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Abstract: This thesis extends the existing results in the theory of random dynam-
ical systems driven by fractional noise in Hilbert space. In particular, it broadens
the scope of applicability of the results presented by Maria J. Garrido-Atienza,
Bohdan Maslowski and Jana Snuparkova in Garrido-Atienza et al. [2016] for frac-
tional noise whose sample paths have a Hölder exponent greater than 1/2. The
main object of the research is the following stochastic equation:

d u(t) = (A(t)u(t) + F (u(t)))d t+Bu(t)dω(t), u(0) = u0 ∈ V,

where (V, ∥ · ∥V ) is a separable Hilbert space, ω is a stochastic process and the
stochastic integral is understood in the Zähle sense.

This thesis contains the proof of a Fubini-type theorem for integration in the sense
of Zähle. It is shown that the assumption about ergodicity for the underlying
fractional noise in Garrido-Atienza et al. [2016] is redundant and the statements
about random dynamical systems which are generated by the solution of the
equation and its random attractor remain valid. The thesis also contains the
proof of the existence and uniqueness of the solution to the equation above.
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Introduction
Dynamical systems are mathematical models used to describe how a system
changes over time. They are widely used in various fields, including physics,
engineering, biology, economics, and finance, to study the behaviour of complex
systems Bianchi et al. [2019], Mellodge [2015]. A random dynamical system is a
type of dynamical system that describe behaviour of a process in the presence of
elements of uncertainty, making it useful for modeling systems with unpredictable
behaviour.

In recent years, there has been growing interest in the study of random dynam-
ical systems, as they provide a powerful tool for understanding and an extension
of dynamical system framework for systems which are driven by some random
source. L. Arnold’s book Arnold [1999] made a significant impact on the field
by providing a comprehensive and rigorous treatment of the theory of random
dynamical systems and its applications. One more point of interest is long term
behaviour, among the pioneers in this field were H. Crauel, A. Debussche, F.
Flandoli, who introduced the concept of random attractors and developed the
theory for their existence and properties in their influential paper Crauel et al.
[1997]. Another mathematician who has made significant contributions to the
theory of random attractors is B. Schmalfuss, whose research Schmalfuss and
Flandoli [1996], Schmalfuss [2000] focused on the existence and properties of ran-
dom attractors for non-autonomous and infinite-dimensional random dynamical
systems.

Most of the results in the theory of random dynamical systems are known for
the finite dimensional case. Although the infinite dimensional case of stochastic
equations driven by fractional noise in Hilbert space has been explored in previous
works, such as Duncan et al. [2005], Snuparkova [2010], the equations in these
articles has only a local solution that is why do not generate a random dynamical
system. In the present thesis, we aim to extend the existing results in this field by
building upon the work M. J. Garrido-Atienza, B. Maslowski, and J. Snuparkova
Garrido-Atienza et al. [2016]. While this article primarily considers the Fractional
Brownian motion, our interest lies in verifying its statements for more general
types of fractional noises. To accomplish this, we investigate a specific equation,
which serves as the primary focus of our research:

d u(t) = (A(t)u(t) + F (u(t)))d t+Bu(t)dω(t), u(0) = u0 ∈ V, (1)

where the integral is understood in the Zähle sense. Such type of equation under
pre-defined conditions has a solution and generates a random dynamical sys-
tem. In the present thesis it was checked and shown that most of all results
in Garrido-Atienza et al. [2016] hold for more general type of the noise ω with
Hölder exponent larger than 1/2.

The first section serves as an introduction to the main definitions and results
that are utilized throughout this thesis. A particular emphasis is given on the
fractional integration results in stochastic calculus, which were introduced by M.
Zähle in the seminal works Zähle [1998, 2001]. Additionally, the chapter includes
relevant definitions and basic results from the theory of semigroups, which are
used extensively in the subsequent sections.
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In the second section, the results established in part 1-2 in Garrido-Atienza
et al. [2016] are extended. The scope of applicability has been broadened to any
fractional noise whose sample paths have a Hölder exponent greater than 1/2, and
not just the fractional Brownian motion. Additionally, the Fubini-type theorem
(Theorem 21) has been formulated for the integral in the sense of Zähle (1.1),
and the solution to equation (1) has been found in Theorems 17, 19, serving as a
further extension of the previous work.

The third section provides a concise introduction to random dynamical sys-
tems, drawn from the seminal work of L. Arnold in this area (Arnold [1999]).
Additionally, it contains definitions of random attractors from various sources, in-
cluding Crauel et al. [1997], Schmalfuss [2000], Crauel et al. [2008], which propose
different definitions and criteria for random attractors (Remark 9). Additionally,
the results presented in part of the article Garrido-Atienza et al. [2016] about
random attractors were confirmed for a more general source of randomness. One
of the main achievement is omitting the assumption of ergodicity for fractional
noise (Remark 10).

The focus of the fourth section is an exposition of various examples of noise
sources, showing that there are many processes which satisfy the requirements in
the previous sections. Examples of the equations are presented and it is shown
that a solution of a linear equation which is studied in Duncan et al. [2005] has a
global solution and generates a random dynamical system whereas in the article
Duncan et al. [2005] this equation has only local solution due to the use of a
Skorokhod-type integral instead of a Zähle-type integral.
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1. Preliminaries
This chapter covers main definitions and results which are used across the whole
thesis. It is devoted to the results of the fractional integration in stochastic
calculus introduced by Zähle [1998, 2001], as well as to the definitions and basic
results from the theory of semigroups which are used in the further sections.

1.1 Fractional integration
In the present section results and definitions are taken from Samko et al. [1993],
Zähle [1998]. Through the course of this section, Lp will denote the Lp(a, b) space
on the interval [a, b], where a < b, Hλ denotes the space of Hölder continuous
functions on the interval [a, b] with Hölder exponent λ and (−1)α is understood
as eiπα, where i is the imaginary unit. Let us start from the definition of the
fractional Riemann-Liouville integral.

Definition 1. For f ∈ L1 and α > 0 the left- and right-sided fractional Riemann-
Liouville integrals of f of order α on (a, b) are given at almost all x by

[Iα
a+f ](x) = 1

Γ(α)

∫︂ x

a
(x− y)α−1f(y)d y

and

[Iα
b−f ](x) = (−1)−α

Γ(α)

∫︂ b

x
(y − x)α−1f(y)d y ,

respectively, where Γ denotes the Gamma function.

Fractional differentiation may be introduced as an inverse operation. It is
sufficient to work with a class of functions where this inverse is well-determined
and the Riemann-Liouville derivatives agree with the (more general) version of
the derivative in the sense of Weyl (Lemma 19.3 Samko et al. [1993]). The
Riemann-Liouville derivatives are defined:

[Dα
a+f ](x) = 1(a,b)(x) 1

Γ(1 − α)
d

dx

∫︂ x

a

f(y)
(x− y)α

d y,

and

[Dα
b−f ](x) = 1(a,b)(x) (−1)1+α

Γ(1 − α)
d

dx

∫︂ b

x

f(y)
(y − x)α

d y.

Let p ≥ 1 and let Iα
a+

(b−)
(Lp) be the class of functions f which may be repre-

sented as an Iα
a+

(b−)
-integral of some Lp-function φ. The function φ in the above

representation f = Iα
a+

(b−)
φ is unique in Lp and for 0 < α < 1 it agrees a.e. with

the Weyl representation of the derivative:

[Dα
a+f ](x) = 1

Γ(1 − α)

(︄
f(x)

(x− a)α
+ α

∫︂ x

a

f(x) − f(y)
(x− y)α+1 d y

)︄
1(a,b)(x)
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and

[Dα
b−f ](x) = (−1)α

Γ(1 − α)

(︄
f(x)

(b− x)α
+ α

∫︂ b

x

f(x) − f(y)
(y − x)α+1 d y

)︄
1(a,b)(x).

By the construction it follows from Theorem 2.4 Samko et al. [1993], that

[Iα
a+

(b−)
[Dα

a+
(b−)

f ]] = f, f ∈ Iα
a+

(b−)
(Lp)

and

[Dα
a+

(b−)
[Iα

a+
(b−)

f ]] = f, f ∈ L1.

If f is continuously differentiable in a neighborhood of x ∈ (a, b), then we have
Samko et al. [1993]:

lim
α→1−

[Dα
a+

(b−)
f ](x) = f ′(x), x ∈ (a, b)

Let us define:

fa+(x) = 1(a,b)(x)(f(x) − f(a+)), x ∈ R

and

gb−(x) = 1(a,b)(x)(g(x) − g(b−)), x ∈ R

Zähle [1998] defined an integral in the following way.

Definition 2. The (fractional) integral of f with respect to g is defined by∫︂ b

a
f(x)d g(x) = (−1)α

∫︂ b

a
[Dα

a+fa+](x)[D1−α
b− gb−](x)d x

+ f(a+)(g(b−) − g(a+))
(1.1)

provided that fa+ ∈ Iα
a+(Lp), gb− ∈ I1−α

b− (Lq) for some 1/p+ 1/q ≤ 1, 0 ≤ α ≤ 1.

By Proposition 2.1 Zähle [1998] Definition 1.1 independent of the choice of α.
If both the integrand f and g are nice enough, the definition of integral (1.1)

coincides with the Lebesgue-Stieltjes integral (L-S) and in some cases with the
Riemann-Stieltjes integral (R-S) Theorem 2.4 Zähle [1998]:

Theorem 1. Suppose that g has bounded variation with variation measure µ and
f and g satisfy the conditions of Definition 1.1 and one of the conditions below
is satisfied:

(i) If
∫︁ b

a I
α
a+[|[Dα

a+fa+]|](x)µ(d x) < ∞.

(ii) If f is bounded and right-(or left-) continuous at µ-a.a. points

Then ∫︂ b

a
f(x)d g(x) = (L − S)

∫︂ b

a
f(x)d g(x)
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Remark 1. As a special case for any continuous function f in (ii) it holds:∫︂ b

a
f(x)d g(x) = (R − S)

∫︂ b

a
f(x)d g(x)

Hölder continuous functions require special attention since the fractional noise,
which is studied in the further chapters, will have Hölder continuous sample paths
of order 1/2 or higher. Theorem 4.2.1 and Proposition 4.4.1 Zähle [1998] give
properties of the integral in the case of Hölder functions f and g.

Theorem 2. If f ∈ Hλ, g ∈ Hµ for some λ + µ > 1, the Riemann-Stieltjes
integral (R-S)

∫︁ b
a fd g exists and agrees with the integral

∫︁ b
a fd g in the sense of

(1.1).

Proposition 3. If f ∈ Hλ, g ∈ Hµ for some λ+ µ > 1, 1 − µ < α < λ and the
derivatives in (1.1) are bounded, then

1(a,b)(·)
∫︂ (·)

a
fd g ∈ Hµ

and
1(a,b)(·)

∫︂ b

(·)
fd g ∈ Hµ

1.2 Fractional integration with respect to frac-
tional noise

The following section complements the results of the previous section with an
extension to stochastic calculus. Results from this section are also taken from
Zähle [1998, 2001].

Let us study integration with respect to fractional Brownian motion BH on
(Ω,F ,P). The fractional Brownian motion is a real valued centered Gaussian pro-
cess on [0,∞) with stationary increments and variance E(BH(t+ s) −BH(t))2 =
s2H , where s, t > 0 and H ∈ (0, 1) is a parameter of the process. In Chentsov
[1956] it was proved that BH has a version with sample paths of Hölder continuity
of all orders λ < H on any finite interval [0, T ] P a.s.. Further, consider the set
Ω0 ⊂ Ω with P(Ω0) = 1 on which every sample path of BH is Hölder continuous.

The Hölder continuity of sample paths of BH guarantees the existence of the
integral in the sense (1.1)∫︂ t

0
f(s, ω)dBH(s, ω), 0 < t ≤ T, ω ∈ Ω0, (1.2)

for any random measurable function f such that f : [0, T ]×Ω → R is measurable
and f0+(·, ω) ∈ Iα

0+(L1(0, T )) for some α > 1 −H. For H > 1/2 it allows to solve
stochastic differential equations path-wise. It is important to highlight that there
is no requirements for adaptedness of random function f .

All considerations above might be transferred to any stochastic process which
has Hölder continuous sample paths with exponent greater 1/2 with probability
1.
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To study integral as an operator it is necessary to introduce some notation of
Besov- (or Slobodeckij-) type spaces Wα

2 for 0 < α < 1 (with modification) given
by the (semi) norms:

∥f∥ ˜︁W α
2

=
(︄∫︂ b

a

∫︂ b

a

(f(x) − f(y))2

|x− y|2α+1 d xd y

)︄1/2

∥f∥W α
2

= ∥f∥L2 + ∥f∥ ˜︁W α
2

∥f∥W α
2,∞

= ∥f∥L∞ + ∥f∥ ˜︁W α
2

∥f∥W α
2 (a+) =

(︄∫︂ b

a

f(x)2

(x− a)2α
d x

)︄1/2

+ ∥f∥ ˜︁W α
2

∥f∥W α
2 (b−) =

(︄∫︂ b

a

f(x)2

(b− x)2α
d x

)︄1/2

+ ∥f∥ ˜︁W α
2

The following theorems provide a connection between spaces of functions and
continuity properties of integrals Theorem 1.1 and Theorem 1.2 Zähle [2001].
Theorem 4. Suppose 0 < α < 1 then the following compact embeddings hold:

(i) For αp > 1 we have Iα
a+

(b−)
(Lp) ↪→ Hα−1/p.

(ii) Wα+δ
2

(a+)
(b−) ↪→ Iα

a+
(b−)

(L2), δ > 0.

(iii) Iα+δ
a+

(b−)
(L2) ↪→ ˜︂Wα

2 , 0 < δ < 1 − α.

(iv) g ∈ ˜︂Wα
2 implies gy− ∈ Wα

2 (y−)(x, y) for any x ∈ [a, b) and Lebesgue almost
all y ∈ (x, b).

