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Introduction
The string is a system of long-standing relevance to theoretical physics, providing
simple examples of continuum dynamics, wave phenomena, and even field theory.
In this thesis, we use the string as a model of interaction between two point
masses falling radially in a spherically symmetric gravitational field, and examine
the effects of this interaction on their motion. With this setting, we obtain a one-
dimensional model of an extended body in free fall that is simple to describe in
both classical and relativistic contexts.

Solving this problem is part of a wider effort to understand the motion of
extended bodies in gravitational fields, which is an area of both theoretical and
practical interest, for example in the orbital control of satellites Misra and Modi
[1986]. Previous research has identified two effects by which the motion differs
from geodesic, swinging and swimming Guéron et al. [2006].

The swinging effect is present in both Newtonian and relativistic gravity,
and it is most easily seen in bodies with a controlled inner oscillation. On an
intuitive level, the body swings by changing its shape to take advantage of the
inhomogeneity of the field. The effect is usually quantified by measuring the
position shift between the center of mass of the extended body and a comparable
point test particle. These shifts are typically seen to be negative, and the body can
thus only accelerate its fall. The position shift—oscillation frequency relationship
has also been a subject of several similar previous works Guéron and Mosna [2007].

Swimming on the other hand is a purely relativistic effect, first proposed
in Wisdom [2003] as a geometric consequence of moving on a manifold with
curvature. In a controlled ”glider” model Guéron and Mosna [2007], swimming
has been theorised to lead to slower fall than geodesic, but this result has been
disputed Veselý and Žofka [2019].

An issue that is common among many of the sample systems in this research
area is the usage of a controlled Lagrangian, with constraints between particles or
parts of the body being artificially prescribed instead of consequent to a physical
interaction. This leads to fundamental problems in the context of relativity, since
it contradicts the limit on speed of information exchange between parts of the
body. To remedy this, in Veselý and Žofka [2021] a model of interaction via
exchange of discrete particles was examined instead, with the conclusion that
swimming is observed, but it only accelerates the fall. The reason for adjoining
the particles via a continuous string is then that such a model automatically fulfills
the information speed limit, and it provides a much broader scope of possibilities
for the motion.

The thesis is divided into two chapters. In the first, we develop a general
Lagrangian description of a classical elastic string confined to one-dimensional
motion, and then use it to describe the desired system of two interacting parti-
cles in a Newtonian gravitational field. We solve the equations of motion numer-
ically and observe the resulting swinging effect. The second chapter attempts to
replicate these results in the framework of general relativity, studying an elastic
string with the speed of sound equal to speed of light. We derive the equations
of motion for a particle-string-particle system from first principles, and discuss
their possible solution and the implications of our formalism.
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1. The Classical String
In classical mechanics, the string is essentially a one-dimensional continuum, and
it therefore needs to be described using continuum concepts. In this chapter, we
will develop and discuss the Lagrangian formalism for the string, expressed in
terms of the displacement field, and then use it to describe our target dumbbell
system.

1.1 The Free String
The physical state of a string at any given time is determined by the position of
all of its constituent points. To translate this general description to mathemat-
ics, we first need to choose a reference configuration - to this end, consider the
undeformed string with uniform linear density λ lying at rest along the x-axis,
and let x = 0 and x = l be its endpoints. Since its motion is limited to the
x-direction, the state of the string is fully specified by the displacement function
u(x, t) = r(x, t) − x, where r(x, t) is the position at time t of the point starting
at x. The velocity of this point is then:

v(x, t) = ∂u(x, t)
∂t

. (1.1)

This is also the velocity of an infinitesimal segment dx at the reference coor-
dinate x. Because the mass of such a segment is dm = λdx, we immediately have
the kinetic energy of the string:

T = 1
2λ

∫︂ l

0

(︄
∂u

∂t

)︄2

dx. (1.2)

To derive the potential energy, we need to define more precisely the notion of
an elastic string. Denote by τ(x, t) the force of tension at each reference point x
in the deformed configuration, i.e., the force acting on the left half of the string
when divided at reference point x. We now suppose that the string obeys a
constitutive relation of the form

τ = κ
∂u

∂x
(1.3)

analogous to the equations of linear elasticity. The interpretation of κ is post-
poned to the next section.

The definition of u and this constitutive relation is all we need to derive
the string dynamics. Suppose the string moves, in a small time δt, from the
position u(x) to u(x)+δu(x). This must have been due to the combined influence
of the tension force and additional external forces. Neglecting the possibility
of a force on the ends of the string other than tension, we can define a mass
density of the external forces, f(x), such that the total force on the segment dx
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is f(x)dm = f(x)λdx. The work done during the move u → u + δu is then:

δW = −τ(0)δu(0) + τ(l)δu(l) +
∫︂ l

0
λfδudx (1.4)

=
∫︂ l

0

(︄
∂

∂x
(τ δu) + λfδu

)︄
dx (1.5)

=
∫︂ l

0

(︄
∂τ

∂x
+ λf

)︄
δudx + κ

∫︂ l

0

∂u

∂x

∂δu

∂x
dx (1.6)

We can now use the continuum equation of motion

∂τ

∂x
+ λf = λ

∂v

∂t
(1.7)

along with the fact that δu/δt is just the velocity, to simplify the first term
∫︂ l

0

(︄
∂τ

∂x
+ λf

)︄
δudx = λ

∫︂ l

0

∂v

∂t
vδtdx (1.8)

= 1
2λ

∂

∂t

(︄∫︂ l

0
v2dx

)︄
δt (1.9)

