
MASTER THESIS

Tomáš Čelko

Clustering hits and predictions in data
from TimePix3 detectors

Department of Software and Computer Science Education

Supervisor of the master thesis: RNDr. Frantǐsek Mráz, CSc.

Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Firstly, I would like to express my gratitude towards my thesis advisor RNDr.
Frantǐsek Mráz, CSc. from the Faculty of Mathematics and Physics, Charles
University, for his patient guidance during the work on the thesis.

Additionally, I would like to thank MSc. Benedikt Ludwig Bergmann, PhD.
from the Institute of Experimental and Applied Physics, Czech Technical Uni-
versity, for his ideas and help with the thesis.

A special thanks goes to Mgr. Ing. Petr Mánek, for the inspiration on the
software design and also to all of my colleagues from the Institute of Experimental
and Applied Physics for their insightful comments.

And last but not least, I am grateful to my girlfriend and family for their
unending support.

ii

Title: Clustering hits and predictions in data from Timepix3 detectors

Author: Tomáš Čelko

Department: Department of Software and Computer Science Education

Supervisor: RNDr. Frantǐsek Mráz, CSc., Department of Software and Computer
Science Education

Abstract:

Hybrid pixel detectors like Timepix3 and Timepix4 detect individual pixels hit
by particles. For further analysis, individual hits from such sensors need to be
grouped into spatially and temporally coinciding groups called clusters. While
state-of-the-art Timepix3 detectors generate up to 80 Mio hits per second, the
next generation, Timepix4, will provide data rates of up to 640 Mio hits, which
is far beyond the current capabilities of the real-time clustering algorithms, pro-
cessing at roughly 3 MHits/s.

We explore the options for accelerating the clustering process, focusing on its
real-time application. We developed a tool that utilizes multicore CPUs to speed
up the clustering. Despite the interdependence of different data subsets, we
achieve a speed-up scaling with the number of used cores. Further, we exploited
options to reduce the computational demands of the clustering by determining
radiation field parameters from raw (unclustered) data features and automatically
initiating further clustering if these data show signs of interesting events. This
further accelerates the clustering while also reducing storage space requirements.
The proposed methods were validated and benchmarked using real-world and
simulated datasets.

Keywords: pixel detectors timepix3 clustering machine learning

iii

Contents

Introduction 3

1 Analysis 6
1.1 Timepix detectors . 6

1.1.1 The Medipix family . 6
1.1.2 Timepix3 . 7
1.1.3 Timepix4 . 10

1.2 Katherine readout . 11
1.3 From hits to clusters . 12
1.4 Cluster morphology . 13
1.5 Existing clustering approaches . 14

1.5.1 Frame based clustering . 14
1.5.2 Data-driven clustering . 14

2 Goals of the thesis 18

3 Clustering parallelization 20
3.1 Step-based parallelization . 20
3.2 Data-based parallelization . 21

3.2.1 Spatial parallelization . 22
3.2.2 Temporal parallelization 24

3.3 Merging the datastreams . 27
3.3.1 Baseline merging . 27
3.3.2 Tree-based merging . 31
3.3.3 Single-layer merging . 32

3.4 Parallelization data flow . 33

4 Bounding box clustering 36

5 Clustering triggers 39
5.1 Energy-hit-based trigger . 40
5.2 Generalized window trigger . 41

5.2.1 Differentiating the features 42
5.2.2 Explicit interval trigger . 43
5.2.3 Implicit ML-based trigger 43
5.2.4 Combining triggers with parallelization 47

1

6 Experiments 49
6.1 Experiments setup . 49

6.1.1 Testing data . 49
6.1.2 Tested models . 50

6.2 Correctness . 52
6.2.1 Metric . 52
6.2.2 Similarity metric computation 52
6.2.3 Results . 54

6.3 Performance . 56
6.3.1 Hardware . 56
6.3.2 Simulation of online environment 56
6.3.3 Results . 58

Conclusion 67

Bibliography 70

List of Figures 74

List of Tables 76

A Attachments 77
A.1 User manual for the developed tools 77

A.1.1 Clusterer . 78
A.1.2 Window processor . 83
A.1.3 Window trigger creator . 87

2

Introduction
Over the years, many experimental physicists strove for a better understanding
of particle interactions. The first step to comprehend the behavior of elementary
particles is to observe them. That is also one of the purposes of the detectors
developed in the Medipix collaboration facilitated by CERN. Even though the
collaboration mainly focused on the medical application of the detectors, they
are a valuable tool in the area of high-energy physics.

This collaboration produced a widely used detector chip called Timepix3 [1].
During the measurement, when an ionizing particle enters its sensor area, it causes
the charge carriers to drift toward the sensitive pixels located in a 256×256 grid.
The corresponding pixels then generate so-called hits. Timepix3 is capable of
detecting these hits very precisely – with a pixel width of 55 µm and a time
precision of 1.56 nanoseconds. Each particle (which may or may not decay into
secondary particles) can generate multiple such hits, which together form a group
known as a ‘cluster’ (created during ‘clustering’). These clusters are then further
analyzed by the physicists.

Detector applications

Detectors of the Medixpix collaborations have been proven valuable for various
applications in fundamental research [2] and life science [3]. Apart from that,
there are other applications of these detectors worth mentioning:

• Timepix3 – High-energy physics – particle identification. With
Timepix3, we can reconstruct the trajectories of the particles in the detected
events and analyze their properties. Then, based on the recorded data, it
is possible to infer which particles were likely interacting in the particular
event. Additionally, it is possible to work with multiple detectors stacked on
top of each other. Here, the task is to identify the tracks that coincide, which
means they were likely generated by the same particle. This enables us to
describe the trajectories in more detail and possibly improve the accuracy
of particle identification (further described by [4]).

• Timepix3 – Medicine – Ion beam radiotherapy. In contrast to con-
ventional radiotherapy, ion beam radiotherapy can better focus the beam
at the target, which minimizes the potential damage caused by the beam to
the surrounding healthy tissue. Even though this can be viewed as an ad-
vantage, it also introduces another challenge – the quality of the delivered
dose distribution becomes more sensitive to the changes in the stopping

3

power of patient tissue. By utilizing helium ion radiation and the Timepix3
detectors, it is possible to obtain high-contrast images of the beam profile,
as shown in [5]. Such images are then used to improve the accuracy of the
beam and minimize the collateral damage to the healthy tissue.

• Timepix [6] (Timepix3 predecessor) – Radiation monitoring in
Space – The Space Application of Timepix-based Radiation Mon-
itor (SATRAM). ‘SATRAM is a spacecraft platform radiation monitor
on board the Proba-V satellite launched in an 820 km altitude low Earth
orbit in 2013.’ [7] The goal of this detector is to determine the compo-
sition (particle type) and spectral characterization (energy loss) of mixed
radiation fields around the Earth’s orbit.

Currently, a new Timepix4 [8] chip is in development, with an even larger pixel
matrix of 440×512 pixels and a temporal resolution of as few as 200 picoseconds.

It is evident that the capabilities of the new chips also present more challenges
for the software. With the increase in data rates, there is a need to build efficient
algorithms for data processing.

As one of the first and most essential steps of the data analysis is clustering,
we explore possibilities to make the clustering faster. We aim to discuss and
implement three options to increase clustering efficiency, as discussed below.

Parallel clustering. By effectively distributing the work between multiple CPU
cores, we could increase the processing hit rate of the clustering. Unfortunately,
the increase in speed is not guaranteed, as we can expect a non-trivial overhead
from the parallelization.

Approximative clustering. Instead of producing the exact clusters, we might
want to sacrifice the quality of clusters for a possible performance gain. For in-
stance, we can utilize the observation that high-energy hits tend to be surrounded
by other hits or relax the definition of the cluster.

Selective (machine-learned) clustering. Unsurprisingly, not all of the large
amounts of data are considered ‘interesting’ for physicists. In principle, such
data do not necessarily need to be clustered. In some cases, it might be difficult
to exactly describe which data is worth clustering. Here, machine learning (ML)
can be used to pick the ‘interesting’ data for clustering. As this decision needs to
be made in a very short time, it is critical that the inference of the ML model is
computed quickly, which limits the selection of viable ML models.

Clustering applications

Standardly, the clustering is performed ‘offline’ after the raw data is acquired
and stored on disk. An efficient clustering algorithm could allow clustering in

4

real-time, even for radiation sources with high particle fluxes. And instead of
saving raw data (hits), the clustered data can be saved to the disk.

Another advantage of real-time clustering is the possibility of subsequent real-
time filtering of clusters. The capabilities of post-clustering filtering are much
higher as the creation of clusters introduces many more measurable features
(which are usable for filtering).

Additionally, the data reduction from selective clustering could allow the de-
tectors to have a larger uptime and process more data while either discarding the
redundant data or compressing it into short statistics.

Thesis layout

In Chapter 1, we describe the Timepix3 detector and the data it produces. We
also define the key terms and discuss the existing clustering approaches. In Chap-
ter 2, we present the main goals this thesis aims to achieve. In Chapter 3, we
discuss the options for the distributed computation of the clustering algorithm.
In Chapter 4, an approximative clustering method is discussed, which tries to
trade cluster quality for the potential acceleration of the clustering. In Chapter
5, we describe selective clustering, with an application of machine learning. In
Chapter 6, we perform multiple experiments to analyze the correctness of the
proposed methods. Furthermore, the maximal speed of the clustering methods is
tested on various datasets.

5

1. Analysis
This chapter introduces the basic concepts relevant to clustering and summarizes
the related work in the field. Additionally, we provide the definitions of the
key terms used further in the thesis. First, in Section 1.1, we describe the origin,
properties, and usage of the Timepix detectors. Second, in Section 1.2, we provide
the basic properties of the Katherine – a frequently used piece of hardware to
extract data from the Timepix detectors. Moreover, we also discuss the data it
produces. Then, in Section 1.3, we define the clusters and the process of their
creation, called clustering. We also discuss the existing clustering approaches.

1.1 Timepix detectors

1.1.1 The Medipix family

The origin of the Timepix detectors can be traced back to the 1990s. At that time,
the first collaboration, Medipix1, was facilitated by CERN (European Organiza-
tion for nuclear physics). The goal of the collaboration was to extend possible
applications of the technology, primarily intended for the large hadron collider
(LHC), to other areas, like medicine.

One of the results of the collaboration was the first Medipix1 chip. It was
equipped with a 64x64 pixel sensor, where each pixel had a specified voltage
threshold. The pixels would generate a hit if the induced charge at the pixel were
higher than the threshold. In principle, it operated similarly to a standard camera
– the detector counted hits while its shutter was open. This process generated
image-like data.

A few years later, the follow-up Medipix2 collaboration started. It pro-
duced the Timepix chip, which had notable improvements when compared to
the Medipix1. It came with a larger sensor with 256× 256 pixels. The chip was
programmable to operate in three modes. First, it could count the hits above the
threshold. Second, it could record the time when the induced charge exceeded
the threshold, called time over the threshold (ToT). And third, it measured the
time of arrival (ToA), which is the moment when the threshold was exceeded.
The programmability vastly extended the field of possible applications, which is
why this chip is still used, more than twenty years after its creation.

6

Figure 1.1: An image of Timepix3 detector with silicon sensor [9]. To better
illustrate the working principle, the sensor has an overlay of sample data created
by the detection of charged particles.

1.1.2 Timepix3

The third collaboration, Medipix3, provided two major improvements to its pre-
decessor. In the new Timepix3, (for illustration, see Figure 1.1) chip’s data-driven
mode, the shutter was removed, and the frame-based processing was replaced by
continuous sparse data readout. In continuous sparse data readout, the hits are
transferred asynchronously in a stream. This way, the pixels with no hits do
not need to be transferred, effectively reducing the amount of produced data
and allowing faster further data processing. Moreover, it allows for simultaneous
readout of both the time of arrival (ToA) and the time over the threshold (ToT).
In the table below (Table 1.1), we present some of the characteristic features of
the Timepix3 detector.

Features of the Timepix3 detector
Feature Value

Pixel matrix 256× 256
Pixel size 55 µm × 55 µm

ToA precision 1.56 ns
Numbers of bits per hit 48

Data sent per hit spatial coordinate (16 bits), ToT (10 bits), ToA (14
bits slow clock + 4 bits fast clock), and four ex-
tra bits (metadata with hexadecimal value 0xA) to
mark the packet as data packet

Maximum data rate 40 million hits per second per cm2

‘Slow clock’ frequency fslow = 40 MHz
‘Fast clock’ frequency ffast = 640 MHz

Table 1.1: Basic properties of Timepix3 detector.

7

Data acquisition

The data acquisition with Timepix3 is a complex process that consists of multiple
steps (see also Figure 1.2)

1. Ionization. When the charged particle traverses the sensor material, it
creates ionization along its path. The ionization then results in the electrons
moving from the valence band to the conduction band.

2. Drift. When the detector is powered on, there is a constant electric field in
the area of the sensor. This field causes the charge carriers to drift toward
the pixel electrodes in the sensor. Besides the electrons, the positively
charged holes can be used as the charge carriers, which move in the opposite
direction than the electrons. Let us denote the time of drift of a charge
carrier tdrift. The maximum possible value of tdrift depends on many physical
properties of the measurement, like the strength of the electric field, the
material of the sensor, the thickness of the sensor, and the temperature.

3. Charge induction. When the charge carrier approaches the pixel, it starts
inducing its charge into a sensitive area of the pixel. This way, the signal
is created.

4. Signal amplification. The amplitude of the signal induced in the pixel is
too small for further processing. It is first amplified in the circuit near the
pixel to enable correct measurement of the signal.

5. Digitization. After the amplification, the detector reads the signal from
each pixel. In the readout electronics, the analog signal is digitized to
the values corresponding to the intensity of the received analog signal. The
digitization is performed for the prespecified signal threshold. The digitized
values are then the aforementioned time over threshold and time of arrival.

6. Read out and processing. The digital signal is then read out by the user
for further processing. In the data-driven mode, one of the first processing
steps typically includes grouping the hits together to form an event, also
known as clustering. Then, based on the properties of the clusters, the data
is filtered, and last, the data is written to a disk for further ‘offline’ analysis.

8

Figure 1.2: An illustration [9] of the data acquisition process with Timepix3,
described by the part 1.1.2.

Partial orderliness

On the chip, the data from the sensor are processed column-wise, which does not
guarantee that the individual hits are temporally ordered. In other words, given
hits hA and hB which occurred at times tA and tB, tA < tB, the hit hA could be
transferred later than hB. Nevertheless, from the properties of the hardware, we
can provide the bound on the ‘orderliness’ of the data. For that, we define the
term t-ordered sequence.

Let {t1, t2, . . . , tn} be a sequence of the time of arrival of hits received by the
computer from the readout. We say this sequence is t-ordered if for all indices
i < j it holds ti < tj + t.

For the Katherine readout, it was assessed that for tmax = 500µs, the hits
are tmax-ordered. It implies that after receiving the hit with the time of arrival
tcurrent, all the hits with the time t < tcurrent − tmax must have already arrived
(otherwise, it would be in a contradiction with t-orderliness). As we will see
later, this observation simplifies the required sorting.

Time measurement

For better accuracy of the measured time information, we utilize information
from both the ‘slow’ and the ‘fast’ clock. The time of arrival in seconds can be
computed given the number of ticks of the slow clock ToAslow and the fast clock
ToAfast as ToA = ToAslow

fslow
− ToAfast

ffast
. This, however, is not sufficient to compute the

true value of ToA. During the measurement, we can notice that the rise time of
the signal for a pixel does not depend on the signal amplitude; see Figure 1.3.
Here, the rise time is defined as the time from the start of the signal rise until it

9

Figure 1.3: Dependence of time of arrival on the signal amplitude. The red arrow
denotes the ToA differences.

reaches its peak. Therefore, we can see that signal with a lower amplitude reaches
the threshold slower than the high-amplitude signal. Thus, we need to lower the
value of ToA for low-amplitude signals. This phenomenon is called the ‘Timewalk
effect’. The parameters for the compensation are set during the calibration [10].

Energy measurement

Because of the independence of the rise time and the amplitude, the non-linearity
is also observed in the measurement of the deposited energy. This time, however,
we are measuring the time over the threshold, which means the compensation
should be inverse compared to the compensation for ToA. Thus, the ToT needs
to be increased for low-amplitude signals. Because of the energy calibration, we
can convert the ToT values directly to the energy deposited in the sensor. The
resulting conversion formula between the ToT value and deposited energy e in
the hit of a pixel x is then shown below.

ToT (x) = a · e(x) + b− c

e(x)− t

1.1.3 Timepix4

The newest member of the Medipix detector family was named Timepix4 (see
Figure 1.4). As of now (2023), it is still under development, but the first pro-
totypes have shown promising results. With the increased size of the sensor to
448 × 512 pixels and an even better time resolution of 200 picoseconds, it offers
more detailed particle tracking. On the other hand, because of its capability
to handle extreme particle fluxes of up to 3.4 MHz per mm2 per second, it can
produce huge amounts of data, which puts more pressure on developing fast and
efficient data processing methods.

10

Figure 1.4: A photo of Timepix4 taken during a measurement.

1.2 Katherine readout

The Katherine readout (see Figure 1.5) is a device that handles the commu-
nication between the Timepix3 chip and a computer. The main advantage of
this readout is that it supports a long-distance Ethernet connection. The cable
length can reach up to 100 meters, which is especially useful in environments
where human interference is impossible. Such a scenario is rather common dur-
ing measurements with highly ionizing radiation. Depending on the used cable
types, the maximum hit rate supported by Katherine is as high as 16 MHit·s−1.
Notably, longer cables decrease the communication speed between the readout
and the detector.

