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Department: Department of Probability and Mathematical Statistics
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Introduction and Motivation
Non-life insurance is an essential aspect of modern society, providing coverage for
individuals and businesses against financial losses resulting from unforeseen events
such as accidents, fires, and natural disasters. However, estimating the amount
of money that an insurer must reserve to cover future claims is a complex and
challenging task. The time between when an event occurs and when a claim is
reported and settled can vary widely, making it difficult to estimate the frequency
of claims accurately.

One approach to this problem is the claim-by-claim reserving stochastic app-
roach first proposed by Arjas [1989]. This approach involves modeling the occur-
rence and reporting of claims as stochastic processes and using statistical methods
to estimate the intensity of the occurrence process. By estimating the intensity
of the claim occurrence process and claim severity, actuaries can better estimate
current liabilities of the insurance company to policyholders, allowing them to
set aside adequate reserves to cover their obligations.

In recent years, the claim-by-claim reserving stochastic approach has gained
popularity among actuaries and insurance companies due to its ability to provide
more accurate predictions of future claims. Nevertheless, in practice claim-by-
claim approach is used only for modeling extreme claims. Clearly, estimating the
intensity of the occurrence process accurately can be challenging, particularly
when data is incomplete or truncated.

This thesis focuses on the problem of delayed reporting of claims in non-life
insurance and deals with a novel approach published by Maciak et al. [2021], how
to estimate the intensity of the occurrence process based on the ν-transform of
the claim reporting process. In the context of delayed reporting of claims, marks
correspond to the delays between the occurrence of a claim and its reporting.
Especially, the ν-transform is a powerful tool for getting the characteristics of the
claim occurrence process through the conditional distribution of delays.

The thesis is organized as follows. In the first chapter, we provide the theore-
tical background on marked stochastic processes, including the Poisson process,
marking, and the ν-transform. We also discuss the problem of truncation. In the
second chapter we introduce the methods for estimating parameters, formulate
the statistical test to verify, whether our model fits the data. In particular, the
IBNR claim reserve is expressed mathematically and simulation procedure for
predicting the IBNR reserves is mentioned. In the third chapter, we apply the
theoretical approach to real-world data from Motor Third Party Liability (MTPL)
insurance provided by the Czech Insurers’ Bureau (CIB). We demonstrate how
the ν-transform can be used to estimate the intensity of the occurrence process
in the presence of delayed reportings. Further, we predict the total number of
claims based on the estimated intensity and through the distribution of claim
amounts we calculate the total claim amount. Finally, the distribution of the
IBNR reserve prediction is generated for different years.
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Overall, this thesis contributes to the development of the claim-by-claim re-
serving stochastic approach by providing an unconventional method for estimat-
ing the intensity of the claim occurrence process in the presence of truncated
data. The proposed approach has practical applications in estimating claim re-
serves for insurance companies, enabling them to make more reliable estimates
of their liabilities and set aside adequate reserves to cover claims that already
happened but still are not reported.
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1. Marked Processes and
Displacement

1.1 Introduction to Claims Processes
There are two parties in insurance policy: the insured and the insurer. The
insured pays a deterministic amount of money (called a premium) to the insurer
to be protected against the random occurrence of well-specified events. In case
such an event happens and the insured reports the claim, the insurer is obliged
to pay the amount of money (called claim amount) to cover the damage or injury
caused by that event or at least the well-defined amount in case such an event
happens.

We distinguish the following moments in time associated with the insured
event. Accident time – when the event occurred, it must be during the insured
period. Reporting time – when the event was reported to the insurer, the claim is
made. Claims closing – when claim payments had been made and no other claim
payments are expected associated with this event. However, it can be reopened.
Here we think of a simplified situation when the claim amount (sum of all claim
payments) is known at the reporting time. Simply, by considering the time of
claim closing to be the same as the reporting time.

According to Solvency II, a regulatory framework for insurance and reinsur-
ance companies effective in European Union, insurance companies must estimate
the value of their liabilities in order to create technical reserves from the premium
paid in the appropriate amount. Here we focus only on incurred but not reported
(IBNR) claims reserves. That is the category with the least information we have
about it. Neither we know the number of such claims nor the claim amount. Just
the risk exposure – the number or volume of policies in force – until this moment
could be known.

1.2 Marked Processes and Poisson Process
A Poisson process is the fundamental stochastic process used in various fields
of mathematics, statistics, and applied sciences to model and analyze random
events occurring over time. It is particularly useful for describing and predic-
ting the behavior of events that occur randomly and independently, such as rare
events or events with a low occurrence rate. The Poisson process has wide-ranging
applications in areas such as insurance, finance, telecommunications, healthcare,
reliability analysis, and queuing theory. In this section, we will explore the key
concepts and properties of the Poisson process. We will delve into the math-
ematical foundations of the Poisson process, including its definition, intensity
function, inter-arrival times, and properties of increments. Moreover, we will ex-
amine advanced topics such as the nonhomogeneous Poisson processes. However,
we are interested in some additional information – not only event times of the
process. To each event time is assigned some mark providing valuable context
for the data analysis. These marks can represent various characteristics such as
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time stamps, categorical labels, numerical measurements, or any other relevant
attributes associated with the underlying process. Marked processes find appli-
cations in diverse fields, including finance, environmental monitoring, telecom-
munications, and epidemiology, where the marks enable a deeper exploration of
the underlying patterns, dependencies, and relationships. By incorporating the
marked information, marked processes offer a powerful framework for capturing
and analyzing complex real-world phenomena.

Firstly, let us mention some basic notions, mostly from Tijms [2003], Daley
and Vere-Jones [2003], and Jacobsen [2006].