= δ

(︄
1
2λ

∫︂ l

0
v2dx

)︄
(1.10)

We recognize this as the change in kinetic energy δT . The remaining term
can be similarly manipulated:

δW − δT = κ
∫︂ l

0

∂u

∂x
δ

∂u

∂x
dx (1.11)

= δ

⎛⎝1
2κ

∫︂ l

0

(︄
∂u

∂x

)︄2

dx

⎞⎠ (1.12)

and by conservation of energy, the natural interpretation for this term is the
change in the elastic potential energy δVel. Therefore, we have:

Vel = 1
2κ

∫︂ l

0

(︄
∂u

∂x

)︄2

dx (1.13)

and the Lagrangian for our string is:

L = 1
2λ

∫︂ l

0

(︄
∂u

∂t

)︄2

dx − 1
2κ

∫︂ l

0

(︄
∂u

∂x

)︄2

dx − Vf (1.14)

where Vf is the potential energy of all the external forces f . If the string is
free (f = 0), the equation of motion is the wave equation:

∂2u

∂t2 = c2 ∂2u

∂x2 (1.15)

with phase velocity:
c =

√︃
κ

λ
(1.16)
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Lastly, we need the boundary conditions. By the elastic law, the force exerted
on the string at the end x = 0 is κ(∂u(0, t)/∂x); the situation is the same at
x = l. Therefore, if the string is to be truly free, we can specify the Neumann
conditions:

∂u(0, t)
∂t

= ∂u(l, t)
∂t

= 0 (1.17)

1.2 Three-dimensional Strings
One problem that section 1.1 did not address is the nature of the constant κ
and the validity of equation (1.3). Here, we present two different models for the
string, which both reproduce the relation, but give different values of κ.

Leaving the comfortable one-dimensional idealisation behind, the string is
most easily pictured as a long, thin cylinder with a rigid axis. We will assume
that the material is linearly elastic and isotropic:

σ = λ(∇ · u)I + µ
(︂
∇u + (∇u)T

)︂
(1.18)

where σ is the Cauchy stress tensor and u is the displacement field.
One natural model then arises by supposing that the radius of the string is

fixed, so that the displacement is limited to the x direction:

u = u(x)ez (1.19)

In this case, equation (1.18) directly gives:

σxx = (λ + 2µ)∂u

∂x
(1.20)

This is sufficient to confirm (1.3), since we have τ = Aσxx for the tension force
from the previous section, where A is the cross-sectional area of the string. From
this model, we get the result:

c =
√︄

λ + 2µ

ρ
(1.21)

where ρ is the density of the material. This is precisely the speed of longitu-
dinal seismic P-waves in a large three dimensional body.

Another, and perhaps more physically realistic model accounts for the ra-
dius of the string changing with the deformation along its axis. Neglecting the
possibility of torsion, this gives a displacement vector:

u = u(x)ex + υ(x, r)er (1.22)

as in cylindrical coordinates (r, φ, x). However, remembering that the string
is thin, the r-dependence of the radial displacement υ can be safely approximated
to first order as:

υ(x, r) = rη(x) (1.23)
The constant term is necessarily zero due to the a non-zero radial displacement

at r = 0 leading to singular behaviour.
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A natural boundary condition to impose on the string is zero normal stress
on the surface of the cylinder (except at the bases). This condition is expressed
as:

σrr = 0, r = R (1.24)
which given our assumptions yields:

η(x) = − λ

2(λ + µ)
∂u

∂x
(1.25)

The constant is the Poisson ratio, and the result is essentially the same as
that for a material under constant uniaxial strain.

Calculating the normal axial stress again results in:

σxx = µ(3λ + 2µ)
λ + µ

∂u

∂x
(1.26)

so this model reproduces the same linear dependence with a different κ. The
constant is the Young’s modulus E, and calculating the wave speed results in the
well-known expression:

c =
√︄

E

ρ
(1.27)

1.3 Mediating an Interaction
Now that the Lagrangian for the free string (1.28) has been derived, we can
consider the string mediating an interaction between two point masses. The way
to accomplish this is by adding their respective kinetic energies to the Lagrangian,
so that:

L = 1
2λ

∫︂ l

0

(︄
∂u

∂t

)︄2

dx − 1
2κ

∫︂ l

0

(︄
∂u

∂x

)︄2

dx + 1
2m0

(︄
∂u(0, t)

∂t

)︄2

+ 1
2m1

(︄
∂u(l, t)

∂t

)︄2

(1.28)
The point masses m0, m1 and the endpoints of the string are rigidly connected,

so we can set their velocities equal. Since the Lagrangian is mixed with both point
mass and continuum terms, we will derive the equations of motion from scratch
using the variational principle.

δS = 0, S =
∫︂ t1

t0
Ldt (1.29)

Consider then a variation δu(x, t) satisfying δu(x, t0) = δu(x, t1) = 0. The
resulting δS can be expressed as:

δS =
∫︂ t1

t0

∫︂ l

0

(︄
−λ

∂2u

∂t2 + κ
∂2u

∂x2

)︄
δudxdt

+
∫︂ t1

t0

(︄
κ

∂u(0, t)
∂x

− m0
∂2u(0, t)

∂t2

)︄
δu(0, t)dt

+
∫︂ t1

t0

(︄
κ

∂u(l, t)
∂x

− m0
∂2u(l, t)

∂t2

)︄
δu(l, t)dt (1.30)
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The boundary variations δu(0, t), δu(l, t) can essentially be taken as indepen-
dent from δu(x, t), since the integral over x does not depend on behaviour at
isolated points. We thus obtain three equations:

∂2u

∂t2 = c2 ∂2u

∂x2 (1.31)

m0
∂2u(0, t)

∂t2 = κ
∂u(0, t)

∂x
(1.32)

m1
∂2u(l, t)

∂t2 = −κ
∂u(l, t)

∂x
(1.33)

The equation of motion (1.31) remains unchanged, while the second and third
equation now act as its boundary conditions. They are also clearly an expression
of Newton’s second law for the point masses, acted upon by the tension of the
string.