Theorem 5. Suppose 0 < α < 1/2. If f ∈ Iα
a+(L2), g1−α

b− ∈ I1−α
b− (L2) and f is

bounded, then
(i) ∫︂ x

a
fd g and

∫︂ b

x
fd g

are continuous functions in x ∈ (a, b); and

(ii) it holds that

∥
∫︂ (·)

a
fd g∥W β

2,∞
≤ const(β)∥f∥W β

2,∞
∥gb−∥W β

2 (b−)

provided that β > 1/2.
Also Theorem 5 (ii) guarantees that for gT − ∈ W β

2 (T−), f ∈ W β
2,∞, φ ∈ W β

2,∞
and a ∈ C1(R × R;R), where 1/2 < β < 1, the integral operator

f ↦→ x0 +
∫︂ (·)

0
a(f, φ)d g

for fixed x0 ∈ R acts from W β
2,∞ into itself. The theorem below gives a local

contraction property of the integral operator. For that, denote byW β
2,∞(t0, t;x0, 1)

the set of functions f on (t0, t) with f(t0+) = x0 and ∥ft0+∥W β
2,∞(t0,t) ≤ 1.
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Theorem 6. Let x0, y0 ∈ R, 1/2 < β < 1, g ∈ ˜︂W β
2 , a ∈ C1(R × R,R) and

assume that the partial derivatives ∂a
∂x1

and ∂a
∂x2

are locally Lipschitz as function
of the first argument. Then for any t0 ∈ (0, T ) and c > 0 there exists some
t ∈ (t0, T ) such that for any φ ∈ W β

2,∞(t0, t; y0, 1) the integral operator A defined
by

Af = x0 +
∫︂ (·)

t0
a(f, φ)d g

maps W β
2,∞(t0, t; y0, 1) into itself and we have

∥Af − Ah∥W β
2,∞(t0,t) ≤ c∥f − h∥W β

2,∞(t0,t)

for all f, h ∈ W β
2,∞(t0, t; y0, 1).

Our area of interest in this thesis is the noise whose sample paths are Hölder
continuous with an exponent grater than 1/2. The following change of variable
formula is valid.

Theorem 7. Let 0 < α < 1/2, f ∈ Iα
0+(L2) be bounded, gT − ∈ I1−α

T − (L2) and

h(t) = h(0) +
∫︂ t

0
fd g, t ∈ (0, T ].

Then we get for any C1-function F (x, t) on R× [0, T ] such that ∂F
∂x

∈ C1 and for
any 0 ≤ t0 < t ≤ T :

F (h(t), t) − F (h(t0), t0) =
∫︂ t

t0

∂F

∂x
(h(s), s)f(s)d g(s) +

∫︂ t

t0

∂F

∂s
(h(s), s)d s.

1.3 Semigroup theory
This section contains results and definitions which are used in the next sections.
Most of results in this section are taken from Pazy [1983] except when results
have reference to another source.

Definition 3. Let X be a Banach space. A one parameter family T (t), 0 ≤ t <
∞, of bounded linear operators from X into X is called a semigroup of bounded
linear operators on X if

(i) T (0) = I, (I is the identity operator on X)

(ii) T (t+ s) = T (t)T (s) for every t, s ≥ 0 (the semigroup property).

Definition 4. Let {T (t)}t∈R+ be a semigroup and the linear operator A defined
by

D(A) =
{︄
x ∈ X : lim

t→0

T (t)x− x

t
exists

}︄

and

Ax = lim
t→0+

T (t)x− x

t
for x ∈ D(A)

is called the infinitesimal generator of the semigroup T (t), D(A) is called the
domain of A.
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Definition 5. A semigroup T (t), 0 ≤ t < ∞, of bounded linear operators on X
is a strongly continuous semigroup of bounded linear operators if

lim
t→0+

T (t)x = x for ∀x ∈ X.

A strongly continuous semigroup of bounded linear operators on X is also called
a semigroup of class C0 or simply a C0-semigroup.

Definition 6. A one-parameter family S(t), −∞ < t < ∞, of bounded linear
operators on a Banach space X is a C0 group of bounded operators if it satisfies:

(i) S(0) = I, (I is the identity operator on X)

(ii) S(t+ s) = S(t)S(s) for −∞ < t, s < ∞.

(iii) limt→0 S(t)x = x for x ∈ X.

Since {T (t)}t∈R+ is a collection of bounded operators the bound is provided
by the theorem below.

Theorem 8. Let {T (t)}t∈R+ be a C0-semigroup. There exists constants ω ≥ 0
and M ≥ 1 such that

∥T (t)∥L(X) ≤ Meωt for 0 ≤ t < ∞.

There are some useful properties of C0-semigroup which will be used later.

Theorem 9. Let {T (t)}t∈R+ be a C0 semigroup and let A be its infinitesimal
generator with the domain D(A) in X. Then the following holds:

(i) For x ∈ D(A), T (t)x ∈ D(A) and

d

d t
T (t)x = AT (t)x = T (t)Ax.

(ii) For x ∈ D(A),

T (t)x− T (s)x =
∫︂ t

s
T (τ)Axd τ =

∫︂ t

s
AT (τ)xd τ

Let us introduce the following notation. The resolvent set ρ(A) of linear
operator A in X is the set of all complex numbers λ for which λI−A is invertible,
i.e., (λI − A)−1 is a bounded linear operator in X. The family R(λ : A) =
(λI − A)−1, λ ∈ ρ(A) of bounded linear operators is called the resolvent of A.
One of the question in semigroup theory is how to recover a semigroup from the
infinitesimal generator.

Theorem 10. Let A be a densely defined operator in X satisfying the following
conditions:

(i) For some 0 < δ < π/2, ρ(A) ⊃ Σδ = {λ : |argλ| < π/2 + δ} ∪ {0}.

(ii) There exists a constant M such that

∥R(λ : A)∥L(X) ≤ M

|λ|
for λ ∈ Σδ, λ ̸= 0.

9



Then A is the infinitesimal generator of a C0-semigroup {T (t)}t∈R+, which satis-
fies ∥T (t)∥L(X) ≤ C. Moreover,

T (t) = 1
2πi

∫︂
Γ
eλtR(λ : A)d λ,

where Γ is a smooth curve in Σδ running from ∞e−iθ to ∞eiθ for π/2 < θ <
π/2 + δ. The integral above converges for t > 0 in the uniform operator topology.

Earlier, we introduced semigroups whose domain was the real nonnegative
axis. But to introduce fractional power of operator it is necessary to introduce
some extensions.

Definition 7. Let ∆ = {z : φ1 < argz < φ2, for some φ1 < 0 < φ2} and for
z ∈ ∆ let T (z) be a bounded linear operator. The family T (z), z ∈ ∆, is an
analytic semigroup in ∆ if

(i) z ↦→ T (z) is analytic in ∆,

(ii) T (0) = I and lim z→0
z∈∆

T (z)x = x, for every x ∈ X,

(iii) T (z1 + z2) = T (z1)T (z2) for z1, z2 ∈ ∆.

A semigroup T (t) is called analytic if it is analytic in some sector ∆ containing
the nonnegative axis.

To proceed further it is necessary to impose the following assumption.

Assumption 1. Let A be a densely defined closed linear operator for which

ρ(A) ⊃ Σ+ = {λ : 0 < ω < |argλ| ≤ π} ∪ V

where V is a neighborhood of zero, and

∥R(λ : A)∥L(X) ≤ M

1 + |λ|
for λ ∈ Σ+.

For an operator A satisfying Assumption 1 and α > 0 the following operator
is defined:

A−α = 1
2πi

∫︂
C
z−α(A− zI)−1d z, (1.3)

where the path C runs in the resolvent set of A from ∞e−iθ to ∞eiθ for ω <
θ < π, avoiding the negative real axis and the origin and z−α is taken to be
positive for real positive values of z. The integral (1.3) converges in the uniform
operator topology for every α > 0 and thus defines a bounded linear operator
A−α. Another representation of A−α has the following form:

A−α = sin(πα)
π

∫︂ ∞

0
t−α(tI + A)−1d t, 0 < α < 1.

The operator A−α has the following property:

Lemma 11. There exists a constant C ∈ (0,∞) such that

∥A−α∥L(X) ≤ C for 0 ≤ α ≤ 1.
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Now it is possible to introduce the definition below.

Definition 8. Let A satisfy Assumption 1 with ω < π/2. For every α > 0 we
define

Aα = (A−α)−1.

For α = 0, we set Aα = I.

Then the operator from the definition above possesses the representation be-
low.

Theorem 12. Let 0 < α < 1. If x ∈ D(A), then

Aαx = sin(πα)
π

∫︂ ∞

0
tα−1A(tI + A)−1xd t.

Theorem 13. Let −A be infinitesimal generator of an analytic semigroup T (t).
If 0 ∈ ρ(A) then, the following holds:

(i) For every x ∈ D(Aα) we have T (t)Aαx = AαT (t)x.

(ii) For every t > 0 the operator AαT (t) is bounded and for some constants
Mα, δ > 0 it holds:

∥AαT (t)∥L(X) ≤ Mαt
−αe−δt, t > 0.

(iii) Let 0 < α ≤ 1, x ∈ D(Aα). Then it holds, for some constant Cα > 0, that:

∥T (t)x− x∥L(X) ≤ Cαt
α∥Aαx∥, t > 0.

1.4 Equations in Hilbert spaces
Before we introduce the solution of a stochastic equation in Hilbert space, let us
introduce the definition of solutions to deterministic equations.

We start with the abstract Cauchy problem. Let X be a Banach space and
let A be a linear operator from D(A) ⊂ X into X. We wish to find a solution
u(t) to the initial value problem Pazy [1983]⎧⎨⎩

d u(t)
d t

= Au(t), t > 0,
u(0) = x,

(1.4)

where by a solution we mean an X valued function u(t) such that u(t) is continu-
ous for t ≥ 0, continuously differentiable and u(t) ∈ D(A) for t > 0 and equation
(1.4) is satisfied. If A is an infinitesimal generator of C0-semigroup S(t), then,
for any x ∈ D(A), the abstract Cauchy problem for A has a (strong) solution
u(t) = S(t)x for every x ∈ D(A), according to Theorem 9.

Sometimes it is possible to come to a situation when a solution in the sense
above is too limited and it is necessary to find some generalization of the solution.
Let us consider the inhomogeneous initial value problem for f ∈ L1([0, T ], X) i.e,
a Bochner-integrable function on the interval [0, T ] with values in the space X:⎧⎨⎩

d u(t)
d t

= Au(t) + f(t), t > 0,
u(0) = x, x ∈ X.

. (1.5)
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Definition 9. Let A be the infinitesimal generator of a C0-semigroup {T (t)}t∈R+.
Let x ∈ X and f ∈ L1([0, T ], X). The function u ∈ C([0, T ], X) is given by

u(t) = T (t)x+
∫︂ t

0
T (t− s)f(s)d s, 0 ≤ t ≤ T,

is called the mild solution of the initial value problem (1.5) on [0, T ].

Another type of a solution might be presented in the following way.

Definition 10. A function u ∈ C([0, T ], V ), where V is Hilbert space, is called
a weak solution of (1.5) on [0, T ] if for every v ∈ D(A∗) the function ⟨u(t), v⟩ is
absolutely continuous on [0, T ] and

⟨u(t), v⟩V = ⟨x, v⟩V +
∫︂ t

0
[⟨u(s), A∗v⟩V + ⟨f(s), v⟩V ]d s a.e. on [0, T ].

1.5 Evolution systems
The results in this section are taken from Pazy [1983]. One possible extension
of the semigroup structure by introducing a new parameter is covered in this
section.

Definition 11. A two-parameter family of bounded linear operators U(t, s), 0 ≤
s ≤ t ≤ T , on Banach space X is called an evolution system if the following two
conditions are satisfied:

(i) U(s, s) = I, U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T .

(ii) (t, s) ↦→ U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T .

Such systems arise during the study of the following non-autonomous homo-
geneous equations: ⎧⎨⎩

d u(t)
d t

+ A(t)u(t) = 0, s < t ≤ T,

u(s) = x,
(1.6)

where {A(t)}t∈[0,T ] is the family of linear operators in X such that A : D(A(t)) ⊂
X → X for every t ∈ [0, T ]. An X-valued function u : [s, T ] → X is a classical
solution of (1.6) if u is continuous on [s, T ], u ∈ D(A(t)) for s < t ≤ T , u is
continuously differentiable on s < t ≤ T and satisfies (1.6).

Let us add some assumptions about the operator family {A(t)}t∈[0,T ]:

Assumption 2. The problem (1.6) which satisfies the assumptions below is called
the parabolic initial value problem:

(A.1) The domain D(A(t)) = D of A(t), 0 ≤ t ≤ T is dense in X and independent
of t.

(A.2) For t ∈ [0, T ], the resolvent R(λ : A(t)) of A(t) exists for all λ ∈ C with
Reλ ≤ 0 and there is a constant M such that

∥R(λ : A(t))∥L(X) ≤ M

|λ| + 1 for Reλ ≤ 0, t ∈ [0, T ].
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(A.3) −A(t)A(0)−1 is a Hölder continuous function in L(X), or equivalently the
inequality

∥A(t) − A(s)∥L(D,X) ≤ K|t− s|α

is satisfied for every s, t ∈ [0, T ], for some constants K > 0 and α ∈ (0, 1],
where ∥x∥D = ∥A(0)x∥X .

Theorem 14. Under the assumptions (A.1)-(A.3) there exists a unique evolution
system U(t, s) on 0 ≤ s ≤ t ≤ T , satisfying:

(i) For 0 ≤ s ≤ t ≤ T exists constant C such that:

∥U(t, s)∥L(X) ≤ C. (1.7)

(ii) For 0 ≤ s < t ≤ T , U(t, s) : X → D and t → U(t, s) is strongly differen-
tiable in X. The derivative (∂/∂t)U(t, s) is a bounded operator from X to
X and it is strongly continuous on 0 ≤ s < t ≤ T . Moreover,

∂

∂t
U(t, s) + A(t)U(t, s) = 0 for 0 ≤ s < t ≤ T,

⃦⃦⃦⃦
⃦ ∂∂tU(t, s)

⃦⃦⃦⃦
⃦

L(X)
= ∥A(t)U(t, s)∥ ≤ C ′

t− s

and

∥A(t)U(t, s)A(s)−1∥L(D,X) ≤ C ′′ for 0 ≤ s ≤ t ≤ T.

