
MASTER’S THESIS

Pavel Loub

Optimization of routing and scheduling
for waste collection

Department of Probability and Mathematical Statistics

Supervisor of the master thesis: Ing. Vı́t Procházka, Ph. D.
Study programme: Mathematics

Study branch: Probability, Mathematical Statistics
and Econometrics

Prague 2023

I declare that I carried out this master’s thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Hereby, I would like to thank my supervisor Ing. Vı́t Procházka, Ph. D., without
whose practical advice, recommendations and, above all, his attitude this thesis
would not have reached the quality it has now.

My thanks goes also to the team from Institute of Process Engineering at
University of Technology, Brno, for their kindness and interest in my progress.

Finally, I want to show my gratitude to all of those who taught me and helped
me to understand.

ii

Title: Optimization of routing and scheduling for waste collection

Author: Pavel Loub

Institute: Department of Probability and Mathematical Statistics

Supervisor: Ing. Vı́t Procházka, Ph. D., Department of Probability and Mathe-
matical Statistics

Abstract: This thesis proposes a mixed integer linear program for waste collection
in South Moravian region. For deterministic models are difficult to solve by exact
methods, it was necessary to find a way to obtain solutions in reasonable time.
Hence, a brand new metaheuristic based on Simulated annealing is developed for
solving the waste collection problem.

Keywords: Vehicle routing problem, simulated annealing, mixed integer linear
programming

iii

Contents

Preface 3

1 The Basics 4
1.1 Graph theory . 4
1.2 Mathematical programming . 5

1.2.1 Nonlinear programming 5
1.2.2 Linear programming . 8

1.3 Primal simplex . 10

2 Vehicle Routing Problem 15
2.1 Fundamentals . 15
2.2 Multi-depot Vehicle Routing Problem with Time Windows and

Heterogeneous Fleet . 15
2.3 Solution approaches for more complex problems 16

2.3.1 Clustering . 17
2.3.2 Routing . 18
2.3.3 Simulated annealing . 19

3 Waste collection problem 22
3.1 Problem formulation . 22
3.2 Mathematical formulation . 23

4 Solving approaches 28
4.1 Exact approach . 28
4.2 Metaheuristic approach . 28

4.2.1 Construction of an initial solution 29
4.2.2 Modified simulated annealing algorithm 32

5 Case study 37
5.1 Data . 37
5.2 Instances . 38
5.3 Results . 47

6 Future extensions 48

7 Epilog 50

Bibliography 51

List of Figures 54

List of Tables 55

1

Notations and Abbreviations
To avoid any ambiguity it is useful to provide an overview of notations which will
occur throughout the whole work. First of all let us start with sets. Sets will
be denoted with capital letters of caligraphic font style, i. e. B, C, etc. Elements
of of any set will be depicted using small letters of cursive font style, i. e. x, y,
etc. In case of vectors, i. e. elements of any vector space, they will be represented
as bold small letters of cursive font style, i. e. x, y, etc. Matrices will be always
denoted as blackbord bold capital letters, i. e. X, M, etc. There is, on contrary, a
stable blackboard bold notation of sets, e. g. natural numbers, or perhaps proba-
bility measure, but in this case we believe that there will be no misunderstanding
if in the work will be any occurance of same denomination as in the list below
describing set notations. Lastly, abbreviations will be always typeset with small
caps font, i. e. vehicle routing problem will be abbreviated as vrp.

Set notations:

N : natural numbers
Z : integer numbers
Q : rational numbers
R : real numbers
∅ : empty set
| · |, || · || or card(·) : cardinality of a set
A : σ-algebra
P : probability measure

Abbreviations:

ipe : Institute of Process Engineering
lp : linear program
milp : mixed integer linear program
sp : stochastic programming
tsp : Traveling Salesman Problem
secs : subtour elimination constraints
vrp : Vehicle Routing Problem
mdvrptw : Multi-Depot Vehicle Routing Problem with Time Windows
mtpcarp : Multi-Trip Periodic Capacitated Arc Routing Problem
np : non-deterministic polynomial time
hfcvrp : Heterogeneous Fleet Capacitated Vehicle Routing Problem
lbpmdmfvrptw : Load Based Periodic Vehicle Routing Problem

with Time Windows

2

Preface
Since George Dantzig and John Ramser in 1959 formulated a problem to opti-
mize petrol deliveries, problem known under title The Vehicle Routing Problem
(vrp), many researchers have been modifying vrp to get closer to the behavior
of the world. vrp is a main puzzle of logistics upon which are humans dependent
more and more – from food, goods or package delivery to bus or flight schedul-
ing. On these pages we deal with another seizing of vrp, and that is optimization
of waste collection in South Moravian region.

The problem has roots in Institute of Process Engineering (ipe) located at Fac-
ulty of Mechanical Engineering at University of technology in Brno. In South
Moravia, few municipalities decided not to have waste collected by local services
and equipped themselves with necessary instruments to take care of waste col-
lection on their own. Since then there has been a development to obtain efficient
schedulings by the members from ipe. In this work we want to offer the members
an approach different from the one they propose. From the beginning we refused
any specifics about their approach to not be affected by it. Any further consul-
tations with the team from ipe were focused merely on the problem formulation
and matters regarding the data we were provided.

On following pages we propose a mixed integer linear formulation for load-
based periodic multi-depot multi-fleet vehicle routing problem with time windows
(lbpmdmfvrptw) and a metaheuristic algorithm based on simulated anneal-
ing, an algorithm inspired by a process of annealing in metallurgy, in which
Kirkpatrick, Gellet and Vecchi with Černý saw an analogy thanks to which one
is able obtain nearly or directly optimal solutions.

Both, the model and metaheuristic, are put in practice on real data afterwards
and consequently is performed a comparative analysis of the solutions.

At the very end of the work we propose possible future extensions.

3

1. The Basics
Before we start on constructing a mathematical representation of South Moravian
waste collection problem, it is necessary to lay down mathematical fundamentals
to avoid any misunderstanding.

First concepts come from graph theory. For the beginning, let us start
with the basics from graph theory, [1].

1.1 Graph theory
Definition 1. A graph is a pair G = (V , E) of sets satisfying E ⊆ [V]2; thus
the elements of E are 2-element subsets of V . To avoid notational ambiguities,
we shall always assume tacitly that V ∩E = ∅. The elements of V are the vertices
(or nodes, or points) of the graph G, the elements of E are its edges (or lines).

Definition 2. We say that a vertex v ∈ V is incident with an edge e ∈ E if v ∈ e.
The two vertices incident with an edge are its ends. An edge {x, y} is usually
written as (x, y). Two vertices x, y of G are adjacent if (x, y) is an edge of G,
i. e. (x, y) ∈ E . Two edges e ̸= f are adjacent if they have a vertex in common.
If all the vertices of G are pairwise adjacent, then G is complete.

Remark. If a complete graph on n vertices is a Kn, then K3 is a triangle.

Definition 3. The number of vertices of a graph G is its order, written as |G|;
its number of edges is denoted by ||G||. Graphs are finite or infinite according to
their order; unless otherwise stated, the graphs we consider are all finite.

Definition 4. A path is a non-empty graph P = (V , E) of the form

V = {v0, v1, ... , vk}, E = {(v0, v1), (v1, v2), ... , (vk−1, vk)},

where the vi are all distinct. The vertices v0 and vk are linked by P and are called
its ends; the vertices v1, ... , vk−1 are the inner vertices of P . The number of edges
in a path is its length, and the path of length k is denoted by P k. Now that
k is allowed to be zero; thus , P 0 = K1.

Figure 1.1: A path P = P 6 in G.

Remark. We often refer to a path by the sequence of its vertices writing, e. g.
P = {v0, v1, . . . , vk} and calling P a path from v0 to vk.

4

Definition 5. A directed graph (or digraph) is a pair (V , E), such that V ∩E = ∅,
together with two maps init: E → V and ter: E → V assigning to every edge e an
initial vertex init (e) and a terminal vertex ter (e). The edge e is said to be directed
from init (e) to ter (e).
Remark. Note that a directed graph may have several edges between the same two
vertices x, y. Such edges are called multiple edges. If init (e) = ter (e), the edge e
is called a loop.

In this thesis we also work with a term clustering. For it is not directly defined
mathematically, let us provide a description of the term from [2]:

Clustering is division of data into groups of similar objects. Each group, called
a cluster, consists of objects that are similar among themselves and dissimilar
from other objects of other cluster. Proximity or distance measure is often used
as the basis for clustering technique.
Remark. Consider set n-dimensional Euclidean space Rn and let M = {x1, ... , xm}
be set of points where xi ∈ Rn, i = 1, ... , m. Clustering is a process of partitioning
the points into, let us say, k subsets according to some similarity of the points,
e. g. minimal distance. Denote C1, ... , Ck such that Cj ⊂ Rn, ∀ j ∈ {1, ... , k},
then also holds that Cj ∩ Cℓ = ∅ ∀j ̸= ℓ ∧ ⋃︁k

j=1 Cj = M .

1.2 Mathematical programming
In his section we introduce some of the fundamentals of mathematical program-
ming. At first, we present basics from nonlinear programming based on Bazaraa
et al., [3], as we want to stress out the idea behind stochastic programming (sp)
and bazaraa provided succint but neat thought process from nonlinear program
to stochastic one. And after that the subsequent subsection is devoted to special
case of nonlinear programs where we assume linearity of all function, i. e. linear
programming.

1.2.1 Nonlinear programming
Under the title nonlinear program we understand

min f(x)

s. t. gj(x) ≤ 0 j = 1, ..., m (1.1)
hk(x) = 0 k = 1, ..., l

x ∈ X ,

where set X ⊆ Rn, functions f , gj, (j ∈ {1, ..., m}), hk, (k ∈ {1, ..., l}) are de-
fined on Rn, n ∈ N, with values in R. Function f is called objective function,
each of the constraints gj(x) ≤ 0 for every j is called an inequality constraint,
and each of the constraints hk(x) for each k is called an equality constraint. Vector
x ∈ X fulfilling for every j ∈ {1, ..., m} that gj(x) ≤ 0 and for each k ∈ {1, ..., l}
that hk(x) = 0 is being declared as feasible solution. Set of such vectors x we call
a feasible region and usually denote it by M, i. e.

M =
{︂
x ∈ X : gj(x) ≤ 0, hk(x) = 0; j ∈ {1, ..., m}, k ∈ {1, ..., l}

}︂
.

5

The nonlinear problem then is to find vector x∗ ∈M such that f(x) ≥ f(x∗)
for each feasible point x. Such a point x∗ is called an optimal solution to the prob-
lem. If there is more than one optimal solution, they are reffered to collectively
as alternative optimal solutions.

We can notice that special case of (1.1) is a linear program in which functions
f , gj and hk are linear and X is convex polyedric set. Such a program can be
reformulated

min cTx

s. t. Ax = b (1.2)
x ∈ X ,

where c ∈ Rn, A ∈ R(m + l)×n (compare dimension of A with dimensions of func-
tions gj and hk) and b ∈ R(m + l). If we subtract b from both side of constraint
Ax = b, we get Ax − b = 0. If Ax − b = 0 is a general system of m + l
equations and x ≥ 0, we obtain linear program in standard form. In a case
when X is a subset of Rn−k × Zk, then we deal with mixed integer linear pro-
gram or mixed integer nonlinear program depending on if functions f , gj and hk

for each j ∈ {1, ..., m} and for each k ∈ {1, ..., l} are linear or not, respectively.
More in the next subsection.

From (1.1) it is possible to obtain parametric program if functions f , gj and hk

(for each j and k) are dependent also on some beforehand known parameter
λ ∈ Λ, where Λ is a subset of Rn; the program can be formulated in a following
way:

min f(x, λ)

s. t. gj(x, λ) ≤ 0 j = 1, ..., m (1.3)
hk(x, λ) = 0 k = 1, ..., l

x ∈ X ,

where functions f , gj, hk are function defined on Rn × Λ with values in R,
for each j ∈ {1, ..., m} and k ∈ {1, ..., l}.

Very useful extension of a parametric program is in the moment when the pa-
rameter λ is treated as a random vector. Let us therefore consider random vector
ξ = (ξ1, ..., ξp)T such that ξ(ω) : Ω → Θ, where Ω is a sample space from prob-
ability space (Ω, F , P) disposing with σ-algebra F , and probability measure P,
and Θ is a subset of Rp. Thus we get a program with a random parameter
as follows:

min f(x, ξ)

s. t. gj(x, ξ) ≤ 0 j = 1, ..., m (1.4)
hk(x, ξ) = 0 k = 1, ..., ℓ

x ∈ X ,

where functions f , gj, hk are function defined on Rn × Θ with values in R,
for each j ∈ {1, ..., m} and k ∈ {1, ..., l}. If we wanted to typify a set of feasible so-
lutions for (1.4), then it would be obviously dependent – as analogously in the case

6

of the deterministic parameter program in (1.3) – on parameter ξ as it is formu-
lated here below

M(ξ) =
{︂
x ∈ X : gj(x, ξ) ≤ 0, hk(x, ξ) = 0; j ∈ {1, ..., m}, k ∈ {1, ..., l}

}︂
.

A branch of mathematical programming dealing with problems involving un-
certainty is called stochastic programming. There are many approaches to handle
such problems from the simplest ones (replacing the uncertainty by its expected
value) to, e. g. two-stage stochastic programming where, one in the first stage,
makes so-called here-and-now decision, a decision based on the information known
upto the present; the second stage describes our supposedly optimal behavior
when the uncertainty is uncovered. Here we would like to describe a case when
uncertainty is present only in constraints and not in the objective function.

