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Euclidean norm with a univariate function. If we replace the Euclidean norm
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Introduction
Spherical symmetry serves as a natural extension of normal distributions into
more complicated structures by preserving invariance with respect to rotations
as the defining characteristic. It can be shown that the characteristic functions
of spherically symmetric distributions are composed of the Euclidean norm and
a one-dimensional function. By substituting the Euclidean norm with an ℓα norm,
we obtain α-symmetric distributions. However, it is important to note that not
all properties of spherically symmetric distributions seamlessly translate into the
realm of α-symmetry, as symmetric stable distributions assume the role of normal
distributions in the context of α-symmetry.

The thesis is organized in the following way: Chapter 1 introduces mostly
well-known tools which are utilized in order to establish and develop the the-
ory of α-symmetric distributions. We aim to explore the connection between
moments and characteristic functions and how stable distributions can be ex-
pressed via isometric embedding of quasi-normed spaces. Elementary properties
of α-symmetric distributions are presented in Chapter 2 with emphasis on pro-
jections, mixtures, and density. Several examples of characteristic functions are
established. Chapter 3 focuses on n-dimensional α-symmetric distributions for
different pairs of 0 < α ≤ ∞ and n ≥ 2. Although only some examples and
sufficient conditions are known for some pairs, there is a full characterization
e.g. for 1-symmetric distributions. The thesis aims to present full proof of the
fact that for some α the only α-symmetric distribution is the trivial one (concen-
trated at the origin). Chapter 4 generalizes α-symmetry by replacing ℓα norm by
a quasi-norm and discusses some properties of such distributions. Multivariate
symmetric stable distributions are again the only well-established examples of
pseudo-isotropic distributions.

The aim of the thesis is to find new examples of α-symmetric distributions
and explore the existing examples. Further, moments of α-symmetric and pseudo-
isotropic distributions are unfolded as non-trivial α-symmetric distributions have
power-heavy tails.

2



1. Preliminaries
This chapter aims to elucidate the theory used in further chapters, and its con-
tents can be split into two parts. Section 1.1 covers the properties of characteristic
functions as characteristic functions are naturally more suitable for dealing with
α-symmetry in Chapter 2 than the density or the cumulative distribution func-
tion. The attention is brought to the relation between the characteristic function
of a random variable and its absolute moments of non-integer order by Laue
[1980]. The completely and m-times monotone functions and their integral rep-
resentations through the Laplace transform will serve a different purpose in this
thesis as shown in Section 3.3 and in Section 3.4.

The second part of this chapter presents stable distributions and their proper-
ties. The main result of Section 1.2 connects probability theory and convex geom-
etry. The isometric embedding between quasi-metric spaces is defined and used
to characterize characteristic functions of multivariate symmetric stable distribu-
tions. The representation derived in Subsection 1.2.1 generalizes α-symmetry in
Chapter 4.

1.1 Integral Transformations
Several integral transformations are used throughout the thesis. This section aims
to summarize the results. Most theorems of this chapter are presented without
proof.

1.1.1 Characteristic Function
Definition 1. Let X be a random vector in Rn. The function φ : Rn → C defined
as φ(t) = E eit′X is called the characteristic function of the random vector X.1

Results in further chapters, mostly by Zastavnyi [1992], Koldobsky [1991]
were formulated in terms of positive definite functions which are closely related.
The connection between characteristic functions and positive definite functions
is known as Bochner’s theorem (the proof in Lukacs [1970], Theorem 4.2.2).

Definition 2. A function φ : Rn → C is positive definite if the inequality
k∑︂

i=1

k∑︂
j=1

cic̄jφ(ti − tj) ≥ 0

holds for any k ∈ N, any t1, . . . , tk ∈ Rn and any constants c1, . . . , ck ∈ C.

Theorem 1. A function φ : Rn → C is a characteristic function of some random
vector in Rn if and only if φ is positive definite, continuous at origin and φ(0) = 1.

The last condition can be taken into account by transforming2 φ(·) ↦→ 1
φ(0)φ(·)

which means the terms continuous positive definite function and a characteristic
1By t′x we denote the dot product t′x = t1x1 + · · · + tnxn for x = (x1, . . . , xn)′ ∈ Rn,

t = (t1, . . . , tn)′ ∈ Rn.
2See Lemma 3.
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function of a random vector will be almost exchangeable. Results that are orig-
inally formulated in terms of continuous positive definite functions will be thus
taken into the context of random vectors. Integrable characteristic functions are
linked to the density through the inversion theorem (the proof can be found in
Lukacs [1970], Theorem 3.2.2).

Theorem 2. Let φ : Rn → C be a characteristic function of a random vector X.
Then if φ is integrable, the density fX of X exists and is given by

fX(x) = 1
(2π)n

∫︂
Rn
e−it′xφ(t) dt, x ∈ Rn.

Several other properties of characteristic functions are needed throughout the
thesis. The proofs of all properties can be found in Lukacs [1970], Chapter 2:

Lemma 3. Let φ, φn : Rn → C be characteristic functions of random vectors X,
Xn, n ∈ N. Then the following statements are true:

(i) φ is uniformly continuous.

(ii) 1 = φ(0) ≥ |φ(t)| for any t ∈ Rn.

(iii) φ is a real function if and only if X is symmetric.

(iv) Let A be an m× n real matrix and b ∈ Rm then the characteristic function
of AX + b is equal to φ(A′t)eib′t, t ∈ Rm.

(v) Xn
d→ X if and only if φn(t) → φ(t), t ∈ Rn.

As mentioned in further sections the density does not have to be analytically
expressible even for some simple characteristic functions.3 Since the characteristic
function fully characterizes the distribution of a random variable, the function
can be used to derive its characteristics. The proof of the following theorem can
be found in Lukacs [1970], Section 2.3.

Theorem 4. Let X be a real random variable with a characteristic function φ.

(i) If E Xk, k ∈ N, exists the function φ is k-times differentiable at zero and

E Xk = i−kφ(k)(0).

The converse implication holds if k is an even integer.

(ii) If additionally X ≥ 0 a.s., then the k-th differentiability of φ at t = 0 is
equivalent to the existence of E Xk.

The following example (mentioned also in Laue [1980]) shows a counter-
example for a random variable with a diverging first moment.

3E.g. for some stable distributions, see Section 1.2.
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Example 1. Let X be a random variable with a density

f(x) = C

x2 log |x|
1{|x| ≥ 2}, x ∈ R,

where C > 0 is a constant. The first absolute moment of X is infinite since

E |X| =
∫︂
R

|x|f(x) dx

= 2C
∫︂ ∞

2

x

x2 log x dx

y=log x= 2C
∫︂ ∞

log 2

1
y
dy = ∞.

However, its characteristic function (due to the symmetry of the density) is equal
to

E eitX =
∫︂
R
eitxf(x) dx

= 2C
∫︂ ∞

2

cos(tx)
x2 log |x|

dx.

Let us denote the characteristic function φ and find its derivative at zero. For
t ∈

(︂
0, 1

2

)︂
φ(t) − φ(0)

t
= 2C

∫︂ ∞

2

cos(tx) − 1
tx2 log x dx

= 2C
(︄∫︂ 1

t

2

cos(tx) − 1
tx2 log x dx+

∫︂ ∞

1
t

cos(tx) − 1
tx2 log x dx

)︄
.

First, the in the second part | cos(tx) − 1| ≤ 2 and⃓⃓⃓⃓
⃓
∫︂ ∞

1
t

cos(tx) − 1
tx2 log x dx

⃓⃓⃓⃓
⃓ ≤ 1

t

∫︂ ∞

1
t

2
x2 log x dx

y=1/x= −2
t

∫︂ t

0

1
log y dy

u=y/t= −2
∫︂ 1

0

1
log t+ log u du

t→0+→ 0

since the integrand tends to 0 monotonously. For the first part we estimate
| cos(tx) − 1| ≤ (tx)2 ⃓⃓⃓⃓

⃓
∫︂ 1

t

2

cos(tx) − 1
tx2 log x dx

⃓⃓⃓⃓
⃓ ≤

∫︂ 1
t

2

t2x2

tx2 log x dx

=
∫︂ 1

t

2

t

log x dx

= 1
1
t

∫︂ 1
t

2

1
log x dx

and the limit t → 0+ is equivalent to 1
t

→ ∞ which means we can use L’Hôpital’s
Rule (Rudin [1976], Theorem 5.13)

lim
s→∞

1
s

∫︂ s

2

1
log x dx = lim

s→∞

1
log(s) = 0.
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We have found that E |X| = ∞ and the derivative of the characteristic function
at zero is equal to zero which concludes the counterexample to the first part of
Theorem 4.

Distributions studied in this thesis will usually have infinite variance (or even
expectations) with the exception of some trivial cases.4 Thus, the following gener-
alization of Theorem 4 was proposed by Laue [1980] using the Marchaud fractional
derivative.

Definition 3. Let f : R → C be a function and m ≥ 0 is decomposed as m =
k + λ, where k is a non-negative integer and λ ∈ (0, 1). The m-th Marchaud
fractional derivative of f at point t ∈ R is defined as

∂m

∂tm
f(t) = ∂λ

∂tλ
f (k)(t) = λ

Γ(1 − λ)

∫︂ t

−∞

f (k)(t) − f (k)(u)
(t− u)1+λ

du.

The following generalization is not the only one, e.g. Wolfe [1975] found similar
conditions using the Laplace transform of a random variable. The approach of
Laue is more convenient in our case.

Theorem 5. Let X be a non-negative random variable with a characteristic func-
tion φ and m ≥ 0 is decomposed m = k+λ as in Definition 3. Then E Xm exists
if and only if both E Xk and

ℜ
[︄
ik
∂m

∂tm
φ(t)

⃓⃓⃓
t=0

]︄

exist.5 Then
E Xm = 1

cos(1
2λπ)ℜ

[︄
(−i)k ∂

m

∂tm
φ(t)

⃓⃓⃓
t=0

]︄
.

Similar results with imaginary parts

E Xm = 1
sin(1

2λπ)ℑ
[︄
(−i)k ∂

m

∂tm
φ(t)

⃓⃓⃓
t=0

]︄

as well as the proof are available in Laue [1980], Theorem 2.1 and 2.2.

Theorem 6. Let X be a random variable with a characteristic function φ and
m ≥ 0 is decomposed as m = k + λ as in Theorem 5.

(i) Let k be an even integer. Then E |X|m is finite if and only if E |X|k is finite
and

ℜ
[︄
∂m

∂tm
φ(t)

⃓⃓⃓
t=0

]︄
exists. Then

E |X|m = 1
cos(1

2λπ)ℜ
[︄
(−1) k

2
∂m

∂tm
φ(t)

⃓⃓⃓
t=0

]︄
.

4See Theorem 21.
5By ℜ and ℑ we mean the real and imaginary parts of a complex number, respectively.
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(ii) Let k be an odd integer. Then E |X|m is finite if and only if

ℜ
[︄
∂m

∂tm
φ(t)

⃓⃓⃓
t=0

]︄

exists and for φk(t) = (−1) k−1
2 φ(k−1)(t)/E Xk−1 the limit

lim
t→0

1 − ℜ φk(t)
t1+λ

exists. The moment is equal to

E |X|m = 1
sin(1

2λπ)ℜ
[︄
(−1)

k+1
2
∂m

∂tm
φ(t)

⃓⃓⃓
t=0

]︄
.

As the computations are not simple, the following corollary presents equivalent
conditions for the existence of non-integer moments. The characteristic functions
in the thesis will mostly be real and symmetric, thus the existence of moments of
order less than two depends solely on the behavior of the characteristic function
near the origin since all characteristic functions are bounded and continuous in
addition.
Corollary 1. For m ∈ (0, 2) and an arbitrary random variable X with a character-
istic function φ Kawata et al. [1972] (Theorem 11.4.3) derived a simple necessary
and sufficient condition for the existence of E |X|m. The moment exists if and
only if ∫︂ ∞

0

1 − ℜ φ(t)
t1+m

dt < ∞.

1.1.2 Laplace Transform
Definition 4. Let X be a random variable. The function LX(t) = E e−tX is called
the Laplace transform of a random variable X for any t ∈ R where E e−tX < ∞.

Remark 1. Contrary to the characteristic function of a random variable, the
Laplace transform does not have to be defined for all t ∈ R.

Similarly, as the characteristic functions and continuous positive definite func-
tions are connected there is a link between Laplace transforms and the completely
monotone functions. The theorem is known as Bernstein’s theorem on monotone
functions (Bernstein [1929]).

Definition 5. A function f : [0,∞) → R is said to be completely monotone6 on
[0,∞) if the function f is continuous on [0,∞), infinitely differentiable on (0,∞)
and for each n ∈ N ∪ {0} and t > 0 we have (−1)nf (n)(t) ≥ 0.

Theorem 7. The function f : [0,∞) → R is completely monotone on [0,∞)
with f(0) = 1 if and only if f can be written as a Laplace transform of some
non-negative random variable X with a cumulative distribution function F , i.e.

f(t) = LX(t) =
∫︂ ∞

0
e−ts dF (s) < ∞, t > 0.

6Also called absolutely monotone/monotonous.
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Corollary 2. Similarly, for a function g : (0,∞) → R whose Laplace transform
Lg(t) =

∫︁∞
0 e−tsg(s) ds < ∞ for all t > 0 then g ≥ 0 if and only if Lg is completely

monotone. In this case, g represents the density (or its multiple) of some random
variable.

Definition 6. A function f ∈ Cm−1(0,∞) is called m-times monotone if for
each k = 0, 1, . . . ,m−1 the function (−1)kf (k)(t) is non-negative, decreasing and
convex on (0,∞).7

Remark 2. It is sufficient to check the condition only for the last derivative, i.e.
a function f ∈ Cm−1(0,∞) is m-times monotone if and only if (−1)m−1f (m−1)(t)
is non-negative, decreasing, convex, and there exists a finite non-negative limit
limt→∞ f(t) (Williamson [1955]).

As completely monotone functions are characterized as Laplace transforms
of finite measures on (0,∞) a similar transformation for m-times monotone is
available. The proof can be found in Williamson [1955].

Theorem 8. A function f : [0,∞) → R is m-times monotone with f(0) = 1 if
and only if there exists a non-negative random variable X with a characteristic
function F which satisfies

f(t) =
∫︂ ∞

0
(1 − st)m

+ dF (s), t ≥ 0,

where f+ = max{f, 0}.

Any completely monotone function is m-times monotone for any m ∈ N which
means completely monotone functions are a generalization as m → ∞. Both
classes of functions serve as examples in Section 3.3 and Section 3.4.

1.2 Stable Distributions
This section summarizes the results about stable distributions which will be useful
in further sections as α-symmetry can be perceived as a generalization of stability.
More details on stable distributions can be found in Uchaikin and Zolotarev
[1999].

Definition 7. A distribution of a random variable is called stable if for any
a, b > 0 there are c > 0, c̃ ∈ R such that for stable X1 X2, X independent
identically distributed the following equality8 holds:

aX1 + bX2
d= cX + c̃. (1.1)

A random variable is called symmetric stable if additionally X d= −X.

For any stable distribution, we may find its index α ∈ (0, 2] which satisfies c =
(|a|α + |b|α) 1

α in the definition above (Uchaikin and Zolotarev [1999], Section 3.2).
The symmetry of the distribution implies c̃ = 0. Equality (1.1) can be rewritten

7A function f ∈ Ck(S) if it has k-continuous derivatives on S, C0 are all continuous functions.
8The symbol d= denotes equality in distribution.
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Figure 1.1: Densities of stable random variables for α ∈ {0.4, 0.8, 1.4, 2}.

(for symmetric α-stable distributions) in terms of characteristic functions φ of X:
For any a, b, t ∈ R

φ(at)φ(bt) = φ
(︂
(|a|α + |b|α) 1

α t
)︂
.

The characteristic function of a symmetric α-stable distribution is e−C|t|α for
some C > 0 (Uchaikin and Zolotarev [1999], Section 3.2). If it is not specifically
mentioned, the parameter C is set as 1.

For α > 2 the characteristic function e−|t|α would not be positive definite.9
The special cases include α = 2 which are centered normal distributions and
α = 1 the Cauchy distributions. For other symmetric stable distributions, i.e.
α ̸= 1, 2, there are no closed expressions for density, however, asymptotics for
their tails is available (Koldobsky [2005], Chapter 6). Denote γα(x) the density
of a symmetric α-stable variable, α < 2. Then we have

lim
x→∞

xα+1γα(x) = 2Γ(α + 1) sin
(︃
πα

2

)︃
as can be seen in Figure 1.1.

The asymptotic of the density suggests that at least some fractional moments
exist. The moments of order less than α do exist and can be found using Theo-
rem 6.
Example 2. Using the Marchaud fractional derivative (Theorem 6) we may find
the moments E |X|r for symmetric α-stable random variables with a characteristic
function e−|t|α , α ∈ (0, 2].

From Corollary 1 the moments E |X|r, r ∈ (0, 2), exist if and only if
∫︂ ∞

0

1 − e−tα

t1+r
dt < ∞,

which converges for r ∈ (0, α) since 1 − e−tα ≈ tα in the neighborhood of zero.
Higher moments exist only for the normal distribution.

9A simple way to see that e−|t|α cannot be a characteristic function is to apply Theorem 4.
For α > 2 the second derivative of e−|t|α at zero equals zero which would imply the triviality
of the corresponding distribution (almost surely constant).
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For r ∈ (0,min{α, 1}) the moment (Theorem 6) is equal to

E |X|r = 1
cos(r π

2 )
r

Γ(1 − r)

∫︂ ∞

0

1 − e−tα

t1+r
dt

= 1
cos(r π

2 )
r

Γ(1 − r)
1
r

∫︂ ∞

0
αtα−1e−tα

t−r dt

s=tα

= 1
cos(r π

2 )Γ(1 − r)

∫︂ ∞

0
e−ss− r

α ds

=
Γ(1 − r

α
)

cos(r π
2 )Γ(1 − r)

where per partes was used in the first equality and the definition of the Gamma
function in the last.

Similarly, for r ∈ [1, α) we have to use the second part of Theorem 6

E |X|r = 1
sin((r − 1)π

2 )
r − 1

Γ(2 − r)

∫︂ ∞

0

αtα−1e−tα

tr
dt

s=tα

= 1
cos(r π

2 )Γ(1 − r)

∫︂ ∞

0
e−ss− r

α ds

=
Γ(1 − r

α
)

cos(r π
2 )Γ(1 − r) .

Based on a stochastic decomposition derived by Shanbhag and Sreehari [1977],
the moments of symmetric α-stable distributions are usually written as

E |X|r =
2rΓ(1+r

2 )Γ(1 − r
α
)

Γ(1 − r
2)Γ(1

2)

which equals our derived terms (through the Euler’s reflection formula10 and other
properties of the Gamma function).

Generally, the characteristic function φ of any stable distribution11 is

φ(t) = exp{iµt− C|t|α(1 − iβsgn(t)Φ)}

where µ ∈ R is the location parameter, C > 0 is the scale parameter, α ∈ (0, 2]
is the index, β ∈ [−1, 1] is the skewness12 parameter and

Φ =

⎧⎨⎩tan(1
2πα), α ̸= 1,

− 2
π

log |t|, α = 1.

The symmetric α-stable distribution satisfies µ = 0, β = 0. The distribution for
α < 1 and β = 1 and µ = 0 is concentrated on [0,∞). For the latter class of
distributions the Laplace transform (Definition 4) is equal to

E e−tX = e−tα

, t > 0. (1.2)
10For any non-integer z we have Γ(1 − z)Γ(z) = π

sin(zπ) .
11Thoroughly derived in Uchaikin and Zolotarev [1999], 3.2.12.
12Skewness in a traditional way is not defined for α < 2.
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Such distributions are useful as mixtures and will be referred to as non-negative
α-stable random variables.

The definition of symmetric α-stable random variables can be extended into
random vectors in Rn using the same property as in Definition 7.

Definition 8. A random vector X in Rn is called symmetric stable if X d= −X
and for any a, b > 0 there is c > 0 such that

aX1 + bX2
d= cX (1.3)

where X1,X2,X are i.i.d.

For any symmetric stable random vector, we may again find an index α ∈ (0, 2]
such that each linear combination of its components ∑︁n

i=1 tiXi is a symmetric α-
stable random variable (as explained in Theorem 9).

The characteristic functions of symmetric stable vectors will be described
using the isometric embedding in the next subsection.

1.2.1 Isometric Embedding
This section introduces methods of isometric embedding into Lp-spaces in order
to characterize the stable vectors in Theorem 10. Theorem 12 describes all two-
dimensional symmetric 1-stable random vectors.

First, let us define a generalisation of a norm which will include the α-norm
in Rn

∥x∥α = (|x1|α + · · · + |xn|α)
1
α , x = (x1, . . . , xn)′ ∈ Rn, (1.4)

for any 0 < α < ∞. In case of α = ∞ the ∞-norm is the maximum norm,
∥x∥∞ = max{|x1|, . . . , |xn|}. The definition of α-norms can be extended even
further into quasi-norms.

Definition 9. Let E be a linear space over R. A continuous function ρ : E →
[0,∞) is called a quasi-norm if

(i) ρ(x) = 0 if and only if x = 0,

(ii) ρ(tx) = |t|ρ(x) for t ∈ R, x ∈ E,

(iii) there exists K > 0 such that ρ(x + y) ≤ K(ρ(x) + ρ(y)), for each x,y ∈ E.

The pair (E, ρ) is called a quasi-normed space. If moreover K = 1, the function
ρ is a norm.

A quasi-norm is a norm if and only if the unit ball Bρ = {x ∈ E : ρ(x) ≤ 1} is
convex (Koldobsky [2005], Chapter 2). A quasi-norm may be also defined through
its unit ball Bρ using the Minkowski functional ∥x∥B = inf{u ≥ 0 : x ∈ uB}
where B can be any closed bounded origin symmetric star body (B is a star body
if for every x ∈ B the segment [0, x) is a subset of the interior of B Koldobsky
[2005], Chapter 2).

The characteristic functions of symmetric α-stable random vectors are con-
nected with the problems of isometric embedding into Lp-spaces. For our purpose,
the following definition of isometric embedding will be used:

11



Definition 10. Let (E, ρ), (F, σ) be quasi-normed spaces. The space (E, ρ) is
isometrically embedded in (F, σ) if there is a linear operator T : E → F which
for each t ∈ E satisfies ρ(t) = σ(T t).

If E ⊂ F and ρ is a restriction of σ to E then (E, ρ) isometrically embeds
into (F, σ) where the linear operator T is an identity. Example 3 shows isometry
between spaces with the 1-norm and the ∞-norm.
Example 3. Normed spaces (R2, ∥ · ∥1) and (R2, ∥ · ∥∞) are isometric (each iso-
metrically embeds into the other) since there is a unique relationship between
1-norm and ∞-norm in R2:

max{|t1|, |t2|} = |t1 + t2| + |t1 − t2|
2 , t1, t2 ∈ R.

The linear operator T : R2 → R2 is represented by a matrix T = ( 1 1
−1 1 ) and

∥T t∥∞ = ∥t∥1, t ∈ R2, due to the equality of norms stated above. The converse
isometric embedding can be shown similarly. This example is limited to n = 2.

The main focus of this subsection is the isometric embedding into Lp-spaces
as in Definition 11. By Ω we typically mean the unit sphere Sn−1 = {x ∈ Rn :
∥x∥2 = 1}.

Definition 11. Let (Ω,A, ν) be a measure space. Denote Lp(Ω,A, ν) the space
of all integrable functions f : Ω → R such that∫︂

Ω
|f(x)|pdν(x) < ∞.

If A is the Borel σ-algebra, the notation is simplified to Lp(Ω, ν).

The function

f ↦→
(︃∫︂

Ω
|f(x)|pdν(x)

)︃ 1
p

, f ∈ Lp(Ω,A, ν) (1.5)

satisfies (ii) and (iii) of Definition 9 (Rudin [1991], 1.47), the triangular inequality
is satisfied for p ≥ 1 (i.e. K = 1 in Definition 9, (iii)).13 A subspace of Lp(Ω,A, ν)
endowed with a quasi-norm defined by (1.5) will be used as a target space of
isometric embeddings (Definition 10).

The following theorems connect symmetric α-stable measures with the theory
of isometric embedding, such connection has been known to Lévy.

Theorem 9. Let µ be a finite symmetric measure on Rn and α ∈ (0, 2] such that
for each t ∈ Rn the integral ∫︂

Rn
|t′x|αdµ(x)

is finite. Then

ϕ(t) = exp
{︃

−
∫︂
Rn

|t′x|αdµ(x)
}︃
, t ∈ Rn, (1.6)

defines a characteristic function of some symmetric α-stable random vector.
Conversely, for any symmetric α-stable random vector in Rn, there exists

a positive finite measure µ on Rn such that its characteristic function can be
represented as in (1.6).

13Such functions are called (quasi-)semi-norms.
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Proof. The proof of the first part can be found in Misiewicz [1996], Theo-
rem II.1.3.

As mentioned below Definition 8 a symmetric α-stable random vector X sat-
isfies that for any t ∈ Rn the linear combination t′X has symmetric α-stable
distribution. If we denote Yt = t′X, then the characteristic function of Yt must
be equal to e−ct|u|α , u ∈ R, where ct ≥ 0 depends on t ∈ Rn. Set ct = cα(t)
where c : Rn → [0,∞). Then the characteristic function of X can be rewritten
as E eit′X = e−cα(t), t ∈ Rn, and t′X d= c(t)Y for any t ∈ Rn where Y has
a characteristic function e−|u|α , u ∈ R.14

For any r ∈ (0, α) and t ∈ Rn we have E |t′X|r = cr(t) E |Y |r < ∞ which can
be rewritten as

c(t) = (E |Y |r)− 1
r (E |t′X|r)

1
r , t ∈ Rn.

Now plugging it into the characteristic function of X results in

E eit′X = e−cα(t)

= exp
{︂
−(E |Y |r)− α

r (E |t′X|r)
α
r

}︂
= exp

{︄
−(E |Y |r)− α

r

(︃∫︂
Rn

|t′x|r PX(x)
)︃α

r

}︄

where PX is the distribution of X.
Transform PX from Rn to a measure µr on Sn−1

∞ = {x ∈ Rn : ∥x∥∞ = 1} such
that for any Borel subset A of Sn−1

∞

µr(A) =
∫︂
{x∈Rn: x

∥x∥∞
∈A}

1
E |Y |r

∥x∥r
∞ dPX(x). (1.7)

A function defined by (1.7) is a finite measure as it is non-negative, σ-additive,
µr(∅) = 0, and µr(Sn−1

∞ ) < ∞ (the last property will be checked later, others
follow PX). Then for any bounded measurable function g : Sn−1

∞ → R we have
∫︂

Sn−1
∞

g(y) dµr(y) = 1
E |Y |r

∫︂
Rn
g

(︄
x

∥x∥∞

)︄
∥x∥r

∞ dPX(x).

