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Introduction
The continuing advances in experimental atomic spectroscopy lead to ever increas-
ing precision of position of atomic spectral lines. This opens up the possibility
to test our fundamental theories of nature [1]. This demands high precision of
atomic structure calculation. In particular the relativity has to be incorporated
into the calculation from the very beginning. However it has been known, that
the correct relativistic Hamiltonian describing electrons, particles with spin 1/2,
is not positive definite. This leads to the oscillatory behaviour of energies with
increasing basis size. In this thesis we aim to investigate this phenomenon. We
introduce the finite Foldy-Wouthyusen transformation (FWT) and investigate its
properties.

The thesis is organized as follows in section 1.1 we summarize the basic fea-
tures of the solution of Dirac Equation for particle moving in spherically sym-
metric potential. In section 2.1 we propose the finite FWT, give an illustrative
example and describe general algorithm. In section 3 we discuss results obtained
by this method in the case of cesium and hydrogen atom.
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1. Solution of Dirac Equation in
finite basis

1.1 Dirac Equation for particle moving in spher-
ical symmetric potential

Within the framework of shell model the motion of electron in atom is described
by Dirac equation [2]

ĤDψ = Eψ , (1.1)
where the Dirac Hamiltonian reads in natural units (h̄ = c = 1)

ĤD = γ0γ⃗ · P⃗̂P + γ0me − Zα

R
+ VHF (R) . (1.2)

Here γ’s denote Dirac matrices in Dirac representation

γ0 =
(︄

1 0
0 −1

)︄
(1.3)

and
γ⃗ =

(︄
0 σ⃗

−σ⃗ 0

)︄
, (1.4)

where σ’s are well-known Pauli matrices and 1 stands for unit matrix dimension
2 × 2. Further Z and α = 137.0359991−1 [3] denote atomic number and fine
structure constant and me stands for electron mass. Furthermore VHF stands for
Hartree-Fock potential. This potential is averaged potential caused by all other
electrons in atom.

Further, it is advantageous to make transformation to scaled atomic units [2]

R⃗ = r⃗

meZα
, P⃗̂P = meZαp⃗̂p , (1.5)

and subtract from Hamiltonian the constant corresponding to the electron rest
mass me. Eqs. (1.1), (1.2), are transformed to equations

ĥDψ = εψ , ĥD = ĤD −me

me(Zα)2 , (1.6)

where

ĥD = ẑ + vHF , ẑ = 1
Zα

γ0γ⃗ · p⃗̂p+ γ0 − 1
(Zα)2 − 1

r
(1.7)

and ε is electron energy in atomic units.
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1.2 Integrals of motion
It is known, see e.g. [4], that there are three operators commuting with Dirac
Hamiltonian for a particle described by Eq.(1.1): the square, Ĵ2, and the third
component, Ĵz, of the total angular momentum given by the sum of orbital and
spin angular momentum [2],

J⃗̂J = L̂⃗L+ 1
2Σ⃗ , Σ⃗ =

(︄
σ⃗ 0
0 σ⃗

)︄

and the relativistic parity operator K̂,

K̂ = γ0

(︃
Σ⃗ · L̂⃗L+ 1

)︃
. (1.8)

As done in [5], while dealing with purely Coulomb field, where VHF = 0 in
Eq. (1.2), one obtains another integral of motion for the Dirac Hamiltonian. After
that can every single solution of Eq. (1.1) be rewritten as [2]

ψ = [γ0(E − ĤD) + 2me]ϕ ,

Multiplying Eq. (1.1) by γ0 from the left, we obtain the second-order Dirac
equation,

Ĥϕ = 0 , Ĥ = γ0(E − ĤD)[γ0(E − ĤD) + 2me] , (1.9)
where in the case of pure Coulomb potential, the second-order Dirac Hamiltonian
Ĥ is given by

Ĥ = E2 −m2
e − 2(meZα)2

[︄
p̂2

r

2 − Ĝ(Ĝ− 1)
2r2 − E/me

r

]︄
, (1.10)

where p̂r is radial momentum in coordinate representation p̂r = −i
(︂

d
dr

+ 1
r

)︂
. The

operator Ĝ is the additional integral of motion.

