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Abstract: In order to generate observable electromagnetic signatures, astrophys-
ical black holes have to interact with matter. Arround the black hole, matter
typically forms into a symmetric disc through which it gradually inspirals to-
wards the black hole. If the disc is dense enough, it can significantly perturb the
motion of free test particles. The perturbation makes the originally completely
integrable dynamical system prone to chaos. In this thesis, we focus on finding
the homoclinic orbits which are the ‘seeds of chaos’ in the geodesic motion around
black holes. Specifically, we find the homoclinic orbits in the Schwarzschild and
in the extreme Reissner-Nordström space-times, and analyse how they behave
under perturbation by a Kuzmin-Toomre disc and by a Majumdar-Papapetrou
ring, respectively.

Abstrakt: Astrofyzikálńı černé d́ıry muśı interagovat s látkou, maj́ı-li být po-
zorovatelné v elektromagnetickém zářeńı. Látka se kolem černé d́ıry typicky
uspořádává do symetrického disku, j́ımž postupně spiráluje k centru. Pokud má
tento disk dostatečnou hustotu, může významně ovlivnit pohyb volných testo-
vaćıch částic. Perturbace změńı p̊uvodně plně integrabilńı dynamický systém
na systém náchylný k chaosu. V této práci se zaměřujeme na hledáńı homoklin-
ických orbit, což jsou tzv. „semı́nka chaosu“ v geodetickém pohybu okolo černých
děr. Přesněji hledáme homoklinické orbity v Schwarzschildově a Reissnerově-
Nordströmově prostoročasu a zkoumáme jejich chováńı po superpozici těchto cen-
ter s Kuzminovým-Toomreovým diskem, resp. Majumdarovým-Papapetrouovým
prstencem.
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Introduction
The study of celestial dynamical systems and their possibly chaotic behaviour all
started in 1889 with Henri Poincaré’s memoir on the Three body problem [2].
His studies of the N body problem earned him the prize1 in the contest of King
Oscar II. The contest’s goal was to answer the question of whether the Solar
system is stable or not. Poincaré did not only win the contest but in his analysis
he introduced geometrical and topological methods to the study of dynamical
systems [21]. Many of Poincaré’s methods are still used today (Poincaré section,
stable and unstable manifolds, homoclinic points, etc.).

The study of chaos was mostly abandoned until 1963. In this year, Edward Lorenz
found out, using numerical simulation, that his model of weather proved to be
highly sensitive to change in initial conditions. The advance of computer calcula-
tions also provided a precise numerical proof of Poincaré’s statements about the
stability of the Solar System. We know that even this system, poetically called the
‘music of the spheres‘ and considered to be harmonious, can be highly sensitive
to change in initial conditions as proven by Poincaré and the simulations.

With the aid of the relativistic theory of gravitation provided by Einstein, the
study of celestial dynamics has since expanded to include the study of black holes,
pulsars, accretion discs and neutron stars. The link between non-linearity and
chaos makes general relativity prone to chaotic behaviour unless the systems stud-
ied are highly symmetric [25]. In this thesis, we will mainly focus on relativistic
descriptions of black holes.

By definition, light can not escape from black holes. One thus cannot observe
an isolated black hole, but one can observe it’s effect on the surrounding matter.
The surrounding matter is known to form into larger structures as a result of
the gravitational pull of the black hole; this process is referred to as accretion [8].
One of the most well documented structures which is known to form around black
holes is the accretion disc. The disc forms from particles which have sufficient
angular momentum. The angular momentum prevents the particles from falling
straight into the black hole and instead forces them to orbit the black hole. The
friction in the disc causes the particles to spiral into the centre. The friction leads
to emission of electromagnetic radiation which can be detected. The form of the
accretion disc varies depending on the thermal pressure which resists compression.

The mathematics describing black holes usually considers the black hole to be
isolated and therefore highly symmetric (no-hair theorems), which leads to the
free test-particle motion being integrable and thus non-chaotic. However, even
an isolated black hole contains the ‘seed of chaos‘ in the form of the homoclinic
orbit. When a perturbation of the isolated black hole occurs, the homoclinic orbit
has a tendency to split into a complicated structure called the homoclinic tangle.
It was Poincaré who first noticed the peculiar structure of the homoclinic tangle

1His original contest winning article had contained a mathematical error which Poincaré
discovered after winning. The discovery lead to Poincaré having to pay for the reprinting of the
article and him destroying all of the original copies. This historical fact was largely forgotten
until 1993 [19].
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saying [21]:‘One will be struck by the complexity of this figure, which I am not
even attempting to draw.’ With the perturbation, the symmetry of the isolated
system is broken and the motion becomes chaotic. In our study, the perturbation
is considered to be caused by an external source, which usually is a disc or a ring,
as motivated by astrophysical accretion discs.

This thesis will mainly focus on a) how to mathematically describe chaos, specifi-
cally homoclinic chaos, and its emergence in physical systems, b) how to describe
free particle motion in isolated and perturbed black-hole fields by using general
relativistic formalism, c) finding the homoclinic orbit in isolated and perturbed
black-hole space-times.
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1. Dynamical Systems
In this chapter, we would like to introduce the reader to basic concepts used in
dynamical systems theory which we will then apply in our analysis of relativistic
systems in chapters 2 and 3. Rather than delving deep into the abstract for-
mulations, we will attempt to illustrate how the theory applies to our field of
study.

1.1 Elementary Definitions
In this thesis, we will define a dynamical system as was done in [6].

Definition 1 (Dynamical system). A dynamical system is defined as a tuple
(X, ϕ, T ). It consists of the phase space X, a time set T ⊆ R being an additive
semigroup and the time evolution map ϕ : X × T → X satisfying ϕ(x, 0) = x and
the group property

ϕ(x(t1), t2) = ϕ(x, t1 + t2), (1.1)
for all x ∈ X and t1, t2 ∈ T .

Unless stated otherwise, we also assume X to be at least a topological space and
ϕ to be continuous.

1.1.1 Discrete and real systems
In this thesis, we will mostly work with systems with continuous time. However, in
numerical calculations, which are frequently used in chaos theory [6, 31], there is
an inherent need for discretisation and we will thus differentiate between systems
with continuous and discrete time. Simply put, when the time set T in (Def. 1)
satisfies T ⊆ N we call the dynamical system (X, ϕ, T ) discrete and if T is an
open interval in the real numbers we call it real.

In practice, we differentiate the two by how the systems time evolution is given.
The Chirikov standard map, an example of a discrete dynamical system, uses an
iterated map to express time evolution,

yn+1 = yn + k sin(xn),
xn+1 = xn + yn+1.

(1.2)

While a real dynamical system uses a system of differential equations to express
time evolution. To give an example we present the differential equation for the
mathematical pendulum,

d2θ

dt2 + g

ℓ
sin θ = 0. (1.3)

For systems given by differential equations, the solution plays the role of ϕ and
is called the flow [31]. Depending on the linearity of the equations describing
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the dynamical system, we call the associated system linear or non-linear. Non-
linearity is an important feature of chaotic systems [6, 31, 16].

In general relativity, the phase space X is fully described by the metric tensor
gµν and the time evolution is given by the geodesic equation [17]:

duµ

dτ
+ Γµ

αβuαuβ = 0. (1.4)

τ denotes proper time, uµ the four-velocity and Γµ
αβ the affine connection coef-

ficients, which can be computed as Christoffel symbols of the second kind [17]

Γµ
αβ = 1

2gιµ(gια,β + gβι,α − gαβ,ι). (1.5)

Let us stress that the geodesic equation (1.4) only holds for test particles moving
freely in the space-time given by gµν . The metric gµν will be supposed to satisfy
the Einstein equations, which is a system of non-linear equations describing how
space-time bends via the metric [17]. The equations can be written as

Gµν + Λgµν = κTµν , (1.6)

where Gµν denotes the Einstein tensor, Λ the cosmological constant, κ the Ein-
stein constant and Tµν the energy-momentum tensor. The Einstein tensor is
defined as

Gµν = Rµν − 1
2Rgµν , (1.7)

where Rµν is the Ricci tensor and R the Ricci scalar.

1.1.2 Structure of Phase space
The global analysis of a dynamical system can be done by studying the topo-
logical qualities of the phase space. In this section, we would like to describe
the important structures located in the phase space. Let us illustrate another
important concept with the standard map, the concept of a fixed point.