The usual method for solving the one-dimensional wave equation on a bounded
interval is separation of variables - applying it here gives a solution of the form:

u(x, t) =
∑︂

n∈N0

(︄
sin(anx) − λ

m0an

cos(anx)
)︄

(An sin(anct) + Bn cos(anct)) (1.34)

where An, Bn are Fourier coefficients found from the initial conditions u(x, 0),
(∂u/∂t)(x, 0). The only problem with this solution are the constants an: while
they have simple forms for Dirichlet and von Neumann conditions, in our case
they are found by solving the equation

anl = arctan λ

m0an

+ arctan λ

m1an

+ πn (1.35)

which can only be done numerically. This solution is therefore of limited
interest.

An interesting simplification occurs if we let λ → 0, which is reasonable when
the mass of the string λl is much smaller than m0, m1, so its kinetic energy is
negligible. Equation (1.31) then reduces to:

∂2u

∂x2 = 0 (1.36)

and its general solution is:

u(x, t) =
(︃

1 − x

l

)︃
u0(t) + x

l
u1(t) (1.37)

where the notation u0(t) = u(0, t), u1(t) = u(l, t) has been introduced for the
displacements of the endpoints. The boundary conditions become:

m0
d2u0

dt2 = κ

l
(u1(t) − u0(t)) (1.38)

m1
d2u1

dt2 = −κ

l
(u1(t) − u0(t)) (1.39)

which we recognize as describing the motion of two points connected by a
spring. Therefore, if the mass of the string is negligible, it loses all inner degrees
of freedom and acts like a spring with spring constant k = κ/l.
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1.4 Radial Fall
The final addition to the Lagrangian are terms describing the gravitational force
on both of the point masses and the string. In formulating these, it is convenient
to switch from the displacement u(x, t) to the function r(x, t) = x + u(x, t) + r0
describing the actual r-coordinate of the point with reference coordinate x at
time t. The Lagrangian (1.28) and the string equation of motion aren’t directly
influenced by this change; the boundary conditions, however, transform according
to:

∂u

∂x
= ∂r

∂x
− 1 (1.40)

The classical gravitational potential energy of a point mass m a distance r
away from a spherical source with mass M is

Vgrav = −GMm

r
(1.41)

and applying the same principle of dividing the string into small pieces with
mass dm = λdx, we get the Lagrangian:

Lgrav = GMλ
∫︂ l

0

1
r(x, t)dx + GMm0

r0(t)
+ GMm1

r1(t)
(1.42)

with r0(t) = r(0, t) and r1(t) = r(l, t). Solving for the equations of motion is
the same as in the previous section, so we skip to the result:

∂2r

∂t2 − v2 ∂2r

∂x2 = −GM

r2 (1.43)

m0
∂2r(0, t)

∂t2 = −GMm0

r(0, t)2 + κ

(︄
∂r(0, t)

∂x
− 1

)︄
(1.44)

m1
∂2r(l, t)

∂t2 = −GMm1

r(l, t)2 − κ

(︄
∂r(l, t)

∂x
− 1

)︄
(1.45)

A key difference from the free string is the non-linearity of the new wave
equation, which means that only a numerical solution is possible. Since boundary
conditions of this type are not accounted for in pre-programmed computational
software like Mathematica, we constructed our own numerical solution in Python.
This was done by discretising the wave equation and the boundary conditions as
follows

r(x, t + ∆t) ≈ 2r(x, t) − r(x, t − ∆t) − GM

r(x, t)2

+ γ2 (r(x + ∆x, t) − 2r(x, t) + r(x − ∆x, t)) (1.46)

r(0, t + ∆t) ≈ 2r(0, t) − r(0, t − ∆t) − GM

r(0, t)2 + κ

m0

1
∆x

(r(∆x, t) − r(0, t) − ∆x)

(1.47)
r(0, t + ∆t) ≈ 2r(0, t) − r(0, t − ∆t) − GM

r(0, t)2 − κ

m1

1
∆x

(r(∆x, t) − r(0, t) − ∆x)

(1.48)
and employing an iterative scheme starting from the initial conditions r(x, 0)

and (∂r/∂t)(x, 0), with the conversion
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r(x, −∆t) ≈ r(x, 0) − ∆t
∂r

∂t
(x, 0) (1.49)

The constant γ appearing in (1.46) is the Courant parameter

γ = v
∆t

∆x
(1.50)

and the condition γ ≤ 1 is the main criterion for numerical stability of this
algorithm. This was always ensured by making the time step ∆t as small as
necessary.

With the numerical solution at hand, we now present a qualitative analysis
of some of the features of the system. The choice of units and parameters is not
relevant to the results, so they will be chosen somewhat arbitrarily.

To begin, Figure 1.1 and Figure 1.2 show the motion of the string starting
from a state of uniform compression and zero initial velocity in two cases, with
the mass of the string much smaller than the masses of the endpoints λl << m0,
and the reverse. To extract the effect this produces, the gravity is set to zero.
The black curves show the motion of the endpoints and the center of mass, while
the color shows the deformation of the string (∂r/∂x) − 1 as a function of both
actual position r and time t.

