FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

MASTER THESIS

Be. Jaroslav Safay

Practical neural dialogue management
using pretrained language models

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: Mgr. et Mgr. Ondfej Dusek, Ph.D.
Study programme: Computer Science (N1801)
Study branch: IUI (1801T036)

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

Author’s signature

I would like to express my gratitude to my supervisor, Mgr. et Mgr. Ondrej
Dusek, Ph.D., for his invaluable guidance, unwavering support, and constructive
feedback throughout the development of this thesis. Furthermore, I would like
to extend my thanks to my family for their continuous support and unwavering
encouragement during my years of studies. Their belief in my abilities has been
a constant source of motivation. I am deeply appreciative of their support and
understanding, as without them, this thesis would not have been possible.

i

Title: Practical neural dialogue management using pretrained language models
Author: Be. Jaroslav Safar
Institute: Institute of Formal and Applied Linguistics

Supervisor: Mgr. et Mgr. Ondrej Dusek, Ph.D., Institute of Formal and Applied
Linguistics

Abstract: Task-oriented dialogue systems pose a significant challenge due to their
complexity and the need to handle components such as language understanding,
state tracking, action selection, and language generation. In this work, we explore
the improvements in dialogue management using pretrained language models.
We propose three models that incorporate pretrained language models, aiming to
provide a practical approach to designing dialogue systems capable of effectively
addressing the language understanding, state tracking, and action selection tasks.
Our dialogue state tracking model achieves a joint goal accuracy of 74%. We also
identify limitations in handling complex or multi-step user requests in the action
selection task. This research underscores the potential of pretrained language
models in dialogue management while highlighting areas for further improvement.

Keywords: dialogue systems, pretrained language models, natural language pro-
cessing, dialogue management

Nézev prace: Prakticky neuronovy dialogovy manazer s pouzitim
predtrénovanych jazykovych modeli

Autor: Be. Jaroslav Safaf
Ustav: Ustav formélni a aplikované lingvistiky

Vedouci diplomové prace: Mgr. et Mgr. Ondrej Dusek, Ph.D., Ustav formalni a
aplikované lingvistiky

Abstrakt: Dialogové systémy zamérené na tkoly predstavuji vyzvu vzhledem ke
své slozitosti a potfebé zvladnout komponenty, jako porozuméni jazyku, sledovani
stavu, vybér akci a generovani jazyka. V této praci zkoumame zlepseni tizeni
dialogu pomoci predtrénovanych jazykovych modeli. Predstavujeme tii mod-
ely, postevané na predtrénovanych jazykovych modelech, jejichz cilem je poskyt-
nout prakticky pristup k navrhu dialogovych systému schopnych efektivné resit
porozuméni jazyku, sledovani stavu a tlohu vybéru akci. Nas model pro sledovani
stavu dialogu dosahuje presnosti 74%. V tloze pro vybér akci identifikujeme
problémy ve zpracovani slozitych nebo vicekrokovych uzivatelskych pozadavki.
Tento vyzkum podtrhuje potencidl predtrénovanych jazykovych modeli v dialo-
govém managementu a zaroven ukazuje na oblasti pro dalsi zlepSeni.

Klicova slova: dialogové systémy, predtrénované jazykové modely, zpracovani
prirozeného jazyka, dialogovy manazer

1ii

Contents

Introduction

1 Theoretical Background

1.1 Dialogue Systems L
1.1.1 Chatbots and Task-oriented Dialogue Systems
1.1.2 Task-oriented Dialogue Systems and Their Traditional Ar-

chitecture

1.2 Language Modeling
1.2.1 Language Models
1.2.2 N-grams and n-gram Language Models
1.2.3 Estimating n-grams Probabilities
1.2.4 Text Generation Using Language Models

1.3 Deep Neural Networks
1.3.1 Understanding Deep Neural Networks
1.3.2 Building Blocks of DNNs
1.3.3 Training Deep Neural Networks
1.3.4 Feed-forward and Convolutional Neural Networks
1.3.5 Recurrent Neural Networks
1.3.6 Sequence-to-Sequence Architecture

1.4 Transformers
1.4.1 Transformer Encoder-Decoder Structure
1.4.2 Input, Output, and the Embeddings
1.4.3 Positional Encodingo
1.4.4 Multi-Head Attention,
1.4.5 Feed-Forward Networks, Residual Connections, and Layer

Normalization

1.5 Pretrained Language Models
1.5.1 Transfer Learning in NLP,
1.5.2 Pretrained Language Models and Pretraining Methods
1.5.3 Fine-tuning Large Language Models
1.5.4 Influential Large Language Models

Dialogue Management and Related Work

2.1 Early Dialogue Management

2.2 Modern Approaches to Dialogue Management
2.2.1 Dialogue State Tracking
2.2.2 Action Selection / Dialogue Policy
2.2.3 End-to-End Dialogue Systems

Practical Dialogue Management

3.1 Dialogue State Tracking
3.1.1 Theoretical Description of Generative DST
3.1.2 Dialogue State and the String Representation
3.1.3 The Input and Output Strings

3.2 Action Selectiono

10
10
11
11
12
12
13
15
16
17
18
19
19
19
20
21

22
23
23
23
24
24

26
26
27
27
30
32

3.2.1 Theoretical Description of Generative Action Selection
3.2.2 Theoretical Description of Classification-Based Action Se-
lection
3.2.3 Database and the String Representation
3.2.4 Action and String Representation
3.2.5 The Input and Output for Action Selection

4 Experiments

4.1

4.2

4.3

4.4

The MultiWOZ Dataset
4.1.1 MuthiWOZ.
4.1.2 MultiWOZ 2.1
4.1.3 MuthiWOZ 2.2
4.1.4 Train Dataset and its Subsets
4.1.5 Dialogue State Ontology
4.1.6 Supported Actions
Dialogue State Tracking Metrics
4.2.1 Domain Level Metrics
4.2.2 Slot Level Metrics L.
4.2.3 Global Slot Level Metrics
4.2.4 Joint Goal Accuracy
Action Selection Metricso
4.3.1 Action Level Metrics
4.3.2 Turn Level Accuracy
4.3.3 Macro Averaged Metrics
4.3.4 Weighted Averaged Metrics
Model Training Details

5 Results and Discussion

5.1
5.2
5.3

Dialogue State Tracking Results
Action Selection Results
Manual Analysis

6 Conclusion

Bibliography

List of Figures

List of Tables

List of Abbreviations

List of Glossaries

A Attachments

Al
A2
A3

Action support
Dialogue Analysis Example
Source Code Description and Usage
A.3.1 evaluate pipeline.py
A.3.2 main_action_classification.py L.

39

40
41
42
45

46
46
46
46
47
47
48
49
49
49
50
90
51
51
51
o1
52
52
52

54
54
o4
o6

58

60

69

70

71

72

A.3.3 main_action_generation.py

A.3.4 main_state_update.py

Introduction

Dialogue systems have evolved as one of the most significant advancements in nat-
ural language processing (NLP), offering the capacity for humans to communicate
with machines in a natural, conversational manner. Particularly, task-oriented
dialogue systems, designed to assist users in completing specific tasks, are being
integrated into various fields such as customer service, personal assistance, and
e-commerce (McTear, 2021).

Modeling dialogue is complex and typically divided into several components,
such as language understanding, state tracking, action selection, and response
generation. These components work together to ensure that the system under-
stands user input, maintains the conversation context, decides on its next action,
and generates an appropriate response. One of the main challenges of practical
dialogue systems is managing these tasks effectively, especially in resource-limited
scenarios.