Definition 1. Let (Ω, A, P) be a probability space, (S, S) a measurable space, and
I ⊂ R. A family of random variables {Xt, t ∈ I} defined on (Ω, A, P) with values
in S is called a stochastic process.

I is called the index set of the stochastic process, especially here the t ∈ I has
the meaning of time. S is called the state space of the stochastic process.

Definition 2. A process {Xt, t ∈ I}, where I is an interval, has independent
increments, if for every n ∈ {3, 4, . . . } and for any t1, t2, . . . , tn ∈ I such that
t1 < t2 < · · · < tn, the random variables Xt2 − Xt1 , . . . , Xtn − Xtn−1 are indepen-
dent.

Definition 3 (Simple point process). A simple point process N is a sequence
{Si, i ∈ N} of I-valued random variables defined on the probability space (Ω, A, P)
such that

• P [0 < S1 < S2 < · · · ] = 1,

• P [Si < Si+1, Si < ∞] = P [Si < ∞] ,

• P [limi→∞ Si = ∞] = 1.

Sis are called the points of the simple point process N and take values from
the index set of N , for our purpose I ⊂ R. This thesis deals only with simple
point processes, so by a process, we always mean the simple point process.

Definition 4 (Marked point process). Let us have a point process N with values
in S with event times {Si, i ∈ N} and a measurable space (K, K), then the point
process {(Si, Ki) , i ∈ N} defined on S × K is called marked point process with
state space S and marks in K.

In our context, the mark could be the claim amount, the delay in reporting
the claim, or some information about the insured like the age, the residence, or
the car power.

Definition 5 (Independent marks). The marked point process N has independent
marks if, given {Si}, the {Ki} are mutually independent random variables such
that the distribution of Ki depends on the corresponding location Si.

Definition 6 (Homogeneous Poisson process). Consider a sequence T1, T2, . . . of
positive, independent, exponentially distributed random variables with the distri-
bution function P [Tj ≤ t] = 1−e−λt for j = 1, 2, . . . , positive t and some positive
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constant λ. Let S0 := 0 and Si :=
∑︁i

j=1 Tj for i = 1, 2, . . . . Homogeneous Pois-
son point process with rate λ is the counting process {Nt, t ≥ 0}, where random
variable (r. v.) Nt is defined as the largest integer i ≥ 0 for which holds that
Si ≤ t.

Generally, a counting process is a stochastic process {Nt, t ≥ 0} with values
that are non-negative, integer, and non-decreasing. In Definition 6, think of Tn

as a time elapsed between (n − 1)th and nth occurrence of some specific event,
Sn as the time at which the nth event occurs (arrival time of n-th event). Finally,
Nt is the number of events up to time t.

Note that there is 1–1 relation between {Si, i ∈ N} and {Nt, t ≥ 0}. For ho-
mogeneous Poisson process (HPP) is characteristic the memoryless property for-
mulated in Theorem 1.

Theorem 1. For any t ≥ 0, the r. v. Dt representing the waiting time from
epoch t until the next event has the same exponential distribution as the time
elapsed between two consecutive events.

Proof. Can be found in Tijms [2003] [p. 4].

Let us clarify that by the stationarity of increments we mean, that the distri-
bution of the number of events that occur in any time interval depends only on
the length of the time interval.

Property 2 (Properties of HPP). Poisson process Nt with constant rate λ > 0

• has stationary increments,

• has independent increments,

• the number of events in any interval of length t is a Poisson r. v. with
parameter λt (interpreted as the mean).

Obviously, the third property gave rise to the name of the process. Nev-
ertheless, some real-world phenomena do not have the same expected value at
every time. There exists a generalization of the Poisson process in this way. We
introduce the rate of the Poisson process as a function of time, it must be an in-
tegrable function on a bounded interval and the process does not have stationary
increments anymore.

Definition 7 (Nonhomogeneous Poisson process). A counting process {Nt, t ≥ 0}
is said to be a nonhomogeneous Poisson process with the intensity function λ (t),
if it satisfies the following properties:

• N0 = 0,

• the process {Nt} has independent increments,

• P [Nt+∆t − Nt = m] =

⎧⎨⎩
1 − λ (t) ∆t + o (∆t) , m = 0

λ (t) ∆t + o (∆t) , m = 1
o (∆t) , m ≥ 2

as ∆t → 0,
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where o (∆t) is an arbitrary function such that lim∆t→0+
o(∆t)

∆t
= 0 and λ(t) is

positive locally integrable function.

For nonhomogeneous Poisson process (NHPP) it holds that the number of
events in any time interval is a Poisson random variable; however, its parameter
can depend on the location of the interval. More specifically, we can write

Ns+t − Ns ∼ Poisson

⎧⎨⎩
s+t∫︂
s

λ (r) dr

⎫⎬⎭ .

Property 3. Let {Nt, t ≥ 0} be a nonhomogeneous Poisson process with the
specific form of the intensity function λ (t) = ea+bt for a, b ∈ R, b ̸= 0. Given
NT = n, the times of occurrence of events S1, . . . , Sn have the same distribution
as an ordered sample of n observations from the distribution with density function(︁
ebx · b

)︁
/
(︁
ebT − 1

)︁
on [0, T ].

For nonhomogeneous Poisson process observed up to time T with event times
0 < s1 < · · · < sn < T we can write the joint density in the form

exp

⎧⎨⎩−
T∫︂

0

λ (t) dt

⎫⎬⎭λ (s1) × · · · × λ (sn) ,

with the above-specified intensity function, it can be rewritten as

exp
{︄

−
ea
(︁
ebT − 1

)︁
b

+ na + b
n∑︂

i=1

si

}︄
.

Just the probability of observing exactly n events of NHPP with above-specified
joint density on the time interval [0, T ] can be written as

1
n!