(iii) For every v ∈ D and t ∈ (0, T ], U(t, s)v is differentiable with respect to s
on 0 ≤ s < t ≤ T and

∂

∂s
U(t, s)v = U(t, s)A(s)v.

Assumptions (A.1)-(A.3) guarantee that −A(t) is the infinitesimal generator
of an analytic semigroup St(s), s ≥ 0, satisfying

∥St(s)∥ ≤ C for s ≥ 0,

∥A(t)St(s)∥L(X) ≤ C

s
for s > 0,

where C > 0 is some constant which depends on T . The existence and uniqueness
of the solution of equation (1.6) was shown in Theorem 5.6.8 Pazy [1983] and has
the following form:

U(t, s) = Ss(t− s) +
∫︂ t

s
Sτ (t− τ)R(τ, s)d τ, (1.8)
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where

R1(t, s) = (A(s) − A(t))Ss(t− s),

Rm+1(t, s) =
∫︂ t

s
R1(t, τ)Rm(τ, s)d τ,

R(t, s) =
∞∑︂

i=0
Ri(t, s)

(1.9)

or

R(t, s) = R1(t, s) +
∫︂ t

s
R1(t, τ)R(τ, s)d τ.

Calculation (5.6.26) from Pazy [1983] gives the estimation of R(t, s):

∥R(t, s)∥L(X) ≤ C(t− s)α−1. (1.10)

One more useful estimation is given by equation (5.17) Tanabe [1979]:⃦⃦⃦⃦∫︂ t

s
Sτ (t− τ)R(τ, s)d τ

⃦⃦⃦⃦
≤ CW (t− s)α, (1.11)

where CW depends only on T , see (5.16) Tanabe [1979].

Remark 2. By Definition 11 of an evolution system U(t, s) 0 ≤ s ≤ t ≤ T we
have that:

lim
t→s

∥U(t, s)∥L(X) = 1

and since U(t, s) is strongly continuous we can estimate its norm on the compact
interval:

sup
(t,s)∈[0,T ]×[0,t]

∥U(t, s)∥L(X) = K(T ) < ∞.

We may notice that K(T ) is non-decreasing in T . Thus we have:

lim
T →s, t→s

(T − s)∥U(t, s)∥L(X) = 0.

This guarantees that the inequality:

K(T )(T − s) < 1

always holds true for T ∈ [s, a), where a > s.

To sum up all the properties described above, it follows that:

∥U(t, s)∥L(X) ≤ ∥Ss(t− s)∥L(X) + ∥
∫︂ t

s
Sτ (t− τ)R(τ, s)d τ∥L(X)

≤ C1 + CW (t− s)α ≤ K,
(1.12)

where K is some constant which depends on T only.
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2. Solutions of semilinear
stochastic equations with a
bilinear fractional noise
In this section, the following equation will be studied:

d u(t) = (A(t)u(t) + F (u(t)))d t+Bu(t)dω(t), u(0) = u0 ∈ V, (2.1)

where (V, ∥ · ∥V ) is a separable Hilbert space, dω is understood as an extension
of Zähle-type integral Chen et al. [2013] and {A(t)}t∈[0,T ] is a family of linear
operators on V . In this chapter and further (ω(t), t ≥ 0) denotes a stochastic
process whose sample path are Hölder continuous with exponent β′ > 1/2.

This chapter aims at extending the results of Garrido-Atienza et al. [2016]
and to show that the obtained results are valid not only for fractional Brownian
motion but for process (ω(t), t ≥ 0) as well. Further in this chapter we will work
with the equation (2.1) path-wise and take some particular example of a path
ω to work with it. It is possible since nothing except a Hölder continuity of
the path is used. Thus all stochastic processes in this chapter are treated as a
particular path for given ω ∈ Ω. A Fubini-type theorem for the integral (1.1) in
the sense of Zähle is proven in this section. As an extension to Garrido-Atienza
et al. [2016] the solution to the equation (2.1) is given for {A(t)}t∈[0,T ] instead of
a time independent operator A.

2.1 Solution of linear stochastic equations with
a fractional noise

At first, let us consider the autonomous linear problem which is given by

d v(t) = Av(t)d t+Bv(t)dω(t), v(s) = u0 ∈ V, 0 ≤ s ≤ t. (2.2)

All derivations for this type problem are done in Garrido-Atienza et al. [2016]
under the following assumptions:

(A) The linear operator A : D(A) ⊂ V → V is closed, densely defined and
generates an analytic semigroup {SA(t)}t∈R+ on V

(B) The linear operator B : D(B) ⊂ V → V is closed, densely defined and
generates a strongly continuous group {SB(t)}t∈R

(C) D(A) ⊂ D(B), SB(t)x ∈ D(A) for all x ∈ D(A) and the operators satisfy
the commutativity assumption

ASB(t)x = SB(t)Ax, x ∈ D(A), t ∈ R.

Moreover, D(A∗) ⊂ D((B∗)2) and B∗x ∈ D(A∗), for all x ∈ D(A∗).
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Assumption (A) for an analytic semigroup gives the following estimation
Garrido-Atienza et al. [2016]:

∥SA(t− s) − SA(r − s)∥L(V ) ≤ Kα̂

(︃
t− r

r − s

)︃α̂

, α̂ ∈ (0, 1], 0 ≤ s < r ≤ t. (2.3)

A strongly continuous group {SB(t)}t∈R might be represented as

SB(t) =

⎧⎨⎩SB+(t), t ≥ 0,
SB−(−t), t ≤ 0,

where SB+(t) and SB−(t) are C0 semigroups, then there exist some constants
MB > 1 and rb > 0 such that ∥SB∥L(V ) ≤ MBe

rB |t| holds for all t ∈ R.
The nonautonomus version of the linear equation (2.2) has the following form:

d v(t) = A(t)v(t)d t+Bv(t)dω(t), v(s) = u0 ∈ V 0 ≤ s ≤ t. (2.4)

The solution of (2.4) was found in the Theorem 17 below under the following
assumptions on the family of operators {A(t)}t∈[0,T ] and operator B:

(C.1) {A(t)}t∈[0,T ] is the family of closed densely defined operators and both do-
mains D = D(A(t)) and D∗ = D(A∗(t)) are independent of t, for t ∈ [0, T ].

(C.2) The closed densely defined linear operator B is defined on a domain D(B)
such that D ⊂ D(B), generates a strongly continuous group {SB(t)}t∈R
with property: SB(t)x ∈ D for x ∈ D, and SB(t) commutes with A(s):

A(s)SB(t)x = SB(t)A(s)x, ∀s ≥ 0, ∀t ∈ R, x ∈ D.

Moreover, D ⊂ D((B∗)2) and B∗x ∈ D∗, for x ∈ D∗.

(C.3) For each t ∈ [0, T ], the linear operator A(t) is a closed densely defined
operator in V whose resolvent set ρ(A(t)) contains the half-plane Reλ ≤ 0
and the resolvent R(λ,A(t)) satisfies the following inequality:

∥R(λ,A(t))∥L(V ) ≤ M

1 + |λ|
, ∀λ ∈ C, Reλ ≤ 0

for some constant M > 0 that does not depend on t. This condition implies
that A(t) generates an analytic semigroup for each fixed t ∈ [0, T ] which
will be denoted by St(s) for s ≥ 0.

(C.4) There exist constants L and 1/2 < α < 1 such that

∥A(t) − A(s)∥L(D,V ) ≤ L|t− s|α for s, t ∈ [0, T ],

where ∥x∥D is defined by ∥x∥D = ∥A(0)x∥V

The equation in the form (1.6) which satisfies the assumptions above is called
the parabolic type equation. Theorem 14 guarantees that equation (1.6) generates
an evolution system (SA(t, s), 0 ≤ s ≤ t ≤ T ) on V which has the form (1.8).

16



Remark 3. The assumption (C.2) gives us that:

SB(t)Sq(s) = Sq(s)SB(t), ∀s, q ≥ 0, ∀t ∈ R, (2.5)

where Sq(t)t∈R+ is an analytic semigroup generated by A(q).
Remark 4. The assumption (C.4) gives us that A(t) is a L(D, V ) valued function
which is Hölder continuous in the uniform operator topology for t ∈ [0, T ]. Thus
for each x ∈ D we have supt∈[0,T ] ∥A(t)x∥D = Rx < ∞.

For the space Hβ, the norm is given by

∥u∥β = ∥u∥β,a,b = ∥u∥∞,a,b + |∥u∥|β,a,b,

with

∥u∥∞,a,b = sup
s∈[a,b]

|u(s)|; |∥u∥|β,a,b = sup
a≤s<t≤b

|u(t) − u(s)|
|t− s|β

.

The symbol C([a, b];R) denotes the space of continuous functions on [a; b] with
values in R with finite supremum norm.

Before we proceed further, it is important to introduce a lemma from Garrido-
Atienza et al. [2016].
Lemma 15. Suppose that f ∈ Hγ and g ∈ Hγ′ such that 1 − γ′ < γ. Then∫︂ b

a
fd g

is well-defined in the sense of (1.1). In addition, ∀a ≤ s ≤ t ≤ b there exists a
constant c depending only on b− a, γ, γ′ such that⃓⃓⃓⃓∫︂ t

s
fd g

⃓⃓⃓⃓
≤ c∥f∥γ,a,b|∥g∥|γ′,a,b(t− s)γ′

. (2.6)

The solution to the equation (2.1) will be searched in the following forms
(assumptions on function F will be stated in the next section):
Definition 12. Given T > 0, a stochastic process v = {v(t), t ∈ [0, T ]} is said
to be a weak solution to the equation (2.1), if, for any ζ ∈ D∗,

⟨v(t), ζ⟩V = ⟨u0, ζ⟩V +
∫︂ t

0
[⟨v(s), A∗(s)ζ⟩V + ⟨F (v(s)), ζ⟩V ]d s

+
∫︂ t

0
⟨v(s), B∗ζ⟩V dω(s), t ∈ [0, T ]

provided that all the integrals above are meaningful.
Definition 13. A stochastic process u = {u(t), t ∈ [0, T ]} is said to be a mild
solution to the equation (2.1), if

u(t) = U(t, 0)u0 +
∫︂ t

0
U(t, s)F (u(s))d s, t ∈ [0, T ],

where

U(t, ω, s) = SB(ω(t) − ω(s))SA(t, s), 0 ≤ s ≤ t ≤ T

and (SA(t, s), 0 ≤ s ≤ t ≤ T ) is the evolution system, which is the solution to
the equation (1.6) with operator family {A(t)}t∈[0,T ] and {SB(t)}t∈R is the strong
continuous group generated by B.
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Remark 5. If the family of linear operators {A(t)}t∈[0,T ] does not depend on t,
then the weak solution has the form:

⟨v(t), ζ⟩V = ⟨u0, ζ⟩V +
∫︂ t

0
[⟨v(s), A∗ζ⟩V + ⟨F (v(s)), ζ⟩V ]d s

+
∫︂ t

0
⟨v(s), B∗ζ⟩V dω(s), t ∈ [0, T ],

and the mild solution has the form:

u(t) = U(t, 0)u0 +
∫︂ t

0
U(t, s)F (u(s))d s, t ∈ [0, T ],

where

U(t, ω, s) = SB(ω(t) − ω(s))SA(t− s), 0 ≤ s ≤ t ≤ T,

where {SA(t)}t∈R+, {SB(t)}t∈R are the analytic semigroup generated by A and the
strong continuous group generated by B, respectively.

The theorem on the existence of the solution to the equation (2.2) was proven
in Garrido-Atienza et al. [2016].

Theorem 16. Assume that assumptions (A), (B) and (C) hold. Then there exists
a weak solution v to the linear problem:

dv(t) = Av(t) dt+Bv(t) dω(t), v(s) = u0 ∈ V,

which is given for t ≥ s ≥ 0 by

v(t) = U(t, ω, s)u0 = SB(ω(t) − ω(s))SA(t− s)u0. (2.7)

The existence of a weak solution of the equation (2.4) based on the idea of
the proof of Theorem 16, but with a new estimation for the evolution system
(SA(t, s), 0 ≤ s ≤ t).

Theorem 17. Assume that assumptions (C.1)-(C.4) hold. Then there exists a
weak solution v to the linear problem:

dv(t) = A(t)v(t) dt+Bv(t) dω(t), v(s) = u0 ∈ V,

which is given for t ≥ s ≥ 0 by

v(t) = U(t, ω, s)u0 = SB(ω(t) − ω(s))SA(t, s)u0. (2.8)

Proof. At the beginning let us consider a case when u0 ∈ D. Our goal to apply
Theorem 7. Let us consider ζ ∈ D∗ and define G : [s, T ] × R → R by

G(t, x) = ⟨SA(t, s)u0, S
∗
B(x)ζ⟩V ,

further, it is necessary to define a function h(t). Let h(s) = 0 and:

h(t) =
∫︂ t

s
1(s,T )(z)dω(z) = ω(t) − ω(s), t ∈ [s, T ].
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Theorem 9 and properties of C0-semigroups give us that G ∈ C1([s, T ] × R;R)
and ∂G

∂x
(t, ·) ∈ C1(R;R) for any t ∈ [s, T ]. Based on the assumption about

(ω(t), t ≥ 0), ωT − ∈ I1−δ
T − (L2([s, T ])) and 1(s,T ) ∈ Iδ

s+(L2([s, T ])) is bounded for
any δ ∈ (1 − β′, 1/2) that gives

G(t, ω(t) − ω(s)) = ⟨u0, ζ⟩V +
∫︂ t

s
⟨SA(r, s)u0, S

∗
B(ω(r) − ω(s))B∗ζ⟩V dω(r)

+
∫︂ t

s
⟨A(r)SA(r, s)u0, S

∗
B(ω(r) − ω(s))ζ⟩V dr

and by using the commutativity assumption (C.2), we have:

⟨U(t, ω, s)u0, ζ⟩V = ⟨u0, ζ⟩V +
∫︂ t

s
⟨U(r, ω, s)u0, B

∗ζ⟩V dω(r)

+
∫︂ t

s
⟨U(r, ω, s)u0, A

∗(r)ζ⟩V dr.