In figure (1.1), we have depicted iterations of the Chirikov standard map (1.2)
for different initial conditions. Different initial conditions correspond to different
colours in the figure. In the standard map there exist initial conditions for which
the evolution ”freezes” in one point. These points are called fixed points [6].

Definition 2 (Fixed point). If the equation ϕ(xs, t) = xs holds for all t ∈ T in a
given dynamical system (X, ϕ, T ). Then we call xs a fixed point.

Definition 3 (Periodic point). If the equation ϕ(xp, τ) = xp holds for τ in a
given dynamical system (X, ϕ, T ). Then we call xp a periodic point with period
τ .
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Figure 1.1: Iterations of the Chirikov standard map displayed for different initial
conditions.

Note that the periodic point can be viewed as a fixed point given by a new rescaled
time evolution map ϕ with a different time parameter τ .

Figure 1.2: (top) Stable fixed point of the standard map (bottom) Unstable fixed
point of the standard map.
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After looking at the fixed points in detail, we see very different structures near
them. In the top figure (1.2), we see a sort of perturbed harmonic oscillator
phase space forming around the point. The bottom figure (1.2) shows no such
trajectories. Near this fixed point, there are several trajectories being repelled in
one direction and attracted towards the point in another. These structures can
be investigated using a linear perturbation around a fixed point xs. For a linear
perturbation, we can write

dδx
dt

= A(xs)δx, (1.8)

where A(x) denotes the Jacobian matrix of the time evolution map ϕ. Depending
on the eigenvalues of matrix A(x), where x ∈ X is given we can determine the
stability of the point [15]. In a two dimensional hamiltonian system a simple
equation can be obtained for calculating the eigenvalues,

λ1,2 =
Tr(A) ±

√︂
Tr(A)2 − 4
2 . (1.9)

Definition 4 (Stability classification). Let (X, ϕ, T ) be a dynamical system,
x ∈ X ⊆ R2 a fixed point and A(x) the Jacobian matrix of ϕ. Let us denote the
eigenvalues of A(x) as λ1 and λ2. We also assume the phase space is Hamiltonian.
Depending on the trace of A(x) we call the fixed point x :

1. stable if Tr(A) < 2,

2. indifferently stable if Tr(A) = 2,

3. unstable if Tr(A) > 2.

The eigenvalues are both complex while Tr(A) < 2 holds (1.9). We can rewrite
them as λ1,2 = exp±iθ. θ can then interpreted as the angular velocity of the
points rotating near the fixed point (1.2). This is the reason why it is sometimes
referred to as an elliptic point.

If Tr(A) > 2, then both the eigenvalues are real (1.9). The two eigenvectors
correspond to the stable and unstable direction with the interpretation that the
trajectories near the point are being pulled inwards in some directions and repelled
in others, thus making an unstable equilibrium (1.2). The point is sometimes
called hyperbolic.

In order to further classify the topological structures, we need to introduce a new
term connected with unstable points. As seen in figure (1.1), we can associate a
set of trajectories being repeled or attracted to the unstable fixed point. This set
of trajectories defines what we call the (asymptotic) unstable and stable manifolds
[31].

Definition 5 (Unstable and stable manifolds). Let xs be an unstable fixed point
in a dynamical system (X, ϕ, T ) . We call the set of all points p ∈ X such that
|ϕn(p) − x| → 0 as n → ∞ denoted by W s(xs) the stable manifold of xs. The
unstable manifold of (xs), denoted by W u(xs), is the set of all points p ∈ X for
which |ϕn(p) − x| → 0 as n → −∞.
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In other words, the stable manifold is the set of all points which asymptotically
converge towards the fixed point in the natural flow of time and the unstable
manifolds is the set of all points which converge against the natural flow of time.
Because of the uniqueness of the flow, W s (W u) can not cross itself or W s (W u)
of another fixed point.

With the definitions provided, we can finally get the definition of an important
object in our thesis. The intersection of the two manifolds gives us a homoclinic
point. The map which maps the homoclinic point onto another homoclinic point is
called the homoclinic orbit. The nature of the intersection has vital importance
for the onset of chaos. If the intersection is tangential the two form a single
smooth homoclinic manifold, the separatrix, on the other hand if the intersection
is transversal they are not able to form the same manifold and this leads to a
complicated structure called the homoclinic tangle and the onset of chaos [5, 15],
which we will discus in a later part.

If we take the physical meaning of the homoclinic orbit it is an orbit that forms a
separatrix between plunging and non-plunging behaviour in black hole fields [13].
A trajectory which starts out (at t → −∞) near the unstable orbit then diverges
and converges back towards it at infinity. We will discuss the unstable orbit in
the next chapter regarding the effective potential method.

1.2 Hamiltonian systems
A Hamiltonian system is a system described by Hamilton’s function H(qj, pj, t)
and the time evolution is given by Hamilton’s canonical equations

∂H

∂qj
= −dpj

dt
,

∂H

∂pj
= dqj

dt
.

(1.10)

In Hamiltonian systems we call the space of variables the phase space, which is
in agreement with our established definition of a dynamical system (Def. 1). The
solution to Hamilton’s canonical equations (1.10) is called the (Hamiltonian) flow.
Hamiltonian systems have various interesting mathematical qualities one of them
is symplecticity. Symplecticity can be expressed as the Liouville theorem which
states that the volume of the phase space is conserved under the flow (1.10).

Moving on from the classical definitions to general relativity for a given metric
gµν , we define the Hamiltonian of a free test particle as [17]:

H = 1
2gµνpµpν , (1.11)

where pµ is the four-momentum of the particle. Due to the normalisation of four-
momentum for massive particles, the equation (1.11) is, in geometrized units1,

1In this unit system, the speed of light and the gravitational constant are set to one,
c = 1, G = 1. We will exclusively use these units as it is standard in relativistic literature.
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equal to −1
2 along the actual wordline.

1.2.1 Poincaré map
In general relativity, the phase space is considered 8 dimensional. The conserva-
tion of energy can reduce the phase space to a 7 dimensional hypersurface [20].
This makes making graphs of the phase space cumbersome and we thus need to
restrict ourselves to a so-called Poincare section which has a codimension of 1
with the original phase space [6].

The section is very frequently defined to make use of the symmetries of the
system. As an example, mapping when a particle intersects the equatorial plane
[25]. We can get a good idea of what a Poincaré section looks like from a graphical
demonstration.26 Examples and definitions of dynamical phenomena

S1 = R/(2πZ)

S

D

ϕ̃(x, y, [0])

(x, y, [0])

Figure 1.10: State space R2 × S1, with S1 = R/(2πZ), where D is a disc in R2.
Also we indicate the submanifold S as well as an evolution of the 3-dimensional
system. Here two subsequent passages through S are visible, as well as the image
of one of the points of S under the Poincaré map ϕ̃.

Often the term Poincaré map is used in a wider sense. To explain this take a sub-
manifold S of codimension 1, for which we still require that for each ξ ∈ S the
vector f(ξ) is transversal to S. However, we do not require the return times to be
defined for all points of S. The Poincaré map then has the same domain of definition
as t+. In this way we obtain a local dynamical system. The evolution operator then
can be defined by Φ̃t+ = ϕ̃, where ϕ̃−1 has the same domain of definition as t−.

One of the most important cases where such a locally defined Poincaré map occurs,
is ‘near’ periodic evolutions of (autonomous) differential equations ξ′ = f(ξ). In
the state space the periodic evolution determines a closed curve γ. For S we now
take a codimension 1 submanifold that intersects γ transversally. This means that
γ and S have one point ξ0 in common, i.e., {ξ0} = γ ∩ S, where γ is transversal
to S. In that case f(ξ0) is transverse to S. By restricting S to a (possibly) smaller
neighbourhood of ξ0 we can achieve that for any point ξ ∈ S the vector f(ξ) is
transverse to S. In this case the Poincaré map is defined on a neighbourhood of ξ0
in S. Later on we shall return to this subject.

1.3 Further examples of dynamical systems
In this section we discuss a few examples of dynamical systems from a widely
diverging background. These examples frequently occur in the literature and the
concepts of the previous section can be well illustrated by them. Also we shall meet

Figure 1.3: Poincaré section of a toroidal phase space, taken from [6].

1.3 Chaos
We will use the definition of chaos provided by Devaney [7].

Definition 6 (Chaotic map (system)). Let X be a metric space. The continuous
map ϕ : X → X is said to be chaotic on X if:

• ϕ is topologically transitive,

• the periodic points of ϕ are dense in X,

• ϕ has a sensitive dependence on initial conditions.