We shall use the previous result for the function gt(y) = |t′y|r which is bounded
on Sn−1

∞ , thus

cr(t) = 1
E |Y |r

∫︂
Rn

|t′x|r PX(x)

= 1
E |Y |r

∫︂
Rn

⃓⃓⃓⃓
⃓t′
(︄

x
∥x∥∞

)︄⃓⃓⃓⃓
⃓
r

∥x∥r
∞ PX(x)

=
∫︂

Sn−1
∞

|t′y|r dµr(y), t ∈ Rn.

14Similar properties are revisited in Chapter 4.
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Let us use the previous formula to bound µr(Sn−1
∞ ) using elementary vectors as

n∑︂
k=1

cr(ek) =
n∑︂

k=1

∫︂
Sn−1

∞
|yk|r dµr(y)

=
∫︂

Sn−1
∞

n∑︂
k=1

|yk|r dµr(y)

≥ inf
(x1,...,xn)′∈Sn−1

∞

[︄
n∑︂

k=1
|xk|r

]︄
· µr(Sn−1

∞ )

which means µr(Sn−1
∞ ) ≤

(︂
infx∈Sn−1

∞
∥x∥r

r

)︂−1∑︁n
k=1 c

r(ek), since the infimum is
positive. By that we have supr<α µr(Sn−1

∞ ) < ∞.
For any positive sequence {rk} satisfying rk ↗ α the sequence of measures

{µrk
} is tight (by the previous result) and we may find a weakly convergent

subsequence. If we denote the limit µ and extend µ as a measure on Rn (defining
µ(A) = µ(A ∩ Sn−1

∞ ), for A ⊂ Rn), we have

cα(t) =
∫︂
Rn

|t′x|α dµ(x)

which implies (1.6).

The standard Lévy spectral representation for symmetric stable vectors is de-
fined using a measure ν over a unit sphere Sn−1 = {x ∈ Rn : ∥x∥2 = 1} as in the
following instances. Let us now combine the theory of characteristic functions
with isometric embedding into Lα(Sn−1, ν).

The quasi-normed space (Rn, ρ) embeds isometrically into Lα(Sn−1, ν), α ∈
(0, 2], via the linear operator T : Rn → Lα(Sn−1, ν) which maps a vector t ∈ Rn

to a linear function ft : Sn−1 → R where ft(x) = t′x, x ∈ Sn−1, if

ρ(t) =
(︃∫︂

Sn−1
|t′x|αdν(x)

)︃ 1
α

, t ∈ Rn. (1.8)

This representation is known as Blaschke-Lévy representation of a norm (details
and the inverse formula in Koldobsky [1997a]). We further assume that ν is not
concentrated on any sub-sphere in order to ensure that ρ(x) > 0 outside origin (so
ρ may satisfy the definition of a quasi-norm). The relationship between isometric
embedding and stability is summarized in Theorem 10 and relies on Theorem 9
and Misiewicz [1996], Remark II.1.1.

Theorem 10. An n-dimensional random vector X is symmetric α-stable, α ∈
(0, 2], if and only if there exists a symmetric finite measure ν over Sn−1 = {x ∈
Rn : ∥x∥2 = 1} such that

E eit′X = exp
{︃

−
∫︂

Sn−1
|t′x|αdν(x)

}︃
, t ∈ Rn.

The measure ν is unique for α < 2.
Utilizing the Blaschke-Lévy representation (1.8), a quasi-normed space (Rn, ρ)

isometrically embeds into Lα(Sn−1, ν) (via the operator T : t ∈ Rn ↦→ ft ∈
Lα(Sn−1, ν), ft(x) = t′x, x ∈ Sn−1) if and only if e−ρα(t), t ∈ Rn, is a character-
istic function.
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The proof of Theorem 9 is partially covered by the proof of Theorem 10 (with
the exception of uniqueness of the measure ν). However, we may find simple
examples where the uniqueness is violated for α = 2. For that we may take X
with a standard normal distribution with a characteristic function e− 1

2 t′t, t ∈ Rn,
and the spectral measure ν satisfies

1
2t′t =

∫︂
Sn−1

|t′x|2 ν(x), t ∈ Rn.

Both a multiple of the Lebesgue measure on Sn−1 and a measure concentrated on
±ek, k = 1, . . . , n, satisfy the representation (Misiewicz [1996], Example II.1.1).

Let us introduce a convention. From here when an Lp-space is mentioned we
mean Lp(Sn−1, ν) for some finite symmetric measure ν on Sn−1. The following
lemma clarifies the possibility of embedding of an Lp-space into another Lq-space.

Lemma 11. Let ρ be a quasi-norm such that the space (Rn, ρ) embeds isometri-
cally into Lp for some p ∈ (0, 2]. Then it also embeds into Lq for any q ∈ (0, p).

Proof. Our aim is to find a random vector with a characteristic function
exp{−ρ(t)q} if we know that exp{−ρ(t)p} is a characteristic function of a random
vector which will be denoted Xp.

Let Z be a non-negative r-stable random vector where r = q/p < 1 indepen-
dent of Xp. Let us find the characteristic function of Z1/p ·Xp. By the law of total
probability and the fact that the Laplace transform of Z is e−tr thanks to (1.2),
we have

E eit′(Z1/pXp) = E E
[︂
ei(Z1/pt)′Xp|Z

]︂
= E e−ρ(Z1/pt)p

= E e−ρ(t)pZ = e−ρ(t)pr = e−ρ(t)q

, t ∈ Rn

since Z ≥ 0 a.s. and ρ is homogeneous by Definition 9.

Remark 3. The construction in the previous lemma is called substability. A sym-
metric α-stable random vector X is called β-substable, 0 < α < β ≤ 2, if
X d= Z

1
β Y where Y is symmetric β-stable, Z is non-negative α

β
-stable, Y and Z

are independent (Misiewicz and Takenaka [2002]).
A symmetric α-stable random vector X is called maximal if for any β ≥ α the

previous decomposition X d= Z
1
β Y with any symmetric β-stable Y implies α = β

and Z is almost surely constant. Misiewicz and Takenaka [2002] further character-
ized the maximal symmetric α-stable distributions with a characteristic function
e−ρα(t) using the spectral measure of the Blaschke-Lévy representation (1.8). If
the spectral measure is purely atomic, the symmetric α-stable random vector is
maximal (Misiewicz and Takenaka [2002]).

By that the vector (X1, . . . , Xn)′ where Xi are i.i.d. symmetric α-stable,
α ∈ (0, 2], is maximal since its spectral measure is concentrated on ±ei, its
characteristic function is equal to e−(|t1|α+···+|tn|α), t = (t1, . . . , tn)′ ∈ Rn.

The embedding into Lp-spaces was thoroughly studied in Koldobsky [1991]. In
the most simple case, any two-dimensional normed space embeds into L1-space.
Theory of isometric embedding states that e−ρ(t1,t2) must be a characteristic func-
tion of a symmetric 1-stable distribution for any norm (Ferguson [1962]).
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Theorem 12. Let ρ : R2 → [0,∞) be such that ρ(t1, t2) = 0 if and only if
t1 = t2 = 0. Then e−ρ(t1,t2) is a characteristic function of a symmetric 1-stable
random vector if and only if ρ is a norm.

Proof. Let e−ρ(t1,t2) be a characteristic function of X = (X1, X2)′ which is
symmetric 1-stable, thus by the Blaschke-Lévy representation (1.8)

ρ(t1, t2) =
∫︂

S1
|t1x1 + t2x2| dµ(x1, x2), (t1, t2)′ ∈ R2,

the function ρ is non-negative, positive homogeneous of degree 1 and satisfies
the triangle inequality which is evident as the integrand satisfies |(t1 + t2)′x| ≤
|t′

1x| + |t′
2x| for any t1, t2 ∈ R2 and x ∈ S1. This concludes the first implication.

Conversely, let ρ be a non-trivial15 norm and Bρ = {(t1, t2)′ ∈ R2 : ρ(t1, t2) ≤
1} its unit ball which is convex. Let us denote the distance from the origin to
the contour ρ(·, ·) = 1 in direction given by angle θ ∈ [−π, π) by r(θ) and its
reciprocal by h(θ) = ρ(cos(θ), sin(θ)) which is positive and π-periodic.

Our aim is to approximate the unit ball Bρ from the inside by convex origin-
symmetric polygons with vertices on the boundary of Bρ as in Figure 1.2. For
n ∈ N let −1

2π = θ
(n)
0 < θ

(n)
1 < · · · < θ

(n)
n−1 < θ(n)

n = 1
2π be a partition of [−1

2π,
1
2π]

which will define the vertices of the polygon Pn as intersection of ρ(·, ·) = 1 and
the line in the direction (cos(θ(n)

i ), sin(θ(n)
i ))′, i.e. {(t1, t2)′ ∈ R2 : t1 sin(θ(n)

i ) −
t2 cos(θ(n)

i ) = 0}, i = 1, . . . , n.

θ0

θ1

θn

θn−1

ρ(·, ·) = 1

. . .

Figure 1.2: Approximation of Bρ using symmetric convex polygons.

Let us show that we can write the polygon with such vertices as a lower-level
set of a convex function:

Pn =
{︄

(t1, t2)′ ∈ R2 :
n∑︂

i=1
|a(n)

i t1 + b
(n)
i t2| ≤ 1

}︄
.

15For a trivial norm, i.e. ρ(t1, t2) = 0 for each t1, t2, the function e−ρ is equal to 1, the trivial
characteristic function.
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Since vertices are defined by directions θ(n)
i , i = 1, . . . , n, the coefficients satisfy

a
(n)
i = r

(n)
i sin(θ(n)

i ) and b
(n)
i = −r(n)

i cos(θ(n)
i ) and we aim to show that r(n)

i ≥ 0,
i = 1, . . . , n. For that let us work with the equation for the boundary of Pn and
plug the vertices with coordinates (t1,k, t2,k)′ = (r(θ(n)

k ) cos(θ(n)
k ), r(θ(n)

k ) sin(θ(n)
k ))′.

Then for any fixed k = 1, . . . , n
n∑︂

i=1
|a(n)

i t1,k + b
(n)
i t2,k| = 1

n∑︂
i=1

r
(n)
i r(θ(n)

k )| sin(θ(n)
i ) cos(θ(n)

k ) − cos(θ(n)
i ) sin(θ(n)

k )| = 1

n∑︂
i=1

r
(n)
i | sin(θ(n)

i − θ
(n)
k )| = h(θ(n)

k )

k∑︂
i=1

r
(n)
i sin(θ(n)

k − θ
(n)
i ) +

n∑︂
i=k+1

r
(n)
i sin(θ(n)

i − θ
(n)
k ) = h(θ(n)

k ).

For r(n)
i , i = 1, . . . , n the equation defines a system of linear equations whose

solution is non-negative (explicitly written in Ferguson [1962]).
As n → ∞, the mesh of the partition tends to 0 and

n∑︂
i=1

|a(n)
i t1 + b

(n)
i t2| → ρ(t1, t2)

and by that

exp
{︄

−
n∑︂

i=1
|a(n)

i t1 + b
(n)
i t2|

}︄
→ exp{−ρ(t1, t2)}. (1.9)

Since e−ρ(t1,t2) is a continuous function it remains to show that the left-hand side
is a characteristic function. For that denote Z1, . . . , Zn i.i.d. Cauchy distributed
random variables and set Y1 = ∑︁n

i=1 a
(n)
i Zi, Y2 = ∑︁n

i=1 b
(n)
i Zi. The left-hand side

of (1.9) is the characteristic function of (Y1, Y2)′ since

E ei(t1Y1+t2Y2) = E exp
{︄
i

n∑︂
i=1

(︂
a

(n)
i t1 + b

(n)
i t2

)︂
Zi

}︄
= exp

{︄
−

n∑︂
i=1

|a(n)
i t1 + b

(n)
i t2|

}︄

for (t1, t2)′ ∈ R2 which concludes the proof.

Remark 4. The first condition ρ(t1, t2) = 0 if and only if t1 = t2 = 0 is not
necessary in order to define a characteristic function of a symmetric 1-stable
random vector. However, it prevents degenerate solutions. As an example we
can take the singular random vector X = (X1, X1)′ where X1 has a Cauchy
distribution. The characteristic function of X is e−|t1+t2|. The function

(t1, t2) ↦→ |t1 + t2|

is positive homogeneous of degree 1 and satisfies the triangle inequality. The
spectral representation µ = 1

2δ(1,1)′ + 1
2δ(−1,−1)′ is concentrated on a sub-sphere.

The assumption of ρ(t1, t2) = 0 if and only if t1 = t2 = 0 is added in order to
avoid similar degenerate cases.
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Remark 5. The measure µ from the Blaschke-Lévy representation (1.8) can be
written explicitly (Ferguson [1962], Misiewicz and Ryll-Nardzewski [1987]) using
the function h(θ) = ρ(cos θ, sin θ), θ ∈ [0, 2π), if h is twice differentiable. The
measure µ satisfies

ρ(t1, t2) =
∫︂

S1
|t1x1 + t2x2| dµ(x1, x2)

=
∫︂ 2π

0
|t1 cos(ϕ) + t2 sin(ϕ)| dµ̃(ϕ), t1, t2 ∈ R,

by changing into spherical coordinates t1 = r cos(θ), t2 = r sin(θ) and rewriting
ρ(t1, t2) = r · ρ(cos(θ), sin(θ)) = rh(θ). The measure µ̃ corresponds to µ through
the transformation of spherical coordinates from S1 to [0, 2π). Then

ρ(t1, t2) =
∫︂ 2π

0
|t1 cos(ϕ) + t2 sin(ϕ)| dµ̃(ϕ)

r · h(θ) = r ·
∫︂ 2π

0
| cos(θ) cos(ϕ) + sin(θ) sin(ϕ)| dµ̃(ϕ)

h(θ) =
∫︂ 2π

0
| cos(ϕ− θ)| dµ̃(ϕ) (1.10)

where the last equality holds due to a common trigonometric identity. Let us
show that the density of µ̃ is equal to

1
4

(︃
h′′
(︃
ϕ− π

2

)︃
+ h

(︃
ϕ− π

2

)︃)︃
(1.11)

which is positive due to convexity of Bρ. The right-hand side of (1.10) is equal
to∫︂ 2π

0
| cos(ϕ− θ)| dµ̃(ϕ) =

∫︂ 2π

0
| cos(ϕ− θ)|14

(︃
h′′
(︃
ϕ− π

2

)︃
+ h

(︃
ϕ− π

2

)︃)︃
dϕ

= 1
2

∫︂ π
2 +θ

− π
2 +θ

cos(ϕ− θ)
(︃
h′′
(︃
ϕ− π

2

)︃
+ h

(︃
ϕ− π

2

)︃)︃
dϕ.

Both integrals (the summands) are solved by per partes:
∫︂ π

2 +θ

− π
2 +θ

cos(ϕ− θ)h′′
(︃
ϕ− π

2

)︃
dϕ =

[︃
cos(ϕ− θ)h′

(︃
ϕ− π

2

)︃]︃π
2 +θ

− π
2 +θ

+
∫︂ π

2 +θ

− π
2 +θ

sin(ϕ− θ)h′
(︃
ϕ− π

2

)︃
dϕ, (1.12)

∫︂ π
2 +θ

− π
2 +θ

cos(ϕ− θ)h
(︃
ϕ− π

2

)︃
dϕ =

[︃
sin(ϕ− θ)h′

(︃
ϕ− π

2

)︃]︃π
2 +θ

− π
2 +θ

−
∫︂ π

2 +θ

− π
2 +θ

sin(ϕ− θ)h′
(︃
ϕ− π

2

)︃
dϕ. (1.13)

The remaining integrals on the right-hand sides of (1.12) and (1.13) cancel out
as well as the term containing[︃

cos(ϕ− θ)h′
(︃
ϕ− π

2

)︃]︃π
2 +θ

− π
2 +θ
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Figure 1.3: Densities of µ̃ for α ∈ {1.25, 2, 2.5, 4}.

since both cosines are zeros. Thus,
∫︁ 2π

0 | cos(ϕ−θ)| dµ̃(ϕ) is equal to 1
2(sin(π

2 )h(θ)−
sin(−π

2 )h(θ − π)) = h(θ) from the periodicity of h.
If h is not twice differentiable, the measure µ̃ can be approximated (Misiewicz

and Ryll-Nardzewski [1987]).
For α ≥ 1 the function ∥ · ∥α is a norm and we may directly compute the

density of µ̃.
Example 4. Let ρ(t1, t2) = ∥(t1, t2)′∥α be the α-norm, α > 1. Then

h(θ) = ∥(cos θ, sin θ)′∥α = (| cos(θ)|α + | sin(θ)|α)
1
α = h(θ − π/2)

and the density of µ̃ (1.11) is equal to

α− 1
4 | sin(θ) cos(θ)|α−2 (| cos(θ)|α + | sin(θ)|α)

1
α

−2 , θ ∈ (0, 2π). (1.14)

For α = 1 the measure µ is not absolutely continuous but it can be taken as
µ = 1

4(δ(1,0)′ + δ(−1,0)′ + δ(0,1)′ + δ(0,−1)′). In this case, as the measure is purely
atomic, the random vector with a characteristic function e−∥(t1,t2)′∥1 is maximal16

which means e−∥(t1,t2)′∥α
1 is a characteristic function if and only if α ≤ 1.

Figure 1.3 shows the density (1.14) for several values of α. It can be seen that
as α → 1 and α → ∞ the limit in both cases would be atomic which corresponds
to the discussion for α = 1 (α = ∞ is linked to α = 1 via the isometry from
Example 3). The measure is uniform for α = 2.

The isometric embeddings are further used in Chapter 4 which includes fur-
ther generalization17 and necessary conditions for embedding into Lp-spaces using
partial derivatives of the norm.

16See Remark 3.
17Such as an embedding into L0, see Theorem 48.
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2. α-Symmetry
This chapter includes known results about general α-symmetry in Rn for any
α > 0 and n ∈ N. Fang et al. [1990] present some of the properties in Chapter 7.
Other properties for specific pairs of n ∈ N and α > 0 are discussed in Chapter 3.

The main result of the first section, Lemma 13, offers a key result in terms
of α-symmetry. Definition 12 and Lemma 13 resemble symmetric stable random
vectors and the connection is described in Theorem 15 and Example 6. Sec-
tion 2.2 derives an integral expression for the density of an α-symmetric random
vector. The multivariate integration given by Theorem 2 is reduced to univariate
integration.

2.1 Definitions
Definition 12. A random vector X = (X1, . . . , Xn)′ has an α-symmetric distri-
bution, α > 0, if its characteristic function can be written as a univariate function
of the α-norm (1.4), i.e.

E eit′X = ψ
(︂
(|t1|α + · · · + |tn|α) 1

α

)︂
= ψ(∥t∥α), t ∈ Rn.

The function ψ : [0,∞) → R is called the characteristic generator of the random
vector X.

The class of characteristic generators of n-dimensional α-symmetric distribu-
tions is denoted by S(n, α). Since the characteristic function fully determines
the distribution and the relationship is bijective, the set of n-dimensional α-
symmetric distributions will be referred to simply by S(n, α) for brevity. When
necessary we may write X ∼ S(n, α, ψ).
Remark 6. Alternatively, we may express the characteristic function of an α-
symmetric random vector as φ(|t1|α + · · ·+ |tn|α). The connection between ψ and
φ is imminent. Using the norm in the definition allows α = ∞ where ∥t∥∞ =
max{|t1|, . . . , |tn|} or even a generalization into other quasi-norms.1

The most notable examples of α-symmetric distributions are:
Example 5. For α = 2 the so-called spherically symmetric distributions were
extensively discussed in Chapter 2 of Fang et al. [1990] and Ranošová [2021].
The random vector is spherically symmetric if and only if

X d= RU

where R ≥ 0 is independent of U uniformly distributed on the unit sphere Sn−1

in Rn.
Example 6. Let X1, . . . , Xn be i.i.d. symmetric α-stable variables (1.1), α ∈ (0, 2].
Then the vector X = (X1, . . . , Xn)′ has an α-symmetric distribution, since the
characteristic function of a symmetric α-stable distribution is e−C|t|α for some
C > 0, the characteristic function of X is e−C∥t∥α

α , t ∈ Rn, for some C > 0.
1See Chapter 4.
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Other α-symmetric distributions which are also symmetric stable are further
discussed in the Schoenberg problem (established in Example 7) which connects
stability and α-symmetry.

The following lemma summarizes the crucial property of α-symmetric distri-
butions and is taken from Fang et al. [1990] (Theorem 7.1).

Lemma 13. The random vector X = (X1, . . . , Xn) ∼ S(n, α, ψ) if and only if
c′X ∼ S(1, α, ψ) for all c ∈ Rn with ∥c∥α = 1. The α-symmetric random vector
is fully determined by any of its marginals.

Proof. The proof follows Lemma 3: If A is an m × n matrix and φX is a char-
acteristic function of an n-dimensional random vector X, then the characteristic
function of AX is φAX(s) = φX(A′s), s ∈ Rm. If the characteristic function of X
is ψ(∥t∥α) then the characteristic function of c′X for any c ∈ Rn, ∥c∥α = 1, is
ψ(∥tc∥α) = ψ(|t|), t ∈ R.

Conversely, if c′X has the same distribution for any c ∈ Rn,∥c∥α = 1, we have
c′X d= −c′X and the distribution is symmetric. Denote ψ(| · |) the characteristic
function corresponding to the distribution of c′X for any c ∈ Rn, ∥c∥α = 1, and
we have c′X ∼ S(1, α, ψ) for all c ∈ Rn with ∥c∥α = 1. Then for t ∈ Rn \ {0} we
have

E eit′X = E ei∥t∥α( t
∥t∥α

)′
X = ψ(∥t∥α)

and the random vector is α-symmetric since t/∥t∥α has an α-norm equal to 1.

Following the proof of Lemma 13 any marginal vector of an α-symmetric ran-
dom vector is also α-symmetric (with the same characteristic generator) which for
m < n implies S(n, α) ⊂ S(m,α) and we may define S(∞, α) as ∩∞

n=1S(n, α). The
class S(∞, α) are characteristic generators in any dimension, alternatively, it can
be seen as characteristic generators in the spaces of sequences ℓα = {(x1, x2, . . .)′ ∈
RN : ∑︁∞

i=1 |xi|α < ∞}. On the other hand, the class S(1, α) includes all symmetric
one-dimensional distributions for any α.
Corollary 3. The random vector X = (X1, . . . , Xn)′ is α-symmetric if and only if
c′X d= ∥c∥αX1, for each c ∈ Rn.

As an extension to the preceding corollary a generalization of the α-symmetry
was proposed by Eaton [1981]. The distribution of a random vector X in Rn

is the n-dimensional version of a random variable Y if there exists a function
γ : Rn → [0,∞) such that

t′X d= γ(t)Y, t ∈ Rn, (2.1)

where γ(t) > 0 for t ∈ Rn \ {0}. Clearly, Y is a scaled version of the marginal
random variable X1. The random vector satisfying (2.1) for some γ will be called
pseudo-isotropic2 and the function γ is called a standard. The pseudo-isotropic
distributions are further discussed in Chapter 4. The next lemma shows the
properties of S(n, α) in the space of characteristic functions.

2The name is due to Misiewicz as isotropy refers to spherical symmetry.
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Lemma 14. For each α ∈ (0,∞] and n ∈ N the set S(n, α) is a convex closed
subset of all characteristic functions on R.

Proof. A convex linear combination of characteristic functions is a characteristic
function with a generator given by the linear combination of the generators.

Similarly, by Lemma 3 let ψn converge to ψ in R such that ψ(| · |) is a char-
acteristic function. Then ψn(∥ · ∥α) converges ψ(∥ · ∥α) in Rn, since ψ(∥ · ∥α) is
continuous at zero (Lemma 3).

The components of an α-symmetric random vector may be independent only
in a very special case, thus vectors of i.i.d. random variables are among the most
researched examples among α-symmetry.

Theorem 15. The α-symmetric random vector X contains two independent sub-
vectors if and only if the marginal random variables are i.i.d. symmetric α-stable.

Proof. Denote X1 and X2 two independent marginal random variables, each
from one of the independent subvectors and ψ is the characteristic generator.
Then the characteristic function of (X1, X2)′ has the same generator and satisfies
for t1, t2 ∈ R

ψ
(︂
(|t1|α + |t2|α) 1

α

)︂
= ψ(|t1|)ψ(|t2|)

since X1 and X2 are independent. Substitute g(u) = ψ
(︂
u

1
α

)︂
and ui = |ti|α, then

for u1, u2 > 0 we have

g(u1 + u2) = ψ
(︂
(u1 + u2)

1
α

)︂
= ψ

(︃
u

1
α
1

)︃
ψ
(︃
u

1
α
2

)︃
= g(u1)g(u2).

The continuous positive solutions to Cauchy’s multiplicative functional equation3

are g(u) = ecu for some c ∈ R, which implies ψ(t) = ec|t|α . Since the characteristic
function is bounded the constant c is negative. Thus ψ(t) = e−C|t|α , C > 0, which
is a characteristic function of the symmetric α-stable distribution.

The converse implication is trivial.

The following theorem gives general instructions on how to create other α-
symmetric distributions. The process is used multiple times throughout the thesis
when constructing examples of α-symmetric distributions.

Theorem 16. Let X d= RY where the random variable R > 0 and the random
vector Y are independent. Then if Y is α-symmetric, X is α-symmetric as well.
Conversely, if X is α-symmetric and E (Rit) ̸= 0 for almost all t with respect to
the Lebesgue measure, then Y is α-symmetric.

3By additionally applying logarithm on both sides h(u1 + u1) = h(u1) + h(u2) where h =
log(g) the equation becomes Cauchy’s functional equation whose continuous solutions are known
to be linear functions.
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Proof. Let us find a characteristic function of RY where Y ∼ S(n, α, ψ) is
independent of R. By the law of total expectation

E
(︂
eit′X

)︂
= E

(︂
eit′(RY)

)︂
= E

(︂
ei(Rt)′Y

)︂
= E

[︂
E
(︂
ei(Rt)′Y | R

)︂]︂
= E [ψ(∥Rt∥α)]

which is a function of ∥t∥α and the random vector X d= RY is α-symmetric since
its characteristic function is a univariate function of the norm. If R has a density
g on (0,∞), the characteristic generator of RY is equal to

u ↦→
∫︂ ∞

0
ψ(ru)g(r) dr, u ≥ 0.

