi = Hj} ⊆

⋃︂
{aiHi |Hi ̸= Hj} ,

whence

Hj ⊆
⋃︂{︂

g−1aiHi

⃓⃓⃓
Hi ̸= Hj

}︂
⊆ H.

13



We have effectively constructed a way to cover H without using Hj

in any of the union-members of ⋃︁n
i=1 aiHi — any such member akHk,

with Hk = Hj, may be replaced:

akHk = akHj ⊆
⋃︂{︂

akg
−1aiHi

⃓⃓⃓
Hi ̸= Hj

}︂
.

The new equality only uses r − 1 distinct groups, whereby the in-
duction hypothesis shows [H : Hi] < ∞ for all i ̸= j. But since j
was arbitrary, we can repeat the procedure and reapply the induction-
hypothesis to get [H : Hj] <∞; concluding the induction-step.

(2) Consider the group K = ⋂︁
Hi. By (1), the index [H : K] = m < ∞.

Towards a contradiction, suppose [H : Hi] > n for each i. By Lagrange
Theorem (Theorem 14.9 in [11])

n < [H : Hi] = [H : K]
[Hi : K] .

Then [Hi : K] = [H : K]/[H : Hi] < m/n. It follows

[H : K] =
[︄

n⋃︂
i=1

aiHi : K

]︄
≤

n∑︂
i=1

[Hi : K] < n · m
n

= m = [H : K].

A contradiction.

(3) We proceed by induction on r.

Base Case. Suppose r = 1. Then the claim holds by (2).

Induction Step. By (2) we know there exists some coset Hk such that [H : Hk] ≤ n.
Without any loss of generality, assume it is H1. Fix i; we will show the
claim for an arbitrary Hi. If H1 = Hi, then the claim holds trivially.
Suppose then H1 ̸= Hi.

Let
g ∈ H \

⋃︂
{ajHj | j ̸= i} .

We reuse the cover from (1) to obtain

gH1 ⊆
⋃︂
{akHk |Hk ̸= H1} .

To apply the induction-hypothesis, the cover need first be made thin
and we make it such by removing any redundant elements (and for the
sake of convenience keep the original indexing). Doing so retains aiHi

in the new (thin) cover because by our choice of g, it is the only coset
containing g (which lies in gH1).

We have obtained a new thin cover which is readily made into an
equality:

H1 =
⋃︂{︂

g−1akHk ∩H1

⃓⃓⃓
Hk ̸= H1

}︂
.

There are at most n− 1 cosets and r − 1 subgroups involved. By the
induction-hypothesis,

[H1 : H1 ∩Hi] ≤ (n− 1)!

14



Lagrange Theorem yields:

[H : Hi] ≤ [H : H1 ∩Hi]
= [H : H1] · [H1 : H1 ∩Hi]
≤ n · (n− 1)!
= n!

QED

Lemma 3.2.4 (Neumann). Let H1,H2, . . . ,Hn ≤ H < G be groups (permis-
sibly indistinct) with coefficients a, a1, a2, . . . , an ∈ G such that

aH ⊆
n⋃︂

i=1
aiHi.

Then the cover of aH is preserved if one omits all cosets aiHi with n! < [H :
H ∩Hi]. In particular, all cosets of infinite index in aH may be omitted.

Proof. A twofold simplification is possible from the outset:

(1) It may be supposed a = 1 since

aH ⊆
n⋃︂

i=1
aiHi ⇔ H ⊆

n⋃︂
i=1

a−1ai⏞ ⏟⏟ ⏞
a′

i

Hi.

(2) The equality H = ⋃︁n
i=1 aiHi may be considered instead since

H ⊆
n⋃︂

i=1
aiHi ⇔ H =

n⋃︂
i=1

aiHi ∩H⏞ ⏟⏟ ⏞
aiH′

i

.