Figure 1.1: Motion of a free string, starting from a state of rest and uniform
compression by a factor of 0.4. Low density regime λl ≈ 0.1 ≪ 1 ≈ m0.

Figure 1.1 affirms the low-density limit - the string maintains its uniform
tension, and the motion of the endpoints in nearly sinusoidal, which is the ex-
act solution to equations (1.38). In contrast, on Figure 1.2, we see internal
compression waves propagating through the string, the tension quickly becomes
non-uniform, and the motion of the particles being pulled along is less smooth
and more asymmetric.
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Figure 1.2: The free string with same parameters and initial state as Figure 1.1,
but in a high density regime λl ≈ 10 ≫ 1 ≈ m0

A sample solution for the motion in a gravitational field is provided on Figure
1.3, starting again from a state of uniform compression.

Figure 1.3: The classical string in a Newtonian field, with a low density of the
string, λl ≈ 0.1 ≪ 1 ≈ m0. The string starts in a state of uniform compression
by a factor of 0.8.

To actually study the swinging effect, we must isolate the center of mass
trajectory as plotted on Figure 1.3, and compare it to the trajectory of a free
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particle with the same initial conditions. One question that is relevant to this field
of study is the dependence of the position shift on the characteristic frequency
of the oscillation of the system. Working again in the low density limit, this
characteristic frequency can be expressed from equation (1.38) as

ω2 = κ

l

(︃ 1
m0

+ 1
m1

)︃
(1.51)

In controlled systems, which can use their internal energy to perform the
swinging effect through oscillation, there is a well-known relationship between
the position shifts and ω. The string-particle system, however, is conservative.
On Figure 1.3, the position shift is plotted on a logarithmic scale as a function
of time for several values of ω, and otherwise identical parameters and initial
conditions; we see that the characteristic frequency is not a factor in the position
shifts in our model. This is because our system is conservative, and the frequency
of oscillation therefore has no effect on the internal energy expended to work
against the field.

Figure 1.4: The position shift as a function of time for different choices of the
elastic constant κ and characteristic frequency ω, on a logarithmic scale with the
length unit being the length of the string.
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2. The Relativistic String

2.1 The String Lagrangian
To describe the string in general relativity, we will adopt the approach presented
in Natário [2014]. The string is represented by a scalar field λ(xµ) on a two-
dimensional spacetime, which gives the worldlines xµ(τ) of individual points as
level sets:

λ(xµ(τ)) = const. (2.1)
We will assume that the two-dimensional spacetime of the string is a totally

geodesic submanifold of the universe, which is sufficient to describe free fall in the
Schwarzschild metric. The metric and Levi-Civita tensor will be denoted by gµν

and εµν respectively, and we will work in natural units c = 1, G = 1 throughout.
Given the field λ, we can derive the two-velocity field uµ by considering the

gradient ∇µλ. This vector has to be normal to the level set, or equivalently,
to the tangent vector along the worldline, which is precisely the direction of uµ.
Since we are in two dimensions, we can take the orthogonal complement with the
Levi-Civita tensor, so that

uµ = 1
n

εµν∇νλ (2.2)

where n is a normalization factor. From the constraint uµuµ = −1, we then
have

n2 = ∇µλ∇µλ > 0 (2.3)
with the positivity of n2 ensured by the fact that ∇µλ is spacelike.
The defining relation (2.1) of λ contains a degree of arbitrariness, with the

freedom to choose how to ”number” the individual worldlines. This can be fixed
by demanding that n = 1 corresponds to an undeformed string, which at least
in a flat spacetime provides a simple interpretation of 1/n as the strech factor
Natário [2014].

Next, we will derive an expression for the stress energy tensor T µν of the
string. Because the elements of the string are still with respect to the comoving
frame with basis vectors (uµ, (1/n)∇µλ), the time-space component of T µν has to
be zero in this frame. Utilizing the two-dimensionality of our problem, however,
T µν then has to have the form of an ideal fluid:

T µν = (ρ + P )uµuν + Pgµν (2.4)

with ρ being the energy density and P the pressure. Since we are in two
dimensions, and the space-space component of T µν represents momentum flux,
P actually has the dimensions of force, and represents the tension in the string
as observed in the local comoving frame.

It seems reasonable to assume that the energy density and pressure-tension
are both functions of coordinates only through n, that is ρ = ρ(n), P = P (n).
The energy and tension then only depend on the deformation of the string, and
are automatically translation-invariant. It then follows that there is a relation
between the two functions

P = n
dρ

dn
− ρ (2.5)
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The choice of the elastic law ρ(n) thus fixes the pressure as well, and is the
only constitutive relation that we have to axiomatically assume.

We will primarily work with the choice leading to a ”rigid” string, in which
the speed of sound is equal to the speed of light (Natário [2014])

ρ(n) = 1
2ρ0(n2 + 1) (2.6)

P (n) = 1
2ρ0(n2 − 1) (2.7)

The rigid string is a limiting case of the more general string with speed of
sound v, as v → 1

ρ(n) = ρ0

1 + v2

(︂
nv2+1 + v2

)︂
(2.8)

P (n) = ρ0v
2

1 + v2

(︂
nv2+1 − 1

)︂
(2.9)

In both cases, ρ0 is the rest mass density of the unstretched string.
For the rigid case, the stress-energy tensor can be rewritten in terms of λ as

Tµν = ρ0

(︃
∇µλ∇νλ − 1

2∇κλ∇κλgµν − 1
2gµν

)︃
(2.10)

which almost the stress energy for a scalar massless field λ, apart from the
covariantly constant last term.

