
BACHELOR THESIS
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Abstract: Antiferromagnetic materials are promising materials for implemen-
tation in spintronic memory devices. In contrast to the more well-known fer-
romagnetic materials, which are already used in magnetoresistive random access
memory (MRAM) devices, they possess multiple advantages, such as no net mag-
netization and ultrafast dynamics. Antiferromagnetic memories store information
through the orientation of the antiferromagnetic ordering. The magnetoresistance
of the materials could be used for the electrical readout of the antiferromagnetic
structure. In recent experiments in an antiferromagnet CuMnAs after applying
a series of electrical or optical pulses, a change in resistivity associated with a
significant decrease in the size of antiferromagnetic domains was observed. This
means that one is able to perform electrical or optical writing in antiferromagnets.
The state persists for timescales that exceed the magnetic dynamics timescales by
many orders of magnitude. Here, we present the findings of the antiferromagnetic
domain dynamics simulations in CuMnAs, specifically focusing on the process of
small domain relaxation leading to the formation of larger domains. The simu-
lations were based on atomistic spin dynamics. For all temperatures, a growth
of magnetic domains was detected. However, the size of the antiferromagnetic
domains in the simulations was substantially greater than that observed in the
experiments. This suggests that the metastability of nano-fragmented domains
is caused by factors which are absent in the simulations. These unknown factors
might include defects or impurities of the sample. Since some physical parameters
(damping parameter and anisotropy strength) are not experimentally measured,
it was needed to find the best-fitting values of those parameters for the following
simulations.
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1. Introduction
Some materials exhibit magnetic order, which can occur in different forms. The
classification of magnetic materials is based on the arrangement of their magnetic
moments, with ferromagnets being the most commonly utilized type. Ferromag-
nets are defined as materials that, even in zero external field, have non-zero
magnetization. On an atomic level, ferromagnetic moments align parallel to each
other, and their vectors have the same direction. This order is long-range. It
spans on much larger scales than the crystal lattice. Because ferromagnetic mo-
ments are aligned in the same direction, their vector sum is non-zero. A notable
characteristic of ferromagnets is their large magnetic permeability.

Antiferromagnets, another kind of magnetic material, have the property of
zero net magnetic moment. In antiferromagnets, the magnetic moments of neigh-
bouring atoms are typically aligned in opposite directions. However, this is not
always the case, as some antiferromagnets exhibit a more complex ordering of
magnetic moments.[7]

It is convenient to define a Néel vector for (two sublattices) antiferromagnets:

L = MA −MB (1.1)

Where MA and MB denotes the magnetic moment of atoms in one unit
lattice. The area in which magnetic moments, resp. Néel vectors are of the same
direction is called ferromagnetic resp. antiferromagnetic domain. There usually
are multiple magnetic domains in the material. Ferromagnetic domains can be
controlled by an external magnetic field.

In recent years there has been a rise in interest in the topic of antiferromagnets.
For a long time, they were somewhat overlooked because the magnetic order of
ferromagnetic materials is easier to manipulate and measure. Additionally, there
has been no apparent application for antiferromagnets. This was arguably the
main reason why antiferromagnets did not receive much attention. However, their
ultrafast dynamics, insensitivity to external magnetic fields and possible use in
neuromorphic computing motivated scientists to lead further research in the area
of antiferromagnetism. This raised the question, of whether antiferromagnets
could be the next material to be used in memory devices.

A widely used memory devices based on ferromagnets are hard disk drives
(HDDs). HDDs are composed of rotating magnetic platter, in which information
is stored in the form of the direction of magnetization of certain regions. In early
HDDs, the magnetic-field-based reading method was utilized. This method is
executed by positioning the reading head in close proximity to the magnetized
platter. The magnetic field induces an electric current, the direction of which is
then utilized for the purpose of reading. However, a more efficient reading method
involves analyzing the resistivity of an electric current rather than relying on a
magnetic field. Modern HDDs utilize the tunnelling magnetoresistance effect to
achieve optimal reading performance. Tunnelling magnetoresistance occurs in
Magnetic tunnel junctions. Magnetic tunnel junction consists of two layers of
ferromagnets separated by an insulator. When an electric current flows through
the junction, electrons tunnel through the insulator due to the quantum tun-
nelling phenomenon. The amplitude of the electric current sensitively depends
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on the relative orientation of the magnetization of ferromagnetic layers.[8] The
state of the junction can thus be detected by measuring the resistance of the
tunnel junction.

Using ferromagnetic spin transport electronics (spintronics) reading of infor-
mation by electric currents was achieved in memory devices such as MRAM, an
abbreviation for magnetic random access memory. MRAMs work on nanosecond
time-scales. [18] These devices use magnetic tunnel junctions for the storage of
information. This technique eliminates the need for induction coils, which rely
on magnetic fields to facilitate reading.

Current generation of MRAMs uses spin transfer torque for writing and tunnel
magnetoresistance for reading. Spin-transfer torque is based on the transfer of
spins between the two magnetic layers due to a spin-polarized current. In spin
polarized current, number of electrons with spin +1

2 varies from the number of
electrons with spin −1

2 . Spin polarization of currents is achieved by running an
unpolarized current through a layer with fixed magnetic orientation. The spin-
polarized current then passes through the other layer, whose orientation can easily
be rotated, which switches its magnetization. The first layer is denoted as the
fixed layer, and the second one as the free layer.[13]

In ferromagnetic materials, spin-transfer-torque has been utilized for writing
and tunnel magnetoresistance (TMR) for reading, prompting researchers to inves-
tigate comparable techniques in antiferromagnetic materials. The magnetic orien-
tation of layers in antiferromagnets could be utilized as memory cells, and writing
would be possible on the picosecond time scales. Recently, it has been demon-
strated that certain antiferromagnetic materials exhibit anisotropic magnetore-
sistance (AMR), which enables the measurement of antiferromagnetic order.[16]
Anisotropic magnetoresistance is the dependence of resistivity on the orientation
of magnetic moments with respect to the current and the crystal.[18] Further-
more, the presence of antiferromagnetic switching by electric current in CuMnAs
has been detected, indicating its usefulness for writing purposes[18]. Later this
effect was also observed in other antiferromagnets.[6] These findings highlight the
potential of antiferromagnetic materials for novel spintronic applications

1.1 Experiments in CuMnAs
It was observed that AMR is present in some antiferromagnets[16]. This would
allow for magnetization readout. [18] showed that switching an antiferromag-
net CuMnAs with the use of spin-orbit torques is possible. In this experiment,
a change in the resistivity of CuMnAs was observed after running a series of
short (ms) electrical pulses. The experiment was done as pictured in Fig.1.1. In
this setup, the directions of electrical pulses are perpendicular. Upon changing
the direction of the electrical pulse, changes in sign of transverse resistivity were
observed. These changes were in the orders of tenths of per cent. This result
was attributed to AMR at that time. Parallel to measurements of changes in
resistivity, XMLD-PEEM measurements showed the reconfiguration of magnetic
domains depending on the direction of the current. The reconfiguration of mag-
netic domains corresponds to a 90◦ rotation. This confirmed that by running an
electric current through the material, switching of magnetic domains is achieved.