This finishes the proof for u0 ∈ D. To continue with u0 ∈ V consider a sequence
{xn}n∈N ⊂ D such that ∥xn − u0∥V −−−−→

n → ∞
0. Such sequence exists since D is

dense in V .
Thanks to assumptions (C.2), (C.3), continuity of ω on [s, T ] and (1.12) gives

∥SA(t, s)∥ ≤ K for ∀s, t : 0 ≤ s ≤ t ≤ T the following holds:

∥SB(ω(t) − ω(s))∥L(V ) ≤ MBe
rB |ω(t)−ω(s)| ≤ MBe

2rB sup0≤r≤T |ω(r)| ≤ C(ω). (2.9)

Hence,

∥U(t, ω, s)∥L(V ) = ∥SB(ω(t) − ω(s))SA(t, s)∥L(V ) ≤ C(ω)K ≤ CU(ω), (2.10)

where C(ω) is a constant which depends on ω and CU(ω) is a constant which
depends on both ω and T . Let us denote:

A1 = |⟨xn, ζ⟩V − ⟨u0, ζ⟩V |

A2 = |⟨U(t, s)xn, ζ⟩V − ⟨U(t, s)u0, ζ⟩V |

A3 =
⃓⃓⃓⃓∫︂ t

s
⟨U(r, s)xn, A

∗(r)ζ⟩V dr −
∫︂ t

s
⟨U(r, s)u0, A

∗(r)ζ⟩V dr
⃓⃓⃓⃓

A4 =
⃓⃓⃓⃓∫︂ t

s
⟨U(r, s)xn, B

∗ζ⟩V dω(r) −
∫︂ t

s
⟨U(r, s)u0, B

∗ζ⟩V dω(r)
⃓⃓⃓⃓
.

We want to show that A1, A2, A3 and A4 go to zero as n → ∞. It is obvious
that A1 −−−−→

n → ∞
0. By using Cauchy–Schwarz inequality and estimation (2.10), we

have:
A2 = |⟨U(t, s)xn, ζ⟩V − ⟨U(t, s)u0, ζ⟩V |

= |⟨U(t, s)(xn − u0), ζ⟩V |
≤ CU(ω)∥xn − u0∥V ∥ζ∥V −−−−→

n → ∞
0

and by using Remark 4:

A3 =
⃓⃓⃓⃓∫︂ t

s
⟨U(r, s)xn, A

∗(r)ζ⟩V dr −
∫︂ t

s
⟨U(r, s)u0, A

∗(r)ζ⟩V dr

⃓⃓⃓⃓
=
⃓⃓⃓⃓∫︂ t

s
⟨U(r, s)(xn − u0), A∗(r)ζ⟩V dr

⃓⃓⃓⃓
≤ CU(ω)Rζ∥xn − u0∥V (t− s) −−−−→

n → ∞
0.
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To deal with A4 we want to apply Lemma 15. It is necessary to show that
|⟨U(τ, s)x,B∗ζ⟩V | for x ∈ V is a Hölder continuous function of τ with the expo-
nent β ∈ (1/2, α), where α is the constant from assumption (C.4). At first, let
us show that the integrand convergences on [s, T ]:

sup
τ∈[s,T ]

|⟨U(τ, s)(xn − u0), B∗ζ⟩V | ≤ CU(ω)∥B∗ζ∥V ∥xn − u0∥V −−−−→
n → ∞

0 (2.11)

Now, for s < τ1 < τ2 ≤ T it is necessary to show Hölder continuity:

|⟨(U(τ2, s) − U(τ1, s))x,B∗ζ⟩V |
= |⟨(SB(ω(τ2) − ω(s))SA(τ2, s) − SB(ω(τ1) − ω(s))SA(τ1, s))x,B∗ζ⟩V |
= |⟨(SB(ω(τ2) − ω(s))SA(τ2, s) − SB(ω(τ1) − ω(s))SA(τ2, s)
+ SB(ω(τ1) − ω(s))SA(τ2, s) − SB(ω(τ1) − ω(s))SA(τ1, s))x,B∗ζ⟩V |
≤ |⟨SA(τ2, s)(SB(ω(τ2) − ω(s)) − SB(ω(τ1) − ω(s)))x,B∗ζ⟩V |
+ |⟨SB(ω(τ1) − ω(s))(SA(τ2, s) − SA(τ1, s))x,B∗ζ⟩V | = I1 + I2

Let us estimate the first term. From estimation (1.12) we have ∥SA(t, s)∥L(V ) ≤
CA for 0 ≤ s ≤ t ≤ T , where CA depends on T only and use of Theorem 9 (ii)
we have:

I1 ≤ |⟨SA(τ2, s)x, (S∗
B(ω(τ2) − ω(s)) − S∗

B(ω(τ1) − ω(s)))B∗ζ⟩V |

≤ CA∥x∥V

⃓⃓⃓⃓
⃓
∫︂ ω(τ2)−ω(s)

ω(τ1)−ω(s)
∥S∗

B(z)(B∗)2ζ∥V dz

⃓⃓⃓⃓
⃓

≤ CAC(ω)∥x∥V ∥(B∗)2ζ∥V |||ω|||β′,τ1,τ2(τ2 − τ1)β′

and

sup
s≤τ1<τ2≤T

I1

(τ2 − τ1)β

≤ CAC(ω)∥x∥V ∥S∗
B∥L(V )∥(B∗)2ζ∥V |||ω|||β′,s,T (T − s)β′−β < ∞.

The second term might be estimated by using assumptions (C.1)-(C.4) which
provide a representation (1.8) for SA(t, s), the estimations (1.10), (1.11) and the
fact that {Sr(q)}q≥0 for each r ∈ [0, T ] is the analytic semigroup generated by
A(r). We have that:

I2 ≤ |⟨(SA(τ2, s) − SA(τ1, s))x, S∗
B(ω(τ1) − ω(s))B∗ζ⟩V |

= |⟨(Ss(τ2 − s) − Ss(τ1 − s))x+
(︃∫︂ τ2

τ1
Sτ (τ2 − τ)R(τ, s) dτ

)︃
x

+
(︃∫︂ τ1

s
(Sτ (τ2 − τ) − Sτ (τ1 − τ))R(τ, s) dτ

)︃
x, S∗

B(ω(τ1) − ω(s))B∗ζ⟩V |

= |⟨(Ss(τ2 − s) − Ss(τ1 − s))x, S∗
B(ω(τ1) − ω(s))B∗ζ⟩V |

+ |⟨
(︃∫︂ τ2

τ1
Sτ (τ2 − τ)R(τ, s) dτ

)︃
x, S∗

B(ω(τ1) − ω(s))B∗ζ⟩V |

+ |⟨
(︃∫︂ τ1

s
(Sτ (τ2 − τ) − Sτ (τ1 − τ))R(τ, s) dτ

)︃
x, S∗

B(ω(τ1) − ω(s))B∗ζ⟩V |

We will split I2 into three parts:

I2 = L1 + L2 + L3.
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According to Remark 3, Corollary 1.10.6 Pazy [1983] and Theorem 9 we have:

L1 = |⟨(Ss(τ2 − s) − Ss(τ1 − s))x, S∗
B(ω(τ1) − ω(s))B∗ζ⟩V |

= |⟨SB(ω(τ1) − ω(s))x, (S∗
s (τ2 − s) − S∗

s (τ1 − s))B∗ζ⟩V |

= |⟨SB(ω(τ1) − ω(s))x,
∫︂ τ2−s

τ1−s
S∗

s (τ)A∗B∗ζd τ⟩V |

≤ ∥SB(ω(τ1) − ω(s))x∥V

∫︂ τ2−s

τ1−s
∥S∗

s (τ)A∗B∗ζ∥V d τ

≤ C(ω)∥x∥VMse
rsT ∥A∗B∗ζ∥V |τ2 − τ1|,

(2.12)

where ∥S∗
s (τ)∥L(V ) ≤ Mse

rsT for some constants Ms > 1 and rs > 0.
There is the following bound for the second term by using (1.11):

∥
∫︂ τ2

τ1
Sτ (τ2 − τ)R(τ, s) dτ∥L(V ) ≤ CW (τ2 − τ1)α,

L2 ≤ CW (τ2 − τ1)α∥x∥VC(ω)∥B∗ζ∥V ,
(2.13)

where α is constant from assumption (C.4).
The third term with the help of (2.3), where the constant α̂ is set equal to

the constant α from (C.4), is estimated by:∫︂ τ1

s
∥Sτ (τ2 − τ) − Sτ (τ1 − τ)∥L(V )∥R(τ, s)∥L(V ) dτ

≤ CKα

∫︂ τ1

s

|τ2 − τ1|α

|τ1 − τ |α
|τ − s|α−1 dτ

≤ CKα|τ2 − τ1|α
∫︂ τ1

s

1
|τ1 − τ |α|τ − s|1−α

dτ ≤ CKαB(1 − α, α)|τ2 − τ1|α,

L3 ≤ CKαB(1 − α, α)|τ2 − τ1|α∥x∥VC(ω)∥B∗ζ∥V

(2.14)

where B(·, ·) is the Beta function. The following estimation then holds:

I2 ≤ C(ω)∥x∥V (Mse
rsT (τ2 − τ1)∥A∗B∗ζ∥V + CW (τ2 − τ1)α∥B∗ζ∥V

+ CKαB(1 − α, α)(τ2 − τ1)α∥B∗ζ∥V )

and having in mind that α > β:

sup
s≤τ1<τ2≤T

I2

(τ2 − τ1)β

≤ sup
s≤τ1<τ2≤T

C(ω)∥x∥V (Mse
rsT (τ2 − τ1)1−β∥A∗B∗ζ∥V + CW (τ2 − τ1)α−β∥B∗ζ∥V

+ CKαB(1 − α, α)(τ2 − τ1)α−β∥B∗ζ∥V )
≤ C(ω)∥x∥V (Mse

rsT (T − s)1−β∥A∗B∗ζ∥V + CW (T − s)α−β∥B∗ζ∥V

+ CKαB(1 − α, α)(T − s)α−β∥B∗ζ∥V ) < ∞.

This gives us that |⟨U(·, s)x,B∗ζ⟩V | ∈ Hβ. From Lemma 15 we have:⃓⃓⃓⃓∫︂ t

s
⟨U(r, s)x,B∗ζ⟩V dω(r)

⃓⃓⃓⃓
≤ c∥⟨U(·, s)x,B∗ζ⟩V ∥β,s,T |∥ω∥|β′,s,T (T − s)β′

.
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Combination of the estimation above and the result 2.11 gives us that

A4 =
⃓⃓⃓⃓∫︂ t

s
⟨U(r, s)xn, B

∗ζ⟩V dω(r) −
∫︂ t

s
⟨U(r, s)u0, B

∗ζ⟩V dω(r)
⃓⃓⃓⃓
−−−−→
n → ∞

0

and we have

A2 = A1 + A3 + A4 −−−−→
n → ∞

0,

which finishes the proof for each u0 ∈ V .

Remark 6. As might be seen from the proof above, only the assumption about the
Hölder exponent of the noise sample paths was used. It means that Theorem 16
and Theorem 17 hold for noises whose sample paths have Hölder exponent larger
than 1/2 and not only for the fractional Brownian motion.

2.2 Solutions of semilinear stochastic equations
This part is devoted to the solution of the equation (2.1) for the mapping F :
V → V which is assumed to be Lipschitz continuous, i.e. there exists L > 0 such
that

∥F (u) − F (v)∥V ≤ L∥u− v∥V , u, v ∈ V. (2.15)

The theorem below from Garrido-Atienza et al. [2016] gives us the form of the
mild solution to

d u(t) = (Au(t) + F (u(t)))d t+Bu(t)dω(t), u(0) = u0 ∈ V. (2.16)

Theorem 18. Given T > 0, under the conditions (A), (B), (C) and (2.15) there
exists a unique mild solution (cf. Remark 5) u ∈ C([0, T ], V ) to (2.16) for every
u0 ∈ V .

The theorem below is an extension of the proof of Theorem 2.4 Garrido-
Atienza et al. [2016].

Theorem 19. Given T > 0, under the conditions (C.1)-(C.4) and (2.15) there
exists a unique mild solution (cf. Definition 13) u ∈ C([0, T ], V ) to (2.1) for
every u0 ∈ V .

Proof. Step 1. Assume additionally that F is bounded, i.e. there exists a con-
stant K > 0 such that

∥F (u)∥V ≤ K, u ∈ V, (2.17)

and fix u0. Define the operator Φ by

(Φ(y))(t) = U(t, 0)u0 +
∫︂ t

0
U(t, r)F (y(r))d r, t ∈ [0, T ],

where U(t, r) is given by (2.8) (ω is omitted here for shorter notation). Our goal
is to show that Φ is a continuous contraction from C([0, T ], V ) into itself. At
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first, we show that Φ : C([0, T ], V ) → C([0, T ], V ). Take y ∈ C([0, T ], V ) and
0 ≤ s, t ≤ T . Then

∥Φ(y)(t) − Φ(y)(s)∥V ≤ ∥U(t, 0)u0 − U(s, 0)u0∥V

+
⃦⃦⃦⃦∫︂ t

0
U(t, r)F (y(r))d r −

∫︂ s

0
U(s, r)F (y(r))d r

⃦⃦⃦⃦
V

= I1 + I2.