If X is α-symmetric and X d= RY for some independent R and Y, then for c
such that ∥c∥α = 1 we have

Rc′Y d= c′(RY) d= c′X d= X1
d= RY1.

For the final argument that Rc′Y d= RY1 implies c′Y d= Y1 denote

WX(t) =
(︄

E |X|it 0
0 E |X|it · signX

)︄
, t ∈ R

the characteristic transform (as defined by Uchaikin and Zolotarev [1999], Sec-
tion 5.7) of a random variable X. The characteristic transform exists for any ran-
dom variable and determines its distribution uniquely (Uchaikin and Zolotarev
[1999], Section 5.7). Moreover, for independent random variables U and V the
product of characteristic transforms WU(t) and WV (t) is the characteristic trans-
form of UV . The characteristic transform applied on both sides of the equality
is WR(t)Wc′Y(t) = WR(t)WY1(t), t ∈ R, and since E (Rit) ̸= 0 for almost all
t and R > 0 we obtain Wc′Y(t) = WY1(t) which concludes c′Y d= Y1. Finally,
Corollary 3 is applied.

The following lemma (Misiewicz [1996], Theorem II.2.3, for pseudo-isotropy
and n = 2) shows that α-symmetric random vector in Rn cannot be concentrated
in any hyperplane.

Lemma 17. Let X = (X1, . . . , Xn)′ be an α-symmetric random vector in Rn

such that P(X = 0) = 0. Then for each hyperplane Hξ,p = {x ∈ Rn : ξ′x = p},
ξ ∈ Rn \ {0}, p ∈ R, we have P(X ∈ Hξ,p) = 0.

Consequently, the distribution of X has no atoms.

Proof. First let us show that for each point Q ∈ Rn we have P(X = Q) = 0.
By contradiction let there be Q such that P(X = Q) = q > 0. Then there

exists a one-dimensional projection which maps Q onto the origin, thus the pro-
jected vector has an atom of size at least q at the origin. Since all one-dimensional
projections have the same distribution (up to a scale factor), all have an atom at
zero. The kernel of a one-dimensional projection x ↦→ ξ′x defined by ξ ∈ Rn \{0}
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is {x ∈ Rn : ξ′x = 0}, i.e. a hyperplane containing the origin which means each
hyperplane Hξ,0 has a probability at least q. For any line ℓ passing through
the origin we may find infinitely many hyperplanes such that ℓ = ⋂︁

Hξ,0. Then
P(X ∈ ℓ) is positive (otherwise the distribution would not be a probability mea-
sure).

The space Rn \ {0} can be decomposed into uncountably many distinct lines
intersecting at the origin. Each having a non-zero probability is a contradiction
with P(X ∈ Rn \ {0}) = 1.

Now let us prove again by contradiction that P(X ∈ Hξ,p) = 0. For contra-
diction find ξ ∈ Rn \ {0} and p ̸= 0 (the case p = 0 is covered above) such that
P(X ∈ Hξ,p) = q > 0. Which means P(X ∈ Hξ,p) = P(ξ′X = p) = P(∥ξ∥αX1 =
p) = q > 0 and each one-dimensional projection has an atom outside zero of
mass q.

Let us show that if X1 has an atom outside the origin, then X = (X1, . . . , Xn)′

cannot be α-symmetric for any α > 0, n > 1. It suffices to prove this only for
n = 2. If each one-dimensional measure has an atom outside zero then in each
direction there is a line with non-zero probability q. From that, it is possible to
find a point with a positive probability which is a contradiction with the first
part of the proof.

Remark 7. Distributions without an atom at the origin will be referred to as pure.
Lemma 17 shows that for pure α-symmetric distributions, n > 1, the probability
of each affine subspace equals zero.

On the other hand, the Dirac δ0 distribution concentrated at 0 is α-symmetric
for each α ∈ (0,∞], n ∈ N, and each α-symmetric distribution may be written
as a mixture of δ0 and some distribution without an atom at the origin (which
is consequently pure). Classes which satisfy S(n, α) = {1} (the only permissible
distribution is δ0) will be called trivial.

If we combine Example 6 with Lemma 11, we obtain an important class of
α-symmetric distributions which are also symmetric stable.
Example 7. (Schoenberg problem) The function e−tβ is a characteristic generator
of an α-symmetric n-dimensional random vector if and only if 0 ≤ β ≤ σ(n, α)
where

σ(n, α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2 n = 1, 0 < α ≤ ∞,

α n ≥ 2, 0 < α ≤ 2,
1 n = 2, 2 < α ≤ ∞,

0 n ≥ 3, 2 < α ≤ ∞.

The value σ(n, α) = sup{β ∈ [0, 2] : exp{−tβ} ∈ S(n, α)} will be referred to
as the Schoenberg constant. We may see that σ(n, α) is well-defined (applying
Lemma 11) and using substability (Remark 3) we can obtain σ(n, α) = α, for
α ≤ 2 and n > 1. The Schoenberg problem relates to isometric embedding
as e−tβ ∈ S(n, α) if and only if (Rn, ∥ · ∥α) isometrically embeds into Lβ-space.
Cases which are not covered by substability, e.g. S(n, α), for α > 2 and n ≥ 3,
are described in further chapters (the two-dimensional problem in Section 3.1,
and the three-dimensional problem in Section 3.3).
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Zastavnyi [2000] found several sufficient conditions for a function f : [0,∞) →
R such that f(uλ) ∈ S(n, α) if λ ∈ (0, σ(n, α)]. More details in Section 3.3 and
Section 3.4.
Example 8. (Kuttner-Golubov problem) Another important class of generators is

φλ,δ(u) = (1 − uλ)δ
+, u ≥ 0,

such class of characteristic generators is useful in terms of creating sufficient
conditions for the characteristic generators from S(n, α) (Gneiting [2000]).

The parameter structure is the following: if for some λ > 0 and δ > 0 we have
φλ,δ ∈ S(n, α) then for any µ > 0 we have φλ,δ+µ ∈ S(n, α) since for a possible
α-symmetric random vector X with a generator φλ,δ we can find an independent
random variable V with a density

1
B(δ + 1, µ)(v − 1)µ−1v−δ−µ−1

1(1,∞)(v),

by B(·, ·) we denote the Beta function.4 Then the characteristic generator ψ of
V

1
λ X is equal to

ψ(u) = 1
B(δ + 1, µ)

∫︂ ∞

0
(1 − suλ)δ

+(s− 1)µ−1
+ s−δ−µ−1 ds

= 1
B(δ + 1, µ)

∫︂ u−λ

1
(1 − suλ)δ(s− 1)µ−1s−δ−µ−1 ds

z=1/s= 1
B(δ + 1, µ)

∫︂ 1

uλ
(z − uλ)δ(1 − z)µ−1 dz

= 1
B(δ + 1, µ)

∫︂ 1

0
(1 − uλ)δ+µzδ(1 − z)µ−1dz

= (1 − uλ)δ+µ.

The first integral automatically permits only u ∈ [0, 1), otherwise, the integral is
equal to zero since the inner function includes a product of (1 − suλ)δ

+(s− 1)µ−1
+ .

We may write ψ(u) = (1 − uλ)δ+µ
+ .

Similarly, if for some λ0 > 0 and δ > 0 we have φλ0,δ ∈ S(n, α) then for
λ ∈ (0, λ0] we have φλ,δ ∈ S(n, α) as can be shown using the derived expression
for density in Example 10.
Example 9. Let us find moments of a random variable X with a characteristic
function (1−|u|λ)δ

+ for δ ∈ N. For non-integer δ we may combine this result with
Example 8. Using Theorem 6 for r ∈ (0,min{λ, 1}) we have

E |X|r = 1
cos(r π

2 )
r

Γ(1 − r)

∫︂ ∞

0

1 − (1 − |u|λ)δ
+

u1+r
du.

4The density implies 1
V ∼ Beta(δ + 1, µ).
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And the integral is equal to
∫︂ ∞

0

1 − (1 − |u|λ)δ
+

u1+r
= 1
r

+
∫︂ 1

0

1 − (1 − uλ)δ

u1+r
du

= 1
r

+
∫︂ 1

0

1 −∑︁δ
k=0(−1)k

(︂
δ
k

)︂
uλk

u1+r
du

= 1
r

+
δ∑︂

k=1
(−1)k+1

(︄
δ

k

)︄∫︂ 1

0
uλk−r−1 du

=
δ∑︂

k=0
(−1)k

(︄
δ

k

)︄
1

r − kλ
= −λδδ!∏︁δ

k=0(r − kλ)
.

A similar result can be found for r ∈ [1, λ) using the second part of Theorem 6.
If we rewrite the product and factorial as Gamma functions, we have

E |X|r =
Γ(1 + δ)Γ

(︂
1 − r

λ

)︂
cos(r π

2 )Γ(1 − r)Γ
(︂
δ + 1 − r

λ

)︂ , r < λ.

2.2 Density
The general expression for the density of an α-symmetric random vector can
be given only in an integral form. This section derives a general result, special
cases are discussed in Chapter 3. The results were first given by Richards [1986]
through the Radon transform of the characteristic function and the following
approach is due to Zastavnyi [2000]. Let us first present a very general lemma
for Riemann-Stieltjes integration of a composite function to prove Theorem 20.

Lemma 18. For a function p : X → [0,∞) defined on a set X denote its lower
level sets Bt = {x ∈ X : p(x) ≤ t}. Let f ∈ C([0, r]) for some r > 0 and
(Br,F , µ) be a measure space with finite complex sign measure µ and f(p(·)) and
p are F-measurable. Denote G(t) = µ(Bt), t ∈ [0, r], then∫︂

Br

f(p(x)) dµ(x) = f(0)G(0) +
∫︂ r

0
f(t) dG(t) (2.2)

= f(r)G(r) −
∫︂ r

0
G(t) df(t) (2.3)

where the integrals are Riemann-Stieltjes.

Proof. It suffices to prove only (2.2) as (2.3) follows from the integration by parts
for Riemann-Stieltjes integrals (Rudin [1976], Theorem 6.22). Any finite complex
sign measure can be decomposed into positive/negative real and imaginary parts.
Hence, we may assume µ is finite and positive, the integrals exist, and G(t) =
µ(Bt) is increasing. Let Tn = {t0, . . . , tmn} be a sequence of partitions such
that δ(Tn) = sup1≤k≤mn

|tk − tk−1|
n→∞→ 0 and 0 = t0 < . . . < tmn = r and let

ω(δ) = sup{|f(s) − f(t)| : |s− t| ≤ δ, s, t ∈ [0, r]} be the continuity module of f .
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Then ⃓⃓⃓⃓
⃓
∫︂

Br

f(p(x)) dµ(x) − f(0)G(0) −
mn−1∑︂
k=0

f(tk)(G(tk+1) −G(tk))
⃓⃓⃓⃓
⃓

=
⃓⃓⃓⃓
⃓
mn−1∑︂
k=0

∫︂
Btk+1 \Btk

f(p(x)) − f(tk) dµ(x)
⃓⃓⃓⃓
⃓

≤
mn−1∑︂
k=0

∫︂
Btk+1 \Btk

|f(p(x)) − f(tk)| dµ(x)

≤ω(δ(Tn))
mn−1∑︂
k=0

µ(Btk+1 \Btk
)

≤ω(δ(Tn)) µ(Br \B0)

which tends to 0 as n → ∞ (δ(Tn) → 0). The limit of

f(0)G(0) +
mn−1∑︂
k=0

f(tk)(G(tk+1) −G(tk))

is the right-hand side of (2.2).

In further use, p is a quasi-norm (e.g. α-norm) on Rn and µ has a complex
density g with respect to the Lebesgue measure which means G(r) =

∫︁
Br
g(t) dt

for some integrable function g.

Lemma 19. Let ρ be a quasi-norm on Rn and f a continuous function on [0, r),
r > 0, h ∈ C1(R). For x ∈ Rn define

F (x) =
∫︂

Br

f(ρ(t))h(x′t) dt

where Br = {t ∈ Rn : ρ(t) ≤ r}, r ∈ (0,∞). Using the function h set I(x) =∫︁
B1
h(x′t) dt and J(x) =

∫︁
B1

(nh(x′t) + x′t · h′(x′t)) dt. Then F can be rewritten
as

F (x) =
∫︂ r

0
f(t)tn−1J(tx) dt. (2.4)

If f is absolutely continuous on [0, r] then

F (x) = f(r)rnI(rx) −
∫︂ r

0
f ′(t)tnI(tx) dt. (2.5)

Proof. Fix x ∈ Rn. Use Lemma 18 with G(u) =
∫︁

Bu
h(t′x) dx, u ≥ 0, then since

ρ is a quasi-norm we have Bu = uB1 which means

G(u) =
∫︂

Bu

h(x′t) dt = un
∫︂

B1
h(x′(ut)) dt = unI(ux),

p = ρ and dµ(t) = h(x′t) dt. If f is absolutely continuous, we may use f ′ as
a density in the Riemann-Stieltjes integral (2.3). Thus,

F (x) = G(r)f(r) −
∫︂ r

0
G(t)f ′(t)dt

= f(r)rnI(rx) −
∫︂ r

0
f ′(t)tnI(tx) dt.
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For the first equation (2.4) we have G(0) = 0 and

G′(u) = nun−1
∫︂

B1
h(x′(ut)) dt + un

∫︂
B1

x′th′(x′(ut)) dt

= un−1J(ux)

which is absolutely continuous and the first equation holds.

The previous lemma is thus applied to h(t) = e−it and the α-norm. In case
of (Rn, ∥ · ∥α), the function J = Jn,α can be linked to the Bessel function. As in
our case the distributions are symmetric, i.e. for an α-symmetric random vector
X for any α > 0 and n ∈ N then (X1, . . . , Xn)′ d= (±X1, . . . ,±Xn)′ over all pos-
sible combinations of signs. Thus, we may use h(t) = cos(t) in further theorems.
The original statements were formulated by Zastavnyi [2000] with h(t) = eit.
The following definition formalizes the function J from the previous theorem for
α-norms. As for α = 2 the function is related to Bessel functions (Remark 9),
the functions from Definition 13 are called as in Richards [1986]. The original
definition by Richards [1986] was formulated in terms of surface integration (Re-
mark 8).

Definition 13. For n ∈ N and α > 0 denote Jn,α the n-dimensional α-Bessel
function as

Jn,α(x) =
∫︂

Bn
α

n cos(t′x) − t′x · sin(t′x) dt

where Bn
α = {x ∈ Rn : ∥x∥α ≤ 1} is the unit α-ball.

Remark 8. Let Sn−1
α = {x ∈ Rn : ∥x∥α = 1} be the unit α-sphere in Rn. Then

Jn,α(x) =
∫︂

Sn−1
α

e−it′x ω(t) (2.6)

where the integration is given by

ω(t) =
n∑︂

i=1
(−1)i−1 ti dt1 · · · dti−1dti+1 · · · dtn.

The equality (2.6) is due to Stokes’ theorem (Rudin [1976], Theorem 10.33) as∫︂
Sn−1

α

ω(t) =
∫︂

Bn
α

n dt1 · · · dtn.

Remark 9. The functions are called Bessel as before Richards [1986], only the
densities of spherically symmetric distributions (α = 2) were known from the
stochastic decomposition (Example 5). The characteristic function of the uniform
distribution on Sn−1 ≡ Sn−1

2 satisfies

E eit′U = Γ
(︃
n

2

)︃(︄ 2
∥t∥2

)︄n
2 −1

Jn
2 −1(∥t∥2), t ∈ Rn

where Jk is the Bessel function of the first kind of order k (Bowman [1958]).
Moreover, for any non-trivial 2-symmetric random vector (X1, . . . , Xn)′ the

density of the marginal vector (X1, . . . , Xm)′ for any m < n exists (details can be
found in Ranošová [2021]).
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Now we may combine the definitions with Lemma 19 in order to find the den-
sity of an α-symmetric random vector X with an integrable characteristic function
ψ(∥t∥α), t ∈ Rn. The theorem is based on the inversion formula (Theorem 2).

Theorem 20. Let ψ ∈ S(n, α) correspond to the random vector X and satisfy∫︂ ∞

0
tn−1|ψ(t)| dt < ∞.

Then the density of X is equal to

f(x) = 1
(2π)n

∫︂ ∞

0
tn−1ψ(t)Jn,α(tx) dt, x ∈ Rn.

Proof. The assumption of
∫︁∞

0 tn−1|ψ(t)| dt < ∞ ensures we may use Theorem 2.
From Lemma 19 with r → ∞ and by setting h(t) = cos(t) where

I(x) =
∫︂

B1
cos(t′x) dt,

J(x) =
∫︂

B1
n cos(t′x) − t′x sin(t′x) dt

we have ∫︂
Rn
ψ(∥t∥α) cos(t′x) dt =

∫︂ ∞

0
tn−1ψ(t)J(tx) dt.

Therefore, J(x) = Jn,α(x) and the theorem is proven.

As the function Jn,α is not easy to compute we may either use the second part
of Lemma 19 as in Corollary 4 or find a different integral representation as in
Remark 10.
Corollary 4. If the characteristic generator ψ ∈ S(n, α) is absolutely continuous
then we can use the second part of Lemma 19 and the density of X is equal to

f(x) = 1
(2π)n

∫︂ ∞

0
−ψ′(t) tnI(tx) dt, x ∈ Rn.

Remark 10. Misiewicz [1996] (Lemma II.4.1) obtains another form of Jn,α(x) as

Jn,α(x) =
∫︂

· · ·
∫︂

{∑︁n−1
i=1 |ui|α≤1}

(cos(x′u+) + cos(x′u−))
(︄

1 −
n−1∑︂
i=1

|ui|α
)︄ 1

α
−1

du1 · · · dun−1,

(2.7)
where by u+ and u− denote the opposite vectors on Sn−1

α , i.e. are equal to u+ =
(u1, . . . , un−1, un)′, u− = (u1, . . . , un−1,−un)′, where un =

(︂
1 −∑︁n−1

i=1 |ui|α
)︂ 1

α .
The derivation of (2.7) directly computes the density relying on the fact that

the norm ∥·∥α, the characteristic function ψ(∥·∥α) and, in conclusion, the density
is sign-invariant.

Special cases of Theorem 20 for α = 1,∞ are discussed in Chapter 3, however
with the exception of α = 2 the density of an α-symmetric distribution cannot
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be generally written as a one-dimensional function of ∥ · ∥α. Misiewicz [1989] ap-
plied Theorem 20 to S(3,∞) to show triviality of S(3,∞). Zastavnyi [2000] uses
Corollary 4 in order to establish a parameter structure in the Kuttner-Golubov
problem. A different approach to the same result can be found in Zastavnyi and
Manov [2017].
Example 10. (Kuttner-Golubov problem) Let us use the relationship from Corol-
lary 4 with the function φλ,δ(u) defined in Example 8 in order to show that if
for some λ0 > 0 and δ > 0 we have φλ0,δ ∈ S(n, α) then for any λ ∈ (0, λ0) the
function satisfies φλ,δ ∈ S(n, α).

The density of a random vector with a characteristic generator φλ0,δ is equal
to

fλ0,δ(x) = λ0δ

(2π)n

∫︂ 1

0
(1 − tλ0)δ−1tλ0−1tnIn,α(tx) dt, x ∈ Rn,

where φ′
λ0,δ = −λ0δ(1 − tλ0)δ−1

+ tλ0−1 and the function In,α is defined in Lemma 19

In,α(x) =
∫︂

Bn
α

e−it′x dt.

Kuttner [1944] showed that if for some function A(z) the following integral

Aλ0,δ(z) = λ0z
λ0δ
∫︂ 1

0
(1 − tλ0)δ−1tλ0−1A(tz) dt

is non-negative for some λ0 > 0, δ > 0 and any z ≥ 0 and Aλ0,δ is not identically
zero on the interval [0, z], then for λ ∈ (0, λ0) we have Aλ,δ(z) > 0.

Fix any x ∈ Rn and set A(t) = tnIn,α(tx) and Aλ0,δ(z) ≥ 0 since fλ0,δ(zx) ≥
0 for all z ≥ 0. Since fλ0,δ(0) > 0 the condition is satisfied for z = 1 and
fλ,δ(x) = (2π)−nδAλ,δ(1) is positive for any λ ∈ (0, λ0). Theorem 1 implies that
φλ,δ ∈ S(n, α).

In conclusion, we may define an analogue of the Schoenberg constant as

λ(n, α) = sup{λ ∈ (0, 2] : (1 − tλ)δ
+ ∈ S(n, α) for some δ > 0} (2.8)

where the condition λ ≤ 2 is given by the fact that φ′′
λ,δ(0) = 0 for λ > 2 which

would imply triviality from Theorem 4. If (1 − uλ)δ
+ ̸∈ S(n, α) for any λ, δ > 0,

set λ(n, α) = 0. Furthermore, we may define

δ(λ;n, α) = inf{δ > 0 : (1 − tλ)δ
+ ∈ S(n, α)}. (2.9)

In the one-dimensional case the function

δ(λ) = δ(λ; 1, 2) = inf{δ > 0 : (1 − |t|λ)δ
+ is positive definite} (2.10)

is known as the Kuttner’s function, more details about the function δ(λ) can be
found in Gneiting [2000] and Gneiting et al. [2001], however exact values for all
λ are not available.
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Example 11. Let us find J2,∞(x1, x2) for x1, x2 ̸= 0

J2,∞(x1, x2) =
∫︂ 1

−1

∫︂ 1

−1
2 cos(t1x1 + t2x2) − (t1x1 + t2x2) sin(t1x1 + t2x2) dt1dt2

= 2 sin(x2) + 2x2 cos(x2)
x2

∫︂ 1

−1
cos(t1x1) dt1

− 2 sin(x2)
x2

∫︂ 1

−1
t1x1 sin(t1x1) dt1

= 2 sin(x2) + 2x2 cos(x2)
x2

2 sin(x1)
x1

− 2 sin(x2)
x2

2 sin(x1) − 2x1 cos(x1)
x1

= 4 cos(x2) sin(x1)
x1

+ 4 cos(x1) sin(x2)
x2

.

The class S(2,∞) is further discussed in Subsection 3.1.1 together with S(2, 1).
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3. Classes S(n, α)
The aim of this chapter is to present results about the existence of α-symmetric
distributions and the properties of non-trivial classes.

The one-dimensional α-symmetric distributions are simply all symmetric dis-
tributions for each α ∈ (0,∞]. For other dimensions the cases are usually split
into α ∈ (0, 2] and α ∈ (2,∞]. For n ≥ 2 and α ≤ 2 the class S(n, α) was
known to include random vectors of i.i.d. symmetric α-stable random variables,
and the problem of the (non-)triviality of S(n, α), α > 2, remained open until
solved independently by Lisitskii and Zastavnyi [1992].

This chapter is divided into four sections. Section 3.1 discusses the two-
dimensional α-symmetry where the isometric embedding of a two-dimensional
normed space derived in Theorem 12 becomes useful, the class S(2, 1) is dis-
cussed in detail. Section 3.2 focuses on the multivariate 1-symmetry as it is the
only case of α-symmetry where a characterization using a stochastic decomposi-
tion is available. Other multivariate α-symmetric distributions are analyzed in
Section 3.3 and Section 3.4. Firstly, the (non-)triviality of S(n, α) is proven and
several sufficient conditions are established.

The theorems from Eaton [1981] and Misiewicz [1996] (Theorem II.2.2) show
that spherically symmetric distributions (α = 2) are the only distributions among
α-symmetric which may have a finite variance or a bounded support.

Theorem 21. Let X = (X1, . . . , Xn)′ be an α-symmetric random vector such
that 0 < var(X1) < ∞. Then α = 2.

Proof. Denote var(X1) = σ2 and let Var(X) = Σ be a finite positive definite
matrix (all diagonal elements exist and are equal to σ2, covariances between
components are also finite by the Cauchy–Schwartz inequality). Then for any
c ∈ Rn the α-symmetry implies

c′Σc = var(c′X) = var(∥c∥αX1) = ∥c∥2
ασ

2.

Thus, for each c ∈ Rn we have ∥c∥α =
√︂

1
σ2 c′Σc and the only α-norm induced by

an inner product is the Euclidean, therefore α = 2.

Theorem 22. Let X = (X1, . . . , Xn)′ be a non-trivial α-symmetric random vec-
tor. Then one of the following conditions hold:

(i) For each open set U ⊂ R the probability P(X1 ∈ U) is positive.

(ii) The random vector X is almost surely bounded and α = 2.

Proof. It suffices to prove the statement only for n = 2.
Assume we may find u, v ∈ R such that P(u < X1 < v) = 0. Then by

α-symmetry for any (t1, t2)′ ∈ R2 \ {0}

P
(︄
u <

t1X1 + t2X2

∥(t1, t2)′∥α

< v

)︄
= 0.
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Denote C(t1,t2)′ = {(x1, x2)′ ∈ R2 : ∥(t1, t2)′∥−1
α (t1x1 + t2x2) ∈ (u, v)}, which is

a subset of R2 bordered by two parallel lines, and M = max{1, ∥(
√

2/2,
√

2/2)′∥α}
the maximal value of ∥ · ∥α on the unit circle. Then we may estimate the proba-
bility of B,

B = {(x1, x2)′ ∈ R2 : ∥(x1, x2)′∥2 > Mu} ⊂
⋃︂

(t1,t2)′∈R2\{0}
C(t1,t2)′ .

For any compact K ⊂ B there exists a finite covering by sets C(t1,t2)′ , therefore
P((X1, X2)′ ∈ K) = 0, and consequently P((X1, X2)′ ∈ B) = 0. The random
vector (X1, X2)′ has bounded support and a finite second moment E X2

1 < ∞.
By Theorem 21 we have α = 2.

The spherically symmetric distributions are by the previous theorems very
special cases among α-symmetric distributions. Those properties and the stochas-
tic decomposition mentioned in Example 5 means spherical symmetry will not be
thoroughly discussed in the thesis. For the properties of spherically (and ellipti-
cally) symmetric distributions, we refer to Fang et al. [1990]. Conditions for the
existence of spherically symmetric random vectors in Rn using Riemann-Liouville
fractional calculus are discussed in Ranošová [2021].