In this thesis, we will use the term chaotic system and make the assumption that
ϕ in the definition corresponds to a time evolution map of the dynamical system
(X, ϕ, T ). The formal definition of chaos is an ongoing mathematical problem
and even the definition provided here is still debated over [1].

In practical terms, the topological transitivity can be viewed as the inability of
the system to be broken down into subsystems which do not interact under ϕ. In
even simpler words, everything in the system eventually ‘mixes’.

9



The sensitivity to initial conditions can be viewed as the most well known feature
of chaotic systems. It is what most people think chaos means and it is often
referred to as the butterfly effect in pop culture. Mathematically we can describe
it as follows: ∃δ > 0 : ∀x1(t0) and 0 < ϵ ≪ 1, ∃x2(t0) : d(x1(t0), x2(t0)) at the
same time ∃t : d(x1(t), x2(t)) ≥ δ.

The function d(x1, x2) measures distance between two points in the phase space.
In other words, given two arbitrarily close initial conditions the two trajectories
are arbitrarily distant from each other after sufficient time t under the evolution
given by ϕ. The sensitivity to initial conditions can be quantified using the
Lyapunov exponents discussed later.

1.3.1 Smale horseshoe
As stated previously, the homoclinic orbit forms a separatrix in an integrable
system. When we perturbe the system in a way which leads to the stable and
unstable manifolds crossing transversally we give rise to the infamous homoclinic
tangle which often leads to chaotic behaviour [15].

The emergence of chaos can be demonstrated with a mathematical construction
called the Smale Horseshoe map [31]. The construction of the map is purely
mathematical but the implications for physical systems will be clarified later in
this section.

Figure 1.4: (top) Horseshoe map first iteration (bottom) second iteration and
inverse Horseshoe map, both taken from [6].
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The Horseshoe map is a diffeomorphism f : R2 → R2 which maps a rectangle D
into a horseshoe by stretching in the vertical direction and bending the rectangle
[6]. The first two iterations are shown in the figure above. From the figure it can
be seen that D ∩f(D) has two components, the two vertical strips. Each of these
strips contains two components of D ∩ f(D) ∩ f 2(D). Using induction we can
conclude D ∩ f(D) ∩ f 2(D) ∩ · · · ∩ fn(D) consists of 2n vertical strips. We can
assign an itinerary to each vertical strip v ↔ S0S1S2 . . . Sn which depends on the
location of the strip as follows [31]:

1. if f i(v) lies in VL, set Si = 0

2. if f i(v) lies in VR, set Si = 1

Note that the strips get thinner with every iteration. If we take the limit of
infinitely small strips, the strips reduce to lines and therefore form a Cantor set.
We can give each of these lines an infinite address S0S1S2 . . . .

From figure (1.4), we can find out that the inverse of the Horseshoe map f is again
the Horseshoe map, but the whole process is rotated 90◦. We have to stretch
horizontally and bend the rectangle which intuitively corresponds to the same
procedure but rotated. In the limit n → ∞, the procedure reduces the horizontal
strips to lines, each of them assigned with an infinite address . . . S−2S−1S0 .

If we take the intersection of the two sets of lines and denote it Λ, we get a
set of all points that remain in D under all past and future iterations of f . This
property makes Λ the so called invariant set of f . Geometrically, this set resembles
a ”cloud” of points each laying on different intersections of the horizontal and
vertical lines. Every point has a unique address expressed in a bi-infinite sequence.
. . . S−2S−1S0.S1S2 . . .

In the field of all bi-infinite sequence Σ, we will define the shift map σ : Σ → Σ
as shifting the itinerary by one spot to the right Sn → Sn+1

If we imagine our bi-infinite itinerary as a list of numbers . . . S−2S−1S0.S1S2 . . .
with a dot between S0 and S1. The shift map is equivalent to moving the dot to
the right.

σ(. . . 1001.0101 . . . ) = . . . 10010.101 . . . (1.12)

We have now transformed the analysis of the system to analysis of bi-infinite
sequences of 0 and 1 meaning we have entered the mathematical field of symbolic
dynamics. We can see that a periodic orbit in this system evolving according to
the shift map looks like an infinitely repeating pattern of 1 and 0. For example
an orbit with period two looks like this:

P2 = . . . 0101.0101 . . . . (1.13)

There are a countable infinity of periodic orbits of all periods in this system,
among them two fixed points (PF 1,F 2 = . . . 0000.0000 . . . , . . . 1111.1111 . . . ), and
an uncountable infinity of non-periodic orbits [31].
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Let us take two near initial conditions corresponding to two sequences identical
in a block of numbers of length n which we can interpret as n being the maximal
number of digits we can determine 2. The two initially similar conditions can
then under a sufficient number of iterations of the shift map be entirely different
which is typical behaviour for chaotic systems.

Wh

Rin
Vw1

↑ ↑

Figure 1.5: Rough sketch of the homoclinic tangle in a Hamiltonian system,
redrawn from figure provided in [5].

The similarities between physical (Hamiltonian) systems and the Smale horseshoe
may not be apparent but we will demonstrate how the two are related it as was
done in [5]. Let us consider an evolution in a Hamiltonian system given by ϕ and
let us assume the map has an unstable fixed point P . We can then define the
stable manifold W s and the unstable manifold W u. For simplicity let us imagine
the time evolution is discrete. A homoclinic point A gets mapped to AI which
under the next iteration gets mapped to AII in a manner depicted in figure (1.5).

The points AN get closer and closer to P . However , they cannot get mapped to
the same point twice (it would then be trapped in a cycle and unable to approach
the fixed point) and cannot get mapped to the point itself, because the fixed point
is its own image (2). The points on the stable manifold merely converge towards
it in infinite time (5). The symplecticity of a Hamiltonian system demands that
the area between W s and W u remains constant, which further complicates the
entaglement of the two manifolds. If we would look at the preimages and look
at the system in reverse time the same conclusions can be made about how the
stable manifold also tangles with the unstable manifold.

If we would look at the rectangle R, in the phase space, we can see that as
the rectangle evolves it stretches along W u, because the eigenvalue near the fixed
point is larger than one (4), and then needs to contract in the transversal direction
to keep the area constant and conserve the volume of phase space. After enough
iterations of ϕ we can get a new rectangle R′ that will overlap with R. The map

2This is vaguely reminiscent of a realistic measurement, limited by the precision of the
measuring device.
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ϕn restricted to R then acts like a Smale horseshoe. This can be more rigorously
expressed and proven as the Smale-Birkhoff theorem [10].

The homoclinic tangle has a very complicated structure. We have already shown
the chaotic behaviour of the Standard map in figure (1.1). In the next figure, it
can be clearly seen that the chaotic sea of dots is located near the tangle. The
splitting of the homoclinic separatrix was also studied in relativistic systems [22,
5] using the Melnikov method.

(a) Overview (b) Zoom on chaotic region

Fig. 7. Topology of the standard map for K=1.1. At that stage the map exhibits sizable chaotic regions. However our algorithm is able to capture the
most significant structures in the individual islands of the map. A very large numbers of fixed points are identified within the forming chaotic sea,
which cannot be reliably linked to separatrices since the amplitude of chaotic motion is maximized along those separatrices. While these points
appear random, note the many degrees of symmetry which they exhibit.

to the GPU, while conceptually straightforward and promising from a
performance standpoint remains problematic due to possible inaccu-
racies in the computation (single float precision, limited precision of
texture coordinates).

8 CONCLUSION

We have presented an algorithmic and computational framework to
permit the automatic topological analysis of area-preserving maps as-
sociated with Hamiltonian systems. While these maps are of great the-
oretical interest they are also very important in practice since they offer
a geometric interpretation of the qualitative behavior of complex phys-
ical systems. Our approach significantly improves on previous work
by allowing for the explicit geometric characterization of very subtle
structures that would typically be missed through Poincaré plot investi-
gation of the map. Our algorithm was carefully designed to be numeri-
cally robust in a context where chaos and fractal complexity make any
numerical processing fundamentally challenging. By restricting our
computation to a small number of iterations of the period from any
given point (commensurate with the period range relevant to the anal-
ysis) we are able to obtain reliable results that are further enhanced by
various correction mechanisms driven by topological considerations.
From a visualization perspective we have proposed to combine this
schematic topological information with the dense and effective visual
representation afforded by the concept of orbit averaging, which we
introduced in this paper.