For I1 the following holds:
I1 = ∥(SB(ω(t))SA(t, 0) − SB(ω(s))SA(s, 0))u0∥V

= ∥(SB(ω(t))SA(t, 0) − SB(ω(s))SA(t, 0)
+ SB(ω(s))SA(t, 0) − SB(ω(s))SA(s, 0))u0∥
≤ ∥(SB(ω(t)) − SB(ω(s)))SA(t, 0)u0∥V

+ ∥SB(ω(s))(SA(t, 0) − SA(s, 0))u0∥V −−−−−−−−→
s → t−, s → t+

0

by the continuity of ω, Corollary 2.2.3 and Theorem 5.6.1 in Pazy [1983]. Let
s < t, then by estimation (2.10) for ∥U(t, s)∥L(V ) ≤ CU and (2.17)

I2 ≤
⃦⃦⃦⃦∫︂ s

0
(U(t, r) − U(s, r))F (y(r))d r

⃦⃦⃦⃦
V

+
⃦⃦⃦⃦∫︂ t

s
U(t, r)F (y(r))d r

⃦⃦⃦⃦
V

≤
⃦⃦⃦⃦∫︂ s

0
(SB(ω(t) − ω(r)) − SB(ω(s) − ω(r)))SA(t, r)F (y(r))d r

⃦⃦⃦⃦
V

+
⃦⃦⃦⃦∫︂ s

0
SB(ω(s) − ω(r))(SA(t, r) − SA(s, r))F (y(r))d r

⃦⃦⃦⃦
V

+
∫︂ t

s
CUKd r

= I3 + I4 + CUK(t− s).

The last term as t → s+ or s → t− goes to zero. It remains to estimate I3 and
I4.

To handle I3 it is necessary to re-order it:⃦⃦⃦⃦∫︂ s

0
(SB(ω(t) − ω(r)) − SB(ω(s) − ω(r)))SA(t, r)F (y(r))d r

⃦⃦⃦⃦
V

=
⃦⃦⃦⃦∫︂ s

0
(SB(ω(t))SB(−ω(r)) − SB(ω(s))SB(−ω(r)))SA(t, r)F (y(r))d r

⃦⃦⃦⃦
V

=
⃦⃦⃦⃦
(SB(ω(t) − SB(ω(s)))

∫︂ s

0
SB(−ω(r))SA(t, r)F (y(r))d r

⃦⃦⃦⃦
V

It is worth to notice that if SB(−ω(·))SA(t, ·)F (y(·)) is a continuous function,
then

∫︁ ·
0 SB(−ω(r))SA(t, r)F (y(r))d r is also a continuous mapping. Define

K = {z ∈ V ; ∃0 ≤ s1 ≤ t1 ≤ T : z =
∫︂ s1

0
SB(−ω(r))SA(t1, r)F (y(r))d r}.

Set K is a compact set since a continuous image of a compact set is compact,
which gives us:

lim
t→s

sup
z∈K

∥(SB(ω(t)) − SB(ω(s)))z∥V = 0

because a pointwise convergence becomes a uniform convergence on a compact
set. In other words we have for I3:

I3 = ∥(SB(ω(t)) − SB(ω(s)))
∫︂ s

0
SB(−ω(r))SA(t, r)F (y(r))d r∥V

≤ sup
z∈K

∥(SB(ω(t)) − SB(ω(s)))z∥V → 0, as t → s+ or s → t− .
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Finally, we turn to I4, for which with the help of estimations from Theorem
17 (2.9), (2.3),(2.13) and (2.14), we obtain:

∥SB(ω(s) − ω(r))(SA(t, r) − SA(s, r))F (y(r))∥V

≤ KC(Kα|t− s|α|s− r|−α

+ CW |t− s|α + CKαB(1 − α, α)|t− s|α)
(2.18)

keeping in mind that 0 < α < 1 it gives us the following estimation:

I4 ≤ CK(Kα|t− s|α
∫︂ s

0
|s− r|−αd r

+ CW |t− s|α
∫︂ s

0
1d r + CKαB(1 − α, α)|t− s|α

∫︂ s

0
1d r) < ∞.

Thus I4 → 0 as t → s+ or s → t−.
Let y1, y2 ∈ C([0, T ], V ). Using (2.10) and (2.15) we obtain

∥Φ(y1) − Φ(y2)∥∞,0,T = sup
t∈[0,T ]

⃦⃦⃦⃦∫︂ t

0
U(t, r)(F (y1(r)) − F (y2(r)))d r

⃦⃦⃦⃦
V

≤ CULT∥y1 − y2∥∞,0,T .

If T < (CUL)−1, then Φ is a contraction. Such interval always exists. Let us
remind how constant CU is defined:

CU(ω) = C(ω)K.

Using Remark 2 we obtain that the interval [0, (CUL)−1) is not empty. A unique
mild solution to the equation (2.1) exists by the Banach fixed point theorem on
the interval [0, (CUL)−1). It is possible to extend solution to the closed interval.
Let us find limt→(CU L)−1 u(t).

u(t) = U(t, 0)u0 +
∫︂ t

0
U(t, s)F (u(s))d s t ∈ [0, (CUL)−1)

and let

A = U(t, 0)u0 +
∫︂ (CU L)−1

0
U(t, s)F (u(s))d s

so we have that:

∥A− u(t)∥V ≤
∫︂ (CU L)−1

t
∥U(t, s)F (u(s))∥V d s ≤ CUK((CUL)−1 − t),

which gives us limt→(CU L)−1 ∥A−u(t)∥V = 0 in other words u(t) has a limit as t →
(CUL)−1. Now we can consider a new initial value problem for t ∈ [(CUL)−1, T ]
with initial condition v = u((CUL)−1) and obtain, using the same approach, that
a new solution for the problem is u1 ∈ C([(CUL)−1, 2(CUL)−1), V ). Now we can
extend the solution u to the interval [0, 2(CUL)−1) by defining:

u(t) =

⎧⎨⎩u(t), t ∈ [0, (CUL)−1],
u1(t), t ∈ [(CUL)−1, 2(CUL)−1].

(2.19)
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u ∈ C([0, 2(CUL)−1, V ) since we have shown that limt→(CU L)−1 u(t) exists and u1

is continuous function on [(CUL)−1, 2(CUL)−1).
The second part of the proof where F is a Lipschitz continuous function is

the same as the proof which is given in Garrido-Atienza et al. [2016] in Theorem
2.4 and it will be omitted here.

Remark 7. From the proof of Theorem 2.4 Garrido-Atienza et al. [2016] it fol-
lows that there exist constants C1(ω), C2(ω) > 0 such that

∥u(t)∥V ≤ C1(ω) + C2(ω)∥u0∥V , for t ∈ [0, T ].

Remark 8. As might be seen from the proof of Theorem 19 we use only as-
sumption about the Hölder exponent for the noise sample paths. Which means
Theorem 13 and Theorem 19 hold for noises whose sample paths have Hölder
exponent larger than 1/2.

2.3 A mild solution is a weak solution
The next step is to show that a mild solution is a weak solution. The main part of
the section is Theorem 2.5 Garrido-Atienza et al. [2016] for which some omitted
parts are recovered and the proof of a Fubini-type theorem for the integral in the
sense (1.1) is provided. Let us start with Lemma 13.1 from Samko et al. [1993].

Lemma 20. If f(x) ∈ Hλ, 0 < α < λ ≤ 1, then

[Dα
a+f ](x) = f(a)

Γ(1 − α)
1

(x− a)α
+ ψ(x),

where ψ ∈ Hλ−α is such that ψ(a) = 0, and satisfies ||ψ||Hλ−a ≤ c||f ||Hλ for some
c ∈ (0,∞).

Lemma 20 gives us property of the integral:∫︂ x

a

f(x) − f(y)
(x− y)α+1 d y

from the Weyl representation of the fractional derivative [Dα
a+f ](x). The same

result might be achieved for the integral part of the derivative [D1−α
b− f ](x). Now

it is possible to formulate a Fubini-type theorem.

Lemma 21. Let β and β′ be such that β > 1/2, β′ > 1/2 and f ∈ C([0, T ] ×
[0, T ],R) be such that for every r ∈ [0, T ], f(·, r) ∈ Hβ([0, T ],R). Then it holds
for the integrals from Definition 1.1:∫︂ t

0

∫︂ t

r
f(τ, r) dω(τ) dr =

∫︂ t

0

∫︂ τ

0
f(τ, r) dr dω(τ), 0 < t < T.

Proof. Since the definition of the integral (1.1) by Proposition 2.1 Zähle [1998]
does not depend on α, let α satisfy α < β and 1 − α < β′. Such value is possible
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because β > 1/2 > 1 − β′. It follows from Zähle [2001] that under assumption of
this lemma, the integral in the sense (1.1) takes the following form:∫︂ b

a
f(t) dω(t) = (−1)α

∫︂ b

a
[Dα

a+f ](t)[D1−α
b− ωb−](t) dt.

Then the following estimations hold:∫︂ t

0

∫︂ t

r
f(τ, r) dω(τ) dr =

∫︂ t

0
(−1)α

∫︂ t

r
[Dα

r+f(·, r)](τ)[D1−α
t− ωt−](τ) dτ dr

=
∫︂ t

0
(−1)α

∫︂ t

r

(︄
f(τ, r)

Γ(1 − α)(τ − r)α
+ ψ(τ, r)

)︄(︄
ω(τ) − ω(t−)

Γ(α)(t− τ)1−α
+ ψ′(τ)

)︄
dτ dr

≤
∫︂ t

0

∫︂ t

r

⃓⃓⃓⃓
⃓(−1)α

(︄
f(τ, r)

Γ(1 − α)(τ − r)α
+ ψ(τ, r)

)︄(︄
ω(τ) − ω(t−)

Γ(α)(t− τ)1−α
+ ψ′(τ)

)︄⃓⃓⃓⃓
⃓ dτ dr

≤
∫︂ t

0

⃦⃦⃦⃦
⃦ f(τ, r)

Γ(1 − α)(τ − r)α
+ |ψ(τ, r)|

⃦⃦⃦⃦
⃦

Lp

⃦⃦⃦⃦
⃦ c|t− τ |β′

Γ(α)(t− τ)1−α
+ |ψ′(τ)|

⃦⃦⃦⃦
⃦

Lp′
dr

where p > 1 and p′ > 1 satisfy 1/p + 1/p′ = 1. In the second equality,
Lemma 20 is used, which guarantees that for each r, ψ(·, r) ∈ Hβ−α([0, T ],R)
and ψ′(·) ∈ Hβ′−1+α([0, T ],R). The Hölder property of function ω is used in the
last inequality. By the choice of β, β′ and α, we have that there exists p > 1 such
that αp < 1 and β′ +α− 1 > 0 so that we have the following estimation with the
help of Minkowski inequality:⃦⃦⃦⃦

⃦ f(τ, r)
Γ(1 − α)(τ − r)α

+ |ψ(τ, r)|
⃦⃦⃦⃦
⃦

Lp(r,t;d τ)
≤
⃦⃦⃦⃦
⃦ f(τ, r)

Γ(1 − α)(τ − r)α

⃦⃦⃦⃦
⃦

Lp(r,t;d τ)

+ ∥ψ(τ, r)∥Lp(r,t;d τ) < ∞,

⃦⃦⃦⃦
⃦ c|t− τ |β′

Γ(α)(t− τ)1−α
+ |ψ′(τ)|

⃦⃦⃦⃦
⃦

Lp′ (r,t;d τ)
≤
⃦⃦⃦⃦
⃦c|t− τ |β′+α−1

Γ(α)

⃦⃦⃦⃦
⃦

Lp′ (r,t;d τ)

+ ∥ψ′(τ)∥Lp′ (r,t) < ∞,

where ∥f(τ, r)∥Lp(r,t;d τ) defines Lp norm of the function f(·, r) on the interval [r, t]
where the value of r is fixed. So we have:∫︂ t

0

∫︂ t

r
|[Dα

r+f(·, r)](τ)[D1−α
t− ωt−](τ)| dτ dr < ∞.

To finish the proof we need to show that:

(−1)α
∫︂ t

0

∫︂ t

r
[Dα

r+f(·, r)](τ)[D1−α
t− ωt−](τ) dτ dr

= (−1)α
∫︂ t

0
[Dα

0+

(︃∫︂ ·

0
f(·, r) dr

)︃
](τ)[D1−α

t− ωt−](τ) dτ

Let us start with the proof that:

[Dα
0+

(︃∫︂ ·

0
f(·, r) dr

)︃
](τ) =

∫︂ τ

0
[Dα

r+(f(·, r))](τ) dr. (2.20)
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The left-hand side has the following Weyl representation of the fractional deriva-
tive:

[Dα
0+

(︃∫︂ ·

0
f(·, r) dr

)︃
](τ)

= 1
Γ(1 − α)

(︄∫︁ τ
0 f(τ, r)d r

τα
+ α

∫︂ τ

0

∫︁ τ
0 f(τ, r)d r −

∫︁ y
0 f(y, r)d r

(τ − y)1+α
d y

)︄
.

(2.21)

The right-hand side has the following Weyl representation of the fractional deriva-
tive:∫︂ τ

0
[Dα

r+(f(·, r))](τ) dr

=
∫︂ τ

0

1
Γ(1 − α)

(︄
f(τ, r)

(τ − r)α
+ α

∫︂ τ

r

f(τ, r) − f(y, r)
(τ − y)1+α

d y

)︄
d r

= 1
Γ(1 − α)

(︄∫︂ τ

0

f(τ, r)
(τ − r)α

d r + α
∫︂ τ

0

∫︂ τ

r

f(τ, r) − f(y, r)
(τ − y)1+α

d yd r

)︄

= 1
Γ(1 − α)

(︄∫︂ τ

0

f(τ, r)
(τ − r)α

d r + α
∫︂ τ

0

∫︂ y

0

f(τ, r) − f(y, r)
(τ − y)1+α

d rd y

)︄

= 1
Γ(1 − α)

(︄∫︂ τ

0

f(τ, r)
(τ − r)α

d r + α
∫︂ τ

0

∫︁ y
0 f(τ, r)d r −

∫︁ y
0 f(y, r)d r

(τ − y)1+α
d y

)︄

= 1
Γ(1 − α)

(︄∫︂ τ

0

f(τ, r)
(τ − r)α

d r + α
∫︂ τ

0

∫︁ τ
0 f(τ, r)d r −

∫︁ y
0 f(y, r)d r

(τ − y)1+α
d y

−α
∫︂ τ

0

∫︁ τ
y f(τ, r)d r
(τ − y)1+α

d y

)︄
.