Ĝ = γ0
(︂
K̂ + i(Zα)γ⃗ · n⃗

)︂
, (1.11)

where n⃗ = (sinϑ cosφ, sinϑ sinφ, cosϑ) is the unit vector pointing in an arbitrary
direction. The form (1.10) is almost the same as the non-relativistic Hamiltonian
where Ĝ(Ĝ− 1) is substituting the part of L̂2.

Further calculation can show that [2]

K̂
2 = Ĵ

2 + 1
4 , Ĝ

2 = K̂
2

− (Zα)2 .

Where we obtain eigenvalues for K̂ and Ĝ as follows

K = κ|K| , κ = ±1 , |K|= j + 1/2 (1.12)

and
G = gκ|G| , g = ±1 , |G|=

√︂
K2 − (Zα)2 , (1.13)

respectively. Special note of importance shall be given to the signs of G and
K being relative to each other, this will simplify the following calculations even
further, especially while dealing with the case of relativistic parity being static.
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Since all the following operators commute with each other Ĝ, K̂, Ĵ2 and Ĵz

one can than see that they involve common eigenfunctions [2]

Ĝ|g, κ, j,m⟩ = gκ|G||g, κ, j,m⟩ , K̂|g, κ, j,m⟩ = κ|K||g, κ, j,m⟩ (1.14)

and

Ĵ
2
|g, κ, j,m⟩ = j(j + 1)|g, κ, j,m⟩ , Ĵz|g, κ, j,m⟩ = m|g, κ, j,m⟩.

Which can be rewritten in more explicit form

⟨n⃗|g, κ, j,m⟩ =
(︄

cg
1⟨n⃗|j,m⟩κ

cg
2⟨n⃗|j,m⟩−κ

)︄
, (1.15)

where the symbol ⟨n⃗|j,m⟩κ denotes the spherical spinors

⟨n⃗|j,m⟩κ =
1
2∑︂

Sz=− 1
2

(︃
j − κ

2 ,m− Sz,
1
2 , Sz|j,m

)︃
Yj− κ

2 ,m−Sz(n⃗)
⃓⃓⃓⃓1
2 , Sz

⟩︃
. (1.16)

Here Yl,m(n⃗), Sz and |j,m⟩ are spherical harmonics, spin functions and Clebsch-
Gordan coefficients, respectively, see any textbook on quantum mechanics, e.g.
[6]. From Eqs. (1.8), (1.11) and (1.14) than follows, that the Clebsch-Gordan
coefficients c in the expansion (1.15) satisfy

cg
2 = − i

Zα
(K −G)cg

1 . (1.17)

Requiring normalization than yields

⟨g, κ, j,m|g, κ, j,m⟩ = |cg
1|2+|cg

2|2= 1 , (1.18)

the coefficients c can be determined with exception of the overall complex phase.
They can be easily rewritten with introduction of the angle θ as given by the
following relations

Zα = |K|sin θ ; (1.19)
then, cf. Eq. (1.13),

|G|= |K|cos θ , (1.20)
and, cf. Eqs. (1.15) and (1.17),

⟨n⃗|+, κ, j,m⟩ =
(︄

cos θ
2⟨n⃗|j,m⟩κ

−iκ sin θ
2⟨n⃗|j,m⟩−κ

)︄
(1.21)

and
⟨n⃗|−, κ, j,m⟩ =

(︄
sin θ

2⟨n⃗|j,m⟩κ

−iκ cos θ
2⟨n⃗|j,m⟩−κ

)︄
. (1.22)
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1.3 Expansion in Sturmian Basis
Next, we introduce the effective angular quantum number lg [2]

lg(lg + 1) = G(G− 1) . (1.23)

We require lg > −1 in order for the radial functions to stay normalized, we obtain
lg = |G|−1 for G > 0 and lg = |G| for G < 0, that is

lg = |G|−δg,κ . (1.24)