Recently, architectures such as Hybrid Code Networks (Williams et al., 2017)
have demonstrated promising results in practical settings but do not leverage the
benefits of pretrained language models (Radford et al., 2018, 2019; Devlin et al.,
2019; Liu et al., 2019; Raffel et al., 2020), which have dramatically transformed the
landscape of NLP by showing impressive performance across a range of tasks. On
the other hand, utilizing pretrained language models in the end-to-end dialogue
system approaches such as Sequicity (Lei et al., 2018), MintL (Lin et al., 2020),
Soloist (Peng et al., 2021), and AuGPT (Kulhdnek et al., 2021) gives great results
but often requires vast amounts of annotated data, which can be challenging to
acquire. Moreover, these models tend to hallucinate and generate ungrounded
natural language outputs, making them unreliable for practical applications (Ji
et al., 2023).

Therefore, in practice, dialogue systems are still typically composed of indi-
vidual modules: natural language understanding (NLU), dialogue management
(DM), and natural language generation (NLG). Motivated by this, our thesis ex-
plores potential improvements in DM methods using pretrained language models.
The focus is to provide a practical approach for designing new dialogue systems
which can effectively address language understanding, state tracking, and action
selection tasks, even under limited data conditions. We propose three models
that handle NLU combined with dialogue state tracking and action selection
tasks, demonstrating the potential of using pretrained language models in dia-
logue management. All models were evaluated in limited data setting. Dialogue
state tracking model achieves a joint goal accuracy of 74%. Action selection scores
are not high but the predicted actions are usually reasonable. We also note the
limitations of the action selection model in their ability to handle complex or
multi-step user requests.

The thesis is organized as follows. In Chapter 1, we provide a theoretical
background on dialogue systems, language modeling, deep neural networks, trans-
formers, and pretrained transformer-based language models. This knowledge is
used in the subsequent chapters. Chapter 2 delves into the early development
and modern approaches of dialogue management, concentrating on dialogue state
tracking, action selection, and end-to-end dialogue systems. Chapter 3, our main

contribution, focuses on our proposed architecture for practical dialogue manage-
ment, explaining in detail how each component works. Chapter 4 describes the
experiments to evaluate our models, detailing the dataset used, the evaluation
metrics, and training specifics. In Chapter 5, we discuss the results and implica-
tions of our models. Lastly, we summarize our findings, highlight the limitations
of our approach, and suggest possible directions for future work in Chapter 6.

1. Theoretical Background

This chapter provides a theoretical foundation for understanding dialogue sys-
tems, language modeling, and deep neural networks. It begins with an introduc-
tion to dialogue systems (Section 1.1), distinguishing between chatbots and task-
oriented dialogue systems and describing their traditional architecture, before
moving to the foundation of language modeling (Section 1.2), including language
models, n-grams, and their application in text generation. The following chap-
ter dives deep into deep neural networks (Section 1.3), exploring their structure,
training methods, and different architectures.

The chapter further describes in detail the Transformer architecture (Sec-
tion 1.4) which revolutionized the field of natural language processing, concluding
with a description of pretrained Transformer-based language models (Section 1.5)
with emphasis on their pretraining methods, fine-tuning, and the influential mod-
els.

1.1 Dialogue Systems

A dialogue system is a computer program that can communicate with users in a
natural language (McTear, 2021, p. 11). Communication is usually text-based,
spoken, or multimodal. Even though other modes, such as graphics, haptics, or
gestures, can be a part of communication, especially in humans, most dialogue
systems use text or speech. Moreover, speech recognition (Yu and Deng, 2014)
and speech synthesis (Wang et al., 2017) can be used to translate speech-to-text
and text-to-speech, which allows us to work primarily with conversations in the
form of text, which will also be the focus of this thesis.

1.1.1 Chatbots and Task-oriented Dialogue Systems

Dialogue systems are usually categorized into task-oriented dialogue systems and
non-task-oriented dialogue systems. Task-oriented dialogue systems are purpose-
built to perform a specific function. In these systems, the user and the system
communicate to accomplish tasks, such as assisting with scheduling appointments,
booking flights, or making restaurant reservations (Chen et al., 2017). Conversa-
tions with these task-oriented systems are generally more structured and primar-
ily focused on obtaining the information needed to complete the task for which
the given system is made (Rudnicky et al., 1999). For instance, a task-oriented
dialogue system designed for booking flights might ask for the destination, date,
and number of passengers. These systems are well known because digital as-
sistants such as Siri, Google Home, and Alexa are examples of multi-purpose
task-oriented dialogue systems (Williams et al., 2016).

On the other hand, non-task-oriented dialogue systems (chatbots) primarily
engage in general conversation with users. Usually, their objective is to simulate
human conversation as best as possible and can lead conversations on various
topics to keep users’ attention and provide entertainment (Shawar and Atwell,
2007; Brandtzaeg and Folstad, 2017).

1.1.2 Task-oriented Dialogue Systems and Their Tradi-
tional Architecture

In task-oriented dialogue systems, the user and the system traditionally take turns
interacting with each other (McTear, 2021, p. 44). Each turn in the conversation
is a continuous block text (or speech) called utterance. An utterance can be a
question, command, or just a statement. These turns come together to form a
dialogue driven toward a specific goal. Each utterance is produced based on all
the previous utterances from the beginning of the dialogue up to the previous
one. We call these utterances a dialogue context. To illustrate these concepts,
consider the following dialogue with a system designed to book flights:

1. The user’s initial utterance: “I'd like to book a flight to Paris” initiates the
dialogue, and also the dialogue context:

[“I’d like to book a flight to Paris”]

2. The system’s response might be: “Sure, I can help with that. When would
you like to fly”, which extends the context to include utterances from both
turns:

[“I’d like to book a flight to Paris”,
“Sure, I can help with that. When would you like to fly”]

3. The user’s next utterance: “Next Wednesday” adds one more utterance to
the dialogue context:

[“I’d like to book a flight to Paris.”,
“Sure, I can help with that. When would you like to fly?”,
“Next Wednesday.”|

4. The system uses the dialogue context to understand that the user wishes
to fly to Paris next Wednesday.

5. This back-and-forth exchange of turns continues until the user’s task is
accomplished or the dialogue is otherwise concluded.

The traditional task-oriented dialogue system can be broken down into several
modules.

Automatic Speech Recognition (ASR)

For spoken dialogue systems, the process begins with automatic speech recogni-
tion (ASR). ASR technology analyzes acoustic waves and converts these signals
into written text (Yu and Deng, 2014).

Natural Language Understanding (NLU)

The next step is natural language understanding (NLU), which is responsible
for parsing and interpreting the natural language text to determine its meaning.
NLU accomplishes this by converting the input text into a structured semantic
representation, typically in the form of dialogue act (McTear, 2021, p. 46). A
dialogue act contains only the necessary information for a dialogue system by

encapsulating an utterance’s semantic intent or purpose and its slots, which are
specific information related to the intent. Slots usually have assigned wvalues. For
example, in the dialogue act inform(food=Chinese, price=cheap), inform is the
intent, and food and price are slots with values Chinese and cheap respectively.

Dialogue Management (DM)

Another essential part of the system is dialogue management (DM), which accepts
the representation of the user utterance generated by NLU, interacts with the
external knowledge base, such as the database, and decides what to do next
(Brabra et al., 2022). Dialogue management consists of two components:

o dialogue state tracking (DST), also belief state tracking,
« action selection, also known as dialogue policy

DST keeps track of the conversation context, information, and user prefer-
ences collected during the dialogue. It achieves this by managing the so-called
dialogue state, a dynamic representation of the dialogue history containing various
elements such as slots and their associated values (extracted by the NLU), user
preferences, and past system actions. As the conversation continues, the DST
updates the dialogue state with the latest information extracted from user utter-
ances allowing the system to accurately represent the user’s needs, even across
multiple turns.