Figure 1.5: An image of the Katherine readout device [11]

11

1.3 From hits to clusters

The hits produced by the detector carry three pieces of information – spatial,
temporal, and information on induced charge (≈ energy). Formally, the hit can
be defined as a tuple (x, y, ToA, ToT), where x and y are the pixel coordinates,
ToA is the time of arrival and ToT is the time over the threshold. However,
it is difficult to draw any conclusions from the data contained in a single hit.
Additionally, the hits can be seen only as a feature describing an event near the
sensor. Each event can be mapped in a 1 : n relationship to the hits detected
by the sensor. To define this mapping, we need first to define a few terms con-
cerning the neighborhood of a hit. We say two hits with spatial coordinates
(x1, y1) and (x2, y2) are spatially neighboring if |x1 − x2| ≤ 1 and |y1 − y2| ≤ 1.
This type of neighboring is often referred to as an 8-fold neighborhood. Similarly,
two hits with the times of arrival t1 and t2 are considered temporally neighboring
for a predefined constant dtmax, if |t1− t2| ≤ dtmax. Utilizing these two definitions
of the neighborhood, we can define the cluster of hits.

Suppose that C = {h1, h2, . . . , hn} ⊂ H is a subset of all received hits H. We
say that C forms a cluster if, for each pair of hits, (hi, hj) in C, the following
conditions hold:

(i) There exists a path P = a1, a2, . . . , am, where a1, a2, . . . , am ∈ C. Addition-
ally, a1 = hi and am = hj and for all k ∈ {1, 2, . . . , m − 1} the hits ak and
ak+1 are both temporally and spatially neighboring. Therefore P is
the path of neighboring pixels connecting hi and hj.

(ii) There does not exist a hit h ∈ H \ C both temporally and spatially neigh-
boring with the hits in C. This condition corresponds to the fact that we
are searching for all hits that can be added to a cluster.

The motivation behind this definition of the cluster stems from the fact that the
particle trajectory is modeled as a continuous curve in time and space. After
discretization into pixels, the continuity assumption is naturally replaced by the
assumption of the spatial and temporal neighborhood of the pixels.

We will consider the aforementioned definition of a cluster to be the main
definition of a cluster if not stated otherwise. Nevertheless, there also exist other
definitions of a cluster. For instance, a different definition can be called the
‘fixed-time-window cluster’, which modifies the standard cluster conditions by
introducing a new constraint: Each pair of pixels in a cluster must be temporally
neighboring. By using this constraint, we restrict ourselves to only finding clusters
with a fixed timespan of at most dtmax.

12

1.4 Cluster morphology

During the measurements, different particle types might produce different clus-
ters. These clusters can be divided into categories based on their shape. The
most common cluster types are displayed in Table 1.2.

Cluster types
Cluster category Description Prototype

dot

Dot clusters are single-pixel clusters.
The source of such tracks can be low-
energy photons and electrons travers-
ing the detector almost perpendicularly
to the plane of the sensor.

small blob
Compared to the dots, small blobs con-
sist of more pixels. They are usually
caused by X-ray photons and electrons.

straight track

Straight track is a trajectory with a lin-
ear shape, likely produced by energetic
light particles traversing the detector
under a greater (non-perpendicular)
angle.

curly track

Curly track clusters are characterized
by tracks with a non-linear shape of the
branched curve. They are often pro-
duced by charged particles like higher
energy electrons or gamma rays.

heavy blob

While being larger than a small blob,
they are typically produced by highly-
ionizing particles traversing the sensor
orthogonally (at a low angle).

heavy track

Heavy tracks mostly have a linear
shape. In contrast to straight tracks,
they are produced by particles with
higher energy, generating hits in many
more pixels along their trajectory.

Table 1.2: Cluster categories based on their shape.

13

Notably, the categories do not provide complete coverage of all possible clus-
ters. The so-called ‘exotic’ tracks might not belong to any of these categories and
require further analysis.

1.5 Existing clustering approaches

The clustering, as we defined it earlier in this chapter, is an essential step in the
data analysis chain. Let us discuss the clustering methods used in practice.

1.5.1 Frame based clustering

For detectors that function in a shutter-based mode (like Timepix), the output
data can be viewed as a sequence of image frames. Each such frame would then
be processed separately – we can analyze it like a graph G = (V, E). For each hit
in the frame, we add a node to V . Then, if hits are neighboring (both spatially
and temporally), we add a corresponding edge between them to E. Here, the task
of clustering can be translated to the task of finding connected components in a
graph, which can be solved by a graph search algorithm. For instance, depth-first
search or breadth-first search can be used to identify each component and create
clusters. Luckily, the graph does not need to be constructed in advance. We
can utilize the 2D matrix representation and search through 8-neighbors. Here,
the existence of the shutter comes with its drawbacks. For instance, the clusters,
which are separated only in temporal dimension and are present in the same
frame, would be incorrectly seen as a single cluster. Conversely, a cluster that
occurs near the closing time of the shutter can be incorrectly split into two or
more clusters.

1.5.2 Data-driven clustering

In the case of the data-driven output mode of a detector, it is possible to employ
a more ‘online’ approach, which would process the data pixel-wise. In principle,
both algorithms proposed below handle three possible scenarios based on the set
of clusters to which the hit can be added. If there is no such cluster, we create
a new cluster. If the hit can be added only to a single cluster, we simply add
the hit to the cluster. Otherwise, if there are multiple clusters, we first need to
merge them and then add the hit. The difference between these approaches lies
in the method of finding the neighboring clusters for received hits and also in the
clusters they produce.

14

1. Quad-tree clustering. We could use an algorithm described in the master
thesis of L. Meduna [12] and [13]. A slightly modified pseudocode of this
method is shown in Algorithm 1.

Algorithm 1 Data-driven quadtree clustering [12]
1: procedure processHit(hit)
2: openClusters← ∅
3: added← false
4: for cluster in openClusters do
5: if canBeAdded(cluster , pixel) then
6: if added then
7: lastCluster ← mergeClusters(lastCluster , cluster)
8: else
9: addHit(cluster, hit)

10: added ← true
11: lastCluster ← cluster
12: end if
13: end if
14: end for
15: if not added then
16: lastCluster ← createNewCluster(openClusters)
17: addHit(lastCluster , hit)
18: end if
19: closeAndDispatchOldlClusters()
20: end procedure

For this algorithm, we still need to explain how to check if a hit can be added
to a cluster. In the Algorithm 1, this check is performed in the function
‘canBeAdded’. This is the place where quadtree comes into play. So let
us define the quadtree [14]. Suppose we are given a fixed-size bitmap with
pixels having the value zero or one. Quadtree is a tree-like data structure
with the following features:

(a) Each node corresponds to a tile of pixels.

(b) The tree consists of two types of nodes – internal and external. Inter-
nal nodes have four children nodes, while external nodes have none.
External nodes correspond to tiles that are homogenously occupied by
zeros or ones. Internal nodes correspond to the tiles not fully occupied
by a single value and are therefore split further until the whole tile is
occupied by either zero or one.

(c) The most frequent division into tiles is the division with a pair of
orthogonal lines parallel to the sides of the bitmap image. Then, each
sub-region is divided recursively. For the bitmap of size 2n × 2n, the
tree can reach the maximum depth of n.

15

Figure 1.6: (a) Area homogeneously occupied by ones (in our case they are hits).
(b) Pixel matrix. (c) Names of the tiles used in the quadtree. (d) The created
quadtree labeled by the corresponding tiles. [14]

Quadtrees are an efficient compression method for image data. For the
tiles filled with the same value, only a single node is created, effectively
saving space compared to the naive implementation. The effectivity of the
compression depends on the specific image. It is least effective for the
‘chessboard’ pattern. The bigger the areas with the same value pixels, the
better the compression. For an example of the quadtree, see Figure 1.6.

For our application, we can use the quadtree to store the neighbor pixels of
a cluster. By neighboring pixels for each cluster, we mean all of its pixels
and their eight neighbors. Then, the ‘canBeAdded’ check can be translated
to the ‘find’ operation in the quadtree. This operation has the expected
time complexity O(log n), where n is the size of the cluster. After each
modification of the cluster, the quad-tree is modified to contain neighbors
of a newly added pixel.

It is worth noting that the ‘canBeAdded’ method handles only spatial neigh-
borhood condition, while the temporal neighborhood is partially handled
by periodically dispatching the old clusters (see line 18 of Algorithm 1). An
attentive reader might notice that this approach does not align with our
definition of a cluster but rather the fixed-time-window cluster, which we
consider to be a potential drawback of this algorithm.

2. Pixel-list clustering. Compared to quadtree clustering, this approach

16

uses a different implementation of ‘canBeAdded’ method. It was proposed
in the master thesis of P. Mánek [15]. Instead of an auxiliary quadtree
to store potential neighbors, at the beginning of the clustering, we create
a matrix with an entry for each pixel. Each field in the matrix contains
references to all currently open clusters containing the particular pixel and
also the reference to the corresponding hits. Upon registering the hit, all of
its eight neighbors are scanned in the matrix to find all of the neighboring
hits and their clusters efficiently. The time complexity of the ‘canBeAdded’
check is thus constant with respect to the number of pixels. In contrast
to quadtree clustering, the reference to the actual hit enables us to use
also temporal information for neighborhood check. We can see that this
approach complies with our definition of a cluster. Therefore, we decided to
reimplement this algorithm and use it as the baseline clustering algorithm.

17

2. Goals of the thesis
In this chapter, we will briefly discuss the main objectives of the thesis. The
thesis aims to:

• Analyze existing approaches used for clustering and their proper-
ties. This step is required to better understand the clustering and be able
to build on the existing algorithms.

• Design algorithms for distributed computation of clustering. This
enables the parallelization of the clustering, possibly leading to faster clus-
tering.

• Propose methods for approximative clustering. The motivation here
is to trade the quality of the clusters for the possible increase in the speed
(throughput) of clustering.

• Propose methods for selective clustering. By selective clustering, we
mean clustering only parts of the data which are specified by the user. The
data of interest should be specified by the user in one of two ways:

– Explictly. User should be able to define the data of interest by ex-
plicitly listing the desired features of the data stream.

– Implicitly (machine-learned). The data of interest could also be
selected implicitly by specifying existing examples of data with a pos-
itive or negative label. This would allow the application of machine-
learning-based models which would aim to generalize which data is
worth clustering. A simple GUI for the training of such models should
be implemented.

An application capable of both kinds of selective clustering based on user
parameters should be implemented. Additionally, the application should
provide visualization of these features, helping the user to decide which
data should be selected and then classified into one of the two classes (either
worth clustering or not worth clustering).

• Ensure that proposed methods are suitable for real-time cluster-
ing applications. Real-time data clustering is desired as it expands the
possibilities of online data filtering. (Filtering on features of a cluster can be
much more sensitive and selective than filtering individual hits). This data
reduction could save a significant amount of storage space by discarding
‘uninteresting’ clusters in real-time.

18

• Verify correctness of proposed approaches. The verification should be
performed by comparison with some of the existing clustering approaches
on the measured data.

• Evaluate the performance of the implemented clustering and ma-
chine learning models. It is critical that the performance is evaluated
using multiple datasets with various types of clusters. This ensures the
clustering algorithms are suitable for clusters of many shapes and sizes.

19

3. Clustering parallelization
Before we start with the clustering acceleration, let us first introduce the motiva-
tion behind the speedup of clustering. By clustering, we mean partitioning hits
received from the detector into groups based on temporal and spatial similarity,
as defined in Section 1.3. The Timepix3 detectors can produce large amount of
data that need to be processed. Such processing consists of multiple steps, where
the clustering part is one of the most computationally expensive. Successfully ac-
celerating this process would simply shorten waiting times for the experimental
physicists while also enabling real-time data processing of radiation sources with
higher frequencies of ionizing particles.

In this chapter, we will discuss the options for accelerating the clustering pro-
cess and analyze the properties of these approaches. First, we will identify the
steps of clustering algorithms that can be performed independently, which is sum-
marized in Section 3.1. Then, in Section 3.2, we propose methods of data split-
ting that enable the utilization of even more distributed computational power.
The process of reconstructing the clusters affected by the split is shown in Sec-
tion 3.3. And in Section 3.4, we combine the discussed methods into a complete
‘computation architecture’, which describes the complete dataflow between the
independent parts of the algorithm, implemented as a producer-consumer design
pattern [16].

3.1 Step-based parallelization

The step-based parallelization is the process where we split the clustering algo-
rithm into multiple steps that can be performed independently in a pipeline. The
process itself depends vastly on the specific clustering algorithm. In our case,
we used ‘pixel-list clustering’, described in Section 2. It is worth noting that
apart from potential speed-up, this approach introduces some degree of modular-
ity to the algorithm, making it easier to customize or extend the clustering. The
clustering algorithm can be divided into the following steps:

1. Input reading. The goal of this step is rather self-explanatory. Given the
input file or input detector readout, read the hits and prepare them for
further processing. This step also allows simple data manipulation (modify
the true frequency of hits, . . .) providing us the freedom to adjust the data
source for benchmarking purposes.

2. Hit calibration. This step converts the hits from the raw format of Kather-
ine’s readout to the so-called ‘MM hit’ format including information about

20

the energy of the hit, which is usually more convenient for potential further
analysis. Additionally, this step converts the time of arrival and time over
the threshold in clock ticks to nanoseconds.

3. Time sorting. As the data from the Katherine readout is only t-ordered
(see Section 1.1.2), additional sorting is required to obtain a fully ordered
sequence. Notably, one might wonder if sorting is truly required. First of
all, a lot of physicists consider it very practical to have the clusters fully
sorted after the clustering. And even if we decide to resign on this condition,
when we compare the expected timespan of a cluster tc (the timespan of
a cluster is the time difference between the first and the last hit in the
cluster), and t, which defines the t-orderliness, it usually holds t≫ tc. This
implies that we would need to keep the cluster in memory not for tc but for
t time units. This would effectively make assigning a new hit to the cluster
more difficult, as more clusters would be ‘open’ at a time.

4. Clustering. In this step, the sorted hits are grouped into clusters. Here,
pixel-list clustering is considered to be the baseline clustering algorithm.

5. Cluster writing. In this part, we write out the created clusters into files.
This step can be preceded by filtering or analyzing nodes to reduce the
number of clusters that are outputted. Notably, filtering can be done even
before the clustering but only in a limited manner. Introducing the concept
of a cluster creates many more options on which cluster attributes can be
used for filtering. For example, in contrast to pre-clustering filtering, we can
now estimate the shape of the cluster or even try to identify particles in the
cluster. Alternatively, because of the online clustering, we can extract the
cluster features and store only those – reducing the data size even further.

3.2 Data-based parallelization

Data-based parallelization is a concept that can be considered ‘orthogonal’ to
the previous step-based parallelization. Instead of splitting the algorithm into
steps, we now split the data into blocks and assign each block to some computing
worker.

Let us start with a motivation example first. We are given a large dataset of
non-clustered hits. Based on the properties of the detector, we can assume the
dataset is t-ordered in time. We would like to cluster the data as fast as possible.
Provided, we are given enough computational power, a valid approach to speed
up the processing could be rather simple:

21

1. split the data into chunks,

2. cluster data in each chunk independently, and

3. handle the clusters at the border that might have been (incorrectly) split
into different chunks.

However, there are still a few points that we need to address first.

• How do we split the data into chunks? Clustering is the process based on
temporal and spatial similarities of the hits, giving us two natural options for
splitting the data – spatially and temporally. In subsections 3.2.1 and 3.2.2,
we will discuss these options in detail.

• How do we merge the clusters at the border? The answer to this question
depends on the approach we used to split the data. However, it is crucial
that this process is fast and efficient. If merging of border clusters takes
more time than the clustering itself, then the whole parallelization approach
would be no better than simple clustering. In that case, the merging process
would become the new bottleneck of the algorithm.

Another (and a very natural) way how to reduce the possible merging can
be to increase the size of the chunk. The bigger chunks would imply fewer
border clusters which seems ideal. Nevertheless, to see why increasing chunk
size might not always be viable, let us modify our original setting. Instead
of storing the data offline on the disc, the hits are received online from
the detector in real-time. When the hits arrive online, we need to ensure
that the work is split between the workers as evenly as possible at any given
point in time. Using a large chunk size in real-time clustering could make the
split uneven, making the parallelization ineffective. In the subsections 3.2.1
and 3.2.2, we describe this problem in detail.

3.2.1 Spatial parallelization

One of the data-based split options is dividing the data along the spatial dimen-
sion. Usually, the sensor of the detector resembles a matrix. Therefore, in the
spatial dimension, we expect to obtain two coordinates – x and y. We aim to
split the 2D matrix in such a way that there are as few clusters at the border as
possible and that the division of work between workers is as even as possible –
under the assumption that every part of the sensor has an equal chance of being
hit. Such an assumption might not be valid ‘locally’ (for a short time window,
we are more likely to obtain hits close together). However, with high hit rates,
and uniform distribution of radiation above the sensor, we can expect an even

22

distribution of work. For example, given four workers, a natural choice for a split
can be dividing the sensor into four equal quadrants.

Let us now analyze the properties of a spatial split.