3.1 Two-Dimensional α-Symmetry
The two-dimensional α-symmetry is the most simple multivariate example. The-
orem 12 implies that any two-dimensional normed space embeds into some L1-
space. The positive definiteness of e−∥t∥α , t ∈ R2, for α ≥ 1 can be proven
even without the theory of isometric embedding, instead relying on the inversion
formula from Theorem 2, since the function e−∥t∥α , t ∈ R2, is integrable (the
proof can be found in Shestakov and Kuritsyn [1985]). Moreover, Example 6 im-
plies that vectors of i.i.d. symmetric α-stable random variables are α-symmetric.
Thus, for any 0 < α ≤ ∞ the class S(2, α) is non-trivial. Sufficient conditions
for generators from S(n, α) for α ≤ 2 are presented in Section 3.4 and for α > 2
in Example 23.

Theorem 23 by Zastavnyi [1992] provides additional necessary conditions for
non-trivial functions from S(2, α) for α > 2. Several examples of two-dimensional
α-symmetric random vectors are shown below. Subsection 3.1.1 focuses on the
class S(2, 1) where a stochastic decomposition was developed by Cambanis et al.
[1983].

The following theorem by Zastavnyi [1992] together with Theorem 37 is for-
mulated for general normed spaces and pseudo-isotropy defined by (2.1) which is
thoroughly discussed in Chapter 4. The proof of Theorem 23 is postponed after
Theorem 37 as they share similar steps.

Theorem 23. Let (E, ∥ · ∥) be a two-dimensional normed space and a1, a2 ∈ E
linearly independent vectors. Define a function G(t, y) = ∂

∂t
∥ta1 + ya2∥, t, y ∈ R,

and assume that H(y) = G(1, y) is integrable. If ∥ · ∥ is a standard of a pseudo-
isotropic random vector X from (2.1) such that the characteristic function of X1
satisfies limt→0+ ψ

′(t) = 0 then X is trivial.
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Corollary 5. The conditions of Theorem 23 are satisfied for (R2, ∥ · ∥α) where
α = 1 and α ∈ (2,∞]. The function

H(y) = (|y|α + 1) 1
α

−1, y ∈ R,

is integrable if 1 − α < −1, i.e. α > 2. Similarly for α = ∞ the function
H(y) = 1(0,1)(y) is integrable. The case α = 1 is included from the isometry with
α = ∞ (Example 3).

Theorem 23 also solves the two-dimensional Schoenberg problem which asks
for possible β ∈ (0, 2] such that e−uβ ∈ S(n, α) (see Example 7). Since we know
that (︂

e−tβ
)︂′

= −βtβ−1e−tβ

, t ∈ (0,∞),
is equal to zero as t → 0+ for β > 1. Therefore, σ(2, α) = 1 for α ∈ {1} ∪ (2,∞]
as e−t is a suitable characteristic generator.

Similarly, we can check the parameter λ in the Kuttner-Golubov problem
(Example 8) as for any λ > 0, δ > 0(︂

(1 − tλ)δ
+

)︂′
= δλ(1 − tλ)δ−1tλ−1, t ∈ (0, 1),

which as t → 0+ is equal to 0 if λ > 1. The parameter structure is further
discussed in Section 3.4. Thus, as was proven for σ(2, α) = 1 for any α ∈ {1} ∪
(2,∞] we may bound λ(2, α) from the Kuttner-Golubov problem (Example 10)
as λ(2, α) ≤ 1 for α ∈ {1} ∪ (2,∞].

The relationship between λ(n, α) and σ(n, α) is studied in Section 3.4 in order
to develop sufficient conditions for S(n, α).
Example 12. For any α ≥ 1 denote X the distribution with a characteristic
function e−∥t∥α , t ∈ R2. Then both marginal variables X1, X2 have a Cauchy
(symmetric 1-stable) distribution (1.1). Moreover, the stochastic decomposition
is known from Lemma 11 and Remark 3 if α ∈ (1, 2].

Denote Y1, Y2 i.i.d. symmetric α-stable random variables so that Y = (Y1, Y2)′

has a characteristic function e−∥t∥α
α , t ∈ R2, and Z be a non-negative 1

α
-stable

variable independent of Y. By Remark 3 we may write X d= Z
1
α Y.

Let us use the stochastic decomposition in order to find the mixed moment
of X. For m1,m2 ∈ (0, 1), m1 +m2 ≤ 1, we have

E (|X1|m1|X2|m2) = E
(︃
Z

m1+m2
α |Y1|m1|Y2|m2

)︃
= E Z

m1+m2
α E |Y1|m1 E |Y2|m2 .

The moments of non-negative 1
α
-stable random variables are equal to (Matsui

and Pawlas [2016])

E Zr = Γ (1 − rα)
Γ(1 − r) , −∞ < r <

1
α
,

and the moments of symmetric stable distributions are found in Example 2. The
mixed moments are thus equal to

E (|X1|m1|X2|m2) = Γ (1 −m1 −m2)
Γ
(︂
1 − m1+m2

α

)︂ Γ(1 − m1
α

)
cos(m1

π
2 )Γ(1 −m1)

Γ(1 − m2
α

)
cos(m2

π
2 )Γ(1 −m2)

.
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Remark 11. In the case of α = 1 the density of (X1, X1)′ with a characteristic
function e−|t1|−|t2|, (t1, t2)′ ∈ R2, is

1
π2(1 + x2

1)(1 + x2
2)
, (x1, x2)′ ∈ R2.

If α = 2, the random vector with a characteristic function e−
√

t2
1+t2

2 , (t1, t2)′ ∈
R2, is the bivariate (spherically symmetric) extension to the Cauchy distribution
with a density

Γ(3
2)

π
3
2 (1 + x2

1 + x2
2)

3
2
, (x1, x2)′ ∈ R2.

For α = ∞ the random vector with a characteristic function

e−∥t∥∞ = e− max{|t1|,|t2|}, (t1, t2)′ ∈ R2,

can be defined through Example 3. Denote (X1, X2)′ where X1,X2 are i.i.d.
random variables with the Cauchy distribution. Then the random vector 1

2(X1 +
X2,−X1 +X2)′ has a characteristic function e− max{|t1|,|t2|} and the density can be
found using the linear transformation as

2
π2(1 + (x1 + x2)2)(1 + (−x1 + x2)2) , (x1, x2)′ ∈ R2.

Examples of two-dimensional α-symmetric distributions which are not sta-
ble (instead are Kuttner-Golubov) are discussed in Example 24 in Chapter 4.
Example 24 also includes visualizations.

3.1.1 Two-Dimensional 1-Symmetry
The case of α = 1 allows for characterization by stochastic decomposition (simi-
larly as for the spherically symmetric distributions1) which was proven by Cam-
banis et al. [1983]. The properties and sufficient conditions of S(2, 1) will be
discussed together for any n ≥ 2 in Section 3.2. The classes of characteristic
generators coincide S(2, 1) = S(2,∞) and the results from this subsection hold
for ∥ · ∥∞. This isometry between (R2, ∥ · ∥1) and (R2, ∥ · ∥∞) is unique to n = 2
(Example 3).

Let us first prove some properties of the special random vector which will serve
as a primitive distribution among the 1-symmetric distributions which means any
other 1-symmetric distribution will be a mixture of the primitive.

Lemma 24. Let (U1, U2)′ be a uniformly distributed random vector on the unit
circle S1 and B ∼ Beta(1

2 ,
1
2) independent of (U1, U2)′. The random vector

(Y1, Y2)′ =
(︄
U1√
B
,

U2√
1 −B

)︄′

has a characteristic function

ψ(|t1| + |t2|) = E ei(Y1t1+Y2t2) = 2
π

∫︂ ∞

|t1|+|t2|

sin v
v

dv, t1, t2 ∈ R, (3.1)

1See Fang et al. [1990], Theorem 2.3.
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and a joint density

f0(u1, u2) = 1
π2|u2

1 − u2
2|
, |u1| < 1 ≤ |u2| or |u2| < 1 ≤ |u1|, (3.2)

and zero otherwise. The marginal densities of Y1 and Y2 are

h0(u) = 1
π2|u|

log
⃓⃓⃓⃓
⃓1 + |u|
1 − |u|

⃓⃓⃓⃓
⃓ , u ̸= 0. (3.3)

Proof. First, let us find the density function by transforming the random vector
(B, θ), where B ∼ Beta(1

2 ,
1
2) is independent of θ ∼ Unif(0, 2π), θ transforms into

the uniform distribution on the unit circle via the map (cos(θ), sin(θ))′. The joint
density of (B, θ)′ is

f(B,θ)′(b, ϑ) = 1
2π2

√︂
b(1 − b)

,1(0,1)(b)1(0,2π)(ϑ)

and
(Y1, Y2)′ = G(B, θ) :=

(︄
cos θ√
B
,

sin θ√
1 −B

)︄′

.

The Jacobian of G is

DG(b, ϑ) = − 1
2
√︂
b(1 − b)

(︄
cos2(ϑ)

b
− sin2(ϑ)

1 − b

)︄

and the transformed density is equal to

f0(u1, u2) = f(B,θ)(G−1(u1, u2))|D−1
G (G−1(u1, u2))|

where the first part 2b− 1
2 (1 − b)− 1

2 of the Jacobian cancels with the density f(B,θ)′

and the second part is equal to u2
1 − u2

2. Now the constraints b ∈ (0, 1) and
θ ∈ (0, 2π) ensure that G is well defined and the support of (Y1, Y2)′ satisfies

|u1| ≤ 1,
| cosϑ| ≤

√
b,

cos2 ϑ ≤ b,

1 − b ≤ sin2 ϑ,

1 ≤ |u2|.

In conclusion, the density is equal to

f0(u1, u2) = 1
π2|u2

1 − u2
2|
, |u1| < 1 ≤ |u2| or |u2| < 1 ≤ |u1|.

Furthermore, the density of (Y1, Y2)′ can be rewritten using the difference of two
indicator functions as

f0(u1, u2) = 1[1,∞)(u1) − 1[1,∞)(u2)
π2(u2

1 − u2
2)

, (u1, u2)′ ∈ R2. (3.4)
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The marginal density is easily obtained by integrating (shown only for positive
values, since the marginals are symmetric). For u1 > 1 we have to integrate

h(u1) = 2
π2

∫︂ 1

0

1
u2

1 − u2
2
du2 = 1

π2u1

∫︂ 1

0

1
u1 + u2

+ 1
u1 − u2

du2

and for 0 < u1 < 1 the other interval is used

h(u1) = 2
π2

∫︂ ∞

1

1
u2

2 − u2
1
du2 = 2

π2u1

∫︂ ∞

1
u1

1
t2 − 1 dt.

For the characteristic function let us use several known facts about the Beta
distribution and the uniform distribution on the unit circle. Firstly, the identity
proven by Cambanis et al. [1983]: For t, s ∈ R the following equality holds

s2

B
+ t2

1 −B
d= (|s| + |t|)2

B
. (3.5)

Since B can be expressed as sin2(θ), θ ∼ Unif(0, π/2) and for t, s > 0, s+ t > 0

s2

sin2(θ) + t2

cos2(θ) = (s+ t)2
(︃

1 + T 2
s−t
s+t

(θ)
)︃

where Tx(θ) = (x + cos 2θ)/(sin 2θ) and its distribution does not depend on
x ∈ [−1, 1], thus it has the same distribution as for s−t

s+t
= 1 (t = 0).

And secondly, the Bessel function of the zero-order J0 is the characteristic
function of U1 which means

E ei(t1U1+t2U2) = J0

(︃√︂
t21 + t22

)︃
and −J0 is the anti-derivative of the Bessel function of order one (Bowman
[1958], 1.6), i.e. J0(ax) = 1 − x

∫︁ a
0 J1(vx) dv.

Let us now find the characteristic function of (Y1, Y2)′: For (t1, t2)′ ∈ R2 denote
t = |t1| + |t2|, then by the law of total probability and (3.5)

E ei(t1Y1+t2Y2) = E E
[︄
exp

{︄
i

(︄
t1U1√
B

+ t2U2√
1 −B

)︄}︄ ⃓⃓⃓
B

]︄

= E J0

⎛⎝√︄ t21
B

+ t22
1 −B

⎞⎠ = E J0

(︄
t√
B

)︄

=
∫︂ 1

0
J0

(︄
t√
b

)︄
1

π
√︂
b(1 − b)

db

x=1/b2

=
∫︂ ∞

1
J0(tx) 2

πx
√
x2 − 1

dx

=
∫︂ ∞

1

2
πx

√
x2 − 1

dx−
∫︂ t

0

2
π

∫︂ ∞

1
J1(vx) 1√

x2 − 1
dx dv.

The first integral is equal to 1 and for the second, the inner integral is equal to
sin(v)/v (Cambanis et al. [1983]) which means

E ei(t1Y1+t2Y2) = 1 − 2
π

∫︂ |t1|+|t2|

0

sin v
v

dv = 2
π

∫︂ ∞

|t1|+|t2|

sin v
v

dv
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Figure 3.1: The density of the primitive distribution (3.2) and its
one-dimensional marginal density (3.3).

since
∫︁∞

0 sin(v)/v dv = π/2.

An alternative proof of (3.5) can be found in Mazurkiewicz [2007]. Figure 3.1
shows the joint and marginal density for the primitive.

The stochastic decomposition of two-dimensional 1-symmetric distribution is
shown in the following theorem. Assuming the integrability of the characteris-
tic function, we implement Theorem 20 and find the two-dimensional 1-Bessel
function J2,1(x1, x2) from Definition 13. It also provides a direct relationship
between the distribution function F of the mixing random variable R and the
characteristic generator ψ.

Theorem 25. The random vector (X1, X2)′ with a characteristic generator ψ is
1-symmetric if and only if

ψ(t) =
∫︂

[0,∞)
ψ0(tr) dF (r)

where F is a distribution function of a non-negative random variable and ψ0 is
the primitive characteristic generator (3.1).

Equivalently, (X1, X2)′ is 1-symmetric if and only if

(X1, X2)′ d= R

(︄
U1√
B
,

U2√
1 −B

)︄′

(3.6)

where R is a non-negative random variable with a distribution function F , the
random vector (U1, U2)′ has a uniform distribution on the unit circle and B ∼
Beta(1

2 ,
1
2), variables R, B and (U1, U2)′ are independent.

The distribution of (X1, X2)′ is 1-symmetric if and only if it is absolutely
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continuous on R2 \ {0} and with a density

f(x1, x2) =
∫︂ ∞

0
r−2 f0

(︃
x1

r
,
x2

r

)︃
dF (r) (3.7)

= F (|x1|) − F (|x2|)
π2(x2

1 − x2
2)

, x2
1 ̸= x2

2, (3.8)

where f0 is the primitive density (3.2) and F is the distribution function as above
(the distribution of (X1, X2)′ has an atom of size F (0) at the origin).

Proof. The proof is structured in the following order. Assuming the integrability
of the characteristic generator ψ, the form of the density (3.8) is shown for some
F which defines the distribution of R. The form (3.7) implies the stochastic
decomposition (3.6) which implies the form of the characteristic function based
on Lemma 24.

Without the assumption of integrability (of the characteristic functions) we
may modify the random vector (X1, X2)′ into (X1 + 1

n
Z1, X2 + 1

n
Z2)′ where

Z1, Z2 are i.i.d. Cauchy distributed random variables independent of (X1, X2)′

and (Z1, Z2)′ is 1-symmetric with an integrable characteristic function e−|t1|−|t2|,
(t1, t2)′ ∈ R2. Then the 1-symmetric random vector (X1 + 1

n
Z1, X2 + 1

n
Z2)′ has

a characteristic function

ψ(|t1| + |t2|) · e−(|t1|+|t2|)/n, (t1, t2)′ ∈ R2,

which is integrable as e−(|t1|+|t2|)/n is integrable and ψ(|t1| + |t2|) is bounded by
one (Lemma 3). If the random vector (X1 + 1

n
Z1, X2 + 1

n
Z2)′ has a stochastic

decomposition Rn(Y1, Y2)′ as in (3.6), then R (non-negative) can be defined as
a limit of Rn, n → ∞. Conversely, any of the conditions (characteristic generator,
stochastic decomposition, or density) implies 1-symmetry.

First, assume the vector (X1, X2)′ is 1-symmetric and its characteristic gen-
erator is integrable:∫︂

R2
|ψ(|s| + |t|)| ds dt u=|s|+|t|= 4

∫︂ ∞

0

∫︂ u

0
|ψ(u)| dt du = 4

∫︂ ∞

0
u|ψ(u)| du < ∞.

Then the density of (X1, X2)′ on R2 exists and the inversion formula (Theorem 2)
may be used: First, 1-symmetry implies X1 + X2

d= −X1 − X2
d= X1 − X2

d=
−X1 +X2, let us continue with x1, x2 > 0 and the final form will include absolute
values. We may use the 1-symmetry

f(x1, x2) = 1
4π2

∫︂
R2
e−i(t1x1+t2x2) ψ(|t1| + |t2|) dt1 dt2

= 1
π2

∫︂ ∞

0

∫︂ ∞

0
cos(t1x1) cos(t2x2) ψ(t1 + t2) dt1 dt2

u=t1+t2= 1
π2

∫︂ ∞

0

∫︂ u

0
cos(t1x1) cos((u− t)x2) ψ(u) dt du.

Let us now use the identity cos(tx1) cos((u − t)x2) = 1
2 cos(x2u − t(x2 − x1)) +
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1
2 cos(x2u− t(x2 + x1)) for the inner integral. We get

f(x1, x2) = 1
2π2

∫︂ ∞

0

[︄
− sin(ux1)
x2 − x1

+ sin(ux2)
x2 − x1

+ sin(ux1)
x2 + x1

+ sin(ux2)
x2 + x1

]︄
ψ(u) du

= 1
2π2

∫︂ ∞

0

(︃
sin(ux1)

[︃ 1
x1 + x2

+ 1
x1 − x2

]︃
+ sin(ux2)

[︃ 1
x2 − x1

+ 1
x1 + x2

]︃ )︃
ψ(u) du

= 1
π2

∫︂ ∞

0

x1 sin(ux1) − x2 sin(ux2)
x2

1 − x2
2

ψ(u) du (3.9)

= 1
π2(x2

1 − x2
2)

[︃
x1

∫︂ ∞

0
sin(ux1)ψ(u) du− x2

∫︂ ∞

0
sin(ux2)ψ(u) du

]︃

for x2
1 ̸= x2

2. Denote F (x) = x
∫︁∞

0 sin(ux)ψ(u) du for x > 0. Let us prove
that F is a distribution function on (0,∞) (non-negative, non-decreasing, and∫︁∞

0 dF (r) = 1). The function f is a density (f ≥ 0) which means F (x1) ≥ F (x2)
for x1 ≥ x2 > 0 and F (0) = 0. Since the density function f(x1, x2) can be
expressed via the density f0 as in (3.4), for x1, x2 ∈ R we have

f(x1, x2) = F (|x1|) − F (|x2|)
π2(x2

1 − x2
2)

= 1
π2(x2

1 − x2
2)

[︄∫︂ |x1|

0
dF (r) −

∫︂ |x2|

0
dF (r)

]︄

=
∫︂ ∞

0

1[1,∞)
(︂

|x1|
r

)︂
− 1[1,∞)

(︂
|x2|

r

)︂
π2(x2

1 − x2
2)

dF (r)

=
∫︂ ∞

0
r−2f0

(︃
x1

r
,
x2

r

)︃
dF (r).

Moreover, since f and f0 are densities (Lemma 24)

1 =
∫︂
R2
f(x1, x2) dx1dx2

=
∫︂
R2

∫︂ ∞

0
r−2f0

(︃
x1

r
,
x2

r

)︃
dF (r) dx1dx2

=
∫︂ ∞

0

∫︂
R2
r−2f0

(︃
x1

r
,
x2

r

)︃
dx1dx2 dF (r)

=
∫︂ ∞

0

∫︂
R2
f0 (x̃1, x̃2) dx̃1dx̃2 dF (r)

=
∫︂ ∞

0
1 dF (r),

we see that F is a distribution function on (0,∞). The proof for absolutely con-
tinuous random vectors is concluded.

Other properties of 1-symmetric distributions are proven for general n ∈ N in
Section 3.2. During the proof in (3.9) we have shown that

J2,1(x1, x2) = 4x1 sin(x1) − x2 sin(x2)
x2

1 − x2
2

, (x1, x2)′ ∈ R2, (3.10)
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which resembles J2,∞ found in Example 11. If the characteristic generator ψ is
integrable, the distribution function of R is equal to

F (r) = r
∫︂ ∞

0
sin(ur)ψ(u) du, r > 0 (3.11)

and the density of R is equal to

g(r) =
∫︂ ∞

0
(sin(ur) + ur cos(ur))ψ(u) du, r > 0. (3.12)

We may find the stochastic decomposition for some important examples from
S(2, 1).
Example 13. The cumulative distribution function of R in case of (X1, X2)′ being
i.i.d. Cauchy distributed is equal to

F (r) = r
∫︂ ∞

0
sin(ur)e−u du = r2

1 + r2 , r > 0,

and the corresponding density g = F ′ is equal to

g(r) = 2r
(1 + r2)2 , r > 0,

as can be verified through the primitive characteristic generator using Theorem 16
as ∫︂ ∞

0
g(r)ψ0(ru) dr =

∫︂ ∞

0

2r
(1 + r2)2

2
π

∫︂ ∞

ru

sin v
v

dv dr

= 2
π

∫︂ ∞

0

sin v
v

∫︂ v
u

0

2r
(1 + r2)2 dr dv

= 2
π

∫︂ ∞

0
sin(us) s

1 + s2 ds

= e−u,

where the last equality holds through the residue theorem (Rudin [1987], Theo-
rem 10.42).
Example 14. Let (X1, X2)′ be a 1-symmetric random vector with a characteristic
generator (1 − u)3

+ = φ1,3 as defined in Example 8.2 Then (X1, X2)′ d= R(Y1, Y2)′

where R and (Y1, Y2)′ are independent and (Y1, Y2)′ is the primitive distribution
and the density of R is equal to

g(r) = 6(cos(r)r + 2r − 3 sin(r))
r4 1(0,∞)(r)

since
F (r) = r

∫︂ 1

0
sin(ur)(1 − u)3 du = 1 + 6 sin(r) − 6r

r3 , r > 0.

The moments E Rm exist for m < 2 and can be combined with Theorem 30
from Section 3.2 to obtain moments of (X1, X2)′.

We may look at other random vectors with a characteristic generator (1−u)δ
+,

e.g. for integer δ ≥ 3 as finding the density of R requires finding only the integrals
of type

∫︁ 1
0 sin(ur)uk du and

∫︁ 1
0 cos(ur)uk du for k ≤ δ. Example 8 shows an

alternative way how to generate variables with δ ≥ 3. Densities of for δ ∈ {3, 4, 5}
are shown in Figure 3.2.

2Theorem 33 clarifies the choice of δ = 3 = 2 · 2 − 1.
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Figure 3.2: Densities of R from a stochastic decomposition (3.6) for a bivariate
1-symmetric distribution with a characteristic generator (1 − u)δ

+ for
δ ∈ {3, 4, 5}.

3.2 Higher-Dimensional 1-Symmetric Measures
For higher-dimensional 1-symmetric measures first, we need to find an analogue
to the primitive distribution – the Beta distribution of B and 1 − B is re-
placed by the Dirichlet distribution. Throughout the thesis, a random vector
(D1, . . . , Dn)′ is said to have a Dirichlet distribution3 Dirn(β1, . . . , βn) with pa-
rameters β1, . . . , βn > 0 if the joint density of (D1, . . . , Dn)′ is equal to

f(D1,...,Dn)′(d1, . . . , dn) = Γ (∑︁n
i=1 βi)∏︁n

i=1 Γ(βi)

n∏︂
i=1

dβi−1
i 1{(d1, . . . , dn)′ ∈ Σn} (3.13)

where Σn denotes the simplex Σn = {(d1, . . . , dn)′ ∈ [0, 1]n : ∑︁n
i=1 di = 1}. Fur-

thermore, divided differences of functions are used: For a function f : R → R
and n ∈ N denote

f |n|(x0, . . . , xn) =
n∑︂

k=0

f(xk)∏︁
j ̸=k(xk − xj)

. (3.14)

the n-th divided difference at points x0, . . . , xn, we shall write f |n|(x) for brevity.
Lemma 26 defines the multivariate primitive distribution and in Theorem 27

it is proven that any 1-symmetric random variable is a mixture of the primitive.
These results are taken from Cambanis et al. [1983]. Further results of this section
(Theorem 29) by Gneiting [1998] connect 1-symmetric and 2-symmetric random
vectors. Subsection 3.2.1 then summarizes several consequences of the stochastic
decomposition.
Lemma 26. Let (D1, . . . , Dn)′ be a random vector with Dirichlet distribution
with parameters 1

2 , . . . ,
1
2 and (U1, . . . , Un)′ be uniformly distributed on the unit

sphere in Rn independently of (D1, . . . , Dn)′. Let (Y1, . . . , Yn)′ be a random vector
defined as

(Y1, . . . , Yn)′ =
(︄
U1√
D1

, . . . ,
Un√
Dn

)︄′

.

3For n = 2 the Dirichlet distribution (D1, D2)′ can be written as (B, 1 − B)′ for some
Beta-distributed random variable.
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Then its characteristic function can be written as E exp{it′Y} = ψ0(∥t∥1) where

ψ0(u) =
Γ
(︂

n
2

)︂
√
πΓ

(︂
n−1

2

)︂ ∫︂ ∞

1
Ωn(vu2)v− n

2 (v − 1)
n−3

2 dv, u ≥ 0, (3.15)

and Ωn(u2
1 + · · · + u2

n) = Ωn(∥u∥2
2) denotes the characteristic function4 of the

uniform distribution on Sn−1.
The density function of (Y1, . . . , Yn)′ can be written as

f0(y1, . . . , yn) =
Γ2
(︂

n
2

)︂
(n− 2)!πn

n∑︂
k=1

(y2
i − 1)n−2

+∏︁
j ̸=k(y2

k − y2
j ) , |yi| ≠ |yj|, i, j = 1, . . . , n.