(2.22)

In the third equality the use of Fubini’s theorem is justified by the following
estimation:∫︂ τ

0

∫︂ τ

r

⃓⃓⃓⃓
⃓f(τ, r) − f(y, r)

(τ − y)1+α

⃓⃓⃓⃓
⃓ d yd r ≤

∫︂ τ

0

∫︂ τ

r

⃓⃓⃓⃓
⃓ cr(τ − y)β

(τ − y)1+α

⃓⃓⃓⃓
⃓ d yd r

=
∫︂ τ

0

1
β − α

⃓⃓⃓
(τ − τ)β−α + (τ − r)β−α

⃓⃓⃓
d r =

∫︂ τ

0

1
β − α

|τ − r|β−α d r < ∞.

Let us consider the last term separately:

− α
∫︂ τ

0

∫︁ τ
y f(τ, r)d r
(τ − y)1+α

d y = −α
∫︂ τ

0

∫︂ r

0

f(τ, r)
(τ − y)1+α

d yd r

− α
∫︂ τ

0
f(τ, r)

∫︂ r

0

1
(τ − y)1+α

d yd r = −α
∫︂ τ

0
f(τ, r) 1

α
(−τ−α + (τ − r)−α)d r

=
∫︂ τ

0

f(τ, r)
τα

d r −
∫︂ τ

0

f(τ, r)
(τ − r)α

d r =
∫︁ τ

0 f(τ, r)d r
τα

−
∫︁ τ

0 f(τ, r)d r
(τ − r)α

.

(2.23)
Fubini’s theorem in the first equality was used. It is possible because f is contin-
uous on [0, T ] × [0, T ] and we have sup(τ,r)∈[0,T ]×[0,T ] |f(τ, r)| = K < ∞ and the
following estimate holds:∫︂ τ

0

∫︂ τ

y

|f(τ, r)|
(τ − y)1+α

d rd y ≤
∫︂ τ

0

∫︂ τ

y

K

(τ − y)1+α
d rd y = K

∫︂ τ

0

(τ − y)
(τ − y)1+α

d y

= K
∫︂ τ

0
(τ − y)−αd y = K

1
1 − α

(−(τ − τ)1−α + (τ − 0)1−α) = K
τ 1−α

1 − α
< ∞.
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We obtain the following result by inserting (2.23) into (2.22):

1
Γ(1 − α)

(︄∫︂ τ

0

f(τ, r)
(τ − r)α

d r + α
∫︂ τ

0

∫︁ τ
0 f(τ, r)d r −

∫︁ y
0 f(y, r)d r

(τ − y)1+α
d y

−α
∫︂ τ

0

∫︁ τ
y f(τ, r)d r
(τ − y)1+α

d y

)︄

= 1
Γ(1 − α)

(︄∫︂ τ

0

f(τ, r)
(τ − r)α

d r + α
∫︂ τ

0

∫︁ τ
0 f(τ, r)d r −

∫︁ y
0 f(y, r)d r

(τ − y)1+α
d y

+
∫︁ τ

0 f(τ, r)d r
τα

−
∫︂ τ

0

f(τ, r)
(τ − r)α

d r

)︄

= 1
Γ(1 − α)

(︄∫︁ τ
0 f(τ, r)d r

τα
+ α

∫︂ τ

0

∫︁ τ
0 f(τ, r)d r −

∫︁ y
0 f(y, r)d r

(τ − y)1+α
d y

)︄
.

We proved equality (2.20). This gives us:

(−1)α
∫︂ t

0
[Dα

0+

(︃∫︂ ·

0
f(·, r) dr

)︃
](τ)D1−α

t− ωt−(τ) dτ

= (−1)α
∫︂ t

0

∫︂ τ

0
[Dα

r+(f(·, r))](τ) drD1−α
t− ωt−(τ) dτ

= (−1)α
∫︂ t

0

∫︂ t

r
[Dα

r+f(·, r)](τ)[D1−α
t− ωt−](τ) dτ dr,

which finishes the proof that:∫︂ t

0

∫︂ t

r
f(τ, r) dω(τ) dr =

∫︂ t

0

∫︂ τ

0
f(τ, r) dr dω(τ)

The theorem below gives a connection between mild and weak solution. The
theorem is formulated for nonautonomous case and the proof is presented here
to show where Lemma 21 is used to fill the gap in the proof of Theorem 2.5
Garrido-Atienza et al. [2016].

Theorem 22. Let the assumption of the Theorem 19 be satisfied and let u be the
mild solution to the equation (2.1). Then u is also a weak solution to (2.1).

Proof. Take t ∈ [0, T ], ζ ∈ D∗. From the expression of the mild solution u and
the fact that U is a weak solution to the equation (2.4), we get

⟨u(t), ζ⟩V = ⟨U(t, 0)u0, ζ⟩V +
∫︂ t

0
⟨U(t, r)F (u(r)), ζ⟩V d r

= ⟨u0, ζ⟩V +
∫︂ t

0
⟨U(τ, 0)u0, A

∗(r)ζ⟩V d τ +
∫︂ t

0
⟨U(τ, 0)u0, B

∗ζ⟩V dω(τ)

+
∫︂ t

0
⟨F (u(r)), ζ⟩V d r +

∫︂ t

0

∫︂ t

r
⟨U(τ, r)F (u(r)), A∗(r)ζ⟩V d τd r

+
∫︂ t

0

∫︂ t

r
⟨U(τ, r)F (u(r)), B∗ζ⟩V dω(τ)d r

= ⟨u0, ζ⟩V +
∫︂ t

0
⟨F (u(r)), ζ⟩V d r +

∫︂ t

0
⟨U(τ, 0)u0, A

∗(r)ζ⟩V d τ

+
∫︂ t

0

∫︂ τ

0
⟨U(τ, r)F (u(r)), A∗(r)ζ⟩V d rd τ
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+
∫︂ t

0
⟨U(τ, 0)u0, B

∗ζ⟩V dω(τ) +
∫︂ t

0

∫︂ τ

0
⟨U(τ, r)F (u(r)), B∗ζ⟩V d rd ω(τ)

= ⟨u0, ζ⟩V +
∫︂ t

0
⟨u(τ), A∗(r)ζ⟩V d τ +

∫︂ t

0
⟨F (u(r)), ζ⟩V d r

+
∫︂ t

0
⟨u(τ), B∗ζ⟩V dω(τ)

The use of Fubini’s theorem for the equality:∫︂ t

0

∫︂ t

r
⟨U(τ, r)F (u(r)), A∗(r)ζ⟩V d τd r =

∫︂ t

0

∫︂ τ

0
⟨U(τ, r)F (u(r)), A∗(r)ζ⟩V d rd τ

is justified by the following estimation with the help of Remark 4 and Remark 7:⃦⃦⃦⃦∫︂ t

0

∫︂ t

r
⟨U(τ, r)F (u(r)), A∗(r)ζ⟩V d τd r

⃦⃦⃦⃦
V

≤ CUT
2Rζ(∥F (0)∥V + L(C1(ω) + C2(ω)∥u0∥V )) < ∞.

And Lemma 21 is used to justify:∫︂ t

0

∫︂ t

r
⟨U(τ, r)F (u(r)), B∗ζ⟩V dω(τ)d r =

∫︂ t

0

∫︂ τ

0
⟨U(τ, r)F (u(r)), B∗ζ⟩V d rd ω(τ),

where the Hölder continuity of ⟨U(τ, r)F (u(r)), B∗ζ⟩V is known from the proof
of Theorem 17.
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3. Random dynamical systems
This section covers short introduction to random dynamical systems from Arnold
[1999] and the definition of a random attractor from sources Crauel et al. [1997],
Schmalfuss [2000], Crauel et al. [2008] which give a different definition and criteria.

3.1 Random dynamical systems and random at-
tractors

In this section different approaches to define a random dynamical systems are
introduced. Let us start with definition from Arnold [1999].

Definition 14. Let (Ω,F ,P) be a probability space. Let θt : Ω → Ω, t ∈ R, be a
family of mappings satisfying the following conditions:

1. (ω, t) → θtω is F ⊗ B, F measurable, where B is the Borel σ-algebra of R;

2. θ0 = idΩ;

3. Flow Property: θt+s = θt ◦ θs, for s, t ∈ R;

4. For each t ∈ R, θt is measure preserving i.e. θtP = P.

Then (Ω,F ,P, (θt)t∈R) is called a metric dynamical system.

Definition 15. A metric dynamical system (Ω,F ,P, (θt)t∈R) is called ergodic if
all sets in I = {A ∈ F : θ−1

t A = A, t ∈ R} have probability 0 or 1.

Definition 16. A measurable random dynamical system with time R on the mea-
surable space (X,B), where X is complete metric space, over a metric dynamical
system (Ω,F ,P, (θt)t∈R) is a mapping

φ : R × Ω ×X ↦→ X, (t, ω, x) ↦→ φ(t, ω)x

with the following properties:

1. Measurability: φ is B(R) ⊗ F ⊗ B,B-measurable.

2. Cocycle property: For t ∈ R and ω ∈ Ω the mappings φ(t, ω) = φ(t, ω, ·) :
X → X form a cocycle over θ(·), i.e. they satisfy

φ(0, ω) = idX for all ω ∈ Ω (0 ∈ R)

and composition satisfies:

φ(t+ s, ω) = φ(t, θ(s)ω) ◦ φ(s, ω) for all ω ∈ Ω, s, t ∈ R. (3.1)

If (3.1) holds identically, then φ is called a perfect cocycle. If the cocycle
property (3.1) holds only for fixed s and all t ∈ R, P-a.s. then φ is called a crude
cocycle (where the exceptional set Ns can depend on s) and when (3.1) holds
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for fixed s and t ∈ R, P-a.s. then φ is called a very crude cocycle (where the
exceptional set Ns,t can depend on s and t).

Let us introduce an example of a metric dynamical system. If W is a standard
Wiener process in Rd and Ω = {ω ∈ C(R,Rd) : ω(0) = 0}, F0 = (uncompleted!)
Borel σ-algebra, P =Wiener measure, θtω = ω(t + ·) − ω(t) describes Brownian
motion as a metric dynamical system. This also has the name Wiener Shift.

One of the theorems represents a particular interest which gives a connection
between stochastic differential equations in the Stratonovich sense and random
dynamical systems Arnold [1999] under appropriate condition on a probability
space and filtration on this space.

Theorem 23. Let Ck,δ be the Fréchet space of functions f : Rd → Rd whose k-th
derivative is locally δ-Hölder continuous. Let f0 ∈ Ck,δ, f1, ..., fm ∈ Ck+1,δ, and∑︁m

j=1
∑︁d

i=1 f
i
j

∂
∂xi
fj ∈ Ck,δ for some k ≥ 1 and δ > 0. Then:

dXt = f0(Xt)d t+
m∑︂

j=1
fj(Xt) ◦ dW j

t , t ∈ R,

where W j for j ∈ 1, ...,m are independent Wiener processes and ◦d is understood
as a Stratonovich-type integral, generates a unique (up to indistinguishability)
random dynamical system φ over the dynamical system describing Brownian mo-
tion.

The natural question is raised ”Does (2.1) generate a random dynamical sys-
tem?”. This question is studied later in further subsection, for now let us introduce
different approaches for random attractors and random dynamical systems.

In Garrido-Atienza et al. [2016] the definition and criteria of random attrac-
tors were used from Schmalfuss and Flandoli [1996]. Let us introduce them for
(Ω,F ,P, (θt)t∈R).

Definition 17. Let H be a family of parametrized subsets D = {D(ω)}ω∈Ω,
D(ω) ⊂ V . We call such a set system H inclusion closed if it fulfils the properties:

(i) If D ∈ H, then for any ω ∈ Ω the set D(ω) ⊂ V is non empty.

(ii) If D ∈ H and D′ = {D′(ω)}ω∈Ω such that ∅ ̸= D′(ω) ⊂ D(ω) for any
ω ∈ Ω, then D′ ∈ H.

Definition 18. A parameterized set B = {B(ω)}ω∈Ω ∈ H is called H-absorbing
if for any D ∈ H, ω ∈ Ω, there exists a t0 = t0(ω,D) such that

φ(t, θ−tω,D(θ−tω)) ⊂ B(ω), for t ≥ t0.

As the distance between two sets the Hausdorff semidistance on metric space
V = (V, d) is used, for A,B ⊂ V distance d(A,B) is defined:

d(A,B) = sup
x∈A

inf
y∈B

d(x, y)

Definition 19. The set-valued map A : Ω → F , ω ↦→ Aω, where Aω is closed
(compact) for all ω ∈ Ω, is called a random closed (compact) set if for each x ∈ X
the map ω ↦→ d(x,Aω) is measurable.
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The attractor might be searched and studied across some subsets of all possible
subsets of space V . For this purpose in Garrido-Atienza et al. [2016] the following
family of sets was used. Let us denote the positive part of logarithm function by
log+.

Definition 20. (Tempered set Arnold [1999]) A random variable X in V is called
tempered if

lim
t→±∞

log+ ||X(θtω)||V
|t|

= 0, ω ∈ Ω.

A random set D is called tempered set if the random variable

Ω ∋ ω ↦→ sup
x∈D(ω)

||x||V , ω ∈ Ω

is tempered. In particular, the subset of all tempered sets will be denoted by D
for which the convergence relation

lim
t→±∞

log+ supx∈D(θtω) ||x||V
|t|

= 0

holds for all ω ∈ Ω.