• Distribution of work. We could expect equal distribution of work, as the
sensor parts have the same area. This is valid only under the assumption
of an equal particle hit rate distribution in the 2D plane of the sensor. If
the radiation source creates a ‘narrow beam’ with the mean of the particle
distribution far from the center of the sensor, the distribution of work may
become skewed. In some scenarios, this uneven distribution of workload
can slow down the clustering significantly.

• Split condition. Given the number of available workers, the aim is to split
the area of the sensor evenly into n parts. Furthermore, such a split should
consist of rectangles that are as close to a square as possible, as we would
like to minimize the total length of the border (as the square maximizes the
area-to-perimeter ratio). This seems rather non-trivial for an arbitrary n,
potentially requiring additional computational power only to compute the
target clustering worker.

• Expected number of border clusters. To provide an estimate on the
portion of clusters lying at the border, we make additional simplifying as-
sumptions. First, we assume that a cluster is a ball with a diameter of d

pixels. Then, we count all positions where the center of gravity of the cluster
is not further than d/2 pixels from the border. Considering splits, where all
borders are parallel with a side of the sensor, we can estimate the number of
these positions of the center as: nborder cl = (l1 ·d·n1)+(l2 ·d·n2)−(n1 ·n2 ·d2).
Here li is the length of the sensor corresponding to i-th axis, ni is the num-
ber of splitting lines parallel with i-th axis and 0 < d < min(l1/n1, l2/n2).
The term −(n1 ·n2 · d2) subtracts all areas where the border lines intersect,
which were counted twice. For a split of the Timepix3 sensor into four equal
quadrants, we obtain 256d + 256d− d2. Setting d = 5, we get 2535 pixels,
which is approximately 4% of all pixels.

To compute the expected number of divided clusters, we proceed analogi-
cally to the case with the expected number of border clusters. Naturally,
all divided clusters are also border clusters. We only need to subtract
those clusters which ended exactly on the border. With the simplify-
ing assumption of all clusters being spheres with diameter d, we obtain
ndivided cl = (l1 · (d − 2) · n1) + (l2 · (d − 2) · n2) − (n1 · n2 · (d − 2)2). For
the Timepix3 sensor and d = 5, we obtain 1530 pixels, which represents

23

approximately 2% of all pixels. This means that even if the mean diameter
of clusters is as small as d = 5, more than half of the border clusters are
‘incomplete’ and need merging. Furthermore, depending on the angle of
traversing particles, the tracks can have tilted shapes with lengths higher
than our choice of d, further increasing the fraction of bordering clusters in
the data. Our sample choice of d is also supported by real-world data, see
Figure 3.1.

Figure 3.1: The histogram of the cluster diameter in the dataset consisting of
various types of clusters from pion, lead ion, and neutron data we use further in
the thesis experiments.

3.2.2 Temporal parallelization

Another option for dividing our data is division along the time axis. In contrast
to the spatial dimension, the temporal dimension can be potentially unbounded.
Therefore, each temporal window has to be mapped to one of nworkers workers.
One of such maps that assign hit with time t to the worker with index i(t) ∈
{0, 1, . . . nworkers − 1} can be i(t) = (t mod(twindow · nworkers) div twindow, with div
being integral division and twindow being carefully chosen constant.

Let us discuss the properties of the temporal split:

• Distribution of work. Similarly to spatial parallelization, we can expect
an even distribution of work if we assume that in every time window of size
twindow · nworkers, the pixel hits are uniformly distributed.

• Split condition. On contrary to spatial split, temporal split scales well
for any number of workers, assuming t≫ twindow. We only need to update
nworkers, and possibly twindow, but no other changes are necessary.

• Expected number of border clusters. To determine the number of
border clusters, we first need to define the border. We say time t is a border

24

time given constant twindow, if t mod twindow = 0. During the clustering,
we defined the constant dtmax as the maximum time difference of hits to
be considered temporally neighboring. Hence, we say the cluster is at the
border if some of its hits are at most dtmax distant from some border time.
Such a definition was chosen for a simple reason – if the cluster is not at
the border, it will certainly be processed by a single worker. On the other
hand, If the cluster has a hit that is very close to the border (closer than
dtmax), then it could happen that there might exist a hit on the other side
of the border which should be part of the same cluster. Consequently, the
probability that a hit falls onto the border can be computed as pborder hit =
2·dtmax
twindow

. Given that the average timespan of the cluster is dtcluster, we can
extend the last formula to estimate the probability of receiving a border
cluster as pborder cluster = 2·(dtmax+ dtcluster

2))
twindow

. For dtmax = 200 ns, dtcluster =
25 ns and twindow = 10000 ns we obtain the cluster border probability of
approximately 2.5%.

The probability that the cluster was actually divided into separate win-
dows can be estimated as the fraction: pdivided cluster = dtcluster

twindow
. Typically

dtmax > dtcluster, which implies that most of the border clusters are not split.
For dtcluster = 25 ns and twindow = 10000 ns we get pdivided cluster = 0.0025.
Thus we can observe that under mentioned circumstances, the probability
of dividing the cluster along the temporal dimension can be notably lower
than the probability of dividing the cluster along the spatial dimension. Our
sample choice of dtcluster is also supported by real-world data; see Figure 3.1.

Figure 3.2: The histogram of the cluster timespan (dtcluster) in the dataset con-
sisting of various types of clusters from measured pion, lead, and neutron data.

25

The choice of twindow

The twindow parameter in the algorithm can be viewed as the parameter that
balances two quantities:

• The number of potentially split clusters. As discussed in the previous part,
the higher the value of twindow, the lower the number of potentially split
clusters.

• Parallelization effectiveness. Even though the high values of twindow imply
less work in the merging part, it can also decrease the degree of paralleliza-
tion by creating an uneven workload. In other words, if twindow is large,
and in the case of radiation sources with very high particle frequencies, we
will have a huge number of hits in each window. Thus, it could happen
that by the time the hits from a single window are correctly assigned by
splitting the worker to the clustering worker, some of the other clustering
workers could have already processed all of their hits and become idle, wast-
ing computational resources. With lower twindow, the risk of such a scenario
decreases.

One might wonder how to set twindow correctly, keeping both parallelization
effectivity and the number of divided clusters in mind. A simple way is to tune
the twindow parameter experimentally. Therefore, we need to run the clustering
multiple times for each tested value of twindow and choose accordingly.

Avoiding the fixed twindow

Another option that may sound reasonable is not to split the data by some fixed
time point but to draw the splitting line after a predefined number of hits – let
us denote it as hwind. As a consequence, we would have better control over the
split of the work between the workers. On the other hand, splitting after a fixed
number of hwind hits would lead to an increase in the number of split clusters.
For instance, let us denote the average size of the cluster as csize. Then the
expected number of clusters in the window that are cut by a single border is at
least csize−1

csize
. Moreover, the number of all clusters in this window can be estimated

as hwind
csize

. Then, the probability of splitting the cluster is equal to the ratio of the
mentioned expressions, which simplifies to csize−1

hwind
. We can assume the hwind to be

set according to the expected hit frequency f as hwind = f · twindow. Consequently,
in this case pdivided cluster hit ≥ csize−1

f ·twindow
.

To compare against the fixed time window splitting, we can compute the
ratio r of the probabilities that the cluster was divided r = pdivided cluster hit

pdivided cluster
. After

simplification we obtain r = csize−1
f ·dtcluster

. For the values of dtcluster ≈ 25 · 10−9 s and

26

high hit frequencies f ≈ 107 hit/s, r is smaller than one only for csize < 0.25
(which is not realistic as each cluster has at least a single pixel). Therefore, as
r > 1 for our application pdivided cluster hit > pdivided cluster Notably, we only provided
a lower bound on pdivided cluster hit which is reached only if none of the clusters
are temporally overlapping, which is rarely true in practice. This would further
increase the value pdivided cluster hit, making this approach even less effective.

We can overcome this problem by setting a closing time tclose. Instead of
instantly closing the buffer after a predefined number of hits, we could mark the
time of the last hit as tlast and set the border time as tlast + tclose. If the tclose

is larger than the average cluster timespan, the chance of splitting the cluster
is reduced. (We will likely not split the cluster open at tlast, and the chance of
splitting a cluster converges to the chance of split by fixed twindow.). Another
problem arises when we decide to split the hits before they are fully ordered.
With the ‘dynamic’ time windows, we cannot correctly split the hits as we decide
the window size only for the currently open window. Even for this problem, there
exists a solution: for t-ordered data, we can precompute the window borders for
the next

⌈︂
t

twindow

⌉︂
windows and modify the window borders dynamically with a

‘lag’ of size t. Unfortunately, we expect that t≫ twindow, which makes the ‘lag’ of
dynamic time window adaptation too long, considering the fact that the dynamic
time window was meant to quickly react to a significant change in a hit frequency
(This is the place where worker split imbalance is likely to happen).

3.3 Merging the datastreams

After the hits were split between workers and clustered, we now need to merge
multiple data streams into a single one while also completing the clusters that
were divided in the splitting workers because they lay at the border. It is critical
that this process is sufficiently fast so it does not outweigh the speed advantage
gained during parallel clustering. We propose multiple approaches to this task.
The baseline approach describes the merging algorithm performed by a single
worker, while the remaining merging approaches modify the baseline so that it
can run in parallel. In this section, we will restrict our analysis to the data that
was split temporally if not stated otherwise.

3.3.1 Baseline merging

The goal of the merging algorithm is to identify which of the clusters lay at
the border (of the time window) and thus were split between different clustering
workers. Additionally, the merging needs to complete these clusters and return

27

all clusters in the time-sorted order.
The algorithm for merging is shown in Algorithm 2. The idea is to temporarily

store the clusters, ordered by the time of arrival of the first pixel while keeping
track of three additional attributes of the cluster. First, we store a flag (border),
indicating if the cluster lies near the border. Second, we store the information
about the location of the previous border cluster (borderOffset) relative to each
cluster (the number of non-border clusters preceding each cluster). This allows
us to iterate over bordering clusters quickly. And third, we store the validity flag
(valid). This flag indicates if the cluster contains valid data or if it has already
been merged with some other cluster. Instead of invalidating a cluster, it may
seem natural to remove such a cluster from the container completely. However,
the remove operation likely has non-constant time complexity, depending on the
specific type of sorted container (O(n) for arrays, O(log(n)) for red-black trees
. . .). After we receive the cluster, there are three possible options.

• The cluster does not lie at the border, and there are no open clusters at the
moment. In this case, we know we can output the cluster directly. Here, no
merging is needed, and all clusters with the lover time of arrival of the first
hit were already outputted (otherwise, they would be among open clusters)

• The cluster does not lie at the border, and there are some open clusters at
the moment. Then, we add the clusters to open clusters. It is important to
note that we can receive non-border clusters in between two border clusters
that are mergeable, as illustrated by Figure 3.3. Because of this, even if the
cluster is not at the border, we cannot directly output it, as it could violate
the time orderliness (some open bordering cluster might precede it).

• The cluster lies at the border. In this situation, we process it by Algo-
rithm 3.

The clusters older than dtmax are periodically removed from the open clusters
and written to output.

28

Figure 3.3: Scheme displaying three clusters A, B and C on a time line. The
clusters A and C are mergeable border clusters, and the cluster B is considered
a non-border cluster. The labels fToA and lToA denote the ToA of the first and
the last hit in the corresponding cluster. Here, the cluster obtained by merging
clusters A and C should be outputted before the cluster B.

Algorithm 2 Merging clusters
1: openClusters ← ∅
2: borderOffset ← 1
3: while dataSource.isNonEmpty() do ▷ iterate over clusters in dataset
4: inputCluster ← dataSource.next()
5: writeOldClustersToOutput(openClusters)
6: if isOnBorder(inputCluster) then ▷ processing border cluster
7: inputCluster.borderOffset ← borderOffset
8: processBorderCluster(inputCluster)
9: borderOffset ← 1

10: else ▷ processing non-bordering cluster
11: if openClusters.count == 0 then writeToOutpout(inputCluster)
12: else
13: inputCluster .borderOffset ← borderOffset
14: inputCluster .border ← false
15: openClusters.add(inputCluster)
16: borderOffset ← borderOffset + 1 ▷ updating the offset to previous

border cluster
17: end if
18: end if
19: end while

To process the border cluster, we iterate over the open border clusters and
select those which can be merged with the current cluster. It is necessary to
realize that multiple clusters might be mergeable in this process. (A minimal
example of a cluster that would be split into three clusters is a three-pixel cluster
in the shape of a horizontal line. The times of arrival of the pixels from left to

29

right would be tborder− ε, tborder + ε, tborder− ε for some small value of ε.) During
the merging, we combine all the clusters into a single cluster, storing it in the
open clusters at the position of the cluster with the smallest first time of arrival
among the merged clusters. This way, we keep the clusters sorted in time. Then,
we invalidate all other merged clusters.

Algorithm 3 Processing border clusters
1: constants dtmax, maxTimeSpan
2: borderOffset ← 1
3: procedure processBorderCluster(inputCluster)
4: inputCluster .borderOffset ← borderOffset
5: clusterIndex ← openClusters.count − borderOffset
6: currentCluster ← openClusters[clusterIndex]
7: clustersToMerge ← ∅
8: while clusterIndex ≥ 0 do
9: if currentCluster .valid ∧

10: inputCluster .first toa − currentCluster .first toa > dtmax + maxTimespan
11: then
12: break
13: end if
14: if currentCluster .valid∧canMerge(inputCluster , currentCluster) then
15: clustersToMerge.add(currentCluster)
16: end if
17: clusterIndex ← clusterIndex − currentCluster .borderOffset
18: currentCluster ← openClusters[clusterIndex]
19: end while
20: if clustersToMerge.count = 0 then
21: openClusters.add(inputCluster)
22: else
23: oldestToMerge ← clustersToMerge.last()
24: clustersToMerge.removeLast()
25: for clusterToMerge in clustersToMerge do
26: oldestToMerge.mergeWith(clusterToMerge)
27: clusterToMerge.valid ← false
28: end for
29: oldestToMerge.mergeWith(openCluster)
30: end if
31: end procedure

During this process, we still have not discussed how we efficiently decide if two
clusters are mergeable. This is done on line 13 of Algorithm 3. Our algorithm for
finding mergeable clusters focuses on quickly filtering out clusters that cannot be
merged. For that, we use a cascading approach with three steps, progressively
increasing in temporal complexity.

1. If the temporal distance of clusters is higher than the maximum temporal

30

distance dtmax, they cannot be merged. The temporal distance dc1,c2 be-
tween clusters c1 and c2 can be defined as dc1,c2 = max(min(c1.startT ime−
c2.endT ime, c2.startT ime − c1.endT ime), 0). This step can be performed
in constant time.

2. If the bounding boxes of the clusters do not touch, then the clusters are
not spatially neighboring, which implies they cannot be merged. Here, the
bounding box is the minimal rectangle (with sides parallel to the sensor)
that surrounds the cluster. The bounding box is computed only once when
the cluster is added to open clusters. Thus even though the computation
of the bounding box takes linear (with respect to cluster size) time O(n),
the query to check the intersection of the bounding boxes can be evaluated
quickly in constant time.

3. If both of the above conditions fail, we perform the full merge check. A
naive implementation of checking each pair of pixels could take O(n1 · n2)
time, where n1, n2 is the number of pixels in the clusters. Instead, we
perform the intersection check by storing the pixels from the intersection
of the bounding boxes and the bigger of the two clusters in a 2D array.
We then enumerate all pixels of the smaller cluster and check if any of
its spatial neighbors is contained in the 2D array. The reason behind the
selection of bigger/smaller clusters is that the neighbor checking is more
computationally expensive than inserting the cluster into the 2D array.
Without the loss of generality, suppose n1 > n2. The neighbor checking
takes O(8n1) time because of 8-neighbors while inserting and deleting a
cluster from the 2D array is O(2n2). Together, this process has O(n1 + n2)
time complexity.

3.3.2 Tree-based merging

With the increasing number of clustering workers, it is expected that, at some
point, the merging worker will become overloaded. To deal with this problem, we
propose a method for parallelization of the merging worker. The first approach we
call tree-based merging. The tree-based merging was named as it is because the
data flow resembles a binary tree. Let us illustrate this by an example. Suppose
we use four clustering workers c0, c1, c2 and c3, all working in parallel. The index
of the worker represents the order of assigning chunks of data split temporally.
After assigning the chunk to ci, we assign the following chunk to c(i+1) mod 4. In
this case, our merging will consist of two layers. In the first layer, we have two
workers m01 and m23, each merging the output only from two of the clustering

31

workers. However, in this layer, clusters split by the border between the second
and the third worker are not merged (similarly to the clusters between the fourth
and the first worker). Therefore, we introduce the second layer. The clusters
near these borders are forwarded to layer two, which only has a single worker
that handles the merging of these clusters. This example architecture is shown
in Table 6.1.

It is not difficult to generalize the example for the case with an arbitrary
number of clustering workers n. On the i-th layer, we will have n

2i merging
workers, each merging the output from two workers from the previous layer.
Given i-th layer, each worker handles merging blocks of time of size ti = 2i ·
twindow. However, we can stop the tree merging at any layer and put there only a
single worker that handles the merging of all blocks of size ti from the previous
layer. Nevertheless, each layer implies additional copying of the clusters between
workers. Moreover, this approach produces a single data stream at the end,
which might not be required by the user. It can happen that the next steps
of the analysis can be performed in parallel. In such a case, merging the data
streams into a single stream and then splitting them again for data analysis
seems pointless. One might argue that we could obtain multiple data streams
(and preserve parallelization) by not using the last worker on the final layer,
which is indeed true. However, such a data stream would contain incomplete
clusters as the borders between the blocks of size ti have not been checked for
clusters divided by the border.