In the experiment of [18], the antiferromagnet CuMnAs is switched by stag-
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gered current-induced fields.[18] Term staggered field denotes a field that period-
ically changes its direction, usually with the spatial period of one lattice vector.
This corresponds to the symmetry of the magnetic order in antiferromagnets.
The method of staggered field relies on the asymmetry of an elementary cell in
CuMnAs. Staggered fields arise under the condition that MnA and MnB in
Fig.1.2 are inversion partners. The direction of the staggered field is opposite for
each sublattice of the CuMnAs crystal.[18] Other methods of antiferromagnetic
switching include the application of a strong magnetic field (B = 2 T).[14]

Switching of antiferromagnets moves the domain walls. This was detected by
Ref.[19]. Domain wall separates magnetic domains, and its width in CuMnAs
is d ∼ 10 nm to 100 nm[19]. Domain wall motion in antiferromagnets has much
faster dynamics than in ferromagnets.[19]

Figure 1.1: Scheme of writing pulses j and measurement of R⊥. From Ref.[18]

1.1.1 Nanofragmentation of Domains
After the experiments showing the presence of Anisotropic Magnetoresistance in
antiferromagnets[4, 18], new discoveries were made that report on much larger
resistivity changes in the antiferromagnet CuMnAs[9], implying some completely
different mechanisms are at play.

Bar-scheme

In 2021 up to 20% increase in resistivity was observed. During these experiments,
a series of electric pulses was run through the material CuMnAs. The first ver-
sion of the experiment was done using a simple bar scheme. The resistivity was
measured along the direction of the applied pulse. The increase of resistivity was
achieved by a j ∼ 107 A cm−2. After applying a second, slightly weaker pulse,
resistivity decreases to approximately 50%. They estimate that the specimen
reaches temperatures of T = (200± 50) ◦C during the pulsing, which means that
Néel temperature is within the observational error of the measured value. It was
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Figure 1.2: Crystal structure of CuMnAs and the Mn sublattices A and B.
From Ref.[18]

also observed that the increase in resistivity due to the pulsing was tempera-
ture independent, which is surprising, as the resistivity of a material relates to
temperature.[9]

Wheatstone bridge

The second version of the experiment is done as pictured in figure Fig.1.3. Wheat-
stone bridge is used to apply the current to different parts of the specimen. Fur-
thermore, the temperature-dependent offset of resistivity is eliminated due to the
RT = 0 Ω without the switching, RT is calculated from the measured voltage in
Fig.1.3. Pulses are applied either along the red-coloured or the black-coloured
arms in Fig.1.3. The direction of pulses periodically changes. This method differs
from the bar-scheme, where pulses are of different amplitude, but the direction
stays the same.

The dependence of RT on time is pictured in figure 1.4. The red-coloured
curves represent the state of the system after applying the pulse along the red-
coloured arms and analogously for the black curves. The change in sign for
different directions of the pulses is the result of the symmetry of the Wheatstone
bridge. The falling edge (dashed lines in figure Fig.1.4) depends on the delay
between the pulses.

The Wheatstone bridge allows long-timescale measurements of resistivity. As
shown in Fig.1.5, resistivity relaxes into lower values. However, relaxation times
strongly depend on temperature. For instance, relaxation time for T = 330 K is
τ ∼ 1 s, for T = 250 K relaxation time is much larger τ ∼ 104 s. The graph is fitted
with Kohlrausch stretched exponentials exp[−βt

τ
]. Where β is a fitted parameter.

β also shows up in the theory of complex systems, and it depends on the dimension
of the system β = d

d+2 . The fitted value of β comes to β = 0.6. This result is in
agreement with the theory of complex systems for d = 3. The fit contains two
independent Kohlrausch stretched exponential components corresponding to two
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different relaxation times.

Figure 1.3: Scheme of a Wheatstone bridge From Ref.[9]

Figure 1.4: Dependence of RT (Ω), which is measured across the sample by the
voltmeter. It pictures the result of pulsing along a pair of red arms (Fig.1.3) with
three pulses of the same amplitude and subsequently pulsing along the pair of
black arms with three pulses of the same amplitude. From Ref.[9]

Optical switching

Similarly to electric current switching pictured in the scheme, Fig.1.3, switching
can be achieved by optical pulses. This is done by alternatively applying optical
pulses to the black/red arms of the Wheatstone bridge in Fig.1.3. The switching
can be detected by measuring changes in resistivity or reflectivity. The exper-
iments were done with 100 fs pulses. As with the electrical pulses, the energy
delivered by one singular pulse is u ∼ 1 kj cm−3[9]. Optical pulse switching differs
from electrical in its length - optical(fs) and electrical(ns).

XMLD-PEEM measurements

XMLD (X-ray magnetic linear dichroism) is a phenomenon where a different
amount of linear-polarized light is absorbed, depending on whether it is polar-
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Figure 1.5: Dependence of resistivity RT on time, fitted with Kohlrausch-
stretched exponentials, temperature step between series of values is 10 K. From
Ref.[9]

ized perpendicular or parallel to the magnetic orientation axis. The intensity
of detected light depends on the direction of the electric field E of the polar-
ized incident beam in relation to the antiferromagnetic orientation axis ←→A . The
effect of XMLD allows only to observe the orientation of the antiferromagnetic
axis ←→A . Therefore, only half of the antiferromagnetic domains are visible, and
domains that differ by 180◦ rotation appear the same. Despite this limitation, it
is a useful tool for analysing the microscopic structure of the antiferromagnetic
domains. [15].