Next we look for solution of Eq. (1.10), in the form

ϕ(r⃗) = Rn,lg(ξ, r)⟨n⃗|g, κ, j,m⟩ (1.25)

and setting
ξ = E

men
, (1.26)

Eq. (1.10) is than transformed into equation suitable for Sturmian functions (see
e.g. [6, 7, 8])

1
2

[︄
rp̂2

r + lg(lg + 1)
r

+ r

]︄
Rn,lg(r) = nRn,lg(r) , n = k + lg + 1 , k = 0, 1, 2, . . . ,

(1.27)
where

E = me√︃
1 +

(︂
Zα
n

)︂2
(1.28)

and
Rn,l(ξ, r) = ξRn,l(ξr) . (1.29)

The first order Dirac operator (1.7) combines states (1.25) with different signs
of g and different quantum number n. Therefore we can look for a general eigen-
state for the Dirac operator (1.7) in form of [2]

⟨r⃗|ψ⟩ = ⟨r⃗|n, κ, j,m⟩ = (1.30)

= ⟨r|n, |G|−δκ,+⟩⟨n⃗|+, κ, j,m⟩ + ⟨r|n, |G|−δκ,−⟩⟨n⃗|−, κ, j,m⟩ ,

where, |G|=
√︂

(j + 1/2)2 − (Zα)2, cf. Eqs. (1.12) and (1.13). Furthermore, the
bispinors ⟨n⃗|g, κ, j,m⟩ are given by Eqs. (1.21), (1.22) and the radial parts can
be expanded into Sturmian functions ((1.27), (1.29)) as well

⟨r|n, |G|−1⟩ =
N∑︂

k=0
c+

k Rk,|G|−1(ξ, r) , ⟨r|n, |G|⟩ =
N−1∑︂
k=0

c−
k Rk,|G|(ξ, r) . (1.31)

In terms of notation in Eq. (1.30) this can be written concisely as

⟨r|n, |G|−δκ,g⟩ =
N−δκ,−g∑︂

k=0
c

δκ,g−δκ,−g

k Rk,|G|−δκ,g . (1.32)
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Substituting Eqs. (1.30) and (1.32) into the DHF equation (1.6) and pro-
jecting it onto mentioned basis vector yields so called Roothan form of (1.21)
[2]

∑︂
k

(︄
(ĥD)++

ik (ĥD)+−
ik

(ĥD)−+
ik (ĥD)−−

ik

)︄(︄
c

δκ,+−δκ,−
k

c
δκ,−−δκ,+
k

)︄
= (1.33)

= ϵ
∑︂

k

(︄
S++

ik S+−
ik

S−+
ik S−−

ik

)︄(︄
c

δκ,+−δκ,−
k

c
δκ,−−δκ,+
k

)︄
,

where
(ĥD)g,g

ik = zg,g
ik + (vHF )g,g

ik . (1.34)
The operator ẑ is given by Eq. (1.7). The pertinent matrix elements are defined
below in Eqs. (1.35) and (1.36). The matrix elements of Hartree-Fock potential
are given in [2].

1.4 One-particle matrix elements
Further we are interested in matrix elements of operator ẑ [2]

zg,g
ik =

∫︂ ∞

0
drr2Ri,lg(ξ, r)⟨g, κ, j,m|ẑ|g, κ, j,m⟩Rk,lg(ξ, r) , (1.35)

and overlap matrix

Sg,g
ik = ⟨g, κ, j,m|g, κ, j,m⟩

∫︂ ∞

0
drr2Ri,lg(ξ, r)Rk,lg(ξ, r) , (1.36)

respectively. We recall lg = |G|−δg,κ, see Eq. (1.24).
We can than rewrite the spin-angular part of ẑ in terms of the operators Ĝ,

K̂ and γ0 [2]

ẑ = −Ĝ− γ0K̂

(Zα)2

(︄
∂

∂r
− Ĝ− 1

r

)︄
+ γ0 − 1

(Zα)2 . (1.37)