3.3.3 Single-layer merging

As opposed to tree-based merging, single-layer merging is an approach that can
merge all non-complete clusters utilizing only one layer. Again, the best way is
to start with an example. Let us assume we use four clustering workers. For each
of these workers, we create a merging worker. Suppose we name these workers
m0, m1, m2 and m3. Then, each merging worker is assigned two ‘neighboring’
clustering workers. In this case, each worker mi processes data from clustering
ci and c(i+1) mod 4. Generalizing this scenario for an arbitrary number of workers
nworkers is simple. We only replace the number 4 with the value of nworkers. This
implies that each clustering worker splits the data between two merging workers.
The split of data is done by the time of arrival of the first hit. Namely, the
first half of the time window is assigned to one merging worker and the other
half to another. By splitting the time windows in half, we implicitly assume
that the clusters do not span more than twindow/2. Otherwise, if we have clusters
that span more than twindow/2, we might not be able to reconstruct it. One

32

such non-reconstructible cluster could start in the first half of the window, span
through the whole second half of the window, and even extend to the start of
the next window. Such a cluster (as based on the arrival time of the first hit)
would be assigned to a merging worker that only merges the current window
with the previous one. This way, we would never find the possible hits from
the next window that could be merged with this cluster. However, in practice,
it often holds twindow/2 > dtcluster, making the assumption behind the approach
reasonable. Compared with tree-based merging, for single-layer merging, it is
easier to split the data between workers evenly, allowing better utilization of
computational power. The output of this merging consists of multiple streams of
completed and time-ordered clusters. On the other hand, the tree-based approach
can also reconstruct clusters with an arbitrarily large timespan.

3.4 Parallelization data flow

In this part, we will combine all discussed concepts from Chapter 3 to describe
a data flow between the workers that participate in the clustering. The workers
can be seen as nodes, and here we will define the edges which represent the flow
of the data, together forming a directed acyclic graph (DAG). From Section 3.1,
we introduce nodes like ‘reader,’ ‘calibrator,’ ‘sorter’, ‘clusterer’, and ‘writer’.
These workers were initially connected in a serial manner. Then we decided to
parallelize by splitting the data as shown in Section 3.2. From that, we obtain
multiple ‘clusterer’ nodes and a ‘merger’ node. Additionally, we noticed that
if the ‘sorter’ node becomes overwhelmed, we can modify the architecture and
perform the split even before sorting in the ‘calibrator’ or ‘reader’ node. And
last, we could also parallelize the clustering as shown in Sections 3.3.2 and 3.3.3.

Controller node

Apart from the nodes mentioned above, we introduce an auxiliary ‘controller’
node, whose task is to create the data flow graph and periodically check the
amount of data being processed at specific timesteps. This is usually necessary
when processing loads of data simultaneously with only limited operational mem-
ory. To clarify, let us first define the throughput of a node as the number of hits
it can process in a specified time window. Suppose we have two nodes – P is the
producer node, and C is the consumer node. In the ideal case, for the through-
puts vP , vC of the nodes it holds vP ≤ vC . In this scenario, the queues between
nodes would be nearly empty and the memory consumption would be minimized.
Unsurprisingly, this is not always the case, as each step of the clustering algorithm

33

might have a different complexity. (It is possible to merge some nodes perform-
ing less expensive computations together at the cost of decreased modularity and
extensibility. We would like to avoid that, as the algorithm is split into logical
steps, which can be performed in parallel and possibly reimplemented, which is
difficult for the ‘merged’ nodes). If vP > vC , the data in the queue between P and
V will likely start accumulating. (this is also known as ‘backpressure’ [17]). In
such a case, the controller will inform the reader (the source node) to wait until
some part of the data is processed and does not need to be stored in memory. It
is a safeguard that tries to prevent running out of memory during the processing
at the cost of possibly losing some part of the input data (in the online case, the
data in the UDP socket can become lost if it is not processed within a specific
time window). We summarized all of the graph nodes in Table 3.1.

Processing nodes
Name of the node Node description

reader (R) Reads the input file and feeds the data to the rest of the
computational graph.

calibrator (C) Performs the energy computation based on the values ob-
tained from the calibration.

sorter (S) Fully sorts a t-ordered sequence of hits.
clusterer (C) Groups the hits into clusters based on temporal and spa-

tial similarity.
merger (M) Reconstructs the clusters incorrectly divided by the data

split.
writer (W) Writes the produced clusters to a file in a predefined for-

mat.

Table 3.1: Overview of the nodes used in the clustering processing graph.

Termination of the processing

Additionally, if all the data are processed, we stop each node using the ‘poison
pill’ pattern. This is a pattern that allows a graceful shutdown of the distributed
process. Here, the source node (in our case, it is the reader) generates one last
additional piece of data that carries a special flag indicating the end of the process
(known as a poison pill). Each node then propagates this particular piece of data
to the other nodes. In the case of a node with multiple input nodes, it only
propagates the poison pill after receiving it from all of its input nodes. Otherwise,
some of the input nodes could still contain unprocessed data. This way, the

34

terminate signal propagates through the graph until every node terminates its
job.

35

4. Bounding box clustering
In this chapter, we describe a different approach to clustering. It utilizes an
observation about the hits from physics – If a high energy hit is measured by the
detector, we can likely expect to measure more hits in the spatial neighborhood
of this pixel. This is known as a ‘halo effect’ [18], which we try to use to our
advantage. For an example of the cluster halo, see Figure 4.1. Nevertheless, this
approach is based on an important adjustment to the original clustering task. We
no longer require the clustering to produce exact clusters as long as a significant
portion of the hits is clustered correctly. In other words, we are implementing an
approximate clustering, trading quality for performance.

Figure 4.1: Images of the clusters with a halo. The halo pixels are marked by a
yellow and white color, indicating a low deposited energy.

Splitting data into chunks

The first difference between bounding box clustering and standard clustering is
the fact that bounding box clustering can only process data divided into chunks,
as opposed to standard clustering, which does not require it. If online processing
of a potentially unbounded stream of hits is desired, the stream needs to be first
cut into multiple buffers. Notably, such division of data we already discussed in
the chapter about parallelization in Section 3.2.2 and Section 3.2.1.

Tile clustering

Another concept we utilize in the bounding box clustering is the relaxation of the
spatial connectivity of pixels in a cluster to the spatial d-connectivity of pixels.
We say a cluster is d-connected if for each pair of hits (ha, hb) in a cluster there
exists a path of hits (h1, h2, ...hn) such that h1 = ha, hn = hb, and the spatial

36

distance between hi+1 and hi for every i ∈ {1, 2, ..., n − 1} is at most d pixels.
The spatial distance can be measured using Manhattan or Euclidean metrics.

This d-connectivity can be useful mostly in the following three cases.

• We are clustering only a subset of pixels in a cluster. Because of that,
the spatial 1-connectivity might be broken, even though hits in the subset
might still be d-connected for some small value of d.

• There are some insensitive pixels in the sensor that we want to ignore.
(These pixels are also called ‘dead’ in the pixel detectors, for instance, see
[19])

• During the incremental building of a cluster, we want to avoid unnecessary
merging of clusters. In standard clustering, usually, before the full cluster
is formed, a couple of steps of merging the sub-clusters are required. It is
because the hits can arrive in arbitrary order. This means that even if the
arrived hit is only two pixels away from a huge cluster, we do not add it to
the big cluster, although there is a high probability that the hit connecting
these two clusters will eventually arrive. Then, these clusters need to be
merged, which could be avoided by using tile clustering.

The idea of tile clustering is a small modification of standard clustering. First,
we divide the area of the sensor into multiple tiles of size d×d pixels. And rather
than storing the list of clusters for each pixel, we store it for each tile. Then,
when performing the neighbor check to find neighboring pixels, we look for the
neighboring tiles instead. The rest of the algorithm stays as it is in the standard
clustering. Naturally, relaxing on spatial connectivity can produce invalid clusters
if two clusters are very close to each other (that is the reason why it is only an
approximate clustering method).

The algorithm of bounding box clustering

With tile clustering defined, it is time to describe the bounding box clustering.
This algorithm has the following steps:

1. Obtain a buffer of hits from the input.

2. Select hits with energy above the specified threshold et. We expect these
high-energy hits to create a halo effect. These high-energy hits often form
the backbone of the cluster.[Image of a cluster with halo]

3. Perform tiled clustering on the filtered hits with the tile of size d×d. Because
the selected hits might not be spatially connected, we use the relaxation to
d-connectivity.

37

4. Draw a bounding box around each cluster. Additionally, we add a ’padding’
of size p to the bounding box by extending it to each side. An interesting
modification would also be to allow tilted bounding boxes which are not
parallel with the axes of the sensor.

5. Iterate over remaining hits and add them to a cluster if they lie in its
bounding box.

6. If there are any non-clustered hits, lower the value of et (and possibly d)
and return to step 2. Otherwise, return the clusters.

We can see that we still need to perform standard clustering on some fraction
of hits. Despite that, all of the hits located in the bounding box do not need to
be clustered in a standard manner as we add them directly to the cluster. The
reason why this approach could be faster is skipping the neighbor search, which
occurs in standard clustering for each hit. On the other hand, keeping track of the
bounding boxes might require additional computational power, so it is difficult to
predict if this method actually speeds up the clustering. Important parameters
that affect the quality and the speed of the clustering are the threshold value et

and the tile size d. We do not provide any clever method of setting the value
of these parameters. Nevertheless, we can estimate the value of the parameters
experimentally.

38

5. Clustering triggers
The purpose of this chapter is to introduce another method of acceleration of the
clustering. Similarly to Chapter 4, we will relax the clustering task. However,
this time we do not relax on the quality of the created clusters. Instead, we will
selectively decide which data should be clustered and ignore the uninteresting
parts of the data stream. The rule which describes when to initiate clustering we
call the trigger.

We will start by introducing the motivation behind the triggers and some
properties that we require from the triggers. Then, in Section 5.1, we discuss a
very simple example of a hit-based trigger. In the following Section 5.2, we will
generalize this example to a more useful window trigger. In some cases, it may be
useful to measure the changes in the radiation field instead of the absolute values
of features. This is discussed in Section 5.2.1. And last, we discuss two types
of triggers – explicit and implicit. The explicit triggers directly utilize the user’s
knowledge about the properties of the stream of hits, as shown in Section 5.2.3.
The other group of triggers infers the desired properties implicitly after the user
provides examples of interesting series of hits. For such an inductive approach,
it seems natural to employ methods of machine learning.

Let us first discuss the motivation behind the triggers for clustering. The con-
cept of a trigger is already frequently used in the area of high-energy physics [20].
Our triggers could be used in various scenarios. An example is measuring a beam
of particles, which is turned on only during some time intervals. Additionally,
there is natural background radiation. Hence, we are only interested in the data
from the beam, and therefore clustering of the background is not required. A
simple trigger could estimate if the beam is on and start the clustering. Another
example can be a measurement of radiation, where we want to detect various
types of particle showers. Here, the physicists might consider some of the parti-
cle types more interesting than others. Triggers would allow them to filter and
only cluster some specific types of particle showers. And a last example could be
the case where we do not apriori know what kind of radiation field we consider
interesting, but we try to detect significant radiation field changes. Here, the
triggers could detect the change and only initiate clustering in that case. We try
to address all of the mentioned examples with trigger clustering.

When creating a clustering trigger, we need to keep the following properties
in mind:

1. Efficiency. If the evaluation of the trigger were more computationally ex-
pensive than the clustering of the hits, then the usefulness of the trigger

39

would be disputable.

2. Customizability. As there are different possible applications of the triggers,
we require them to be adjustable to the needs of the user. Each user should
decide (not necessarily explicitly) what piece of data is worth clustering.

It is important to note that apart from possibly reducing the computational
complexity, by triggering clustering, we can also save the storage space required
to store the clustered data. Thus another advantage of this selective clustering
is data reduction.

5.1 Energy-hit-based trigger

One of the key properties of hits is energy. A simple trigger could monitor the
energy of hits in the data stream and only start clustering when a specified thresh-
old is reached. In the ideal case, instead of high-energy hits, the physicists would
like to cluster the hits that form high-energy clusters. Obviously, we do not know
which hits are part of such clusters until we perform the clustering. For example,
there can be clusters where none of the hits reach the energy threshold, but the
number of hits in this cluster is so high that this cluster would be considered
a highly ionizing cluster. With detecting only the energy of hits, we would not
process such clusters, which is a limitation of this approach. However, it is very
frequent that highly ionizing clusters also include high-energy hits.

A naive way to implement this algorithm would be monitoring the energy of
hits and discarding the hits until we receive a hit with energy above the threshold.
Nevertheless, these high-energy hits may only arrive after some other low-energy
hits from the same cluster, which we already discarded. Because of that, we need
to keep some portion of hits in a buffer for a period of time until we are sure no
new cluster could possibly contain them. After starting the trigger, we now need
to discuss when the clustering should be stopped. The most straightforward way
is to set a time ttrigger, after which the clustering stops. If the trigger activates
again when it is already on, we simply extend the duration of the trigger. In this
simple energy trigger, there is also another option when to stop clustering. It is
possible to keep track of the number of currently processed clusters containing
high-energy pixels. And when all of these clusters are processed, we can stop the
clustering.

40

5.2 Generalized window trigger

In this section, we will try to generalize the energy-hit-based trigger. Unfortu-
nately, the hit itself provides us with only very limited information. Apart from
energy, it usually contains only its spatial and temporal coordinates. With these
pieces of information, detecting complex changes in the radiation field is diffi-
cult, if not impossible. Because of that, we decide to collect multiple hits before
making the decision to trigger. More specifically, we monitor the data stream
for a specified time twindow, and apart from the properties of the hits, we also
monitor the statistics of these properties. This gives us a better chance to dis-
tinguish various types of radiation. When computing statistics, we need to keep
in mind efficiency because of the limited time in which the computation must
finish. To create a lower-dimensional representation of each window, we compute
the following:

• Mean and standard deviation of the spatial coordinates. These properties
aim to detect changes in the particle beam direction. With the mean,
we need to be careful, as for a time window with no hits, the mean is
not well defined. For that, we choose the commonly used invalid value
called ’Not a Number’ or NaN. The same situation can also happen for the
standard deviation. Additionally, from the point of view of computational
complexity, we can compute all of these features with constant memory. We
only store the sums of the spatial coordinates and the sums of squares of
these coordinates. Then we estimate the standard deviation (of the spatial

coordinate x) as σx(t) =
√︄∑︁

x∈wt
x2

nhits
−

(︃∑︁
x∈wt

x

nhits

)︃2
with wt being the window

at time t.

• The number of hits. By keeping track of the number of hits in a fixed time
window, we could detect the changes in the particle frequency.

• The maximal energy, the mean energy of the hit, and the energy distribu-
tion. It was shown that even simple per-pixel metrics like the energy left in
the pixels have proven as a solid measure for the separation of electrons and
protons [21]. Moreover, we need to choose the binning of the energy hits
carefully. By binning, we mean the process of discretization of continuous
variables – in our case, the energy of the hit. The number of bins needs to be
small enough so that the processing of each window is still efficient. On the
other hand, we would like to make the bins narrow enough so they reflect
the possible changes in the data stream as best as possible. As the energy
of the window is theoretically unbounded, the fixed size of the bin will not
suffice. Additionally, from the point of view of the experimental physicist,

41

we can afford to lose precision in binning with the increasing energy of the
hit. To fulfill all of the binning requirements, we choose logarithmic bin-
ning. This gives us higher precision in the lower-end energy spectrum while
also saving space and processing time for the (often sparse) hits in the high
end of the spectrum.

• The average size of the ‘temporal’ cluster. The set of hits {h1, h2, . . . hn}
(without the loss of generality timeOfArrival(hi) ≤ timeOfArrival(hi+1))
form a temporal cluster if timeOfArrival(hi+1)− timeOfArrival(hi) < dtmax

where i ∈ {1, 2, . . . n − 1} and dtmax is a constant that depends on the
properties of the detector. In contrast to the standard cluster, we resigned
on the spatial neighborhood condition. In contrast to standard clustering,
the computation of the temporal cluster is very fast. For that, we do not
require any auxiliary data structures. First, we sort the hits in time, and
then we close the cluster if no hits were detected for more than dtmax units
of time. For low-frequency data sources, it provides a simple approximation
of the true clusters. With increasing the frequency of the source, however,
we expect an increase in incorrectly merged clusters. For such radiation
sources, this method provides a lower bound on the number of clusters in a
window (and thus an upper bound of the true average cluster size, as each
temporal cluster can be mapped to one or more standard clusters).

5.2.1 Differentiating the features

After we split the data into time windows and compute the statistics, we need to
use the statistics as window features to decide if the data should be clustered. In
the case where it is desired only to cluster some specific types of fields, we could
use the values of the statistics directly. Nevertheless, in some situations, when
aiming to trigger if the radiation field changes, the statistics themselves are not
sufficient. Instead, we need to compute how they change over time, also known
as the differentiation of the features with respect to time. Let us now define the
feature differentiation as the mapping dt : t→ ft− ft−1 with ft being the feature
f of a window with index t.