(︃
ea(ebT − 1)

b

)︃n

exp
{︄

−
ea
(︁
ebT − 1

)︁
b

}︄
.

Finally, the joint conditional density of observed event times given the number
of events up to time T can be expressed as

n!
n∏︂

i=1

bebsi

ebT − 1 ,

which is the joint density of the order statistic with the marginal density(︁
bebx

)︁
/
(︁
ebT − 1

)︁
, for x > 0.
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1.3 Displacement
In what follows, based on Kallenberg [2021], Kingman [1993] and Maciak et al.
[2021], we use the ν-transform of the process M to express the intensity of the
process N through some assumed conditional distribution of their arrival times.

Let us have a point process M with arrival times {Zi} choosing condition-
ally independent random elements τi with conditional distributions ν (·; t) given
Zi = t, the point process N with arrival times {τi} is called ν-transform of the
process M . The ν-transform randomly displaces the arrival times of a point pro-
cess and the displaced arrival times form another point process. Especially, in
the case of the Poisson process, the Poisson property is preserved as it is stated
in the following theorem.

Theorem 4 (Displacement theorem). Let us have a nonhomogeneous Poisson
process with rate function λorig (t). Suppose that the points of the process are ran-
domly displaced, such that the displacements of different points are independent
and the distribution of the displaced position given Zi = t has a density f (·; t).
Then the displaced points form again a nonhomogeneous Poisson process with an
intensity function

λtransf (y) =
∫︂
R

λorig (t) f (y; t) dt.

In particular, if λorig (t) is a constant c, and if f (y; t) is a function of difference
y − t, then λtransf (y) = c.

Proof. See Kingman [1993] [p. 61].

Having a NHPP M with the parametric intensity λorig (t; ϱ) we can express
from Theorem 4 the intensity of the claim occurrence process N. as

λtransf

(︁
y; ϱ, ϑ

)︁
=

∫︂
R

λorig (t; ϱ) fSi|Zi
(y; t, ϑ) dt, (1.1)

where fSi|Zi
denotes the parametric density of Si given Zi. Nevertheless, the

integral on the right-hand side of (1.1) can be expressed analytically only for
some trivial functions.
Example 1. The easiest case is when we have a homogeneous Poisson process on
the real line with the constant intensity λorig(t) = c for t ∈ R and the conditional
density function is a function of difference f (y; t) = g (y − t) for y, t ∈ R. Then
Theorem 4 says that the transformed process is again a homogeneous Poisson
process on the real line with the following intensity

λtransf (y) =
∫︂
R

λorig(t)f (y; t) dt = c

∫︂
R

g (y − t) dt

= c

∫︂
R

g (v) dv = c

∫︂
R

f (v; 0) dv = c.
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Example 2. Let us have a homogenenous Poisson process on the interval [0, T ]
with the intensity λorig(t) = c for t ∈ [0, T ]. We are interested in the intensity
of a transformed process considering the independent displacement of different
points with the conditional density function of the form f(y; t) = exp {−y + 2t}
for t ∈ [0, T ] and y ∈ (2t, ∞). We arrive to

λtransf (y) = c

T∫︂
y/2

e−y+2t dt = c

2 e−y
(︁
e2T − ey

)︁
The transformed process is a nonhomogeneous Poisson on [0, 2T ].
Example 3. Having a nonhomogeneous Poisson process with the intensity
λorig(t) = exp {−t} defined on [0, T ] and the previously mentioned transformation
we can calculate the intensity of the transformed process as follows:

λtransf (y) =
T∫︂

y/2

e−t e−y+2t dt = e−y
(︁
eT − ey/2)︁ .

The ν-transform can be used also for more complex processes, not necessarily
with independent increments, as it is discussed in Maciak et al. [2021].

1.3.1 Car Example
This is a more detailed version of the example from Kingman [1993] [p. 59].

Consider a broad highway with randomly placed cars at time t = 0 represented
by the real line and points {Xi, i ∈ N}, where each Xi specifies the location of the
i-th car. Suppose that cars form a nonhomogeneous Poisson process at time 0
with the intensity λorig (x) and move with constant velocity independently on
each other with unrestricted overtaking. Taking snapshots in time we focus on
the positions of cars. Denote by Y t (X) the position at time t of a car that was
at the beginning (time 0) at X. It can be rewritten as

Y t (X) = X + V t.

From Theorem 4 follows that cars form a nonhomogeneous Poisson process at
every time t > 0 with the following intensity

λt
transf (y) =

∫︂
R

λorig (x) ft (y; x) dx, (1.2)

where ft (·; X) denotes conditional density of the position at time t given the
initial position X (at time 0) on the road. The lower index t denotes the time,
at which the snapshot is taken.

If the velocities are drawn independently from a probability distribution with
density g (v), then it holds that

P
[︁
Y t ≤ y|X = x

]︁
= P

[︁
x + V t ≤ y|X = x

]︁
= P

[︃
V ≤ y − x

t

]︃
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using the independence of V on X in the last step. So the conditional density ft

can be expressed as the scaled density of the velocity distribution

ft (y; x) =
g
(︁

y−x
t

)︁
t

,

for x < y, otherwise it is zero assuming only positive velocities. Finally, using
the substitution rule, equation (1.2) becomes

λt
transf (y) =

y/t∫︂
0

λorig (y − vt) g (v) dv.

Note that we can calculate the intensity λt
transf for as many times t as we want,

having just the information that the initial positions form a nonhomogeneous
Poisson process with the intensity function λorig and knowing the density of the
velocity distribution.

1.3.2 Truncation
In data analysis, the presence of truncated data is a common challenge that
arises when observations are limited to a certain range. Truncated data can
occur in various fields, such as finance, economics, or epidemiology, where data
collection may be subject to constraints or limitations. Truncation can impact
the statistical analysis and requires specialized techniques to handle the inherent
biases introduced by the truncation as writes Greene [2002].