After updating the dialogue state, the next critical task is action selection.
This process chooses the system’s response to the user’s latest utterance, using
the updated dialogue state’s information. The selected actions should be the ones
that best move the dialogue towards its goal, reflecting the user’s needs and pref-
erences as represented in the dialogue state. The actions are usually structured
similarly to dialogue act, with an intent and potential slots with assigned values.
The intent signifies the system’s intended action, such as informing, requesting,
or confirming something, while the slots capture specific information relevant to
that action. For instance, if the intent is to inform, slots could represent cate-
gories of information the system aims to inform about, with values containing the
actual information. The values are typically fetched from a backend database.

Natural Language Generation (NLG)

The output of the dialogue management is then passed to the natural language
generation (NLG) module (McTear, 2021). This process transforms the system’s
actions into a natural-sounding text. Some systems might use simple templating
methods, where predefined text templates are filled with information from the
system action; others might employ advanced machine-learning techniques to
generate more diverse and natural-sounding responses.

Speech synthesis (TTS)

Finally, in spoken dialogue systems, the generated text is converted back into
speech through a process called speech synthesis (TTS). This process is especially
crucial for dialogue systems that interact with users via voice, such as virtual

assistants. The goal of speech synthesis is to generate speech that sounds as
natural and human-like as possible (Wang et al., 2017).

Example Let usconsider an example of a conversation with a system designed
to book restaurants:

1. The user’s initial utterance: “I want to find a cheap Chinese restaurant.”
initiates the dialogue.

2. If the case of a spoken dialogue system, the system’s ASR module tran-
scribes this utterance to text:

“I want to find a cheap Chinese restaurant.”

3. The system’s NLU module recognizes the intent and extracts the slots and
values, creating a dialogue act:

inform(food=Chinese, price=cheap)

4. The dialogue state tracking updates the empty dialogue state with the infor-
mation from the dialogue act. We represent the dialogue state symbolically
as an assignment of values into slots for each domain. In this case:

restaurant{food=Chinese, price=cheap}

5. In the action selection stage, the system uses its dialogue state and decides
to search through the database for a suitable restaurant. Let’s assume it
found a restaurant called Lucky Dragon that matches the user’s criteria,
creating an action

restaurant -inform(name=Lucky Dragon, food=Chinese,
price=cheap)

6. From the generated action, the system constructs a response using the NLG
module: “I found a cheap Chinese restaurant called Lucky Dragon.”

7. Finally, in the case of the spoken dialogue system, theTTS generates the
response: “I found a cheap Chinese restaurant called Lucky Dragon.”

This dialogue continues until the user’s task is accomplished or the dialogue
is otherwise concluded.

1.2 Language Modeling

To understand a language, it is not enough to understand the meanings of indi-
vidual words; we also need to understand the syntactic and semantic relationships
between the words that form a sentence. One way to model these relationships is
through language modeling, a crucial area of natural language processing (NLP)
and dialogue systems (as we will see in Chapter 2) that develops probabilistic

9

models to predict the next word in a sentence given the preceding words. In this
section, we will describe what language model is (Sections 1.2.1, 1.2.2, 1.2.3) and
how are they used to generate language (Section 1.2.4)

1.2.1 Language Models

A language model (LM) is a type of probabilistic model that assigns the proba-
bility to a sequence of words, or generally tokens. In language modeling, tokens
can be individual words, parts of words, or even single characters, representing
the smallest processing units in the model. Formally, given a sequence of t tokens
r14 = (21, 22,..., 1), a language model calculates the following probability:

P(x14) = Pz, @2, w). (1.1)

A goal of the language model is to assign a higher probability to correct or more
likely sequences of tokens.

1.2.2 N-grams and n-gram Language Models

An n-gram is a contiguous sequence of n tokens. In the case of language models,
n-grams play a crucial role in computing the conditional probability of a token
given the preceding tokens.

An n-gram model computes the probability of the last token in an n-gram
given the previous tokens. Formally, these models compute the conditional prob-
ability of the last token x,, in an n-gram 1., = (1, xa, . . ., x,) given the preceding
n — 1 tokens:

P(zp|r1m-1) = P(xy|Ty, ooy 201), (1.2)

where n is the order of the n-gram.

For example, in a bigram model (n = 2), the probability of a word would only
depend on the previous word, i.e., P(x,|z,_1) = P(xa|z1).

When computing a probability of the entire sequence of ¢ tokens x1.; as in
Equation 1.1, we can also use n-grams. Using the chain rule of probability, we
can decompose this probability as follows:

t

P(x1.4) = P(x1)P(xa|xy) P(xs|xye) - . . P(z¢]T1.4-1) H (Tg|T1.6-1) (1.3)

However, this computation can become computationally infeasible with increas-
ing t due to the massive number of potential token sequences. An approximation
is commonly used based on the Markov assumption stating that a token’s prob-
ability only depends on a limited number of previous tokens instead of the whole
history. This is where n-grams come into play: in an n-gram model, each condi-
tional probability of a k-th token given its preceding k —1 tokens is approximated
to only depend on the previous n — 1 tokens (where we assume that k& > n, oth-
erwise k is used), significantly reducing the computational complexity, formally:

P('rk‘|x11k—1) ~ P('Tk|xk—n+1:k—1) (14)

where n is the order of the Markov model. The approximation becomes exact
when k& = n, which connects back to our initial definition of n-gram models. The

10

Markov assumption substantially reduces the computational complexity, making
n-gram models a practical and widely used approach in language modeling

We can now apply the n-gram model approximation to the computation of a
probability of the entire sequence of ¢ tokens zy,; in Equation 1.3, where we first
decompose the joint probability P(x1.,) of the sequence using the chain rule and
then applying n-gram approximation from Equation 1.4, obtaining:

t t

P(xlzt) - H Izlxlz 1 H xk|xk—n+1:k—1)- (15)

=1 k=1

1.2.3 Estimating n-grams Probabilities

To estimate the model probabilities, we can use maximum likelihood estimation
(MLE) by counting the occurrences of n-grams in a corpus. For example, the
probability P(xg|xg_1) can be estimated as the count of the bigram (xy_q,xy)
and divided by the count of the unigram x;_1:

C(l’k,h l’k)
C(l‘kfl)

where C'(zy_1, xx) is the count of the bigram (zj_1,xy), and C(x_1) is the count
of the unigram xj_.

This estimation, however, can be problematic when dealing with bigrams
(or higher n-grams) that did not occur in the training data. To overcome this
problem, several smoothing techniques, such as Laplace smoothing (Manning and
Schiitze, 1999), which assigns a small probability to unseen n-grams, or advanced
Kneser-Ney smoothing (Kneser and Ney, 1995), can be applied.

P(xp|og—) = (1.6)

1.2.4 Text Generation Using Language Models

One of the interesting applications of language models (LM) is their capability to
generate text. Given a starting token or tokens, a language model can generate
subsequent tokens most likely to follow. In the simplest case the text generation
process involves iteratively selecting the most probable next token and appending
it to the sequence, known as greedy decoding.

Consider an n-gram model. Given a starting sequence of k tokens zi, =
(21 ...,x), the model generates the next token z; that maximizes the following
conditional probability:

Tkl = Argmax P(z|x1.y) =~ arg max P(z|xg_niok)- (1.7)

Once the token xp, is selected and appended to the sequence, the updated
sequence serves as the starting sequence for generating the next token. This
process is repeated until a specific condition is met, such as reaching a predefined
length or generating special end-of-text token.

While this greedy approach is computationally efficient, it is deterministic and
can lead to repetitive and predictable text. We can improve text generation by
sampling from the probability distribution of the next token instead of taking the
most probable one.