The feature differentiation, as we defined it, has an unwelcome property. It is
very sensitive to noise in the data. More specifically, during the measurements, we
can encounter many different sources that add noise to our data, including back-
ground radiation or scattering of the particles into secondary particles. Addition-
ally, there can be imperfections in the sensor that introduce additional noise fac-
tors. By observing the differentiation of the features in such a noisy environment,
we can expect to measure high difference values most of the time of the measure-

42

ment. To counter the effect of the noise, we propose to differentiate with respect
to the multiple k previous time windows. So instead of considering only ft−1 we
consider {ft−1, ft−2, . . . ft−k}. Now, we need to decide how to aggregate this set
of time windows. We suggest finding the median of these windows to differentiate
with respect to their value. Another option would be to compute the mean, but
we consider the median more resistant to noise [22]. Together, we can define the
temporal window differentiation as dtw : t→ ft −med{ft−1, ft−2, . . . ft−k}.

5.2.2 Explicit interval trigger

Let us now discuss the creation of the trigger from the measured data. The
first and simplest option is to let the user decide what values of the statistics
should start the trigger. We can call this trigger an explicit trigger because we
let the user explicitly choose which window statistics values are considered worth
clustering. For each feature, the user can choose an interval of interest. If there
is a window where all of its features belong to the user-specified intervals, we
start the trigger. This, however, restricts the user only to select a single interval
for each feature. Luckily, we can extend this option in a simple manner – the
user could choose multiple intervals that would be linked by the conjunction and
disjunction logic operators. In general, the user creates the trigger formula in
disjunctive normal form (DNF), namely ⋁︁

c∈clauses

⋀︁
f∈features: wf ∈ If,c where wf

is the value of the feature f for the time window w and If,c is the c-th interval for
the feature f . The ability to combine multiple clauses enables the user to select
arbitrary regions of the feature space as features worth clustering. As a matter
of convenience, not all of the intervals If,c must be specified by the user directly.
If the interval If,c is not specified, it is automatically considered to include all
values, thus setting If,c = (−∞,∞).

5.2.3 Implicit ML-based trigger

Even though the approach discussed in Section 5.2.2 might seem like a very
flexible trigger, there are scenarios where it is not very practical. For instance,
the user might not be able to specify the intervals of interest explicitly but rather
present some examples of windows that should be clustered. Thus, we are given
the windows of interest that define the triggering condition implicitly (likely not
in a unique way). Our task is to infer this triggering condition. Because this
trigger is not created explicitly by a user, we decide not to restrict the triggering
condition to the form of a union of hypercuboid regions of the feature space.
Instead, as we aim to learn from examples, machine learning (ML) seems to be a
natural choice.

43

With machine learning, we might want to revisit the features we used for
trigger clustering. As the values of the features of interest are no longer directly
specified by the user, we could try adding new different features. One of such fea-
tures of a window could be a 2D matrix where each value at index i, j corresponds
to a total energy of the pixel received in the particular time window. It contains
both spatial information and information about the shape of the clusters. Such
data would be easily processed as an image by machine learning models that
are intended for image classification. Additionally, the creation of such a matrix
would be relatively inexpensive. Initialization of the matrix can be done only
once at the start of the program, and during runtime, we would only modify the
values of hit pixels. However, the problem arises when we try to process such a
matrix by ML methods in a short time window. Despite the fact that there is a
chance that this image processing idea is intractable for our application, we would
like not to abandon it completely. One of the options could be to downscale the
resolution of such an image to save processing time. The decision if this is a
viable option might depend on the particular ML model, and it is best to explore
it experimentally.

Before discussing the ML models, we should first discuss the creation of the
training data. For that, we prepared a simple application where the user can cre-
ate the training data without much effort. The data creation consists of multiple
steps:

1. Loading the data. The user selects a data file that contains the data
relevant to the trigger. Standardly, we expect the user to provide the data in
raw text file format together with a calibration file used for the computation
of the deposited energy of the hits. Notably, in cases where the data is split
into multiple input files, it is possible to process them one by one and create
a single trigger training dataset. In this step, the user can also set a few
parameters like the size of the window. Furthermore, the user can choose to
only compute the values of the features or to calculate feature differentiation
instead.

2. Computation of the window features. In this step, the input data is
processed and the features are computed based on the arguments specified
in the previous step. All of the computed features are stored temporarily
and displayed to the user in a table.

3. Exploration of the features. Here, the user should observe the values
of the statistics and displayed plots to asses which windows of data are
intended to be clustered.

44

4. Selection of the windows. The user has two options for the selection of
windows. First, the user can either select the windows manually by clicking
on the windows in the table. Even though this process might seem tedious,
in some cases there might not be a better approach.

The second option is to select windows by specifying the intervals for the
window features. Only the windows with features inside the selection in-
tervals are added to the selection. Even though this process resembles the
explicit interval trigger, it is not equivalent. In the explicit interval trigger,
the trigger is activated only in the hypercuboid (potentially unbounded)
regions of the feature space. In the ML trigger, we allow the model to
choose the trigger regions based on the data points. In general, the user is
expected to combine the manual selection and interval selection to find the
windows of interest efficiently.

5. Saving the window features. After the desired windows are selected, the
user selects a class label and saves them to a file. Here, the class label is a
name for the selected windows. Later, just before the training of the model,
it is possible to choose labels that contain the interesting windows and the
ones which do not. It is also important to include at least a single class
that contains negative or ‘uninteresting’ data. These can be selected the
same way as the windows of interest. Consequently, for supervised triggers,
it is needed to create at least two classes – ‘trigger’ and ‘no trigger’. For
unsupervised triggers, it is sufficient to create a single class of data.

Regarding the choice of ML methods, we propose multiple alternatives:

• Multi-layer perceptions (MLP).[23] [24] The MLP is a neural network
that consists, as the name suggests, of multiple layers of neurons, each con-
nected with neighboring layers. Each neuron receives the activation of the
neurons from the previous layer, multiplied by the corresponding weight
vector. The input is processed by an activation function (commonly used
activation functions are Rectified linear unit (ReLU), Exponential linear
unit (eLU), the sigmoid function, and more, see [25]). In this step, the
information in the network propagates in a single direction, which is known
as the inference phase. Then, in the learning phase, the gradient of the
weights with respect to the output error is computed and propagated back-
ward through the network. The gradient is then used to adapt the weights
in the network with the goal of minimizing the error of the network output.
There are also other kinds of neural networks available, but the simplicity
of the perceptron makes it a good candidate for fast inference time.

45

• Support vector machines (SVM).[17] [26] The SVM tries to find sepa-
rating hyperplanes between the data points that minmize the classification
error and maximize the margin between these classes. Such task can be
formulated in the form of constrained optimization enabling the use of La-
grange multiplier method [27]. It also is capable of handling linearly non-
separable classes by utilizing the so-called kernel trick – mapping the data
points into multidimensional feature space with a non-linear mapping. Fre-
quently used kernels include the Radial basis function (RBF), polynomial,
and sigmoid kernels. Similarly to MLP, the inference speed of this method
is expected to be high.

• One class support vector machines.[28] In contrast to the standard
support vector machines, one-class SVMs are very successful at tasks like
unsupervised learning and, more specifically, novelty detection [29]. In the
novelty detection task, during the training, we present the model with only
a single class of data. It then tries to find the hyperplane that encloses the
training examples (minimizing the error) while also maximizing the distance
from the origin (maximizing the margin). This leads to a constrained opti-
mization task, similar to standard SVM. Then, during the inference phase,
the task is to detect all samples that are considered as a novelty (outlier)
given the training dataset. However, one-class SVMs are not inherently an
online model. A nice extension would be to retrain the model periodically
with new data so we adapt the definition of the novelty based on the his-
torical data. Here, it would be important not to retrain the model very
frequently as this could slow down the whole application.

Training

Regarding the supervised training of the models, the dataset is randomly split
into three parts: training, test, and validation dataset. The relative sizes of these
parts are supplied by the user among the other hyperparameters. The default split
is 80% for training, 10% for testing, and 10% for validation. Now let us discuss
the splitting method. Suppose we have no assumption about the sizes (number
of examples) of the classes selected by the user. These classes can potentially be
imbalanced. To deal with the potential imbalance, we perform the split for each
class separately. This way, each part of the dataset (train, test, and validation) is
guaranteed to contain the same distribution of classes (not necessarily uniform).
Additionally, oversampling can be used to combat the imbalance [30] [31].

46

Metrics

Concerning the metric to assess the quality of our models, we use accuracy, preci-
sion, and recall [32]. The reason why accuracy as a metric might not be sufficient
is, again, the class imbalance. For datasets with imbalanced classes, the model
might learn to always predict the majority class and thus yield high accuracy.
This scenario is identifiable by the precision and the recall metric. Their impor-
tance might vary depending on the application. For instance, if it is critical not
to miss any important clusters, then the recall of the model is important. On
the other hand, if it is more important not to incorrectly trigger clustering on
the uninteresting data and minimize the computational costs, then apart from
accuracy, precision is the target metric. In cases where neither precision nor recall
is the main target, the F1 score is a frequently used metric. After every epoch
(for MLP), the user is shown the value of the loss on the training and validation
dataset, together with mentioned metrics. At the end of the training, the model is
tested once again on a test set to evaluate the performance of the trained model.

Extensibility

The best model type might vary based on the application, so we let the user choose
the appropriate method. From a long-term point of view, we should be able to
use more types of ML models as a trigger. To make our approach extendable,
it is required to generalize over the ML models. Fortunately, there exist formats
that support the serialization and deserialization of various types of models [33].

5.2.4 Combining triggers with parallelization

In this subsection, we discuss how to implement triggers in the context of the
dataflow graph described in Section 3.4. The triggering process is inherently
connected to the clustering. Our first option is to create a specific graph node
named ‘Trigger clusterer’ that would handle trigger clustering, be it an explicit or
implicit trigger. At first sight, this might look reasonable. The problem becomes
evident when we try to perform the data splitting into blocks of the size defined
by twindow. It stems from asynchronous clustering. If the clustering is triggered, it
should persist in the triggered state for a time ttrigger. Typically, ttrigger ≫ twindow,
which means that after triggering, some hits outside of the current window should
be clustered as well. Unfortunately, these hits are processed by different clustering
workers. One might think that can be solved by passing this trigger information
to the other workers. Nevertheless, these workers work asynchronously, which
means that once a worker receives the message to start the trigger, it might
already be too late. It is possible that at the moment of receiving the message,

47

the worker has already processed the hits that should have been affected by the
trigger. This issue could be handled by synchronization of the clustering nodes,
which would likely negatively impact the performance. To avoid synchronization,
we can modify our approach. We can create a separate worker that would act as a
trigger. Evidently, this node would need to be included in the computation before
the data-based split. Such a ‘trigger node’ would handle triggering, discarding hits
while not triggered, and feeding the hits to the rest of the computational graph if
triggered. Inauspiciously, this approach clearly has a disadvantage because every
node on the computational path of a hit means additional copying of the data.
The impact of this effect is examined by benchmarks in Section 6.2.3.

48

6. Experiments
In this chapter, we will evaluate our methods for clustering. We start with the de-
scription of the test data and models in Section 6.1. The first important criterion
we will measure is the correctness of our approach – a comparison of the output
of our implementation compared to the current baseline algorithm. To read more
about this comparison, see Section 6.2. And then, in Section 6.3, we estimate the
efficiency of the proposed clustering methods. In both parts, we used multiple
datasets, as we expect both the algorithms’ correctness and performance to vary
based on the characteristics of the input data.

6.1 Experiments setup

6.1.1 Testing data

In order to perform the experiments, it is required to select the data which would
be used as an input to our models. Our goal is to test the algorithms using a
variety of cluster types. There are two factors which we can test that affect the
shape of the cluster:

• Particle type. The type of the particle determines its charge and its
structure. That defines how the particle behaves in the electric field during
the measurement.

• Particle energy The energy of the particle depends primarily on its mo-
mentum, which is set by the radiation source.

• Traversing angles. By the traversing angles, we mean two angles zenith θ

and azimuth ϕ required for a unique definition of line orientation in a three-
dimensional space. For a single particle, it is difficult to accurately set the
angle during measurement, but it is possible to do that on a statistical basis.
Assuming the beam with the given distribution of particle directions, we
can modify the shape and the mean of the distribution by simply rotating
the chip while keeping the beam orientation fixed (or vice versa).

To obtain the most realistic estimate of the performance of our models, we
decided to test datasets that vary in all three factors – particle type, energy, and
angles.

Beside the factors influencing the cluster shape, we also decided to test dif-
ferent particle fluxes (the rate at which the particles traverse a fixed area). This

49

factor can influence the effectivity of parallelization as high particle flux puts
more pressure on the nodes in the computational graph.

The testing datasets included the pion, neutron, lead, and other fields, each
with different energies and multiple angles. The test data were obtained during
the acquisition at CERN beam lines.

6.1.2 Tested models

In this section, we provide a quick overview of the models we tested and references
to the parts of the thesis where we discussed them. The models are summarized
in Table 6.1. First, we implemented a step-based parallelization model, and then
we extended it with data-based parallelization. Various merging techniques and
triggers were tested. Notably, the nodes used in the computational graphs can be
viewed as variables. For instance, the clusterer node can be implemented either
as an exact or approximative clustering method. Typically, the outputter node
would write the data onto a disk. However, during the benchmarks, it can simply
receive the data and discard it to remove the bias of the I/O operations.

50

Tested computational graphs
Name of the archi-
tecture

The computational graph

Simple clusterer,
Section 3.1

Parallel clusterer
with simple merg-
ing 1, Section 3.3.1

Parallel clusterer
with tree merging,
Section 3.3.2

Parallel clusterer
with single layer
merging, Sec-
tion 3.3.3

Parallel clusterer
with single layer
merging and mul-
tioutput

Trigger clusterer,
Section 5.2

Table 6.1: Overview of the tested computational graphs. In the last scheme, the
block is replaced by one of the (possibly parallel) models mentioned above.

1If not stated otherwise, the reader is set as a splitting node, but the splitting can also be
done later in the process – in the calibration or the sorting node.

51

6.2 Correctness

6.2.1 Metric

To verify that our implementation works as intended, we should compare it to
the existing algorithms. For the comparison, it is required to define a similarity
metric evaluating how well two cluster datasets match.

The first option could be to simply compare the number of clusters in both
datasets. This is surprisingly effective during the development process, as it
provides a quick and simple estimation of the validity of the approach. However,
it is a positively biased estimator of the overlap between the two datasets (as
some of the error clusters will likely cancel out in the difference in cluster count).

Then, if our goal is to see how similar the two datasets are, we can compute
the intersection of these datasets. To compute the intersection, we need to define
equality on clusters. We say two clusters C1 and C2 are equal for given ε > 0 if:

(i) C1 and C2 contain the same number of hits, and

(ii) for each hit h1 in the cluster C1 there exists a hit h2 in C2, such that for
each property of the hit p : H → R it holds |p(h1) − p(h2)| < ε, with H

denoting the set of all possible hits.

The reason for using ε is to avoid mismatches between clusters only caused by
the precision of floating point numbers.

While the intersection might provide good insight into how well two datasets
match, to make it a useful metric, we need to normalize it so it does not depend
on the size of a particular dataset. For that, we can compute the union of the two
datasets. Together we form the metric named ‘Intersection over union’ (IoU),
also known as the Jaccard index [34]. Given sets A and B; IoU (A, B) = |A∩B|

|A∪B| .

6.2.2 Similarity metric computation

For the computation of the metrics, we can reuse the concept of computational
graphs used for clustering. All we need is to implement new nodes and build
the graph accordingly. We will only require two types of nodes. The first node,
‘Cluster reader’ reads the clustered files, and the ‘Overlap computer’ computes
the similarity metric between the datasets. The computational graph consists of
only three nodes and is illustrated in Figure 6.1

In general, the computation of the IoU (A, B) can be done in multiple ways.

• It is possible to store one of the sets, be it A, as a hashed set and then query
the hash set for each element of the set B. This operation has constant time

52

Figure 6.1: Computational graph for the similarity metric.

complexity, leading to comparison time in O(|A|+ |B|). A disadvantage of
this approach is that the whole A has to fit into operational memory, which
might not always be the case.

• Another approach is to sort both sets and then read elements in ascending
order. The same elements should be located close to each other in the
sequence. In theory, this approach does not require the whole set to fit into
memory (see external sorting [35]), but the time complexity of the sorting
is O((|A| + |B|) · log(|A| + |B|)), which is asymptotically worse than the
first approach.

For our application, however, we can utilize the fact that the cluster files are
already temporally sorted. Thus we can perform the comparison computation in
linear time O(|A| + |B|) and constant memory1 as shown in Algorithm 4. The
function ‘readNewCluster’ returns the next cluster in sorted order and index of
the dataset where the cluster originated. The clusters with the same value of
the first time of arrival are temporarily stored in the containers openClusters1

and openClusters2 and periodically compared in ‘compareClustersAndDispatch’
method, which computes the number of matching and non-matching clusters in
the sets. Additionally, it removes the matched and unmatched clusters from open
clusters. In the case of clusters with distinct first times of arrival, both sets will
only consist of two clusters. (A second cluster with distinct time guarantees there
are no clusters with duplicate first time of arrival.)

1In case of clusters with the same value of the first time of arrival, we need to store all of
them into memory for comparison, as they can be ordered arbitrarily. This also slows down the
computation, but we rely on that occurring rarely.