Probability constraints

Let us work with a following program:

min f(x)

s. t. gj(x, ξ) ≤ 0 j = 1, ..., m (1.4)
x ∈ X .

In this case we have few possible approaches to deal with the uncertainty in the
constraints. As a solution can be considered a point which fulfills the constraints
almost surely, i. e.

X (α) =
{︂
x ∈ X : P

(︂
gj(x, ξ) ≤ 0; ∀ j = {1, ..., m}

)︂
= 1

}︂
. (1.5)

Unfortunately, the problem here is that X (α) is small or often times empty.
Hence, there are also other approaches by which we can handle constraints
with uncertainty.

The first one is called joint probability constraints formulated in Miller
and Wagner, [4]. Consider a following set of feasible solutions:

XJ(α) =
{︂
x ∈ X : P

(︂
gj(x, ξ) ≤ 0; ∀ j ∈ {1, ..., m}

)︂
≥ α

}︂
, (1.6)

where α ∈ [0, 1]. By this set we accept such solutions fulfilling for each
j ∈ {1, ..., m} the constraints with probability greater or equal to α, where
α is chosen by the decision maker.

The other one is to view upon the probability constraints individually instead
of jointly, i. e.

XI(α) =
{︂
x ∈ X : P

(︂
gj(x, ξ) ≤ 0

)︂
≥ αj; ∀ j ∈ {1, ..., m}

}︂
, (1.7)

where α ∈ [0, 1]m. This approach is called individual probability constraints and
it can be found in Charnes, Cooper and Symonds, [5]. A choice of parameter
α, or αj, (j = 1, ..., m), is usually set to 0.99 or 0.95. Here, it is neccesary
to remark that generally programs with permanently feasible constraints (1.5),
with joint probability constraints (1.6) or with individual probability constraints
(1.7) are not convex. To obtain wished convexity, we need to have additional
assumptions (for further knowledge we encourage to see Prékopa, [6]).

7

1.2.2 Linear programming
Following on the Subsection 1.2.1, we want to dedicate this subection to funda-
mentals of linear programming, based on Wolsey, [7], as a special case of non-
linear programming.

Let us consider a linear program, in a manner of minimization, as a following
formulation:

min cTx

s. t. Ax ≥ b

x ≥ 0,

where A is m × n matrix, c is n-dimensional vector, b is m-dimensional vector,
and x is n-dimensional vector of variables or unknowns. Now let us add a re-
striction that specific variables must be integers. In a moment when only some
of the variables have to be integer, we deal with mixed integer program, which can
be written as

min cTx + hTy

s. t. Ax + Gy ≥ b

x ≥ 0
y ∈ N0,

where A is, again, m×n matrix, G is m×p matrix and y is p-dimensional vector
of non-negative integer values. Assuming that all variables are integers we end up
with integer linear program (ilp) written as

min cTx

s. t. Ax ≥ b

x ∈ N0.

One could also find a case when, on the other hand, all variables are binary.
In this case we work with binary integer program (bip) or 0-1 program formulated
as

min cTx

s. t. Ax ≥ b

x ∈ {0, 1}.

To grasp any utilization, let us provide an example of a linear program en-
titled as The Traveling Salesman Program (tsp). As Wolsey writes in his book
Integer programming: “This is perhaps the most notorious problem in Opera-
tions Research because it is easy to explain, and so tempting to try and solve”
(page 7, [7]). The statement of the problem is following: a salesman must visit
each of n cities exactly once; he starts from his home and it has to be also his end-
ing spot.

8

The time to travel from city i to city j is denoted by tij. The assignment
is to find the shortest path possible. Let us now denote by C the set of cities
to visit and define a decision variable xij as follows:

xij =

⎧⎨⎩1 : if the salesman travels directly from city i to city j; i, j ∈ C,
0 : otherwise.

For each i ∈ C we do not define xii. Let us continue with the definition of the con-
straints. To mathematically describe the fact that he leaves city i exactly once
is by using binary variable xij formulated as∑︂

j∈C
xij = 1 ∀ i ∈ C; i ̸= j

and the reality that he also arrives to city j exactly once can be written by using
xij as ∑︂

i∈C
xij = 1 ∀ j ∈ C; i ̸= j.

Now, with these two constraints we could unfortunately obtain, although a fea-
sible but not acceptable, solution of a form as displayed in Figure 1.2.

1 2

3

4

5
6

7 8

Figure 1.2: Subtours (a case when we consider n = 8).

To eliminate this type of solutions we need to extend the program by another
set of constraints guaranteeing connectivity such that the salesman has to travel
from one set of cities to another:∑︂

i∈S

∑︂
j ̸∈S

xij ≥ 1 S ⊂ C; S ≠ ∅. (1.1)

This type of constraints is called cut-set constraints. Nonetheless, constraints
(1.1) can be replaced by so-called subtour elimination constraints (secs) which
are for tsp formulated in a following way:∑︂

i∈S

∑︂
j∈S

xij ≤ card(S)− 1 S ⊂ C; 2 ≤ card(S) ≤ n− 1 (1.2)

9

Consequently, the complete 0-1 lp formulation of tsp with secs is

min
∑︂
i∈C

∑︂
j∈C

cij xij

s. t.
∑︂
j∈C

xij = 1 ∀ i ∈ C; i ̸= j

∑︂
i∈C

xij = 1 ∀ j ∈ C; i ̸= j∑︂
i∈S

∑︂
j∈S

xij ≤ card(S)− 1 S ⊂ C;
2 ≤ card(S) ≤ n− 1

xij ∈ {0, 1} ∀ i, j ∈ C; i ̸= j,

where in the objective function is the total travel time minimized.
We have proposed many formulations of nonlinear and linear programming

but not any of possible solving approaches. Hence, let us introduce an algorithm
often times used in optimization solvers, simplex method.

1.3 Primal simplex
In this section we explain the primal simplex algorithm based on Linear Program-
ming: Foundations and Extensions by R. J. Vanderbei (for further knowledge
we refer to [8]).

Let us to start off by recalling a linear program, in terms of maximizing, i. e.

max
n∑︂

j=1
cj xj

s. t.
∑︂

j

aij xj ≤ bi i = 1, ..., m (1.3)

xj ≥ 0, j = 1, ..., n.

Further, we introduce so-called slack variables as follows:

xn+1 = bi −
n∑︂

j=1
aij xj i = 1, ..., m.

With these slack variables by reformulating (1.3) to a matrix form we obtain:

max cTx

s. t. Ax = b (1.4)
x ≥ 0,

where

A =

⎛⎜⎜⎜⎜⎝
a11 a12 · · · a1n 1 0 · · · 0
a21 a22 · · · a2n 0 1 · · · 0
...

am1 am2 · · · amn 0 0 · · · 1

⎞⎟⎟⎟⎟⎠ ,

10

b =

⎛⎜⎜⎜⎜⎝
b1
b2
...

bm

⎞⎟⎟⎟⎟⎠ , c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
c2
...

cn

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...

xn

xn+1
...

xn+m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The simplex is an iterative procedure in which each iteration is characterized
by specifying which m of the n + m variables are basic. Therefore, denote by B
the set of indices corresponding to the basic variables, and by N we denote a set
of the nonbasic ones. In this manner, we can partition i-th component of Ax as

n+m∑︂
j=1

aij xj =
∑︂
j∈B

aij xj +
∑︂
j∈N

aij xj. (1.5)

Now, we want to similarly express (1.5) in a matrix form, thus here we intro-
duce by B a m×m matrix whose columns consist exactly of the m columns of ma-
trix A. Analogously, let denote by N a m × n matrix composed of the nonbasic
columns of matrix A. We notice that the denomination of matrix N and natural
numbers is identical but we assure that in this section, i. e. Section 1.3, the de-
nomination N will correspond only and only to the nonbasic part of matrix A.

In this moment we can write matrix A in a partitioned-matrix form as follows:

A =
(︂
B N

)︂
.

It is needed to highlight the fact that the matrix on the right side is not directly
equal to matrix A for it is matrix A with its columns rearranged in a manner
that all the columns associated with basic variables are listed first and followed
by the nonbasic ones. Nevertheless, if we are consistent and rearrange the rows
of x in the very same way, nothing can go wrong. As we partitioned matrix A,
we proceed similarly with x in a following manner:

x =
(︄

xB
xN

)︄
.

Thus, we can formulate partitioning of Ax analogously as in (1.5) but with
the recent denomination as a sum of basic and nonbasic parts written as

Ax =
(︂
B N

)︂(︄xB
xN

)︄
= BxB + NxN .

Analogously, we can partition c as

cTx =
(︄

cB
cN

)︄T (︄
xB
xN

)︄
= cT

B xB + cT
N xN . (1.6)

By this moment, when we are equipped sufficiently, we can proceed into
the veins of the primal simplex method. The constraints Ax = b from (1.4)
can be – by partitioning into basic and nonbasic parts – written as

BxB + NxN = b. (1.7)

11

Since the variable xB can be formulated as a function of nonbasic variable
xN , it is the equivalent to the fact that matrix B is invertible. By invertibility
we mean that the m columns of matrix B are linearly independent and thus form
a basis for Rm. If we multiply, from left, both sides in (1.7) by B−1 we get

xB = B−1b− B−1NxN . (1.8)

In (1.8) we have obtained an expression for xB. Now, by combining (1.6)
and (1.8) we acquire

ζ = cT
B xB + cT

N xN

= cT
B

(︂
B−1b− B−1NxN

)︂
+ cT

N xN

= cT
BB−1b−

(︂
(B−1N)TcB − cN

)︂T
xN .

(1.9)

Summarizing (1.9) and (1.8) we have

ζ = cT
BB−1b−

(︂
(B−1N)TcB − cN

)︂T
xN ,

xB = B−1b− B−1NxN .
(1.10)

For simplifying the expression let us propose following substitutions:

ζ∗ = cT
B B−1b, (1.11)

z∗
N = (B−1N)TcB − cN , (1.12)

x∗
B = B−1b. (1.13)

Therefore we can write (1.10) succintly as

ζ = ζ∗ − z∗T
N xN ,

xB = x∗
B − B−1NxN .

(1.14)

The basic solution is obtained from (1.14) by setting xN to zero and therefore

x∗
N = 0

x∗
B = B−1b.

The primal simplex method is possible to describe as follows. Assume that
we are given

1. a partition of the n + m indices into a set of the basic indices denoted
by B and a set N of the nonbasic indices such that the basis matrix B
is invertible, and

2. an associated current primal solution x∗
B ≥ 0 and x∗

N = 0.
The simplex method performs a sequence of steps to adjacent bases such that

the current value ζ∗ of the objective function ζ – in terms of a linear program
in which we maximize the objective function – at each step increases while up-
dating x∗

B and z∗
N . Adjacency of two bases is whether they differ in one index

only. Before we describe the simplex method in detail, it is necessary to provide
conditions for feasibility of the solution as well as for its optimality. The fea-
sibility condition is satisfied when x∗

B ≥ 0 and optimality condition is fulfilled
in case when z∗

N ≥ 0 (in terms of maximizing objective value ζ; if we would be
minimizing ζ, then the optimality condition would be z∗

N ≤ 0).

12

step 1: If z∗
N ≥ 0, then stop for the current solution is optimal. Otherwise

proceed to step 2.

step 2: Pick a nonbasic index j ∈ N such that z∗
j < 0. To the index correspond-

ing xj is the entering variable.

step 3: Since we have selected the entering variable we want to increase its value
from zero by letting

xN = (0, ..., 0, t, 0, ..., 0)T = t ej,

where ej represents the unit vector where any of its component is equal
to zero but the j-th equals to one. From (1.14) we get

xB = x∗
B − B−1N tej.

Therefore the step direction ∆xB for the basic variables is given by

∆xB = B−1N ej.

step 4: Now we want to compute primal step length. We reach that by picking
the largest t ≥ 0 for every component of xB is nonnegative, i. e.

x∗
B ≥ t ∆xB.

Since for every i holds that x∗
i ≥ 0 and t ≥ 0, let us divide both sides

of the inequality. Here, it is necessary to highlight that the convention
for 0/0 is to set such ratios to zero. Hence, we get

1
t
≥ ∆xi

x∗
i

for every i ∈ B.

If we want to get the largest t, in terms of its multiplication inverse we search
for the smallest possible value of 1/t that fulfills all of the required inequal-
ities, and that is

1
t

= max
i∈B

∆xi

x∗
i

.

The largest t for which all of the inequalities are satisfied is thus given by

t =
(︃

max
i∈B

∆xi

x∗
i

)︃−1

.

If the maximum is less than or equal to zero, the problem is unbounded
and we may stop here.

step 5: Select the leaving variable by choosing an arbitrary xi, i ∈ B, for which
we obtain the largest t.

step 6: Update current solution by

x∗
j ← t

x∗
B ← x∗

B − t ∆xB.

13

step 7: Update the basis:

B ← B \{i} ∪ {j}

In this section we have introduced the primal simplex method which is widely
used in optimization solvers such as, e. g. Gurobi. Further, cplex is a software
package for optimization which is based on simplex method (primal or dual)
and can be also used on quadratic linear programs since it also uses so-called
interior-point method (we refer to [8]).

Now, we are equipped with necessary theory to proceed further. Let us start
with introducing, in logistics, well-known problem – The Vehicle Routing Prob-
lem.