Here, the claim occurrence process {Nt, t ≥ 0} is truncated. Since the insur-
ance company knows about the claims through reporting, where the reporting
delay causes that we do not know about some already occurred accidents. Never-
theless, in our case, we handle it by considering a claim reporting process M that
is complete – we observe all reporting times {Zi, i = 1, . . . , MT } up to time T , and
by the displacement, we arrive to the intensity of the claim occurrence process N .
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2. Estimation, Goodness-of-fit,
and IBNR Prediction

2.1 Maximum Likelihood Estimation
Maximum likelihood estimation (MLE) is a widely used statistical method for
estimating the parameters of a probability distribution based on the observed
data. It is a powerful approach that seeks to find parameter values that maximize
the joint probability of obtaining the observed data.

Firstly, we define the likelihood function

L(θ) ≡ L(θ; y1, . . . , ym) = p(y1, . . . , ym; θ),

where p is a joint probability of the observed data viewed as a function of an
unknown vector of parameters θ of a model. The goal of MLE is to find values of
model parameters that maximize the likelihood over the parameter space Θ ⊂ Rd

θ̂ = arg max
θ∈Θ

L(θ).

If we assume independence of observations, the joint probability can be expressed
in the form of a product and we can simplify our maximization problem by
applying the logarithm on the likelihood function. This is how the log-likelihood
function is defined

l(θ) = log L(θ).
Since the logarithm is a strictly increasing function, the likelihood and the log-
likelihood function have the maximum at the same point.

2.1.1 Joint Likelihood of Marked Process
In the reporting process, we are interested in triplets {Zi, Wi, Yi, i ∈ N}, where
Zis are arrival times of the reporting process M and Wi, Yi are marks representing
the i−th claim’s delay, and amount respectively.

Considering independent marks Wi and Yi independent of both Zi and Wi,
the joint likelihood of observing triplets (zi, wi, yi, i = 1, . . . , m) up to time T can
be expressed as

L(ϱ, ϑ, γ) = LM (ϱ; T, zi, i = 1, . . . , m)
× LW |Z (ϑ, zi; wi, i = 1, . . . , m, )
× LY (γ; yi, i = 1, . . . , m) ,

(2.1)

for 0 < z1 < · · · < zm < T, 0 < wi, 0 < yi, i = 1, . . . , m. As all parts of the
product on the right-hand side of (2.1) depend on different parameters, we can
maximize them separately.
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2.1.2 Intensity of NHPP
To estimate the intensity λorig (t; ϱ) from the data we use the maximum likelihood
(ML) estimate of the vector of parameters ϱ. The likelihood function of the
process M , when the last observable time is T and MT = m, is of the form

LM (ϱ) = exp

⎧⎨⎩−
T∫︂

0

λorig (t; ϱ) dt

⎫⎬⎭ ×
m∏︂

i=1

λorig (zi; ϱ) , (2.2)

for 0 < z1 < · · · < zm < T .
Now, consider a special case of a nonhomogeneous Poisson process with the

intensity of the form
λorig (t; ϱ) = eϱ1+ϱ2t,

where ϱ = (ϱ1, ϱ2)⊤. The logarithmic likelihood function can be expressed as

ℓM (ϱ1, ϱ2; T, zi, i = 1, . . . , m) = −
T∫︂

0

eϱ1+ϱ2t dt +
m∑︂

i=1

(ϱ1 + ϱ2zi) . (2.3)

Let us assume that both parameters ϱ1, ϱ2 are different from zero, by differenti-
ating of (2.3) with respect to each parameter we obtain

∂lM
∂ϱ1

= exp {ϱ1}
exp {ϱ2T} − 1

ϱ2
− m,

∂lM
∂ϱ2

= exp {ϱ1}
Tϱ2 exp {ϱ2T} − (exp {ϱ2T} − 1)

ϱ2
2

−
m∑︂

i=1

zi,

by setting both expressions equal to zero we get the system of two equations with
two unknown parameters, which can be solved numerically and the solution we
get is the MLE of ϱ1, ϱ2 denoted as ϱ̂1, ϱ̂2, respectively.

2.1.3 Distribution of Delays
Many parametric distributions are suitable for modeling delays Wi = Zi − Si.
They need to have positive support, so modifications of log-normal, Gamma,
or Weibull distributions are used in practice. Here we focus on the log-normal
distribution with density

f(w; µ, σ) = 1
σw

√
2π

exp
{︄

−
(︁

log (w) − µ
)︁2

2σ2

}︄
, (2.4)

for w > 0 and zero otherwise. Additionally, time dependence or seasonality can
be added by thinking of µ and σ in (2.4) as some parametric time-dependent
functions, for example

µ (t, φ) = φ1 + φ2t + φ3 cos
(︃

φ4 × 2π × t

365

)︃
+ φ5 sin

(︃
φ6 × 2π × t

365

)︃
,

σ (t, ε) = ε1 + ε2t,
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where the parameter µ of the previously mentioned distribution depends linearly
on the time and takes one seasonality pattern into account and the parameter σ
just linearly depends on time.

The likelihood can be expressed as

LW |Z (ϑ, zi; wi, i = 1, . . . , m) =
m∏︂

i=1

fWi|Zi
(wi; zi, ϑ) .

Assuming the easiest case that the delay does not change in time, the conditional
density of Si given Zi = t has the form

fSi|Zi
(s; t, ϑ1, ϑ2) = g(t − s; ϑ1, ϑ2) = 1

ϑ2(t − s)
√

2π
exp

{︄
−
(︁

log (t − s) − ϑ1
)︁2

2ϑ2
2

}︄
,

for t ∈ (0, ∞) , s ∈ (−∞, t) and zero otherwise. Again, the ML estimates we get
by solving the problem of maximizing the logarithmic likelihood function.