Further we will work with the inclusion closed set system D defined above.

Definition 21. A random set A = {A(ω)}ω∈Ω ∈ D is called a random attractor
for the random dynamical system φ if, for any ω ∈ Ω, A(ω) is a compact, A(ω)
is invariant in the sense that

φ(t, ω, A(ω)) = A(θtω), for all ω ∈ Ω, t ≥ 0,

and moreover satisfies the pullback attractivness property

lim
t→∞

d(φ(t, θ−t, D(θ−tω)), A(ω)) = 0, for all D ∈ D, ω ∈ Ω.

The following theorem provides conditions that ensures the existence of global
D-attractors Schmalfuss and Flandoli [1996].

Theorem 24. Let V be a complete metric space and φ is a random dynamical
system over metric dynamical system (Ω,F ,P, (θt)t∈R). The paths φ(t, ω, ·)), ω ∈
Ω, t ≥ 0, are assumed to be continuous. Moreover, we assume the existence of
D-absorbing set B. Each of these sets B(ω), ω ∈ Ω, is supposed to be compact.
Then the random dynamical system φ has unique global D-attractor

A(ω) =
⋂︂

τ≥t0(ω,B)

⋃︂
t≥τ

φ(t, θ−tω,B(θ−tω))

where t0(ω,B) is given in the Definition 18.
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3.2 Random dynamical systems and random at-
tractors: the second definition

One of the first definitions of random attractor was introduced in Crauel et al.
[1997]. Suppose (X, d) is a complete separable metric space and (Ω,F ,P) is a
probability space. Let S(t, s, ω) : X → X, −∞ < s ≤ t < ∞, be a parameterized
by ω ∈ Ω family of mappings, satisfying the properties:

(D.1) S(t, r, ω)S(r, s, ω)x = S(t, s, ω)x for all s ≤ r ≤ t, x ∈ X and P-a.a. ω ∈ Ω;

(D.2) S(t, s, ω) is continuous in X, for all s ≤ t and P-a.a. ω ∈ Ω.

(D.3) for all s < t and x ∈ X, the mapping

ω ↦→ S(t, s, ω)x

is measurable from (Ω,F) to (X,B(X))

(D.4) The mappings s ↦→ S(t, s, ω)x is right continuous at any point s ∈ (−∞, t),
for all t, x ∈ X and P-a.a. ω ∈ Ω.

So the S(t, s, ω)x is the state at time t of the system whose value at time s is x.
Definition 22. For given t ∈ R and ω ∈ Ω, we say that K(t, ω) ⊂ X is called
an attracting set at time t if, for all bounded sets B ⊂ X,

d(S(t, s, ω)B,K(t, ω)) → 0, s → −∞,

The system (S(t, s, ω)t≥s, ω∈Ω) is called asymptotically compact if there exists a
measurable set Ω0 ⊂ Ω, with measure one, such that for all t ∈ R and ω ∈ Ω0,
there exists a compact attracting set K(t, ω). The set

A(B, t, ω) =
⋂︂

T <t

⋃︂
s<T

S(t, s, ω)B

is called Random Omega-limit set of a bounded set B ⊂ X at time t. Random
attractor is the set:

A(t, ω) =
⋃︂

B⊂X

A(B, t, ω).

Let assume that there exists a metric dynamical system (Ω,F ,P, (θt)t∈R), with
property that for all s < t and x ∈ X,

S(t, s, ω)x = S(t− s, 0, θsω)x, P − a.s. (3.2)

If such a metric dynamical system exists, then it is necessary to show the
existence of an absorbing set at time 0.
Remark 9. It is possible to represent S(t, s, ω) as a random dynamical system
φ cf. Definition 16. Assumption (D.1) gives the following relation:

S(t+ s, s, ω)S(s, 0, ω)x = S(t+ s, 0, ω)x, s < t, x ∈ X.

Now let us use the property (3.2):

S(t, 0, θsω)S(s, 0, ω) = S(t+ s, 0, ω) s < t, x ∈ X, ω ∈ Ω

if we set ϕ(t, ω) = S(t, 0, ω) then we obtain Definition 16 under assumptions
(D.1)-(D.4).
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Proposition 25. Under assumptions (D.1)-(D.4) and (3.2), suppose that for P-
a.e. ω there exists a compact attracting set K(ω) at time 0, i.e., such that for all
bounded sets B ⊂ X,

d(S(0, s, ω)B,K(ω)) → 0, s → −∞

Then the random dynamical system (S(t, s, ω))t≥s,ω∈Ω is asymptotically compact.

If the assumption of Proposition 25 is satisfied, then the random attractor
might be defined as:

A(ω) = A(0, ω)
The main result for random attractors from Crauel et al. [1997].

Theorem 26. Let (S(t, s, ω))t≥s,ω∈Ω be a random dynamical system satisfying
(D.1-D.4). Assume that there exists a metric dynamical system (Ω,F ,P, (θt)t∈R)
such that (3.2) holds and that, for a.a. ω ∈ Ω, there exists a compact attracting
set K(ω) at time 0. For a.a. ω ∈ Ω, we set

A(ω) =
⋃︂

B⊂X

A(B,ω)

where the union is taken over all the bounded subsets of X and A(B,ω) is given
by

A(B,ω) =
⋂︂

T <0

⋃︂
s<T

S(0, s, ω)B.

Then for a.a. ω ∈ Ω:

1. A(ω) is a nonempty compact subset of X, and if X is connected, it is a
connected subset of K(ω) .

2. The family A(ω), ω ∈ Ω, is measurable

3. A(ω) is invariant in the sense that

S(t, s, ω)A(θsω) = A(θtω), s ≤ t.

4. A(ω) is the minimal closed set such that for t ∈ R, B ⊂ X bounded

d(S(t, s, ω)B,A(θtω)) → 0, when s → −∞.

5. For any bounded set B ⊂ X, d(S(t, s, ω)B,A(θtω)) → 0 in probability when
t → ∞.

And if the time shift θt, t ∈ R, is ergodic, then we also have

6. There exists a bounded set B ⊂ X such

A(ω) = A(B,ω).

7. A(ω) is the largest compact measurable set which is invariant in the sense
of 3.
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3.3 Random attractors for semilinear stochastic
equations with a bilinear fractional noise

Let us return to the equation (2.16) and its solution. The solution of the equation
(2.16) is defined by Remark 5 and by Theorem 18.

u(t, ω) = U(t, ω, 0)u0 +
∫︂ t

0
U(t, ω, s)F (u(s, ω))d s, t ∈ [0, T ],

where

U(t, ω, s) = SB(ω(t) − ω(s))SA(t− s), 0 ≤ s ≤ t ≤ T. (3.3)

Let F = B(C0(R,R)) be a Borel σ-algebra, where C0(R,R) is a space of contin-
uous functions such that ω ∈ C0(R,R) satisfies ω(0) = 0. Define as Ω the set of
β′-Hölder continuous functions on any interval [−N,N ] for N ∈ N which are zero
at zero and satisfies assumption (E) (this will be stated later), moreover Ω ∈ F .
Let P be the distribution of stochastic process (ω(t), t ∈ R) whose all sample
paths belong to Ω. (ω(t), t ∈ R) has stationary increments and P(Ω) = 1. So we
can restrict our probability space to (Ω,S,P), where S = F|Ω is restriction of F
to Ω. The family of mappings (θt)t∈R on (Ω,S,P) are the shift mappings:

θtω = ω(t+ ·) − ω(t), ω ∈ C0(R,R), ∀t ∈ R.

Appendix A.3 Arnold [1999] gives us that (θt)t∈R is P measure preserving, thus
(Ω,S,P, (θt)t∈R) is a metric dynamical system.

Theorem 27. Under the conditions of Theorem 18, the unique mild solution u
of (2.16) generates a random dynamical system φ : R+ × Ω × V → V defined by

φ(t, ω, u0) = U(t, ω, 0)u0 +
∫︂ t

0
U(t, ω, r)F (u(r, ω))d r.

In the study of attractors of the solution to (2.16) in Garrido-Atienza et al.
[2016] additional assumptions were added. It is necessary to assume that the
mapping F can be represented as F = aI +G, where a ∈ R and G : V → V is a
bounded Lipschitz continuous function. The bound of G is denoted by CG. The
equation (2.16) might be rewritten as

d u(t) = (Âu(t) +G(u(t)))d t+Bu(t) ◦ dω(t), u(0) = u0 ∈ V, (3.4)

where Â = aI + A. This operator again generates the analytic semigroup SÂ =
eatSA(t) for t ≥ 0. Thanks to Theorem 18, the equation (3.4) has a unique mild
solution given by

u(t) = Û(t, 0)u0 +
∫︂ t

0
Û(t, r)G(u(r))d r,

where Û(t, s) = SB(ω(t) − ω(s))SÂ(t − s) = ea(t−s)U(t, s). The mild solution of
(3.4) generates a random dynamical system which is denoted by φ further. Also
let us assume that there are constants MA ≥ 1 and λ ∈ R for which we have:

∥SA(t)∥L(V ) ≤ MAe
λt, t ≥ 0. (3.5)
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Also, let MB ≥ 1 and µ ∈ R be such that
∥SB(t)∥L(V ) ≤ MBe

µ|t|, t ∈ R.
In Garrido-Atienza et al. [2016] all derivation was done for a fractional Brow-

nian motion for which the law of iterated logarithm exists, but to work with a
general process, it is necessary to impose one more assumption:
(E) Stochastic process (ω(t), t ∈ R) satisfies ω(t) = o(|t|) for t → ±∞.

The lemma below is a slight modification of the proof of Lemma 4.3 from
Garrido-Atienza et al. [2016] where instead of the law of iterated logarithm for
fractional Brownian motion, assumption (E) is used.
Lemma 28. Assume that the stability condition a + λ < 0 is satisfied, and let
D = {D(ω)}ω∈Ω be the family of tempered sets in V . Under the assumptions
(A,B,C,E), the ball BV (ω) = B(0, R(ω)) with

R(ω) = 2CGMAMB

∫︂ 0

−∞
eµ|ω(r)|−(a+λ)rd r (3.6)

is a D-absorbing set.
Proof. It is necessary to find an estimation of a solution to (3.4) in V , let us
consider ω ∈ Ω and its shift θ−tω for t ≥ 0. Note that

∥φ(t, θ−tω, u0)∥V

=
⃦⃦⃦⃦
SB(θ−tω(t))SÂ(t)u0 +

∫︂ t

0
SB(θ−tω(t) − θ−tω(r))SÂ(t− r)G(u(r))d r

⃦⃦⃦⃦
V

≤ MAMBe
µ|θ−tω(t)|+(a+λ)t∥u0∥V + CGMAMB

∫︂ t

0
eµ|θ−tω(t)−θ−tω(r)|+(a+λ)(t−r)d r

= MAMBe
µ|−ω(−t)|+(a+λ)t∥u0∥V + CGMAMB

∫︂ 0

−t
eµ|−ω(y)|−(a+λ)yd y.

From this if R(ω) is defined by (3.6), in the estimation above take D ∈ D and
replace ∥u0∥V by supu0∈D(θ−tω) ∥u0∥V +R(ω), then the following inequality holds

∥φ(t, θ−tω, u0)∥V ≤ MAMBe
µ|−ω(−t)|+(a+λ)t sup

u0∈D(θ−tω)
∥u0∥V +R(ω).

Combining assumption (E) with the assumption a + λ < 0, we get that for
u0 ∈ D(θ−tω) there exists t0 = tD(ω) such that

∥φ(t, θ−tω, u0)∥V ≤ R(ω), t ≥ t0.

This is true in fact, given ϵ > 0 small enough such that ϵµ+ (a+ λ) < 0,
lim
t→∞

eµ|−ω(−t)|+(a+λ)t sup
u0∈D(θ−tω)

∥u0∥V ≤ lim
t→∞

e(ϵµ+a+λ)t sup
u0∈D(θ−tω)

∥u0∥V = 0

It remains to prove that BV (ω) is tempered. Choose 0 < κ < −(a+ λ), then

lim
t→−∞

e−2κ|t|
∫︂ 0

−∞
eµ|θtω(r)|−(a+λ)rd r

= lim
t→−∞

eκt
∫︂ 0

−∞
e− a+λ

2 re− a+λ
2 re

κ
2 te

κ
2 teµ|ω(t+r)−ω(t)|d r

≤ lim
t→−∞

eκt
∫︂ 0

−∞
e− a+λ

2 re
κ
2 (t+r)+µ|ω(t+r)|e

κ
2 (t)+µ|ω(t)|d r

≤ sup
τ∈(−∞,0]

e2( κ
2 t+µ|ω(t)|) lim

t→−∞
eκt

∫︂ 0

−∞
e− a+λ

2 = 0.
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The supremum above is finite due to assumption (E). Theorem 4.1.3 (i) Arnold
[1999] helps to show that the convergence is in place also when t → ∞, hence
BV (ω) is a tempered ball.

The assumption (A) guarantees that there exists β0 ∈ R such that the operator
(β0I − A) is strictly positive and the fractional power of operator (β0I − A)δ is
well defined for every δ ∈ (0, 1], see Chapter 2 Pazy [1983]. We need to add one
more assumption about the operator A.

(F) D((β0I − A)γ) ⊂ D(B) for some γ ∈ (0, 1) and (β0I − A)−1 is a compact
operator.

Lemma 29. Given δ ∈ (0, 1), β ∈ (0, H), 0 < ϵ < T and R > 0, there exists a
random constant C = C(ω) > 0 such that

∥u∥β,ϵ,T ≤ C(ω)

and

∥(β0I − A)δu(t)∥V ≤ C(ω)

holds for each t ∈ [ϵ, T ] and u0 ∈ V such that ∥u0∥V ≤ R.

Lemma 30. Under conditions of Lemma 28, there exists a family of compact
absorbing sets C = {C(ω)}ω∈Ω ∈ D for the cocycle φ.