14

2. Vehicle Routing Problem

2.1 Fundamentals
The Vehicle Routing Problem (vrp) can be described as a search of optimal paths
(or routes) for provision of goods or services in distribution systems. This problem
is a generalization of The Traveling Salesman Problem (tsp) as we introduced
in the Section 1.2.2. vrp then is a problem of more than just one salesman.
The problem is a main deal in logistics of distribution and can be found with many
varieties according to the specifics of the real world situations, e. g. inclusion
of time windows, meaning for example time intervals of the day during which
a customer must be served (vrp with time windows; vrptw), different type
of vehicles where each vehicle has a different capacity or usage (Capacitated vrp
with heterogeneous fleet; hfcvrp), [9].

Typically is road network described through a graph whose vertices character-
ize customers and depots, and edges (or arcs) depict links between the vertices.
The graph can be directed or undirected according to the fact if one-way streets
are taken into account or not, respectively. Each edge is associated with a cost,
mostly represented as a length, and travel time [9].

2.2 Multi-depot Vehicle Routing Problem with
Time Windows and Heterogeneous Fleet

For a beginning it is convenient to introduce the problem on a simple model just
to grasp the idea from which we can proceed into more complex ones. There-
fore let us consider Multi-Depot Vehicle Routing Problem with Time Windows
(mdvrptw) and heterogeneous fleet. The main idea is an item collection from
given number of customers. We are provided with specific number of vehicles
with different capacities (i. e. heterogeneous fleet) and each departing from a de-
pot and ending in it as well. We also assume that there is more than one depot.
Each customer is visited only once and has its own collection demand. Let us
consider that each customer has also a time window in which wishes to be visited.

The mathematical formulation of this mdvrptw with heterogeneous fleet
is described as follows. Let G = (V , E) be an undirected graph, where V =
{1, ..., n+m} denotes a set of vertices and E = {(i, j) | i, j = 1, 2, ..., n+m; i ̸= j}
depicts links between the vertices. Set {1, ..., n} represents the set of customers
and the remaining m nodes describe depots. Each customer has non-negative
demand di. Let denote by cij ≥ 0 a travel cost between node i and j in a graph
G. A set of vehicles is denoted by K, capacity of vehicle k is denoted by Qk.
Let tij denote travel time between nodes i and j and service time at node i be
denoted by Ti. Parameters li and ui denote lower and upper bound for a visit
of customer i. Furthermore, denote by xijk an indicator whether vehicle k travels
from node i directly to node j, that is for any i, j ∈ V and k ∈ K holds.

xijk =

⎧⎨⎩ 1 : node j is visited right after node i by vehicle k,

0 : otherwise,

15

then the formulation of mdvrptw with heterogeneous fleet is following:

min
n+m∑︂
i=1

n+m∑︂
j=1

∑︂
k∈K

cijxijk (2.1)

s. t.
n+m∑︂
j=1

∑︂
k∈K

xijk = 1 i ∈ {1, ..., n}; i ̸= j (2.2)

n+m∑︂
i=1

∑︂
k∈K

xijk = 1 j ∈ {1, ..., n}; i ̸= j (2.3)

n+m∑︂
i=1

xihk −
n+m∑︂
j=1

xhjk = 0 h ∈ {1, ..., n + m};

i ̸= h, j ̸= h,∀k ∈ K (2.4)
n+m∑︂
i=1

di

n+m∑︂
j=1

xijk ≤ Qk ∀k ∈ K (2.5)

sik + Ti + tij − sjk ≤M (1− xijk) ∀i, j ∈ {1, ..., n}, ∀k ∈ K (2.6)
li ≤ sik ≤ ui ∀ i ∈ {1, ..., n + m}, ∀k ∈ K (2.7)

xijkt ∈ {0, 1} ∀ i, j ∈ {1, ..., n + m}, ∀k ∈ K. (2.8)

In the objective function (2.1) we minimize total cost. Constraints (2.2) and
(2.3) assure that there is only one predecessor and only one successor for each
customer. Flow conservation is secured by constraints (2.4). Capacity constraints
can be found in (2.5). Time windows which works also as secs are defined in
constraints (2.6) and (2.7) – here we use big-M constant which activates the
constraint whenever is xijk equal to 1. Constraints (2.8) define the domain of the
binary variable.

2.3 Solution approaches for more complex prob-
lems

For vrp, where we assume only one depot, were developed solution approaches
via exact algorithms, heuristic and metaheuristic algorithms. If we consider a sit-
uation where we have more than just one depot such that each depot possesses
some positive number of vehicles, it is more challenging problem to solve. A sin-
gle depot vrp is np-hard problem, thus evidently mdvrp is more expensive in
terms of time. Therefore are heuristics considered.
To solve vrp generally with heuristics, two phases are taken into account:

1. clustering phase: customers are assigned to the corresponding depot ac-
cording to some metric;

2. routing phase: within each cluster routes of minimal cost are sought.

In Geetha et al., [10], is stated that it is possible to solve the problem
in both ways, i. e. first routing phase and then perform clustering, or clustering

16

first and after that the routing phase. Most often is the second approach where
neighborhood customers are grouped based on the location of depots or its ca-
pacity and then an optimal route is sought within each cluster for each vehicle
.

2.3.1 Clustering
mdvrp graph based on Geetha et al., [10], is defined as follows:
Let G = (V , E) be a directed graph where V = {v1, ... , vn} is a set of vertices,
E = {(vi, vj) | i, j = 1, ..., n, i ̸= j} is a set of edges depicting links between ver-
tices. V is partitioned into two subsets VD = {v1, ... , vk} and VC = {vk+1, ... , vn}
representing a set of k depots and n− k customers, respectively; k < n ∈ N.

The n − k customers are grouped to form k clusters based on some metric.
In each cluster there is number of customers which we denote by nj for j = 1, ..., k
with the condition that

k∑︂
j=1

nj = n− k.

In this problem, after clustering, for each depot there will be nj customers
from which, e. g. it is necessary to collect items. On top of that, customers
are again split into ℓj groups, where each group is determined for a vehicle based
in the corresponding depot. For the groups holds the following condition:

ℓj∑︂
q=1

nq
j = nj j = 1, ..., m.

As was written in the previous section, the clusters are pairwise disjoint
and their union gives the whole set of all vertices, i. e. V . There are depot
and customer vertices (VD and VC , respectively), as mentioned above. The n−k
customers are clustered into k subsets based on their Euclidean distance to each
depot. We therefore get a simplification of the problem in a form of k single-
depot vrps. One of common clustering algorithms is K-means++. As described
in Kučera, [11], K-means++ is an iterative method of clustering which splits
a set into k ≥ 2 clusters based on similarities of elements in a cluster and also
their dissimilarities to elements from other clusters. The algorithm is explained
below in Algorithm 1.

Algorithm 1 K-means algorithm
step 0: randomly select the first centroid;
step 1: calculate distances between the first centroid and other elements, and
chose the furthest elements as another centroid;
step 2: create clusters such that remaining points are appended to the closest
centroid
step 3: denote the farest point as another centroid;
step 4: repeat steps 2 and 3 until number of required centroids is found.

Centroid in a finite dimension space is defined according to Davis in [12] as
follows: Let A ⊂ Rn be bounded with non-empty interior. Centroid is then
defined: centroid (A) = 1

µ(A)
∫︁

A id dµ, where id is identity function on Rn

17

and µ is Lebesgue measure. Since A is bounded and has non-empty inferior,
then µ(A) is finite and positive.

There are other clustering algorithms such as, e. g., Density-based spatial
clustering of applications with noise (abb. dbscan) or simple K-means algo-
rithm. dbscan works with density of elements which in case of vrp should
mirror the fact that it is not suitable for areas with different density of popula-
tion. For more detailed description of abovementioned algorithms we refer to see
Kučera ([11], p. 9–16).

2.3.2 Routing
When clustering phase is done, the routing phase is initiated. As written
at the beginning of this section, an exact algorithm for complex problems would
be very expensive in a matter of time. In case of single-depot vrp have been de-
veloped many approaches to find exact solution as branch-and-bound in Fisher,
[13], or branch-and-cut in Ladanyi, Ralphs and Trotter, [14]. But finding
an optimal solution of mdvrp is almost impossible even for small-sized prob-
lem instances. Therefore were developed other ways to find solutions in some
reasonable time - heuristics. In 1964 Clarke and Wright proposed a simple
procedure “but effective in producing a near-optimal solution” for “routing of a
fleet of trucks of varying capacities used for delivery from a central depot to a
large number of delivery points” ([15], p. 568), a procedure called saving crite-
rion. The algorithm starts with initial solution where each customer is assigned
to a depot and each vehicle to each customer. The aim is to minimize distance
traveled by each vehicle by reducing returns to the depot. Based on this proce-
dure, Tillman, [16], introduced a heuristic algorithm to solve, as the name of
the article indicates, The Multiple Terminal Delivery Problem with Probabilistic
Demands. The modification takes into account several number of depots.

During the seventies was used so-called sweep procedure to solve multi-
terminal, i. e. multi-depot, vehicle dispatch problem in a work of Gillet
and Johnson, [17], for which was a fulcrum an article by Gillet and Miller,
[18], giving a heuristic using sweep algorithm for a single vehicle dispatch prob-
lem. Main pillar of the sweep algorithm is a reference axis having an origin
in a depot; each customer/city is assigned to the closest depot and then for each
customer/city is calculated polar angle between this customer/city and the depot
using given reference axis. The algorithm alone was presented by Wren and
Holliday in [19]. From perspective of stochasticity, although unknown cus-
tomer’s demands were described e. g. in the abovementioned Tillman, in 1982
Raft provided a paper in which he included probability of a customer requiring
a visit, i. e. a possibility of postponing some of visits, and presented modular
approach where the problem was partitioned into five subproblems: the route
assignement in which customers were clustered into compact clusters with ex-
pectation of a small route length. In the next phase, depot assignment, each
route is assigned to one of the depots and afterwards it is aimed to minimize
the expected route length which is calculated by using λ-optimal (shortly λ-opt)
algorithm proposed by Lin in [20] where λ = 2. Then follows vehicle assignment
in which, for each depot are assigned routes for vehicles such that no vehicle vio-
lates its maximal route length. Lastly, phases delivery period and detailed route

18

design determines the period in which the delivery has to take a place and a con-
struction of the route using Lin’s 3-opt algorithm in the end of the phase.

Now, we are getting to a year in which the main algorithm of this work
was introduced, hence let us detach it into a seperate subsection.

2.3.3 Simulated annealing
“There is a deep and useful connection

between statistical mechanics (the behavior
of systems with many degrees of freedom

in thermal equilibrium at a finite temperature)
and multivariate or combinatorial optimization.”

Kirkpatrick et al.

In 1983 Kirkpatrick et al., [21], introduced a metaheuristic, nowadays
known as simulated annealing, which was inspired by an algorithm proposed by
Metropolis et al., [22], which is possible to use to obtain an efficient simu-
lation of collection of atoms in equilibrium at some given temperature. Kirk-
patrick describes the algorithm in a following way - an atom, in each step
of the algorithm, is given a slight random displacement and afterwards is calcu-
lated resulting change ∆E in the energy of the system. If ∆E ≤ 0, then this dis-
placement is accepted and the setting of the system with this displacement is used
as a starting point of the next step. The complement condition, i. e. ∆E > 0,
is treated probabilistically. An acception of a configuration with the comple-
ment condition is P(∆E) := exp{− ∆E

kBT
}. Let ε be a randomly chosen number

from interval (0, 1); if ε < P(∆E), then the new configuration is retained, oth-
erwise the original configuration is used to start the new step. In statistical
thermodynamics it is assumed that the system is in contact with a heat bath
of a temperature T ; and by repeating these steps we simulate the thermal motion
of atoms which are in contact with the heat bath. The consequence of the choice
P(∆E) is that the system evolves into a Boltzmann distribution.

Let us have a system of n independent particles that might exist in a number
of different states with energies Ei, where i ∈ {0, ..., r − 1}. The independency
implies that energy of the whole system is sum of each particle’s energy. Denote
number of particles with energy Ei as ni. Let pi be probability of a system being
in a state with energy Ei, i. e. finding a particle with energy Ei, is therefore equal
to pi = ni/n. By using Lagrange multipliers and Maxwell’s kinetic gas theory
(we refer to [23]) can be shown that

pi = ni

n
=

exp
{︂

−Ei

kBT

}︂
∑︁r−1

k=0 exp
{︂

−Ek

kBT

}︂ ,

where kB = R/NA is the Boltzmann constant which is a ratio of the universal gas
constant R and the Avogadro constant NA. The ratio of probabilites of two states

19

is known as Boltzmann factor :

pi

pj

=
exp

{︂
−Ei

kBT

}︂
∑︁r−1

k=0 exp
{︂

−Ek

kBT

}︂/︄ exp
{︂

−Ej

kBT

}︂
∑︁r−1

k=0 exp
{︂

−Ek

kBT

}︂ = exp{−(Ei − Ej)/kBT} =

= exp
{︄
−

∆E(i,j)

kBT

}︄
,

which gives us a probability of a change in a system between states i and j. Boltz-
mann distribution thus characterize a state of a system of particles with respect
to temperature and energy (see [23]).

The algorithm utilizes the process of annealing as we heat up the particles up
to temperature T and afterwards we let it cool down until the state of equilibrium
is reached. In order to present a pseudocode of simulated annealing algorithm
it is necessary to define so-called evaluation function f(·) which in terms of vrp
behaves in the algorithm as a substitution of an objective function. In Algorithm 2
we provide pseudocode of simulated annealing algorithm.