Simply by plugging in (1.1) we obtain the expression of the intensity of the
ν-transformed process

λtransf (s; ϱ, ϑ) =
∞∫︂

s

λorig (t; ϱ) × g (t − s; ϑ) dt, (2.5)

for t ∈ (0, ∞), s ∈ (−∞, t), where λtransf , λorig denote the intensity of the claim
occurrence process, and reporting process, respectively. Note that the displace-
ment is backward.
Remark. If we assume Yi to be independent and identically distributed (with dis-
tribution depending on the vector of parameters γ), and independent of reporting
times and delays it can be rewritten the likelihood as

LY (γ; yi, i = 1, . . . , m) =
m∏︂

i=1

fY (yi; γ) .

2.2 Goodness-of-fit
The goodness-of-fit test is a fundamental statistical tool used to assess the ade-
quacy of a proposed model in describing observed data. In the context of non-
homogeneous Poisson processes, the goodness-of-fit test plays a key role in evalu-
ating the appropriateness of a specified intensity function. The intensity function
characterizes the temporal variation in event occurrence rates within the process.
By comparing the observed data with the expected events based on the proposed
intensity function, the goodness-of-fit test enables us to determine whether the
observed data follows the assumed model. This test helps to identify deviations
between the observed and expected event patterns. This test is based on Kulich
[2017].

Having the observed event data, denoted as {zi, i = 1, . . . , m}, where zi rep-
resents the reporting time of the i-th claim and m denotes the observed number

13



of events in the time window [0, T ]. We would like to know, whether indeed the
observed data follows NHPP with the intensity function

λ0 (t) = exp
{︃

ϱ0
1 + ϱ0

2t + ϱ0
3t

2 + ϱ0
4 cos

(︃
2πt

365

)︃
+ ϱ0

5 sin
(︃

2πt

365

)︃}︃
,

for ϱ0
1, ϱ0

2, ϱ0
3, ϱ0

4, ϱ0
5 real unknown true values of parameters. This is a quite difficult

task. Nevertheless, we can test, whether observed counts correspond to expected
counts based on the proposed intensity for time intervals of the length l for
l << T .

Let us have a model M0 : the vector O = (O1, . . . , OJ)⊤ has the multino-
mial distribution with parameters m ∈ N, J ∈ N representing the number of
observations, the number of intervals, respectively, and

p (ϱ) =

⎛⎝ 1
m

∫︂
I1

λ (t; ϱ) dt, . . . ,
1
m

∫︂
IJ

λ (t; ϱ) dt

⎞⎠⊤

the vector of probabilities of falling into the j-th interval for j ∈ {1, . . . , J} and

ϱ ∈ Rd, where
T∫︁
0

λ (t, ϱ) dt = m and d < J . In our concrete task d = 5.

We want to test the null hypothesis (H0) against the alternative (H1):

H0 : ∃ϱ ∈ Rd : p = p (ϱ) ,

H1 : ∀ϱ ∈ Rd : p ̸= p (ϱ) .

Firstly, we must divide the observation period into a set of J = ⌈T/l⌉ non-
overlapping time intervals, where ⌈r⌉ denotes the upper whole part of the num-
ber r. By the j-th interval we mean

Ij =
[︁

(j − 1) × l, j × l
)︁

for j ∈ 1, . . . , J − 1 and IJ =
[︁
J − 1 × l, T

)︁
.

Count the number of observed events that fall within each time interval.

Oj =
m∑︂

i=1

I {zi ∈ Ij} for j ∈ 1, . . . , J.

Then calculate the expected number of events in each time interval based on the
proposed intensity function. This can be done by integrating the ML estimate of
the intensity function, obtained analogously as in Section 2.1.2, over each interval.

Ej =
∫︂
Ij

λ̂ (t, ϱ̂) dt for j ∈ 1, . . . , J,

where ϱ̂ denotes the ML estimate of ϱ and Ej the expected number of claims
reported in the j-th interval based on the estimated intensity.

To perform the goodness-of-fit test, we need to formulate the test statistic to
assess the discrepancy between the observed and the expected number of events
in different time intervals. Calculating the chi-square statistic using the following
formula:

χ2 =
J∑︂

j=1

(Oj − Ej)2

Ej

.
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The resulting chi-square test statistic, under the null hypothesis, has an
asymptotic chi-square distribution with J − d − 1 degrees of freedom. We can
use this distribution to calculate the p-value associated with the observed test
statistic.

p-value = 1 − Fχ2
J−d−1

(χ2),

where Fχ2
J−d−1

denotes the distribution function of chi-square distribution with
J − d − 1 degrees of freedom and χ2 denotes the calculated value of the test
statistic.

Finally, based on the calculated p-value, we can make a decision regarding the
goodness-of-fit. If the p-value is below a predetermined significance level (e.g.,
0.05), we reject the null hypothesis of the intensity function being a good fit for
our data. Otherwise, we cannot reject the null hypothesis.

2.3 IBNR Reserve Prediction
The IBNR claim reserve for the period [s, t) can be expressed as

IBNR[s,t) =
Nt∑︂
i=1

YiI{s < Si ≤ t}I{Zi > t},

where
I{X < t} =

{︃
1, X < t,
0, X ≥ t.

If the reserves are calculated on a yearly basis, s denotes the beginning of the year
for which is the reserve calculated, and t denotes the beginning of the following
year. Since we do not take into account the RBNS reserve, the following holds:

IBNR[s,t) =
N[s,t)∑︂
i=1

Yi −
N ′

[s,t)∑︂
i=1

Yi, (2.6)

where N ′
[s,t) denotes the number of reported claims up to time T that occurred

in the time period [s, t) and N[s,t) denotes ultimate number of accidents that
occurred in [s, t).