Theorem 24 give us the existence of a random attractor to the equation (3.4).
The proof mimics the proof of Corollary 1 in Garrido-Atienza et al. [2016] but
the assumption about fractional Brownian motion is replaced by the assumption
(E).

Theorem 31. Under the condition (E) and (F) and the stability condition a +
λ < 0, the random dynamical system φ has a unique random attractor A =
{A(ω)}ω∈Ω ∈ D.

Remark 10. The proof of existence of a random attractor of random dynamical
system φ in Garrido-Atienza et al. [2016] is done under the assumption that
the underlying metric dynamical system (Ω,F ,P, (θt)t∈R) is ergodic. There is
only one reference to the ergodic property of (Ω,F ,P, (θt)t∈R) in the analogue of
Theorem 24, which is taken from Schmalfuss and Flandoli [1996]. The original
source of Theorem 24, which is Schmalfuss and Flandoli [1996], does not have
the assumption about ergodicity of (Ω,F ,P, (θt)t∈R). This gives us that all results
above are valid for more general process (w(t), t ∈ R) and not only for fractional
Brownian motion.
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4. Examples
This section is devoted to description of examples for noise and some equations
for which theorems above hold.

4.1 Noise: examples

Fractional Brownian Motion
One of the main examples of noise is fractional Brownian motion which origi-
nally was used in Garrido-Atienza et al. [2016]. This process has the following
representation for t ∈ R and Hurst parameter H Picard [2011]:

BH(t) = 1
Γ(1 +H)

∫︂
R

[︃
(t− r)H− 1

2
+ − (−r)H− 1

2
+

]︃
dWr, t ∈ R.

where W is a standard Wiener process on R. The process has Hölder continuous
version of every order δ < H on any interval [−N,N ] for N ∈ N. Also, it
is known that fractional Brownian motion is ergodic with respect to the shift
mappings (θt)t∈R Garrido-Atienza and Schmalfuss [2011].

Rosenblatt Process
Rosenblatt process might be expressed as a miltiple Itô integral Čoupek [2018]:

Z(t) = a(H)
∫︂
R

∫︂
R

(︃∫︂ t

0
(s− y1)

− 2−H
2

+ (s− y2)
− 2−H

2
+ ds

)︃
dWy1 dWy2 , t ≥ 0

and

Z(t) = a(H)
∫︂
R

∫︂
R

(︃
−
∫︂ 0

−t
(s− y1)

− 2−H
2

+ (s− y2)
− 2−H

2
+ ds

)︃
dWy1 dWy2 , t < 0

where

a(H)2 =

√︂
H
2 (2H − 1)

B(H
2 , 1 −H)

,

and W is a standard Wiener process on R. This process has a Hölder continuous
version of every order δ < H on any interval [−N,N ] forN ∈ N. It also was shown
in Čoupek [2018] that Rosenblatt process has stationary increments which allows
us to show that the shift mappings (θt)t∈R are measure preserving transformations
with respect to (Z(t), t ∈ R) and the probability space (Ω,F ,P) on which Z(t)
is defined. The law of iterated logarithm for Rosenblatt process is provided by
Goodman and Kuelbs [1993]. So all results which are obtained in Garrido-Atienza
et al. [2016] hold for Rosenblatt process.

As a generalization for the processes above we consider a process which has
stationary increments and for which assumption (E) holds true. It is known from
Samoradnitsky and M.Taqqu [2017] that any second-order H-self-similar process
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{X(t), t ∈ I}, where I ⊂ R is interval, with stationary increments must have the
following covariance function for some σ > 0, H ∈ (0, 1):

EX(t)X(s) = σ2

2 (|s|2H + |t|2H − |t− s|2H), s, t ∈ I. (4.1)

Certain processes with such covariance function was studied in Mori and
Oodaira [1986] for which the law of iterated logarithm exists. All results till
the end of the current section are taken from the paper Mori and Oodaira [1986].
The processes of the form are studied:

X(t) =
∫︂
R
...
∫︂
R
Qt(u1, ..., um)dWu1 ...dWum, t ≥ 0, (4.2)

where the right side is the multiple Wiener integral with respect to standard Brow-
nian motion W with W (0) = 0 and symmetric functions Qt belong to L2(Rm).
Qt is called the kernel. The following assumptions are imposed for the kernel:

Qct(cu1, ..., cum) = cH−m/2Qt(u1, ..., um), c > 0, t ≥ 0, (4.3)

where 0 < H < 1 is a constant, and

Qt+h(u1, ..., um) −Qt(u1, ..., um) = Qh(u1 − t, ..., um − t), t ≥ 0, h ≥ 0. (4.4)

Those conditions imply that Q0(u1, ..., um) = 0. Condition (4.3) implies that X is
self-similar with parameterH, and (4.4) implies thatX has stationary increments.
It is known that a multiple Wiener integral has moments of all orders, therefore
we have E|X(1)|r < ∞ and:

E|X(s) −X(t)|r = E|X(|s− t|)|r = |s− t|rHE|X(1))|r

This means that the process (X(t))t≥0 admits a measurable version and moreover
(X(t))t≥0 also admits a version with Hölder continuous sample paths up to the
order H by Chentsov [1956]. Let us make kernel Q more specific. Introduce a
symmetric function q on Rm which is homogeneous with degree −λ, i.e.,

q(cu1, ..., cum) = c−λq(u1, ..., um), c > 0. (4.5)

It is supposed that λ ∈ (m/2, (m+ 1)/2). In addition, suppose that q satisfies∫︂
R
...
∫︂
R

|q(u1, ..., um)q(u1 + 1, ..., um + 1)|d u1...d um < ∞. (4.6)

Then

Qt(u1, ..., um) =
∫︂ t

0
q(v − u1, ..., v − um)d v (4.7)

defines a kernel satisfying Qt ∈ L2(Rm), (4.3) and (4.4) with H = m/2 − λ+ 1.
At first it is necessary to introduce the space in which almost every sample

path of X is contained. We now assume that m ≥ 1 and H ∈ (1/2, 1). Let

v(t) = tH−m/2(1 + | log(t)|)m/2, t > 0,
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and define Cv(R+) as a space of all continuous functions y on R+ satisfying

lim
t→∞

y(t)/v(t) = lim
t→0+

y(t)/v(t) = 0.

The norm of this space is defined as:

∥y∥Cv = sup
t>0

|y(t)|/v(t),

Cv(R+) becomes a Banach space.
If ξ ∈ L2(R) is square integrable function and Qt satisfies (4.3) and (4.4), then

y(t) =
∫︂
R
...
∫︂
R
Qt(u1, ..., um)ξ(u1)...ξ(um)d u1...d um, t ≥ 0, (4.8)

describes a function in Cv(R+). From Schwartz inequality we have:

|y(t)|2 ≤ ∥Qt∥2
2∥ξ∥2m

2 = t2H∥Q∥2
2∥ξ∥2m

2

where Q = Q1 and ∥ · ∥2 is a norm on a space of L2 functions. And the continuity
follows from the estimate

|y(t+ h) − y(t)|2 ≤ ∥Qt+h −Qt∥2
2∥ξ∥2m

2 = h2H∥Q∥2
2∥ξ∥2m

2

Let us impose an assumption on the kernel Q

(G) Qt is represented as in (4.7) with a symmetric function q satisfying (4.5)
and (4.6), where λ = m/2 + 1 −H, 1/2 < H < 1. KQ denotes the set of all
functions y represented by (4.8) with ξ ∈ L2(R) such that ∥ξ∥2 ≤ 1. Let
{Xn} be a sequence of random functions defined by

Xn(t) = X(nt)
nH(2 log log(n))m/2 , t ≥ 0, n ≥ 3.

Now it is possible to formulate a theorem Mori and Oodaira [1986].

Theorem 32. Let X be a self-similar process with stationary increments having
representation (4.2) with kernel Qt satisfying (G). Then with probability one Xn ∈
Cv(R+), n ≥ 1. Furthermore with probability one the sequence {Xn, n ≥ 3} is
relatively compact in Cv(R+) and the set of its points coincides with KQ.

The following theorem guarantees that a process which is represented as (4.2)
for almost all sample paths has the estimation X(t) = o(t) for t → ∞. This means
that we have a big family of stochastic processes which satisfy to condition (E)
from Chapter 3. Both Fractional Brownian motion and Rosenblatt process are
particular examples of choice of function q and normalizing constants c1 and c2
which gives E|X1|2 = 1:

q(u) = c1u
H−3/2
+

for the fractional Brownian motion and

q(u1, u2) = c2(u1)
− 2−H

2
+ (u2)

− 2−H
2

+

for the Rosenblatt process.

40



4.2 Equation: Examples
Let us consider two examples which were observed in the article Duncan et al.
[2005]. At first, consider the following stochastic parabolic equation of 2kth order
and the stochastic process (ω(t))t≥0 that satisfies assumptions from chapter above:⎧⎨⎩

∂u
∂t

(t, ξ) = L(t, ξ)u(t, ξ) + bud ω
d t

u(0, ξ) = x0(ξ)
(4.9)

for (t, ξ) ∈ [0, T ] × O, with the Dirichlet boundary conditions(︄
∂u

∂ξ

)︄α

(t, ξ) = 0, (t, ξ) ∈ [0, T ] × ∂O, α ∈ {0, 1, ..., k − 1},

where k ∈ N, O ⊂ Rd is a bounded domain of class Ck, b ∈ R/{0} and

L(t, ξ) =
∑︂

|α|≤2k

aα(t, ξ)Dα (4.10)

To satisfy assumption (C.1) we require that (4.10) is a strongly elliptic on O,
uniformly in (t, ξ) ∈ [0, T ] × Ō and aα(t, ·) ∈ C2k(Ō) for each t ∈ [0, T ]. So
equation might be rewritten in the form⎧⎨⎩dX(t) = A(t)X(t)d t+BX(t)dω,

X(0) = x0 ∈ V,
(4.11)

for t ∈ [0, T ], where V = L2(O), (A(t)u)(ξ) = L(t, ξ)u(t, ξ), Dom(A(t)) =
D = H2k(O) ∩Hk

0 (O) and B = bI ∈ L(V ). It is assumed that

sup
ξ∈O

|aα(t, ξ) − aα(s, ξ)| ≤ M |t− s|γ

for |α| ≤ 2k, s, t ∈ [0, t] and a constant M . Hypotheses (C.3) and (C.4) are sat-
isfied (Tanabe [1979], Theorem 3.8.3). Assumption (C.2) is satisfied. All those
assumptions guarantee the existence of a weak solution to the linear problem
thanks to Theorem 17. If operator A(t) = A is time independent then assump-
tions (A), (B) and (C) are satisfied. It means that if equation (4.11) satisfies a
stability condition of Corollary 31 (a = 0, λ < 0), all results up to Lemma 30
hold. In other words, the equation (4.11 ) possesses a random attractor.

The second example is the stochastic Cauchy problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u
∂t

= ∑︁d
i,j=1 aij(t) ∂2u

∂ξi∂ξj
(t, ξ) +∑︁d

i=1 di(t) ∂u
∂ξi

(t, ξ)
+c(t)u(t, ξ) +∑︁d

i=1 bi
∂u
∂ξi

(t, ξ)d ω(t)
d t

,

u(0, ξ) = x0(ξ),
(4.12)

for (t, ξ) ∈ [0, T ] × Rd, where aij, di, c are Hölder continuous functions for ∀i, j ∈
1, ..., d and bi ∈ R. To satisfy assumption (C.1) it is assumed that the differential
operator

L(t) =
d∑︂

i,j=1
aij(t)

∂2

∂ξi∂ξj

+
d∑︂

i=1
di(t)

∂

∂ξi

+ c(t)I
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is uniformly elliptic, which means

d∑︂
i,j=1

aij(t)vivj > 0

is satisfied for v ∈ Rd/{0} and t ∈ [0, T ]. Equation (4.12) is rewritten as⎧⎨⎩dX(t) = A(t)X(t)d t+BX(t)dω(t),
X(0) = x0,

(4.13)

where X(t), x0 ∈ V , V = L2(Rd), A(t) = L(t) with Dom(A(t)) = Dom(A∗(t)) =
H2(Rd), B = ∑︁d

i=1 bi
∂

∂ξi
, Dom(B) = C1(Rd). Theorem 5.2.1 Tanabe [1979] pro-

vides that assumption (C.1),(C.3) and (C.4) are satisfied. Operator B generates
strongly continuous groups on V that is:

[S(t)x0](ξ) = x0(ξ1 + b1t, ..., ξd + bdt)

for ξ = (ξ1, ..., ξd) ∈ Rd and t ∈ R. So (C.2) is also satisfied. This means that
all requirements for Theorem 17 are satisfied and a weak solution to the problem
(4.13) exists.

Let us consider one dimensional case of problem (4.12):⎧⎨⎩
∂u
∂t

(t, ξ) = a∂2u
∂ξ2 (t, ξ) + b∂u

∂ξ
(t, ξ)d ω

d t
(t),

u(0, ξ) = x0(ξ),
(4.14)

for t > 0 and ξ ∈ R where a > 0 and b ∈ R
{0}. The ellipticity condition is satisfied since a > 0. The solution for the
equation is given as

X(t) = S(ω(t))U(t, 0)x0,

where [S(s)x](ξ) = x(ξ + bs) and U is the evolution system corresponding to the
equation ⎧⎨⎩

∂y
∂t

= a∂2y
∂ξ2 ,

y(0) = x0.

Thus, U is a heat semigroup on R

(S∆(t)x0)(ξ) =
∫︂
R
(4πt)−1/2 exp

[︃
−1

4(ξ − ζ)2
]︃
x0(ζ)d ζ

and
X(t) = S(ω(t))S∆(at)x0

Despite Example 2.5 in Duncan et al. [2005] for the same problem the solution
is defined only for t ∈ [0, T ], where T depends on a. This difference between
solutions is explained by integration type in article. In Duncan et al. [2005]
Skorokhod integral is used whereas we use the integral in the sense of Defenition
1.1 Zähle [2001], which gives us slightly different version of the solution, which is
defined for any t ≥ 0.
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