The detection in the CuMnAs experiments Ref.[9, 18, 19] was done via XMLD-
PEEM (PEEM stands for photoemission electron microscopy). This is a special
type of XMLD that is utilized to generate spatial resolution. Incident light is
absorbed due to the photoelectric effect, and an electron is excited to a higher
state. This creates an unoccupied state that subsequently decays, and secondary
electrons are emitted and detected by an electron microscope. The PEEM method
is used to generate spatial contrast in the image from the variations in the electron
emission in the sample. Spatial resolution of PEEM is only 20 nm.[15]

Antiferromagnetic domains are pictured in Fig.1.6, the X-ray source was po-
larized along the E ∥ [110] crystallographic axis [9]. The results demonstrate
a qualitative change in the structure of magnetic domains due to the electrical
switching. In the measurement of a sample without pulsing, we see that size of
the domains is d ∼ 10 µm. On the contrary, magnetic domains of the sample
after pulsing are estimated to be of d ∼ 10 nm in size. However, XMLD-PEEM
does not reach such a small resolution. Measurements of the time development
of the quench-switched sample show that it remembers the original pre-quenched
state of the antiferromagnetic domains and relaxes towards its shape. [9]

NV-magnetometry results

NV (nitrogen vacancy) magnetometry is a microscopic method, that allows mea-
suring the magnetic field with very high precision. It is used to reconstruct the
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Figure 1.6: a) XMLD-PEEM image of magnetic structure CuMnAs on the
substrate of GaP, b) image of the sample after applying a electric pulse j ∼
107 A cm−2 for t = 100 ms From Ref.[9]

alignment of magnetic moments for ferromagnets and antiferromagnets. As the
probe, the nitrogen-vacancy centre, which is a point defect found in diamonds, is
used. This defect consists of one carbon atom replaced by a nitrogen atom and
the neighbouring carbon atom vacant. This method uses a scanning microscope
with an NV centre positioned at its tip. The spin of the NV centre is influenced
by the magnetic field located near the surface of the sample. This interaction
shifts the electron spin resonance frequency. A shift in the resonance is then
detected by a microwave field. The microwave field induces the NV centre to
exhibit photoluminescence, which is then measured.[3]

One of the many applications of NV magnetometry is the observation of do-
main structure in an antiferromagnet. By analyzing the stray field detected by
the NV centre, we can calculate the magnetic field at the position below the
NV centre. To calculate the domain pattern, the antiferromagnet is modelled as
two layers of opposite magnetic moment polarity. The magnetic moment can-
not be unambiguously calculated, as the part of the magnetic field m, for which
div m = 0, does not affect the magnetic stray field.[20]

NV magnetometry combined with XMLD-PEEM is used to measure the mi-
croscopic domain structure of the material CuMnAs. They are especially useful
for measuring the domain structure changes after quench switching, as seen in
Fig.1.7. The domain size after quench switching was estimated to be approxi-
mately d ∼ 10 nm.[20]

[20] suggested that ”The reduction of the stray field amplitude is caused by
a decrease of the average domain size”. The reduction of domain size is visible
from Fig.1.7c) by comparing the structure with the white lines. The white lines
also illustrate the memory of the pristine domain structure.

Interpretation of quench-switching experiments

It was observed that magnetic domains can be switched either electrically or
optically. The observed rise in resistivity and the structural change of antiferro-
magnetic domains cannot be attributed to electric current. With both methods,
the amount of transferred energy was of the same numeric order. This means
that these changes are caused by heat. The domains are fragmented into smaller
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Figure 1.7: Figures in the left column represent the antiferromagnetic domains
that are calculated from the simulated stray fields in the right column. The
top row shows the pristine CuMnAs sample. The bottom row shows the quench
switched (a series of j ∼ 107 A cm−2 pulses with time duration of t = 100 µs)
figures of the CuMnAs sample. The white arrows are Neél vectors. Size bar
is 400 nm. The white borders in c) are the domain walls taken from figure a)
and overlapped into c) for comparison. Scale bar in bottom right pictures the
magnitude of the magnetic stray field BNV assigned to colour spectrum From
Ref.[20]

domains. The quench switching does not rotate the magnetic moments. This is
different from the findings of Ref.[19], which detected a 90◦ rotation of magnetic
moments.

Changes in the resistivity of the sample were observed after quench switching.
At the same time, XMLD-PEEM and NV magnetometry methods show nano-
fragmentation of antiferromagnetic domains after the pulsing. The exact reasons
for the nano-fragmentation and the resistivity increase remain unclear.
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1.2 Landau-Lifshitz-Gilbert equation

1.2.1 Undamped system
We start this section by considering a simple system without damping. Similarly
to classical mechanics, torque T acts upon the spin S of a electron as described
by the following equation:

T = dS

dt
(1.2)

Moreover, the torque T on a magnetic moment M is:

T = M ×B (1.3)

where B is an effective field. Magnetic moment M of an electron is related
to the electrons spin through:

M = γS (1.4)
where γ is the electron gyromagnetic ratio. Joining the equations Eq. (1.2),

Eq. (1.3), Eq. (1.4), we arrive at the undamped equation for magnetic moments:

dM

dt
= γM ×B (1.5)

B can be calculated as:
B = −∂U(M )

∂M
(1.6)

where ∂U is the work done by rotating the magnetic moment. The vector
variables could be assigned to discrete points in space. In our case, it would be
the atoms of the lattice.

1.2.2 Damped system
In a system with non-zero damping, the dynamics of atomic magnetic moments
are governed by the Landau-Lifshitz-Gilbert equation. This is a system of coupled
non-linear differential equations. An analytic solution exists only in a few very
simple systems. In our research, simulations are done with such large systems
that an analytic solution is unfeasible and a numerical approach must be used.

The master equation of atomistic spin dynamics is the Landau-Lifshitz-Gilbert
equation:

∂Mi

∂t
= −γMi ×Bi + α

Mi

Mi ×
∂Mi

∂t
(1.7)

[5]
where α is the damping parameter and the index i denotes the i-th atom.

The first term in equation Eq. (1.7) describes the precessional motion, which was
described in subchapter 1.2.1, and the second describes the damping. The second
term is proportional to Mi. That is similar to the mechanics of continuum, where
the dissipative force is proportional to the velocity and of the opposite direction.