This is one of the possible applications of constructed theoretical approach.
Firstly, we estimate parameters ϱ, ϑ, and γ for specified parametric distributions
through MLE approach. In our specific case

ϱ = (ϱ1, ϱ2, ϱ3, ϱ4, ϱ5)⊤ ,

ϑ = (ϑ1, ϑ2)⊤ ,

γ = (γ1, γ2)⊤ ,

assuming the intensity of the reporting process of the exponential form depending
on five parameters, log-normally distributed delays, and log-normally distributed
claim amounts.

Then we plug in our estimated values of parameters to theoretically expressed
results and generate many realizations of the marked occurrence process with
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estimated intensity λ̂transf (s; ϱ̂, ϑ)̂ and claim amounts as marks. ”This is called
a Monte Carlo approximation, named after a city in Europe known for its plush
gambling casinos. Monte Carlo techniques were first developed in the area of
statistical physics — in particular, during development of the atomic bomb —
but are now widely used in statistics and machine learning as well.” (Murphy
[2012], p. 52)

Consider K Monte Carlo samples. For every k = 1, 2, . . . , K we generate a
prediction of the number of events

Nk
[s,t) ∼ Po

⎛⎝ t∫︂
s

λtransf (a) da

⎞⎠ ,

and particular claim amounts

Y k
i ∼ LN(γ1, γ2) for i ∈

{︁
1, . . . , Nk

[s,t)
}︁

.

Finally, we calculate IBNRk
[s,t) as stated in (2.6). The distribution through k

provides us the empirical distribution for the prediction of the reserve.
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3. Real Data Analysis – IBNR
Reserves
Insurance companies face significant challenges in accurately estimating the ex-
pected claims that they will receive in the future. These estimates are crucial for
calculating appropriate reserves, insurance premiums, managing risk, and ensu-
ring financial stability. Traditional methods for estimating claims amounts and
frequencies, such as chain-ladder and Bornhuetter-Ferguson, assume homogeneity
in the underlying claims process, which may not always be appropriate in prac-
tice. In recent years, there has been growing interest in using stochastic models
that allow for more flexible and realistic assumptions about the underlying claims
process.

One such approach is stochastic micro claims reserving, which involves deal-
ing with times of claims occurrence as arrival times of some stochastic process.
This method takes into account the individual characteristics of each claim and
uses statistical techniques to model the underlying process. In particular, the
ν-transform of reporting dates can be used to estimate the intensity of the claim
occurrence process from the claim reporting process, while considering that we
observe the truncated distribution of delays.

The advantage of stochastic micro claims reserving is that it allows for more
realistic assumptions about the underlying claims process, which can lead to
more accurate estimates of expected claims amounts and frequencies. However,
it is important to note that this approach is more computationally intensive and
requires more data than traditional methods. As a result, simple methods are
still widely used in practice.

In this practical part of my diploma thesis, I will estimate the intensity of the
claims reporting process, the distribution of delays and the distribution of claim
amounts. Then, by applying the ν-transform I will obtain the estimate of the
intensity of the claims occurrence process. I will generate claim amounts for each
simulated total number of claims and obtain the IBNR claim reserve prediction
by subtracting the observed total claim amount from the corresponding predicted
total claim amount. By doing so, I aim to demonstrate the potential benefits of
this approach.

3.1 Problem Formulation
Our aim is to estimate the intensity of claims occurrence process N , further
denoted as λtransf . We have m triplets of observations

(Zi = zi, Wi = wi, Yi = yi, i = 1, . . . , m) ,

where the observed number of events between time 0 and T , MT , is equal to m,
zi, wi, yi denotes the i-th claim’s observed reporting time, delay in reporting, and
amount, respectively. Reporting times form the claim reporting process M with
the intensity λorig.
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3.2 Data Description
Czech Insurers’ Bureau collects data about claims from the MTPL insurance that
are caused by unidentified or uninsured drivers. We have observations from the
beginning of the year 2017 to the end of the year 2019 that contain information
about 6 212 material claims characterized by

• claim ID (up to 6 digit number),

• claim amount paid (in CZK),

• accident time (integer part = number of days from January 1, 1900),

• reporting time (integer part = number of days from January 1, 1900).

Nevertheless, we are going to use only the data from the first two years for model-
ing purposes and the information from the last year 2019 serves for comparison to
our prediction. From the beginning of the year 2017 till the end of the year 2018,
there were 4 237 claims reported. It should be noted that times are provided as
decimal numbers, so we can model them as continuous variables.

Amount Accident Reporting Delay
Min. 278 Min. -1 217 Min. 0 Min. 0.111
1st Qu. 14 361 1st Qu. 173 1st Qu. 216 1st Qu. 3.160
Median 30 030 Median 350 Median 395 Median 9.876
Mean 50 384 Mean 344 Mean 387 Mean 42.679
3rd Qu. 60 825 3rd Qu. 533 3rd Qu. 571 3rd Qu. 40.001
Max. 2 078 020 Max. 725 Max. 728 Max. 1 404.465

Table 3.1: Summary of the data set (amount, accident, reporting rounded to
whole numbers and delay rounded to three decimal places).

From Table 3.1 we can see that the first claim was reported on January 1,
2017, and the last on December 30, 2018. Looking at accident dates we can
see that in the claim occurrence process, the first event occurred on September 2,
2013, and the last was on December 27, 2018. When it comes to the claim amount
paid, it is in the range from 278 to more than 2 million CZK. Data contain values
of the delay from a few hours up to almost four years.

In Figure 3.1 we can see the trajectory of the claims reporting process.