11

The quality of the generated text heavily depends on the quality of the lan-
guage model itself. For n-gram models, the quality of generated text cannot
capture long-range dependencies between words due to the Markov assumption.
As such, other types of language models based on deep neural networks, such as
recurrent neural networks (RNNs)(Section 1.3.5) or Transformers (Section 1.4),
are often used for text generation, as they can capture longer dependencies.

1.3 Deep Neural Networks

In recent years, deep neural networks (DNNs) have gained significant popularity
and have proven to be an effective method for a wide range of tasks in numer-
ous fields, from image recognition in computer vision to speech recognition and
language modeling in natural language processing (Goodfellow et al., 2016).

The rise of deep neural networks in recent years is closely tied to the ad-
vancement of computational power and the availability of large-scale datasets.
However, the concept of neural networks dates back to 1943 with the McCulloch-
Pitts neuron model (McCulloch and Pitts, 1943), the first-ever mathematical
model of a biological neuron. However, due to the limited computing resources of
their time and the need for more sufficient data, the applicability of their neuron
model was initially limited. The rebirth of neural networks started in the late
1980s and early 1990s with the introduction of the backpropagation algorithm
(Rumelhart et al., 1986). However,“deep learning” began to be associated with
neural networks only around the mid-2010s, when techniques to train deeper
networks effectively were developed.

1.3.1 Understanding Deep Neural Networks

Deep neural networks (DNNs) are essentially function approximators (Goodfel-
low et al., 2016, p. 168), which can learn to predict the corresponding outputs
given a set of inputs. They aim to approximate some unknown function f* |
which maps an input « into an output y:

y = f(z). (1.8)

Then, a DNN constructs a mapping y = f(; 0) and learns the optimal values
for the parameters 0 to approximate the function f* as best as possible. The
mapping is constructed by composing together many different inner functions f;,
with each function associated with a specific layer L; of the network. These layers
can be viewed as layers of artificial neurons, hence the name “neural network”.
Each i-th layer (or i-th function) in a DNN takes the output from the previous
layers (functions), performs some transformation on them, and passes the result
onto the following layers (functions).

This design of inputs and outputs is often represented as a directed acyclic
graph (DAG), which describes how various functions are composed to create the
full network function. Using this graph representation of the DNN, each inner
function f; (or layer of neurons L;) is represented by a graph node v;. Therefore,
a DAG is the another representation! of the same concept of a DNN.

'In the context of deep neural networks, the terms inner function, layer, and graph node can

12

This specific design of a deep neural network as a directed acyclic graph offers
several advantages, most notably due to the properties that come along with the
topological ordering of the nodes in the graph, which means that all computations
on which a particular node depends are guaranteed to be completed before the
computation at the node itself is performed.

Nodes with no incoming edges are the input nodes, similarly, nodes without
any outgoing edges are the output nodes. The length of the longest path from an
input node to an output node in the DAG, which corresponds to the number of
layers in the network, gives the depth to the model, from which the term “deep
learning” arises (Goodfellow et al., 2016).

1.3.2 Building Blocks of DNNs

The main building blocks of a deep neural network’s layers are its artificial neu-
rons. Each neuron is a simple computational unit that takes several inputs,
applies a function, and produces an output.

Single Neuron

Consider a neuron in a particular layer L;. We denote the inputs to this neuron
as a row vector ! = [x1, 2o, ..., x,] and the corresponding weights as a column
vector (or matrix of shape (n x 1)) as

Wn,

Each neuron computes the linear combination (weighted sum) of its inputs,
adds a bias term b, and passes the result through an activation function ¢ to
produce its output:

y=¢ (iug@%—b) :go(mTw+b) : (1.9)

j=1

Layer of neurons

A layer in a DNN is a collection of k£ neurons that each receive the same input
x” and perform the same operation described above but with different weights.
If we represent the weights of all neurons in the layer as a matrix W of shape

(n x k) and the biases as a row vector b7 = [by, by, ..., b] then the output of the
whole layer L; is a row vector y© = [y, s, ..., yx], calculated as follows:
y' ='W +b'), (1.10)

where the activation function ¢ is applied element-wise.

often be used interchangeably because a layer in the network can be considered as a function
that transforms its input into output and a node in DAG can represent that function. Hence,
a layer of a neural network, its inner function, and its graphical representation as a node
essentially depict the same concept from different perspectives.

13

Activation functions

The choice of activation function ¢ in a layer depends on the layer’s position in the
network and the problem being solved. The activation function introduces non-
linearity into the model, enabling the network to learn more complex functions.

o Commonly used activation functions for hidden layers include:

— ReLU (Rectified Linear Unit) is the most widely used activation func-
tion in hidden layers. It squashes all negative inputs to zero and leaves
positive inputs unchanged, formally:

ReLU(z) = max(0, x). (1.11)

— The tanh (hyperbolic tangent) function is another activation func-
tion used in hidden layers, especially in recurrent neural networks. It
squashes the output into the range between -1 and 1:

et —e

er + e T

tanh(x) = (1.12)
This function is similar to the sigmoid function (see below), but its
output is zero-centered.

o Activation functions for output layers are typically chosen based on the
nature of the task being solved. The common choices are:

— For regression tasks (predicting the real-valued output), typically, no
activation function is used in the output layer, meaning it is an identity
function:

ld(z) == (1.13)

— For binary classification tasks, the sigmoid function maps input val-
ues into the range between 0 and 1, providing an output that can be
interpreted as a probability:

1
sigmoid(x) = = (1.14)
e*l’

— For multi-class classification tasks, the softmaz function is used, which
generalizes the sigmoid function for multi-class problems. Given an
input vector & of K elements, the softmax function is defined as:

e’
ft ;= ——— 1.15
softmax(x); Z]K:1 s (1.15)
for7=1,..., K. The softmax function outputs a vector representing

a probability distribution over a list of K potential classes, i.e., the
sum of the vector values is 1.

14

1.3.3 Training Deep Neural Networks

The goal of training a DNN f(a; 0) is to find the parameters @ that minimize a loss
function L, which measures the difference between the network’s predictions and
the true labels (Goodfellow et al., 2016). We often assume that our training data
is a set of N samples D = {(:13(1), y), o (20, y(N))} that are independently
drawn from some unknown but fixed data generating probability distribution
Pdata, Which corresponds to the unknown function f*so that y® = f*(x®).

The loss function is the expected value of the per-example loss function L
taken across the pgue. In practice, this expectation is estimated by averaging
over all training samples D:

1
E(O) = E(w,y)diam[(a: y|0 N Z (1'16)

where L(x®,y®|0) is the loss of the i-th sample. The exact form of the
per-example loss function L depends on the task:

 For regression tasks, the mean squared error (MSE) is usually used:

L(z®,y"10) = (y — f(=";6))?, (1.17)
The overall MSE loss across the dataset is:
1N ,
£(0) = 3 > = & 0))%, (1.18)
i=1

o For binary classification, the binary cross-entropy loss:

L(z®,yD10) = —yD log(f(x?; 0)) — (1 — y@)log(1 — f(z;0)), (1.19)

The overall binary cross-entropy loss across the dataset is:
J REAR . . ,
0) = - 2y log(f(z";0)) + (1 — y)log(1 — f(=";0)), (1.20)
i=1

« Finally, for multi-class classification tasks, the categorical cross-entropy loss
is used. We denote the number of classes as K, and y,Ef) and f.(2: 0) as
the true and predicted probability of the i-th sample belonging to class k,
respectively. Then:

L(z®,y"|0) = Zyk log(fi(x'";0)). (1.21)

y® is a one-hot encoded vector where only one element is 1 (corresponding
to the probability of the true class) and the rest are 0. Therefore, the sum
over the K classes simplifies to a logarithm of the predicted probability for
the true class:

L(zY,y"10) = —log(fi-(z; 9)), (1.22)
where k* is the true class for the i-th sample. Therefore, the overall Cate-
gorical Cross-Entropy loss across the dataset is:

£(60) = 3 D loa(fe(a":0)) (1.23)

15

To find the parameters @ that minimize £(0), gradient descent (Ruder, 2017),
an iterative optimization algorithm for finding the minimum of a function, is
used. To implement gradient descent, we first need to compute the gradient of
the loss function VyL£(8), i.e., the vector of its partial derivatives with respect to
the parameters 8. The update rule in gradient descent is then given by:

0« 60— aVyL(D), (1.24)

where «; is the learning rate, a hyperparameter that determines the size of our
steps. The learning rate can generally change across iterations or stay constant.