Let us compare equation Eq. (1.7) to the equation presented by Landau and
Lifshitz [10], which is the equation used in the following simulations. The reason
for the use of these equations is that they are easier to calculate numerically
compared to the Eq. (1.7), as Eq. (1.7) is written in the implicit form (with
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the magnetization time derivative on both sides of the equation). The Landau-
Lifshitz equation is written in the following form:

∂Mi

∂t
= −γMi ×Bi −

λ

M2
i

Mi × (Mi ×Bi) (1.8)

λ is a phenomenological constant. It relates to α:

λ = αγM (1.9)

1.2.3 Difference between Landau - Lifshitz and Landau -
Lifshitz - Gilbert equation

How do the Landau-Lifshitz-Gilbert and Landau-Lifshitz equations compare? Are
they equivalent? For the following derivation, it will be helpful to prove this
statement:

M · ∂M

∂t
= 0 (1.10)

We multiply Eq. (1.7) by M from the left:

M · ∂M

∂t
= −γM · (M ×B) + α

M
M ·

(︄
M × ∂M

∂t

)︄

M · ∂M

∂t
= γB · (M ×M ) + α

M

∂M

∂t
· (M ×M ) = 0

Since M ∥M , both terms in the parentheses are zero, and the statement is
thus proved. Now we amend the Landau-Lifshitz-Gilbert equation by multiplying
from the left.

M × ∂M

∂t
= −γM × (M ×B) + α

M
M ×

(︄
M × ∂M

∂t

)︄

M × ∂M

∂t
= −γM × (M ×B)− αM

∂M

∂t

Where we used the equation Eq. (1.10) along with the identity A×(B×C) =
(A ·C)B− (A ·B)C. Now we substitute equation above into the LLG equation
Eq. (1.7).

∂M

∂t
= −γM ×B − αγ

M
M × (M ×B)− α2 ∂M

∂t
(1.11)

By rearranging the equation, we obtain:

∂M

∂t
= −γLM ×B − γLα

M
M × (M ×B) (1.12)

where we introduced new term γL = γ
1+α2 . From this equation we see that

Landau-Lifshtitz equation Eq. (1.8) differs from Landau-Lifshitz-Gilbert Eq.
(1.7) in that the γL depends on α. For small enough α, equations are equal.
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1.2.4 Magnetic energy
Magnetic energy Uj of a j-th spin is, in our case, determined by the sum of two
energy components:

Uj = Uex(Mi) + Ua(Mi) (1.13)

where Uex(Mi) is the exchange energy and Ua(Mi) is the anisotropy energy.
These will be important for this work. Mi denotes the set of all magnetic mo-
ments that contribute to the magnetic energy.

Exchange energy corresponds to the interaction between neighbouring atomic
moments. This interaction is responsible for the magnetic ordering of spins. It
depends on their relative direction - or the angle between the vectors. Hence, we
perform a dot product between the magnetic moments in the exchange energy
formula. It takes the form of:

Uex = −
N∑︂

⟨ij⟩
Jij

(︄
1

MiMj

Mi ·Mj

)︄
(1.14)

Here, Jij is the exchange constant, ⟨ij⟩ means that the sum goes over the
unique pairs of ij, Mi is the magnetic moment of the electron at position i of
the lattice, Mi is the norm of magnetic moment Mi. If the exchange constant
Jij < 0, spins prefer antiparallel alignment, so the material is antiferromagnetic.
For the opposite case Jij > 0, the spins want to align parallel to each other. Thus
the material is ferromagnetic.

Magnetocrystalline uniaxial anisotropy energy of the lowest order for tetrag-
onal crystals is:

Ua =
N∑︂
i

(︄
K

M2
i

K ·Mi

)︄2

(1.15)

where N is the number of atoms, K is the anisotropy strength, K is the
anisotropy axis, and ni is the spin of an electron at lattice point i. The lowest
order in-plane anisotropy in tetragonal crystals can be written as:

Ubi−a =
N∑︂
i

Kbi

M4
i

(M4
ix + M4

iy) (1.16)

The anisotropy defined in the equation above is called biaxial anisotropy. The
Kbi is the biaxial anisotropy strength, Mix and Miy are the x, y components of
the magnetic moments at site i, respectively.
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2. Simulations of atomistic spin
dynamics

2.1 The spirit Library
The spirit framework is a tool for computing the atomistic spin dynamics for a
large number of spins. This is very convenient for the field of spintronics, which
requires such large scales.

In our simulations, the method of Landau-Lifshitz differential equations was
used. The exact equations that the algorithm solves are the same as Eq. (1.12).
However, instead of B, an amended field is used.[12]

Beff
i = Bi + Bth

i (2.1)

, where Bi = ∂U
∂Mi

is the term caused by the energy derivative, and Beff
i is the

stochastic thermal term, which is defined as:

Beff
i =

√︂
2Diηi(t) =

√︄
2αkBT

µi

γ
ηi(t) (2.2)

Here, Di is the diffusion constant, α is the damping parameter, µi is the i-th
magnetic moment, γ is the gyromagnetic ratio, and T is temperature. The term
under the square root on the right side comes from the fluctuation-dissipation
theorem. It states that if the system dissipates energy, then thermal fluctuations
will arise.[2] A classical example of the fluctuation-dissipation theorem would be
the drag force and Brownian motion. ηi is white noise, which must satisfy these
conditions:

⟨Biα⟩ = 0 (2.3)

⟨Bth
iα(t)Bth

jβ(0)⟩ = 2Diδijδαβδ(t) (2.4)
To simulate the sudden electrical or optical pulse that was used in the exper-

iment of [9], we assume that the pulse introduces a lot of heat into the system.
The heat raises the temperature above the Néel temperature, which is the point
where a material loses its magnetic ordering. After the pulse ends, the source of
the heat is cut off, the sample cools below Néel temperature, and the spins will
form small antiferromagnetic domains. This disordered state is taken as a start-
ing point for the ensuing simulations. The objective is to simulate the formation
of antiferromagnetic domains at various temperatures.

The spirit library has many options for user interfaces. GUI can be used.
However, the command line user interface offers much more functions. Spirit
library implemented in python was used to perform the simulations in this work.