53

Algorithm 4 Find similarity of cluster datasets
1: ε← a small positive constant
2: openClusters1 ← ∅
3: openClusters2 ← ∅
4: while dataset1.isNonEmpty() or dataset2.isNonEmpty() do
5: (cluster , datasetIndex)← readNewCluster(openClusters1, openClusters2)
6: if datasetIndex = 1 then
7: openClusters1 ← openClusters1 ∪ cluster
8: else
9: openClusters2 ← openClusters2 ∪ cluster

10: end if
11: while |openClusters1|+ |openClusters2| ≥ 2 ∧
12: |(openClusters1 ∪ openClusters2).first().fToA() −
13: (openClusters1 ∪ openClusters2).last().fToA()| > ε do
14: ▷ fToA is first time of arrival
15: compareClustersAndDispatch(openClusters1, openClusters2)
16: end while
17: end while

6.2.3 Results

For the purpose of validation of clustering methods, the models mentioned in
Table 6.1 were extended by a single ‘Writer’ node which writes the cluster to a
disk. The mean IoU values for each method are listed in Table 6.2.

Parallel clustering validation
Name of the architec-
ture

The average IoU score
when compared to
quadtree method dis-
cussed in 1

Standard deviation of
IoU when compared to
quadtree method

Simple clusterer 0.99986 0.0001
Parallel clusterer with
simple merging

0.99983 0.0002

Parallel clusterer with
tree merging

0.99983 0.0002

Parallel clusterer with
single layer merging

0.99983 0.0002

Simple clusterer with
halo-based clustering1

0.854 0.025

Table 6.2: Results of the clustering validation experiment for the pion dataset
acquired during measurement at CERN beam lines.

54

From the results, we can observe negligible differences between our implemen-
tation of parallelized clustering and the existing approach. We suppose the error
primarily stems from the minor difference in the cluster definition (fixed time
window vs. moving time window). Additionally, the error can be caused by the
possible differences in rounding of floating point precision numbers. In the case
of halo-based clustering, we see a significant number of incorrect clusters, which
makes the usefulness of the approach disputable.

After validation of our clustering against existing methods, we decided to
perform another validation experiment. In one of the methods for clustering, we
resigned on the spatial neighborhood condition and named this approach ‘tempo-
ral clustering’. Assuming the timespan of most clusters is small and the particle
flux not so high, this method could work reasonably while being significantly
simpler (and possibly faster). The validity of the temporal clustering for different
datasets is shown in Figure 6.2. Here it is evident that with increasing hit fre-
quency of the source, the importance of the spatial information grows as clusters
start becoming closer in the temporal dimension. It depends on the temporal
distances between the clusters. However, in general, as a standalone approach,
purely temporal clustering does not seem to be sufficient. Notably, it could be
used as a preprocessing step before the actual ‘spatial’ clustering.

On a side note – the spatial connectivity requirement for a cluster might not be
critical for all applications. For instance, just before a particle decays when hitting
the detector, it can generate multiple discontinuous tracks connected only in the
temporal dimension, clustered together by temporal clustering. Even though the
temporal clustering does not match the standard clustering with higher hit rates,
it still possesses this usable feature.

Figure 6.2: Dependence of the validity of the temporal clustering on the frequency
of the received hits.

1Every computational graph from Table 6.1 allows replacing the clusterer node with a differ-
ent clustering method. Instead of standard clustering, halo-based clustering or other methods
can be used.

55

6.3 Performance

6.3.1 Hardware

In this section, we discuss the results regarding the speed of the clustering meth-
ods. We expect our models to run mostly on two types of devices – on a laptop
with a relatively small number of cores and on a server with more computational
cores. That is the motivation behind running the benchmarks twice, once for a
laptop and the second time on a server. The specification of the hardware used
for testing is listed below:
Laptop:

Os: Linnux Mint
CPU: Intel Core i7-11370H

3.3GHz(Turbo up to 4.8GHz), 64 bits, 4 Cores
L1d cache 192KiB, L1i cache 128KiB, L2 cache 5MiB, L3 cache 48MiB

RAM: 8GB
DISK: NVMe M.2 SSD 512GB

Server:
OS: Ubuntu
CPU: AMD Epyc-Rome

2GHz, 64 bits, 16 Cores
L1d cache 1MiB, L1i cache 1MiB, L2 cache 8MiB, L3 cache 256MiB

RAM: 16GB
DISK: SATA SSD 512GB

6.3.2 Simulation of online environment

During our benchmarks, we want to verify if the models are suitable for real-time
clustering. Benchmarking the models on ‘online data sources’ is not feasible,
as properties like hit rate are difficult to control properly. Notably, our offline
clustering models can be applied to real-time clustering – it is only required to
reimplement a single node, the ‘reader’.

Therefore, we would like to simulate the online scenario to get a reasonable
estimate of ‘online’ performance. With the performance, we mean the maximal
speed of clustering in hits per second. To do that, we decided to exclude the cost
of I/O operations from most of the benchmarks. The cost of output operations
can be neglected by not including the ‘Writer’ nodes in the computation graph.
The cost of input (reader) operations can be reduced by utilizing the ‘recurring

56

reader’, which loads the data before the start of benchmarks and then generates
hits repeatedly, offset by the fixed time without any additional reads from the
disk. The time offset can then be set as a time difference between the first and
the last hit stored in the buffer.

Modification of the source hit frequency (by a factor f) could then be modelled
by multiplication of the time of arrival of a hit by a constant 1

f
. Nevertheless, this

approach does not simulate the high hit frequency sources well. By ‘squeezing’
all of the hits together by a factor, we also decrease the timespan of each cluster,
which is does not occur in real data sources with high hit rate. This would
decrease the number of clusters that were divided by the border, possibly leading
to overly optimistic estimate of the performance. Therefore, when modifying the
frequency, we first form the clusters, and offset only the first hit hfirst of each
cluster by a factor f . And only then we change the time of arrival of remaining
hits h in the cluster, such that the relative time difference h.ToA − hfirst.ToA is
preserved (thus preserving the original cluster timespan).

Even though we tried to simulate the online setting accurately, there is a
factor we decided not to incorporate into the benchmarks. When the hits arrive
from the chip, they arrive to the reader at a specific time. This effect could
be simulated by employing a timer that would release the hits periodically. We
decided against the timer (we release the hits at full speed, making a no-timer
simulation) mostly because of two reasons. First, the timer provides additional
computational overhead, which would not be present in the real-time scenario,
possibly making the simulation less accurate. And second, we can estimate the
performance of our models in real-time hit processing by modifying the fully
online scenario in the way described below.

Modification: While receiving the hits, collect the hits in a container (as they
arrive in real-time) and, after a fixed time, periodically release them to the rest
of the computational graph at full speed.

Evidently, the fully online scenario must be at least as fast as the modification
(they do the same work, but there is no waiting in the fully online approach).
On the other hand, when comparing the modification to the no-timer simulation,
the modification only introduces a fixed-time lag to the whole processing (other
than the small time lag, there should be no difference).

We have shown that the maximal speed of real-time clustering should be at
least as high as the modification, and the modification is almost as fast as the
no-timer simulation (apart from a small fixed-time lag). Together the maximal
speed of the no-timer approach is expected not to be notably faster than the fully
real-time scenario.

One more effect that we did not incorporate into our simulation is the fact

57

that the unorderedness changes as a function of hit frequency. Fortunately, the
upper bound t of the t-orderedness is still preserved (t ≈ 500 µs but the hits are
likely to arrive more temporally disordered. Again, we do not expect this fact
to be significant, as sorting the data stream is not a bottleneck of the processing
and has guaranteed O(log n) worst-case time complexity for each received hit (n
represents the number of hits obtained during time t).

6.3.3 Results

In this subsection, we will provide the benchmarking results for architectures and
models that we tested. Values of the parameters, if not stated otherwise:

• twindow – We used the value 8000 ns for all of the benchmarks.

• nworkers – The default value of this parameter is 16 for the server and 4 for
the laptop.

• Trigger – By default no trigger is used.

• Split node – The first ‘reader’ node is used as the node of the split.

Model comparison

Firstly, to get an estimate of the performance of some of the implemented models,
we compared the performance of the approximative models with simple cluster-
ing and parallel clustering. We do not see any speed improvement for the halo
clustering, which we assume is because the management of the bounding boxes
and small halo size outweighed the potential speed gain. On the other hand,
the temporal clustering is notably faster, which implies that the spatial neighbor
checking in the standard clustering is the most computationally expensive part
of the algorithm. Regarding the parallelization speedup, for the laptop with only
4 CPU cores, we were able to increase the throughput from 5-6 MHit/s to 9-10
MHit/s. On the server, however, the benefit from the parallelization was even
higher (up to 14-15 MHit/s), as the machine has 16 CPU cores. Notably, the
single core frequency on the server was lower, yielding lower performance for the
computational graphs with a low degree of parallelization.

58

(a) Laptop benchmark

(b) Server benchmark

Figure 6.3: Throughput of the approximation clustering methods compared with
the simple and parallel clustering.

nworkers parameter

Then we tested the influence of nworkers parameter on the performance of the
parallelization. Results are shown in Figure 6.3. For the laptop, we can see
that the throughput peeks around the value nworkers = 4, which is the number of
available cores in the CPU. Similarly, for the server, the maximum parallelization
throughput was reached around the nworkers = 16. For higher values of nworkers, we
can see a small decline in throughput which we attribute to the overhead which
stems from the increasing size of the computational graph.

59

(a) Laptop benchmark

(b) Server benchmark

Figure 6.4: Dependence of the throughput of the parallel clustering on the nworkers
parameter (data-based split).

Hit rate parameter

Then we decided to observe the parallelization performance of the algorithm for
data with various hit rates (hit frequencies). Naturally, the observed hit rate
is rarely constant, so instead of analyzing the average hit rate over the whole
acquisition, we measure the hit rate for small time windows (t ≈ 200 ms) and
then take the maximum hit rate over the whole acquisition (f = max{ni

t
|i ∈

{1, 2, . . . ttotal
t
}} with ni denoting the number of hits observed in i-th time window

and ttotal representing the total acquisition time). The reason behind this is that
we would like to measure how the clustering behaves under the given maximum
hit rate. For instance, with higher hit rates, the number of clusters open at the
time grows, which could potentially slow down the clustering. During the sorting
phase, we also have to keep more hits in the memory at each time frame. However,
from the experiment (see Figure 6.5), we can see that both on the laptop and the
server, modifying the hit rate does not have a significant negative impact on the
overall performance.

60

(a) Laptop benchmark

(b) Server benchmark

Figure 6.5: Dependence of the throughput of the parallel clustering on the
frequency of the hit source.

Split node

Another factor we decided to test was the node, where the data-based split was
performed. We provided three options – the reader node, the calibrator node, and
the sorter node (see Figure 6.6). Here we see a difference between the laptop and
the server. On the laptop, because of a lower degree of parallelization, the earlier
data splitting does not improve the throughput. On the contrary, the server was
able to capitalize on the spit as early as in the reader, providing a noticeable
improvement when compared to the splits later in the graph.

61

(a) Laptop benchmark

(b) Server benchmark

Figure 6.6: Dependence of the clusterer throughput on the node where the (data-
based) splitting occurs.

Merger type

In order to assess the effectiveness of the proposed merging methods we also in-
cluded them in our benchmarks (see Figure 6.7). On the laptop, the difference
between the methods was not really significant. But with the higher degree of
parallelization, we can see that linear (parallel) merging is faster than the single-
worker approach. Additionally, it is observed that if we keep the parallel streams
separated (multioutput where all streams contain complete, already merged clus-
ters) and output them separately, we can observe another performance gain (in
total, more than 15 MHit/s).

62

(a) Laptop benchmark

(b) Server benchmark

Figure 6.7: Dependence of the parallel clustering throughput on type of merging
used.

Writing

Finally, we decided to include also writing into a file (I/O) in the benchmark
(Figure 6.8). On both the server and the laptop, we can observe a decrease in the
throughput for the models where the data streams are eventually merged (the
parallel clustering was slowed down from 14 MHit/s to approximately 4 MHit/s).
In these computational graphs, only a single node is responsible for the writing of
the clusters. This might have one of the two explanations. Either the hardware is
not capable of writing at a faster rate, or we did not spend enough computational
resources on the writing itself. By observing the benchmark of the multioutput
graph, we can quickly see that the latter is the case. For the applications where
parallel writing is supported, we were able to preserve the mean clustering speed
at 10 Mhit/s for the laptop and almost 15 Mhit/s for the server. Notably, on
average, each hit occupies around 30 characters in a file, which translates to 30
bytes in UTF-8 encoding (we only use ASCII characters). Thus, 15 Mhit/s means
writing 450 MB/s which might not be far from the hardware limit of the SSD on

63

the server.

(a) Laptop benchmark

(b) Server benchmark

Figure 6.8: The throughput of the models with included I/O operations for writ-
ing. It is evident that parallel writing provides a noticeable performance boost.

ML trigger clustering

To show that the triggers can actually be helpful in some scenarios, we decided
to show examples of how they can be used. We will try to selectively cluster
in the environment with a recurring beam with a high particle flux. The beam
repeatedly starts and stops for ≈ 5 second intervals. We can try to detect these
changes (when the beam starts and stops) and only run clustering for a short
while after the change occurs. This way, if the particle field does not change
significantly, no data need to be clustered.

In order to detect the changes in the field, we can use the differentiated features
(see Section 5.2.1). We automatically select the windows where the beam change
occurred according to the corresponding change in the hit rate attribute. These
windows represent the ‘trigger’ class. The remaining windows belong to the
‘no trigger’ class. In the experiment, we used a window of size 200 ms, and the
after activating, the trigger remained active for 500 ms.

64

(a) Confusion matrix evaluated on the
training set for the trained MLP.

(b) Confusion matrix evaluated on the
test set for the trained MLP.

Figure 6.9: Confusion matrices for trained MLP model. The confusion matrices
for SVM are not shown as they do not differ significantly from the confusion
matrices above.

Class imbalance

Because of the class imbalance, we decided also to employ oversampling. The
examples of the minority class are copied multiple times, so they significantly
contribute to the loss function. However, such a simple oversampling can easily
cause the model to overfit. Because of that, during the oversampling, we added
Gaussian noise N(µnoise, σnoise) to each attribute of the copied sample. We chose
µnoise = 0. To set σnoise, we computed the true standard deviation of the dataset
σtrue for each attribute. Then we set σnoise = c · σtrue for a modifiable constant c

(for example c = 0.1).

Training

For the detection of the start/stop of the beam, we trained MLP and SVM.
Both models can be trained sufficiently for this relatively simple task as shown
in Figure 6.9.

Application

After applying the trained trigger to the data from pion measurements, we ob-
served that both triggers discarded approximately 67% of all processed hits. On
the laptop, this resulted in an increase in throughput for MLP trigger up to 16.3
MHit/s and for SVM trigger up to 17.5 MHit/s. On the server, however, the
performance gain was not as significant, reaching ‘only’ 11.8 MHit/s for MLP
and 14.2 MHit/s for the SVM trigger. However, the maximum clustering speed is
not the only criterion to keep in mind. Besides the possible speedup, the triggers
also reduce the data.

65

Outlier detection

Apart from supervised learning models, we also decided to demonstrate an ex-
ample usage of an unsupervised learning method. The one-class SVM model
will detect the outliers in the data and only perform clustering on the ‘irregular’
windows. This can be used to search for exotic particles. After the training, the
model discarded 89% of the received hits, which increased the maximum through-
put to 26 MHit/s on the laptop and 17 MHit/s on the server. The remarkable
difference between the throughputs we attribute mostly to the difference in the
single-core CPU frequency between the devices.

66

Conclusion
The main focus of the thesis was to explore options for the possible acceleration
of the clustering process and the related data reduction in the data obtained from
the Timepix3 detector. The summary of the achieved results is listed below.

Clustering parallelization

First, we split the clustering process logically into multiple steps (I/O, time sort-
ing, calibration,. . .) and performed each step in parallel, together forming a
pipeline. Then, we created multiple such pipelines and split the data between
those based on the time of arrival. Nevertheless, the splitting of the hits between
the clusters may create incomplete clusters, so additional merging was needed,
which was also parallelized.

Approximative clustering

Second, we implemented two ways of approximative clustering – ‘tiled clustering’
and ‘halo bounding box clustering’. The first uses the idea to consider pixel
neighborhoods of larger tiles instead of individual pixels in order to overcome the
potential dead (not-activated) pixels. The ‘halo bounding box’ idea was utilize
the phenomenon known as the halo effect to simplify neighborhood search during
clustering. If we register two hits not far from each other both temporally and
spatially (not necessarily neighboring), and one of the pixels has high deposited
energy, these hits likely belong to the same cluster. Besides that, we also decided
to resign on the spatial neighborhood of the pixel during clustering and named
this approach ‘temporal’ clustering. All mentioned methods are compatible with
the parallelization above and can be used within any of the parallel architectures.

Selective (machine-learning-based) trigger clustering

And third, we provided software for the creation of clustering triggers, which
initiate clustering with the signs of interesting events. For each time window,
we compute features (or their temporal difference) to obtain a lower dimensional
representation of the hits which occurred in the time frame. Then, the events of
interest can be characterized explicitly or learned from the data using machine-
learning methods. This has the capability to reduce the data which would be
otherwise stored on a disk.