In practice, @ is a high-dimensional vector, and calculating the exact gradi-
ent VgL (0) using the whole training dataset can be computationally expensive.
Thus, we often use stochastic gradient descent (SGD) or its variant mini-batch
gradient descent, which computes the gradient and updates the parameters based
on a random subset of B examples of the training set called a batch. Moreover,
improvements upon SGD, such as Adam (Kingma and Ba, 2017), and its exten-
sion AdamW (Loshchilov and Hutter, 2017) have been proposed to adaptively
adjust the learning rate based on a historical gradient information.

We compute the gradients using the backpropagation algorithm (Rumelhart

et al., 1986). Given the batch of training examples {(m(i), y(")) }{:, we perform
a forward pass through the network to compute the outputs and the loss. We
then perform a backward pass to compute the gradients of the loss with respect
to the weights, using the chain rule of differentiation.

This iterative process of forward and backward passes continues until the loss
function stops decreasing (convergence) or after a fixed number of iterations.

1.3.4 Feed-forward and Convolutional Neural Networks

The architecture of a deep neural network plays a significant role in determining
the model’s performance. Different architectures have been designed depending
on the task and input data structure.

The most commonly used architecture in deep learning is the feed-forward
neural network (FNN) (Goodfellow et al., 2016). As the name suggests, in this
architecture, the computations are performed through the network only in a for-
ward direction: from the input layer to the output layer, passing through any
hidden layers in between without loops, following the DAG architecture discussed
so far, which can be formally represented by:

where h; is the output of the i-th layer, W; and b; are the weight matrix and
bias vector of the i-th layer, respectively, and ¢; is the activation function of the
i-th layer.

In the computer vision field, another type of neural networks architecture,
called convolutional neural networks (CNNs) (LeCun et al., 1998), have been used
extensively. CNNs are designed to learn spatial hierarchies of features from the
input images automatically. The core building block of a CNN is the convolutional
layer performing a convolution operation on the input data, which can be formally

16

represented by:
hij =¢ (Z Winn * Tivmjin + b) (1.26)

where h;; is the output of the convolution operation at location (i, j), W, ,, is
the weight of the filter at location (m,n), and &4, j+, is the input at location
(1 +m,j+n). For instance, AlexNet (Krizhevsky et al., 2012) is an example of
CNN designed for image classification tasks. It has greatly influenced the design
of subsequent deep learning models for computer vision.

1.3.5 Recurrent Neural Networks

Recurent neural networks (RNNs) (Rumelhart et al., 1986; Elman, 1990) are
a class of neural networks that are especially well-suited to prediction problems
involving sequential data, such as natural language text, sound, or any time series
data.

Unlike FNNs, which are represented by a DAG, RNNs introduce cycles in
their network structure, essentially making the graph directed but cyclic. This
fundamental difference allows RNNs to maintain an internal hidden state, or
memory, enabling them to process sequences of inputs.

The computations in RNNs involve cycles, which can be formally represented
by:

h;=p(Uh; 1+ Wa, +b) (1.27)
where h; is the hidden state at time step ¢, a; is the input at time step ¢, and
U and W are the weight matrices for the hidden state and input, respectively.
From this equation, we can see that the output of an RNN at any given time
step depends not only on the input at that time step but also on the previous
hidden state, therefore, on all the previous inputs processed by the network. The
computation is visualized in Figure 1.1.

L5
[_>_A——]— A

SO s ol S

v

ol

Figure 1.1: An unrolled recurrent neural network. Image source: http://colah.
github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png

However, standard RNNs suffer from a significant problem known as the van-
ishing gradient problem (Bengio et al., 1994), causing the gradients to drop to
zero, which makes it hard for them to learn and tune the model parameters during
the training process, especially when dealing with long sequences. This problem
led to the development of more sophisticated types of RNNs such as the Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and the Gated
Recurrent Unit (GRU)(Cho et al., 2014), which are designed to capture longer
dependencies in the input data. GRU is visualized in Figure 1.2.

17

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png

N ze =0 (W, - [he—1,x¢])
re =0 (W, - [he—1,x4])
h; = tanh (W[x hy—1, 24])

b

ht:(l—Zt)*ht_l-f-Zt*}Nlt

z¢1

Figure 1.2: The Gated Recurrent Unit (GRU). It consists of multiple operations
and gates as visualized in the image and described by equations. Image
source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
img/LSTM3-var-GRU.png

1.3.6 Sequence-to-Sequence Architecture

The Sequence-to-sequence (Seq2Seq) or encoder-decoder architecture is designed
for tasks where the input and output are both sequences, and their lengths may
differ, such as machine translation, speech recognition, or text summarization. It
was first introduced by Sutskever et al. (2014) and then improved by incorporating
attention mechanisms (Bahdanau et al., 2015; Vaswani et al., 2017).

A Seq2Seq model consists of two RNNs: an encoder and a decoder. The
encoder processes the input sequence and uses its last hidden state to represent
the input as a context vector. The decoder uses this context vector to generate the
output sequence. Mathematically, given an input sequence = (@1, Ta, ..., Ty)
and an output sequence y = (y1,¥2, ..., Yn), the model learns the conditional
probability P(y|x) by using the encoder to map « into a fixed-length context
vector z and the decoder to generate y token by token from the conditional
probability P(yx|y1.k—1,2), where yj.,_1 are the previously predicted outputs.
The first output token ¥ is a special beginning-of-sequence token < bos >, which
is used to initialize decoding and to generate a second output token from P(y,| <
bos >, z). This generated token is then appended to the output sequence used to
generate another token. Tokens are generated until another special token, end-of-
sequence < eos >, is generated. This generative process is called autoregressive.

During training, Seq2Seq models usually employ a technique known as teacher
forcing. When generating k-th output token yi, we use the actual output from
the training dataset as the previously generated tokens yy.,_1 instead of using
the model’s predictions. However, at inference, the decoder cannot access the
actual output and must generate it step-by-step in an autoregressive manner.

A critical limitation of the original Seq2Seq architecture using RNNs is that
it encodes the entire input sequence into a single fixed-length context vector,
which can lead to information loss, especially for longer sequences. An attention
mechanism was introduced by Bahdanau et al. (2015) to overcome this limitation
by allowing the decoder to refer (attend) back to any part of the input sequence
when generating the output.

18

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png
http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png

1.4 Transformers

Transformer models, introduced by Vaswani et al. (2017) offer an innovative ap-
proach to sequence processing. In contrast to the recurrent and convolutional
architectures typically used for sequence processing, which rely on recurrent and
convolutional operations to process data sequentially or to capture local depen-
dencies, Transformers use different techniques. Instead, they rely entirely on at-
tention mechanisms and feed-forward networks, allowing them to directly model
dependencies between elements in the input sequence, regardless of their dis-
tance. This design enables Transformers to overcome the limitations of RNNs
and CNNs, such as the difficulty capturing long-range dependencies and the ne-
cessity for sequential computation.