Suppose the cover is thin; were it not so, we would remove all redundant members
(and keep the original indexing for convenience’s sake as before). By Lemma 3.2.3,
[H : Hi] ≤ n! holds for every component of this slimmed-down cover; hence all
cosets Hk such that [H : Hi] > n! indeed may have been omitted. QED

Remark 3.2.5. It is clear from the proof of Neumann Lemma 3.2.4 that for the
thin cover

aH ⊆
n⋃︂

i=1
aiHi,

the inequality n! ≥ [H : H ∩Hi] is satisfied for all cover-members Hi from the
outset.
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3.3 Baur–Monk Theorem
Theorem 3.3.1 (Baur–Monk). For every M |= ModR, every L-formula is equi-
valent to a Boolean combination of positive-primitive formulæ:

Given an L-formula ϕ(v), there exists a Boolean combination ψ(v) of positive-
primitive formulæ such that

M |= ψ(v)↔ ϕ(v).

Proof. We proceed by induction on ϕ. Atomic formulæ are positive-primitive
as we have hinted at in Remark 1.4.6. If ϕ and ψ are equivalent to Boolean
combinations of positive-primitive formulæ, then so are ϕ ∧ ψ, ϕ ∨ ψ,¬ϕ,¬ψ.

It remains to show the induction-step for ∀. Suppose then ϕ(v) indeed admits
such a combination. We need to verify ψ(x, v) ≡ ∀xϕ(x, v) likewise has this
property.

Simplifying ϕ

Recall positive-primitive formulæ are closed under conjunction1, so whatever form
ϕ may have, wherever there may be conjunctions of positive-primitive formulæ,
we merge them. This yields (after a possible rearrangement of the disjuncts)

ϕ ≡ ¬ϕ1
0 ∨ ¬ϕ2

0 ∨ · · · ∨ ¬ϕk′

0 ∨ ϕ1 ∨ · · · ∨ ϕk for some pp ϕi
0, ϕi.

Since ¬χ1 ∨ ¬χ2 ↔ ¬(χ1 ∧ χ2) for any formulæ χ1, χ2, we have

¬ϕ1
0 ∨ ¬ϕ2

0 ∨ · · · ∨ ¬ϕk′

0 ↔ ¬(ϕ1
0 ∧ ϕ2

0 ∧ · · · ∧ ϕk′

0 )↔ ¬(ϕ0) for some pp ϕ0.

This leads to the final simplification below. Note that we may assume without
any loss of generality all ineffective disjuncts (such as duplicate ϕi) have been
omitted.

ϕ ≡ ¬ϕ0 ∨ ϕ1 ∨ · · · ∨ ϕk which is equivalent to ϕ0 → ϕ1 ∨ · · · ∨ ϕk. (3.1)

Note

M |= ∀xϕ↔ ∀x (ϕ0 → ϕ1 ∨ · · · ∨ ϕk). (3.2)

The latter form is particularly useful, for it tells us

M |= ψ(b) iff ϕ0(M , b) ⊆
k⋃︂

i=1
ϕi(M , b) for all b ∈M len v. (3.3)

1i.e. if ϕ, ψ are positive-primitive then so is ϕ ∧ ψ.
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Translating into Language of Groups

Put Hi = ϕi(M , 0) and fix some arbitrary b ∈ M len v. As we have observed
at the beginning of the proof of Lemma 2.1.12, Hi is a group. By the same
lemma, ϕi(M , b) is either empty or a coset of Hi (for any i). Rewriting (3.3)
using this notation, we obtain

a0 +H0 ⊆
k⋃︂

i=1
ai +Hi for some ai in M dependent on b.

By Neumann Lemma 3.2.4 (or rather Remark 3.2.5) the cover above is thin2 with
[H0 : Hi∩H0] <∞. Then (by Lagrange’s Theorem) H0/(Hi∩H0) is a finite set
and, consequently, so is H0/

⋂︁k
i=0 Hi.