In GR, the Lagrangian formalism rests on the extremalisation of the action

S =
∫︂

Ω
d4x

√
−g (R − 2Λ + 16πL) (2.11)

with respect to the metric gµν and all the fields that occur in the matter
Lagrangian L. Variation with respect to the geometry gives the Einstein field
equations, the source term being derived from δL/δgµν . Variation with respect
to the source fields on the other hand gives their dynamic equations, which the
geometry of spacetime enters implicitly through the metric.

Identifying the source term as the energy-momentum tensor, with the assump-
tion that L does not depend on the derivatives of the metric, gives the relation

Tµν = gµνL − 2 δL
δgµν

(2.12)

which we will now use to construct the matter Lagrangian of our rigid string.
Since the Lagrangian is a form of energy, and both ρ and P depend on λ only

through n2, it is reasonable to assume that L = L(ζ), where ζ = n2. From the
definition of n,

ζ = gµν∇µλ∇νλ (2.13)

and since the variation in (2.12) keeps λ constant, we have

δζ = ∇µλ∇νλ δgµν (2.14)

=⇒ δL
δgµν

= dL
dζ

δζ

δgµν
= ∇µλ∇νλ

dL
dζ

(2.15)
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The energy-momentum tensor then becomes

Tµν = gµνL(ζ) − 2∇µλ∇νλ
dL
dζ

(2.16)

and term-by-term comparison with (2.10) yields the Lagrangian

L = −1
2ρ0 (∇µλ∇µλ + 1) (2.17)

In passing, it is interesting to note that the same method works for the string
with finite speed of sound, with the resulting Lagrangian:

Lv = − ρ0

1 + v2 (∇µλ∇µλ)
1
2(v2−1) (2.18)

Returning to the rigid string, the equations of motion can be derived from
our results in two distinct ways: by varying the action corresponding to L with
respect to λ (keeping the metric constant), or by utilising the conservation of
energy and momentum,

∇µT µν = 0 (2.19)

which incidentally also follows from the diffeomorphism invariance of L. For
the infinite free rigid string, both approaches lead to the wave equation,

□λ = 0 (2.20)

The obvious problem to consider now is the boundary conditions to apply.
The variational approach relies on the action

S =
∫︂

Ω
d2x

√
−gL (2.21)

where Ω is a given region of spacetime, and δλ = 0 on ∂Ω. This allows for
either an infinite string, or a fixed-end problem, neither of which are suited to
the radial fall of a dumbbell that we want to describe.

2.2 Attaching the Particles
As in the classical case, the overall system that we want to examine consists of
two particles, with rest masses m, m′, that are attached to the endpoints of our
elastic string, having rest length l and rest mass density ρ0. In contrast to the
classical model, however, how to dynamically attach the particles and the string is
rather unclear. In this section, we present an original derivation of the equations
of motion.

The action for the complete system has the form

S = −1
2ρ0

∫︂
Ω

d2x
√

−g (∇µλ∇µλ + 1) − m
∫︂ B

A
dτ − m′

∫︂ B′

A′
dτ ′ (2.22)

where dτ and dτ ′ are the proper time parametrisations of the particle world-
lines xµ = ξµ(τ) and xµ = (ξ′)µ(τ), and λ(xµ) once again describes the string. As

14



in the classical case, we would like to connect the string and particles by express-
ing ξµ(τ), (ξ′)µ(τ ′) in terms of λ, however, this is only possible implicitly; they
satisfy

λ(ξµ(τ)) = 0 (2.23)
λ((ξ′)µ(τ ′)) = l (2.24)

We therefore need to attach the particles by constraining the variations.
The action S is to be varied with respect to δξ(s), δξ′(s′) and δλ(xµ). We

will keep δξ and δξ′ free apart from the fixed-end conditions δξ = 0 at A and B,
and similarly for δξ′. The points A, B, A’, B’ will also be constant through the
variations. The variation of the particle terms then become simply the relevant
two-accelerations:

δSpart = −m
∫︂ B

A
dτgµν

D
dτ

(︄
dξ

dτ

)︄
δξν − m′

∫︂ B′

A′
dτ ′gµν

D
dτ ′

(︄
d(ξ′)µ

dτ ′

)︄
δ(ξ′)ν (2.25)

Varying the string term is difficult due to the nature of the region of integration
Ω. If the ends of the string are fixed, this region is constant with respect to our
variation; in our case, however, it changes with δξ, δξ′. More specifically, Ω is
bounded by the curves λ(xµ) = 0 and λ(xµ) = l from the ”left” and ”right”,
and from ”above” and ”below” by two arbitrary spacelike curves containing the
points B, B’ and A, A’ respectively, where the initial and final conditions for the
string are fixed. The variation does not change the spacelike boundaries, and we
further impose δλ = 0 there. Define δΩ to be the (signed) region representing
the difference between Ω before and after the variation. We then have

δSstr =
∫︂

Ω+δΩ
d2x

√
−g (L + δL) −

∫︂
Ω

d2x
√

−gL (2.26)

=
∫︂

Ω
d2x

√
−gδL +

∫︂
δΩ

d2x
√

−gL (2.27)

where the integral of δL over δΩ has been neglected since it is second order
in the variation. The first term can be rewritten as:∫︂