Algorithm 2 Simulated Annealing
T ← Tmax

ε: random number from interval (0, 1)
xinitial ← init()
xbest ← xinitial

fbest ← f(xinitial)
fcurrent ← f(xinitial)
while T > Tmin do

xnext ← neighbor(xbest)
fnext ← f(xnext)
∆f ← fnext − fcurrent

if ∆f ≤ 0 then
xcurrent ← xnext

fcurrent ← fnext

else if ε < P(∆f) = exp{−∆f
kBT
} then

xcurrent ← xnext

fcurrent ← fnext

end if
if fcurrent < fbest then

xbest ← xcurrent

fbest ← fcurrent

end if
T ← cooling(T)

end while
return xbest

First of all, we need to provide to sa an initial solution xinitial and also
the starting temperature T . Until we reach the preset lowest temperature – dur-
ing the process of cooling – at each temperature we modify the current solution
xbest by using operations of a random displacement such as swap or reverse, etc.

20

To demonstrate, e. g. swap operation let us consider a sequence of four subse-
quent numbers, that is for example {1, 2, 3, 4}. Operation swap(·) can be defined
as follows: for any given sequence randomly chooses its two components and swap
them; in words of our example, randomly chosen components can be 2 and 3, then
swap({1, 2, 3, 4}) = {1, 3, 2, 4}. Such modified solutions can be elements of neigh-
borhood of the feasible solution only if they are also feasible - here we refer to the
function neighbor(): for temperature T we modify our currently best solution
xbest by some chosen operation, such as swap(·), and if the modification does
not violate the feasibility, it can be denoted as xnext and evaluated it by the eval-
uation function f(·). If f(xnext) − f(xbest) ≤ 0, then we found a better solution
than the initial (or same one as the initial); if not, we can still accept such a so-
lution with probability ε < exp{−∆f

kBT
}, or reject it with probability of 1−ε. After

process of accepting/rejecting the current solution we cool down temperature T
by preset and continue until we hit the minimal temperature Tmin.

Metaheuristic sa is very often used to solve vrp and its modifications as
can be read e. g. in Osman, [24], Aydemir and Karagül, [25] or Wang et
al., [26]; let us also not forget about Vladiḿır Černý, a member of Faculty
of mathematics, physics and informatics in Comenius University in Bratislava,
Slovakia, who in 1985 published (compare with Kirkpatrick et. al) an ar-
ticle named Thermodynamical approach to the traveling salesman problem: an
efficient simulation algorithm, in which he writes: “The algorithm generates ran-
domly the permutations of the stations of the traveling salesman trip, with prob-
ability depending on the length of the corresponding route. Reasoning by analogy
with statistical thermodynamics, we use the probability given by the Boltzmann-
Gibbs distribution. Surprisingly enough, using this simple algorithm, one can get
very close to the optimal solution of the problem or even find the true optimum”
([27], p. 1).

We have examined some of the important solving approaches of vrp problems
including a metaheuristic nowadays called simulated annealing which will take
place in upcoming chapters. But before that it is a duty to formulate the problem
we keen on solving.

21

3. Waste collection problem
Few years ago several areas in South Moravian region decided to take charge
of their waste collection and not to have it collected by local services. Since
then there has been a development to obtain an efficient scheduling. Members
from Institute of Process Engineering located at Faculty of Mechanical Engineer-
ing at University of technology in Brno were asked to provide such a solution.
The development has got into a point where the team from Institute of Process
Engineering (further ipe) evolves an application in which an user can configu-
rate the problem instance itself, e. g. selection of cities, frequency of the waste
collection for a specific city or allowed days of the collection, and afterwards
provide the user an efficient schedule of the waste collection. Due to ongoing
changes of the assignment, solving of this problem still remains. Also Kučera
addressed the issue in his master thesis, [11]. Procházka developed an al-
gorithm called popelar to solve Multi-Trip Periodic Capacitated Arc Routing
Problem (mtpcarp) and nevrlý improved the algorithm in terms of computing
time. Nonetheless, neither of these approaches were shared to avoid any inspi-
ration for this work, and thus have a possibility to offer the team a different
approach – for a deeper insight of these works we refer to [28], [29]. In this chap-
ter we propose a mathematical milp formulation of this problem. But first, let
us describe the problem.

3.1 Problem formulation
Objective of this thesis is to propose an efficient composition of paths and sub-
sequent schedule for a specific number of garbage vehicles departing from given
number of depots in South Moravian region and create waste collection sched-
ule for a preset time horizon. Let us now specify assumptions of the problem
thoroughly:

areas For each area we have a depot (or depots) containing given number
of grabage vehicles and number of subareas where it is crucial to perform
waste collection. A subarea can be a whole city or, in case of a large city,
a smaller part of the city. Each area has different time duration of waste
collection.

vehicles Every vehicle has its own depot which is its starting point at the be-
ginning of the shift and also ending one at its end. Each vehicle has its own
volume capacity and permitted route time length. Lastly, in the given depot
there might be more than just one vehicle.

demands Each area has its own demand. During the waste collection capacity
of a vehicle cannot be exceeded, thus if a vehicle is en route and after visiting
several subareas has no capacity left to continue in waste collection, it has
to travel to a disposal, unload cargo and proceed in the collection.

frequency A subarea can choose with what frequency, e. g. if twice per week
or just once, and can specify also on which days the waste collection has

22

to be performed. Each subarea is visited only once on – for it allowed – day
of the collection. For example subarea C requests to have waste collected
once per two weeks on Tuesdays and another subarea, let us say subarea
D, has no time requests at all and thus the waste can be performed on any
day according to its frequency.

shifts Time duration of a shift depends on working hours for each garbage
vehicle. If time duration of waste collection is exceeded, it is treated as
overtime. Also, we allow some tolerance if the length of a shift is exceeded,
but it cannot happen that also this tolerance is violated.

As we have the assignment of the problem, let us proceed to its mathematial
formulation.

3.2 Mathematical formulation
Let G = (V , E) be an undirected graph, where V = {v1, ..., vn+m+r} is a set
of nodes and E = {(vi, vj) ∈ V2; i ̸= j} depicts a set of edges. Further, let V
be splitted into three disjunct sets – set of depots D, set of cities C and set
of disposals L consisting of n, m and r nodes, respectively. Hereafter, let K
describe a set of garbage vehicles, set of days on which the waste collection will
be performed let be denoted by T , where card(T) defines time horizon.

According to the definition of pvrp from Christofides and Beasley,
[30], a set of schedules H is introduced in a following way: each schedule consists
of a set of days in which a city allows to perform waste collection. Each city will
be served on every day of the schedule, i. e. city i ∈ C has schedule

Hi = {h ∈ H :
∑︂
t∈T

ath = fi },

where fi denotes frequency of waste collection for city i and ath is a binary
parameter defined as

ath =

⎧⎨⎩1 : if day t belongs to schedule s ∈ H,

0 : otherwise.

Let us provide to an example of what a weekly schedule for city i with fre-
quency fi = 1 per one week could look like if allowed days for a visit were days
from Monday to Thursday:

Hi = {(1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0)}.

With reference to known notations here we model load-based periodic multi-
depot multi-fleet vehicle routing problem with time windows (further abbreaviated
as lbpmdmfvrptw).

23

Let us denote input data with which we are about to model the problem:

tij : travel time to get from node i ∈ V to j ∈ V ; holds tij ̸= tji;
di : demand of node i ∈ V ;
Ti : service time at node i ∈ V ;
fi : frequency of serving city i ∈ C;

Qk : capacity of vehicle k ∈ K;
τk : a soft upper bound for vehicle k being in use; k ∈ K;
Kd : set of vehicles assigned to depot d ∈ D; Kd ⊆ K and ∪d∈DKd = K;

γ : overtime tolerance (in hours), i. e. if γ = 1, then τk + γ is the maximum
time for vehicle k to be in use; k ∈ K.

For lbpmdmfvrptw four sets of binary decision variables are introduced
which identify arc traversing, vehicle assignments to each depot, cities that are vis-
ited at each time period and if cities are visited according to their schedule.

The definition of decision variables is following:

xijkt =

⎧⎨⎩1 : if vehicle k ∈ K travers arc (i, j) on day t ∈ T ; i, j ∈ V ,
0 : otherwise;

ydk =

⎧⎨⎩1 : if vehicle k ∈ K is located in depot d ∈ D,

0 : otherwise;

zikt =

⎧⎨⎩1 : if city i ∈ C is visited by vehicle k ∈ K on day t ∈ T ,

0 : otherwise;

pikh =

⎧⎪⎪⎨⎪⎪⎩
1 : if city i ∈ C is visited by vehicle k ∈ K according to schedule

h ∈ Hi,

0 : otherwise.

Forth, let us introduce continuous variables used in the model:

wikt : quantity of waste on board of vehicle k ∈ K after visiting node i ∈ V ,

on day t ∈ T ;
sjkt : total time spent en route while entering node j (without servicing it),

j ∈ V , by vehicle k ∈ K on day t ∈ T .

Here it is necessary to provide few complementary assumptions.
For i ∈ D∪L holds that di = 0 and for every d ∈ D holds that Td = 0. Also, any
of the continuous variables are non-negative real numbers. According to the pre-
vious section, Section 3.1, if vehicle k exceeds its allowed time of performing
waste collection, then it has to be penalized, and for that reason it is handy to
introduce a penalty constant denoted by θ. The penalty evidently uses variable
sjkt and has to satisfy two following conditions:

1. if, for each day, the total time of vehicle k ∈ K spent en route is less than
τk, the penalty term remains equal to zero;

24

2. once the total time of vehicle k ∈ K spent en route is greater than τk,
the difference between the total time of vehicle k and τk is multiplied by
the penalty constant θ, for each day.

To obtain a penalty function fulfilling these two conditions one has to utilize
a function called positive part of real-valued function defined as

[f(x)]+ = max{0, f(x)}.

Now, we are ready to introduce mixed integer linear program to solve lbp-
mdmfvrptw.

The formulation is thus following:

min
(︃∑︂

i∈V

∑︂
j∈V

∑︂
k∈K

∑︂
t∈T

(tij + Ti) xijkt + θ
∑︂
d∈D

∑︂
k∈K

∑︂
t∈T

[︃
sdkt − τk

]︃+)︃
(3.1)

subject to ∑︂
k∈K

∑︂
h∈Hi

pikh = 1 ∀ i ∈ C (3.2)

zikt =
∑︂

h∈Hi

pikh ath ∀ i ∈ C, ∀ k ∈ K, ∀ t ∈ T (3.3)

xijkt ≤
zikt + zjkt

2 ∀ i, j ∈ C; i ̸= j, ∀ k ∈ K,

∀ t ∈ T (3.4)∑︂
i∈V

xijkt = zjkt ∀ j ∈ C, ∀ k ∈ K, ∀ t ∈ T (3.5)

xiikt = 0 ∀ i ∈ V , ∀ k ∈ K, ∀ t ∈ T (3.6)∑︂
j∈V, j ̸=i

xijkt −
∑︂

j∈V, j ̸=i

xjikt = 0 ∀ i ∈ V , ∀ k ∈ K, ∀ t ∈ T (3.7)
∑︂
d∈D

∑︂
j∈C

xdjkt −
∑︂
j∈C

∑︂
ℓ∈L

xjℓkt ≤ 0 ∀ k ∈ K, ∀ t ∈ T (3.8)
∑︂
ℓ∈L

∑︂
j∈C∪D

xℓjkt −
∑︂
j∈C

∑︂
ℓ∈L

xjℓkt = 0 ∀ k ∈ K, ∀ t ∈ T (3.9)
∑︂
j∈C

xdjkt −
∑︂
ℓ∈L

xℓdkt = 0 ∀ d ∈ D, ∀ k ∈ K, ∀ t ∈ T (3.10)
∑︂
d∈D

∑︂
ℓ∈L

∑︂
k∈K

xdℓk = 0 ∀ t ∈ T (3.11)
∑︂
j∈C

xdjkt ≤ ydk ∀ d ∈ D, ∀ k ∈ K, ∀ t ∈ T (3.12)

ydk = 1 ∀ d ∈ D, ∀ k ∈ Kd (3.13)
ydk = 0 ∀ d ∈ D, ∀ k ∈ K\Kd (3.14)

wikt = 0 ∀ i ∈ D ∪ L, ∀ k ∈ K,

∀ t ∈ T (3.15)
wikt − wjkt + dj ≤M (1− xijkt) ∀ i ∈ V , ∀ j ∈ D ∪ C; i ̸= j,

∀ k ∈ K, ∀ t ∈ T (3.16)
wikt ≤ Qk ∀ i ∈ V , ∀ k ∈ K, ∀ t ∈ T (3.17)

25

tdj − sjkt ≤M (1− xdjkt) ∀ d ∈ D,∀ j ∈ C,
∀ k ∈ K, ∀ t ∈ T (3.18)

sikt + Ti + tij − sjkt ≤M (1− xijkt) ∀ i ∈ C ∪ L, ∀ j ∈ V ; i ̸= j,

∀ k ∈ K, ∀ t ∈ T (3.19)
lk ≤ sikt ≤ τk + γ ∀ i ∈ V , ∀ k ∈ K, ∀ t ∈ T (3.20)

xijkt ∈ {0, 1} ∀ i, j ∈ V ; i ̸= j,

∀ k ∈ K, ∀ t ∈ T (3.21)
ydk ∈ {0, 1} ∀ d ∈ D, ∀ k ∈ K (3.22)
zikt ∈ {0, 1} ∀ i ∈ V , ∀ k ∈ K, ∀ t ∈ T (3.23)
pikh ∈ {0, 1} ∀ i ∈ V , ∀ k ∈ K, ∀ s ∈ Hi. (3.24)

The objective function (3.1) minimizes total travel time with penalty for any
overtime. Constraints (3.2) establish that for each city there is only one schedule
throughout the time horizon. To preserve that each city can be visited by given
garbage vehicle only on that day if the day is a part of its schedule, it was needed
to add constraints (3.3). Constraints (3.4) and (3.5) relate decision variables xijkt

and zikt. By providing constraints (3.6) we restrict looping at the same node.
Flow conservation constraints can be found in (3.7). Constraints (3.8) allow that
if any given garbage vehicle on certain day leaves a depot, then during the day
it visits a disposal at least once. Following contraints, (3.9), establish for any
garbage vehicle and any given day departing disposal only in cases if the vehicle
had arrived into the disposal; notice that the vehicle can travel from the disposal
back to cities or depots. Constraints (3.10) assure for each day visiting a disposal
by any garbage vehicle right before returning to any depot. In (3.11) we restrict,
for any day, visiting a disposal right after leaving a depot at the beginning of
the shift. Contraints (3.12)–(3.14) preserve that from any depot leaves a garbage
vehicle only if the vehicle is assigned to this depot. In (3.15), (3.16) and (3.17)
are defined capacity constraints; (3.15) impose that any garbage vehicle is empty
after leaving arbitrary depot or disposal, (3.16) define the continuous variable
wikt describing quantity of waste onboard of a garbage vehicle after leaving any
node and (3.17) assure that quantity of waste onboard cannot exceed capacity
of the vehicle. Constraints (3.18)–(3.20) are the time windows constraints which
also work as subtour elimination constraints. Finally, constraints (3.21)–(3.24)
define the domain of the variables.