2.2 Plotting of the atomic spins
Ploting of the final Néel vectors is done via a python script called plot L.py. It
plots the spherical angles θ and φ, used to describe the position in 3D spherical
coordinates. These angles are defined as:
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θ = arccos
⎛⎝ Lz√︂

L2
x + L2

y + L2
z

⎞⎠ (2.5)

φ = sgn(Ly) arccos
⎛⎝ Lx√︂

L2
x + L2

y

⎞⎠ (2.6)

To properly graph those two angles, we need two subplots. The left plot
graphs the angle φ, and the right plot graphs the angle θ e.g. Fig.2.3. For
graphing of the angles, a colour scheme is used. The colour scheme for φ is
pictured in Fig.2.1 and for θ in Fig.2.2. Vectors in the left subplot are identical
to the vectors on the right. They plot the projection of the Néel vector to the
x-y plane. It would be impractical to graph all Néel vectors, especially in large
systems. So an average vector is calculated from the neighbouring cells. For
example, in a system of 300×300×1 basis cells, we only plot 60×60×1 vectors.
The average vector is then calculated from 25 neighbouring vectors, a square with
a side of five spins. Averaged Néel vector array will be referred to as the grid. In
our example, grid = [60, 60, 1].

Figure 2.1: The interval of possible values of the angle φ ∈ ⟨0, 2π) is represented
by a color spectrum.

2.3 Simulations with different time steps
To solve the LL equation Eq. (1.12) we start from some initial state, which gives
the magnetic moments at time t = 0. To solve the LL equation Eq. (1.12), we
start from some initial state, which gives the magnetic moments at time t = 0. In
the simulations, the SIB (Semi-implicit midpoint) solver was used. The method
consists of approximating the derivative in the point halfway between t and t+∆t
by the slope of Mi(t + ∆t) - Mi(t). However, the derivative is dependent on
the configuration of magnetic moment in time t + ∆t. However, the derivative is
dependent on the configuration of magnetic moment in time t+∆t. The equations
have this form:
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Figure 2.2: The interval of possible values of the angle θ ∈ ⟨0, π) is represented
by a color spectrum.

Mi(t + ∆t) =Mi(t) + ∆t
Mi(t) + Mi(t + ∆t)

2

×Ai

(︄
t + ∆t

2 ,
{︃

Mj(t) + Mj(t + ∆t)
2

}︃)︄ (2.7)

The index i denotes the i-th magnetic moment, Ai is defined as follows:

Ai = −γL(Beff + α

M
(Mi ×Beff)) (2.8)

This definition is derived from the LL Eq. (1.12). The term in the curly brackets
corresponds to the set of all magnetic moments in the system. The problem is
this equation is written in the implicit form since Mj(t+∆t) stands on both sides
of the equation. This is sorted out by approximating Mj(t + ∆t) by a predictor
moment M p

j , which is defined again by the implicit middle point structure:

M p
i (t + ∆t) = Mi(t) + ∆t

Mi(t) + M p
i (t + ∆t)

2 Ai (t, {Mj(t)}) (2.9)

To avoid the implicit term in Ai, the Ai is approximated in the relation for the
predictor M p

j . After the M p
j is obtained, the equation is implicit only in terms

outside of Ai and can then be solved.[11]
The SIB method is very sensitive to the value of the time step ∆t. Therefore, it

is needed to test how it influences the time development of the magnetic moments.
If the time step ∆t was too big, it could be in contradiction with the assumption
of the tangent ∂Mi

∂t
(t + ∆t

2 ) being parallel to the line segment between the two
time points. In practice, this discrepancy could have an impact on larger time
scales. One could then wind up with qualitatively different results from those
with a smaller time step. Theoretically, the smaller the time step, the more
precise simulation is achieved.

However, after the time step gets smaller than a certain value, it becomes quite
redundant to decrease the time step further. The drawback of superfluously small
time step is that it requires more iterations to simulate the time development of
the system. In the simulation, the system was already quite large. It consisted
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of millions of magnetic moments and was simulated on the scales of hundreds of
picoseconds. This meant that in order for the simulations to run with enough
time efficiency, it was needed to maximize the value of the time step ∆t while
maintaining reasonable correspondence with the simulations that use smaller time
steps. This was done in simulations shown in Fig.2.3.

As mentioned before, to simulate the heating of the sample, as was done in
experiment [9], the spins in the initial state are aligned randomly. Therefore
the exchange interaction is significant in the first few picoseconds. This means
one needs to carefully choose the time step. The decision was made to run
the simulation in the first 2 ps with the time step ∆t = 0.1 fs, which is much
smaller than the other time steps that were tested. The simulations of time steps
∆t1 = 0.5 fs and ∆t2 = 1 fs were then done with the initial state of spins, which
were taken as the final spins of the simulation with ∆t = 0.1 fs, which lasted for
t = 2 ps. In other words, when the dynamics of the system are fast, we used
a very small time step, and after that, we tested two bigger time steps. This
ensures that our calculations are both accurate and efficient.

In Fig.2.3, two simulations with different time-steps ∆t are compared, both
images show the simulations in time t = 30 ps. Although from afar, the two
images in Fig.2.3 look identical, zoomed in and overlapped, it could be seen that
they do differ in certain areas. These areas are located in a domain wall, precisely
in the area where spins rotate around a point. However, these differences are very
small. Therefore, it was concluded that the time step of ∆t = 1 fs was satisfactory
enough since the simulations do not significantly differ from those done with the
∆t = 0.5 fs. In the end, the decision was made to run the whole simulation with
the time-step of ∆t = 1 fs.

2.4 Simulations with different anisotropy con-
stant

It is important to determine the values of parameters, such as in-plane anisotropy
constant and damping parameter, before proceeding with more complex simula-
tions. Theoretical calculations report on the very small difference between bi-
axial anisotropy energies for the direction [100] and [110]. The difference was
less than 1 µeV. The difference between the energies in [100] and [001] was sig-
nificantly larger, about 127 µeV. This result stems from relativistic ab-initio
calculations.[17]

Both in-plane (x̂ and ŷ direction) uniaxial and biaxial anisotropy were ob-
served in the crystal CuMnAs. In principle, tetragonal lattice allows biaxial
anisotropy only to exist. However, in thin layers, the symmetry can be broken.
This could lead to uniaxial in-plane anisotropy. There is always out-of-plane (ẑ
direction) present. The kind of in-plane anisotropy that arises depends on the
method of growth of the crystal that was used. In the following simulations, uni-
axial in-plane anisotropy in the direction [100] was tested. The in-plane biaxial
anisotropy was ignored for simplicity.