1.4.1 Transformer Encoder-Decoder Structure

The Transformer model, as described by (Vaswani et al., 2017), consists of an
encoder and a decoder, each comprising multiple identical layers, as illustrated
in Figure 1.3. The encoder and decoder share a similar high-level architecture,
but their internal components differ slightly.

The encoder contains two main sub-layers: a multi-head self-attention and a
position-wise fully connected feed-forward network. The input to each encoder
layer first passes through the self-attention layer, utilizing dependencies between
the input elements. Each element in the result is then fed into a feed-forward
layer, independent of the rest. Fach of these two sub-layers has a residual con-
nection followed by layer normalization.

The decoder also contains two similar sub-layers with an additional encoder-
decoder attention layer that uses the output of the encoder. The first sub-layer
is a masked self-attention layer. This modified self-attention layer allows each
element to attend only to the previous elements and themselves, preserving the
auto-regressive property. The self-attention result is then combined with the
encoder information in the encoder-decoder attention layer. Finally, the result is
fed into a fully connected feed-forward network. Like in the encoder, each sub-
layer in the decoder is also surrounded by a residual connection followed by layer
normalization. In the following subsections, we will describe the individual parts
of the Transformer architecture in more detail.

1.4.2 Input, Output, and the Embeddings

In Transformers, the input and output are sequences of tokens. We use a pre-
defined vocabulary to represent each token by a unique integer identifier. These
integer identifiers are then mapped to continuous vectors in a high-dimensional
space from a trainable embedding matrix, resulting in the input and output em-
beddings. These embeddings capture the semantic properties of the tokens and
are learned jointly with the rest of the model during training (Mikolov et al.,
2013; Pennington et al., 2014).

Formally, given a vocabulary V' of size |V, the embeddings are represented by
a matrix E € RV*? where d is the dimension of the embedding space. The rows
of the matrix are the individual embeddings. To transform a token with identifier

19

Output
Probabilities

[}

-
Add & Norm

Feed
Forward

| Add & Norm |<_:

e |)\
i] Multi-Head
Feed Attention
Forward 7 7 Nx
|
Nix Add & Norm
f—>| Add & Norm | Y
Multi-Head Multi-Head
Attention Attention
At At
\L'— J . _J)
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1.3: The Transformer architecture. The left part of the figure depicts the
encoder. The right part is the decoder. Image source: Figure 1 of Vaswani et al.
(2017).

td into its vector representation, we take the id-th row of the embedding matrix
E. We use the same embedding matrix for the encoder and decoder input tokens.

The output tokens of the Transformer decoder are usually produced by passing
the outputs of the last decoder layer through another fully-connected linear layer
to produce logits as vectors of the size |V|. The softmax activation function then
transforms the logits into a probability distribution over the vocabulary. The
output token is then selected from this distribution. The token with the highest
probability is taken as the output during the training phase. During the inference
phase, different strategies such as greedy decoding or nucleus sampling might be
used (Holtzman et al., 2020).

1.4.3 Positional Encoding

While the self-attention mechanism in the Transformer model allows it to consider
all tokens in the input sequence simultaneously, it does not consider the tokens’
positions. To address this, Vaswani et al. (2017) used a positional encoding
scheme to enable the model to consider the order of the tokens in the input
sequence. The positional embeddings have the same dimension d as the token

20

embeddings, allowing them to be summed. For token position p and index of the
positional embedding ¢, the positional encodings are defined as follows:

PE(p, 2i) = sin (p - 10000~2/) (1.28)
PE(p,2i+ 1) = cos (p- 10000~2/) (1.29)

1.4.4 Multi-Head Attention

The multi-head attention layer allows the model to focus on different positions
in the input sequence. It applies the following mechanism in parallel multiple
times with different learned linear transformations, resulting in multiple attention
heads. Formally, given an input matrix X € R"*?¢ where each row represents
one of the n input vectors of dimension d, we first transform X into matrices of
keys K, values V', and queries @ for each head i using separate learned linear
transformations:

Qi=XW¢,
K, = XWF,
‘/; = X“/iv7

for i =1, ..., h, where VVZQ, WE and W}V are weight matrices for the i-th head
of dimensions d X dj, d X dj, and d x d,, respectively. The attention for each
head i (Scaled Dot-Product Attention), computes the query’s dot product with
all keys, divides them by 1/d, and applies a row-wise softmax function to obtain

the weights for multiplying values in V;:

-
Z; = softmax (QZKZ) V. (1.30)
Vi

The scaling factor v/dj, is used to prevent the dot products from growing too
large, which could cause the softmax function to have very small gradients and
hamper learning (Vaswani et al., 2017). The resulting matrix Z; for each head i
has dimensions n X d,.

After computing the attention for all A heads, the results are concatenated
into a matrix with shape n x h - d, and linearly transformed into the output of

the attention layer:
Z = Concat [Z,, ..., Z,| WO, (1.31)

where WO is a learned linear transformation of dimensions h - d, x d. The
resulting output Z has the same shape n x d as the input X, enabling it to be
used in subsequent layers. Figure 1.4 visualizes the whole attention mechanism.

Variants of the Attention in the Decoder

The Transformer decoder has two variants of the multi-head attention mechanism.
One of them is the masked multi-head attention which is almost identical to the
regular multi-head attention mechanism, with one key difference: it applies a
mask to the input of the softmax function. This mask ensures that the future

21

Scaled Dot-Product Attention Multi-Head Attention

-
MatMul

G
e

Mask (opt.) Scaled Dot-Product h
Attention
| l |

L L £
MatMul l Linear 'JI Linear l] Linear

Q KV

\ K Q

Figure 1.4: The Transformer multi-head self-attention. Image source: Figure 2
of Vaswani et al. (2017).

positions (i.e., positions to the right of the current position in the sequence) have
a value of —oo before applying the softmax. This results in zero probability for
these positions, ensuring that the attention mechanism does not consider future
tokens when predicting the next token in the sequence.

The other variant is the encoder-decoder multi-head attention. Here, the
queries come from the previous decoder layer, and the keys and values come
from the output of the encoder allowing every position in the decoder to attend
to all positions in the input sequence.

1.4.5 Feed-Forward Networks, Residual Connections, and
Layer Normalization

Following the multi-head attention sub-layer, the Transformer model also includes
a fully connected feed-forward network in each layer of the encoder and decoder.
The same feed-forward network is applied independently to each position in the
sequence.

Formally, given an input matrix Z € R"*?¢ where each row represents one of
the n input vectors of dimension d, the operation of the feed-forward network is
defined as:

FFN(Z) = ReLU(ZW' + b")W? + b?, (1.32)

where W € R™4r pl ¢ RY, W? ¢ R% >4 and b®> € R? are the weights and
biases of two affine transformations, respectively, and d; is the dimensionality of
the intermediate layer, usually bigger than d.

To enhance training stability and enable deeper model training, Vaswani et al.
(2017) used residual connections together with layer normalization (Ba et al.,
2016) after each sub-layer. Formally, the output of each sub-layer is added to its
input and then normalized:

Y = LayerNorm(X + SubLayer(X)), (1.33)

where LayerNorm refers to layer normalization, X is the input matrix to

22

the sub-layer, SubLayer represents the operation performed by the concrete sub-
layer (attention or FEN), and Y is the output matrix. Layer normalization helps
combat the problem of changing distributions in deep neural networks, known as
internal covariate shift, first described by Ioffe and Szegedy (2015).

1.5 Pretrained Language Models

After the introduction of Transformer architecture, there has been an explosion
of pretrained Transformer-based language models, such as BERT (Devlin et al.,
2019), GPT (Radford et al., 2018) and its subsequent iterations GPT-2 (Radford
et al., 2019) and GPT-3 (Brown et al., 2020), RoBERTa (Liu et al., 2019), T5
(Raffel et al., 2020), and others. These models are first pretrained on a large
corpus of text and then fine-tuned for specific tasks. The underlying principle
behind these models is transfer learning (Section 1.5.1), which has significantly
improved the state-of-the-art across various NLP tasks.