In constraints (3.16), (3.18) and (3.19) we can notice an optimization method
called big M method where the M, as a large constant, activates or disactivates
given constraint.

The penalty term

θ
∑︂
d∈D

∑︂
k∈K

∑︂
t∈T

[︃
sdkt − τk

]︃+

in terms of implementing has to be reformulated by introducing another contin-
uous variable gdkt and extend the model with following constraints

26

gdkt ≥ 0 ∀ d ∈ D,∀ k ∈ K,

∀ t ∈ T (3.25)
gdkt ≥ sdkt − τk ∀ d ∈ D, ∀ k ∈ K,

∀ t ∈ T , (3.26)

and modify the term of the objective function into ensuing form∑︂
i∈V

∑︂
j∈V

∑︂
k∈K

∑︂
t∈T

(tij + Ti) xijkt + θ
∑︂
d∈D

∑︂
k∈K

∑︂
t∈T

gdkt.

One might ask why domain of the first sum is only over set of depots D.
The explanation lies in the definition of variable sjkt. It is a cumulative sum
of time spent en route right after we arrive in node j but without servicing it.
And thus, if we want to obtain the total time spent en route, we just have to get
value of sdkt for d ∈ D, and for each k ∈ K, t ∈ T , since service time in any depot
is equal to zero.

27

4. Solving approaches
In this chapter we offer two approaches for solving the problem from previous
chapter. At first, let us start with exact approach.

4.1 Exact approach
Since we have formulated lbpmdmfvrptw and its mathematical formulation, it
is possible to implement it into any optimization software or optimization package
for given programming language designated for solving mixed integer linear pro-
gramming problems. As mentioned earlier, it is very expensive in terms of time
to use exact approaches for any big instance which unfortunately, on the other
hand, mirrors the real-world problems.

In this work we decided to use Gurobi as our main solver from a company
called Gurobi Optimization Inc. If one would search for any open source alter-
native to Gurobi which in free version is limited, we suggest trying coin-or
(Computational Infrastructure for Operations Research). Meindl and Templ
proposed in [31] an analysis of commercial solvers for linear optimization prob-
lems and Gurobi yielded, in the comparison, the best results of all. For a small
insight, let us utter some of other solvers which were in the article for comparison:
Cplex from IBM ILOG CPLEX Optimization Studio or Xpress from Xpress
Optimization Suite, for example.

Let us start with notation of a problem instance. By notation 2/7/1/2/2
we understand – and as it is set here, it will be used in this way for the rest
of the work – an instance composed from 2 depots, 7 cities, 1 disposal, 2 vehi-
cles at each depot per 2-day time horizon, respectively. As reader can notice,
such instance, even though is solvable in Gurobi, does not represent any real-
world situation. Closer to some real-world problem would be, e. g. instance
3/50/2/ ∗ /14, where according to the problem formulation each city has its own
frequency of waste collection and allowed days as well. Symbol ∗ in the in-
stance notation represents the fact that each depot can contain various number
of garbage vehicles. The variety of vehicles is also taken into account in the model
from previous chapter.

4.2 Metaheuristic approach
The aim of this work was to offer a solution for waste collection for specific num-
ber of areas in South Moravian region which is unfortunately expensive to obtain
by the exact approach. Thus in this section we present an approach in which
we construct an algorithm, based on Simulated annealing (sa), solving lbpmdm-
fvrptw from Chapter 3. Remark that all notation from the model will be seized
in this section as well.

sa is an improving metaheuristic which at its beginning works with an initial
solution for lbpmdmfvrptw, therefore, first we need to construct an algorithm
yielding such a solution according to constraints from the model. This kind
of algorithms belongs into local search algorithm class.

28

4.2.1 Construction of an initial solution
Let us describe the principal according to which the algorithm runs. At the be-
ginning, for each city of the instance we find its closest depot and persuant to it
assign the city to its closest depot. Thus, we end up with card(D) sets, let us
denote them by Cd ⊆ C where Cd describes subset of all cities C closest to depot
d ∈ D. For clarity reasons we provide an example in Figure 4.1 where we consider
two depots denoted by d1, d2 and 10 cities denoted by c1, ..., c10. Thus according
to abovementioned split of set of citites we obtain card(D) = 2 sets such that
Cd1 = {c1, c2, c6, c7} and Cd2 = {c3, c4, c5, c8, c9, c10}.

d1
c1

c3

c4

c6

d2

c8

c9

c5

c2
c7

c10

Figure 4.1: Example of city assigning to its closest depot.

Here, we have to take into account the fact that each city has its own sched-
ule which is obtained from its frequency and allowed days of waste collection.
Let us fix, for the sake of simplification, arbitrary d ∈ D and corresponding Cd.
For each city i ∈ Cd we obtain its frequency fi and a set of the allowed days
per preset time horizon card(T), which for card(T) = 3 and if allowed days
for waste collection are, e. g. Monday and Wednesday, can be a set {1, 3} where
clearly 1 is a numeric representation of Monday and 3 a numeric representation
of Wednesday. In case of greater time horizon, e. g. card(T) = 14, set of allowed
days would be of form {1, 3, 8, 10}. From the set of allowed days we randomly
choose exactly fi distinct days and according to these distinct days we construct
a feasible schedule for city i. This process we iterate over all days of time horizon
card(T).

Now, we proceed to the main part of the algorithm for which we also pro-
vide to reader a simplified pseudocode. We have obtained a schedule for all cities
per all days of the planning time horizon but note that this schedule is not feasible
in terms of capacity constraints from the model. Moreover, disposals are not con-
tained in the schedule at all and thus garbage vehicles are also necessary to be
taken into account. This part of the algorithm works as described in the following
sentences.

Again, for the matter of simplifying things, let us consider a fixed day of the
schedule. On this day we have constructed routes. Let us highlight the fact

29

that here each route is defined by the depot and its closest cities such that time
demands for city are fulfilled, as described in the second paragraph of this sub-
section. For each depot d ∈ D we get vehicles which are assigned to this depot,
let the set of vehicles assigned to the depot d denote by Kd ⊆ K. Here, we split
the route of depot d into card(Kd) subroutes based on the following principle
(denote cardinality of the route of depot d by card(Rd)):

1. if card(Rd), is even and card(Kd) is also even, then the route is split into
same-sized subroutes of cardinality card(Rd)/card(Kd);

2. if card(Rd) or card(Kd) or both are odd, then first we split the route into
card(Kd) subroutes each containing η cities and the last ζ subroutes contains
η + 1 cities where

η = ⌊card(Rd)/card(Kd)⌋,

ζ = card(Rd) mod (card(Kd)),

thus the route is splitted into (card(Kd) − ζ) subroutes containing η cities
and ζ subroutes containing (η + 1) cities.

To continue, every vehicle k ∈ Kd has capacity Qk. Now that each vehicle k
has its own subroute to serve on day t (let us denote the subroute by rt

dk
), let

us cumulatively calculate demands of the cities in this subroute. If it happens
that by visiting some city i in the subroute the quantity onboard would exceed
Qk, for predecessor of city i we find its closest disposal, insert the closest dis-
posal before visiting city i, unload the cargo and then return to collect waste of
city i. One more thing to take care of in terms of capacity constraints is that
the vehicle has to return to its depot unloaded. Therefore, the process described
above in this paragraph is iterated until we reach the last city of the subroute.
If the vehicle reaches the last city, the algorithm finds its closest disposal, insert
the disposal right after visiting the last city into the subroute, unloads cargo,
returns to its depot and inserts the depot as the last element of the subroute.

For it may seem complicated, we provide also a simplified pseudocode on
page 31 in Algorithm 3. Dear reader will certainly understand that for the sake
of saving space we only provide a sample from the whole algorithm, i. e. for the
case until we reach the last city of the subroute for in the complement case it
is done analogously (in the pseudocode we denoted the analogous part of the
algorithm by symbol ∗).

The resulting initial schedule is, in mathematical sense, of the following form:

(︂
rtτ

dkκ

)︂K,T

κ,τ=1
=

⎛⎜⎜⎜⎜⎜⎝
rt1

dk1
rt2

dk1
rt3

dk1
. . . rtT

dk1

rt1
dk2

rt2
dk2

rt3
dk2

. . . rtT
dk2...

rt1
dkK

rt2
dkK

rt3
dkK

. . . rtT
dkK

⎞⎟⎟⎟⎟⎟⎠ , (4.1)

where rtτ
dkκ

represents a subroute which starts in depot to which is assigned
vehicle kκ such that κ ∈ {1, ..., K} – set {k1, ..., kK} = K represents whole fleet

30

Algorithm 3 Local Search Algorithm
localSearchSchedule = dict()
for day, routes in schedules do

daySchedule ← list()
for d ∈ D and Cd ⊆ C do

get Kd as a set of vehicles assigned to depot d
route← list()
rk

d ∈ getSubroutes(Cd,Kd)
for k ∈ Kd get Qk and do

if rk
d not empty then
lastNodeVisited ← d
wk = 0
wcumulative ← list()
vehiclePath = list(k, d)
for city i in rk

d do
while city i ̸= lastCity(rk

d) do
if wk + di ≤ Qk then ▷ di: demand of city i

append i into vehiclePath
wk ← wk + di

append wk into wcumulative

lastNodeVisited ← i
else if wk + di > Qk then

ℓ← findClosestDisposal(lastNodeVisited)
append ℓ into vehiclePath
wk ← 0
append wk into wcumulative

append i into vehiclePath
wk ← wk + di

append wk into wcumulative

lastNodeVisited ← i
end if

end while
∗

end for
append d into subroute rk

d

append rk
d into route

end if
end for

end for
map daySchedule into dict with vehicles as keys and subroutes as items
update localSearchSchedule as dict with day as key and daySchedule as

item
end for
return localSearchSchedule

31

of vehicles – and is performed on day tτ ∈ {t1, ..., tT} = T . In case that subroute
is not performed, we understand the route as an empty route which has no costs.

Now, that we have constructed an algorithm to yield an initial solution,
we are ready to introduce to reader sa algorithm.

4.2.2 Modified simulated annealing algorithm
In this subsection we refer to Subsection 2.3.3, Simulated annealing, in which
we introduced an algorithm inspired by annealing in metallurgy. The algorithm
works with evaluation of energy of the heated system at specific temperature
(analogous function to an objective function) and by controlled cooling its aim
is to bring the system into a state with minimal energy of the system.

In the algorithm at each temperature of the cooling procedure we slightly per-
form small displacement in the system, which in words of our problem
is a displacement of a city or cities in the whole schedule - this displacement
is in the pseudocode denoted by function neighbor() which as an input takes
the last best schedule. Now let us describe which displacements were taken into
account in the algorithm.

The algorithm itself works with two types of displacement. The first one is
change of position of one random city and the second one is swap of two random
cities. Before we start decribing the displacement operations, let us remind the
design of the schedule:

(︂
rtτ

dkκ

)︂K,T

κ,τ=1
=

⎛⎜⎜⎜⎜⎜⎝
rt1

dk1
rt2

dk1
rt3

dk1
. . . rtT

dk1

rt1
dk2

rt2
dk2

rt3
dk2

. . . rtT
dk2...

rt1
dkK

rt2
dkK

rt3
dkK

. . . rtT
dkK

⎞⎟⎟⎟⎟⎟⎠ . (4.1)

If we recall the description of elements in (4.1) from Subsection 4.2.1, for
vehicle k1 on day t1 the route could be, e. g. written as a following sequence:

rt1
dk1

= {dk1 , c1, ..., cv, ℓv, dk1},

where dk1 is a denomination for a depot containing vehicle k1; c1, ..., cv are cities
which according to the initial solution has to be served by vehicle k1 on day t1,
and ℓv denotes the closest disposal to city cv. Of course there is a real chance
that between cities c1 and cv is at least one stop to unload the cargo at some
closest disposal. This is only an illustrative example to help orientate before we
dive into description of the modified simulated annealing metaheuristic.