We have tested our methods on a standard analytical map and on a
transient numerical simulation of magnetic confinement. Our results
underscore the potential of our method to effectively support the of-
fline analysis of large simulation datasets, a context in which they can
offer a valuable diagnostic tool. In that regard there are many promis-
ing avenues for future work. In particular, the transient nature of the
considered phenomena is so far handled in a discrete manner, which
gives only indirect insight into the topological transformations that
control the development of the structures observed in individual plots.
In addition the ergodic behavior of field lines close to the boundary
of interesting structures constitutes a significant challenge that further
research should investigate to ensure well defined island boundaries.

ACKNOWLEDGMENTS

The authors wish to thank S. Kruger, E. Held, C. Sovinec, and J.
Breslau for sharing their expertise on MHD and plasma confinement.
The numerical data considered in the paper was produced by the soft-
ware NIMROD (https://nimrodteam.org/). The authors are

also indebted to Stuart Hudson for providing his insight in nonlin-
ear dynamics. This work was supported in part by the Director, Of-
fice of Advanced Scientific Computing Research, Office of Science,
of the U.S. Department of Energy under Contract No. DE-FC02-
06ER25780 through the Scientific Discovery through Advanced Com-
puting (SciDAC) programs Visualization and Analytics Center for En-
abling Technologies (VACET), the DOE SciDAC Fusion Scientific
Application Partnership, the National Science Foundation under grant
IIS-0916289, and a gift by Intel Corporation.

REFERENCES

[1] A. A. Andronov. Qualitative Theory of Second-Order Dynamic Systems.
John Wiley & Sons, 1973.

[2] V. I. Arnold. Proof of A. N. Kolmogorov’s thereom on the preservation
of quasiperiodic motions under small perturbations of the Hamiltonian.
Russ. Math. Surv., 18(5):9, 1963.

[3] A. Bagherjeiran and C. Kamath. Graph-based methods for orbit classifi-
cation. In Proc. of Sixth SIAM International Conference on Data Mining,
April 2006.

Fig. 8. Closeup of a single island within a chain of islands that has
broken into a series of islands-within-islands and is part of the nonlinear
stage of magnetic reconnection.

Figure 1.6: Homoclinic tangle of the Chirikov standard map, taken from [28].

1.3.2 Lyapunov exponents
There exist many, usually numerically calculated, coefficients which try to quan-
tify the chaoticity of a system. One of the most important is the (maximal)
Lyapunov exponent [6, 31].

Before defining it, we must briefly mention a different view at the sensitivity to
initial conditions mentioned in the definition of chaos (Def. 6). For simplicity,
lets work with a one dimensional phase space X and a continuous map ϕ as
our dynamical system. On this simple phase space imagine two points which
are close to each other at time t0, in mathematical terms x1 and x2 = x1 + ϵ,
ϵ ≪ 1. Lets define a vector ξ(t) connecting the two near points. We will call
this vector the deviation vector. We can interpret the norm of the deviation
vector as the distance between the two points at a given time. If the evolution is
very sensitive to initial conditions we expect that with time the norm |ξ(t)| will
increase exponentially meaning that the two trajectories which start out close to
each other get separated with exponential speed. We can further generalise this
for a general Hamiltonian phase space [15]. The deviation vector belongs to the
tangent space to the phase space and can be evolved by the Hamiltonian flow by
applying a linear operator ξ(t) = Dtξ(t0).
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Definition 7 (Maximal Lyapunov exponent). Let (X, ϕ, T ) be a dynamical sys-
tem. ξ(t) is a deviation vector between two linearly near initial conditions and
t, t0 ∈ T . We can then define the maximal Lyapunov exponent L as:

L = max
ξ(t0)

lim
t→∞

1
t
log |ξ(t)|

|ξ(t0)|
(1.14)

As stated previously, for chaotic trajectories we expect |ξ(t)| to grow exponen-
tially with time which means that L converges to a value corresponding to the
exponent of the exponential growth. In practice, L is usually calculated numeri-
caly and the limit approximated [15].

In general relativity, the principle of general covariance demands that the equa-
tions are independent of the choice of coordinates. Moreover, the formalism of
relativity considers time as a coordinate, which can be problematic for the Lya-
punov exponent. Nonetheless, it was found that the Lyapunov exponents are to
some extent coordinate independent [18].

Many other, usually numerically calculated, Lyapunov type coefficients are used
[27, 23]. Other numerical methods include recurrence plots [26] and Fourrier
analysis of time series [25].
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2. Weyl space-time

2.1 Properties of Weyl metrics
Hermann Weyl’s solution to Einstein’s equations is one of the earliest solutions
[9, 29]. In 1917, Weyl showed that if a given region of space-time is static and
axially symmetric and if the energy momentum tensor satisfies T ρ

ρ + T z
z = 0 it is

possible to introduce coordinates (ρ, z) of cylindrical type (Weyl’s coordinates)
in which the metric can be expressed as [25]

ds2 = −e2ν(ρ,z)dt2 + e−2ν(ρ,z)ρ2dϕ2 + e2λ(ρ,z)−2ν(ρ,z)(dρ2 + dz2), (2.1)

where ν and λ are functions of only ρ and z, t and ϕ are cyclic coordinates. It is
commonly referred to ν as the gravitational potential because it must satisfy the
Laplace equation as a result of the Einstein equations (1.6) (assuming a vacuum
and Λ = 0). The Laplace equation is linear and therefore ν superposes linearly.
The analogy with Newtonian potential can also be seen by taking the Newton
limit of the metric and looking at the time component. It can be shown that
gtt ∼ −1 − 2ν.

The second metric function λ does not have a straight-forward interpretation.
The function does not superpose linearly but it can be computed by evaluating
the following quadratures for a given ν [9]

λ,ρ = ρ(ν,ρ
2 − ν,z

2),
λ,z = 2ρν,ρν,z.

(2.2)

The fact that ν superposes linearly and λ can be evaluated (2.2) gives us a
procedure for the superposition of different static axially symmetric solutions. We
take two solutions to the Laplace equation ν1,2 which correspond to the Newtonian
solution and superpose their potentials ν = ν1 + ν2. We can then evaluate λ
(2.2). We can interpret the resulting metric as the relativistic analogue of the
superposition of two Newtonian solutions.

The first problem of this kind of superposition is that for most cases the λ can
only be evaluated numerically. The second problem is that the interpretation can
sometimes be tricky. For example, the Minkowski metric, which is the simplest
solution to Einstein’s equations, has three different corresponding Newtonian
potentials ν[9].

2.2 Test particle motion in Weyl space-time
As mentioned before, a free test particle moves in a given space-time according
to the geodesic equation (1.4). If we take the Weyl metric (2.1) and compute all
of the affine connection coefficients (1.5) and evaluate the terms in the geodesic
equation (1.4), we can write [25]
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dut

dτ
= − 2ε

e2ν
(ν,ρuρ + ν,zuz), (2.3)

duϕ

dτ
= 2e2νl

ρ3 [ρ(ν,ρuρ + ν,zuz) − uρ], (2.4)

duρ

dτ
= −ε2ν,ρ

e2λ
+ l2e4ν

ρ3e2λ
(1 − ρν,ρ) + (ν,ρ − λ,ρ)[(uρ)2 − (uz)2] + 2(ν,z − λ,z)uρuz,

(2.5)
duz

dτ
= −ε2ν,z

e2λ
− l2e4νν,z

ρ2e2λ
− (ν,z − λ,z)[(uρ)2 − (uz)2] + 2(ν,ρ − λ,ρ)uρuz, (2.6)

where ut ≡ −ε and uϕ ≡ l are the two constants of motion implied by the
staticity and axial symmetry of the space-time. From the equations (2.3) and
(2.4) it would seem like the motion in the (t, ϕ) plane is fully determined by
ν, but the components ut, uϕ are coupled with uρ and uz which depend on λ
explicitly [25].

2.2.1 Effective potential
In order to examine the motion further, the effective-potential method needs to
be discussed. The most known application of this method is the Kepler problem
in classical mechanics. The methodology can nevertheless be modified for exam-
ining radial motion in general relativity with the same straight-forward graphical
interpretation.