1.5.1 Transfer Learning in NLP

Transfer learning is a machine learning technique that uses a pretrained model
on a second related task. In natural language processing, models are usually
pretrained on a large text corpus and then fine-tuned on a smaller task-specific
dataset (Radford et al., 2018; Devlin et al., 2019). The motivation behind transfer
learning is that it allows models to use the knowledge learned from the larger
dataset, often leading to better performance than training on the smaller task-
specific dataset alone.

1.5.2 Pretrained Language Models and Pretraining Meth-
ods

Pretrained language models are a specific class of Transformer-based language
models pretrained on a large text corpus. The pretraining phase of transfer
learning means training the Transformer model to learn representations from
the given text corpus. The pretraining is accomplished unsupervised or self-
supervised, using techniques like standard (autoregressive) language modeling
(Radford et al., 2018), or its variants such as masked language modeling (MLM)
(Devlin et al., 2019).

Autoregressive Language Modeling

Given all the preceding tokens, the autoregressive language modeling objective is
to predict the next token in a sequence, as introduced in section 1.2. Formally,
given a sequence of tokens xy.; = (1, X9, ..., x;), the language model objective is
to maximize the likelihood of each token given its preceding tokens. The following
per-example loss function is used to minimize the negative log-likelihood of the
token sequence:

Liyv = —log P(x;|w1.4-1), (1.34)

23

for all ¢ € {1,2,...,t}. Here, P(x;|xy;_1) represents the probability that the
model picks the actual token x; at the ¢-th position, given the preceding tokens
Z1.i—1. The per-example loss Ly, is a cross-entropy loss defined in Equation 1.22.

Masked Language Modeling

The masked language model (MLM) randomly masks a portion of the input tokens
by replacing them with a special <MASK> token. To goal is to predict those masked
tokens. Formally, given a sequence of tokens zy., = (x1,29,...,2;), the MLM
objective is to minimize the following per-example loss:

Lyviv = —log P(z|x1:i-1, Tiv1:e), (1.35)

where ¢ is the index of the masked token. Ly is also a cross-entropy loss
defined in Equation 1.22.

While the MLM objective enables learning from both the left and right context
by masking tokens in the sequence, the standard language model objective learns
only from the left context due to its autoregressive nature.

1.5.3 Fine-tuning Large Language Models

After pretraining the large language models (LLMs) on a large corpus, these
models are fine-tuned on a specific task using a smaller, possibly labeled, dataset.
Fine-tuning adjusts the pretrained model’s weights to make it more suitable for
the specific task.

Fine-tuning assumes initializing the model’s weights with the values from the
pretraining phase. Adding some task-specific layers to the pretrained model may
also be required depending on the task. These layers are usually added on top of
the pre-existing architecture with weights initialized randomly. This pretrained
model is then trained on the task-specific dataset.

For example, a fully-connected layer with an output size corresponding to
the number of classes is added to the pretrained model for classification tasks.
Suppose we want to classify the whole input sequence. In that case, the input
to the classification layer is usually the transformer output vector corresponding
to a special token (like the [CLS] token in BERT by Devlin et al. (2019)) that
carries the complete sequence information. Then, a softmax activation function
is applied to this output to produce probabilities for each class. On the other
hand, if the task involves classifying individual tokens within the sequence, each
transformer output vector is passed through the classification fully-connected
layer, followed by the softmax activation function to produce class probabilities
for each token.

1.5.4 Influential Large Language Models

In this section, we will introduce some of these pretrained language models.

BERT

BERT (Devlin et al., 2019) is the Transformer encoder-based model, employ-
ing multiple encoder layers to capture bidirectional contextual relations between

24

words in a text. The model is pretrained using two objectives: masked language
modeling MLM described in 1.5.2, and the next-sentence prediction, where the
model is trained to predict whether two sentences follow each other in the original
text.

RoBERTa

RoBERTa is a variant of BERT proposed by Liu et al. (2019). It uses the same
architecture as BERT. The differences between RoBERTa and BERT are in the
pretraining process. RoBERTa drops the next sentence prediction task, which Liu
et al. (2019) claim does not contribute significantly to the model’s performance.
Instead, RoBERTa increases the amount of pretraining data and employs larger
batch sizes for more robust training. The masked language model task is also
slightly modified to have dynamic masking rather than static masking used in
BERT, allowing the model to see each sentence with different masks multiple
times.

GPT

GPT, was introduced by Radford et al. (2018). Unlike BERT, GPT uses only
the Transformer decoder. GPT is pretrained on a large text corpus using a
standard autoregressive language modeling task (1.5.2) by predicting the next
word in the sequence. The original GPT was significantly improved with GPT-
2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020). GPT-2, with 1.5
billion parameters, was a much larger model than the original GPT (117 million
parameters), allowing it to generate more coherent and contextually rich text.
GPT-3 took the scale approach even furthe. With 175 billion parameters, GPT-3
was able to generate text of unprecedented quality and to solve a wide array
of tasks without task-specific training data, simply through “few-shot learning”,
where the model generates answers based on a few example inputs and outputs
given at inference time.

TS5

T5 was introduced by Raffel et al. (2020). It uses the full Transformer model,
including an encoder and a decoder. T5 represents every NLP task as a text gen-
eration task, including tasks usually framed as classification or regression, mak-
ing the model versatile and capable of handling various tasks without significant
modifications to its architecture. TH pretraining uses a denoising autoencoder ob-
jective, where a unique noise token randomly replaces some contiguous sequences
of tokens in the input text. The model is trained to generate the original text from
this corrupted version, which helps the model to understand the text’s context
and semantic meaning. In fine-tuning to a specific task, T5 incorporates task-
specific prefixes. For example, during a translation task from English to German,
the input text might be prepended with “translate English to German:”.

25

2. Dialogue Management and
Related Work

Dialogue management (DM) is a crucial component of any dialogue system, par-
ticularly in task-oriented systems, as we described in Subsection 1.1.2. The mod-
ule keeps track of the conversation and determines the system’s next action. It
plays a pivotal role in driving the conversation forward and ensuring the suc-
cessful completion of the task. Dialogue management traditionally involves two
sub-components: dialogue state tracking (DST) and action selection. DST is
responsible for maintaining and updating the dialogue state, representing the
dialogue history containing various elements such as slots and their assigned val-
ues. The action selection decides the system’s next action based on the updated
dialogue state.

Dialogue management approaches have significantly evolved over the past few
decades. The evolution of dialogue systems and dialogue management has been
driven by the increasing complexity of dialogue tasks, the availability of larger
and more diverse dialogue datasets, and advancements in machine learning and
natural language processing (NLP) technologies.

This chapter will delve into the various methods used for dialogue manage-
ment and the related work in the field. In the first part, we briefly describe the
evolution of dialogue management, starting with rule-based systems and their
improvement using states and probabilistic representations (Sections 2.1). Then
we look at modern data-driven methods using machine learning (Section 2.2),
covering dialogue state tracking and action selection approaches using supervised
learning, reinforcement learning, and end-to-end methods.

2.1 Early Dialogue Management

In the earliest stages, dialogue systems and dialogue management were primarily
rule-based, such as ELIZA (Weizenbaum, 1966), a computer program developed
in the 1960s at MIT and one of the earliest attempts to create a conversational
agent (chatbot). It used a set of predefined rules to analyze the input text by
searching for keywords and determining the system’s response. However, these
systems could only handle cases covered by the predefined rules.