Fig.2.4 suggests that, with a growing in-plane anisotropy constant, the domain
walls become larger. In the bottom row of Fig.2.4, we see that almost the whole
system is covered by a single domain. In the subplot in the top row, left column
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Figure 2.3: Comparison of two simulations. Simulation in the top row was done
with the time step ∆t = 1 fs. Image is taken after N = 30000 iterations. Simula-
tion in the bottom row was done with the time step ∆t = 0.5 fs. The image was
taken after N = 60000 iterations. Both plots represent the simulation in time
t = 30 ps Plotted with grid = [100, 100, 1]

of Fig.2.4, the giant domain that is pictured by the green-coloured vectors could
be seen. Other domains are not clearly visible. However, a second domain is po-
sitioned in the top left corner. Due to large domain walls, the transition between
one domain and the other could not be unambiguously recognised. Parts of the
second domain wall penetrate into the top right and the bottom left corner. This
is due to the periodic boundary conditions.

The values of K = 0.1 and K = 0.05 are of the same order as the out-of-plane
uniaxial anisotropy constant, and we know that the out-of-plane anisotropy is
stronger. Therefore it is reasonable to exclude those values from further simu-
lations. There are no experimental values of the uniaxial or biaxial anisotropy.
From calculations, it is known that the value of biaxial anisotropy is K = 0.001 or
less. However, there are no calculations for the uniaxial anisotropy constant avail-
able. It is reasonable to estimate that the value of uniaxial in-plane anisotropy
will be smaller than the value of the out-of-plane anisotropy. The exchange inter-
action should also be stronger than the in-plane anisotropy interaction. However,
if we set the value of the in-plane anisotropy constant to be very small, it could
negatively influence the speed of the numerical calculations. For further simula-
tions, the uniaxial anisotropy constant was set to a value of K = 0.01.
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2.5 Simulations with different damping param-
eters

Damping dissipates energy and brings the system to its equilibrium. If the damp-
ing was zero, the system would precess around the point of equilibrium. The
damping parameter influences the dynamics of magnetic domains formation. If
an external field is applied in the ẑ direction, the magnetic moment is aligned in
a direction that is not parallel to the external field. The magnetic moment will
behave as prescribed by the LLG Eq. (1.7). It will precess around the ẑ axis. The
damping parameter does not influence the dynamics of precession. However, the
damping drives the magnetic moment to the equilibrium direction, which is the
magnetic field direction. This torque is perpendicular to the precessional torque.
It is caused by the damping term. The speed of relaxation into the direction is
proportional to the damping parameter. This is a very simple example. In our
calculations of millions of spins, it may behave differently.

In Fig.2.5, two simulations with different damping parameters are compared.
The damping parameter of the first simulation is two times smaller than that
of the second one. Moreover, the first simulation is captured in the time of
t = 40 ps, which is two times smaller than the time in which the second sim-
ulation is captured t = 80 ps. This would suggest that the relaxation speed is
inversely proportional to the damping parameter. This is counter-intuitive. One
would expect, based on the simple example above, that with growing damping
parameter, the domain dynamics would get faster.

In Fig.2.6, we see a comparison of three simulations with different damping
parameters α captured at the same time t = 90 ps. Again, we see that for smaller
values of α, the domain size is greater. The exact reasons for this behaviour are
unclear.

In the bottom row of Fig.2.6, the value α = 0.3 of the damping parameter
was used. The image differs from the others quite significantly. The domains
are much smaller. For further simulations, the damping parameter was set to
α = 0.1.

2.6 Algorithm for calculating the average size of
the antiferromagnetic domains

While the graphing of antiferromagnetic Néel vectors gives information about the
contours and shapes of antiferromagnetic domains, it might be hard to extract
any quantitative values from these plots. The quantity of the utmost interest is
the mean size of the antiferromagnetic domains. As mentioned earlier in exper-
iments done by [9], the changes in the size of antiferromagnetic domains were
observed on macroscopic timescales. For this reason, we create an algorithm that
approximately calculates the mean value of magnetic domains in a given time
point.

As input, the algorithm takes a 3D list of Néel vectors, e.g. in a system
with grid = [60, 60, 1], we would have n = 60 × 60 Néel vectors. The program
randomly selects one Néel vector and compares it with its neighbouring vectors.
Neighbouring vectors are those that are one lattice vector away, either horizontally
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or vertically. Note that diagonal neighbours are not considered. The comparison
is done with the following condition:

ϵ ≥ ∥mN −m0∥ (2.10)

where m0 is the original random Néel vector, mN is the neighbouring Néel
vector, ϵ is a parameter that, in essence, determines how similar the vector must
be in order to be considered as part of the domain that is defined by the original
vector. If the condition Eq. (2.10) is satisfied, the neighbouring vector is con-
sidered to be part of the same domain as the original randomly selected vector.
The same process is then repeated for the neighbouring vectors until there are
not any more neighbours left to visit. Then the process is finished, and a list of
coordinates of all vectors that belong to the domain is returned. This is repeated
for the remaining spins.

2.6.1 Plotting of the categorized domains
In Fig.2.7, categorized domains for different values of ϵ are pictured. Coordinates
that belong to the same domain are pictured with the same original Néel vector
that was used in the condition Eq. (2.10).

Examining the plots for different values of ϵ, it could be seen that with growing
ϵ, the greatest domains get bigger in size while the smaller ones shrink. Albeit,
this effect is small, considering that the condition Eq. (2.10) lies at the core of
the domain categorization algorithm.

One can compare the effectiveness of our algorithm by comparing Fig.2.7 with
Fig.2.8, which plots all Néel vectors using the plot L.py script. The conclusion
of this comparison is positive, the algorithm rightly categorizes one or two big
domains, and the domain wall is categorized as multiple smaller domains. The
smaller domains can be ignored by introducing another condition that discards
domains smaller than some cutoff number Amin. The value of the cutoff Amin will
be discussed later. It is obvious that the algorithm is not capable of recognizing
domain walls. Especially in the case of continuous, broad domain walls, it is not
clear where one domain ends, and another begins.