Now, we will demonstrate how to use the method for a static and axially sym-
metric diagonal metric gµν in the form

ds2 = gttdt2 + grrdr2 + gθθdθ2 + gϕϕdϕ2. (2.7)

The symmetries, corresponding to the Killing vector fields ∂t and ∂ϕ, give us two
constants of motion, the energy ε ≡ −ut and the angular momentum l ≡ uϕ [9].
Let us write down the normalisation of 4-velocity for our metric [17],

gµνuµuν = ε2gtt + (ur)2grr + (uθ)2gθθ + l2gϕϕ = −1. (2.8)

If we restrict ourselves to circular geodesics in the equatorial plane, we induce
the conditions θ = π

2 (uθ = 0) which further simplifies the expression,

ε2gtt + (ur)2grr + l2gϕϕ = −1. (2.9)

Let us further rearrange the terms and use the fact that the metric is diagonal,
gαα = 1

gαα ,

grr(ur)2 = −ε2gtt − l2gϕϕ − 1, (2.10)

(ur)2 = − ε2

gttgrr

− 1
grr

(︄
l2

gϕϕ

+ 1
)︄

. (2.11)
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Now, let us define the term on the right as the effective potential,

Veff ≡ 1
grr

(︄
l2

gϕϕ

+ 1
)︄

. (2.12)

As previously stated, the interpretation is analogous to the Newtonian case. This
can best be seen for Schwarzschild and Reissner–Nordström black hole where

1
gttgrr

= −1 and the expression takes on the familiar form [11]

(ur)2 = ε2 − V 2
eff . (2.13)

From the last equation, we see that necessarily ε2 ≥ V 2
eff . Hence, the effective

potential represents the minimal value of energy with which a particle of a given
angular momentum l can exist at a given location.

Different types of motion can be shown graphically for Schwarzschild space-time.
The metric of Schwarzschild space-time can be written as

ds2 = −
(︃

1 − 2M

r

)︃
dt2 + 1

1 − 2M
r

dr2 + r2(dθ2 + sin2 θdϕ2). (2.14)

Here we are using Schwazschild coordinates (t, r, θ, ϕ). M is interpreted as the
mass of the black hole,1 r is called the areal radius. It is not the distance from
the origin. However, if r and t are held constant with θ ∈ [0, π] and ϕ ∈ [0, 2π), it
corresponds to the familiar Euclidean expression 4πr2 for the surface of a sphere
with radius r [9].

Let us return to (2.12) and input the components of the metric tensor for the
Schwarzschild black hole (2.14),

V 2
eff(r) =

(︃
1 − 2M

r

)︃(︄
l2

r2 + 1
)︄

. (2.15)

Contrary to the Newtonian case, where a system of a point like massive centre
with an orbiting test particle of non-zero l involves an infinite ‘centrifugal barrier’,
the relativistic effective potential always goes to zero at the black-hole horizon.
For sufficient values of l, this fact implies the existence of a local maximum
of the effective potential. We know that, in analogy to the Newtonian case, a
local minimum of V 2

eff produces a stable circular orbit. On the contrary, a local
maximum of the effective potential produces a circular orbit that is unstable. For
completeness, let us mention that the effective potential method can be modified
and successfully applied to some non-static space-times, for example the Kerr
space-time [20].

1The metric itself does not imply any restrictions on the object and the interpretation, it
simply describes gravitation around a spherically symmetrically distributed mass in a vacuum.
We have written black hole here because it is most relevant to our subject of study.
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Figure 2.1: (top) Different types of behaviour of massive particles arround a
Schwarzschild black-hole, (bottom) effective potential displayed for different val-
ues of angular momentum, values chosen in agreement with [3].

For the metric in Weyl coordinates (2.1), we need to slightly modify the definition
of V 2

eff . If we proceed in a similar fashion as when we derived the equation for
equatorial motion θ = 0 ⇔ z = 0 (uz = 0), we can get to a similar expression to
(2.10)

e2λ(uρ)2 = ε2 − e2ν

(︄
1 + e2νl2

ρ2

)︄
. (2.16)

The effective potential can then be defined as follows:

V 2
eff ≡ e2ν

(︄
1 + e2νl2

ρ2

)︄
. (2.17)

The resulting effective potential was also derived in [14] using Lagrangian formal-
ism.
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2.2.2 Homoclinic orbits
Let us connect our information about dynamical-system theory, from the first
chapter, to our analysis of free test particle motion in black-hole fields. Using
the classification (Def. 4), the unstable circular orbit can be classified as a (hy-
perbolic) unstable fixed point with which the stable and unstable asymptotic
manifolds (Def. 5) are associated. The intersection of these manifolds creates a
homoclinic orbit. From the definition of the two manifolds, we can gather that
the homoclinic orbit approaches the unstable circular orbit in both the infinite
future and past. The homoclinic orbit therefore has to have the same ε as the
unstable circular orbit.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
r/M

0.89

0.90

0.91

0.92

0.93

V e
ff

homoclinic orbit

R0 rmax

unstable circular orbit

Figure 2.2: Relation of the homoclinic orbit to the effective potential (blue line)
in Schwarzschild space-time with highlighted turning points R0 and rmax, for
l = 3.669M .

The effective potential itself allows us to find the ε of the homoclinic orbit for
a given l by finding the local maximum. The equation (2.13) can then be used
to determine its shape. Let us first discus the analytic procedure for finding the
homoclinic orbit in Schwarzschild space-time. Later, we will try to replace the
analytical procedure with a numerical procedure, which can be used for more
complicated systems.

Homoclinic orbit in Schwarzschild space-time

Let us restate the form of the equations,

(ur)2 = ε2 − V 2
eff , (2.18)

V 2
eff(r) =

(︃
1 − 2M

r

)︃(︄
l2

r2 + 1
)︄

. (2.19)
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The first of these (2.18) can also be written in terms of the so-called reciprocal
radius, which is defined as u ≡ 1

r
. We want to obtain an equation for u as a

function of ϕ. This will allow us to plot the spatial picture of the orbit. For u,
the following relation can be derived [25]

ur ≡ dr

dτ
= dr

du

du

dϕ

dϕ

dτ
= −l

du

dϕ
. (2.20)

This allows us to rewrite the radial equation into the Binet formula

(︄
du

dϕ

)︄2

= ε2 − V 2
eff

l2 . (2.21)

Solving this differential equation will be our main focus in this section. The
equation can be used to find the trajectory of a general orbit but we will now
restrict ourselves to homoclinic ones. As discussed previously, the homoclinic-
orbit energy corresponds to the value of V 2

eff(r) at its local maximum. In order
to find the value, we need to differentiate the effective potential with respect to
r and set it to 0. This results in the following equation for the stationary points:

dV 2
eff

dr
= 0 ⇔ l2 = Mr2

r − 3M
⇒ R0 = l

2M
(l −

√
l2 − 12M2), (2.22)

where the last implication does not work both ways because we have selected only
the root which leads to V 2

eff(R0) being maximal. In terms of the reciprocal radius,
we will define U0 ≡ 1

R0
. Let us now further work with (2.21). For a homoclinic

orbit, we can write

(︄
du

dϕ

)︄2

= V 2
eff(R0) − V 2

eff(u(ϕ))
l2 , (2.23)

where we have used the same notation as in [22]. The first term on the right hand
side of this equation can be further expressed as:

V 2
eff(R0) = ε2 = (R0 − 2M)2

R0(R0 − 3M) (2.24)

For completeness, let us also mention how to express the other parameters in
terms of reciprocal radius

l2 = M

U0(1 − 3MU0)
, (2.25)

V 2
eff(u) = (1 − 2MU0)(1 + l2u2). (2.26)

If we return to the Binet formula and substitute in all of the expressions in terms
of the reciprocal radius, we can factorise the equation using the fact that U0 is
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a turning point and therefore is a root of the right-hand side. Another root can
be found using the fact that V 2

eff(r) reaches the ‘homoclinic’ energy twice, which
can be seen from (2.2). Let us label this second root rmax and define umax ≡ 1

rmax
.

The whole right hand side of the Binet equation can therefore be factorised as
follows:

(︄
du

dϕ

)︄2

= 2M(u − U0)2(u − umax). (2.27)

This differential equation has an analytical solution in the form

u(ϕ) = umax + (U0 − umax) tanh2
[︃1
2ϕ
√︂

2M(U0 − umax)
]︃
. (2.28)

The spatial picture of the homoclinic orbit r(ϕ) can be then obtained as 1
u(ϕ) .

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

r /M

Figure 2.3: Spatial picture of the homoclinic orbit in Schwarzschild space-time,
for l = 3.669M .

In conclusion, we have managed to replicate the results in [22] and demonstrated
a procedure for obtaining the trajectory of the homoclinic orbit in a simple system
(Schwarzschild).