Now, let us begin by describing the first one of the displacement operations –
a change of position of the city (further change operation).

This idea is very intuitive and follows these steps:

step 1: Input a schedule.

step 2: Pick a city C randomly, find this city throughout the whole schedule,
i. e. over all days and erase it.

step 3: For this city C get randomly its schedule; to orientate we provide a sim-
ple example: let us for simplicity fix time horizon, card(T) = 2 (e. g. Mon-
day and Tuesday), frequency fC = 1 and Monday and Tuesday as allowed

32

days for waste collection, thus possible schedules could be of this form
{(1, 0), (0, 1)}, where (1, 0) means schedule for performing the collection
on Monday and not performing the collection on Tuesday, etc.

step 4: For city C also find its closest city and its closest depot.

step 5: For each day of the schedule of city C we proceed as follows:

(a) with probability 1/2 we insert city C into schedule right before visiting
its closest city from step 3, but only in case if the closest city is served
that day; if the closest city is not served on that day, we continue
in the search of the closest city until we obtain the closest city which
is also served on the same day; if such a city is not found, go to (b);

(b) with probability 1/2 we insert city C after its closest depot.

Note that change operation does not take into account if the randomly chosen
schedule is not already scheduled because we might still obtain better solution
in comparison with the initial one. Let us now proceed to the second displacement
operation, swap operation.

With reference to Subsection 2.3.3, we already outlined the idea behind this
operation on a simple example, but here we face quite complicated structure
of the operation. Meanwhile in change operation we iterated through the feasible
schedule of a given city and thus there was no need to check if the obtained
schedule was feasible for the random city, now if we pick randomly two cities
which can served, e. g. on different days, by swapping them we could fall into not
a feasible schedule for one or either of them. Let us now thus reveal steps of swap
operation to obtain feasible schedules:

step 1: Input a schedule.

step 2: Pick randomly two cities, e. g. cities C and D.

step 3: For each city get a set of days when they were served in the input
schedule – denote them by PC and PD.

step 4: Find PC ∩ PD, PC ∪ PD and PC ∪ PD \PC ∩ PD;

(a) if PC ∩ PD = ∅, then we will not get a feasible solution;
(b) if PC ∩ PD ̸= ∅, then few cases are need to distinct:

i. if card(PC ∪PD \PC ∩PD) = 1, then pick randomly one day from
PC ∩ PD and perform the swap on this day;

ii. if card(PC ∪PD \PC ∩PD) > 1, then with probability 1/2 do one
of the two following options:
1) pick random day for C from set (PC ∪ PD \PC ∩ PD) ∩ PC

and pick random day for D from set (PC ∪ PD \PC ∩ PD) ∩ PD

only if both of the sets are not empty; otherwise perform 2);
2) pick the one day from PC ∩ PD and perform the swap on this
day;

33

iii. if card(PC ∪PD \PC ∩PD) = 0, then it is evident that both cities
C and D were served on the same day, and therefore pick one day
from PC ∩ PD and perform the swap on this day.

step 5: Swap cities C and D if the swap would end up into a feasible schedule;
otherwise do not swap cities C and D.

The swap operation thus returns a new schedule which is obtained from the in-
putted one by swapping two distinct, randomly chosen, cities.

Here we described two displacement operations which will play a crucial role
in sa algorithm. Before we provide the modified sa for solving lbpmdmfvrptw,
it is necessary to describe an algorithm which checks whether an inputted schedule
follows also capacity constraints. It is based on following steps:

step 1: Input a schedule.

step 2: For each day we examine all subroutes performed on that day.

step 3: If we find a city which would cost exceeding capacity of the garbage ve-
hicle performing the subroute (let us for simplicity label such cities as cul-
prits), we find the closest disposal for the predecessor of the culprit.

step 4: Now we have to distinguish two situations:

(a) if successor of the culprit is a disposal and succesor of the disposal is not
a depot, we swap the culprit and the disposal; in terms of mathematics,
if we define succ(αi) = αi+1, i. e. a mapping yielding for an i-th
element of a sequence (i + 1)-th element of the sequence, therefore
in terms of newly introduced mapping let the culprit denote by ζ,
then if succ(ζ) ∈ L and succ(succ(ζ)) /∈ D, we swap positions of ζ
and succ(ζ);

(b) in other cases we insert the closest disposal right before the culprit ζ.

step 5: We repeat this process until we have no culprits in every subroutes each
day.

We have presented a simple algorithm by which we obtain feasible scheduling
in terms of capacity constraints. What is left, though, is an approach of checking
whether also time constraints were fulfilled as well, and therefore we provide
solution to this problem in following steps:

step 1: Input a schedule.

step 2: For each day we examine all subroutes performed by each vehicle on
that day.

step 3: If we find a node which would exceed the permitted length of usage
of vehicle k, we examine of what type this node is, i. e. whether it is depot,
city or disposal, and we extract only cities.

step 4: Now, few sequences designed for vehicle k are considered:

34

(a) {..., city, disposal, city, disposal, depot}: if bolded city is the one
causing exceeding the permitted length of a shift for vehicle k, then we
randomly pick a schedule for this city and change its position accord-
ing to the schedule by using above defined change operation and also
erase the disposal which was on schedule after serving the bolded city;

(b) {..., city, city, disposal, depot}: in this case if the bolded city
is the one causing exceeding the permitted length of a shift, we only
change its position according to its, randomly chosen, schedule by us-
ing change operation.

This algorithm will eliminate many of routes inducing violation of shift length
for each vehicle. It is though necessary to keep in mind, that the penalization
would be of no use if the constraint constricting time of vehicle k spent en route
would not be soft.

After presenting these four important methods there is one more thing to be
described, and that is the evaluation function f(·) which in sa works as an objec-
tive function in optimization models. For the modified sa the function has two
parameters: solution x and penalization constant θ. If after visiting some node
was time of collection for any garbage vehicle exceeded, we penalize this overlap
of permitted shift length until the waste collection on that given day is not done;
and not penalize otherwise.

In this moment we have introduced everything essential for introducing
the modified sa algorithm. Let us denote change operation algorithm
by changePosition(), swap operation by swap(), the one for checking whether
a route contains a city causing violation of vehicle capacity as capacityCul-
pritSearch() and the one for checking if time of usage of any vehicle was not
exceeded by timeCulpritSearch(). All of these algorithms were implemented
in programming language Python as well as the upcoming modified sa algorithm.

The description of the algorithm is following. As an input we insert an initial
solution xinitial, declare it as our best solution, and set the maximal temperarute
Tmax. Then evaluate function f(xinitial) and declare it as our current solution
and so far the best one as well. In each temperature of the process of cooling
we randomly choose one city and randomly one of its schedules according to which
should be performed waste collection to change its position by change operation.
Hereafter we check if the obtained schedule does not violate for arbitrary vehicle
its capacity and permitted length of a shift. Afterwards we randomly choose two
distinct cities and perform swap operation. Now follows another check if there,
in the gained schedule, are no violations of capacity and allowed time of usage
of a vehicle. Further it follows the same steps until we reach minimal temperature
Tmin as in the algorithm presented in Subsection 2.3.3.

Below we provide the pseudocode which due splitting the crucial procedures
into four distinct functions – at the first glance – seems similar to the basic version
of sa but reader knows the complexity in cogs of the algorithm (see Algorithm 4
on page 36).

In this subsection we have presented metaheuristic approach as a substitution
to the exact approach. This method, although not yielding analytic solutions,
according to many articles (we refer to Osman, [24], Dueck, [32], or to Golden
et al. in Fleet Management and Logistics, [33]) returns satisfying results close
to the optimum.

35

So far, we have proposed a formulation of milp of lbpmdmfvrptw and con-
structed modified sa. In this very moment we shall put both into practice.

Algorithm 4 Modfied simulated annealing for lbpmdmfvrptw
Tmax: initial temperature
Tmin: minimal temperature
T ← Tmax

kB: Boltzmann constant
ε: random number from interval (0, 1)
. .
xinitial ← localSearchSchedule()
xbest ← xinitial

fbest ← f(xinitial)
fcurrent ← f(xinitial)
while T > Tmin do

i← getRandomCity()
si ← getRandomScheduleOfCity(i)
xnext ← changePosition(i, si, xbest)
xnext ← timeCulpritSearch(xnext)
xnext ← capacityCulpritSearch(xnext)
j, l ← getTwoRandomCities()
xnext ← swap(j, l, xnext)
xnext ← timeCulpritSearch(xnext)
xnext ← culpritSearch(xnext)
fnext ← f(xnext)
∆f ← fnext − fcurrent

if ∆f ≤ 0 then
xcurrent ← xnext

fcurrent ← fnext

else if ε < P(∆f) = exp{−∆f
kBT
} then

xcurrent ← xnext

fcurrent ← fnext

end if
if fcurrent < fbest then

xbest ← xcurrent

fbest ← fcurrent

end if
T ← cooling(T)

end while
return xbest

36

5. Case study
Due to the assignment we have composed a milp model for solving lbpmdm-
fvrptw according to the formulation of the problem, both in Chapter 3.
For it is np-hard problem and cannot be solved in some reasonable time, in Chap-
ter 4 we constructed the modified sa metaheuristic which follows the mathemat-
ical model but in algorithmical sense. In this chapter we will occupy ourselves
with data offering information about waste collection from South Moravian re-
gion. Data are provided thanks to the team from Institute of Process Engineering
located at Faculty of Mechanical Engineering at University of technology in Brno.
Let us – for the beginning – introduce the data.

5.1 Data
We are in possession of dataset containing 2 depots, 60 areas and 5 disposals.
Here we would like to underline, as we uttered in Chapter 3, that if an area
is of larger size, then the area is split into subares, thus we end up with exactly
98 subareas in which we have to perform waste collection according to schedule
of each one, and requested frequency as well. In every depot there are 3 garbage
vehicles, each with its specific capacity and upper time limit for a collection.
From the dataset we can also extract latitude and longitude for an arbitrary
spot. In Figure 5.1 we provide map of Czechia with marked areas demanding
waste collection. Further, we were given a time matrix providing any information

Figure 5.1: A map of the Czech Republic with the marked areas.

on the duration of transportation between cities, depots and disposals. The time
matrix – with reference to the milp model – represents cost in the objective
function, (tij)i,j ∈ V = T; moreover holds tij ̸= tji for any i, j ∈ V ; i ̸= j. Hereafter,
the data contains expected value of the amount of waste to be collected for each

37

city and similarly it is the case with service time at any spot; the entries tij

of matrix T as well.
Remark, even though we deal with subareas, further we stay faithful to the de-

nomination we have been accustomed to on the previous pages, i. e. set C due
the title cities.

5.2 Instances
One can certainly object that an instance of this dimension, which provides
the dataset, cannot be solved analytically by using lbpmdmfvrptw model,
and that is true – it is enough if one calculates merely dimension of matrix T
which equals to 105 and compares it with reasonable solving ability of the model
around instances e. g. of type 2/7/1/2/2 (with reference to Section 4.1 in which
we have established this denomination). Therefore, to be capable of a compar-
ative analysis between lbpmdmfvrptw model and the modified sa, we have
extracted from the dataset reasonbale set of instances on which we can execute
the model as well as the algorithm. The instances1 are following:

d / c / ℓ / k / |T |
instance 1 1 / 3 / 1 / 1 / 1
instance 2 1 / 5 / 1 / 2 / 1
instance 3 1 / 6 / 1 / 2 / 1
instance 4 2 / 7 / 1 / 2 / 1
instance 5 2 / 8 / 1 / 2 / 1
instance 6 2 / 8 / 2 / 2 / 1
instance 7 2 / 9 / 2 / 2 / 1
instance 8 2 / 10 / 2 / 2 / 2
instance 9 2 / 11 / 2 / 2 / 2
instance 10 2 / 12 / 2 / 3 / 2
instance 11 2 / 15 / 3 / 3 / 3
instance 12 2 / 20 / 3 / 3 / 4
instance 13 2 / 25 / 4 / 3 / 4
instance 14 2 / 50 / 5 / 3 / 7
instance 15 2 / 98 / 5 / 3 / 7.

For each instance we will discuss its – if found – optimal value, i. e. total
travel time for every garbage vehicle per whole time horizon, solving time un-
til the optimal solution was found; in addition also evaluation which we obtain
from the modified sa algorithm and also its solving time; the last thing we want
to examine is to calculate so-called gap between an optimal solution and a solu-
tion yielded by the modified sa. For each instance, at the end of this chapter,
we provide a table which contains all of the pieces of information here mentioned.
Let us provide a comparison of the results, e. g. for instance 8.

1 d ∈ D, c ∈ C, ℓ ∈ L, k ∈ K, |T | = card(T)

38

Exact solution

In Figure 5.2 and 5.3 we provide illustrative graphs in which are marked optimal
routes for instance 8. This instance is composed of 2 depots, 10 cities, 2 disposals,
2 vehicles in each depot and the time horizon is set to 2 days. The denomina-
tion in the graphs is same as we were accustomed to in previous chapters, i. e.
D = {d1, d2}, C = {c1, ..., c10} and L = {ℓ1, ℓ2}. Let us denote set of garbage
vehicles in depot di by Kdi

such that K = ∪iKdi
. According to the latest de-

nomination, in instance 8 we get following sets: Kd1 = {k1, k2}, Kd2 = {k3, k4}.
For better distinction, each vehicle is distinguished by using different arrow line
styles, i. e. vehicle k1 utilizes boldly dashed arrows, k2 dashed arrows, k3 solid
arrows and k4 dotted arrows. Each vehicle has same capacity and same permitted
shift length which is equal to 9.5 hours. Each city has to be served only once
and, in this case, none of these cities has any preference on which of these two
days waste collection have to be performed.