Denoting by π the natural projection H → H/
⋂︁k

i=0 Hi, the above yields the
following inclusion with a finite LHS:

π(a0) + π(H0) ⊆
k⋃︂

i=1
π(ai) + π(Hi). (3.4)

Corollary 3.1.2.1 becomes applicable to (3.4) yielding the following from (3.2)

M |= ψ(b) iff
∑︂

∆∈[k]
(−1)|∆|

⃓⃓⃓⃓
⃓⃓π(a0) + π(H0) ∩

⋂︂
i∈∆

π(ai) + π(Hi)
⃓⃓⃓⃓
⃓⃓⏞ ⏟⏟ ⏞

N∆

= 0. (3.5)

Eliminating the ai

Since the Hi are commutative,

N∆ =
⃓⃓⃓⃓
⃓⃓π(a0) + π(H0) ∩

⋂︂
i∈∆

π(ai) + π(Hi)
⃓⃓⃓⃓
⃓⃓

=
⃓⃓⃓⃓
⃓⃓π
⎛⎝(a0 +H0 ∩

⋂︂
i∈∆

(ak +Hi)
⎞⎠⃓⃓⃓⃓⃓⃓ .

(3.6)

It follows from (3.6) and Lemma 3.2.2 that either

N∆ = |∅| = 0 or N∆ =
⃓⃓⃓⃓
⃓⃓π
⎛⎝H0 ∩

⋂︂
∈∆
Hi

⎞⎠⃓⃓⃓⃓⃓⃓ , depending on b.

Restated: The latter equality occurs iff the coset in question3 is nonempty.
By definition

a0 +H0 ∩
⋂︂

i∈∆
(ai +Hi) = ϕ0(M , v) ∩

⋂︂
i∈∆

(ϕi(M , b))

2.2.1=
⎛⎝ϕ0 ∧

⋀︂
i∈∆

ϕi

⎞⎠ (M , b).

2This is due to our assumption of ineffective disjuncts having been omitted.
3Meaning, the one whose cardinality N∆ captures.
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Therefore, if we define

ϕ∆(v) ≡ (∃x)
⎛⎝ϕ0 ∧

⋀︂
i∈∆

ϕi

⎞⎠ (x, v),

then

N∆ ̸= 0 iff M |= ϕ∆(b)

whence the following is the set of precisely those ∆ ⊆ [k] for which N∆ ̸= 0:

N =
{︂
∆ ⊆ [k]

⃓⃓⃓
M |= ϕ∆(b)

}︂
.

Thus, (3.5) is reduced to

M |= ∀xϕ iff
∑︂

∆∈N
(−1)|∆|N∆ = 0

M |= ∀xϕ iff
∑︂

∆∈N
(−1)|∆|

⃓⃓⃓⃓
⃓⃓π
⎛⎝H0 ∩

⋂︂
i∈∆

Hi

⎞⎠⃓⃓⃓⃓⃓⃓ = 0.
(3.7)

The Boolean Combination Constructed

We have freed ourselves from any dependence on the ai (which themselves were
dependent on b). It remains to show the RHS of the equivalence above may be
characterised by a Boolean combination of positive-primitive formulæ. We shall
now construct such a formula.

For a fixed M⊆ P([k]), where P denotes the powerset, define

ϕM ≡
⋀︂

∆∈M
ϕ∆ ∧

⋀︂
∆/∈M

¬ϕ∆

and

O =
⎧⎨⎩M⊆ P([k])

⃓⃓⃓⃓
⃓⃓ ∑︂

∆∈M
(−1)|∆|

⃓⃓⃓⃓
⃓⃓π
⎛⎝H0 ∩

⋂︂
i∈∆

Hi

⎞⎠⃓⃓⃓⃓⃓⃓ = 0
⎫⎬⎭ .

Then the sought Boolean combination of positive-primitive formulæ is

ϕO ≡
⋁︂

M∈O
ϕM.