How does the grid parameter affect the size of the domains? The grid should
be chosen based on the size of the system. The grid should be proportional to
the size of the system. This ensures that the number of Néel vectors in a given
grid cell is constant.

2.6.2 Dealing with domain walls
As seen in Fig.2.9 majority of categorized domains are small. Around 250 domains
occupy the first bin in our histogram. Then the next bin is occupied by one
domain, and the last bin with the area of A = 0.08 µm2 is occupied by one
domain. Groups of vectors within the first bin are not domains. They are rather
parts of the domain wall, as could be seen in Fig.2.7. Therefore, it is reasonable
to discard those domains that are smaller than some cutoff number Amin. Amin
is the number of grid cells or Néel vectors. After analysing the histogram, Amin
value was set to Amin = 100 which is equivalent to the area of A = 4 · 10−3 µm2.
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The average size of domains is calculated the same way as the histogram of
domain size in Fig.2.9. However, due to the random choice of the original Néel
vectors of the domain in the algorithm, the process is somewhat random. That
means that when the algorithm analyses the same configuration of Néel vectors, it
returns domains that can slightly differ in shape and overall size. To mitigate this
randomness, the algorithm in Fig.2.12 is called 15 times, and the average surface
area of the domains shown in the figure is the average of those 15 iterations.

2.7 Time-development of the average domain
size

In Fig.2.10, Fig.2.11 the time development of antiferromagnetic domains starting
from the disordered state for two different sizes of the system is plotted. In
Fig.2.10, the antiferromagnetic domains are quite large. After 50 ps, the system
is covered by one large domain. The average domain size is visible in Fig.2.12

It is visible in Fig.2.12 that around time t = 80 ps the size of domains reaches
a maximum, only to decrease in t = 90 ps to a value comparable to t = 70 ps.
This is an anomaly which is caused by the randomness of the initial spin field
state and of the complexity of the spin dynamics. For instance, we do not observe
such a peak in Fig.2.13, which was done with the same parameters, except the
size of the system was bigger. In both figures, Fig.2.12 and Fig.2.13, growth of
the average size of the domains is observed.

Notably, the size of the domains is much greater than the experimental values
even in t = 10 ps. The width of the domains is in orders of d ≃ 100 nm. The ex-
periments of [9] showed the domains to remain in the state of nano-fragmentation
with widths d ≃ 10 nm for much longer periods of time. This suggests that what
we see in the simulations does not correspond to the experiments.

2.8 Simulations with non-zero temperature
The experiments of [9] that were mentioned in the introduction were done in a
room temperature setting. So far, we have done all simulations with the temper-
ature of T = 0 K. However, it is difficult to plot the results of the simulations.
This is because, in a non-zero temperature system, magnetic moments oscillate
around their equilibrium directions. Hence, the magnetic domains are not clearly
visible, and it is hard to draw conclusions from such graphs. There are two solu-
tions to this issue. The first would be to record the oscillations of these moments
for some short time and then average those magnetic moments. The second solu-
tion is to take the magnetic moments at a particular time point t and run a new
simulation with zero temperature for a very short time δt. The time duration of
the simulation should be chosen such that the magnetic moments have enough
time to move into their equilibrium. However, δt should be small enough that
the system does not undergo further development during this time. Delta was
set to a value of δt = 2 ps. The second approach to the problem was chosen, as
it was easier to implement than the first one.

In figure Fig.2.14, it can be seen that simulation with T = 0 K has one big do-
main. The simulation with T = 300 K has more domains (per our estimate three).
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Unsurprisingly, these simulations developed differently. The thermal fluctuations
have a non-trivial effect on the dynamics of the system.

In Fig.2.15 the time development of the spins in T = 300 K is plotted. The
antiferromagnetic domains are smaller compared to those with zero temperature.
In Fig.2.16 time development of the average size of magnetic domains is pictured.
Results of these preliminary room-temperature simulations suggest that antifer-
romagnetic domains are smaller than those in zero-temperature simulations.

2.9 Skyrmions and Half-skyrmions
We have already discussed domains and domain walls. However, there are many
options for how the spins could re-orient when transitioning from one domain
wall to another. In other words, domain walls could have different structures.
One type of this structure is a Bloch-type wall, where spins rotate around an
axis that is normal to the domain wall. Therefore the rotation of the spins is
out-of-plane (the plane in which the domains lie). The second kind of structure
is the Néel-type wall. The spins rotate around an axis that is perpendicular to
the normal of the domain wall.[1] In our case, domain walls are of the Néel type.

Stable quasi-particles called merons can be found in domain walls. Merons are
also sometimes called half-skyrmions. They are a version of their more famous
relative skyrmion. Skyrmions and merons are topologically non-trivial objects.
They possess a physical property called topological charge. These quasi-particles
could potentially be used to store information.

Half-skyrmions were reported in material CuMnAs in an experiment by [1].
It was discovered that half-skyrmions could be created and moved by an elec-
tric current. In our simulations with the spirit library, half-skyrmions were also
observed. See Fig.2.17. Those half-skyrmions played a role in the dynamics of
domain formation. Half-skyrmions introduce inhomogeneity of spin orientation.
Thus, the fewer half-skyrmions in the system, the more homogenous the system
will be, and the more domains are present. Half-skyrmions often annihilate with
a half-skyrmion of opposite chirality. There are multiple types of half-skyrmions.
They differ in the way the spins rotate around a specific point. In Fig.2.17, the
rotation of spins in the x-y plane is visible, and the z component of the spins is
shown in the right subplot. In the centre of the half-skyrmion, the Néel vector
points in the ẑ direction.
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Figure 2.4: Simulations with different anisotropy constants in the direction [100].
Simulations are ordered in ascending order of the anisotropy constants. The first
row from the top is K = 0.001. Second row K = 0.01. Third row K = 0.05.
Fourth row K = 0.1. The size of the system is 300×300×1 of basis cells. Plotted
with grid = [60, 60, 1]. All simulations are captured in time t = 100 ps. Damping
parameter is α = 0.3
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Figure 2.5: Comparison of two simulations. A simulation with damping pa-
rameter α = 0.05 in time t = 40 ps is pictured in the top row. The bottom
row corresponds to α = 0.1 in time t = 80 ps. All figures were done in time
t = 90 ps. The size of the system is 2000 × 2000 × 1 of basis cells. Plotted with
grid = [100, 100, 1]
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Figure 2.6: Simulations with different damping parameters. Graphs in the top
row represent damping α = 0.05. α = 0.1 for middle row and α = 0.3 for
bottom row. All figures were done in time t = 90 ps. The size of the system is
2000× 2000× 1 of basis cells. Plotted with grid = [100, 100, 1].
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Figure 2.7: This figure was plotted using our above-mentioned algorithm, with
ϵ = 0.3 in the top row, ϵ = 0.5 in the middle row, ϵ = 1 in the bottom row, the
figure was done in time t = 100 ps. The size of the system is 1000× 1000× 1 of
basis cells. Plotted with grid = [60, 60, 1].
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Figure 2.8: This was plotted using the script plot L.py, figure was done in time
t = 100 ps. The size of the system is 1000× 1000× 1 of basis cells. Plotted with
grid = [60, 60, 1].