67

Evaluation and validation

And last, our methods were tested using simulated and real-life datasets. We
validated the clustering models against an existing clustering approach. Ad-
ditionally, from the experiments, we conclude that parallelization significantly
accelerates the clustering, scaling with the available number of threads. For the
laptop with four cores (4GHz frequency), we achieved maximum throughput of
around 9 MHit/s. On a server with sixteen cores (each 2GHz frequency), we were
able to reach the throughput of 14 MHit/s. The speeds were originally affected
by the writing I/O operations, but with parallel multifile writing, we were able
almost to preserve the mentioned throughput values, corresponding to the data
rate of more than 400 MB per second (30 bytes per hit). With the halo-based
clustering, we do not see any significant improvement – we attribute it to the
extra computational cost of management of bounding boxes. On the other hand,
the temporal clustering increased the maximal throughput, but as we have shown,
its correctness decays with increasing data rates. However, temporal clustering
is much less computationally expensive, which can be useful in space, where the
resources are extremely costly.

For the trigger clustering, we used differential window features to find the
rising and falling edge in the environment where the main radiation source is
repeatedly turned on and off. The perceptron and support vector machine models
were trained to detect this edge and reduced the data by more than a half, which
led to an increase in maximal throughput for the laptop to 16 Mhit/s. For the
server, the maximal throughput remained at 12-14 Mhit/s, possibly suffering from
the lower single-core frequency. Additionally, we also trained an unsupervised
model for outlier detection – a one-class support vector machine. In the simple
experiment, it discarded almost 90% of the data, while increasing the maximum
throughput to 26 Mhit/s on the laptop and 17 MHit/s on the server.

As our main contribution, we consider the parallelization which increased the
clustering throughput in comparison with the baseline method (performing at
around 3 Mhit/s) up to 10-15 MHit/s, depending on the hardware used. To sum
it up, we consider all our goals to be completed.

Future work

Even though we believe we have fulfilled our goals, there is still room for possible
improvements.

• Two phase clustering – one of the promising clustering methods which
was not implemented, is the idea of splitting the clustering into temporal

68

and spatial steps. The temporal clustering serves as a preprocessing step,
and in the spatial step, the cluster is potentially split into multiple clusters
using some graph component partitioning algorithm (BFS, DFS, . . .). In
principle, it could save time, as no cluster merging takes place, and no
complex auxiliary data structures are required.

• Sorting first and dynamic time window – In our text we argued, that
dynamic time windows are not feasible for the setup we use. Nevertheless,
we could modify it and first perform the time sorting in parallel, using
round-robin splitting and merge the sorted streams. Then when the data
is sorted, it can be splitted again (for calibration, clustering and cluster
merging), using a splitting time window that can change in time (smaller
window for high-frequency data sources) to guarantee equal distribution
of work in every case. The speed improvement is not guaranteed as the
merging of the sorted hit streams could become the new bottleneck.

• Parameter tuning – In our work, we examined the influence of a few pa-
rameters on the clustering but their internal dependence was not tested. For
instance, a grid search algorithm can be used to find the optimal parameters
for the specific computational architecture.

• Trigger parallelization – We decided to perform the trigger computation
in a single node (the clustering is still done in parallel) to avoid synchroniza-
tion between nodes. Nevertheless, the cost of synchronization still remains
to be experimentally determined.

• Online outlier detection – An improvement of the trigger clustering
could be to develop a fast algorithm for outlier detection, which would
be trained at the beginning, but even during the inference phase it would
periodically try to update its knowledge base about the data to online detect
the changes in the radiation field.

69

Bibliography
[1] T Poikela, J Plosila, T Westerlund, M Campbell, M De Gaspari, X Llopart,

V Gromov, R Kluit, M Van Beuzekom, F Zappon, V Zivkovic, C Brez-
ina, K Desch, Y Fu, and A Kruth. Timepix3: a 65K channel hybrid pixel
readout chip with simultaneous ToA/ToT and sparse readout. Journal of
Instrumentation, 9(05):C05013–C05013, May 2014.

[2] Rafael Ballabriga, Michael Campbell, and Xavier Llopart. Asic develop-
ments for radiation imaging applications: The medipix and timepix family.
Nuclear Instruments and Methods in Physics Research Section A: Accelera-
tors, Spectrometers, Detectors and Associated Equipment, 878:10–23, 2018.
Radiation Imaging Techniques and Applications.

[3] J Jak̊ubek. Semiconductor pixel detectors and their applications in life sci-
ences. Journal of Instrumentation, 4(03):P03013, mar 2009.

[4] B. Bergmann, T. Billoud, P. Burian, C. Leroy, P. Mánek, L. Meduna,
S. Posṕı̌sil, and M. Suk. Particle tracking and radiation field characteriza-
tion with Timepix3 in ATLAS. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 978:164401, October 2020.

[5] M. Martǐśıková, T. Gehrke, S. Berke, G. Aricò, and O. Jäkel. Helium
ion beam imaging for image guided ion radiotherapy. Radiation Oncology,
13(1):109, December 2018.

[6] X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, and W. Wong. Timepix,
a 65k programmable pixel readout chip for arrival time, energy and/or pho-
ton counting measurements. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 581(1-2):485–494, October 2007.

[7] Carlos Granja, Stepan Polansky, Zdenek Vykydal, Stanislav Pospisil, Alan
Owens, Zdenek Kozacek, Karim Mellab, and Marek Simcak. The SATRAM
Timepix spacecraft payload in open space on board the Proba-V satellite for
wide range radiation monitoring in LEO orbit. Planetary and Space Science,
125:114–129, June 2016.

[8] X. Llopart, J. Alozy, R. Ballabriga, M. Campbell, R. Casanova, V. Gro-
mov, E.H.M. Heijne, T. Poikela, E. Santin, V. Sriskaran, L. Tlustos, and
A. Vitkovskiy. Timepix4, a large area pixel detector readout chip which

70

can be tiled on 4 sides providing sub-200 ps timestamp binning. Journal of
Instrumentation, 17(01):C01044, January 2022.

[9] Declan Garvey. Pokročilé metody dekompozice radiačńıho pole hybridńımi
pixelovými detektory, June 2023.

[10] Florian Michael Pitters, Andreas Matthias Nurnberg, Magdalena Munker,
Dominik Dannheim, Adrian Fiergolski, Daniel Hynds, Xavi Llopart Cudie,
Niloufar Alipour Tehrani, Morag Jean Williams, Wolfgang Klempt, and oth-
ers. Time and energy calibration of timepix3 assemblies with thin silicon
sensors. Technical report, 2018.

[11] P. Burian, P. Brouĺım, M. Jára, V. Georgiev, and B. Bergmann. Katherine:
Ethernet Embedded Readout Interface for Timepix3. Journal of Instrumen-
tation, 12(11):C11001–C11001, November 2017.

[12] Lukáš Meduna. Detecting elementary particles with Timepix3 detector,
June 2019. Accepted: 2021-03-25T23:04:58Z Publisher: Univerzita Karlova,
Matematicko-fyzikálńı fakulta.

[13] Lukáš Meduna, Benedikt Bergmann, Petr Burian, Petr Mánek, Stanislav
Posṕı̌sil, and Michal Suk. Real-time timepix3 data clustering, visualization
and classification with a new clusterer framework, 2019.

[14] Hanan Samet. The Quadtree and Related Hierarchical Data Structures.
ACM Computing Surveys, 16(2):187–260, June 1984.

[15] Petr Mánek. A system for 3D localization of gamma sources using Timepix3-
based Compton cameras, September 2018. Accepted: 2018-10-01T12:23:27Z
Publisher: Univerzita Karlova, Matematicko-fyzikálńı fakulta.

[16] G.T. Byrd and M.J. Flynn. Producer-consumer communication in dis-
tributed shared memory multiprocessors. Proceedings of the IEEE,
87(3):456–466, March 1999.

[17] William S Noble. What is a support vector machine? Nature Biotechnology,
24(12):1565–1567, December 2006.

[18] S Hoang, R Vilalta, L Pinsky, M Kroupa, N Stoffle, and J Idarraga. Data
Analysis of Tracks of Heavy Ion Particles in Timepix Detector. Journal of
Physics: Conference Series, 523:012026, June 2014.

[19] C. Gemme. The ATLAS pixel detector. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 501(1):87–92, March 2003.

71

[20] Wesley H Smith. Triggering at LHC experiments. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 478(1-2):62–67, February 2002.

[21] St. Gohl, M. Malich, B. Bergmann, P. Burian, C. Granja, E. Heijne, M. Ho-
lik, J. Jacubek, J. Janecek, L. Marek, C. Oancea, M. Petro, S. Pospisil,
A. Smetana, P. Soukup, D. Turecek, and M. Vuolo. A miniaturized radia-
tion monitor for continuous dosimetry and particle identification in space.
Journal of Instrumentation, 17(01):C01066, jan 2022.

[22] Alvin W. Moore and James W. Jorgenson. Median filtering for removal of
low-frequency background drift. Analytical Chemistry, 65(2):188–191, Jan-
uary 1993.

[23] Fionn Murtagh. Multilayer perceptrons for classification and regression. Neu-
rocomputing, 2(5-6):183–197, July 1991.

[24] Allan Pinkus. Approximation theory of the MLP model in neural networks.
Acta Numerica, 8:143–195, January 1999.

[25] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions
in neural networks. Towards Data Sci, 6(12):310–316, 2017.

[26] Shan Suthaharan. Support Vector Machine. In Machine Learning Mod-
els and Algorithms for Big Data Classification, volume 36, pages 207–235.
Springer US, Boston, MA, 2016. Series Title: Integrated Series in Informa-
tion Systems.

[27] Shirish K Shevade, S Sathiya Keerthi, Chiranjib Bhattacharyya, and Kara-
turi Radha Krishna Murthy. Improvements to the smo algorithm for svm
regression. IEEE transactions on neural networks, 11(5):1188–1193, 2000.

[28] Maryamsadat Hejazi and Yashwant Prasad Singh. ONE-CLASS SUPPORT
VECTOR MACHINES APPROACH TO ANOMALY DETECTION. Ap-
plied Artificial Intelligence, 27(5):351–366, May 2013.

[29] Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. Enhancing
one-class support vector machines for unsupervised anomaly detection. In
Proceedings of the ACM SIGKDD Workshop on Outlier Detection and De-
scription, pages 8–15, Chicago Illinois, August 2013. ACM.

[30] Anjana Gosain and Saanchi Sardana. Handling class imbalance problem
using oversampling techniques: A review. In 2017 International Conference

72

on Advances in Computing, Communications and Informatics (ICACCI),
pages 79–85, Udupi, September 2017. IEEE.

[31] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard.
A study of the behavior of several methods for balancing machine learning
training data. ACM SIGKDD Explorations Newsletter, 6(1):20–29, June
2004.

[32] Sebastian Raschka. An overview of general performance metrics of binary
classifier systems. arXiv preprint arXiv:1410.5330, 2014.

[33] Ayush Shridhar, Phil Tomson, and Mike Innes. Interoperating deep learning
models with onnx. jl. In Proceedings of the JuliaCon Conferences, volume 1,
page 59, 2020.

[34] Sam Fletcher and Md Zahidul Islam. Comparing sets of patterns with the
Jaccard index. Australasian Journal of Information Systems, 22, March
2018.

[35] P.A. Larson. External sorting: run formation revisited. IEEE Transactions
on Knowledge and Data Engineering, 15(4):961–972, 2003.

73

List of Figures

1.1 An image of Timepix3 detector with silicon sensor [9]. To better
illustrate the working principle, the sensor has an overlay of sample
data created by the detection of charged particles. 7

1.2 An illustration [9] of the data acquisition process with Timepix3,
described by the part 1.1.2. 9

1.3 Dependence of time of arrival on the signal amplitude. The red
arrow denotes the ToA differences. 10

1.4 A photo of Timepix4 taken during a measurement. 11
1.5 An image of the Katherine readout device [11] 11
1.6 (a) Area homogeneously occupied by ones (in our case they are

hits). (b) Pixel matrix. (c) Names of the tiles used in the quadtree.
(d) The created quadtree labeled by the corresponding tiles. [14] . 16

3.1 The histogram of the cluster diameter in the dataset consisting of
various types of clusters from pion, lead ion, and neutron data we
use further in the thesis experiments. 24

3.2 The histogram of the cluster timespan (dtcluster) in the dataset con-
sisting of various types of clusters from measured pion, lead, and
neutron data. 25

3.3 Scheme displaying three clusters A, B and C on a time line. The
clusters A and C are mergeable border clusters, and the cluster
B is considered a non-border cluster. The labels fToA and lToA
denote the ToA of the first and the last hit in the corresponding
cluster. Here, the cluster obtained by merging clusters A and C

should be outputted before the cluster B. 29

4.1 Images of the clusters with a halo. The halo pixels are marked by
a yellow and white color, indicating a low deposited energy. 36

6.1 Computational graph for the similarity metric. 53
6.2 Dependence of the validity of the temporal clustering on the fre-

quency of the received hits. 55
6.3 Throughput of the approximation clustering methods compared

with the simple and parallel clustering. 59
6.4 Dependence of the throughput of the parallel clustering on the

nworkers parameter (data-based split). 60

74

6.5 Dependence of the throughput of the parallel clustering on the
frequency of the hit source. 61

6.6 Dependence of the clusterer throughput on the node where the
(data-based) splitting occurs. 62

6.7 Dependence of the parallel clustering throughput on type of merg-
ing used. 63

6.8 The throughput of the models with included I/O operations for
writing. It is evident that parallel writing provides a noticeable
performance boost. 64

6.9 Confusion matrices for trained MLP model. The confusion matri-
ces for SVM are not shown as they do not differ significantly from
the confusion matrices above. 65

A.1 Input selection fields, as described by the fields, as described by
steps above. 84

A.2 Comparison of the standard (not differentiated) features and their
differentiated version. 85

A.3 Window selection, as described by the fields above. The boxes
highlighted in red correspond to the steps described in the text. . 86

A.4 Loading the window feature file. 88
A.5 Creating the interval trigger. 89
A.6 Training supervised trigger. 90
A.7 Training an unsupervised trigger. 91

75

List of Tables

1.1 Basic properties of Timepix3 detector. 7
1.2 Cluster categories based on their shape. 13

3.1 Overview of the nodes used in the clustering processing graph. . . 34

6.1 Overview of the tested computational graphs. In the last scheme,
the block is replaced by one of the (possibly parallel) models men-
tioned above. 51

6.2 Results of the clustering validation experiment for the pion dataset
acquired during measurement at CERN beam lines. 54

A.1 Allowed hyperparameters of the multilayered perceptron and their
domains. 92

A.2 Allowed hyperparameters of the support vector machines and their
domains. For more information, see https://scikit-learn.org
/stable/modules/svm.html. 92

76

https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html

A. Attachments

A.1 User manual for the developed tools

This chapter is dedicated to the description of the implemented tools for the
clustering, proposed in the thesis above. It consists of three programs:

• clusterer,

• window processor and

• window trigger creator.

Each of the programs has a dedicated section where we discuss the installation
and usage of the program.

Currently, for the clusterer and window processor programs, there are two
options for installation – either to build it from the source, or to download its
pre-built executable. For the window trigger creator, we provide only the build
option. Distribution via a single executable would need to contain all dependen-
cies, including large machine-learning libraries, which would take a lot of space
(more than a gigabyte).

• Build from source:

– https://github.com/TomSpeedy/clusterer

– https://github.com/TomSpeedy/window_processor

– https://github.com/TomSpeedy/window_trigger_creator

Properties:

+ Wider support of various operating systems.

+ Possibility of extending the source code.

− Requires more time to set up dependencies.

• Download pre-built executables (https://drive.google.com/drive/fol
ders/1DOCHbyQ9w5nK9EDZub-YpGhHROj_7BhL?usp=sharing).

Properties:

+ Fast and simple.

− Currently only supports Ubuntu OS and 64-bit Windows.

77

https://github.com/TomSpeedy/clusterer
https://github.com/TomSpeedy/window_processor
https://github.com/TomSpeedy/window_trigger_creator
https://drive.google.com/drive/folders/1DOCHbyQ9w5nK9EDZub-YpGhHROj_7BhL?usp=sharing
https://drive.google.com/drive/folders/1DOCHbyQ9w5nK9EDZub-YpGhHROj_7BhL?usp=sharing

For the purpose of testing all three applications, we share a (relatively) small
dataset, see the link https://drive.google.com/drive/folders/1DOCHbyQ9w5
nK9EDZub-YpGhHROj_7BhL?usp=sharing. In case of any problems or questions,
please send an email to ‘celko.tom@gmail.com’.

A.1.1 Clusterer

The clusterer is a command-line tool meant for the first step of event building
called clustering. As of now, the clusterer works in the offline mode, processing
hits obtained from Timepix3 in a text file format.

Installation

• From pre-built binary – download the zipped folder and simply run the
executable. (named ‘clusterer’ or ‘clusterer.exe’)

• Build from source:

Prerequisites:

1. OnnxRuntime (version for Ubuntu is distributed within the clusterer
repository).

2. Cmake version ≥ 2.8.

3. C++ compiler with support of C++17 standard. (GCC version 8+,
Visual Studio 2017 15.8 – MSVC 19.15+ or similar).

Note: Steps marked by * are not required for Linux systems.

1. Clone the repository using HTTPS or SSH.

2. *Download OnnxRuntime from https://onnxruntime.ai/. Select
‘optimize for inference’ and choose the target platform. Choose ‘C++’
API and in ‘hw acceleration’ field choose ‘default cpu’. Follow the
instructions for installation.

3. Create the build directory (‘clusterer/build/’) and navigate to it.

4. Run cmake .., this generates the build files. For the MSVC compiler,
this generates VS solution. For this solution, the Onnx runtime needs
to be added in the form of a NuGet package.