Integrating spin-angular part in Eqs. (1.35) and (1.36) than reduces to

⟨g, κ, j,m|γ0|g, κ, j,m⟩ = g cos θ , ⟨−g, κ, j,m|γ0|g, κ, j,m⟩ = 0 ,

⟨g, κ, j,m|g, κ, j,m⟩ = 1 , ⟨−g, κ, j,m|g, κ, j,m⟩ = sin θ
and

⟨g, κ, j,m|(Ĝ− γ0K̂)|g, κ, j,m⟩ = 0 ,
⟨−g, κ, j,m|(Ĝ− γ0K̂)|g, κ, j,m⟩ = G sin θ ,

following from Eqs. (1.14)–(1.22). Substituting these results and Eq. (1.37) into
Eq. (1.35) we get

⟨g, κ, j,m|ẑ|g, κ, j,m⟩ = g cos θ − 1
(Zα)2 (1.38)

and

⟨−g, κ, j,m|ẑ|g, κ, j,m⟩ = − sin θ
(Zα)2

[︄
1 +G

(︄
d

dr
− G− 1

r

)︄]︄
. (1.39)
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1.5 Analysis of the matrix elements in orders of
Zα

Henceforth we restrict out attention to the case of positive parity κ = 1. Eq.
(1.33) can be schematically written as(︄

D+ + V+ B + (Zα)W
BT + (Zα)W T D− + V−

)︄(︄
c+
c−

)︄
= ε

(︄
A+ C
CT A−

)︄(︄
c+
c−

)︄
, (1.40)

where the expansion of matrices in powers of Zα reads, cf Eqs. (1.19), (1.20),
(1.38)

Dg =
g
√︃

1 − (Zα)2

|K| − 1

(Zα)2 Ag , g = ±1 , (1.41)

as Ag is denoted further in Eq. (1.45). We expand this expression into the series
in power of Zα

D± =
±∑︁∞

n=0
(Zα)2n(−1/2)n

n! − 1
(Zα)2 A± . (1.42)

Here the symbol (−1/2)n is denoting the Pochhammer symbol [9]

(−1/2)n = Γ(−1/2 + n)
Γ(−1/2) = (−1/2)(−1/2 + 1) . . . (−1/2 + n) . (1.43)

Further expansion on other terms leads to

Bik = − 1
Zα

∫︂ ∞

0
drr2Ri,lg(ξ, r)[1 +G( d

dr
− G− 1

r
)]Rk,l−g(ξ, r) (1.44)

,
(Ag)ik =

∫︂ ∞

0
drr2Ri,lg(ξ, r)Rk,lg(ξ, r) , (1.45)

and finally
Cik = Zα

|K|

∫︂ ∞

0
drr2Ri,lg(ξ, r)Rk,lg(ξ, r) . (1.46)

The dependence of matrix elements of Hartree-Fock potential on Zα is supposed
to be as indicated in Eq. (1.40), but more detailed analysis is needed. This will
be done in future investigation.
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2. Foldy-Wouthuysen
Transformation

2.1 The method
Foldy-Wouthuysen transformation, or FWT, was introduced in 1949 by Leslie
Lawrance Foldy and Siegfried Adolf Wouthuysen. Its standard formulation can
be found in many places, see e.g. [10]. Here we introduce its finite form. First
we rewrite Eq. (1.40) into the form

Ω
(︄
c+
c−

)︄
= 0 , (2.1)

where
Ω =

(︄
D+ + V+ B + (Zα)W

BT + (Zα)W T D− + V−

)︄
− ε

(︄
A+ C
CT A−

)︄
. (2.2)

We search for solution in the form(︄
c+
c−

)︄
= e(−ıT )

(︄
cF W

0

)︄
, T =

(︄
0 U
UT 0

)︄
. (2.3)

We multiply the last equation by eıT from the left and obtain

ΩF W

(︄
cF W

0

)︄
= 0 , ΩF W = eıT Ωe−ıT . (2.4)