In conclusion,

M |= ∀xϕ(x, b)↔ ϕO(b) for all b

and thus

M |= ∀xϕ↔ ϕO.
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Verifying the Construction

→ Assume M |= ∀xϕ(x, b). Then by (3.7), O contains N and M |= ϕN (b).
Then M |= ϕO(b).

← Assume M |= ϕO. This means there exists some M⊆ P([k]) with

∑︂
∆∈M

(−1)|∆|

⃓⃓⃓⃓
⃓⃓π
⎛⎝H0 ∩

⋂︂
i∈∆

Hi

⎞⎠⃓⃓⃓⃓⃓⃓ = 0 and M |= ϕM(b).

By definition of ϕM, the latter impliesM=
{︂
∆ ⊆ [k]

⃓⃓⃓
M |= ϕ∆(b)

}︂
, whence

by definition of N , M = N . But then

∑︂
∆∈N

(−1)|∆|

⃓⃓⃓⃓
⃓⃓π
⎛⎝H0 ∩

⋂︂
i∈∆

Hi

⎞⎠⃓⃓⃓⃓⃓⃓ = 0

which coupled with (3.7) finally yields

M |= ∀xϕ(x, b).

QED

3.3.1 Immediate Corollaries
Observe the elimination-procedure shown in the proof of the Baur–Monk Theo-
rem depends very much upon the chosen module M . This is easily overcome
by considering some complete theory T of right R-modules whereby all instances
of ‘M |=’ may be replaced by ‘T |=’ in the proof. This train of thought leads
to the following corollary.

Corollary 3.3.1.1 (Baur–Monk for Complete Theories). Given a complete theory
T of right R-modules, every L-formula is equivalent (modulo T ) to a Boolean
combination of positive-primitive formulæ.

Corollary 3.3.1.2. Any Boolean combination of positive-primitive formulæ is
equivalent to a formula of the form

¬ϕ0 ∨ ϕ1 ∨ · · · ∨ ϕk or equivalently ϕ0 → ϕ1 ∨ · · · ∨ ϕk for some pp ϕi.

Proof. See (3.1) in the proof of Baur–Monk Theorem 3.3.1. QED
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4. Corollaries of Baur–Monk
Theorem

4.1 Types
There exists a dual way of defining types, as we shall see. One may view them
either as sets of formulæ or as sets definable thereby; indeed they may be defined
as filters (or ultrafilters) on the Boolean algebra of definable sets.

Definition 4.1.1 (Type, pp-Type, Partial Types). Let M |= ModR, B ⊆ M ,
and a be a tuple in M .

(1) The following set is termed the (complete) type of a in M over B.

TypeM (a/B) := {ϕ(v) ∈ LB |M |= ϕ(a)} .

(2) The positive-primitive type of a in M over B (or the primitive-positive part
of TypeM (a/B)) is defined by

pp-TypeM (a/B) :=
{︂
ϕ(v) ∈ TypeM (a/B)

⃓⃓⃓
ϕ is positive-primitive

}︂
.

(3) By a partial positive-primitive type we understand any set of pp-formulæ
consistent modulo ModR (or possibly any other theory if specified; e.g. the
complete theory Th(M ) for some M |= ModR). By relaxing the require-
ment only positive-primitive formulæ be considered, we obtain the definition
of a partial type.

If B = ∅ or B = {0}, we may simply write TypeM (a) and pp-TypeM (a) respect-
ively. Likewise, if M is clear from context, it may be omitted.

Type

pp-Type Partial Type

Partial pp-Type

Remark 4.1.2. It is clear a (positive-primitive) type is a maximal element in the
partially ordered sets of partial (positive-primitive) types. Conversely, every
partial (primitive-positive) type may be extended to a (primitive-positive) type
by the Zorn Lemma.