Homoclinic orbit in a perturbed field

Now, we wish to use the same procedure for perturbed fields. By perturbed
fields, we mean a Weyl superposition of an isolated black hole like Schwarzschild
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or Reissner–Nordström space-time and an external source, such as a disc or a ring.
Both of the fields can be described by Weyl metric functions ν, λ and therefore
can be superposed in a manner described earlier (2.2).

Let us now consider the Schwarzschild black hole as the unperturbed source and a
general2 perturbation which can be described in terms of Weyl metric functions.
If we take the Schwarzschild black hole and perform the Weyl superposition with
the external perturbing source (in Weyl coordinates), we can obtain a metric
describing the compound system. The resulting metric of the system can then be
expressed in Schwarzschild coordinates (t, r, ϕ, θ) as follows [25]:

ds2 = −
(︃

1 − 2M

r

)︃
e2ν̂dt2 + e2λ̂−2ν̂

1 − 2M
r

dr2 + r2e−2ν̂
(︂
e2λ̂dθ2 + sin2 θdϕ2

)︂
, (2.29)

where the function ν̂ is defined as the ν of the perturbation and λ̂ is defined
as λ̂ = λP − λSchw, where λSchw is the metric function describing the isolated
(Schwarzschild) black hole. We will discuss more about the Weyl coordinate
description of the Schwarzschild black hole at the end of this chapter.

We will once again look at the motion in the equatorial plane θ = π
2 and use the

four-velocity normalisation, which will lead to a similar looking radial equation

e2λ̂(ur)2 = ε2 − V 2
eff , (2.30)

where the effective potential is defined differently than in Schwarzschild space-
time3

V 2
eff ≡

(︃
1 − 2M

r

)︃(︄
1 + e2ν̂l2

r2 sin2 θ

)︄
e2ν̂ . (2.31)

By using the reciprocal radius we can modify the Binet formula (2.21) to fit a
perturbed Schwarzschild black hole,

(︄
du

dϕ

)︄2

= ε2 − V 2
eff

e2λ̂l2
. (2.32)

At this point, one might be deceived by the likeness of the expressions to that
derived for an isolated Schwarzschild black-hole, but we should stop ourselves
before jumping to conclusions because several complications are added by the
additional source. The first main complication is that the effective potential can
have many non-trivial additional terms hidden in e2ν̂ . The second complication

2The perturbation is not completely general, because, as mentioned before, the class of
Weyl metrics considers only static and axisymmetrical fields. This for example excludes a
rotating disc or ring, which might be somewhat ‘astrophysically disappointing’. Most observed
black holes and their accretion disc do in fact rotate as a result of the conservation of angular
momentum after a gravitational collapse.

3For equatorial motion sin2 θ = 1.
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is that the modified Binet equation contains the second metric function and
therefore potentially many terms hidden in e2λ̂. Note that here, we did not make
any assumptions about the metric functions of the perturbation.

Let us nonetheless try to repeat the same procedure as was done in Schwarzschild
and attempt to find the stationary points of V 2

eff ,

dV 2
eff

dr
= 0 ⇔ l2 = e−2ν̂ r2[rν̂ ,r(r − 2M) + M ]

r − 3M − 2rν̂ ,r(r − 2M) . (2.33)

Here, we were able to express l2 but note that an expression for R0 can not be
expressed from it in the same way as in Schwarzschild. In other words, for a
‘generally’ perturbed Schwarzschild field, one cannot find the maximum of the
potential (the energy of the homoclinic orbit) ε and its position R0 analytically.
However if we consider numerical calculations, the finding of these values should
not be difficult because the effective potential, if plotted for ‘small amounts’ of
perturbation4, looks very similar to the Schwarzschild effective potential. The
second turning point rmax can be found by solving the equation V 2

eff(r) = ε2 and
considering only the larger solution rmax >R0.

Assuming we have a value for the energy of the homoclinic orbit, its position
R0 and the second turning point rmax, we need to return to the Binet formula,
where once again complications arrise. The equation, in a general case, may not
be solvable analytically and in a lot of cases we need to once again resort to
numerical methods.

With this motivation, let us briefly discuss our numerical procedure for finding
the homoclinic orbit. In this thesis, the Wolfram Mathematica function FindMax-
imum is used for finding the maximum of V 2

eff . The function selects a method
based on the problem and given an initial guess it finds the maximum ε2 and its
position R0 with desired precision. The second turning point rmax, the larger solu-
tion to the equation V 2

eff(r) = ε2, is obtained using the either the function NSolve
or FindRoot. The differential equation is then solved by using these values and
one initial condition by the function NDSolve. For the initial condition, we have
found that selecting u(ϕ = 0) very close, but not exactly equal, to umax ≡ 1

rmax
works well.

For the sake of testing the procedure, we can compare the numerical solution
of the homoclinic orbit to the analytically obtained formula both for the (non-
perturbed) Schwarzschild space-time (2.3).

4The parameter considered small is the mass of the external source.
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Figure 2.4: Numerical solution for the spatial picture of the homoclinic orbit in
Schwarzschild space-time, for l = 3.669M .

The main difference occurs near the second turning point rmax, where the numer-
ical solution tends to get ‘stuck’. From the effective potential, we know that a
circular orbit can only exist at a stationary point of V 2

eff and this part of the tra-
jectory should therefore be ignored because it is not physically reasonable. This
is the reason why we choose an initial condition slightly offset from the turning
point. Nevertheless, the rest of the shape corresponds nicely to the analytically
computed orbit (2.3).

2.2.3 Schwarzschild solution as a Weyl metric
The Schwarzschild solution (2.14) can also be expressed in terms of Weyl coordi-
nates (2.1) [25],

ν = 1
2lnd1 + d2 − 2M

d1 + d2 + 2M
,

λ = 1
2ln(d1 + d2)2 − 4M2

4Σ ,

(2.34)

where the functions d1,2 and Σ are defined as d1,2 ≡
√︂

ρ2 + (z ∓ M)2, Σ ≡ d1d2.
If we look at the expression for the gravitational potential, it corresponds to the
Newtonian potential of a finite rod located along the part of the axis ρ = 0, with
length 2M and total mass M [9]. We can now see that the Newtonian analogy is

24



imperfect, because the original relativistic interpretation of the metric is that of
a vacuum spherically symmetric solution [17].

The metric functions can also be written in Schwarzschild coordinates (2.14):

ν = 1
2ln(1 − 2M

r
),

λ = 1
2lnr(r − 2M)

Σ .

(2.35)

Schwarzschild coordinates can be transformed back to the Weyl coordinates (2.1)
by the relations: ρ =

√︂
r(r − 2M) sin θ, z = (r − M) cos θ.
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3. Perturbed black hole fields
In this chapter, we will apply the effective potential method to two perturbed
systems, composed of a black hole and an axially symmetric, static perturbation in
the form of an external source. After describing basic properties of the perturbing
sources, we will compare the resulting effective potentials and the homoclinic
orbits in both these systems.

3.1 Kuzmin-Toomre disc

3.1.1 Properties
The inverted Kuzmin-Toomre discs are a class of thin infinitely stretching axially
symmetric discs. One of the reasons why these discs generate interest among
relativist is that the Newtonian density falls to zero both when the radius (2.1)
goes to infinity and when the radius is zero [12]. Therefore, when we consider a
superposition with a black hole, there will not be any matter reaching the black
hole’s horizon and thus necessarily infalling into it’s interior.

3.1.2 Metric functions
The discs’ Newtonian potential ν is constructed by considering the gravitational
effect of a mass distribution W (b) located along the negative part of the axis
z < 0. The field is then cut at the equatorial plane z = 0 and its upper part
z > 0 is reflected to the negative part z < 0 of the axis [12, 4]. The resulting
potential is symmetrical when mirrored by the equatorial plane. In cylindrical
coordinates (ρ, ϕ, z), the potential is given by

ν =
∫︂ ∞

−∞

W (b′)db′√︂
ρ2 + (|z| + b′)2

. (3.1)

The inverted Kuzmin-Toomre discs are then obtained by substituting a combina-
tion of the derivatives of the delta distribution, as was done in [4], for the function
W and then performing the so-called Kelvin transformation [12]. The potential
of the n-th order inverted Kuzmin-Toomre disc can be expressed by the equation

νn = −
(︄

n + 1
2

n

)︄
Md

(1 + 2n)!!

n∑︂
k=0

(2n − k)!
2n−k(n − k)!