Now, let us describe the optimal solution for instance 8. On the first day of
the scheduling (see Figure 5.2) we can quickly notice that not all of the vehicles
are used, just vehicles k2, k3 and k4. Vehicle k2 services cities c1, c2 and c3 after
leaving its depot and when the collection is done, it is forced to unload the cargo
in the closest (in sense of time) disposal and afterwards return back to d1.

d1

c1

c2

ℓ1

c3

c9c10

d2

c4

c5

l2
c6

c7

c8

Figure 5.2: Optimal scheduling for instance 8 on for t = 1, t ∈ T .

Vehicle k3 starts its route from depot d2 and serves city c4, then empty itself
at disposal ℓ1 and continues to city c5 which fills up the vehicle almost to its limit
and hence it has to go to unload the waste again. Afterwards it travels back to
depot d2.

39

One could say that vehicle k4 serves only city c6, travels to disposal ℓ1 and
then back to its depot, i. e. d2, but – according to the data – city c6 requires
whole capacity of k4, service time in this city is almost 4 hours, further unloading
the cargo in disposal ℓ1 takes 30 minutes and if we add up travel time between
the nodes, we get a shift of time length of more 6 hours.

One particular question comes to mind, and that is why, although in the
instance we are allowed to use 2 disposals, all vehicles travels to disposal ℓ1 even
though in terms of distance is ℓ2 closer. The reason is following: meanwhile ℓ1 is a
disposal based beyond municipality Tǐsnov (in which is based depot d1), disposal
ℓ2 is based in Brno. According to the data it is way faster to travel from, e. g.,
node c4 to disposal ℓ1 than to drive through Brno. This could be explained by
the fact that we were given only averaged values of travel time between nodes.
Now, let us continue with the second day of the schedule.

On the second day (see Figure 5.3) we can observe that only two of the four
vehicles are in use – vehicle k1 from depot d1 and vehicle k3 from depot d2.

Vehicle k1 travels via cities c9 and c10, afterwards unloads the waste at disposal
ℓ1 and returns to d1. Cities c7 and c8 are served by vehicle k3, which then travels
through disposal ℓ1 back to its depot.

d1

c1

c2

ℓ1

c3

c9c10

d2

c4

c5

l2
c6

c7

c8

Figure 5.3: Optimal scheduling for instance 8 on for t = 2, t ∈ T .

In total, objective function yielded for instance 8 value 33.83 hours. Decom-
position into time duration of each shift is presented in Table 5.1.

Calculations were performed on a computer disposing by Intel® Coretm i5-
5350u cpu @ 1.80 ghz and 8 gb ram. gurobi implemented in Python explored
2,115,292 nodes (53,020,017 simplex iterations) until the optimum was found.

40

Day Vehicle Shift duration (in hours)
1 k2 7.41
1 k3 6.24
1 k4 7.74
2 k1 6.01
2 k3 6.43

Table 5.1: Duration of shift in instance 8 according to the optimal solution.

Time to get the optimum was 14,715.88 seconds which is more than 4 hours and
5 minutes. Now, let us compare this solution with the modified sa.

Heuristic solution

On the very same instance we wish to run the modified sa algorithm as described
in Subsection 4.2.2, but first we have to obtain an initial solution which is acquired
in the same manner as we proposed in Subsection 4.2.1. The initial solution for
sa is depicted in Figures 5.4 and 5.5.

d1

c1

c2

ℓ1

c3

c9c10

d2

c4

c5

l2
c6

c7

c8

Figure 5.4: Initial solution of scheduling for instance 8 for t = 1, t ∈ T .

From the figures we can utter that on both days of the scheduling are all of
the four vehicles in use, and that – in fact – is natural according to the local
search algorithm proposed in Subsection 4.2.1.

Let us take a look, e. g., at the second day of the scheduling (see Figure 5.5).
From depot d1 depart vehicles k1 and k2. Vehicle k1, depicted by boldly dashed

41

d1

c1

c2

ℓ1

c3

c9c10

d2

c4

c5

l2
c6

c7

c8

Figure 5.5: Initial solution of scheduling for instance 8 for t = 2, t ∈ T .

arrow, travels to city c10, performs waste collection and travels via disposal ℓ1
to depot d1; vehicle k2 visits c2 after which there is no space for another waste
left, hence goes to disposal ℓ1, then proceeds to city c5 and before returning to
depot d1 unloads the waste at disposal d1. From depot d2 vehicle k3 visits nodes
c6, ℓ1, c1 and at the end of its schedule unloads waste from c1 at disposal ℓ2.
The remaining vehicle in depot d2, vehicle k4, serves city c4 only and empties
itself at disposal ℓ1 in order to get back to the depot.

Evaluation of the initial solution is equal to 40.30 hours. Now let us seize this
solution as a springboard for the modified sa.

After 12 seconds with 1087.76 iterations per second in average the evaluation
function of the modified sa yielded a result equal to 34.47 hours. We have set in
the modified sa parameters as follows:

Tmax = 30 000, α = {1/t}n
t=1, n = 20 000,

where cooling parameter is defined as a multiplicative inverse of number of the
iteration we are at, i. e. at t-th iteration is temperature of the system equal to
(1/t) · Tmax. These parameters were set according to behavior of the evaluation
function when we were saving only the best solutions throughout the process of
cooling. As we can see in Figure 5.6, sometimes we obtained better solutions also
after 10, 000th iteration, scarcely after 15, 000th one, though, but for the sake of
those cases, we extended the number of iterations to 20, 000.

The resulting schedules from the modified sa are depicted in Figures 5.7 and
5.8.

In the solution from the model are on the first day of scheduling served from

42

Figure 5.6: Best solution tracking from the evaluation function in the modified sa
(shown only for instances 8–13).

depot d1 cities c1, c2 and c3, meanwhile in the solution obtained from the modified
sa vehicle k1 from depot d1 collects waste also in city c1, goes to disposal ℓ1, then
continues in cities c2, c9 and c3 and aftewards travels to disposal ℓ1; vehicle k4
serves city c4 as it was in the solution from the model on the same day and – in
addition to that – takes care, after it unloads the cargo at disposal ℓ1, of cities c7
and c8. On the second day are from depot d1 by vehicle k1 served cities c10 and
c5; from depot d2 serves vehicle k4 in only one city, city c6.

As well as in the solution from the model, the modified sa also avoids the
disposal ℓ2 based in Brno due its possible traffic jams throughout the day. Lest
we forget that we work with average travel time whose values can cause this
avoidance. If we knew at which precise time of the day it would be less consuming
to travel to disposal ℓ2, the model, and also the heuristic, could yield better
solutions.

43

d1

c1

c2

ℓ1

c3

c9c10

d2

c4

c5

l2
c6

c7

c8

Figure 5.7: Scheduling for instance 8 according to modified sa, for t = 1, t ∈ T .

The gap between the solution from the model and the one from the modified
sa metaheuristic is 1.78 %. In Table 5.2 we provide, as same as it was it with
the optimal solution, a table of shift durations in instance 8 according to the
solution we obtained from the modified sa. Here, in comparison with Table 5.1,
less vehicles were used but in exchange for the overtime caused by vehicle k4 on
the first day, as the permitted time of vehicle usage is 9.5 hours. Meanwhile
the average shift length per vehicle in the optimal solution was 6.77 hours, the
metaheuristic solution offers longer average shift length of a value of 8.53 hours.

Day Vehicle Shift duration (in hours)
1 k1 8.91
1 k4 6.24
2 k1 9.17
2 k4 9.78

Table 5.2: Duration of shift in instance 8 according to the solution yielded by the
modified sa.

For more instances we provided table of results either for the model and the
modified sa in Table 5.3. Let us briefly describe its values. The table is divided
into three main columns - the first one is a column of instances and the two
consecutive columns are devoted to the solutions from the model and from the
modified sa, respectively.

In the column called Model we see four columns - Optimal value, Incumbent,

44

d1

c1

c2

ℓ1

c3

c9c10

d2

c4

c5

l2
c6

c7

c8

Figure 5.8: Scheduling for instance 8 according to modified sa, for t = 2, t ∈ T .

Lower bound and Time. By incumbent is meant the best feasible solution so
far at the specific time of solving. The difference between incumbent and lower
bound is known as gap. If the gap is zero, the optimum is reached. Column Time
contains information about solving time of each instance.

Column Modified sa reveals information about results yielded by the modified
sa including also solving time of each instance; by column Gap we mean the gap
between the optimal value from the model and the result obtained from the
metaheuristic, if the optimal value was found; otherwise we calculate the gap
w. r. t. the incumbent.

We also provide a table of improvements of the solutions obtained from the
modified sa w. r. t. the local search algorithm proposed in Section 4.1
(see Table 5.4).

45

Instance Model Modified sa
Optimal value (hrs) Incumbent (hrs) Lower bound (hrs) Time (s) Evaluation (hrs) Time (s) Gap (%)

1 : 1/ 3/1/1/1 13.76 13.76 13.76 0.09 13.76 2.00 0.00
2 : 1/ 5/1/2/1 18.99 18.99 18.99 6.00 18.99 3.00 0.00
3 : 1/ 6/1/2/1 20.59 20.59 20.59 4.39 20.88 5.00 1.42
4 : 2/ 7/1/2/1 21.77 21.77 21.77 27.31 22.79 7.00 4.48
5 : 2/ 8/1/2/1 26.27 26.27 26.27 226.16 27.29 8.00 3.74
6 : 2/ 8/2/2/1 26.27 26.27 26.27 452.17 28.55 10.00 7.99
7 : 2/ 9/2/2/1 < 29.50 28.81 3600.00 30.69 12.00 3.88*
8 : 2/10/2/2/2 33.83 33.83 33.83 14 715.88 34.47 12.00 1.78
9 : 2/11/2/2/2 < 37.44 35.84 3600.00 38.01 12.00 1.51*
10 : 2/12/2/3/2 < 37.95 34.89 3600.00 38.68 23.00 1.85*
11 : 2/15/3/3/3 < 44.27 41.70 3600.00 44.34 29.00 0.17*
12 : 2/20/3/3/4 < 59.93 51.66 3600.00 61.59 66.00 2.69*
13 : 2/25/4/3/4 < 77.77 65.47 3600.00 77.88 72.00 0.68*
14 : 2/50/4/3/7 < < 281.16 3600.00 193.52 625.00 <
15 : 2/98/5/3/7 < < 529.42 3600.00 351.15 8955.00 <

Table 5.3: Comparison of results between the model and the modeified sa (∗: gap calculated not with respect to the optimal value
but w. r. t. incumbent value).

464646

Instance Local Search sol. Modified sa sol. Improvement (%)
1 15.37 13.76 10.48
2 18.99 18.99 0.00
3 23.51 20.88 11.22
4 24.23 22.79 1.46
5 27.82 27.29 1.91
6 29.08 28.55 1.82
7 32.55 30.69 5.72
8 40.30 34.44 14.54
9 43.39 38.01 12.39
10 45.18 38.68 14.40
11 53.68 44.34 17.38
12 70.72 61.59 12.91
13 92.02 77.88 15.36
14 211.68 193.52 8.58
15 458.67 351.15 23.44

Table 5.4: Improvement of the solution obtained from Local Search algorithm by
the modified sa.

5.3 Results
Let us describe the results we have obtained in the previous section. As we can
see, some of the instances were expensive in sense of time, and therefore we set
the maximum solving time to 3,600 second at all but one case, and after this
upper time limit we collected the results. We were examining 15 instances. In
seven of the fifteen cases we reached an optimum and in the remaining ones we
are left with the upper bound, i. e. incumbent (the far best solution), and the
lower bound.

First, we take a glance at the instances in which we are in possession of an
optimum which are instances 1, 2, 3, 4, 5, 6 and 8. The gap between an optimum
and a metaheuristic solution is in average 2.77 %.

In cases, when we do not possess an optimum any rational relativity left was to
calculate the gap with respect to the incumbent as it is the best solution at given
time. Forget not that by metaheuristic solution getting close to the incumbent
we do have any information about how exactly far we are from the optimum. If
we analyze, for example, instance 13, the best solution found is 77.77 hours for
four day schedule carried out by three vehicles – that yields a shift length of 6.48
hours (in case that all three vehicles are in use). The metaheuristic solution for
instance 13 is not far from the incumbent, and that is 77.88 hours – only 0.68 %
w. r. t. the incumbent, but that is the only information we can obtain from Table
5.3 about this instance. The lower bound at 3, 600 seconds is 65.47 hours, thus
the gap between the incumbent and the lower bound equals to 15.8 %, but let us
not to be misleaded that the metaheuristic solution is 15.8 + 0.68 = 16.48 % far
from the optimum. For this reason we had chosen calculating the gap w. r. t. to
the incumbent, in cases of not having the optimum.