5. *Set environmental variable‘ONNX LIBRARY PATH’ to the direc-
tory where the onnxruntime library is located (search for a file named
‘onnxruntime.dll’, ‘onnxruntime.so’ or similar).

78

https://drive.google.com/drive/folders/1DOCHbyQ9w5nK9EDZub-YpGhHROj_7BhL?usp=sharing
https://drive.google.com/drive/folders/1DOCHbyQ9w5nK9EDZub-YpGhHROj_7BhL?usp=sharing
https://onnxruntime.ai/

6. Run cmake --build .. For the MSVC it is required to add --config
Release as the default build is Debug. The executable is then located
in the ‘Release’ or ‘bin’ folder. If the build does not succeed, observe
the error message, it might point toward the problem. Alternatively,
contact the author.

Usage

In order to use the clusterer, the user is expected to provide command line argu-
ments. To display the options pass the --help argument. The arguments and
the options are always separated by a blank space. The clusterer can be run in
multiple configurations, specified by the ‘mode’ option.

• benchmark – To run this option, please download the test dataset from the
link https://drive.google.com/drive/folders/1DOCHbyQ9w5nK9EDZub
-YpGhHROj_7BhL?usp=sharing and extract it. This option requires only a
single additional argument – path to the downloaded dataset.

• window processor – This option serves to generate file with unclustered
window features, further used in the window processor app. Additionally,
the calibration folder should be specified using --calib option.

• compare – The ‘compare option is a tool for comparison of two clustered
files. It computes the Intersection over union match between the cluster
datasets.

• clustering – The default mode, which clusters the given data file. Simi-
larly to window processor, the calibration folder should be provided.

The arguments for the program are passed in two ways. Some of the arguments
are passed directly via the command line. Additional ‘Node arguments’ for the
computational nodes are passed in a file via --args argument. All options and
arguments:

• --mode <one of ’clustering’, ’window features’, ’compare’, ’benchmark’>
– defaults to ‘clustering’
– mandatory argument if ‘clustering’ or ‘window features’: --calib

• --help

• --args <path to node argument file>– a file with a set of parameters for
each node in the computational graph

• --calib <path to calibration folder>

79

https://drive.google.com/drive/folders/1DOCHbyQ9w5nK9EDZub-YpGhHROj_7BhL?usp=sharing
https://drive.google.com/drive/folders/1DOCHbyQ9w5nK9EDZub-YpGhHROj_7BhL?usp=sharing

• --merge type <one of ‘none’, ‘simple’, ‘single layer’, ‘tree’ or ‘multiout-
put’>
– defaults to ‘single layer’ – chooses the type of merging the datastreams,
if ‘none’ is chosen, the no data-based split takes place, and ‘n workers’
parameter is ignored

• --output <path to output folder>
– a directory where the output is written
– defaults to <binary location>/../../output

• --debug
– prints extra information about the dataflow in the computational graph,
which can be useful for debugging purposes

• --n workers <positive integer>
– the width of the data-based split for the clustering architecture
– defaults to 4

• --clustering type <one of ‘standard’, ‘temporal’, ‘tiled’, ‘halo bb’>
– defaults to ‘standard’

Node argument file

In ‘node arguments’ configuration file, the user can override the default param-
eters of each node by specifying the --args argument file. The file has the
following structure:

node name
–[node property1 name]:[node property1 value]
–[node property2 name]:[node property2 value]
another node name
. . .

Currently, the following node names and properties are supported:

• reader

– split:[‘true’ or ‘false’]
Sets if the reader node should perform the split for parallel clustering
computation if ‘merge type’ is ‘none’. The first node (in the order of
the data flow) with this flag set to ‘true’ is the split node. The default
is ‘true’.

– sleep duration full memory:[positive real] Sets the duration for which
the reader is inactive after the memory limit is reached (in microsec-

80

onds). After this time, if the memory check succeeds, the processing
is restored. Defaults to 100.

• calibrator

– split:[‘true’ or ‘false’]
Analogically, see the same option for reader node.

• sorter

– split:[‘true’ or ‘false’]
Analogically, see the same option for reader node.

• clusterer

– max dt:[positive real]
The maximum time in nanoseconds for hits to be considered ‘tempo-
rally neighboring’. During clustering, two hits A and B belong to a
single cluster if there exists a path of hits where each hit on the path
is spatially and temporally neighboring. It defaults to 200.

– tile size:[one of 1, 2, 4, 8, 16]
If set to a value d > 1, the detector is split into tiles of size d×d pixels.
When checking the spatial 8-neighborhood of a pixel, all pixels in the
neighborhood of a tile are considered as neighboring to this pixel. This
can effectively ignore the ‘dead’ pixels. The default is 1.

• trigger

– use trigger:[‘true’ or ‘false’]
An important variable, indicating if the trigger should be used. The
default is ‘false’.

– window size:[positive real]
The size of a time window (in nanoseconds) after which the window
statistics are evaluated. Please, use the same value which was
used by the ‘window computer’ node. Use with care; a small
value of this parameter can significantly slow down the processing.
The default is 2 · 108 ns (200ms).

– diff window size:[positive real]
The size of a time window (in nanoseconds) with respect to which the
features are differentiated. After that, the median of these differences
is chosen as the difference value. A value smaller than window size
implies no differentiation. Too high a value can notably slow down

81

the processing. Please, use the same value which was used by
the ‘window computer’ node. The default is 1 · 109 ns (1 s), which
corresponds to five default time windows.

– trigger time:[positive real]
The trigger time is the time for which the trigger remains active after
the initial activation. If the trigger reactivates during this time win-
dow, the active time of the trigger is extended adequately. The default
is 5 · 108 (500 ms).

– trigger file:[a path to a trigger file]
The trigger file path should point to the existing trigger file created by
the ‘window trigger creator’ application. This trigger file is a (possibly
machine-learning) model serialized in an ONNX format. The suffix
is used to determine the correct type of the model – please do not
modify (.nnt = neural network (from tensorflow package), .svmt =
support vector machine, .osvmt = one-class support vector machine
(from scikit-learn package)). The type of model needs to be assessed
correctly, as some of the models produce multiple outputs of various
data types. Alternatively, if the suffix is ‘.ift’, the trigger file contains
serialized intervals of features when the trigger should be active.

• halo bb clusterer

– window size:[positive real]
The time window for hits that are clustered in the same buffer.

• window computer

• window size:[positive real]
Analogical to the same property of the trigger node. It can be set via the
‘window computer’ GUI. The default is 2 · 108 (200ms).

• diff window size:[positive real]
Analogical to the same property of the trigger node. It can be set via the
‘window computer’ GUI. The default is 1 · 109 (1s).

Example use cases:

• ./clusterer --calib [path/to/my/calib/folder/]
[path/to/file/for/clustering]

• ./clusterer --calib [path/to/my/calib/folder/] --args
[path/to/node args file.txt][path/to/file/for/clustering.txt]

82

• ./clusterer --mode benchmark [/path/to/clusterer data]

• ./clusterer --mode compare [/path/to/first clustered file.ini]
[/path/to/second clustered file.ini]

A.1.2 Window processor

Installation

• From pre-built binary – download the zipped folder and simply run the
executable. (named ‘window processor’ or ‘window processor.exe’)

• Build from source:

Prerequisites:

1. OnnxRuntime (version for Ubuntu is distributed within the clusterer
repository).

2. Cmake version ≥ 2.8.

3. C++ compiler with support of C++17 standard. (GCC version 8+,
Visual Studio 2017 15.8+ – MSVC 19.15+ or similar).

4. Build clusterer from the source. Apart from the executable, the build
generates a clusterer library (.so,.dll,. . .), required by the window pro-
cessor.

Note: Steps marked by * are not required for Linux systems. After the
prerequisites are matched, you may proceed further.

1. Either place the window processor project in the same directory as
the clusterer, or preferably, set the environmental variable ‘CLUS-
TERER PATH’ to the parent folder of the clusterer project.

2. Proceed similarily to the build procedure of clusterer (as shown below).

3. Create the build directory (‘window processor/build/’) and navigate
to it.

4. Run cmake .., this generates the build files. For the MSVC compiler,
this generates VS solution. For this solution, the Onnx runtime needs
to be added in the form of a NuGet package.

5. *Set environmental variable ‘ONNX LIBRARY PATH’ to the direc-
tory where onnxruntime library is located (search for a file named
‘onnxruntime.dll’, ‘onnxruntime.so’ or similar).

83

6. Run cmake --build .. For the MSVC it is required to add --config
Release as the default build is ‘Debug’. The executable is then located
in the ‘Release’ or ’bin’ folder. If the build does not succeed, check
the error message, it might point toward the problem. Alternatively,
contact the author.

Usage

1. Select the input file. You can either:

• type the path manually,

• click ‘Browse’ and navigate to the file, or

• drag and drop the file into the text field.

The input file should be in the Burda-file format, where each line corre-
sponds to a hit and consists of four integers: linear coordinate of the pixel,
time of the arrival using the low-frequency clock, time of arrival using the
high-frequency clock, and time over the threshold.

2. Select the calibration folder. The same three options are available as men-
tioned above.

3. Optionally set the differentiation window size in milliseconds.

4. Set the window size, also in milliseconds.

Figure A.1: Input selection fields, as described by the fields, as described by steps
above.

5. Click ‘Compute window’. The table with windows and its plots should be
displayed.

6. Click on the column in the header of the table to display the attribute’s
plot with respect to the time below. Select the region on the x-axis to zoom
in on the plot. Right-click on the plot to zoom out.

84

(a) Plot of non-differentiated feature (hit count) with respect to time.

(b) Plot of differentiated feature (hit count) with respect to time.

Figure A.2: Comparison of the standard (not differentiated) features and their
differentiated version.

7. Select windows of interest by hand by clicking on the leftmost field in the
row (part of the table header). Keys like ‘Ctrl’ (to extend the selection)
or ‘Shift’ (for interval selection) can be used in the table to select multiple
windows.

8. Click ‘Select by filters’ and choose the interval for each property. Click
‘Apply’. Only windows with properties within these intervals are added to
the selection (currently selected rows are NOT unselected). This
allows you to use this button multiple times to combine multiple interval
criteria by disjunction.

9. The selected windows are highlighted in the plot below.

85

Figure A.3: Window selection, as described by the fields above. The boxes high-
lighted in red correspond to the steps described in the text.

86

10. Type in the name for the currently selected rows.

11. Click ‘Save selected’ to save the selected windows to the file.

12. If you want to use supervised learning for the trigger, return to the step with
window selection. Select different windows (or possibly compute features of
a different burda-file), select the class name for the selected windows, and
save it to the same file. It will NOT completely rewrite the data; it will
only append your selection to the file.

13. If an unsupervised learning method is to be used, all of the windows can be
selected.

14. If a non-ML method is to be used, you still need to create an arbitrary data
file selection (the selection can be empty).

15. After multiple iterations, the trigger data file is created and can be used by
the ‘window trigger creator’ program.

A.1.3 Window trigger creator

The window creator app serves as a tool to create trigger files, further used by
the clusterer program. On input, it expects a file with window features created
by the window computer.

Installation

As the program itself has many dependencies from large packages, we decided
against building the file into a large executable. Instead, we provide a simple
alternative for installation.

Prerequisites:

• Python3 is installed and added to the system path.

• Python package manager ‘pip’ or ‘pip3’ is installed and added to the system
path.

1. Clone the repository at https://github.com/TomSpeedy/window_trigge
r_creator using HTTPS or SSH.

2. The repository contains ‘requirements.txt’ file where required dependen-
cies are listed. For installation of dependencies, navigate to the ‘win-
dow trigger creator’ directory and run in terminal ‘pip install -r require-
ments.txt’.

87

https://github.com/TomSpeedy/window_trigger_creator
https://github.com/TomSpeedy/window_trigger_creator

3. Check the command-line output and verify that the requirements were suc-
cessfully installed. In case of an error, you can contact the author.

4. Navigate to the ‘run script’ directory.

5. For Windows OS, navigate to the ‘windows’ directory. For Linux, navigate
to the ‘linux’ directory.

6. To check the installation, double click on the ‘window trigger creator.bat’
or ‘window trigger creator.sh’ – the GUI should appear.

Usage

1. Load the file with window feature values (*.wf). You can again type it by
hand, use the ‘Browse’ button or ‘Drag and drop’ the file into the text field.
Then, click ‘Load selected file’, see Figure A.4.

Figure A.4: Loading the window feature file.

2. After the file is loaded, choose the trigger type.

• Manual interval trigger – choose the intervals of interest and click
‘Save trigger’. To combine multiple triggers by disjunction, repeat this
process and save the triggers to the same file see Figure A.5. The file
will NOT be overwritten, it will only append the interval selection to
the file.

88

Figure A.5: Creating the interval trigger.

• Supervised machine-learned trigger (SVM, NN), see Figure A.6.

(a) Optionally, import hyperparameter file (again, you can use the
‘Browse’ button or ‘Drag and drop’). The file is in JSON format,
and the parameters are listed in Table A.1 and A.2.

(b) Choose the classes which should trigger the clustering.
(c) Click ‘Start Training’ and wait until the training is done. (It is

shown in the log on the right.)
(d) Click ‘Save trained model’.

89

Figure A.6: Training supervised trigger.

• Unsupervised machine-learned trigger (one class SVM), see Figure A.7.

(a) Optionally, import hyperparameter file (again, you can use the
‘Browse’ button or ‘Drag and drop’). The file is in JSON format,
and the parameters are the same as in Table A.2, except for the
‘dataSplit’ parameter, which is left out (no splitting is taking
place).

(b) Click ‘Start Training’ and wait until the training is done. (It is
shown in the log on the right.)

(c) Click ‘Save trained model’.

90

Figure A.7: Training an unsupervised trigger.

After the models are saved, they can be passed to the clusterer within the
‘node args file’ (‘--args’ option) as an argument ‘trigger file’ to the ‘trigger’
node.

91

MLP hyperparameters
Name Type Additional constraints
learningRate floating point It has positive value, recommended

between 10−6 and 10−2. The default
is 10−3

layerSizes list of integers It is a non-empty list of positive in-
tegers. The default is [20, 20]

learningRateDecay dictionary It contains fields ‘name’, ‘initial-
LearningRate’, and if ‘name’ is ‘ex-
ponential’ also ‘decayRate’. It is op-
tional, it has no default (no decay).

learningRateDecay
.name string Is one of ‘exponential’ or ‘cosine’.

learningRateDecay
.initialLearningRate floating point It has positive value, recommended

between 10−6 and 10−2.
learningRateDecay
.decayRate floating point It has positive value smaller than 1.

optimizer string Currently only ‘Adam’ is supported.
batchSize integer It has a positive value, the default is

5.
epochCount integer It has a positive value, the default is

30.
dataSplit dictionary It contains three fields ‘training’

‘test’ and ‘validation’, each float-
ing point number between 0 and 1,
summing to 1. The default is 0.7
for training, 0.15 for validation, and
0.15 for testing.

Table A.1: Allowed hyperparameters of the multilayered perceptron and their
domains.

SVM hyperparameters
Name Type Additional constraints
kernel string It is one of ‘rbf’, ‘linear’, ‘poly’, ‘sigmoid’. The default

is ‘rbf’.
gamma string It is one of ‘scale’ or ‘auto’. The default is ‘auto’.

dataSplit dictionary It contains three fields, ‘training’ and ‘test’, each
floating point number between 0 and 1, summing to
1. The default is 0.8 for training and 0.2 for testing.

Table A.2: Allowed hyperparameters of the support vector machines and their
domains. For more information, see https://scikit-learn.org/stable/modu
les/svm.html.

92

https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html

The ONNX file format and extensibility

The design of the software was made in such a way that it is possible to extend
the list of supported ML methods without breaking changes to the source code.
This enables us to try different triggers in the future and compare their effective-
ness. The key to the extensibility of the program is the uniform model format.
After the training, each model is converted to an Open neural network exchange
format. The ONNX format provides a uniform interface to heterogeneous mod-
els. Additionally, it serves as a bridge between the model’s training (typically
performed in Python programming language) and the performance-critical infer-
ence of the model (done in C++ language). In principle, it is possible to bypass
the window trigger creator program and use an arbitrary ML model with custom
training. However, it is very important to preserve the same input and output
signature of the model and convert it to the ONNX file format. Nevertheless, it
is best to consult such customization with the author.

Contact

Should you have ideas for improvement, problems, or questions related to the
software, don’t hesitate to get in touch with us at celko.tom@gmail.com. We
hope that the developed tools will help you in your work.

93

	Introduction
	Analysis
	Timepix detectors
	The Medipix family
	Timepix3
	Timepix4

	Katherine readout
	From hits to clusters
	Cluster morphology
	Existing clustering approaches
	Frame based clustering
	Data-driven clustering

	Goals of the thesis
	Clustering parallelization
	Step-based parallelization
	Data-based parallelization
	Spatial parallelization
	Temporal parallelization

	Merging the datastreams
	Baseline merging
	Tree-based merging
	Single-layer merging

	Parallelization data flow

	Bounding box clustering
	Clustering triggers
	Energy-hit-based trigger
	Generalized window trigger
	Differentiating the features
	Explicit interval trigger
	Implicit ML-based trigger
	Combining triggers with parallelization

	Experiments
	Experiments setup
	Testing data
	Tested models

	Correctness
	Metric
	Similarity metric computation
	Results

	Performance
	Hardware
	Simulation of online environment
	Results

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	User manual for the developed tools
	Clusterer
	Window processor
	Window trigger creator