×2F1 (1 + k, k − 1, k − 2n, 2) (−b)k

rk+1
b

, Pk(| cos θb|), (3.2)

where rb =
√︂

ρ2 + (|z| + b)2, | cos θb| = |z|+b
rb

is the transformation of the cylin-
drical coordinates ρ and z, Pk(| cos θb|) is the Legendre polynomial of degree k
evaluated at | cos θb|, and 2F1 is the Gauss hypergeometric function. Md denotes
the mass of the disc.
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The second Weyl metric function λ can also be found by using (2.2) and requiring
λ −→ 0 when rb −→ ∞ [12],

λDisc = −
(︄

n + 1
2

n

)︄2
M2

d sin2 θb

(1 + 2n)!!2
n∑︂

k,l=0

(−b)k+l

rk+l+2
b

Bk,l(n, k, l)Pk,l(θb, k, l), (3.3)

Bk,l ≡ (2n − k)!(2n − l)!
22n−k−l(n − k)!(n − l)!(k + l + 2) ,

×2F1(1 + l, k − n, k − 2n, 2)2F1(1 + l, l − n, l − 2n, 2), (3.4)

P ′
k ≡ d

d(cos θb)
Pk(| cos θb|), (3.5)

Pk,l ≡ (k + 1)(l + 1)Pk(| cos θb|)Pl(| cos θb|),
+2(k + 1)| cos θb|Pk(| cos θb|)P ′

l (θb) − sin2 θbPk(θb)Pl(θb). (3.6)

If we would consider motion in the field of the disc alone, we would come to the
conclusion that it does not contain any unstable circular orbits and therefore no
homoclinic orbits. Let us move on to the study of the composite system consisting
of the Kuzmin-Toomre disc and a Schwarzschild black hole.

3.1.3 Superposition with Schwarzschild black hole
For the form of the metric describing the superposed system, let us refer to the
earlier form (2.29). The function ν̂ is defined as the ν of the disc (3.2) and λ̂ is
defined as λ̂ = λDisc + λInt. For the Kuzmin-Toomre discs, the metric functions
were already listed above. The only new complication, a result of the nonlinearity
of general relativity, is that the system’s metric function λ is not a simple sum
of the two systems’ metric functions λ as is the case with ν. A new interaction
term λInt needs to be added.

For the λInt an iterative expression was derived in [12],

λ
(n+1)
Int = λ

(0)
Int + b

2(n + 1)
∂

∂b
λ

(n)
Int ,

λ
(0)
Int ≡ −Md

rb

(︄
d1

b + M
− d2

b − M

)︄
− 2MMd

b2 − M2 , (3.7)

where d1,2 are the same functions as in (2.34). The fact that λ̂ has an analytical
expression makes this particular superposed system somewhat unique.

In order to find the unstable circular orbit, we need to restrict ourselves to the
equatorial plane again and employ the effective potential method. If we assume
that the motion is restricted to the equatorial plane, we have as many constants of
motion as degrees of freedom making our system completely integrable. Note that
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this is not the case if we are talking about general motion in the superposed field.
Non-equatorial motion can be studied by numerical integration of the geodesic
equation and studying Poincaré sections [25].

The effective potential can be obtained by using the normalisation of four-velocity
and in a way we have already described in the previous chapter (2.31). In the
equatorial plane we can write

V 2
eff ≡

(︃
1 − 2M

r

)︃(︄
1 + e2ν̂l2

r2

)︄
e2ν̂ . (3.8)

n = 8, 7, ... , 1

5 10 15 20 25 30
r /M

0.95

1.00

1.05
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Veff

Figure 3.1: Equatorial effective potential of a Schwarzschild black hole encircled
by different members n of the Kuzmin-Toomre disc class, constants chosen: b =
20M , l = 5M , Md = 0.5M . The highest order has the highest local maximum.

For different n, we can see that the plot of the effective potential changes min-
imally and in result the dynamic properties of the system are not significantly
affected. For this reason, in future calculations we will only consider n = 1.

3.2 Majumdar-Papapetrou ring

3.2.1 Properties
The Majumdar–Papapetrou (MP) solutions are the only known singularity-free
stationary space-times which can describe a system of more than one black hole
[24]. In this class of space-times a composite system of charged black holes is
maintained in a static equilibrium by their charge. The charge of the black holes
has to be extreme1 M2 = Q2 in order to compensate for the gravitation pull
which is in analogy with classical mechanics. The addition of the electromag-
netic field makes the solution, unlike the previous solutions, non-vacuum. For
the construction of the MP ring, one needs to consider the field of ‘infinitesi-
mal’ extremely charged black holes arranged in a circle. The resulting field is

1Note that this equality only makes sense in geometrized units.
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axisymmetric, static but non-vacuum which is not a problem because the electro-
magnetic field’s energy-momentum tensor is always traceless [17]. This enables us
to describe the MP ring in terms of metric functions ν, λ, using Weyl coordinates
and superposing it with other Weyl metrics (2.1).

3.2.2 Lapse Function
We should now briefly mention that within the Weyl class of metrics the MP
subclass is defined by only having one metric function and λ = 0 (2.2). The
remaining non-zero metric function is referred to as the lapse function, denoted
by N and defined as N ≡ eν . The metric of this subclass can be written as

ds2 = −N2dt2 + N−2(ρ2dϕ2 + dρ2 + dz2). (3.9)

The fact that λ = 0 makes superposing fields significantly easier because, similarly
to ν, as a result of Einsteins equations (1.6) 1

N
has to be a solution to the Laplace

equation and therefore superposes linearly. Both the MP ring and the extreme
Reissner–Nordström (RN) black hole fall into this subclass. The lapse function
of the MP ring was derived in [24] as

1
N

= 1 + 2MdK(k)
πl2

, (3.10)

the terms used in the equation are K(k) denoting the complete elliptic integral
of the first kind with k2 = 1− 4bρ

(l2)2 and l1,2 =
√︂

(ρ ∓ b)2 + z2. b is the Weyl radius
of the ring and Md is the ring’s mass.

3.2.3 Superposition with Extreme Reissner–Nordström
Reissner–Nordström space-time

The Reissner–Nordström solution is very similar to the Schwarzschild solution
(2.14) but the black hole considered has charge. In fact, because of the charge
of the black hole the RN solution is not only a solution to Einstein’s equations
but to Maxwell’s equations as well. This makes the field have new interesting
properties such as two horizons, more on which can be found in [9, 3]. That
being said, the RN metric still shares a lot of properties with Schwarzschild.
Namely, it is spherically symetric and static. We will consider an extreme case
of parameters, where the charge is equal to the mass of the black hole, as was
done when constructing the MP ring, this choice is referred to as the extreme
RN black hole and belongs to the MP class. This choice of parameters makes
the two horizons merge into one and the field can be described in terms of only
one metric function. The lapse function for the extreme RN black hole can be
expressed as

1
N

= 1 + M√
ρ2 + z2 , (3.11)
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M denotes the mass of the black hole. The space-time can also be described in
Schwarzschild-like coordinates (t, r, ϕ, θ),

ds2 = −N2dt2 + N−2(r2 sin2 θdϕ2 + dr2 + r2dθ2), (3.12)

where the relation to Weyl coordinates is necessarily different from Schwarzschild.
The transformation has the following form

z = (r − M) cos θ,

ρ = (r − M) sin θ.
(3.13)

Superposed system

The superposed system of the RN black hole and the MP ring has a lapse function
simply given by the sum of the two systems 1

N
as

1
N

= 1 + M√
ρ2 + z2 + 2MdK(k)

πl2
. (3.14)

The metric describing the pertubed system can be expressed in the Schwarzschild-
like coordinates be substituting the superposed lapse function. For identifying
unstable circular orbits and homoclinic orbits, we once again turn to the effective
potential method. Using the same procedures and substituting the metric tensor
components (??), we can write the radial equation and effective potential for a
general MP metric,

(ur)2 = ε2 − V 2
eff , (3.15)

V 2
eff ≡

(︄
1 + N2l2

r2

)︄
N2, (3.16)

where it should be emphasised that N is the lapse function of the composite
system.