Ω
d2x

√
−gδL = −ρ0

∫︂
Ω

d2x
√

−ggµν∇µλ∇ν (δλ) (2.28)

= −ρ0

∫︂
Ω

d2x∂µ

(︂√
−g∇µλ δλ

)︂
+ ρ0

∫︂
Ω

d2x
√

−g □λ δλ (2.29)

The second integral in (2.29) is responsible for the field equation, □λ = 0.
We rewrite the first using the divergence theorem,

−ρ0

∫︂
Ω

d2x ∂µ

(︂√
−g∇µλ δλ

)︂
= −ρ0

∫︂
∂Ω

ds nµ ∇µλ δλ (2.30)

where s is either arc-length or proper time parametrisation of the boundary,
and nµ is the outward pointing normal. This integral can be futher split into two
non-zero parts, corresponding to the ξ and ξ′ boundary. For both, the approach
is similar - for example, on the ξ boundary, we have l = τ , the proper time of
the first particle, and nµ = −(1/n)∇µλ from the condition (2.23). From this
condition we also obtain the relation

δλ = −∇νλ δξν on xµ = ξµ(τ) (2.31)
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The integral then becomes:

−ρ0

∫︂ B

A
dτ nµ ∇µλ δλ = −ρ0

∫︂ B

A
dτ n ∇νλ δξν (2.32)

= −ρ0

∫︂ B

A
dτ n2 nν δξν (2.33)

An analogous term with opposite sign appears for the variation δ(ξ′)ν .
The second term in (2.27), due to the change in Ω, can be similarly split into

parts due to δξ and δξ′ - we again show only the ξ part. We simplify the integral
with a natural change of coordinates,

xµ(τ, w) = ξµ(τ) + wδξµ(τ) (2.34)

where τ is the proper time of ξ, and w ∈ [0, 1]. The Lagrangian is an in-
variant, so it stays unchanged; however, we must account for the Jacobian of the
transformation within the integral. We have (again to first order in the variation):

det
(︄

∂(x0, x1)
∂(τ, w)

)︄
= det

(︄
u0(τ) + wδu0(τ) δξ0(τ)
u1(τ) + wδu1(τ) δξ1(τ)

)︄
= [µν]uµδξν(τ) (2.35)

where [µν] stands for the antisymmetric symbol with [01] = 1. Using εµν =√
−g[µν], the integral becomes:∫︂

δΩ
d2x

√
−gL =

∫︂ B

A
dτ
∫︂ 1

0
dw εµνuµδξνL(xσ(τ, w)) (2.36)

We expand the Lagrangian as

L(xσ(τ, w)) = L(ξσ(τ) + wδξσ(τ)) = L(ξσ(τ)) + O(wδσ(τ)) (2.37)

and since in (2.36) it is already multiplied by a variation δξν , we need to keep
only the zeroth order:∫︂

δΩ
d2x

√
−gL =

∫︂ B

A
dτ
∫︂ 1

0
dw εµνuµδξνL(ξσ(τ)) (2.38)

=
∫︂ B

A
dτ εµνuµδξνL(ξσ(τ)) (2.39)

= −
∫︂ B

A
dτL(ξσ(τ))nνδξν (2.40)

= 1
2ρ0

∫︂ B

A
dτ(n2 + 1)nνδξν (2.41)

Taken together, the results (2.33), (2.41) simplify and the variation of the
action (2.22) is

δS = ρ0

∫︂
Ω

d2x
√

−g □λ δλ −
∫︂ B

A
dτ

(︄
m

D
dτ

(︄
dξµ

dτ

)︄
− 1

2ρ0(n2 − 1)nµ

)︄
δξµ

−
∫︂ B

A
dτ

(︄
m′ D

dτ ′

(︄
d(ξ′)µ

dτ ′

)︄
+ 1

2ρ0(n2 − 1)nµ

)︄
δ(ξ′)µ (2.42)
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yielding the equations of motion

□λ = 0 (2.43)

m
D
dτ

(︄
dξµ

dτ

)︄
= 1

2ρ0(∇νλ∇νλ − 1)nµ (2.44)

m′ D
dτ ′

(︄
d(ξ′)µ

dτ ′

)︄
= −1

2ρ0(∇νλ∇νλ − 1)nµ (2.45)

2.3 String-Particle Dynamics
Equations (2.44), (2.45) have an easy interpretation: the particles are pulled by
a two-force normal to their two-velocity, with magnitude equal to the pressure in
the string (2.7). This two-force also satisfies the key criterion that the particles be
free when n = 1, since the string is then (at least locally) undeformed. However,
the derivation still seems somewhat questionable, particularly in the case of the
δΩ term; in this section, then, we present the classical limit of the equations and
their interpretation, as well as an alternate way to derive the boundary conditions
from the variational problem δS = 0 with S as given in (2.22).