The figure depicts the same state of spins as Fig.2.7.
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Figure 2.9: Histogram of the size of the domains, ten bins. The simulation
captures the system in time t = 100 ps. The size of the system is 1000× 1000× 1
of basis cells. Plotted with grid = [60, 60, 1]. On the x-axis, the area of each
domain is plotted. The y-axis is logarithmic, as the number of small domains is
very large.
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Figure 2.10: Time development of antiferromagnetic domains. In time from top
row to bottom t = 10 ps, t = 30 ps, t = 50 ps, t = 70 ps, t = 90 ps. Simulations
were done with T = 0 K in a system of 1000 × 1000 × 1 of basis cells. Plotted
with grid = [100, 100, 1].
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Figure 2.11: Time development of antiferromagnetic domains. In time from top
row to bottom t = 10 ps, t = 30 ps, t = 50 ps, t = 70 ps, t = 90 ps. Simulations
were done with T = 0 K in a system with 2000× 2000× 1 of basis cells. Plotted
with grid = [100, 100, 1].
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Figure 2.12: Figure shows the time dependence of the average size of magnetic
domains. Only domains greater than Amin = 4 · 10−3 µm2 are considered. The
simulations, which we plot, were done in a system of 1000× 1000× 1 basis cells.
The simulation was done with temperature T = 0 K. The size of the domains
was calculated using the algorithm for categorizing domains, whose functionality
is pictured in Fig.2.7.
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Figure 2.13: Figure shows the time dependence of the average size of magnetic
domains. Only domains greater than Amin = 4 · 10−3 µm2 are considered. The
simulations, which we plot, were done in a system of 2000× 2000× 1 basis cells.
The simulation was done with temperature T = 0 K. The size of the domains
was calculated using the algorithm for categorizing domains, whose functionality
is pictured in Fig.2.7.
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Figure 2.14: Simulation with T = 0K (top row) and a simulation with T = 200K
(bottom row). Both figures were done in time t = 100 ps. The size of the system
is 1000× 1000× 1 of basis cells. Plotted with grid = [100, 100, 1]
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Figure 2.15: Time development of antiferromagnetic domains. In time from top
row to bottom t = 10 ps, t = 30 ps, t = 50 ps, t = 70 ps, t = 90 ps. Simulations
were done with T = 300 K in a system with 1000× 1000× 1 of basis cells. After
that, the temperature of the system was changed to T = 0 K and a simulation
for tf = 2 ps was run. Plotted with grid = [100, 100, 1].
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Figure 2.16: Figure shows the time dependence of the average size of magnetic
domains. Only domains greater than Amin = 4 · 10−3 µm2 are considered. The
simulations, which we plot, were done in a system of 1000× 1000× 1 basis cells.
The simulation was done with temperature T = 300K.
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Figure 2.17: The Figure pictures a half-skyrmion.
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Conclusion
In this work, atomistic simulations of the time development of spins were con-
ducted, with the main goal of explaining the meta-stability of the broken-down
domains in the CuMnAs quench-switching experiments. Firstly, the parameters
of atomistic simulations were examined to determine their suitability for sub-
sequent simulations. A time step of ∆t = 1fs was deemed appropriate for the
ensuing simulations. As the in-plane anisotropy constant and damping parameter
are unknown, various values of the in-plane anisotropy constants and damping
parameters were tested, leading to the choice of K = 0.01 and α = 0.1, respec-
tively. The simulations with zero temperature showed that the size of the domains
grows in time. The average size of the domains was d ≃ 100nm across. For a
system of 2000 × 2000 × 1, the domains were two times larger than those in a
1000× 1000× 1 system. One of the objectives of this research was to explore the
impact of non-zero temperature on the nano-fragmentation of antiferromagnetic
domains. Preliminary results of the simulations conducted at room temperature
indicated that the domains appeared considerably smaller than those observed in
the zero-temperature system. Nevertheless, the dimensions of the domains were
still significantly larger, approximately d ≃ 100nm across, in comparison to the
findings obtained by [9], which demonstrated a nano-fragmented state of domains
with dimensions of approximately d ≃ 10nm across. Moreover, the growth of the
antiferromagnetic domains was observed on the ps timescale. In the experiments,
domains retained the nano-fragmented state for t ≃ s. This suggests that the
observed metastability of nano-fragmented domains by Kaspar is a result of fac-
tors that are not accurately represented in the simulations. The average size of
the domains was calculated by an algorithm, which was tested and verified to
recognize antiferromagnetic domains successfully.

The non-zero temperature simulations showed dependence on the initial state
of the spins and also on the size of the system. In spite of this, the results
are qualitatively the same for all sizes of the system and the initial states. The
system used in the simulations was d ≃ 300−700nm in size, which is much smaller
than the samples used in the experiments of [9]. To have a size of the system
comparable to the experiment is unfeasible because of computational limitations.

As mentioned above, the finite temperature is not the cause of the nano-
fragmentation of the domains. One possible reason for the discrepancy is the
presence of crystal defects, such as interstitials and dislocations. These could be
simulated by introducing a model with the pinning of some magnetic moments in
a certain direction. The pinned magnetic moments would be insensitive to any
interactions.
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[9] Z. Kašpar, M. Surýnek, J. Zubáč, F. Krizek, V. Novák, R. P. Campion,
M. S. Wörnle, P. Gambardella, X. Marti, P. Němec, K. W. Edmonds,
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