Lemma 4.1.3. It is clear p = pp-TypeM (a/B) is always infinite regardless of any
specification of M , a, or B; note the formula ϕ ≡ ⋀︁m

j=1
∑︁len a

i=1 vi0 = 0 lies in p
trivially for any natural m.
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Remark 4.1.4. Let M |= ModR. Given any m ∈ M , its annihilator may be
reconstructed from pp-TypeM (m). Namely,

AnnR(m) =
{︂
r ∈ R

⃓⃓⃓
(vr = 0) ∈ pp-TypeM (m)

}︂
.

Proof. Denote the set in question A.

⊇ Suppose r ∈ A. Then (vr = 0) ∈ pp-TypeM (m), whence M |= mr = 0 and
therefore r annihilates m.

⊆ Suppose r ∈ AnnR(m). Then M |= (mr = 0) ≡ ϕ(m) for some ϕ ≡ (vr =
0). Since ϕ is also clearly positive-primitive, ϕ ∈ pp-TypeM (m), whence
ϕ ∈ A.

QED

Types as Sets Defined Thereby

We could have defined positive-primitive types not as sets of positive-primitive
formulæ but as the sets of subgroups these formulæ define.

Definition 4.1.5 (Filter, Ultrafilter). Let S be a nonempty set and F ⊊ S.

(1) F is said to be a filter on S if F is nonempty and

(∀x, y ∈ F ∃z ∈ F ) z ≤ x ∧ z ≤ y and (∀x ∈ F, y ∈ S)x ≤ y → y ∈ F.

(2) A filter F is said to be an ultrafilter on S if it is a maximal (proper) filter.

Lemma 4.1.6.

(1) TypeM (a/B) forms an ultrafilter in the Boolean algebra consisting of all
subsets of M len a definable over B ordered by inclusion.

(2) pp-TypeM (a/B) is the filter comprising precisely those subsets which are
pp-definable over B in which a lies.

(3) A partial positive-primitive type is a filter in the partially-ordered set of pp-
definable cosets ordered by inclusion

Proof.

(1) Maximality and upwards closure are clear from definition. Indeed, given
some two definable sets ϕ(M), ψ(M ) over B, their intersection (given
by ϕ ∧ ψ as per Theorem 2.2.1) lies in TypeM (a/B).

(2) By analogy (especially if one considers it is, in fact, an ultrafilter on the
Boolean algebra of pp-definable subsets over B).

(3) Since partial pp-types are restrictions of (complete) pp-types, and pp-types
form ultrafilters, the claim follows trivially.

QED
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4.1.1 Correspondence of Types & pp-Types
Having familiarised ourselves with pp-types somewhat, we present two interesting
corollaries of Baur–Monk Theorem 3.3.1.

Theorem 4.1.7. Let M |= ModR and a, b be in M . Then a and b have the
same type iff they have the same pp-type:

TypeM (a) = TypeM
(︂
b
)︂

iff pp-TypeM (a) = pp-TypeM
(︂
b
)︂
.

Proof.

⇒ Clear, since pp-types are restrictions of types to positive-primitive formulæ.

⇐ Let ϕ be an L-formula with M |= ϕ(a) (i.e. ϕ ∈ TypeM (a)). By Baur–
Monk Theorem 3.3.1, there exists a Boolean combination of pp-formulæ ψ
such that M |= ϕ ↔ ψ. Denote by ϕ0, ϕ1, . . . , ϕn the positive-primitive
formulæ occurring in ψ.

To prove the claim, it suffices to show M |= ψ(b) (whence M |= ϕ(b) and
thus ϕ ∈ TypeM (b)). By assumption, M |= ϕi(a) iff M |= ϕi(b) for any i;
it follows (by induction) the same must hold for any Boolean combination
of ϕi. Then in particular M |= ψ(a) iff M |= ψ(b), and hence M |= ψ(b).