To perform the classical limit, we will consider the equations of motion in a
flat spacetime gµν = ηµν with coordinates (t, r) and let c → ∞. For the string
equation, we immediately have

1
c2

∂2λ

∂t2 − ∂2λ

∂r2 = 0 c→∞−−−→ ∂2λ

∂r2 = 0 (2.46)

Interpreting this result, however, requires transforming from λ(t, r) to the
classical description r = r(x, t) with x a reference coordinate. From the definition
of these functions, it is clear that:

λ(t, r(x, t)) = r0(x) (2.47)

for some ”labelling” function r0(x). This function can be fixed by the require-
ment that n = 1 corresponds to an unstretched string. Assuming the reference
configuration of the string is undeformed, the function r(x, t) has to then be of
the form

r(x, t) = x + f(t) (2.48)

Differentiating (2.47) with respect to x, we obtain

∂λ

∂r

∂r

∂x
= dr0

dx
(2.49)

But from the classical limit of n2 = 1, ∂λ/∂r = ±1 and from (2.48), ∂r/∂x =
1, so that:

dr0

dx
= ±1 (2.50)

Without loss of generality, we assume r0(x) = x, and therefore

λ(t, r(x, t)) = x (2.51)
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Differentiating this equation twice with respect to x gives:

∂2λ

∂r2 = − 1
(∂r/∂x)3

∂2r

∂x2 (2.52)

and the classical limit of the equation of motion for the string is therefore

∂2r

∂x2 = 0 (2.53)

This corresponds to the massless (λ → 0) limit of the classical elastic string,
where it immediately changes its shape in response to changing boundary condi-
tions, and always has uniform tension (1.36).

For the particle equations of motion, we first note that in our limit, the x = ξ1

component of the two-acceleration is just the classical acceleration,

D
dτ

(︄
dx

dτ

)︄
= d2x

dτ 2 = dx

dt

d2t

dτ 2 + d2x

dt2

(︄
dt

dτ

)︄2
c→∞−−−→ d2x

dt2 (2.54)

where the last step follows from dt/dτ = γ
c→∞−−−→ 1. The pressure appearing

in (2.44) is

1
2ρ0(n2 − 1) c→∞−−−→ 1

2ρ0

⎛⎝(︄∂λ

∂r

)︄2

− 1
⎞⎠ = 1

2ρ0

⎛⎝(︄ 1
∂r/∂x

)︄2

− 1
⎞⎠ (2.55)

and the resulting equation of motion for the left particle (the change in sign
is due to the orientation of the normal nµ)

d2x

dt2 = −1
2ρ0

⎛⎝(︄ 1
∂r/∂x

)︄2

− 1
⎞⎠ (2.56)

While this equation is markedly nonlinear in r(x, t) and differs from (1.38),
we have to recall that to reach the equations of motion in classical mechanics,
we also made the assumption of linear elasticity, which tacitly includes small
deformations. Expanding the above around ∂r

∂x
≈ 1 to first order, we have

d2x

dt2 ≈ ρ0

(︄
∂r

∂x
− 1

)︄
(2.57)

In comparison to (1.38), we can therefore make the identification ρ0 = κ -
since the string is massless, its rest energy density corresponds to the elastic
constant.

Looking back at equation (2.51) suggests an altogether different approach to
deriving the boundary conditions - instead of relating the variations δλ and δξ,
δξ′ as in (2.31), we can try to change coordinates such that the variations are over
a fixed region, similarly to the classical case. The reason for not approaching the
string this way originally is clear: the formulation in λ provides an elegant form
of the field equation and Lagrangian. Formulating the problem in terms of a fixed
reference coordinate and time, however, will simplify the boundary problems of
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section 2.2 immensely. To begin with this new derivation, define the field ξµ(χ, τ)
by

λ(ξµ(τ, χ)) = χ (2.58)

so that ξµ(χ0, τ) for a fixed χ0 represents the proper time parametrised world-
line of the point with reference coordinate χ0. We will denote the components of
the ξµ field ξ0 = t(x, τ), ξ0 = r(χ, τ). Differentiating (2.58) with respect to both
χ and τ , we obtain the system of equations

∂λ

∂t

∂t

∂χ
+ ∂λ

∂r

∂r

∂χ
= 1 (2.59a)

∂λ

∂t

∂t

∂τ
+ ∂λ

∂r

∂r

∂τ
= 0 (2.59b)

which we can solve for the components of ∇µλ,

∇µλ =
(︄

∂λ

∂t
,
∂λ

∂r

)︄
= 1

∆

(︄
−∂r

∂τ
,

∂t

∂τ

)︄
(2.60)

where ∆ is the determinant:

∆ = det
(︄

∂(t, r)
∂(τ, χ)

)︄
(2.61)

After substituting the expression for ∇µλ, and using the normalisation of
two-velocity ∂ξµ/∂τ , the string Lagrangian is in terms of ξµ,

L = −1
2ρ0

(︄
1

−g

1
∆2 + 1

)︄
(2.62)

The metric determinant √
−g represents here the metric determinant in the

old coordinates (t, r) evaluated at the point ξµ(τ, χ).
The advantage of this method is that the worldlines of the boundary particles

are now expressed as ξµ(τ) = ξµ(τ, 0), ξµ(τ) = ξµ(τ, l). In applying δS = 0 with
the same action as in section 2.2, we can therefore simply calculate the relevant
boundary terms on χ = 0, or χ = l, and these will give the two-force acting on
the particles. The string action is expressed in the new coordinates as

Sstr = −1
2ρ0

∫︂ l

0
dχ

∫︂
dτ

(︄
1√
−g

1
∆ +

√
−g∆

)︄
(2.63)

We will again show the calculation only for the left particle, with coordinates
ξµ(τ, 0). Although the full expression for δS is quite long, the only terms in δSstr
which contribute to the χ = 0 boundary are:

δSstr,b = 1
2ρ0

∫︂ l

0
dχ

∫︂
dτ

1√
−g

1
∆2

(︄
∂t

∂τ

∂(δx)
∂χ

− ∂x

∂τ

∂(δt)
∂χ

)︄

+ 1
2ρ0

∫︂ l

0
dχ

∫︂
dτ

√
−g

(︄
∂t

∂τ

∂(δx)
∂χ

− ∂x

∂τ

∂(δt)
∂χ

)︄
(2.64)
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Integrating by parts, and simplifying the resulting boundary term, we have:

δSstr,b = 1
2ρ0

∫︂
dτ

(︄
1

−g

1
∆2 − 1

)︄
εµν

dξµ

dτ
δξν(τ, 0) (2.65)

where we again recognize the pressure and the normal vector

P = 1
2ρ0

(︄
1

−g

1
∆2 − 1

)︄
(2.66)

nν = −εµνuµ (2.67)

2.4 Falling in a Schwarzschild Spacetime
Although the original aim of this work was to numerically solve the relativistic
equations of motion as well as the classical, this has sadly proven too difficult. In
this short section, we summarize the formulation of the problem, the approaches
that have been attempted and the difficulties encountered.

The main difference between the two problems lies in the domain of numerical
integration. The field λ is at any given coordinate time defined only on the region
that is occupied by the string, but this region changes dynamically with ξµ, (ξ′)µ,
making enforcing the boundary conditions seemingly impossible.

In the Schwarzschild coordinates (t, r), with the length unit 2M = 1, the
metric is

gµν =

⎛⎜⎜⎝−
(︃

1 − 1
r

)︃
0

0
(︃

1 − 1
r

)︃−1

⎞⎟⎟⎠ (2.68)

and the string equation of motion simplifies to

∂2λ

∂t2 −
(︃

1 − 1
r

)︃2 ∂2λ

∂r2 = 0 (2.69)

and it is therefore a wave equation with coordinate dependent velocity. With
regular boundary conditions, this equation is soluble with the same method as
presented in section 1.4.

Converting the ξµ equation of motion to the r-coordinate of the particle in
terms of coordinate time t, we get

d2r

dt2 = −Γr
tt + (Γt

tr − Γr
rr)
(︄

dr

dt

)︄2

+ Fstr(r, t) (2.70)

with the force from the string given by

Fstr(r, t) = ρ0

2m

n2 − 1
n

(︄(︃
1 − 1

r

)︃
∂λ

∂x
−
(︃

1 − 1
r

)︃−1 ∂λ

∂t

)︄
⎛⎝−

(︃
1 − 1

r

)︃
+
(︃

1 − 1
r

)︃−1 (︄dr

dt

)︄2
⎞⎠ (2.71)
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with the stretch factor

n2 = −
(︃

1 − 1
r

)︃−1 ∂λ

∂t
+
(︃

1 − 1
r

)︃
∂λ

∂x
(2.72)

and the Christoffel symbols

Γr
tt = 1

r2

(︃
1 − 1

r

)︃
(2.73)

Γt
tr = 1

r2

(︃
1 − 1

r

)︃−1
(2.74)

Γr
rr = − 1

r2

(︃
1 − 1

r

)︃−1
(2.75)

This equation is also solvable by usual numeric methods for a fixed background
λ, but solving both (2.69) and (2.70) along with a similar equation for the right
particle is much more involved.

The two approaches that were attempted were as follows: firstly, we can try to
iterate over the coordinate time t, and keep two fixed length arrays representing
the coordinate r and the field λ. At every iteration, we then first update the
coordinates of the endpoint particles, and then update the coordinate array r.
The next iteration of the λ array is then constructed by the same stencil as in
the classical case, but with either linearly or quadratically interpolated values for
λ in the previous two iterations, since the same index of the array corresponds
to different values of r in different iterations. This approach seemed promising,
but turned out to be wildly numerically unstable, at least in the Schwarzschild
spacetime.

In the second approach, we choose a fixed r-interval, a compute the values of
λ everywhere on it. We assume the string is always contained in this interval, and
we try to enforce λ = 0 and λ = l at the positions of the left and right particle
respectively at each iteration. This approach fails on a practical level, since there
is no way to simultaneously artificially set the value of λ at a given point on the
grid, and accurately measure the derivatives of λ at that point.

One interesting aspect of simulating the string to mention is the initial con-
dition, λ(t, r). If we want the string to be under zero tension, it has to have the
form:

λ(0, r) =
∫︂ r

r0

√
grrdr (2.76)

where r0 is the position of the left particle.
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Conclusion
The main object of this thesis was the study of a simple system: the dumbbell
consisting of two particles connected by an elastic string, subject to a gravitational
field. We studied this system in both classical mechanics and general relativity,
and obtained a viable description of its dynamics in both frameworks.

In the classical case, we first derived the Lagrangian description of a string
from first principles and the assumption of linear elasticity. This assumption was
also justified by the more general continuum description of a three-dimensional
string confined to one-dimensional displacement. The dynamics was easily mod-
ified to account for a bounded string connecting point masses, and we solved the
equations of motion numerically. The resulting position shifts were negative and
independent of frequency. We have also shown that our model simplifies to a
linear spring in the low density limit.

In describing the string in relativity, we followed the definitions and assump-
tions set out by Natário [2014]. We performed a similar procedure as in the
classical case, first deriving the string Lagrangian, and then using a variational
principle to derive the equations of motion. The equations, however, turned out
to be difficult to solve numerically. Constructing a stable numerical solution is a
natural continuation of this work, and we intend to complete it in the future.

The string is a system with a lot of intricacy, and compared to simpler one-
dimensional models, it offers many new possibilities for analysing geodesic motion
and the deviation of extended bodies from it. We hope to continue our study of
this model in the future.
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