(3.16)

Proof. First, let us prove a similar identity as in Lemma 24: For (D1, . . . , Dn)′ ∼
Dirn(1

2 , . . . ,
1
2) and any s1, . . . , sn ∈ R:

n∑︂
i=1

s2
i

Di

d= (∑︁n
i=1 |si|)2

D1
(3.17)

which can be proven by induction. Both the Dirichlet and the uniform distribu-
tion on Sn−1 can be generated recursively:

(D1, . . . , Dn)′ d=
(︂
(1 −Dn) · ˜︂Dn−1, Dn

)︂′
, (3.18)

(U1, . . . , Un)′ d=
(︃√︂

1 − U2
n · ˜︂Un−1, Un

)︃′
(3.19)

where ˜︂Dn−1 ∼ Dirn−1(1
2 , . . . ,

1
2) independent of (D1, . . . , Dn)′ and ˜︂Un−1 is uni-

formly distributed on the unit sphere in Rn−1 independent of (U1, . . . , Un)′ (Fang
et al. [1990], Theorem 1.5). Then by induction (the first equality uses the repre-
sentation (3.18) and the second the induction step for n− 1)

n−1∑︂
i=1

s2
i

Di

+ s2
n

Dn

d= 1
1 −Dn

n−1∑︂
i=1

s2
i˜︂Di

+ s2
n

Dn

d=

(︂∑︁n−1
i=1 |si|

)︂2

˜︂D1(1 −Dn)
+ s2

n

Dn

.

Now, all marginal random vectors have the same distribution (due to the sym-
metry of (3.13)) we may replace Dn by (1 − Dn)˜︂D2. Thus, using the initial
case

n−1∑︂
i=1

s2
i

Di

+ s2
n

Dn

d= 1
1 −Dn

⎛⎜⎝
(︂∑︁n−1

i=1 |si|
)︂2

˜︂D1
+ s2

n˜︂D2
.

⎞⎟⎠ d= (∑︁n
i=1 |si|)2

˜︂D1(1 −Dn)
d= (∑︁n

i=1 |si|)2

D1
.

Since D1 ∼ Beta(1
2 ,

n−1
2 ), the stated form of the characteristic function is

4See Remark 9.
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obtained: For t = (t1, . . . , tn)′ ∈ Rn

E eit′Y = E E
(︂
eit′Y | (D1, . . . , Dn)′

)︂
= E

(︄
Ωn

(︄
t21
D1

+ · · · + t2n
Dn

)︄)︄

= E
(︄

Ωn

(︄
∥t∥2

1
D1

)︄)︄

=
Γ(n

2 )
√
πΓ(n−1

2 )

∫︂ 1

0
Ωn

(︄
∥t∥1

w

)︄
w− 1

2 (1 − w)
n−3

2 dw

v=1/w=
Γ(n

2 )
√
πΓ(n−1

2 )

∫︂ ∞

1
Ωn(v · ∥t∥2

1)v− n
2 (v − 1)n−3

2 dv.

The density can be again found by induction using (3.18) and (3.19). The
case n = 2 is covered by Lemma 24. The induction step follows the same rela-
tionship. Denote again ˜︂Un−1, Un the uniform distribution on the unit sphere in
Rn−1 and Rn, respectively, and ˜︂Dn−1 ∼ Dirn−1(1

2 , . . . ,
1
2), Dn ∼ Dirn(1

2 , . . . ,
1
2), all

independent, thus

˜︂Y =
⎛⎝ ˜︁U1√︂˜︂D1

, . . . ,
˜︁Un−1√︂˜︂Dn−1

⎞⎠′

is assumed to have the (n−1)-dimensional primitive distribution with the density
in (3.16) with n replace by n− 1. We aim to show that (3.16) is the density of

Y =
(︄
U1√
D1

, . . . ,
Un√
Dn

)︄′

=
⎛⎝
√︂

1 − U2
n√

1 −Dn

˜︂Y, Un√
Dn

⎞⎠′

.

The transformation is done as (˜︂Y, Un, Dn)′ ↦→ (Y, Dn)′ and integrating the last
variable. The transformation is defined as

yk =
√︄

1 − u2

1 − d
ỹk, k = 1, . . . , n− 1, yn =

√︃
u

d

which means

ỹk =
√︄

1 − dn

1 − u2 yk = yk

√︄
1 − d

1 − dy2
n

, u = yn

√
d

and the Jacobian is equal to

d− 1
2

(︄
1 − u2

1 − d

)︄n−1
2

= d− 1
2

(︄
1 − dy2

n

1 − d

)︄n−1
2

.

The joint density of (˜︂Y, Un, Dn)′ is

Γ2
(︂

n−1
2

)︂
(n− 3)!πn−1 ·

n−1∑︂
k=1

(ỹi
2 − 1)n−3

+∏︁
j ̸=k(ỹ2

k − ỹ2
j)

· 1(|ỹi| ≠ |ỹj|)

·
Γ
(︂

n
2

)︂
√
πΓ

(︂
n−1

2

)︂ · (1 − u2)
n−3

2 · 1(−1,1)(u)

·
Γ
(︂

n
2

)︂
√
πΓ

(︂
n−1

2

)︂ · d− 1
2 (1 − d)

n−3
2 · 1(0,1)(d)
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since Un is a marginal distribution of ˜︂Un−1 (Fang et al. [1990], Theorem 1.5) and
Dn ∼ Beta(1

2 ,
n−1

2 ). The density of (Y, Dn)′ is therefore equal to

Γ2
(︂

n
2

)︂
(n− 3)!πn

n−1∑︂
k=1

(y2
n − 1 + d(y2

n − y2
k))n−3

+∏︁
j ̸=k(y2

k − y2
j ) ·

(︄
1

1 − dy2
n

)︄n−3 (︄1 − dy2
n

1 − d

)︄n−2

· (1 − dy2
n)

n−3
2 · d− 1

2 (1 − d)
n−3

2 · d
1
2

(︄
1 − dy2

n

1 − d

)︄− n−1
2

· 1(−1,1)(yn

√
d) · 1(0,1)(d) · 1(|yi| ≠ |yj|)

where 1 − dy2
n, 1 − d and d cancel out which results in

Γ2
(︂

n
2

)︂
(n− 3)!πn

n−1∑︂
k=1

(y2
n − 1 + d(y2

n − y2
k))n−3∏︁

j ̸=k(y2
k − y2

j ) (3.20)

· 1(−1,1)(yn

√
d) · 1(0,1)(d) · 1(|yi| ≠ |yj|) · 1

(︄
d ≥ 1 − y2

n

y2
n − y2

k

)︄
.

Integrating d means for k = 1, . . . , n− 1 finding the integral∫︂
D

(y2
n − 1 + w(y2

n − y2
k))n−3 dw =

[︄
(y2

n − 1 + w(y2
n − y2

k))n−2

(n− 2)(y2
n − y2

k)

]︄U

L

= Sk

(n− 2)(y2
k − y2

n)

where the domain D = [L,U ] depends on yk and yn (as shown below D is an
interval for all possible options of yk, yn) and Sk = (y2

n − 1 + L(y2
n − y2

k))n−2 −
(y2

n − 1 + U(y2
n − y2

k))n−2. The values L, U , Sk are based on the indicators in
(3.20):

L U Sk

y2
k, y

2
n > 1 0 y−2

n (y2
k − 1)n−2 − (yk/yn)2(n−2) (y2

n − 1)n−2

y2
n > 1 > y2

k
1−y2

k

y2
n−y2

k
y−2

n −(yk/yn)2(n−2)(y2
n − 1)n−2

y2
k > 1 > y2

n 0 1−y2
k

y2
k

−y2
n

(y2
k − 1)n−2

1 > y2
k, y

2
n ∅ ∅ 0

Table 3.1: Possible values of Sk based on yk, yn in (3.20).

Table 3.1 shows Sk = (y2
k − 1)n−2

+ − (yk/yn)2(n−2) (y2
n − 1)n−2

+ . All results
combined give

f0(y) =
Γ2
(︂

n
2

)︂
(n− 2)!πn

n−1∑︂
k=1

(y2
k − 1)n−2

+ − (yk/yn)2(n−2) (y2
n − 1)n−2

+

(y2
k − y2

n) ·∏︁j ̸=k<n(y2
k − y2

j )

=
Γ2
(︂

n
2

)︂
(n− 2)!πn

⎡⎣n−1∑︂
k=1

(y2
k − 1)n−2

+∏︁
j ̸=k(y2

k − y2
j ) − (y2

n − 1)n−2
+

y
2(n−2)
n

n−1∑︂
i=1

y
2(n−2)
i∏︁

j ̸=k(y2
k − y2

j )

⎤⎦ .
Finally, let us show

(y2
n − 1)n−2

+

y
2(n−2)
n

n−1∑︂
i=1

y
2(n−2)
i∏︁

j ̸=k(y2
k − y2

j ) = − (y2
n − 1)n−2

+∏︁
j ̸=k(y2

k − y2
j )
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by the fact that
n∑︂

i=1

y
2(n−2)
i∏︁

j ̸=k(y2
k − y2

j ) = 0.

This sum is the (n − 1)-st divided difference (3.14) of the function t ↦→ tn−2

at points y2
1, . . . , y

2
n. The mean-value theorem for divided differences (Atkin-

son [2008], 3.2.12) states that the (n − 1)-st divided difference of f is equal to
f (n−1)(ξ)/(n− 1)! where ξ ∈ (mini y

2
i ,maxi y

2
i ). For f(t) = tn−2 that derivative is

zero for all t ∈ R.

Mazurkiewicz [2007] gives explicit but complicated formulas for densities of
the (n − k)-dimensional marginal random vectors (Yn,1, . . . , Yn,n−k)′. For n = 3
the marginal densities of (Y3,1, Y3,2, Y3,3)′ are equal to

f(Y3,1,Y3,2)′(y1, y2) = 1
4π2(y2

1 − y2
2)

(︄
y2

1 − 1
|y1|

log
⃓⃓⃓⃓
⃓1 + |y1|
1 − |y1|

⃓⃓⃓⃓
⃓

− y2
2 − 1
|y2|

log
⃓⃓⃓⃓
⃓1 + |y2|
1 − |y2|

⃓⃓⃓⃓
⃓
)︄
, |y1| ≠ |y2|, (3.21)

fY3,1(y) = 1 − (1 − y2)+

4y2 , y ∈ R \ {0}, (3.22)

and are shown in Figure 3.3. Note that for n ≥ 4 the two-dimensional marginal
densities are bounded and for n → ∞ they resemble densities of the Cauchy5

distribution. The density of Y3,1 from (3.22) is constant on (−1, 1) and similarly,
the density of (Y4,1, Y4,2)′ is constant on (−1, 1)2 which is connected to the (n−2)-
dimensional marginals of the uniform distribution on Sn−1

2 which are uniform on
the unit ball Bn−2

2 (Fang et al. [1990], Theorem 1.5).
Remark 12. As mentioned in Remark 9 the characteristic function of (U1, . . . , Un)′

can be written in terms of Bessel functions (Richards [1986])

E eit′U = Ωn

(︂
∥t∥2

2

)︂
= Γ

(︃
n

2

)︃(︄ 2
∥t∥2

)︄n
2 −1

Jn
2 −1(∥t∥2), t ∈ Rn,

where Jn
2 −1 is the Bessel function of the first kind of order n

2 − 1.
We may now move to the higher-dimensional version of Theorem 25 which

again relies on Theorem 2.

Theorem 27. The random vector (X1, . . . , Xn)′ is 1-symmetric if and only if its
characteristic generator can be written as

ψ(u) =
∫︂

[0,∞)
ψ0(ur) dF (r)

where F is a distribution function of a non-negative random variable and ψ0 is
defined by (3.15). The random vector can be decomposed as

(X1, . . . , Xn)′ d= R

(︄
U1√
D1

, . . . ,
Un√
Dn

)︄′

(3.23)

5Section 3.3 shows that the marginals of the primitive in S(∞, 1) are Cauchy distributed.
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Figure 3.3: The two-dimensional (3.21) and one-dimensional (3.22) marginal
densities of the three-dimensional primitive distribution (3.16).

where R has a distribution function F and is independent of the primitive defined
by Lemma 26.

The 1-symmetric random variable X = (X1, . . . , Xn)′ is absolutely continuous
(with the exception of a possible atom at the origin) with a density

f(x) =
∫︂

[0,∞)
r−nf0

(︃x
r

)︃
dF (r) (3.24)

=
Γ2
(︂

n
2

)︂
(n− 2)!πn

n∑︂
k=1

∫︁ |xk|
0 (x2

k − r2)n−2r2−n dF (r)∏︁
j ̸=k(x2

k − x2
j)

, |xj| ≠ |xk|, j, k = 1, . . . , n.

Proof. As in the proof of Theorem 25 the proof will be done only for an integrable
characteristic function. Other cases are solved again by modifying X into X+ 1

n
Z

where Z = (Z1, . . . , Zn)′ are i.i.d. Cauchy distributed random variables and by
taking a weak limit n → ∞. Assuming integrability, the equation (3.24) will
be proven which implies the existence of the decomposition (3.23). Converse
implications are trivial.

Firstly, assume X is 1-symmetric with a characteristic function ψ(|t1| + · · · +
|tn|) which satisfies∫︂

Rn
ψ(|t1| + · · · + |tn|) dt1 · · · dtn = 2n

(n− 1)!

∫︂ ∞

0
un−1ψ(u) du < ∞.

We may use the inversion formula (Theorem 2). Since 1-symmetric distributions
are sign-invariant let us define a symmetrisation operator

Evenf(x1, . . . , xn) = 1
2n

∑︂
Cn

f(±x1, . . . ,±xn)

where all possible 2n combinations of signs are used. The sum over 2n possible
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signs is denoted by Cn. Now for x = (x1, . . . , xn)′ ∈ Rn

f(x) = 1
(2π)n

∫︂
Rn
e−i

∑︁n

i=1 tixiψ(|t1| + · · · + |tn|) dt1 · · · dtn

= 1
πn

∫︂ ∞

0
· · ·

∫︂ ∞

0

n∏︂
i=1

cos(tixi)ψ(t1 + · · · + tn) dt1 · · · dtn

= 1
πn

Even
∫︂ ∞

0
· · ·

∫︂ ∞

0
ei
∑︁n

i=1 tixiψ(t1 + · · · + tn) dt1 · · · dtn.

Let us again use divided differences defined in (3.14). The Hermite-Genocchi
formula (Atkinson [2008], Theorem 3.3) states that if the integrals and derivatives
below exist then the n-th divided difference is equal to an integral of the n-th
derivative over the standard simplex Σn = {(s1, . . . , sn)′ ∈ [0, 1]n : ∑︁n

i=1 si = 1}.
Thus for any functions g, h assuming the integrals and derivatives exist

∫︂ ∞

0
· · ·

∫︂ ∞

0
g

(︄
n∑︂

i=1
ti

)︄
h(n−1)

(︄
n∑︂

i=1
tixi

)︄
dt1 · · · dtn

T =t1+···+tn=
∫︂ ∞

0

∫︂
Σn
g(T )T n−1h(n−1)

(︄
T

n∑︂
i=1

sixi

)︄
ds1 · · · dsn−1dT

=
∫︂ ∞

0
g(T )T n−1h|n−1|(Tx1, . . . , Txn) dT

=
∫︂ ∞

0
g(T )

n∑︂
k=1

h(Txk)∏︁
k ̸=j(xk − xj)

dT

which will be used to simplify the integral. For h(n−1)(t) = eit and g(t) = ψ(t)

f(x) = 1
πn

Even
∫︂ ∞

0
· · ·

∫︂ ∞

0
ei
∑︁n

i=1 tixiψ(t1 + · · · + tn) dt1 · · · dtn

= 1
πn

Even
∫︂ ∞

0
ψ(u)i−n+1

n∑︂
k=1

eiuxk∏︁
k ̸=j(xk − xj)

du. (3.25)

The Even operator affects only the divided difference

Even eiuxk∏︁
k ̸=j(xk − xj)

= 1
2n

n∑︂
k=1

⎡⎣∑︂
Cn−1

eiuxk∏︁
j ̸=k(xk − ±xj)

+
∑︂

Cn−1

e−iuxk∏︁
j ̸=k(−xk − ±xj)

⎤⎦
= 1

2n

n∑︂
k=1

[︄
eiuxk2n−1xn−1

k∏︁
j ̸=k(x2

k − x2
j)

+ (−1)n−1e−iuxk2n−1xn−1
k∏︁

j ̸=k(x2
k − x2

j)

]︄
.

And the result of the last formula can be written as
n∑︂

k=1

xn−1
k cos(uxk)∏︁
j ̸=k(x2

k − x2
j)
, for n odd, i

n∑︂
k=1

xn−1
k sin(uxk)∏︁
j ̸=k(x2

k − x2
j)
, for n even, (3.26)

since sin(t) = 1
2i

(eit − e−it) and cos(t) = 1
2(eit + e−it). If we denote the integral

part of (3.25) as

Bn(t) =

⎧⎨⎩i1−nt
n−1

2
∫︁∞

0 cos(u
√
t)ψ(u) du, n odd,

i2−nt
n−1

2
∫︁∞

0 sin(u
√
t)ψ(u) du, n even,
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where in both cases Bn is real. The density f of X can be written as a divided
difference at points x2

1, . . . , x
2
n:

f(x) = 1
πn

n∑︂
k=1

Bn(x2
k)∏︁

j ̸=k(x2
k − x2

j)
= 1
πn
B|n−1|

n (x2
1, . . . , x

2
n).

Since k-th divided differences of polynomials of order less than k equal zero and
Bn is (n − 1)-times continuously differentiable on (0,∞), the (n − 1)-st divided
difference of Bn is thus equal to the divided difference of its integral remainder
of the Taylor series of Bn at zero (Apostol [1991], Theorem 7.6)

1
(n− 2)!

∫︂ t

0
(w − t)n−2B(n−1)

n (w) dw.

That means

f(x) = 1
(n− 1)!πn

∫︂ ∞

0

n∑︂
k=1

(x2
k − w)n−2

+∏︁
j ̸=k(x2

k − x2
j)
B(n−1)

n (w) dw

r=
√

w= 1
(n− 1)!πn

∫︂ ∞

0

n∑︂
k=1

(x2
k − r2)n−2

+∏︁
j ̸=k(x2

k − x2
j)

2rB(n−1)
n (r2) dr

= 1
(n− 1)!πn

∫︂ ∞

0

n∑︂
k=1

(x2
k/r

2 − 1)n−2
+∏︁

j ̸=k(x2
k/r

2 − x2
j/r

2)
2
r
B(n−1)

n (r2) dr

which is equal to (3.24) if the density of R is set as

f̃(r) = 2
Γ2
(︂

n
2

)︂rn−1B(n−1)
n (r2)1(0,∞)(r).

That completes the proof of the stochastic decomposition X d= RY.

Again the expression for the n-dimensional 1-Bessel function Jn,1(x) (Defini-
tion 13) was derived in the process in (3.26): For n odd we have

Jn,1(x) = (−1)
n−1

2 2n
n∑︂

k=1

xn−1
k cos(xk)∏︁

j ̸=k(x2
k − x2

j)
(3.27)

and for even n the cosines and sines are switched

Jn,1(x) = (−1)
n−2

2 2n
n∑︂

k=1

xn−1
k sin(xk)∏︁

j ̸=k(x2
k − x2

j)
. (3.28)

Misiewicz [1996] (Example II.4.1) lists Jn,1 only for n = 2, 3.
Example 15. Let us find a stochastic decomposition for a random vector Z =
(Z1, . . . , Zn)′ where Zi are i.i.d. Cauchy distributed. The stochastic decomposition
uses the properties of the spherically symmetric random vectors (Fang et al.
[1990], Section 2.6). We may generate Z using two i.i.d. random vectors M,N ∼
Nn(0, In) as

(Z1, . . . , Zn)′ d=
(︄
M1

|N1|
, . . . ,

Mn

|Nn|

)︄′

.
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Each normal random vector has a spherical stochastic decomposition M d= RMU
and N d= RNU where RM

d= ∥M∥2, RN
d= ∥N∥2 ≥ 0 have χ-distribution with

n degrees of freedom and U = (U1, . . . , Un)′ is uniformly distributed on Sn−1.
Since (U2

1 , . . . , U
2
n)′ ∼ Dirn(1

2 , . . . ,
1
2) the random vector Z d= R0Y where Y has

the primitive distribution, R0
d= RM/RN , RM and RN are independent with the

χ-distribution with n degrees of freedom, which means R2
0 ∼ F(n, n).

The density function of R is then equal to

g(r) = 2Γ (n)
Γ2
(︂

n
2

)︂ rn−1

(1 + r2)n
, r > 0.

The density of R will be derived in a different way in Example 16, an alterna-
tive approach using the function Bn from the proof of Theorem 27 can be found
in Fang et al. [1990] (Lemma 7.2).

Furthermore, Gneiting [1998] found another connection between the (spheri-
cally) 2-symmetric and 1-symmetric distributions using repeated integration.

Definition 14. For a function f : [0,∞) → R such that∫︂ ∞

0
f(x) dx

exists and is finite denote If(t) the integral operator

If(t) =
∫︂ ∞

t
f(x) dx, t ≥ 0. (3.29)

The following lemma connects the Fourier transforms (i.e. finding the density
given a characteristic function) of functions ψ(∥ ·∥1), ψ(n−1)(| · |) and ψ(n−1)(∥ ·∥2)
for a differentiable function ψ : [0,∞) → R. The relationship follows the proof
of Theorem 27 and uses the properties of 2-symmetric distributions (Fang et al.
[1990]), and more generally functions depending on the Euclidean norm. The
Fourier transform6 of a function can be again written as a one-dimensional norm-
dependent function (Grafakos and Teschl [2012]).

Lemma 28. Let ψ : [0,∞) → R be a function with n−1 bounded and continuous
derivatives such that for k = 0, . . . , n− 1 we have∫︂ ∞

0
tn+k−1|ψ(k)(t)| dt < ∞.

Let g(x1, . . . , xn) be the Fourier transform of ψ(∥u∥1), u ∈ Rn, h1(x) be the
Fourier transform of ψ(n−1)(|u|), u ∈ R, and h2n−1 be the Fourier transform of
ψ(n−1)(∥u∥2), u ∈ R2n−1. Then g, h1, h2n−1 are bounded and continuous and

g(x1, . . . , xn) = 1
πn−1

n∑︂
k=1

h1(xk)∏︁
j ̸=k(x2

k − x2
j)

= (−1)n−1

(n− 1)!h2n−1(ξ),

for some ξ ∈ (min1≤i≤n |xi|,max1≤i≤n |xi|).
6For a given random vector, its characteristic function and density are each others’ Fourier

transforms (up to scale constants).
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Lemma 28 by Gneiting [1998] relies on the theory of spherically symmetric
distributions by Fang et al. [1990] (Section 2.2), 1-symmetric distributions by
Cambanis et al. [1983] and divided differences (3.14).

Theorem 29. Let ψ ∈ S(n, 1) have n − 1 bounded and continuous derivatives
and limt→∞ ψ(t) = 0. Then (−1)n−1ψ(n−1)(0) > 0 and if we denote function

φ(t) = ψ(n−1)(t)
ψ(n−1)(0) , t ≥ 0,

then φ ∈ S(2n− 1, 2).
Let X be a 1-symmetric n-dimensional random vector with a characteristic

generator ψ and a stochastic decomposition X d= RY from (3.23) where R has
a cumulative distribution function F . Furthermore, let V be a spherically sym-
metric (2n− 1)-dimensional random vector with a characteristic generator φ and
a stochastic decomposition7 V d= SU and denote G the cumulative distribution
function of S. Then limt→0+ F (t) = limt→0+ G(t) = 0 and for any Borel subset
B ⊂ [0,∞) we have

∫︂
B

(−1)n−1ψ(0) dG(r) =
∫︂

B

Γ2
(︂

n
2

)︂
√
πΓ

(︂
2n−1

2

)︂rn−1 dF (r). (3.30)

Conversely, if φ ∈ S(2n − 1, 2) and In−1φ(0) exists where I is defined by
(3.29) applied (n− 1)-times. Then

ψ(t) = In−1φ(t)
In−1φ(0) , t ≥ 0

and (3.30) holds.

Corollary 6. The primitive characteristic generator ψ0 (3.15) of S(n, 1) and the
function8 ω2n−1(t) = Ω2n−1(t2) are related in a following way

ψ0(t) = In−1ω2n−1(t)
In−1ω2n−1(0) , t ≥ 0.

The integrability of ω2n−1 is checked in Gneiting [1998] and the equality holds
because, in the respective stochastic decompositions, the mixing random variables
(in Theorem 29 denoted as R and S, respectively) have a Dirac δ1 distribution
(Fang et al. [1990]).

Theorem 29 will be further used to establish some sufficient conditions in
Theorem 33.
Example 16. Denote ψ(t) = e−t ∈ S(n, 1). Then its (n − 1)-st derivative equals
(−1)n−1e−t and as we know e−t ∈ S(2n − 1, 2), since e−∥t∥2 , t ∈ R2n−1, is the
characteristic function of the spherically symmetric Cauchy distribution.9

7See Example 5.
8See Remark 12.
9Remark 11 specifies the two-dimensional density.
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Denote X(2) a random vector with a characteristic function e−∥t∥2 , t ∈ R2n−1.
Fang et al. [1990] (Chapter 3) derived the distribution of ∥X(2)∥2 as having the
density

2
B(2n−1

2 , 1
2)

r2n−2

(1 + r2)n
, r > 0.

The density of R where R is the variable from the stochastic decomposition of
X(1) d= RY where X(1) has a characteristic function e−∥t∥1 , t ∈ Rn can be found
using Theorem 29 as

2
B(2n−1

2 , 1
2)

r2n−2

(1 + r2)n

√
πΓ

(︂
2n−1

2

)︂
Γ2
(︂

n
2

)︂ r1−n = 2Γ(n)
Γ2
(︂

n
2

)︂ r2n−1

(1 + r2)n

as was derived in a different way in Example 15.

3.2.1 Properties of 1-Symmetric Distributions
We may now utilize the stochastic decomposition to derive some properties of
1-symmetric distributions using the results by Cambanis et al. [1983] and Fang
et al. [1990] (Chapter 7). Theorem 30 uses results by Cambanis et al. [1983]
but seems to be new as discussed in Remark 13. Some other properties (either
by Cambanis et al. [1983] or by Fang et al. [1990], Chapter 7) were omitted for
brevity.

Theorem 30. Let (X1, . . . , Xn)′ be a 1-symmetric random vector with a stochas-
tic decomposition RY based on Theorem 27. Then for m1, . . . ,mn ∈ (−1, 1),
m1 + · · ·mn = m, the mixed moments are equal to

E
(︄

n∏︂
i=1

Xmi
i

)︄
= E Rm E

(︄
n∏︂

i=1
Umi

i

)︄
E
(︄

n∏︂
i=1

D
− mi

2
i

)︄

= E Rm · im
Γ2
(︂

n
2

)︂
Γ
(︂

n+m
2

)︂
Γ
(︂

n−m
2

)︂ ,
E
(︄

n∏︂
i=1

|Xi|mi

)︄
= E Rm

Γ2
(︂

n
2

)︂
Γ
(︂

n+m
2

)︂
Γ
(︂

n−m
2

)︂ · 1∏︁n
i=1 cos(miπ/2)

if the moment E Rm is finite.