QED

Notation 4.1.8. Let p = TypeM (a/B). Then

p+ = {ϕ ∈ LB |ϕ ∈ p is pp} p− = {ϕ ∈ LB |ϕ /∈ p is pp} ¬p− =
{︂
¬ϕ

⃓⃓⃓
ϕ ∈ p−

}︂

Theorem 4.1.9. Let M |= ModR with B ⊆ M and p = TypeM (a/B). Then
p+ ∪ ¬p− proves p; i.e. p+ ∪ ¬p− ⊢ ϕ for every ϕ ∈ p.

Proof. Let ϕ ∈ p be arbitrary. Baur–Monk Theorem 3.3.1 gives

M ⊢ ϕ↔ β (4.1)

for some Boolean combination β of positive-primitive formulæ. In fact, we know
from Corollary 3.3.1.2 that

β ≡ ¬ϕ0 ∨ ϕ1 ∨ · · · ∨ ϕk for some pp ϕi.

By assumption, M |= ϕ(a) whereby (4.1) gives M |= (¬ϕ0 ∨ ϕ1 ∨ · · · ∨ ϕk)(a).
In particular then, either M |= ¬ϕ0(a) or M |= ϕi(a) for some i > 0. Whichever
case occurs, denote the (truthful) formula ψ. Clearly then if the former holds,
ψ ∈ ¬p− and if the later does ψ ∈ p+. Either way, ψ ∈ p+ ∪ ¬p−. Altogether
then,

p+ ∪ ¬p− ⊢ ψ → β ↔ ϕ
MP
⊢ ϕ.

QED
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4.2 A Reflection on Model-Completeness
We conclude this thesis with a nonexample: A fairly elementary notion in model
theory is that of model-completeness as given below. The significance, and short-
comings, of the Baur–Monk 3.3.1 admitting an elimination down to a Boolean
combination of (a kind of) existential formulæ as opposed to an existential for-
mula will be illustrated.

Definition 4.2.1 (Model-Complete Theory). A theory T is model-complete
if whenever M , N are models of T and M ≤ N , then M is an elementary
substructure of N : M ≼ N .

Lemma 4.2.2. If a theory T admits a (full) elimination of quantifiers, it is
model-complete.

Proof. Let M ,N be models of T with M ≤ N . By assumption, there exists
a quantifier-free formula ψ for any formula ϕ with

T |= ϕ(v)↔ ψ(v).

Suppose M |= ϕ(a) for some a in M . Then M |= ψ(a). Since ψ is merely
a Boolean combination of relations (ψ is quantifier-free) altogether satisfied by a,
N |= ψ(a) whence N |= ϕ(a). The converse implication follows from symmetry.
Overall

M |= ϕ(a) iff N |= ϕ(a).

QED

As we have already discussed in Section 1.3, the requirement a theory should
admit a full elimination of quantifiers is easy to impose so long as we permit
ourselves unbounded enrichment of languages and theories.

For any sensibly-sized theory, however, it is rather strong, but luckily may be
weakened to admission of a partial quantifier-elimination as shown by Abraham
Robinson:

Theorem 4.2.3 (Robinson). A theory T is model-complete iff it admits elimin-
ation of quantifiers down to existential formulæ.

Corollary 4.2.3.1. Complete module-theories are not model-complete.

Proof. For the counterexample, consider the complete theory Th(ZZ) and its
models 2Z ⊆ Z. Setting ϕ(y) ≡ (∃x)x+x = y, we have Z |= ϕ(2) and 2Z ̸|= ϕ(2).
Hence 2Z is not an elementary substructure of Z. QED
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5. Appendix

5.1 Fixed Symbols
A list of symbols fixed throughout the document whose meaning is invariant
under the change of mathematical context. One may think of these as ‘global
variables’.

(1) R, (1.4.2)

(2) L, (1.4.4)

(3) Var, (1.4.3)

(4) ModR, (1.4.5)

(5) v, (1.4.8)

(6) len(v), (1.4.8)

(7) Lc, LA (2.0.6)

(8) ≡, (1.4.9)

(9) pp, (2.0.4)
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