47

6. Future extensions
The objective of this work was to propose to the members from ipe a different
approach to optimize waste collection of given municipalities in South Mora-
vian region. We have proposed milp formulation of this problem as well as the
metaheuristic approach. In Section 5.3 we obtained average value of the gap be-
tween an optimum and a solution obtained from the modified sa, both run on
the dataset provided by the members from ipe. The metaheuristic is working
with two main displacement operations, change and swap operation (see Sub-
section 4.2.2). Other displacement operations could be taken into account, e. g.
reverse operation which yields a mirrored order of the sequence, i. e. if we want
reverse a sequence of elements {1, 2, 3, 4}, the reversed order would be evidently
{4, 3, 2, 1}. In terms of vrp, the vehicle departs and returns to the same de-
pot, thus we get that 1 and 4 represent the depot. One issue left would be to
take care also of the disposal which happens to be represented by 3, the reverse
operations hence should follow the feasibility and swap also 3 and 2 from the
reversed sequence since the vehicle has to unload the cargo before returning to
its depot. Other operation that may help to decrease the gap could be 3-swap,
i. e. randomly choose three cities throughout the schedule and swap them.

With reference to the data, we were provided information about service time
in any city or time length of unloading waste in any disposal; in addition to it, we
also have an access to information about quantity of waste in each city. Nonethe-
less, we were given only slice of the real values in the form of its expected values.
Let us recall one moment when we noticed the avoidance of one specific disposal
in the optimal solution of instance 8. We believe that if one was working not
with the average travel time but had an access to probability distribution of the
travel time for each node, there could be an actual instant at which it would be
more convenient to travel to the avoided disposal instead. These pieces of infor-
mation can be handled by stochastic programming (we refer to short subsection
in Chapter 1 devoted to nonlinear programming from which one can grasp easily
grasp the idea behind the stochastic programming; see Subsection 1.2.1).

The travel time, as well as the service time, is not the only piece of information
which can be modelled by stochastic programming. The speak is of demands of
waste collection for each city. Although, we are not in possession of such data,
let us propose a stochastic extension of lbpmdmfvrptw with uncertain demand
such that other parameters would be known in advance. For the purpose, here
we remind, in (3.15), (3.16) and (3.17), the capacity constraints from the model:

wikt = 0 ∀ i ∈ D ∪ L, ∀ k ∈ K,

∀ t ∈ T (3.15)
wikt − wjkt + dj ≤M (1− xijkt) ∀ i ∈ V , ∀ j ∈ D ∪ C,

∀ k ∈ K,∀ t ∈ T (3.16)
wikt ≤ Qk ∀ i ∈ V , ∀ k ∈ K, ∀ t ∈ T , (3.17)

where wikt is defined as quantity of waste onboard of vehicle k right after servicing
node i on day t such that the quantity cannot exceed capacity of vehicle k, i. e.
Qk. If we considered that demand of node i would be uncertain but its probability

48

distribution was known to us, the capacity constraints then would be reformulated
by using joint probability constraints as

wikt
a. s.= 0 ∀ i ∈ D ∪ L, ∀ k ∈ K,

∀ t ∈ T (6.1)

wikt(ξ) + dj(ξ)− wjkt(ξ)
a. s.
≤ M(1− xijkt) ∀ i ∈ V , ∀ j ∈ D ∪ C,

∀ k ∈ K,∀ t ∈ T (6.2)

P
(︂
wikt(ξ) ≤ Qk; ∀ i ∈ V , ∀ k ∈ K, ∀ t ∈ T

)︂
≥ α. (6.3)

For variable wikt is defined by demand di(ξ) depending on random variable ξ,
therefore quantity of waste onboard of vehicle k after visiting node i on day t has
to be also dependent on ξ, and hence wikt(ξ). Since we define variable wikt(ξ)
in (6.2), the inequality has to hold almost surely.

Let us further assume that ξ follows discrete probability distribution with
finite support. Therefore ξ has S scenarios such that each scenario ξs will happen
with probability ps ∈ [0, 1]. We can reformulate constraints (6.1)–(6.3) by using
another variable us such that

us =

⎧⎨⎩1 : if w is feasible solution for sceanrio s,

0 : otherwise.

Hereafter, let us denote set of scenarios by S = {1, ..., S} Therefore the model
lbpmdmfvrptw, if we reformulated the capacity constraints, would look like as
follows:

min
∑︂
i∈V

∑︂
j∈V

∑︂
k∈K

∑︂
t∈T

(tij + Ti) xijkt + θ
∑︂
d∈D

∑︂
k∈K

∑︂
t∈T

gdkt (3.1)

s. t. (3.2)− (3.14)

ws
ikt = 0 ∀ i ∈ V , ∀ k ∈ K,

∀ t ∈ T , ∀ s ∈ S (6.4)
ws

ikt + ds
j − ws

jkt −M(1− xijkt) ≤ 0 ∀ i ∈ V , ∀ k ∈ K,

∀ t ∈ T , ∀ s ∈ S (6.5)
ws

ikt −Qk −M(1− us) ≤ 0 ∀ i ∈ V , ∀ k ∈ K,

∀ t ∈ T , ∀ s ∈ S (6.6)
S∑︂

s=1
psus ≥ α (6.7)

us ∈ {0, 1} ∀ s ∈ S (6.8)

(3.18)− (3.24),

where M has a role of activating the inequality whenever xijkt equals to one.
Here, we proposed some of the possible ways which can be undertaken to

acquire better solutions for the South Moravian waste collection problem.

49

7. Epilog
In the work we – at first – presented some of the concepts of graph theory, nonlin-
ear and also linear programming, as a special case of nonlinear programming, and
– at last – we described primal simplex method to grasp an algorithmic approach
of solving a linear program.

In Chapter 2 we introduced well-known problem in logistics, The Vehicle Rout-
ing Problem (vrp) and provided a mixed linear integer program for mdvrptw
with heterogeneous fleet as a springboard from which we could proceed to more
complex formulations of vrp as we understood the idea on a simpler model.
Later, we did a brief research on solving approaches to complicated vrps and
presented the main pillar of the work, simulated annealing algorihm.

We described the South Moravian waste collection problem in Chapter 3
and subsequently proposed its mathematical formulation in form of mixed lin-
ear integer program.

Since, generally, vrps are very expensive – in terms of time – to solve, we
proposed two solving approaches in Chapter 4 – an exact approach by solving the
model from Chapter 3 and metaheuristic approach based on simulated annealing
algorithm that was introduced in Chapter 2.

Chapter 5 was devoted to results obtained from the model and from the meta-
heuristic which both were performed on the data provided by the members from
Institute of Process Engineering, located at Faculty of Mechanical Engineering at
University of technology in Brno, and subsequently reported comparative analy-
sis.

In the final chapter, Chapter 6, we stressed out some of the weaknesses of
our approach and proposed possible remedies which could lead into better per-
formances.

50

Bibliography
[1] Reinhard Diestel. Graph Theory. Springer-Verlag, New York, 2000. Elec-

tronic Edition.

[2] M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

[3] Sherali H. D. Bazaraa, M. S. and C. M. Shetty. Nonlinear Programming:
Theory and Algorithms. John Wiley and Sons, Ltd, United States of America,
2006.

[4] Bruce L. Miller and Harvey M. Wagner. Chance constrained programming
with joint constraints. Operations Research, 13(6):930–945, 1965.

[5] A. Charnes, W. W. Cooper, and G. H. Symonds. Cost horizons and cer-
tainty equivalents: An approach to stochastic programming of heating oil.
Management Science, 4(3):235–263, 1958.

[6] A. Prekopa. On Probabilistic Constrained Programming, pages 113–138.
Princeton University Press, Princeton, 1971.

[7] L.A. Wolsey. Integer Programming. Wiley Series in Discrete Mathematics
and Optimization. Wiley, 1998.

[8] Robert J. Vanderbei. Linear Programming: Foundations and Extensions.
Springer, 2020.

[9] Paolo Toth and Danielle Vigo. The Vehicle Routing Problem. Society for
Industrial and Applied Mathematics, Philadelphia, 2002. isbn: 0-89871-579-
2.

[10] S. Geetha, P. T. Vanathi, and G. Poonthalir. Metaheuristic approach for
the multi-depot vehicle routing problem. Applied Artificial Intelligence,
26(9):878–901, 2012.

[11] Jǐŕı Kučera. Modelováńı logistiky meziobecńı přepravy odpadu (Modelling of
logistics of inter-municipal waste transport). Brno, University of technology,
2022.

[12] Glenn Davis. A centroid for sections of a cube in a function space, with
application to colorimetry, 2018.

[13] M. L. Fisher. Optimal solution of vehicle routing problems using minimum
k-tree. Operations Research, 42:626–642, 1994.

[14] Ralphs T. K. Ladanyi, L. and L. E. Trotter Jr. Branch, cut, and price: Se-
quential and parallel, in computational combinatorial optimization. Berlin:
Springer, 2001.

[15] G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to
a number of delivery points. Operations Research, 12(4):568–581, 1964.

51

[16] Frank A. Tillman. The multiple terminal delivery problem with probabilistic
demands. Transportation Science, 3(3):192–204, 1969.

[17] Billy E. Gillett and Jerry G. Johnson. Multi-terminal vehicle-dispatch algo-
rithm. Omega, 4(6):711–718, 1976.

[18] Billy E. Gillett and Leland R. Miller. A heuristic algorithm for the vehicle-
dispatch problem. Operations Research, 22(2):340–349, 1974.

[19] Anthony Wren and Alan Holliday. Computer scheduling of vehicles from
one or more depots to a number of delivery points. Operational Research
Quarterly (1970-1977), 23(3):333–344, 1972.

[20] Shen Lin. Computer solutions of the traveling salesman problem. The Bell
System Technical Journal, 44(10):2245–2269, 1965.

[21] Scott Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated
annealing. Science (New York, N.Y.), 220:671–680, 06 1983.

[22] Metropolis NS, A.W. Rosenbluth, M.N. Rosenbluth, AH Teller, and
E. Teller. Equation of state calculations by fast computing machines. Journal
of Chemical Physics, 21:1087–1092, 01 1953.

[23] G. Wedler and H.-J. Freund. Lehrbuch der Physikalischen Chemie. 6th Ed.
Weinheim: WILEY-VCH, 2012.

[24] Ibrahim Osman. Meta-strategy simulated annealing and tabu search al-
gorithms for the vehicle routine problem. Annals of Operations Research,
41:421–451, 12 1993.

[25] Erdal Aydemir and Kenan Karagul. Solving a periodic capacitated vehicle
routing problem using simulated annealing algorithm for a manufacturing
company. Brazilian Journal of Operations and Production Management, 17,
02 2020.

[26] Chao Wang, Fu Zhao, Dong Mu, and John W. Sutherland. Simulated an-
nealing for a vehicle routing problem with simultaneous pickup-delivery and
time windows. AICT-415(Part II):170–177, September 2013. Part III: Sus-
tainable Services.

[27] Vladimı́r Černý. Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm. Journal of Optimization Theory and
Applications, 45(1):41–51, 1985.

[28] Vı́t Procházka. Pokročilé optimalizačńı modely v odpadovém hospodářstv́ı
(Advanced Optimization Models in Waste Management). Brno, University of
technology, 2014.

[29] Vlastimı́r Nevrlý. Modely a metody pro svozové úlohy (Models and methods
for routing problems). Brno, University of technology, 2016.

[30] N. Christofides and J. E. Beasley. The period routing problem. Networks,
14(2):237–256, 1984.

52

[31] B Meindl and Matthias Templ. Analysis of commercial and free and open
source solvers for linear optimization problems. 08 2013.

[32] Gunter Dueck. New optimization heuristics: The great deluge algorithm and
the record-to-record travel. Journal of Computational Physics, 104(1):86–92,
1993.

[33] Bruce L. Golden, Edward A. Wasil, James P. Kelly, and I-Ming Chao. The
Impact of Metaheuristics on Solving the Vehicle Routing Problem: Algo-
rithms, Problem Sets, and Computational Results, pages 33–56. Springer
US, Boston, MA, 1998.

53

List of Figures

1.1 A path P = P 6 in G. 4
1.2 Subtours (a case when we consider n = 8). 9

4.1 Example of city assigning to its closest depot. 29

5.1 A map of the Czech Republic with the marked areas. 37
5.2 Optimal scheduling for instance 8 on for t = 1, t ∈ T 39
5.3 Optimal scheduling for instance 8 on for t = 2, t ∈ T 40
5.4 Initial solution of scheduling for instance 8 for t = 1, t ∈ T 41
5.5 Initial solution of scheduling for instance 8 for t = 2, t ∈ T 42
5.6 Best solution tracking from the evaluation function in the modi-

fied sa (shown only for instances 8–13). 43
5.7 Scheduling for instance 8 according to modified sa, for t = 1, t ∈ T . 44
5.8 Scheduling for instance 8 according to modified sa, for t = 2, t ∈ T . 45

54

List of Tables

5.1 Duration of shift in instance 8 according to the optimal solution. . 41
5.2 Duration of shift in instance 8 according to the solution yielded by

the modified sa. 44
5.3 Comparison of results between the model and the modeified sa (∗:

gap calculated not with respect to the optimal value but w. r. t. in-
cumbent value). 46

5.4 Improvement of the solution obtained from Local Search algorithm
by the modified sa. 47

55

	Preface
	The Basics
	Graph theory
	Mathematical programming
	Nonlinear programming
	Linear programming

	Primal simplex

	Vehicle Routing Problem
	Fundamentals
	Multi-depot Vehicle Routing Problem with Time Windows and Heterogeneous Fleet
	Solution approaches for more complex problems
	Clustering
	Routing
	Simulated annealing

	Waste collection problem
	Problem formulation
	Mathematical formulation

	Solving approaches
	Exact approach
	Metaheuristic approach
	Construction of an initial solution
	Modified simulated annealing algorithm

	Case study
	Data
	Instances
	Results

	Future extensions
	Epilog
	Bibliography
	List of Figures
	List of Tables