Proof. The stochastic decomposition by independent R, U (uniform on Sn−1)
and D ∼ Dirn(1

2 , . . . ,
1
2) is proven in Theorem 27. Since the negative fractional

moment of the Dirichlet distribution is included, mi must be less than 1. Similarly,
mi > −1 to guarantee the existence of moments of U.

The fractional moments are found separately for U and D. First, using the
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density (3.13):

E
(︄

n∏︂
i=1

D
− mi

2
i

)︄
= E

(︄
n∏︂

i=1
|Di|−

mi
2

)︄

=
∫︂

Σn

Γ(n
2 )

π
n
2

n∏︂
i=1

t
− mi

2 + 1
2 −1

i dt1 · · · dtn

=
Γ
(︂

n
2

)︂
π

n
2

·
∏︁n

i=1 Γ
(︂

1−mi

2

)︂
Γ
(︂

n−m
2

)︂
where Σn is the standard simplex from (3.13) and the integrand is up to a constant
equal to the density of Dirn(1−m1

2 , . . . , 1−mn

2 ).
The moments of U are found using the standard normal distribution as in Fang

et al. [1990] with the fractional moments of normal distribution in Winkelbauer
[2012]. Let Z ∼ Nn(0, In), then U d= Z/∥Z∥2 which is independent of ∥Z∥2.
Moreover, ∥Z∥2

2 is χ2-distributed with n degrees of freedom. By Winkelbauer
[2012] for any p > −1 and a random variable Z ∼ N(0, 1)

E Zp = ip 2 p
2
√
π

Γ
(︂

1−p
2

)︂ , E|Z|p =
2 p

2 Γ
(︂

1+p
2

)︂
√
π

= 2 p
2
√
π

Γ
(︂

1−p
2

)︂
cos

(︂
πp
2

)︂
by the Euler reflection formula.10 Then the mixed moment is equal to

E
(︄

n∏︂
i=1

Umi
i

)︄
= E

(︄
n∏︂

i=1
Zmi

i

)︄
(E ∥Z∥m

2 )−1

=
n∏︂

i=1
E Zmi

i

(︂
E (∥Z∥2

2)m/2
)︂−1

= imπ
n
2∏︁n

i=1 Γ
(︂

1−mi

2

)︂ Γ
(︂

n
2

)︂
Γ
(︂

n+m
2

)︂ .
Similarly, for the mixed absolute moments we have

E
(︄

n∏︂
i=1

|Ui|m1

)︄
=

Γ
(︂

n
2

)︂
Γ
(︂

n+m
2

)︂
π

n
2

n∏︂
i=1

Γ
(︃
mi + 1

2

)︃

which completes the proof.

Remark 13. The general form of the mixed moments based on the stochastic
decomposition was known to Cambanis et al. [1983] (Section 4) and is mentioned
also in Fang et al. [1990] (Section 7.3). However, the moments of the uniform and
Dirichlet distribution are not found there (presumably because integer moments
do not exist) and the fact that raw mixed moments depend only on the sum of
the exponents was left unnoticed by them. Our result seems to be original.

10See Example 2.
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Example 15 can be used to derive sufficient and necessary conditions for char-
acteristic functions from S(n, 1). The main idea is to shift the problem to com-
pletely monotone functions which resembles Corollary 7.

Theorem 31. A function ψ : [0,∞) → R belongs to S(n, 1) if and only if

ϕ(s) =
∫︂ ∞

0
ψ(rs)g(r) dr (3.31)

is completely monotone11 on [0,∞).The function g used in (3.31) is defined in
Example 15 and takes the form

g(r) = 2Γ (n)
Γ2
(︂

n
2

)︂ rn−1

(1 + r2)n
, r > 0.

Proof. Using Theorem 7 completely monotone functions are equivalent to
Laplace transforms of non-negative random variables. As in Example 15 de-
note Z d= R0Y a stochastic decomposition of a vector Z of i.i.d. Cauchy ran-
dom variables and g is the density of R0 and suppose X ∼ S(n, 1, ψ) with
a stochastic decomposition X d= RY is independent of Z, i.e. ψ ∈ S(n, 1). Then
R0X

d= R0RY d= RZ and R0X ∈ S(n, 1) with the characteristic generator ϕ.
Similarly, we may write the characteristic function of RZ as∫︂ ∞

0
e−u∥t∥1 dF (u), t ∈ Rn,

where F is the distribution function of R. Since R0X
d= RZ we obtain

ϕ(s) =
∫︂ ∞

0
e−su dF (u)

and ϕ is a Laplace transform of the random variable R.
Conversely, let ψ : [0,∞) → R be a function such that

ϕ(s) =
∫︂ ∞

0
ψ(rs)g(r) dr, s ≥ 0,

is a completely monotone function. Using Theorem 7 we may find a non-negative
random variable R such that ϕ can be rewritten as

ϕ(s) =
∫︂ ∞

0
e−rs dF (r), s ≥ 0,

where F is a cumulative distribution function of R. Thus we may write∫︂ ∞

0
ψ(rs)g(r) dr =

∫︂ ∞

0
e−sr dF (r), s ≥ 0. (3.32)

The right-hand side of (3.32) is a characteristic generator of a random vector RZ
where R and Z are independent and Z1, . . . , Zn are i.i.d. Cauchy. If we apply the
stochastic decomposition from Theorem 27 then RZ d= RR0Y. The function g
is the density of the random variable R0 (Example 15). We know that RR0Y is

11See Definition 5.
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1-symmetric and by Theorem 16 we have that RY is 1-symmetric since E Rit
0 ̸= 0

for almost all t. The characteristic generator ψ of RY must satisfy (3.32).

The discussion following Lemma 13 underlines the inclusion S(n, 1) ⊂ S(m, 1)
for m < n. The inclusion can be further characterized by the respective stochastic
decompositions in both dimensions.

Theorem 32. Let X(n) d= R(n)Y(n) be an n-dimensional 1-symmetric random
vector with a stochastic decomposition from Theorem 27 with an m-dimensional
subvector X(m) which is also 1-symmetric and possesses a stochastic decomposi-
tion R(m)Y(m). Then

R(m) d= R(n)

√︄
V1

V2

where V1, V2 ∼ Beta(m
2 ,

n−m
2 ) are independent of R(n).

Proof. The proof of the theorem uses the relationship for subvectors of the uni-
form and Dirichlet distribution. If (U1, . . . , Un)′ has a uniform distribution on the
unit sphere, then (U2

1 , . . . , U
2
n)′ ∼ Dirn(1

2 , . . . ,
1
2) (Fang et al. [1990], Theorem 1.5).

Let Z = (Z1, . . . , Zn)′ = (Z(1), . . . ,Z(k))′ ∼ Nn(0, In) where Z(1), . . . , Z(k)

are subvectors of dimensions n1,. . . , nk, n1 + · · · + nk = n. Then Z/∥Z∥2 has
a uniform distribution on the unit sphere and we may rewrite it as(︄

Z(1)

∥Z∥2
, . . . ,

Z(k)

∥Z∥2

)︄′

=
(︄

∥Z(1)∥2

∥Z∥2

Z(1)

∥Z(1)∥2
, . . . ,

∥Z(k)∥2

∥Z∥2

Z(k)

∥Z(k)∥2

)︄′

.

Since Z(1), . . . , Z(k) are independent and ∥Z(i)∥2 is independent of Z(i)/∥Z(i)∥2,
each vector Z(i)/∥Z(i)∥2 has a uniform distribution on the unit sphere in Rni (Fang
et al. [1990], Theorem 2.6). Moreover, we have(︄

∥Z(1)∥2
2

∥Z∥2
2
, . . . ,

∥Z(k)∥2
2

∥Z∥2
2

)︄′

∼ Dirk

(︃
n1

2 , . . . ,
nk

2

)︃

as ∥Z(1)∥2
2, . . . , ∥Z(k)∥2

2 are independent χ2-distributed. Therefore, let Y(1),. . . ,
Y(k) be independent primitives of S(n1, 1), . . . , S(nk, 1), respectively. Moreover,
denote V(1),V(2) ∼ Dirk(n1

2 , . . . ,
nk

2 ) independent of all Y(i). Then the vector
⎛⎜⎝
⌜⃓⃓⎷V

(1)
1

V
(2)

1
Y(1), . . . ,

⌜⃓⃓⎷V
(1)

k

V
(2)

k

Y(k)

⎞⎟⎠
′

has a primitive distribution on S(n, 1). Since V
(1)

1 , V
(2)

1 ∼ Beta(n1
2 ,

n−n1
2 ) the

proof is completed.

Remark 14. Fang et al. [1990] (Lemma 7.6) derived the density of
√︂
V1/V2 where

V1, V2 ∼ Beta(m
2 ,

n−m
2 ) are independent.
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The result by Gneiting [1998] can be used to derive sufficient conditions for
S(n, 1) based on the sufficient conditions for S(n, 2) which are known as Askey’s
theorem – let ϕ : [0,∞) → R be a continuous function satisfying ϕ(0) = 1,
limt→∞ ϕ(t) = 0 and (−1)kϕ(k)(t) ≥ 0 is convex for k = ⌊n

2 ⌋. Then ϕ ∈ S(n, 2).
In the one-dimensional case, n = 1 the criterion is known as Pólya’s theorem.

Theorem 33. Let ψ : [0,∞) → R be a continuous function such that ψ(0) = 1,
limt→∞ ψ(t) = 0 and ψ(2n−2)(t) is convex. Then ψ ∈ S(n, 1).

Proof. Our aim is to use Theorem 29 in combination with the representation of
the m-times monotone functions from Theorem 8. If ψ satisfies the assumptions
of Theorem 33 it is (2n− 1)-times monotone (Remark 2) and we may find a non-
negative random variable R such that

ψ(s) =
∫︂ ∞

0
(1 − sr)2n−1

+ dF (r), s ≥ 0,

where F is the cumulative distribution function of R. Thus, we will apply Theo-
rem 29 only to Kuttner-Golubov functions (1 − t)δ

+ (Example 8).
A function (1 − t)δ

+ ∈ S(n, 2) if and only if δ ≥ ⌊n
2 ⌋ + 1 (Gneiting [1998])

which means (1 − t)δ
+ ∈ S(2n− 1, 2) if and only if δ ≥ n− 1. Furthermore, since

the anti-derivative of (1 − t)δ
+ is equal to (1 − t)δ+1

+ up to a constant, Theorem 29
implies that (1 − t)δ ∈ S(n, 1) if and only if δ ≥ 2n− 1.

Zastavnyi [2000] further expanded Askey’s and Gneiting’s sufficient conditions
into general α-symmetry, i.e. (Rn, ∥ · ∥α) or other quasi-normed spaces, more in
Section 3.4.

3.3 Class S(n, α) for n ≥ 3
Non-triviality of S(2, α) for any 0 < α ≤ ∞ can be established through sym-
metric 1-stable distributions and vectors of i.i.d. symmetric α-stable random
variables (Section 3.1). Higher-dimensional α-symmetric random vectors were
known only for α ≤ 2. Firstly, we characterize S(∞, α) = ∩∞

n=1S(n, α) using
complete monotonocity. Then we shall focus on classes S(3, α), α > 2, as it is
the smallest trivial class (in terms of dimensionality).

The results by Bretagnolle et al. [1966] for S(∞, α) show that the stable
distributions are a natural extension of the normal distribution not just in terms
of independence (Example 6 and Theorem 15) but also in terms of dimensionality.
Schoenberg proved that ψ ∈ S(∞, 2) if and only if there exists a non-negative
distribution λ such that

ψ(u) =
∫︂ ∞

0
e−tu2

dλ(t)

which for any n ∈ N corresponds to the characteristic generator of a random
vector

√
WZ where W has a distribution λ, Z is n-dimensional standard normal

independent of W (Fang et al. [1990], Section 2.6). The following theorem is an
analogue by Bretagnolle et al. [1966] formulated in terms of random variables.
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Theorem 34. The function ψ belongs to S(∞, α), α ≤ 2, if and only if there
exists a non-negative random variable R with a cumulative distribution function
F such that

ψ(u) =
∫︂ ∞

0
e−ruα

dF (r), u ≥ 0.

If α > 2 then S(∞, α) = {1}.

Corollary 7. We have a nice characterization of S(∞, α), α ∈ (0, 2], from Sub-
section 1.1.2. By Theorem 7, a function ψ(u) ∈ S(∞, α) if and only if ψ(u 1

α )
is completely monotone and ψ(0) = 1. Completely monotone functions have by
Theorem 7 an integral representation through a non-negative random variable
with a cumulative distribution F as

s ↦→
∫︂ ∞

0
e−sr F (r), s ≥ 0.

Theorem 34 replaces s by uα.
Example 17. A non-trivial example (one which is not stable with a character-
istic generator equal to e−zα) of a completely monotone function and therefore
a member of S(∞, α), α ∈ (0, 2], is the so called generalized α-symmetric Linnik
distribution (one-dimensional version is defined in Devroye [1990]). Denote for
α ∈ (0, 2] and β ∈ (0,∞) its characteristic generator

ψα,β(u) = 1
(1 + uα)β

, u ≥ 0.

Since ψ1,β is completely monotone (Miller and Samko [2001]) and ψ1,β(0) = 1 we
have ψα,β ∈ S(∞, α).

Denote Yα the random vector with a characteristic function e−∥t∥α
α , t ∈ Rn,

and let Vβ ∼ Gamma(β, 1) be a random variable with a density

1
Γ(β)v

β−1e−v, v > 0.

Then X = V
1
α

β Yα is α-symmetric with a characteristic generator (Theorem 16)
ψα,β since for t ∈ Rn

E eit′X = E E
[︃
exp

{︃
it′
(︃
V

1
α

β Yα

)︃}︃ ⃓⃓⃓⃓
Vβ

]︃
= E exp {−Vβ∥t∥α

α}

=
∫︂ ∞

0
exp {−(1 + ∥t∥α

α)u} 1
Γ(β)u

β−1 du

= 1
(1 + ∥t∥α

α)β
.

The moments of the Gamma distribution are equal to

E V
m
α

β =
∫︂ ∞

0

1
Γ(β)v

m
α

+β−1e−v dv =
Γ(m

α
+ β)

Γ(β)

which may be combined with Example 2. Using Lemma 11 we get that (1 +
uλ)−β ∈ S(∞, α) for 0 < λ ≤ α ≤ 2 as we may take Yλ with a characteristic
function e−∥t∥λ

α , t ∈ Rn, and V
1
λ

β as above.
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For a random vector X ∼ S(n, α, (1 + uλ)−β) there is a stochastic decompo-
sition

X d= V
1
λW

1
α Z

where V ∼ Gamma(β, 1), W is non-negative λ
α
-stable (1.2) and Y is composed of

i.i.d. symmetric α-stable random variables, all jointly independent.
Khokhlov et al. [2020] linked the univariate mixing variable V 1

λW
1
α to the

generalized Mittag-Leffler distribution. For β = 1, α = λ = 2 the distribution of
X is known as the multivariate Laplace distribution.

The moments of X are for m1, . . . ,mn ∈ (0, α), m1 + · · · +mn = m < λ equal
to

E
(︄

n∏︂
k=1

|Xk|mk

)︄
= E V

m
λ E W

m
α

n∏︂
k=1

E (|Zk|mk)

=
Γ(m

λ
+ β)

Γ(β)
Γ
(︂
1 − m

λ

)︂
Γ
(︂
1 − m

α

)︂ n∏︂
k=1

Γ(1 − mk

α
)

cos(mk
π
2 )Γ(1 −mk) .

This example is a new extension to the one-dimensional Linnik distribution de-
fined by Devroye [1990] and the multivariate spherical Linnik distribution defined
by Khokhlov et al. [2020].

Triviality of S(3, α), α > 2, was shown independently by Zastavnyi [1992] and
Lisitkii. The following formulation (in terms of norm dependent positive-definite
functions) is due to Zastavnyi. The criterion set by Zastavnyi [1992] holds not
only for (Rn, α), n ≥ 3, α > 2, but for even for C(0, 1) and Lα, α > 2.

Let us first state two lemmas which will be helpful to prove Zastavnyi’s main
result (Theorem 37). Contrary to Zastavnyi the theory of random variables will
be used directly for clarity of some arguments.
Lemma 35. Let ϕ be a real characteristic function such that ϕ′(t) exists for each
t ̸= 0 and limt→0

ϕ′(t)
t

= 0. Then ϕ is constant on R.

Proof. Since limt→0
ϕ′(t)

t
= 0, the limit limt→0 ϕ

′(t) = 0 which means ϕ′(0) =
limt→0

ϕ(t)−ϕ(0)
t

= limt→0 ϕ
′(ξ(t)) = 0 by the mean-value theorem (Rudin [1976],

Theorem 5.10) and ξ(t) lies between 0 and t, i.e. limt→0 ξ(t) = 0. Thus we may
find the second derivative:

ϕ′′(0) = lim
t→0

ϕ′(t) − ϕ′(0)
t

= lim
t→0

ϕ′(t)
t

= 0.

By Theorem 4 the variance of the corresponding random variable is equal to 0
and the random variable must be constant and almost surely zero. The charac-
teristic function is thus constant.

Lemma 36. Let (E, ∥ · ∥) be a real normed space, f(∥ · ∥) be a characteristic
function on (E, ∥ · ∥) and let g : [0,∞) → [0,∞) be a continuously differentiable
function with a compact support satisfying

∫︁∞
0 g(t) dt = 1. Denote

F (t) =
∫︂ ∞

0
f(ts)g(s) ds, t > 0.

Then
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(i) F (∥ · ∥) is a characteristic function,

(ii) F has continuous derivatives on (0,∞),

(iii) limt→0+ tF
′(t) = 0 and there exists c > 0 such that |tF ′(t)| < c on (0,∞),

(iv) F being constant implies that f is also constant,

(v) if limt→0+ f
′(t) = 0, then limt→0+ F

′(t) = 0 and there exists c1 > 0 such
that |F ′(t)| < c1 for t > 0.

Proof. For properties (i) and (v), denote X a random vector such that f(∥ · ∥)
is its characteristic function and let Y be an independent real random variable
with a density g. The characteristic function of YX is F (∥ · ∥) (the procedure is
similar as in Theorem 16). If F is constant (equal to 1), then YX is almost surely
zero and since Y is independent and absolutely continuous the random vector X
is almost surely zero, and f is constant. That concludes (i) and (v).

Now for the derivatives in (iii)

F (t) =
∫︂ ∞

0
f(ts)g(s) ds y=ts= 1

t

∫︂ ∞

0
f(y)g

(︃
y

t

)︃
dy

which for t > 0 by the differentiation of a product satisfy:

F ′(t) = − 1
t2

∫︂ ∞

0
f(y)g

(︃
y

t

)︃
dy − 1

t3

∫︂ ∞

0
f(y)g′

(︃
y

t

)︃
y dy

which is continuous (proving part (ii) of this theorem). Rewriting again

tF ′(t) =
∫︂ ∞

0
f(ts) [g(s) + g′(s)s] ds t→0+→ f(0)

∫︂ ∞

0
g(s) + g′(s)s ds.

The last integral is equal to 0 since (sg(s))′ = g(s) + sg′(s) and g has a compact
support, i.e. sg(s) = 0 for some s sufficiently large and sg(s) → 0 as s → 0+
since

∫︁∞
0 g(s) ds = 1. That concludes the proof of (ii) and the first half of (iii).

The boundedness of tF ′(t) in (iii) is shown by setting c = f(0)
∫︁∞

0 |g(s) +
g′(s)s| ds as

|F ′(t)t| ≤
∫︂ ∞

0
|f(ts)||g(s) + g′(s)s| ds

and f(0) ≥ |f(t)| since f is a continuous positive definite function (Lemma 3).
For the derivative of F ′ assume that the compact support of g is covered by the
interval (0, a]. Then

|F ′(t)| =
⃓⃓⃓⃓
⃓
∫︂ ∞

0

f(0) − f(ts)
ts

s [g(s) + g′(s)s] ds
⃓⃓⃓⃓
⃓

≤ sup
x∈[0,at]

⃓⃓⃓⃓
⃓f(x) − f(0)

x

⃓⃓⃓⃓
⃓
∫︂ ∞

0
s|g(s) + g′(s)s| ds

which tends to zero as t → 0+ if f ′(0) = 0 since the integral is finite. Moreover,
since F ′ is continuous, F ′(t)t is bounded and limt→0+ F

′(t) = 0 (if limt→0+ f
′(t) =

0) then F ′ is also bounded for t > 0. That concludes (v).
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For the main theorem let us first state some properties of the norm:
Since ∥·∥ is a norm (in particular a positive homogeneous function of order 1),

its partial derivative G(t, y1, y2) = ∂
∂t

∥ta3 + y1a1 + y2a2∥ satisfies

G(kt, ky1, ky2) = lim
ε→0

∥(kt+ ε)a3 + ky1a1 + ky2a2∥ − ∥kta3 + ky1a1 + ky2a2∥
ε

= lim
ε→0

|k|
∥(t+ ε

k
)a3 + y1a1 + y2a2∥ − ∥ta3 + y1a1 + y2a2∥

k · ε
k

= sgn k ·G(t, y1, y2)

for k ̸= 0. Furthermore, G(t, y1, y2) is defined for almost all (t, y1, y2)′ ∈ R3

since the norm is convex. The function is also bounded |G(t, y1, y2)| ≤ ∥a3∥
for any (t, y1, y2)′ in the domain of G by a combination of convexity and the
triangular inequality. Assumptions of Theorem 37 will be checked for the α-
norms in Corollary 8.

Theorem 37. Let (E, ∥ · ∥) be a normed space with dimension at least 3 and
assume there exist three linearly independent a1, a2, a3 ∈ E. Define the functions

H(y1, y2) = G(1, y1, y2)
∥a3 + y1a1 + y2a2∥

, G(t, y1, y2) = ∂

∂t
∥ta3 + y1a1 + y2a2∥.

Furthermore, assume that H(y1, y2) is integrable on R2 and let ψ(∥ · ∥) : E → R
be a continuous positive definite function. Then ψ is constant.

Proof. The proof is done in several steps:
Take any positive definite continuous function ψ(∥ · ∥) : E → R, then

ψ̃ : (t, y1, y2)′ ↦→ ψ(∥ta3 + y1a1 + y2a2∥), (t, y1, y2)′ ∈ R3,

is a continuous positive definite continuous function on R3 which depends on the
norm (t, y1, y2)′ ↦→ ∥ta3+y1a1+y2a2∥. Denote X the random vector corresponding
to ψ̃. Using Lemma 36 with some g (a density of some random variable Y
independent of X), denote Ψ(∥ · ∥) the characteristic function of YX.

Moreover, let us take a random vector Zε, ε > 0, independent of Y and X
with an integrable characteristic function h(z1, z2)e−ε|z3|, where h is an integrable
positive definite function. The density f of YX + Zε exists (the characteristic
function ϕε of is YX + Zε integrable) and is equal to (Theorem 2)

f(x) = 1
(2π)3

∫︂
R3
e−ix′tΨ(∥t3a3 + t1a1 + t2a2∥)h(t1, t2)e−ε|t3| dt1dt2dt3, x ∈ R3.

For x = (0, 0, s)′ the function f̃ : s ↦→ f(0, 0, s) is non-negative

f̃(s) = 1
(2π)3

∫︂
R
e−ist3e−ε|t3|

∫︂
R2

Ψ(∥t3a3 + t1a1 + t2a2∥)h(t1, t2) dt1dt2 dt3.

If we perceive the function f̃ as a density (up to a constant) of some random vec-
tor, the characteristic function of such vector is equal to (using again Theorem 2)

t3 ↦→ e−ε|t3|
∫︂
R2

Ψ(∥t3a3 + t1a1 + t2a2∥)h(t1, t2) dt1dt2, t3 ∈ R (3.33)
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up to a constant. As the function (3.33) is positive definite for any ε > 0, we
may take a limit ε → 0+ and the result will also be positive definite. Denote the
limit

ϕ(t) =
∫︂
R2

Ψ(∥ta3 + t1a1 + t2a2∥)h(t1, t2) dt1dt2, t ∈ R. (3.34)

Let us find the derivative of ϕ at point t ̸= 0. Using Lemma 36 the derivative
of Ψ exists and |tΨ(t)| is bounded and G is bounded. Then

ϕ′(t) =
∫︂
R2

Ψ′(∥t1a1 + t2a2 + ta3∥)G(t, t1, t2)h(t1, t2) dt1dt2
yk=tk/t= sgn t · t2

∫︂
R2

Ψ′(|t| · ∥a3 + y1a1 + y2a2∥)G(1, y1, y2)h(ty1, ty2) dy1dy2.

We aim to evaluate |ϕ′(t)/t| for t ̸= 0: Denote

Q(t, y1, y2) = Ψ′(|t| · ∥a3 + y1a1 + y2a2∥) · |t| · ∥a3 + y1a1 + y2a2∥.

Then for r ̸= 0 we shall split R2 into two sets: Br = {(y1, y2)′ ∈ R2 : ∥y1a1 +
y2a2∥ ≤ r} and its complement R2 \Br. The ratio |ϕ′(t)/t| is estimated as⃓⃓⃓⃓

⃓ϕ′(t)
t

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓∫︂
R2
Q(t, y1, y2)H(y1, y2)h(ty1, ty2) dy1dy2

⃓⃓⃓⃓
≤
∫︂

Br

|Q(t, y1, y2)H(y1, y2)h(ty1, ty2)| dy1dy2

+
∫︂
R2\Br

|Q(t, y1, y2)H(y1, y2)h(ty1, ty2)| dy1dy2.

Each integral will be treated differently. The function h is bounded by h(0, 0) = 1
and |Q(t, y1, y2)| ≤ sup |sΨ′(s)| where the supremum is taken over s satisfying
0 ≤ s = |t| · ∥a3 + y1a1 + y2a2∥ ≤ |t|(∥a3∥ + r). The first integral is bounded from
above by

sup
0≤s≤|t|(r+∥a3∥)

|Ψ′(s)s| ·
∫︂

Br

|H(y1, y2)| dy1dy2.