3.3 Estimating Parameters
In this section we apply the knowledge derived in the previous chapter to get
the desired result: an estimate of the intensity of the claim occurrence process.
Throughout this section, we assume that

• reporting process forms a nonhomogeneous Poisson process,

• distribution of delays does not change in time.

All data were processed and most calculations were performed in R Core Team
[2021] software.
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Figure 3.1: Reporting process trajectory, first 20 occurrences (0 denotes Jan-
uary 1, 2017).

3.3.1 Intensity of Reporting Process
Specifically, we think of the intensity λorig of the form

λorig (t; ϱ) = exp
{︃

ϱ1 + ϱ2t + ϱ3t
2 + ϱ4 cos

(︃
2πt

365

)︃
+ ϱ5 sin

(︃
2πt

365

)︃}︃
,

for t > 0.
We consider having data from the ongoing operations of the insurance com-

pany, not from its initial establishment or start of business. Specifically, we take
into account all claims that were reported in years 2017-2018, possibly with the
accident dates before 2017. The intensity of the NHPP was estimated in R Core
Team [2021] package NHPoisson by maximization of (2.2). Estimated parameters
are stated below.

ϱ̂
.=

⎛⎜⎜⎜⎜⎝
1.494
1.189 × 10−3

−9.978 × 10−7

1.899 × 10−3

−5.630 × 10−2

⎞⎟⎟⎟⎟⎠ . (3.1)

Performing the Goodness-of-fit test mentioned in detail in Section 2.2 for 30-
day-long intervals gives us the value of the test statistic χ2 approximately equal
to 28.640. The p-value is about 0.072, so on the 5% significance level we cannot
reject the null hypothesis that the data are generated by NHPP with the proposed
form of the intensity.
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Figure 3.2: Empirical intensity calculated on a weekly basis and fitted parametric
intensity of the claims reporting process (0 is 1. 1. 2017).

In Figure ?? we can see the comparison of the empirical and the estimated
intensity of the reporting process.

3.3.2 Distribution of Delays
In this section, we focus on the delays Wi – the time between the reporting Zi

and the occurrence Si of an accident. We assume that delays have a log-normal
distribution. Parameters of the distribution can be estimated from the observed
data by maximizing the following logarithmic likelihood function

log
(︁
LW |Z(ϑ, zi; wi, i = 1, . . . , m)

)︁
= ℓW (ϑ; wi, i = 1, . . . , m)

=
m∑︂

i=1

log
[︄

1
ϑ2wi

√
2π

exp
{︄

−
(︁

log (wi) − ϑ1
)︁2

2ϑ2
2

}︄]︄
(3.2)

where ϑ = (ϑ1, ϑ2)⊤ in this case. Maximizing expression (3.2) with respect to ϑ
we obtain MLE of ϑ

ϑ̂
.= (2.427, 1.664)⊤ . (3.3)
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3.3.3 ν-transform
Assuming that reporting times form a nonhomogeneous Poisson process, by The-
orem 4 we get that the occurrence process is a nonhomogeneous Poisson process
with the intensity of the form (1.1).

Especially, the estimate of the intensity of the occurrence process we get by
plug-in approach from formula (2.5), it can be expressed as

λ̂transf (s) =
∞∫︂

s

exp
{︃

ϱ̂1 + ϱ̂2t + ϱ̂3t
2 + ϱ̂4 cos

(︃
2πt

365

)︃
+ ϱ̂5 sin

(︃
2πt

365

)︃}︃

× 1
ϑ̂2(t − s)

√
2π

exp
{︄

−
(︁

log (t − s) − ϑ̂1
)︁2

2 × ϑ̂
2
2

}︄
dt.

(3.4)

Figure 3.2 shows the empirical and the ν-transformed intensity of the claims
occurrence process. At the end of the observation period, we can see a steep
decrease of the empirical intensity of the claim occurrence process. This is partly
caused by the truncation. We do not know about many last claims occurred,
because of the reporting delay.
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Figure 3.3: Empirical intensity calculated on a weekly basis and the intensity
calculated by the ν-transform of the claims occurrence process (0 is 1. 1. 2017).

21



3.3.4 Distribution of Amounts
Trying to fit the data with log-normal, gamma, and Pareto distribution based
on the Akaike Information Criterion (AIC) we opt for the log-normal model as
the best. This decision also supports Figure 3.3. Concrete values of the AIC for
above-mentioned models can be seen in Table 3.2.

Log-normal Gamma Pareto
AIC 41 349 41 689 41 394

Table 3.2: AIC value for claim amounts data fitted by different distributions.
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Figure 3.4: Histogram of logarithmic claim amounts.

The ML function is following

LY (γ; yi, i = 1, . . . , m) =
m∏︂

i=1

1
γ2yi

√
2π

exp
{︄

−
(︁

log (yi) − γ1
)︁2

2γ2
2

}︄
, (3.5)

where γ = (γ1, γ2)⊤ in this case. It has been maximized expression (3.5) with
respect to γ and the solution is

γ̂
.= (3.316, 1.155)⊤ (3.6)

In Figure ?? we can see that the fitted density captures the data well.
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Figure 3.5: Histogram of claim amounts with fitted density (red).

3.4 Generating IBNR
Let us state that by the final model M we mean the model that assumes:

• {Zi, i = 1, . . . , m} are arrival times of NHPP with intensity λ(t, ϱ̂) for ϱ̂
stated in (3.1),

• Wi are log-normally distributed with parameter ϑ̂ stated in (3.3),

• the claim occurrence process N is NHPP with intensity λ̂transf (s) stated
in (3.4),

• Yi are log-normally distributed with parameter γ̂ stated in (3.6).