The matrix U is determined from the requirement, that up to the given order of
Zα the matrix ΩF W has the form

ΩF W =
(︄
X 0
0T Y

)︄
. (2.5)

For illustrative purposes we provide calculation at the leading order of Zα.
The expansion of the matrix Ω in power of Zα reads, see Section 1.5

(2.6)
Ω = 1

(Zα)2

(︄
0 0
0T D

(−2)
−

)︄
+ 1

(Zα)

(︄
0 B(−1)

BT (−1) 0

)︄

+
(︄
D

(0)
+ + V

(0)
+ 0

0 D
(0)
− + V

(0)
−

)︄
− ε

(︄
A

(0)
+ 0
0 A

(0)
−

)︄
+O(Zα) .

Now expanding the expression

e(ıT )Ωe(−ıT ) ≃ Ω + ı[T,Ω] − 1
2[T, [T,Ω]] + . . . (2.7)

and assuming T has the form

T = (Zα)
(︄

0 U (1)

UT (1) 0

)︄
+ . . . , (2.8)
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one obtains from requirement of vanishing terms of the order (Zα)(−1)

0 = 1
(Zα)

(︄
0 B(−1)

BT (−1) 0

)︄
+ ı

[︄(︄
0 U (1)

UT (1) 0

)︄
,

(︄
0 0
0T D

(−2)
−

)︄]︄
, (2.9)

written in reduced form

0 = 1
Zα

B(−1) + ı

Zα
U (1)D

(−2)
− . (2.10)

At the order (Zα)(0) one gets the diagonal Hamiltonian

Ω(0) = (Zα)−2
(︄

0 0
0T D

(−2)
−

)︄
+
⎛⎝D(0)

+ + V
(0)

+ 0
0T D

(0)+V
(0)

−
−

⎞⎠
+ ı

[︄(︄
0 U (1)

UT (1) 0

)︄
,

(︄
0 B(−1)

BT (−1) 0

)︄]︄

− 1
2!

[︄(︄
0 U (1)

UT (1) 0

)︄
,

[︄(︄
0 U (1)

UT (1) 0

)︄
,

(︄
0 0
0T D

(−2)
−

)︄]︄]︄
− ε

(︄
A

(0)
+ 0
0 A

(0)
−

)︄
.

(2.11)

Now we can recall that all matrix equations of the form of Eq. (2.9):

AX +XB = C , (2.12)

are called Sylvester equations, and their solutions have been known for more than
a century [11]. This equation follows every calculation of transformation matrix
and its uses are discussed further.

2.2 Practical implementation
Since computer-based calculations are almost the only feasible approach for solv-
ing this problem, let us formulate an iterative scheme that was used for the cal-
culation. This algorithm will also serve as a guide for the reader to understand
how the problem was computed.

1. Expand the matrix Ω in powers of (Zα) up to the terms of the order (Zα)2n.

2. Perform the expansion of Eq. (2.7) up to the order (2 + 2n).

3. Set the resulting equation for the off-diagonal terms equal to zero and solve
for U (2n+1).

4. Use the newly found matrix T (2n+1) to calculate the transformed, perturbed
Hamiltonian by considering all possible combinations that contribute to the
2nth order.

5. Solve the generalized eigenvalue problem to obtain the energy up to the
2nth order.

6. Repeat the entire process, increment the orders of all terms by one in n.

10



Further notes regarding this algorithm:

• Last term while, finding all combinations should always involve D(−2)
± . Since

it’s the term with smallest order.

• In the first iteration, −εS is not included until the 5th step, as it belongs
to the 0th order.

• When calculation of ε(k) is finished, one needs to add ε(k)S to certain order.
This might create same orders for different S(k)! Difference being in, if the
diagonal or off-diagonal structure is used.

• When calculating the elements of the transformation matrix, it is important
to consider the following:

– When ”cutting” the transformation matrix into a rectangular form,
transpose every second element in commutators of even length.

– Transpose every even U in commutators of odd length.