The second can be furthermore bounded by the constant c satisfying |Ψ′(t)t| ≤ c
for t ̸= 0 from Lemma 36. That concludes⃓⃓⃓⃓

⃓ϕ′(t)
t

⃓⃓⃓⃓
⃓ ≤ sup

0≤s≤|t|(r+∥a3∥)]
|Ψ′(s)s| ·

∫︂
Br

|H(y1, y2)| dy1dy2

+ c
∫︂
R2\Br

|H(y1, y2)| dy1dy2. (3.35)

As from Lemma 36

lim sup
t→0

sup
0≤s≤|t|(r+∥a3∥)

|Ψ′(s)s| ·
∫︂

Br

|H(y1, y2)| dy1dy2 = 0

we have that the lim supt→0

⃓⃓⃓
ϕ′(t)

t

⃓⃓⃓
is bounded only by the second part of (3.35)

lim sup
t→0

⃓⃓⃓⃓
⃓ϕ′(t)
t

⃓⃓⃓⃓
⃓ ≤ c ·

∫︂
R2\Br

|H(y1, y2)| dy1dy2
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which holds for any r > 0. Thus, for r → ∞ and since H is assumed to be
integrable, the limit is zero

lim
t→0

ϕ′(t)
t

= 0.

The upper limit of the first integral of (3.35) is equal to zero based on
Lemma 36. The inequality holds for all r > 0 and we may pass r → ∞ by
which (since H is assumed to be integrable) we get the limit limt→0 ϕ

′(t)/t = 0.
With the help of Lemma 35 a random variable with a characteristic function ϕ is
trivial.

Lemma 35 states that

ϕ(t) =
∫︂
R2

Ψ(∥ta3 + t1a1 + t2a2∥)h(t1, t2) dt1dt2, t ∈ R (3.36)

is thus constant. Our aim is to use a similar approach as in Lemma 36 (espe-
cially (iv)) again in order to prove that Ψ is constant. For that set hn(t1, t2) =
n2(1 − n|t1|)+(1 − n|t2|)+ which is a continuous positive definite non-negative
function with a support [0, 1

n
]2 and∫︂

R2
n2(1 − n|t1|)+(1 − n|t2|)+ dt1dt2

xi=nti=
∫︂
R2

(1 − |x1|)+(1 − |x2|)+ dx1dx2 = 1.

Using hn, n ∈ N, we create ϕn, n ∈ N, as in (3.36). Since all ϕn, n ∈ N, follow
(3.36), all are constant. We can rewrite

ϕn(t) =
∫︂
R2

Ψ(∥ta3 + t1a1 + t2a2∥)hn(t1, t2) dt1dt2,

=
∫︂
R2

Ψ(∥ta3 + t1a1 + t2a2∥)n2(1 − n|t1|)+(1 − n|t2|)+ dt1dt2

xi=nti=
∫︂
R2

Ψ
(︃⃓⃓⃓⃓⃓⃓⃓⃓
x1a1 + x2a2

n
+ ta3

⃓⃓⃓⃓⃓⃓⃓⃓)︃
(1 − |x1|)+(1 − |x2|)+ dx1dx2

= ϕn(0).

As n → ∞, the last integral tends to∫︂
R2

Ψ
(︃⃓⃓⃓⃓⃓⃓⃓⃓
x1a1 + x2a2

n
+ ta3

⃓⃓⃓⃓⃓⃓⃓⃓)︃
(1 − |x1|)+(1 − |x2|)+ dx1dx2

n→∞→ Ψ(∥ta3∥).

In conclusion, Ψ(∥ta3∥) = Ψ(0) as it is a point limit of constant functions.
Lemma 36 concludes the proof and finally, both Ψ and ψ are constant func-
tions.

Corollary 8. Let us check that (R3, ∥ · ∥α), α > 2, satisfies the assumptions of
Theorem 37. For α-norms, i.e. for 1 ≤ α ≤ ∞ the function H is equal to

H(y1, y2) = 1
1 + |y1|α + |y2|α

which is integrable over R2 if α > 2.
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Now for α = ∞ the function G is equal to

G(t, y1, y2) =

⎧⎨⎩0, |t| < max{|y1|, |y2|},
sign t, |t| > max{|y1|, |y2|}

which means H(y1, y2) = G(1, y1, y2) = 1(max{|y1|, |y2|} < 1). The function H
is integrable and S(n,∞) for n ≥ 3 is trivial.

Therefore, the class S(3, α), 2 < α ≤ ∞, is trivial. If we combine this
result, the fact that vectors of i.i.d. symmetric α-stable random variables are
α-symmetric for α ≤ 2, and the inclusion property of classes S(n, α) (discussed
under Lemma 13), we obtain an important result: for n ≥ 3 the class S(n, α) is
trivial if and only if α > 2.

The implications of Theorem 37 will be discussed in terms of pseudo-isotropy
in Chapter 4. Now we may look at Theorem 23, its proof repeats some steps of
the proof of Theorem 37 until the estimation of (3.38).
Proof of Theorem 23. Let us again take some ψ : [0,∞) → R such that ψ(∥ · ∥)
is positive definite on E and limt→0+ ψ(t) = 0. Thus, (t, y)′ ↦→ ψ(∥ta1 + ya2∥) is
a positive definite function on R2 depending on the norm (t, y)′ ↦→ ∥ta1 + ya2∥ of
some random vector X. Using Lemma 36 let us create a characteristic function
Ψ(∥ · ∥) (of a random vector YX where Y has a density g). The function Ψ
also satisfies limt→0+ Ψ(t) = 0 (Lemma 36, part (v)). Further, let h(z2)e−ε|z1|,
(z1, z2)′ ∈ R2, be a characteristic function of random vector Zε, ε > 0, indepen-
dent of X and Y .

The density of YX + Zε is equal to (Theorem 2)

f(x1, x2) = 1
(2π)2

∫︂
R2
e−i(x1t1+x2t2)Ψ(∥t1a1 + t2a2∥)h(t2)e−ε|t1| dt1dt2.

Then f(s, 0) is equal to

s ↦→ 1
(2π)2

∫︂
R
e−st1e−ε|t1|

∫︂
R

Ψ(∥t1a1 + t2a2∥)h(t2) dt2 dt1

and such function can be viewed as a density of a random variable (up to a con-
stant) whose characteristic function (up to a constant) is equal to

t ↦→ e−ε|t|
∫︂
R

Ψ(∥ta1 + t2a2∥)h(t2) dt2

due to Theorem 2. By limiting ε → 0+ the function is still continuous positive
definite:

ϕ(t) =
∫︂
R

Ψ(∥ta1 + xa2∥)h(x) dx. (3.37)

As in Theorem 37, the derivative of ϕ is equal to

ϕ′(t) =
∫︂
R

Ψ′(∥ta1 + xa2∥)G(t, x)h(x) dx
y=x/t= sgn t · |t|

∫︂
R

Ψ′(|t| · ∥a1 + ya2∥)G(1, y)h(ty) dy.

For the estimation of |ϕ′(t)/t| we shall separately consider 0 < y < r/∥a2∥
and r/∥a2∥ < y < ∞ for some r > 0. Then since G(1, y) is integrable and
1 = h(0) ≥ |h(x)| we obtain

63



⃓⃓⃓⃓
⃓ϕ′(t)
t

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓∫︂
R

Ψ′(|t| · ∥a1 + ya2∥)G(1, y)h(ty) dy
⃓⃓⃓⃓

≤ sup
0≤|t|(r+∥a1∥)

|Ψ′(s)|
∫︂
R

|G(1, y)| dy + c1

∫︂ ∞

|y|> r
∥a2∥

|G(1, y)| dy. (3.38)

Lemma 36 ensures that Ψ′ is bounded and Ψ′(t) t→0+→ 0. As

lim sup
t→0

⃓⃓⃓⃓
⃓ϕ′(t)
t

⃓⃓⃓⃓
⃓ ≤ c1

∫︂ ∞

|y|> r
∥a2∥

|G(1, y)| dy

for any r > 0, we can take r → ∞ which means |ϕ′(t)/t| → 0 as t → 0. Therefore,
ϕ must be constant. The rest of the proof follows the same steps as the proof of
Theorem 37.

Among other results concerning higher-dimensional α-symmetric distributions
was the proof of triviality of S(3,∞) by Misiewicz [1989]. The proof uses the
density derived in Theorem 20. This result is covered by Theorem 37.

3.4 Sufficient Conditions for S(n, α)
The section follows the generalization of Askey’s and Gneiting’s sufficient condi-
tions (Theorem 29) for the characteristic functions which are based on Kuttner-
Golubov and Schoenberg characteristic generators. The most important result of
this section is the connection between the constants λ(n, α) and σ(n, α). Recall
how the constants σ(n, α), λ(n, α) and δ(λ;n, α) are defined in Example 7 and
Example 10:

σ(n, α) = sup{β ∈ [0, 2] : exp{−tβ} ∈ S(n, α)}, (3.39)
λ(n, α) = sup{λ ∈ (0, 2] : (1 − tλ)δ

+ ∈ S(n, α) for some δ > 0}, (3.40)
δ(λ;n, α) = inf{δ > 0 : (1 − tλ)δ

+ ∈ S(n, α)}, (3.41)

and δ(λ) = δ(λ; 1, 2) as the one-dimensional case.
Example 20 and Example 21 present additional possibilities of generating

β-symmetric random vectors from α-symmetric random vectors. First, let us es-
tablish a connection between Schoenberg and Kuttner-Golubov problems (Theo-
rem 46 by Zastavnyi [2000] established a less direct approach shown in Section 4).
Example 18. Let λ(n, α) > 0 as defined in (3.40), then we can show λ(n, α) ≤
σ(n, α) using the following computation. Let Xδ be a random vector with a char-
acteristic function φλ,δ(∥t∥α) = (1 − ∥t∥λ

α)δ
+, t ∈ Rn, for λ > 0 and δ > 0 and

let V ∼ Gamma(δ + 1, 1) be independent of X. Denote g the density of V , then
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V − 1
λ Xδ is α-symmetric with a characteristic generator

∫︂ ∞

0
φλ,δ

(︂
tv− 1

λ

)︂
g(v) dv =

∫︂ ∞

tλ

(︄
1 − tλ

v

)︄δ 1
Γ(δ + 1)v

δe−v dv

= 1
Γ(δ + 1)

∫︂ ∞

tλ
(v − tλ)δe−v dv

= e−tλ
∫︂ ∞

0

1
Γ(δ + 1)s

δe−s ds

and e−tλ ∈ S(n, α) which means if 0 < λ(n, α) then 0 < λ(n, α) ≤ σ(n, α).
The result is connected to Example 8 as for a random variable Bµ ∼ Beta(δ+

1, µ) the limit of µBµ as µ → ∞ has a distribution Gamma(δ + 1, 1) just as V
(Hasebe [2014]). As was established in Example 8,

Xδ+µ
d= B

− 1
λ

µ Xδ

which means
µ− 1

λ Xδ+µ
d= (µBµ)− 1

λ Xδ
d→ V − 1

λ Xδ.

The limit of µ− 1
λ Xδ+µ where Xδ+µ has a characteristic function (1 − ∥t∥λ

α)δ+µ
+ ,

t ∈ Rn, can be found as a point-wise limit of the characteristic functions of
µ− 1

λ Xδ+µ

lim
µ→∞

(︄
1 − ∥t∥λ

α

µ

)︄δ+µ

+
= e−∥t∥λ

α

which is the characteristic function of V − 1
λ X. This relationship between Kuttner-

Golubov and Schoenberg function was (in a different context) mentioned in Jasi-
ulis [2010] (without the connection to the limit behavior of the Beta distribution).

Let us look in detail at the properties of λ(n, α) and δ(λ;n, α) (defined in
(3.40) and (3.41)). The following theorem and its proof can be found partly in
Zastavnyi [2000]. The univariate properties of δ(λ) = δ(λ; 1, 2) are taken from
Gneiting et al. [2001].

Theorem 38. Let λ(n, α) > 0. Then λ ↦→ δ(λ;n, α), for 0 < λ < λ(n, α), is
a continuous increasing function satisfying:

(i) (1 − uλ)δ
+ ∈ S(n, α) if and only δ ≥ δ(λ;n, α).

(ii) For λ > λ(n, α) and any δ > 0 the function (1 − uλ)δ
+ /∈ S(n, α).

(iii) Generally, limλ→0+ δ(λ;n, α) > 0 and limλ→0+ δ(λ) > 0.4279.

(iv) There are only two possible situations for λ0 = λ(n, α). Either (1 −uλ0)δ
+ /∈

S(n, α) for any δ > 0 and

lim
λ→λ0−

δ(λ;n, α) = ∞.

Or the limit is finite and λ ↦→ δ(λ;n, α) is continuous on (0, λ0]. Namely
λ(1, 2) = 2 but limλ→2− δ(λ) = ∞.
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Remark 15. Several authors established lower and upper bounds for δ(λ), λ ∈
(0, 2). Gneiting et al. [2001] found numerical lower bounds and δ(2 − 1

k
) ≤ k for

any odd k ∈ N. Further, δ(λ) ≤ 1 for λ ∈ (0, 1].
We have established that λ(n, α) ≤ σ(n, α) if λ(n, α) > 0. From Theorem 37

we have λ(n, α) = σ(n, α) = 0 for n ≥ 3 and α > 2 as S(n, α) is trivial. Theo-
rem 23 establishes λ(2, α) ≤ 1 and σ(2, α) = 1 for α > 2.

The goal of the next theorem is the following: to show λ(n, α) = α for n ≥ 2
and α ≤ 2 in order to prove λ(n, α) = σ(n, α) for any n ∈ N and 0 < α ≤ ∞.12

Further, we aim to obtain simplification of δ(α;n, α) using δ(α) by Zastavnyi
[2000].

Theorem 39. Let (Rn, ρ) be a quasi-normed space, λ, δ > 0 and D ⊂ Rn such
that {ux : u ≥ 0,x ∈ D} = Rn. For x ∈ D denote

fx(u) = 1
Γ(δ + 1)uδ+1

∫︂
Rn
e−uρλ(t)eit′x dt, u > 0.

Then (1 − ρ(t)λ)δ
+, t ∈ Rn, is positive definite if and only if fx is completely

monotone for each x ∈ D.

Proof. Denote for x ∈ D

gx(v) = v
n
λ

+δ
∫︂
Rn

(1 − ρλ(s))δ
+e

iv
1
λ s′x ds ti=v

− 1
λ si=

∫︂
Rn

(v − ρλ(t))δ
+e

it′x dt, v > 0.

Then Theorem 1 and Theorem 7 outline the equivalent conditions for positive
definite and completely monotone functions. The following statements are equiv-
alent:

(i) (1 − ρ(t)λ)δ
+, t ∈ Rn, is positive definite;

(ii) g̃(x) =
∫︁
Rn(1 − ρ(t)λ)δ

+ eix′t dt is non-negative for any x ∈ Rn;

(iii) the function gx(v) = g̃(v 1
λ x) ≥ 0 for any v > 0 and x ∈ D;

(iv) the Laplace transform of gx is completely monotone for any x ∈ D.

Equivalence of the first and second statements is a consequence of Theorem 2
relating densities and characteristic functions. Equivalence of (ii) and (iii) is due
to the definition of D. Statements (iii) and (iv) are equivalent via Corollary 2
which connects non-negative functions and completely monotone functions. We
shall further use the equivalence of (i) and (iv).

12The proof of λ(2, α) ≥ 1 for α ≥ 1 is omitted for brevity but σ(2, α) = λ(2, α) = 1 for
α > 2 (and can be found in Zastavnyi [1992]).
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Fix any x ∈ D. Let us now find a Laplace transform of the function gx then
for u > 0 ∫︂

R
e−vugx(v) dv =

∫︂ ∞

0
e−vu

∫︂
Rn

(v − ρλ(t))δ
+e

it′x dt dv

s=v−ρλ(t)=
∫︂ ∞

0
e−u(s+ρλ(t))

∫︂
Rn
sδeit′x dt ds

=
∫︂
Rn
eit′xe−uρλ(t)

∫︂ ∞

0
sδe−su ds dt

= 1
Γ(δ + 1)uδ+1

∫︂
Rn
eit′xe−uρλ(t) dt

= fx(u)

and the statement is proven through equivalence of (iv) and (i).

Corollary 9. Theorem 39 can be used to derive the already established Theo-
rem 33 which sets sufficient conditions for the class S(n, 1) through the function
(1 − u)δ

+.
We aim to use it for (Rn, ∥ · ∥α), α < 2. For that denote

hλ,x(u) =
∫︂
Rn
e−u|x|λeitx dt, u > 0,

and (1 −|u|λ)δ
+ is positive definite if and only if u−δ−1hλ,x(u) is completely mono-

tone for any x ∈ R, i.e. δ ≥ δ(λ) if and only if u−δ−1hλ,x(u) is completely mono-
tone for any x ∈ R. Now for ρ = ∥ · ∥α and λ = α the function fx defined by
Theorem 39 is equal to

fx(u) = 1
Γ(δ + 1)uδ+1

∫︂
Rn
e−u∥t∥α

αeit′x dt

= 1
Γ(δ + 1)uδ+1

n∏︂
k=1

∫︂
Rn
e−u|tk|αeitkxkdtk

= 1
Γ(δ + 1)uδ+1

n∏︂
k=1

hα,xk
(u)

= 1
Γ(δ + 1)

n∏︂
k=1

u− δ+1−n
n

−1hα,xk
(u)

therefore (1 − uα)δ
+ ∈ S(n, α), α ∈ (0, 2) if and only if δ+1−n

n
≥ δ(α), i.e. δ ≥

nδ(α) + n− 1.
The Kuttner’s function δ(λ) (2.8) thus gives bounds for sufficient conditions

for non-trivial S(n, α) in terms of m-times monotone functions for some m ≥ 0.
Theorem 40 excludes α = 2 as δ(2) is not suitable for Theorem 40 (Theorem 39,
part (iv)). Sufficient conditions for S(n, 2) were formulated differently (e.g. as
mentioned in the discussion above Theorem 33).

Theorem 40. Let 0 < λ ≤ α < 2, m = nδ(α) + n− 1 and f : [0,∞) → R be an
m-times monotone function such that f(0) = 1. Then f(tλ) ∈ S(n, α).
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Proof. First, let us simplify the proof: we may only work with Kuttner-Golubov
functions (1 − uλ)δ

+, u ≥ 0 (Example 8). For any m-times monotone function
f : [0,∞) → R we have an integral representation as

f(u) =
∫︂ ∞

0
(1 − ur)m

+ dF (r) (3.42)

where F is a cumulative distribution function of some random variable R (Theo-
rem 8). If we prove the statement for (1−u)m

+ , the representation from Theorem 8
will solve any other m-times monotone function.

Corollary 9 states that (1 − uα)m ∈ S(n, α) if and only if m ≥ nδ(α) + n− 1.
By Example 10 if (1 − uλ)δ

+ ∈ S(n, α), then also (1 − uµ)δ
+ ∈ S(n, α) for µ ≤ λ.

Thus, we may implement m = nδ(α) + n− 1 for any λ ∈ (0, α], since Corollary 9
ensures that (1 − uα)m ∈ S(n, α) if and only if m ≥ nδ(α) + n − 1. Moreover,
Example 18 implies λ(n, α) ≤ σ(n, α) and for n ≥ 2 and α < 2 the Schoenberg
constant is equal to σ(n, α) = α. However, λ(n, α) ≥ α as from Corollary 9 we
may find δ so that (1 − uα)δ

+ ∈ S(n, α). Thus, σ(n, α) = λ(n, α) = α for n ≥ 2
and α < 2.

To put it together, Corollary 9 implies that for m = nδ(α) + n − 1 the
function (1 − uα)m

+ ∈ S(n, α) for α < 2 and n ≥ 2. Example 10 shows that
(1 − uλ)m

+ ∈ S(n, α) for any λ ∈ (0, α]. As any m-times monotone function with
f(0) = 1 can be represented through (3.42), the function

f(uλ) =
∫︂ ∞

0
(1 − ruλ)m

+ = dF (r)

is a characteristic generator from S(n, α) where the last step is done using The-
orem 16.

Example 19. We may compare two random vectors with Kuttner-Golubov charac-
teristic generators for α < 1 and α ∈ (1, 2), other bivariate random vectors with
Kuttner-Golubov characteristic generators are discussed in Example 24. Uni-
variate moments are computed in Example 9.

Let (X1, X2)′ be a 1
3 -symmetric random vector with a characteristic function

(1 − |t1|
1
3 − |t2|

1
3 )3

+, (t1, t2)′ ∈ R2, the parameters are set in order to satisfy
Theorem 40. Figure 3.4 shows the density of (X1, X2)′.

Let (Z1, Z2)′ be a 5
3 -symmetric random vector with a characteristic function

(1 − |t1|
5
3 − |t2|

5
3 )7

+, (t1, t2)′ ∈ R2 where the parameters where chosen so that
7 = 2 ·3+2−1 ≥ 2 · δ(2− 1

3)+2−1 and that Remark 15 is satisfied. The density
is shown in Figure 3.5.

The following examples show how to generate α-symmetric random vectors
which are not mixtures of i.i.d. α-stable random variables, both are mentioned in
Misiewicz [1996], Section II.4.
Example 20. Let X be an n-dimensional α-symmetric random vector with a char-
acteristic generator φ. Denote

Z1 =
(︃
D

− 1
α

1 X1, . . . , D
− 1

α
n Xn

)︃′
,

Z2 =
(︃
D

− 1
α

1 X1, . . . , D
− 1

α
1 Xn

)︃′
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Figure 3.4: The density of (1 − |t1|
1
3 − |t2|

1
3 )3

+, (t1, t2)′ ∈ R2, and its contours.
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Figure 3.5: The density of (1 − |t1|
5
3 − |t2|

5
3 )7

+, (t1, t2)′ ∈ R2, and its contours.

where D = (D1, . . . , Dn)′ ∼ Dirn(1
2 , . . . ,

1
2) independent of X. Since Z2 is α-

symmetric (Theorem 16), denote its characteristic generator ψ. Let us show that
ψ ∈ S(n, α

2 ). For t ∈ Rn by the law of total probability

ψ(∥t∥α) = E eit′Z2

= E E
[︄
eiD

− 1
α

1 t′X|D1

]︄

= E φ
(︃
D

− 1
α

1 ∥t∥α

)︃
.
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Similarly, for t ∈ Rn using the law of total probability and (3.17)

E eit′Z1 = E E
[︄
exp

{︄
i

n∑︂
k=1

tkD
− 1

α
k Xk

}︄ ⃓⃓⃓⃓
D
]︄

= E φ

⎛⎝(︄ n∑︂
k=1

|tk|α

Dk

)︄ 1
α

⎞⎠
= E φ

⎛⎝D− 1
α

1

(︄
n∑︂

k=1
|tk|

α
2

)︄ 2
α

⎞⎠
= E φ

(︃
D

− 1
α

1 ∥t∥α
2

)︃
= ψ

(︂
∥t∥α

2

)︂
which means ψ ∈ S(n, α

2 ).
Remark 16. Since the uniform distribution on the unit Euclidean sphere Sn−1

is the primitive distribution in S(n, 2) (Example 5), Example 20 applied to the
uniform distribution the unit sphere in Rn resembles the primitive distribution
in S(n, 1). Cambanis et al. [1983] assumed that if we apply the technique of
Example 20 we may obtain a primitive in S(2, 1

2) which would be(︄
U1

B1
√
B2
,

U2

(1 −B1)
√

1 −B2
,

)︄′

(3.43)

where (U1, U2)′ is uniformly distributed on the unit circle in R2, independent
of B1, B2 ∼ Beta(1

2 ,
1
2). In the same article, they disproved that (3.43) is the

primitive of S(2, 1
2) and were not able to find any factorization of (3.43), i.e. a two-

dimensional distribution such that (3.43) is a scale mixture of such distribution
with a non-constant scaling variable.

The next example follows similar arguments as above but combines it with
Lemma 11.
Example 21. Let X be an n-dimensional α-symmetric random vector with a char-
acteristic generator φ. Denote

V1 =
(︃
Z

1
α
1 X1, . . . , Z

1
α
n Xn

)︃
,′

V2 =
(︃
Z

1
α
1 X1, . . . , Z

1
α
1 Xn

)︃′

where Z1, . . . , Zn are i.i.d. non-negative β
α
-stable random variables independent

of X with a Laplace transform (1.2), β < α. The stability of random variables
implies

n∑︂
k=1

tkZk
d= ∥t∥ β

α
Z1, t1, . . . , tn > 0.

Again the vector V2 is α-symmetric and its characteristic function is equal to

ψ(∥t∥α) = E eit′V2

= E φ
(︃
Z

1
α
1 ∥t∥α

)︃
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and the characteristic function of V1 is equal to

E eit′V1 = E E
[︄
exp

{︄
i

n∑︂
k=1

tkZ
1
α
k Xk

}︄ ⃓⃓⃓⃓
Z1, . . . , Zn

]︄

= E φ

⎛⎝(︄ n∑︂
k=1

⃓⃓⃓⃓
tkZ

1
α
k

⃓⃓⃓⃓α)︄ 1
α

⎞⎠
= E φ

(︃
Z

1
α
1

(︂
∥t∥α

β

)︂ 1
α

)︃
= E φ

(︃
Z

1
α
1 ∥t∥β

)︃
= ψ(∥t∥β)

and ψ ∈ S(n, β).
Remark 17. For each α > 0 and n ≥ 2 the set ⋂︁β<α S(n, β) is trivial. If we take
any ψ ∈ ⋂︁

β<α S(n, β), then also ψ ∈ S(2, β) for any β. Then for any t, s ∈ R the
limit is

lim
β→0+

ψ(∥(t, s)∥β) =

⎧⎪⎪⎨⎪⎪⎩
ψ(|t|) s = 0
ψ(|s|) t = 0
ψ(∞) s, t ̸= 0

which is continuous positive definite if and only if ψ is constant.

71



4. Pseudo-Isotropic Distributions
This chapter aims to derive a generalization to α-symmetry where the α-norm
may be replaced by a general quasi-norm (Definition 9). Several results of the
previous chapters may be reviewed and the α-norm may be replaced by a general
quasi-norm without any change in the proof. Theorem 37 and Theorem 23 were
already formulated in terms of norm-dependent positive definite continuous func-
tions and directly relate to pseudo-isotropy. The topic is divided into three parts:
general properties of pseudo-isotropic distributions, two-dimensional cases, and
higher-dimensional distributions. Several simple properties of pseudo-isotropy
are shown, and more complicated results are omitted for brevity.