We have generated K = 1000 simulations of possible scenarios. Firstly, we
look at generated counts of occurred accidents in each year. Figure 3.4 shows the
comparison of the mean count of occurred claims generated by the NHPP with
intensity (3.4) and observed counts from the data. The mean number of claims
per specific year was calculated by numerical integration of

t∫︂
s

λ̂transf (s) ds,

by Wolfram Research, Inc. We can say that the model M stands up well. Al-
though it does not have the data from the year 2019, it predicts a reasonable
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value for that year. As we deal only with material claims, usually the biggest
portion of the total claim count is reported in the year of occurrence of the claim.
Bearing in mind that the model M is based on observations from years 2017 and
2018 (the data till 2018).

Let us focus on the yellow and blue bars in Figure 3.4, the model M predicts
almost the same mean total claim count as the claim count observed in the data
till 2018 for events that occurred in the year 2017. The total claim count predicted
by the model M for the year 2018 is higher than the observed claim count in
the data till 2018, as can be expected. Looking at yellow and green bars in the
same figure, we can say that the model M predicts the total count of claims
that occurred in the year 2017, 2018 respectively, only a little bit lower than the
number of claims occurred in corresponding years considering the data till the
end of the year 2019. Even if the model M does not know what will happen in
the year 2019. Especially, for claims that occurred in the year 2019 the model M
predicts a higher total number of claims than the number of claims observed in
2019.
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Figure 3.6: Comparison of the mean value of the model M with reality.

For each claim count Nk generated there were simulated Nk claim amounts
from previously estimated distribution in Section 3.3.4. The difference in total
claim amount simulated and observed per corresponding year gives us the INBR
claim reserve. In Table 3.3 and 3.4 we can see basic characteristics of the IBNR
claim reserve distribution for each year. More specifically, in Figure 3.5 and 3.6
are shown histograms of the simulated IBNR claim reserve predicted values. With
99% probability claims reported after the year 2018 that occurred in the year 2017
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will not exceed the amount of 12 737 907 CZK. Similarly, for claims reported after
the year 2018 that occurred in 2018, we state that their total amount will not be
higher than 27 543 360 CZK.

Min. 1st Qu. Median Mean 3rd. Qu Max.
-2 762 734 4 575 612 6 290 720 6 336 770 8 197 856 14 730 793

Table 3.3: Summary of simulated INBR claim reserves per year 2017.
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Figure 3.7: Histogram of simulated IBNR claim reserves for 2017.

Min. 1st Qu. Median Mean 3rd. Qu Max.
12 408 250 19 395 995 21 606 516 21 258 683 23 253 522 28 628 612

Table 3.4: Summary of simulated INBR claim reserves per year 2018.

Finally, in Figure 3.7 we can see the mean predicted IBNR claim reserve at
time T (end of the year 2018) for each year – the yellow bar. The blue bar repre-
sents the total claim amounts observed in the year 2019 for claims that occurred
in the previous two years. Note that the total claim amount observed till time
T is 104 620 234 CZK for claims that occurred in the year 2017 and 100 706 878
CZK for claims that occurred in the year 2018. Evaluating the model M we can
say that it predicts reasonable values for the ultimate claim amount based on the
two-year observation period. We must point out that material claims do not have
heavy tails as for example, bodily injury claims do.
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Figure 3.8: Histogram of simulated IBNR claim reserves for 2018.
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Figure 3.9: Comparison of the mean predicted IBNR claim reserve calculated
at the end of the year 2018 (yellow) and the sum of claim amounts for claims
reported in 2019 that occurred in the previous years (blue).
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Conclusion
In conclusion, the task of dealing with marked stochastic processes, where some
realizations of the process are cut off, has been successfully fulfilled in this thesis.
Whole problematics has been incorporated in the context of delayed reporting of
claims in non-life insurance.

The first chapter provided a thorough theoretical background, introducing
the homogeneous Poisson process and its generalization, as well as the concept
of marking. The ν-transform was defined for general processes, especially, the
intensity of ν-transformed process was expressed in Theorem 4 for the case of
the Poisson process, accompanied by an illustrative examples. Additionally, we
mentioned the problem of truncation.

In the second chapter, there was expressed the maximum likelihood function
for the marked process. The goodness-of-fit test was proposed for nonhomoge-
neous Poisson process. Moreover, the approach how to generate the IBNR claim
reserve distribution was listed.

The third chapter applies the theoretical approach to claim data from the
Motor Third Party Liability insurance provided by the Czech Insurers’ Bureau.
Making specific assumptions a simple model was created, but extensions with
time-varying parameters are possible as it was mentioned in the second chapter.
The estimated intensity of the occurrence process was obtained assuming that
the reporting process forms a nonhomogeneous Poisson process, and that delays
are log-normally distributed, and that the distribution of delays does not change
in time. Finally, the IBNR claim reserve prediction was made.

The key contribution of this thesis is the well-arranged elaboration of the usage
of the ν-transform in the claims reserving problem to estimate the occurrence
process intensity while dealing with truncated data. Also, we get the empirical
distribution of the IBNR claim reserve prediction. Nevertheless, this method
is computationally intense as it uses data that would otherwise be discarded in
aggregation.

The methodology presented in this thesis can be extended to more complex
cases. Future works can focus on including time-varying conditional distribu-
tion of delays or modeling the reporting process by some more complex process.
Moreover, there can be incorporated a payment process. The common situation
in practice is when there is not just one payment as it was assumed here, but
more payments of different amounts made at different times. The practical appli-
cation to estimate claim reserves for insurance companies can provide significant
benefits by making use of the data collected by insurance companies about each
claim and not just aggregating them as it is routine nowadays.

Overall, this thesis provides a foundation for future work in this area. This
approach has the potential for practical applications in the insurance industry.
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