• Multi-commutators, such as those of length 4, follow the structure of Pas-
cal’s triangle. For example, when computing a commutator of length 4, the
resulting terms follow the coefficients of the 5th row of Pascal’s triangle. As
an example:

[A, [A, [A, [A,B]]]] = A4B − 4A3BA+ 6A2BA2 − 4ABA3 +BA4, (2.13)

whole calculation of commutator than follows this structure:

1
1 -1

1 -2 1
1 -3 3 -1

1 -4 6 -4 1

starting at the second row is every commutator of length 1, and so on.
Length of the commutator also carries the information about which term
of exponential has to be used.

• Solving Sylvester equation is especially helpful for the algorithmic rule.
Since it does not require any extra matrix manipulation.
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3. Results
In the last chapter, we formulated the core structure required for calculating
energies in a perturbed manner, along with the calculation algorithm. However,
it is important to note that the results obtained in Chapter 1 only apply to the
s and p states of electrons in the valence orbital. Therefore, the final results will
correspond to the energies of these states. Additionally, we present the results up
to the 7th decimal place due to the sensitivity of the aforementioned calculations
to the exact structure of the algorithm. The Python programming language was
used for these calculations.

Let us first present the results for the s-state as obtained in [2]. Now, we

Table 3.1: Reference energies of Cs atom for s-state electrons, depended on size
of the basis and main quantum number [2]

basis 1s 2s 3s 4s 5s 6s
10 -0.457772 -0.042769 -0.008609 -0.001699 -0.000287 -0.000009
20 -0.445741 -0.065640 -0.014494 -0.003037 -0.000480 -0.000042
30 -0.441569 -0.069959 -0.015179 -0.003144 -0.000492 -0.000042
40 -0.440233 -0.070267 -0.015199 -0.003145 -0.000493 -0.000042
50 -0.439866 -0.070275 -0.015198 -0.003145 -0.000493 -0.000042
60 -0.439776 -0.070275 -0.015198 -0.003145 -0.000493 -0.000042
70 -0.439755 -0.070274 -0.015198 -0.003145 -0.000493 -0.000042
80 -0.439751 -0.070274 -0.015198 -0.003145 -0.000493 -0.000042
90 -0.439750 -0.070274 -0.015198 -0.003145 -0.000493 -0.000042
100 -0.439750 -0.070274 -0.015198 -0.003145 -0.000493 -0.000042

will demonstrate the results for the 1s-state of the Cs atom obtained through the
perturbation method discussed in Chapter 3.
Before moving on to higher energy states, let’s discuss these results. Although

Table 3.2: Energies obtained via perturbation method 1s state. X-axis shows size
of the basis, Y-axis shows order of perturbation.

10 20 30 40 50
0 -0.436226 -0.424077 -0.419447 -0.417710 -0.417140
2 -0.456179 -0.444676 -0.441187 -0.440454 -0.440525
4 -0.456632 -0.446322 -0.443282 -0.443218 -0.446952
6 -0.457638 -0.445702 -0.441876 -0.450717 -1.403509
8 -0.457645 -0.445643 -0.441995 - -

our main goal is to replicate these results for the 6s-state using HF interaction,
the current results still provide relevant and accurate data. It is important to
note that as we increase the basis size, the precision of the results improves.
However, there are a few points to consider regarding the errors. There is a
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Table 3.3: Energies obtained via perturbation method 1s state. X-axis shows size
of the basis, Y-axis shows order of perturbation.

60 70 80 90 100
0 -0.416973 -0.416928 -0.416916 -0.416913 -0.416913
2 -0.440732 -0.440909 -0.441040 -0.441135 -0.441206
4 -0.584427 -1.137043 -2.146258 -3.812341 -6.386750
6 -4.473480 - - - -
8 - - - - -

noticeable jump between orders 0 and 2 in all energies, but this should not come
as a surprise since both depend solely on the transformation matrices T (1) and
T (3), where only the largest terms of other matrices and HF interaction play a
significant role, making these two orders practically the same. Additionally, the
HF interaction is well below the precision of this calculation, as can be observed
in the case of the hydrogen atom.