3.3 Comparison of perturbed systems.
In this section, we will compare the effective potentials and the homoclinic orbits
of the MP ring and RN system and the Kuzmin-Toomre disc and Schwarzschild
system. The homoclinic orbit is closely related to the local unstable maximum
of the effective potential. In Schwarzschild, we saw that this maximum can only
occur if the value of l is high enough (2.1). The same tendency is present in both
our systems.
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3.3.1 Perturbed effective potential
For both our systems, it can be shown that if we take the limit of Md −→ 0 both
metric functions approach 1 and the effective potential unsurprisingly reduces
to nonperturbed case. In other words, when Md is much smaller than M , the
effective potential looks qualitatively like the effective potential of the isolated
black hole.
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Figure 3.2: Plots of the equatorial effective potential, in Schwarzschild coordi-
nates, for different values of l, (left) for Kuzmin-Toomre and Schwarzschild system
with parameters, b = 20M , n = 1, Md = 0.01M and l ranging from 2M to 5M
(right) for MP ring and RN system with parameters, b = 10M , Md = 0.3M , l
goes from 2.5M to 5.5M .

For the Kuzmin-Toomre composite system, the effective potential has a very
similar relation to the changing of l to Schwarzschild (2.31), atleast for Md small
compared to M . We can once again come to the conclusion, that after a certain
critical value of l the unstable maximum appears in the graph. The corresponding
homoclinic orbit can then be found. In the left column, the figures resemble the
plots displayed in [25] for the power-law discs’ superposition with Schwarzschild.

The unsmootheness of the figures in the right column (3.2), in comparison to
the Kuzmin-Toomre disc superposition, can be explained by considering that the
MP ring is a more concentrated source than the infinitely stretching everywhere
smooth disc. The new phenomenon, for the MP composite system, is the second
local minimum ‘valley’. The depth of this ‘valley’ is dependant on the value of the
ring’s mass, which is shown in the next set of figures. This new phenomenon only
produces a local minimum and therefore does not produce any new homoclinic
orbits. Nonetheless, a local maximum still appears for sufficient l.
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Figure 3.3: Comparison of the relation between mass of the external source Md
and the shape of the effective potential in Shcwarzschild coordinates. In the left
column displayed for Kuzmin-Toomre disc and Schwarzschild system and in the
right column shown for the MP ring and RN system. The values of Md increase
as we go from top to bottom. In the left column, the following parameters are
constant, n = 1, b = 20M , l = 6M . In the top left Md goes from 0.01M to 15M .
In the bottom left, extreme values are chosen, Md goes from 30M to 70M . In
the right column, the parameters are chosen as: b = 10M , l = 4.5M . In the top
right, Md goes from 0.01M to 0.5M and in the bottom right it goes from 1.5M
to 5M .

From the figures (3.3), we can conclude that the increase of Md leads to a decrease
in the value of the local maximum. In other words the mass of the external source
‘flattens’ the effective potential in both systems. If we would compare this effect,
the MP ring ‘flattens’ the function in a more pronounced way. In fact the black
hole’s field is so strong that the Kuzmin-Toomre disc needs to be unphysically
heavy to ‘match’ its strength. This roughly occurs for values of Md larger than
20M . For the MP ring composite system, the increase in Md also leads to a
deeper ‘valley’.

Note that as r −→ ∞, the effective potential necessarily approaches 1 regardless
of the value of Md. This might not be apparent from the figure (3.3), especially
for very heavy external sources.

3.3.2 Perturbed homoclinic orbits
For both our systems, the Binet formula (2.32) leads us to an equation which
can not be solved analytically. In the previous chapter, we have described how
to numerically calculate the homoclinic orbit.
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Figure 3.4: Spatial portraits of the homoclinic orbits, in the left column displayed
for the first order Kuzmin-Toomre disc and Schwarzschild system and for the MP
ring and RN system in the right column. Md increases as we go from top to
bottom. In the left column, b = 10M holds for all figures. Similarly, in the right
column, b = 20M . The remaining parameters l and Md change for every figure.
Their values are summarised in the table bellow.

Table: Parameters chosen in figure (3.4). Left two columns of the table corre-
sponds to the left column of the figure and likewise for the right two columns.

Md l Md l
0.01M 3.669M 0.1M 4.29M
0.5M 3.828M 0.5M 4.91M
1M 3.985M 1M 5.57M
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For comparison, we have selected parameters that lead to ε2 being approximately2

equal for all configurations in a column of figure (3.4). To achieve this, everytime
we raise Md we need to compensate for it by increasing l. In simpler terms, the
more the external source flattens the effective potential the more l we need to
raise the ‘centrifugal barrier’.

In all of the figures, it is apparent that the trajectories approach the unstable
circular orbit, which is the defining feature of the homoclinic orbit. Contrary to
figure (2.4), we have omitted the second circular orbit, located at the turning point
rmax, because the existence of this sort of motion at the position is unphysical.
Circular orbits can only exist at extrema of the effective potential and thus can
not be present at the turning point.

The position of the turning point rmax gets farther away from the horizon as
Md increases for both systems. This is a direct result of the flattening done by
increasing Md. Despite both the systems being different, both have a very similar
looking homoclinic orbit. The main difference being that the same increase in
Md has a bigger impact for the MP composite system, meaning it’s rmax increase
more than it would for the same change in Md occuring in the Kuzmin-Toomre
composite system.

If we briefly step outside the ‘comfort’ of integrable equatorial motion and take
a look at the meridional plane, which is perpendicular to the equatorial plane,
we can get a glimpse of the effect of the Kuzmin-Toomre disc and MP ring on
general motion by plotting the effective potential in the (r cos θ, r sin θ) plane.
Let us stress that general motion can not be studied by merely analyzing the
effective potential.

In the meridional plan, we need to adjust the radial equation and add back the
terms we have previously omitted [30]. For the composite Kuzmin-Toomre disc
system, we can write

eλP −λ
[︂
(ur)2 + r(r − 2M)(uθ)2

]︂
= ε2 − V 2

eff , (3.17)

V 2
eff ≡

(︃
1 − 2M

r

)︃(︄
1 + e2ν̂l2

r2 sin2 θ

)︄
e2ν̂ . (3.18)

For the MP ring composite system, the λ term vanishes and we can write,

[︂
(ur)2 + r(r − 2M)(uθ)2

]︂
= ε2 − V 2

eff , (3.19)

V 2
eff ≡

(︄
1 + N2l2

r2 sin2 θ

)︄
N2. (3.20)

2Equal up to three decimal places, for the Kuzmin-Toomre composite system ε2 ≈ 0.924
and for the MP ring and RN system ε2 ≈ 0.958.
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Figure 3.5: Contours of the effective potential displayed in the meridional plane
with parameters, (top) for Kuzmin-Toomre composite system with b = 20M ,
l = 5M , Md = 10M n = 1, (bottom) for MP ring composite system with
b = 10M , l = 4.5M , Md = 10M . The choice of Md is highly extreme but it is
chosen to clearly illustrate the effect of the sources on the black-hole field.
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Conclusion
The main goal of this thesis was to show the importance of homoclinic orbits
in (perturbed) black-hole systems. The foundations of chaos theory were sum-
marised and narrowed down to fit our field of study. The onset of chaos was
described by the mathematical construction known as the Smale Horseshoe map
and the connection to chaos in Hamiltonian systems was shown.

Special attention was paid to axisymmetric, static space-times described by Weyl
metrics because they offer a way of superposing metrics. The superpositions were
used to perturbe the original black-hole field, destroying the previous integrability
of free test-particle motion. The effective-potential method was established. The
Binet formula was used to find homoclinic orbits in Schwarzschild field analyti-
cally. A simple numerical procedure for finding homoclinic orbits was developed.
We applied the procedure to (unperturbed) Schwarzschild space-time and com-
pared the results with the analytic approach. The numerical results reproduced
the analytic result almost perfectly.

In this thesis, two composite systems were considered. First, the superposition
of the Kuzmin-Toomre disc with the Schwarzschild black hole , and then the
system consisting of the RN black hole and the MP ring. In both cases, equatorial
geodesic motion was studied and the effective potential method applied in order
to find the homoclinic orbit. The effect of the external source’s parameters on
equatorial geodesics was compared. The numerical procedure proved succesful in
finding homoclinic orbits in both systems. The relation between the mass of both
sources and the spatial picture of the homoclinic orbits was also discussed.

For a more complete understanding, non-equatorial free-particle motion in both
systems should be studied to further analyse the connection between the homo-
clinic orbits and chaos. The Melnikov method is another possible path for future
studies of homoclinic chaos, where the shape of the homoclinic orbits can be
utilised.
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[3] Bičák J. and Semerák O., Relativistic physics, http://utf.mff.cuni.cz/
˜semerak/GTR.pdf, Lecture notes for a course taught at Prague math-phys,
Apr. 2023.
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