Let us first use a general definition of pseudo-isotropy as a reformulation of
the Eaton problem (2.1)

t′X d= γ(t)X1, t ∈ Rn, (4.1)

where X is non-degenerate, i.e. the linear span of the support of X is the whole
space. By (4.1) we automatically assume γ(e1) = γ((1, . . . , 0)′) = 1. We already
know (Theorem 10) that if γ permits a Blaschke-Lévy representation (1.8)

γα(t) =
∫︂

Sn−1
|t′x|α dµ(x), t ∈ Rn

for some α ∈ (0, 2], then γ is a suitable standard for some symmetric α-stable
random vector X with a characteristic function e−γα(t), t ∈ Rn. We can show
that X is pseudo-isotropic, since for any t ∈ Rn the characteristic function of the
random variable Y = t′X is

E eiuY = E eiut′X = e−γα(ut), u ∈ R. (4.2)

On the other hand the characteristic function of γ(t)X1 is equal to

E eiuγ(t)X1 = E eiuγ(t)e′
1X = e−|u|αγα(t)γ(e1)α

, u ∈ R. (4.3)

The characteristic functions (4.2) and (4.3) are equal since e1 = (1, . . . , 0)′ and
γ(e1) = 1 so that the Blaschke-Lévy representation implies positive homogeneity
of γ. As in Example 7 we can define a generalized Schoenberg constant for a quasi-
normed space (Rn, γ) as

σ(n, γ) = sup
{︂
β ∈ (0, 2] : e−γβ(t), t ∈ Rn, is positive definite

}︂
. (4.4)

If X is pseudo-isotropic and ψ is the characteristic function of X1 then

E eit′X = E eiγ(t)X1 = ψ(γ(t)), t ∈ Rn. (4.5)

We may extend the definition of characteristic generators S(n, α) into S(n, γ) as
functions ψ : [0,∞) → R such that ψ(γ(t)), t ∈ Rn, is a characteristic function
of some n-dimensional random vector. In terms of the notation from Chapter 2
we have S(n, α) ≡ S(n, ∥ · ∥α).

Conversely, assume that γ : Rn → [0,∞) is a non-trivial function satisfying
γ(yt) = yγ(t) for any t ∈ Rn, y ≥ 0, and ψ : [0,∞) → C is a continuous
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non-constant function such that ψ(γ(t)), t ∈ Rn, is a positive definite function.
Under these assumptions Zastavnyi [2000] showed that γ must be even and ψ(| · |)
is a positive definite function. The following properties of standards are found in
Misiewicz [1996], Section II.2, and Kuritsyn [1992].

Theorem 41. Let γ : Rn → [0,∞) satisfy (4.1) for a non-degenerate random
vector X then

(i) γ is an even continuous function.

(ii) γ(t) = 0 if and only if t = 0.

(iii) The function is positive homogeneous, i.e. γ(yt) = |y|γ(t), t ∈ Rn, y ∈ R.

(iv) For any n-dimensional norm ρ there exist constants m,M,K > 0 such that
for any t1, t2 ∈ Rn

mρ(t1) ≤ γ(t1) ≤ Mρ(t1), (4.6)
γ(t1 + t2) ≤ K(γ(t1) + γ(t2)). (4.7)

Proof. For any t ∈ Rn, t ̸= 0, pseudo-isotropy implies

γ(t)X1
d= t′X = −(−t′X) d= −γ(−t)X1

which means |γ(t)| = |γ(−t)| and since γ > 0 the function is even. The continuity
of the function γ can be proven by contradiction. Assume γ is not continuous at
t0 ∈ Rn and there exists tn

n→∞→ t0 such that γ(tn) does not converge to γ(t0).
However, t′

nX d→ t′
0X which means γ(tn)X1

d→ γ(t0)X1 and by the assumption
of contradiction γ(tn) ̸→ γ(t0). The sequence {γ(tn)} is either bounded (then
there is a subsequence with a finite limit and the limit must be equal to γ(t0)
as γ(tn), γ(t0) > 0) or there is a subsequence with an infinite limit (which also
contradicts γ(tn)X1

d→ γ(t0)X1). That concludes (i).
Clearly, γ(0) = 0 and by contradiction if γ(t) = 0, t ̸= 0, then t′X d= 0 and

the random vector is degenerate since X ∈ {x ∈ Rn : t′x = 0} almost surely. For
any t ∈ Rn and y ≥ 0 we have

γ(yt)X1
d= (yt)′X = y t′X d= y γ(t)X1.

In combination with evenness of γ this implies positive homogeneity from (ii).
For the last statement denote Sρ = {x ∈ Rn : ρ(x) = 1} the unit sphere in

(Rn, ρ) and
m = min

t∈Sρ

γ(t), M = max
t∈Sρ

γ(t)

which exist and are positive since γ is continuous and positive on Sρ which is
compact and 0 /∈ Sρ. Then for any t ∈ Rn \ {0},

γ(t) = ρ(t)γ
(︄

t
ρ(t)

)︄
= ρ(t)γ(x)
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for some t/ρ(t) = x ∈ Sρ. The inequality (4.7) is proven by setting K = M
m

∈
(0,∞) since m > 0 and M < ∞. Then for t1, t2 ∈ Rn

γ(t1 + t2) ≤ Mρ(t1 + t2) ≤ Mρ(t1) +Mρ(t2)
≤ mKρ(t1) +mKρ(t2) ≤ K(γ(t1) + γ(t2)).

Remark 18. Continuity of the standard is usually skipped as trivial and not
shown. Kuritsyn [1992] in his proof of continuity stated that since the standard
γ is defined on Rn it is bounded on compact sets. His argument is enhanced in
the proof above.

Thus, any suitable standard γ is a quasi-norm. We may revisit isometric
embedding from Subsection 1.2.1. Lemma 42 is taken from Zastavnyi [2000].

Lemma 42. Let (Rn, γ1) and (Rn, γ2) be two quasi-normed spaces which are
isometric. Then S(n, γ1) = S(n, γ2).

We have already stated S(2, 1) = S(2,∞), another example of isometry be-
tween norms utilizes elliptical distributions (whose unit balls are ellipsoids). Such
norms in Rn can be written as γ(t) =

√
t′At for some positive definite n×n ma-

trix A and we have S(n, 2) = S(n, γ). Elliptical distributions are discussed in
Fang et al. [1990].

The following two statements show that the standard is (almost) uniquely
determined by the random vector and its sum (Misiewicz [1996], Section II.2).

Theorem 43. Let X be a pseudo-isotropic random vector. Then its standard γ
is uniquely determined.

Proof. Let γ1, γ2 : Rn → [0,∞) be two standards of the random vector X
which satisfy γ1(e1) = γ2(e1) = 1. If γ1(t) ̸= γ2(t) for some t ∈ Rn, t ̸= 0,
then γ1(t)X and γ2(t)X do not have the same distribution (since the standard is
positive). However, γ1(t)X d= t′X d= γ2(t)X which contradicts γ1(t) ̸= γ2(t) as
γ1(t), γ2(t) > 0.

Theorem 44. Let X1 and X2 be two n-dimensional pseudo-isotropic random
vectors such that X = X1 + X2 is also pseudo-isotropic. Denote the respective
characteristic functions of X1, X2 and X as ψ1(γ1(t)), ψ2(γ2(t)), and ψ(γ(t)),
t ∈ Rn, and the standards are γ1, γ2, and γ, respectively. Then either γ1 = γ2 = γ
or there exist constants 0 < m1 < m2 < ∞ and a function γ̃ : (0,∞)2 → (0,∞)
such that

ψ1(pu)ψ2(qu) = ψ(γ̃(p, q)u), u > 0,
for any m1 ≤ p

q
≤ m2.

Proof. If the standards are equal we can rewrite the characteristic generator of
the sum as ψ1(t)ψ2(t) with γ as the standard. From Theorem 43 the standard is
unique since we have normalized the standards and γ1(e1) = γ2(e1) = γ(e1) = 1.
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Otherwise set g(t) = γ1(t)/γ2(t) which is continuous and positive for t ∈
Rn \ {0}. Denote m1 = min{g(t) : t ∈ Sn−1} and m2 = max{g(t) : t ∈ Sn−1}.
Set p, q > 0 such that m1 ≤ p

q
≤ m2 and find t ∈ Rn such that g(t) = p

q
and

γ̃(p, q) = qγ(t)
γ2(t) . Then for any u > 0 we have

ψ1(pu)ψ2(qu) = ψ1 (uq · g(t))ψ2 (uq)

= ψ1

(︄
qu
γ1(t)
γ2(t)

)︄
ψ2

(︄
qu
γ2(t)
γ2(t)

)︄

= ψ1

(︄
γ1

(︄
qu

γ2(t)t
)︄)︄

ψ2

(︄
γ2

(︄
qu

γ2(t)t
)︄)︄

,

ψ(γ̃(p, q)u) = ψ

(︄
γ

(︄
qu

γ2(t)t
)︄)︄

where the right-hand sides are equal from pseudo-isotropy since they both repre-
sent a characteristic function of X1 + X2 at point qu

γ2(t)t.

Similarly, as in Theorem 21 the pseudo-isotropic random vector is bounded if
and only if it is elliptical (i.e. γ(t) =

√
t′At for some positive definite matrix A,

more in Fang et al. [1990], Definition 2.2) and assuming no atom at origin each
hyperplane has a zero probability (see Lemma 17). The proofs in both theorems
are analogous to the ones presented for α-symmetric vectors.

4.1 Two-Dimensional Pseudo-Isotropy
Theorem 12 already stated that any two-dimensional norm ρ(t1, t2) is a standard
of a symmetric 1-stable random vector with a characteristic function e−ρ(t1,t2), i.e.
σ(2, ρ) ≥ 1 for any norm where σ(2, ρ) is defined in (4.4). Quasi-norms which
are not norms (their unit ball are not convex) must satisfy σ(2, ρ) < 1 (in line
with Theorem 12). Theorem 23 by Zastavnyi [1992] gives some conditions for the
two-dimensional pseudo-isotropy. Integrability of

H(y) = ∂

∂t
ρ(ta1 + ya2)

⃓⃓⃓⃓
t=1

can be checked for other than α-norms.
Example 22. The assumption of integrability is satisfied e.g. for norms whose unit
ball is not strictly convex (Zastavnyi [1992]). For that we have to evaluate the
condition of integrability outside the origin. Since the unit ball is not strictly
convex we can find two linearly independent vectors b1,b2 such that ρ(ub1 +(1−
u)b2) = 1 for each u ∈ (0, 1). Denote a1 = b1 + b2 and a2 = b2 − b1. Then for
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any y ∈ (1,∞) and ε ∈ (0, y − 1) we have

ρ((1 + ε)a2 + ya1) = ρ((y − 1 − ε)b1 + (y + 1 + ε)b2)

= 2y · ρ
(︄
y − 1 − ε

2y b1 + y + 1 + ε

2y b2

)︄
= 2y

= 2y · ρ
(︄
y − 1

2y b1 + y + 1
2y b2

)︄
= ρ(a2 + ya1)

which means

H(y) = ∂

∂t
ρ(ta1 + ya2)

⃓⃓⃓⃓
t=1

= lim
ε→0+

ρ((1 + ε)a2 + ya1) − ρ(a2 + ya1)
ε

= 2y − 2y = 0.

Thus, if ρ is a two-dimensional norm which is not strictly convex we have

σ(2, ρ) = 1.

Theorem 23 ensures that non-strictly convex norms satisfy σ(2, ρ) ≤ 1 and The-
orem 12 implies σ(2, ρ) ≥ 1 for any norm.
Remark 19. Let (X1, X2)′ be a two-dimensional pseudo-isotropic random vector
such that E |X1| < ∞, i.e. E X1 = 0 since X1 is symmetric, then its characteristic
generator satisfies ψ′(0) = 0.1 Then norms that satisfy the conditions of Theo-
rem 23 thus cannot be norms of pseudo-isotropic random vectors with finite first
moments.
Example 23. As shown in Theorem 12 two-dimensional norms are characterized
by σ(2, ρ) ≥ 1 and the following statements are equivalent (as mentioned above
Theorem 39)

(i) (R2, ρ) is a normed space,

(ii) σ(2, ρ) ≥ 1,

(iii) (1 − u)δ
+ ∈ S(2, ρ) for δ ≥ 3.

Example 24. Let us compare the densities corresponding to characteristic gen-
erators (1 − u)3

+ ∈ S(2, α) for different values of α ≥ 1. We may notice in
Figure 4.1 that in the case of α = 1, the distribution is more concentrated on the
axes although for higher α the distribution is concentrated on the diagonals (due
to the isometry from Example 3). Spherically symmetric (α = 2) characteristic
functions define spherically symmetric densities which is not the case for other α.

We may also implement (1 − u)3
+ for other norms, e.g.

ρ(t1, t2) =

⎧⎨⎩∥(t1, t2)′∥2 t1 · t2 ≥ 0,
∥(t1, t2)′∥∞ t1 · t2 < 0.

(4.8)

1See Theorem 4.
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The unit ball of ρ resembles an eye. The marginal density corresponding to all
these distributions is equal to 3(−2+t2+2 cos(t))

πt4 , t ∈ R, and moments are found in
Example 9.
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Figure 4.1: Contours of densities of a bivariate pseudo-isotropic vector with
a characteristic generator (1 − t)3

+, t ∈ R2, for ∥ · ∥1, ∥ · ∥2, ∥ · ∥10 and ρ as
defined in (4.8).

4.2 Higher-Dimensional Pseudo-Isotropy
Pseudo-isotropy in more than two dimensions can be again perceived in terms of
isometric embedding (essentially creating stable pseudo-isotropic random vectors)
or with Theorem 37 which was formulated for norms. Zastavnyi [1992] offered an
extension of Theorem 37 for some quasi-norms.

77



Corollary 10. Let γ : Rn−1 → [0,∞), n ≥ 2 be a quasi-norm, and denote

γα(x1, . . . , xn) = (|x1|α + γα(x2, . . . , xn))
1
α , (x1, . . . , xn)′ ∈ Rn

for α > 2. By setting a3 = e1, a1 = e2, and a2 = e3, the function H(y1, y2) from
Theorem 37 is equal to

H(y1, y2) = 1
1 + γα(y1, y2, 0, . . . , 0)

which is integrable for α > 2 as γ(y2, y3, 0, . . . , 0) is a two-dimensional quasi-norm.
Lemma 42 states that for isometric quasi-normed spaces, the classes of suitable

characteristic generators coincide. By that, we may characterize all norms in Rn

induced by an inner product.
Example 25. Let (Rn, ρ) be a normed space which satisfies the parallelogram rule

2(ρ2(x) + ρ2(y)) = ρ2(x + y) + ρ2(x − y), x,y ∈ Rn,

then (Rn, ρ) is isometric with the space (Rn, ∥ · ∥2) and thus S(n, ρ) = S(n, 2)
and in conclusion σ(n, ρ) = σ(n, 2) = 2 and λ(n, ρ) = λ(n, 2) = 2.

From Zastavnyi [2000] we have the converse implication and the statements

(i) λ(n, ρ) = 2,

(ii) σ(n, ρ) = 2,

(iii) (Rn, ρ) and (Rn, ∥ · ∥2) are isometric

are equivalent.
If for a pseudo-isotropic vector there exists some fractional moment of the one-

dimensional marginal variable, the situation is much simpler since the isometric
embedding of (Rn, γ) into Lα can be used.2

Theorem 45. Let X = (X1, . . . , Xn)′ be a non-trivial pseudo-isotropic random
vector with a standard γ vector such that E |X1|ε < ∞ for some ε > 0. Then
there exists a maximal α ∈ (0, 2] and a finite symmetric measure µ on Sn−1 such
that

γα(t) =
∫︂

Sn−1
|t′x|α dµ(x), t ∈ Rn.

Proof. We can take E |X1|p < ∞ for 0 < p ≤ min{ε, 2} into

E |t′X|p = γp(t) E |X1|p < ∞

for any t ∈ Rn. Denote c = E |X1|p ∈ (0,∞) then

γp(t) = 1
c

E |t′X|p

=
∫︂
Rn

|t′x|p 1
c
dPX(x)

2See Subsection 1.2.1.
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where PX is the distribution of X. Theorem 9 implies that e−γp(t), t ∈ Rn,
is a characteristic function of some symmetric p-stable random vector. Denote
α = sup{p ∈ (0, 2] : e−γp(t) is positive definite}, then e−γα(t) is a positive definite
continuous function (it is a limit of positive definite functions and also continu-
ous) and γ has a Blaschke-Lévy representation (1.8) for α ∈ (0, 2] which is by its
definition maximal.

The previous theorem seems simple but has several consequences:
Theorem 45 for example implies that it is impossible to construct a non-

trivial pseudo-isotropic random vector (X1, . . . , Xn)′ with a finite expectation and
a standard γ with a non-convex contours (unit balls). That is because Theorem 45
implies the space (Rn, γ) embeds to some L1-space which is a normed space. The
triangle inequality can be checked with the Blaschke-Lévy representation (1.8):
If a function γ can be represented as

γ(t) =
∫︂

Sn−1
|t′x| dµ(x), t ∈ Rn,

for some finite symmetric Borel measure µ on Sn−1, then for t1, t2 ∈ Rn we have

γ(t1 + t2) =
∫︂

Sn−1
|(t1 + t2)′x| dµ(x)

≤
∫︂

Sn−1
|t′

1x| + |t′
2x| dµ(x)

= γ(t1) + γ(t2)

and γ is a norm (by Definition 9). There are several corollaries of Theorem 45 in
terms of stability.
Corollary 11. The Blaschke-Lévy representation which was obtained in the pre-
vious theorem implies that under the assumptions of Theorem 45 the function
e−γα(t) is a characteristic function of a symmetric α-stable random vector.

The theorem bears a resemblance to the generalized central limit theorem.
Kuritsyn [1992] showed that under the assumption that X1 lies in the region
of attraction of some α-stable random variable and X is a non-trivial pseudo-
isotropic random vector with a standard γ, then γ possesses the Blaschke-Lévy
representation with said α. The connection between moments and the region of
attraction of stable distributions is discussed in Tucker [1975].

On the other hand by a contrapositive of Theorem 45 if γ does not have
a Blaschke-Lévy representation for any α ∈ (0, 2] then it cannot have any moment
finite.

Even though the assumption of the finiteness of E |X1|ε for some ε > 0 in
Theorem 45 seems weak, it was attempted to find a general proof of the existence
of a Blaschke-Lévy representation for any suitable standard. This problem (i.e.
the question if any suitable standard has a Blaschke-Lévy representation) remains
open.3

Corollary 12. The existence of fractional moments of X1 is linked to the integral
of the characteristic function.4 Thus, let ψ(γ(·)) be a characteristic function

3As stated in the most recent article Koldobsky [2011].
4See Corollary 1.
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of a pseudo-isotropic random vector X with a standard γ such that ψ(| · |) is
a characteristic function of X1. Thus, E |X1|ε < ∞ for some ε ∈ (0, 2] holds if
and only if (Corollary 1) ∫︂ ∞

0

1 − ψ(t)
t1+ε

dt < ∞. (4.9)

Since characteristic functions are uniformly continuous and bounded,5 the
integral condition (4.9) can be reformulated in terms of the behavior of ψ in the
neighborhood of origin, i.e. the moment of order ε > 0 exists if for some u > 0,
C > 0 and δ ∈ (ε, 2]

|1 − ψ(t)| ≤ Ctδ, t ∈ (0, u).
This condition was known to Koldobsky [1991] without the connection to

moments but Koldobsky used it only to derive the finiteness of (4.9). By that
the results are essentially equivalent to Misiewicz [1996], Theorem II.2.6.

The following theorem does not assume the existence of a pseudo-isotropic
random vector with a given standard however, it assumes a certain limit behavior
of some characteristic function near the origin. The limit bears resemblance to
Corollary 1 of the existence of moments E |t′X|µ.

Theorem 46. Let X be a random vector on a quasi-normed space (Rn, ρ) with
a characteristic function φ which for some µ > 0 and β > 0 satisfies

lim
u→0+

1 − φ(ut)
uµ

= βρµ(t) (4.10)

for each t ∈ Rn. Then e−uµ ∈ S(n, ρ) and µ ≤ σ(n, ρ).

The proof of Theorem 46 uses several properties of positive definite functions
and can be found in Zastavnyi [2000].
Corollary 13. Theorem 46 implies a similar result for a general quasi-normed
space (Rn, ρ) as it was derived directly in Example 18 such that

λ(n, ρ) ≤ σ(n, ρ) ≤ 2

where λ(n, ρ) is defined analogously to λ(n, α) in (2.8).
Koldobsky and Lonke [1999] implemented the proof of Theorem 37 by Zas-

tavnyi [1992] in order to obtain a second-derivative test for the isometric embed-
ding of three-dimensional normed spaces.

Theorem 47. Let (E, ρ) be a three-dimensional normed space with a normalized
basis e1, e2, e3 and for fixed (x2, x3)′ ∈ R2 denote gx2,x3(t) = ρ(te1 + x2e2 + x3e3).

Assume that gx2,x3 has continuous second derivatives on R and g′
x2,x3(0) =

g′′
x2,x3(0) = 0. Moreover, assume that there exists a constant C > 0 such that for

any (x2, x3)′ ∈ R2, ρ(x2e2 + x3e3) = 1, the function g′′
x2,x3 is bounded by C on R.

Then the function e−ρβ(t) is not positive definite for any β ∈ (0, 2].

The proof of Theorem 47 can be found in Koldobsky and Lonke [1999] and
follows similar steps as Theorem 37. Theorems such as Theorem 47 are useful for
norms that are defined implicitly.

5See Lemma 3.
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Example 26. The α-norm can be generalized into Orlicz norms. Let M : [0,∞) →
[0,∞) a non-decreasing convex function such that M(0) = 0 and M(t) > 0 for
any t > 0. The Orlicz norm ∥ · ∥M is defined implicitly as

n∑︂
k=1

M

(︄
|xk|

∥x∥M

)︄
= 1, x = (x1, . . . , xn)′ ∈ Rn \ {0}.

For M(t) = tα the Orlicz norm is the α-norm (1.4).
Koldobsky [1997b] found that for Orlicz norms satisfying M ′(0) = M ′′(0) = 0

all conditions of Theorem 47 are satisfied and e−∥t∥β
M , t ∈ Rn, is not a character-

istic function for n ≥ 3 for any β > 0.
A weaker condition than the existence of moments is E | log |X1|| < ∞. If X is

a non-trivial pseudo-isotropic random vector with a standard γ and E | log |X1|| <
∞ then there exist a finite measure ν on Sn−1 and C > 0 such that

log γ(t) = C +
∫︂

Sn−1
log |t′x| dν(x), t ∈ Rn. (4.11)

This integral representation was linked to isometric embedding into L0 spaces as
defined in Kalton et al. [2007]. Koldobsky [2011] found a proof of the following
statement without the additional condition E | log |X1|| < ∞.

Theorem 48. Let (Rn, ρ) be a quasi-normed space such that there exists a non-
constant continuous function f : [0,∞) → R such that f(ρ(x)), x ∈ Rn, is
positive definite. Then ρ can be written as

log γ(t) = C +
∫︂

Sn−1
log |t′x| dν(x), t ∈ Rn. (4.12)

for some finite measure ν and C > 0.

Remark 20. Theorem 48 is necessary but not sufficient since all three-dimensional
spaces (Rn, ∥ · ∥α), α > 2, embed in L0 (Kalton et al. [2007]). However, the class
S(3, α), α > 2, is trivial as shown in Theorem 37. The condition (4.12) in
Theorem 48 is thus necessary but not sufficient.
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Conclusion
This thesis presented the problem of the existence of α-symmetric distributions
and their properties. The concept of α-symmetry naturally generalizes spherically
symmetric (also called radial or isotropic) distributions, expanding the charac-
terization through projections. Thus, the α-symmetric distributions are defined
through their characteristic functions. Only a few examples are widely known,
among them are the vectors of i.i.d. symmetric α-stable random variables for
α ≤ 2. It is known that stable distributions are power-tail heavy and their mo-
ments exist only for orders less than α. The thesis derives a connection between
α-symmetric distributions and their moments and presents several examples of
α-symmetry, including several new ones.

Chapter 1 summarized the two tools mentioned above: the relationship be-
tween characteristic functions and moments of non-integer order. Further, it
defined symmetric stable distributions in Rn. Symmetric stable distributions and
the link between stable distributions and isometric embedding of quasi-normed
spaces are presented. The definition and basic properties of α-symmetric dis-
tributions can be found in Chapter 2, where the theory concerning the density
of α-symmetric distributions is presented. Specific classes of n-dimensional α-
symmetric distributions for pairs of n ∈ N and 0 < α ≤ ∞ are discussed in
Chapter 3.

Non-trivial two-dimensional α-symmetric distributions exist for any α. Con-
trary, higher-dimensional α-symmetric distributions are non-trivial if and only if
α ≤ 2. Section 3.2 is dedicated to 1-symmetric distributions with a special place
among α-symmetric distributions. For other pairs of dimension n and index α,
only sufficient conditions for characteristic functions are available.

Similarly, as α-symmetry generalizes spherical symmetry by replacing the Eu-
clidean norm in the definition with an α-norm, we may further generalize the
problem to pseudo-isotropic distributions where the α-norm is replaced by a gen-
eral quasi-norm in Chapter 4. The necessary conditions for pseudo-isotropy are
formulated in terms of isometric embeddings.

Stable multivariate distributions have numerous applications (many of them
mentioned in Uchaikin and Zolotarev [1999]). Stable α-symmetric distributions
and their mixtures can be used in limit theorems: Khokhlov et al. [2020] used
elliptically symmetric Linnik distribution as a limit of a random sum of ran-
dom variables where the number of summands has a particular negative binomial
distribution. Pseudo-isotropy (and α-symmetry in particular) can be used in
any setting where we are interested in the distribution of linear combinations.
A particular application of pseudo-isotropy in portfolio theory was developed by
Framstad [2015]. Spherically and elliptically symmetric distributions are also
widely used e.g. in regression.

Misiewicz and Ryll-Nardzewski [1987] explored a generalization of pseudo-
isotropy to general Banach spaces and Jasiulis and Misiewicz [2008] further con-
nected pseudo-isotropy to weak stability (a generalization of stability). The most
recent result is by Misiewicz and Volkovich [2020].

There are several open problems concerning pseudo-isotropy in Rn:

1. Is there a stochastic decomposition for multivariate α-symmetric distribu-
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tions other than α = 1, 2?

2. Is there a stochastic decomposition for multivariate pseudo-isotropic distri-
bution for a given quasi-norm?

3. Does it generally hold λ(n, γ) = σ(n, γ) for any quasi-norm γ in finite-
dimensional quasi-normed spaces?

4. Does any pseudo-isotropic standard in Rn have a Blaschke-Lévy represen-
tation?
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