Another mistake occurs towards the end of the calculation, where the allowed
error is greater than O(Zα)(i) as expected. This is accompanied by larger errors,
particularly in basis 50 and larger. This divergence may be attributed to the use
of single-float precision in macros during the Python calculation. As numerous
matrix multiplications of small values (presumably transformation matrices) ac-
cumulate, the calculation diverges when multiplying higher numbers. This prob-
lem is primarily encountered while attempting to solve the Sylvester equation,
as this macro only allows cfloat128. Additionally, another issue arises during the
calculation as the matrices become gradually asymmetrical due to multiple opera-
tions. Although this problem is partially addressed by making them symmetrical
towards the end, it becomes increasingly significant, particularly in higher or-
ders of perturbation. Notably, calculating order 10 and further in basis 10 takes
approximately hours, whereas calculating orders 6+ in basis 100 takes a similar
amount of time. This correlation indicates a potential relationship between di-
vergence in lower orders of higher bases and higher orders of lower bases. This
serves as further evidence supporting the explanation for the observed errors.

Now we show the result for higher states, pleas take note that due to the
discussion above the most accurate results (the ones showed) are around 2nd to
4th order. In the higher basis we can clearly see correspondence as expected. We

Table 3.4: Result for higher electron states of Cs atom - 2nd order of perturbation
s-states 10 20 40 60 100

2 -0.0749022 -0.0561407 -0.0603758 -0.0603858 -0.0603873
3 -0.0072651 -0.0128648 -0.0128648 -0.0128645 -0.0128648
4 -0.0014440 -0.0025748 -0.0026628 -0.0026627 -0.0026628
5 -0.0002481 -0.0004113 -0.0004212 -0.0004925 -0.0004212
6 -0.0000072 -0.0000346 -0.0000351 -0.0000351 -0.0000351

would also like to acknowledge reader that since the complexity of this algorithm
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is enormous, 2-3 thousands of lines of code written all together. We used side
program that was designed by hand to check the correctness of these calculations
up to 4th order, depending on the case.

Now lastly for s-state there is hydrogen case. Referential value as in [2] is:
−0.5000066566. Obtained value in 2nd order of precision is: −0.5000066568.
This result is not proceeded to further perturbation, since the dependence on
exact algorithm usually ensures that the error to this value lies in 10−9 − 10−10.

For p-states belong following referential results. And the results obtained by

Table 3.5: Referential values for p-states as in [2]
basis 2p 3p 4p 5p

10 -0.0358412 -0.0068364 -0.0011321 -0.0001388
30 -0.0614290 -0.0131427 -0.0024251 -0.0002970
50 -0.0620611 -0.0132128 -0.0024351 -0.0002980
100 -0.0620659 -0.0132133 -0.0024352 -0.0002980

perturbation with precision set to 2nd order.

Table 3.6: Results obtained by perturbation method
basis 2p 3p 4p 5p

10 -0.0317684 -0.0057263 -0.0007683 -0.0000591
30 -0.0551771 -0.0105962 -0.0016688 -0.0001433
50 -0.0555190 -0.0106100 -0.0016688 -0.0001432
100 -0.0555182 -0.0106100 -0.0016688 -0.0001432
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Conclusion
In this thesis we introduced and investigated the finite FWT and applied it to
the case of cesium and hydrogen atoms. The main motivation for doing this is
to understand and possibly eliminate the oscillatory behaviour of energies with
increasing basis size. We found that at the leading order of Zα the energies are
monotonically decreasing. While in larger order of Zα not so much. This is
highly dependent of the size of the basis as well as the error mentioned above.
Possible room for improvement lies possibly in perturbing in slightly different
manner as-well as processing the referential data in different manner through the
algorithm, avoiding single-float precision.

Even though we investigated this for the case of hydrogen and cesium and
only for p and s states, this method can be easily expanded to other alkali metal
atoms as well as the rest of their spin-orbital states.
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