To overcome the limitations of rule-based systems, state-based dialogue man-
agement approaches were introduced that treated the dialogue as a sequence of
states. The system would transition from one state to another based on the user’s
input and a predefined state-transition function. Another improvement came with
the introduction of the belief state, a probabilistic representation of the system’s
belief about the state of the dialogue, which allowed to handle uncertainty in
dialogue systems (Williams and Young, 2007).

26

2.2 Modern Approaches to Dialogue Manage-
ment

With the rise of machine learning, data-driven methods for dialogue management
began to emerge. These approaches aim to learn strategies directly from data,
bypassing the need for predefined rules or state transitions.

The introduction of belief states led to the use of Markov Decision Pro-
cesses (MDPs) (Young, 2000) and Partially Observable Markov Decision Pro-
cesses (POMDPs) (Young et al., 2007, 2010; Gasi¢ and Young, 2011) for dialogue
management, followed by approaches based on reinforcement learning (Jurcicek
et al., 2011; Gasic et al., 2011; Su et al., 2017), and more recently, end-to-end
learning using deep neural networks (Serban et al., 2016; Bordes et al., 2017;
Rajendran et al., 2018).

2.2.1 Dialogue State Tracking

The introduction of the belief state was an important step in dialogue manage-
ment. Recently, several methods have been proposed to enhance the dialogue
state tracking process.

For instance, Henderson et al. (2013) introduced a fully connected deep neural
network approach for dialogue state tracking which predicted probability distri-
bution over all possible values for each slot. Following their work, Mrksic et al.
(2015) used basic recurent neural networks (RNNs) to capture contextual in-
formation for modeling and labeling complex dynamic sequences. Their model
improved previous approaches by efficiently handling multiple domains in a sin-
gle conversation. Zilka and Juréicek (2015) then used Long Short-Term Memory
(LSTM) networks for incremental dialogue state tracking. Their model, LecTrack,
used LSTM to process the whole dialogue history incrementally, eliminating the
need for (spoken) natural language understanding (NLU).

The scalability of unbounded (e.g., date, time, or location) or dynamic (e.g.,
movies or usernames) slots and their values was addressed by Rastogi et al. (2017).
Their work did not rely on an exhaustive enumeration of possible slot values.
Instead, they estimate possible values at each turn by a size-bounded candidate
set of slot values from the NLU or system actions. The bidirectional GRU then
represents the dialogue state as a distribution over these candidate sets. Goel
et al. (2018, 2019) improved this solution, enhancing the robustness of the scalable
approach to handle diverse scenarios better.

Classification-based DST Using Pretrained Language Models

The introduction of large language models (LLMs) has brought a shift in DST due
to the ability of these models to learn high-quality contextual embeddings that
can capture complex relations in the text. In particular, BERT has been adopted
by Chao and Lane (2019) who proposed BERT-DST, a dialogue state tracking
model, which directly predicts slot values from the dialogue context, as illustrated
in Figure 2.1. The model uses BERT to encode the previous system and current
user utterances into their contextual embeddings. Then, it uses the first token
([CLS]) embedding, which represents the whole input, to predict for each slot

27

whether the value for this slot should be updated from the input by looking for
its span or not. If the value should be updated, the contextual embeddings of the
tokens are used to predict the start and end token of the span.

12 “men”
start position end position
distribution distribution
ABlf‘ L\ [—I £l
f
12
’,,

o ill | 5l m 1 M 1

‘0 t1 tz t:(t4 ts s '7 te tg t10 "

! f f § f h § f §) } }
— > >) [

dontcare

span

none

t

[

T T f T - T T
[CLS] which movie would you like [SEP] 12

System Utterance in Previous Tumn User Utterance

Figure 2.1: The architecture of the BERT-DST model. Image source: Figure 1
of Chao and Lane (2019).

Heck et al. (2020) further improved upon the BERT-DST by introducing
their TripPy model, which uses three different sources to fill slots with values. It
improves upon BERT-DST by extracting values not only from the current user
and previous system utterances but also a system inform memory that keeps
track of the values offered or recommended by the system, and a dialogue state
memory, that allows values to be copied over from a different slot that is already
contained in the dialog state as shown in Figure 2.2. TripPy achieved state-of-the-
art performance on several benchmark datasets, including a joint goal accuracy
of over 55% on the Multiwoz 2.1 dataset (Eric et al., 2020).

start pos distribution| | end pos distribution

0

1 -

0

0‘ (et [w | [wo | [IsEPl) [my | (M) [SEPL) [y | [y | [ISEP]
0.

current user utterance preceeding system utterance dialog history

Figure 2.2: The architecture of the TripPy model. Input is the previous system
utterance, current user utterance, and dialog history; output is the dialogue state.
Image source: Figure 2 of Heck et al. (2020).

Generation-based Dialogue State Tracking

Another approach to dialogue state tracking focuses on directly generating the di-
alogue state as a text using encoder-decoder model architecture. Wu et al. (2019)

28

propose a Transferable Dialogue State Generator (TRADE) that generates dia-
logue states from utterances using a copy mechanism. The model comprises an
utterance encoder, a slot gate, and a state generator, which are shared across do-
mains, allowing it to handle domains, slots, and values unseen during the training.
This is achieved by jointly training the model on several domains simultaneously.
The ability to handle unseen domains, slots, and values makes this approach
applicable in a real-world scenario where a complete ontology is hard to obtain
and, even if it exists, the number of possible slot values can be intractable or
unbounded (e.g., date, time, location or name). They used bi-directional GRU
to encode dialogue utterances into a sequence of fixed-length vectors. The state
generator then independently predicts the value for each (domain, slot) pair,
using the sum of their embeddings as the first input to the GRU decoder. The
slot gate then decides whether the generated value for the (domain, slot) pair
should be used. The model is shown in Figure 2.3.

i Slot Gate G; P

| o/ (D) Ashley State
Context Vector i L DONTCARE | | Generator '
€40 ! = NONE : P Pl il 3
T \ (c)_ ,’I] i
prsor 1] | H a1 i Hotel?
i |
[N N N N N N N . : hdge
:' @) Utterance 5 : [
3 Encoder ! ' L L]
,,, Ashley
‘ Ex: hotel -~ Ex: name
&
| j = {}J J} !
Utterances Domains © ' Slots
....... Hotel, Train, Price, Area, Day,
Bot: Which area are you looking for the hotel? Zt;act;::l D::c:m;:ana;z
User: There is one at east town called Ashley Hotel. Restaurant, Taxi Lease At f<’)0d et;:

Figure 2.3: The architecture of the TRADE model, which includes (a) an utter-
ance encoder, (b) a state generator, and (c) a slot gate, all of which are shared
among domains. Image source: Figure 2 of Wu et al. (2019).

Recently, Lee et al. (2021) improved generation-based dialogue state tracking
by using a pre-trained T5H language model. They use two decoding strategies
for generation-based DST at a particular turn: sequential (a) and independent
(b)(c), both of which are shown in Figure 2.4. In the first case (top system (a)
in Figure 2.4), only the dialogue history, as a concatenation of last L user and
system utterances, is taken as input to the encoder, and all domain-slot-value
triplets are generated sequentially. In the second case (two systems (b)(c) in
Figure 2.4), the values for each domain-slot pair are generated independently.
The input consists of a dialogue history followed by domain and slot names (case
(b)), optionally with the description of the slot that can also include a list of
all possible values (case (c)), all in textual form. The corresponding output is a
generated value for the domain-slot pairs in the input with a possible value of
“none”. A more detailed example is shown in Figure 2.5.

Using a pre-trained language model, such as T5, allows the system to gener-
ate any value as a text for any domain and slot, showing greater generalization

29

than previous models. Furthermore, the use of task-specific prompts aids in
contextualizing the dialogue, enabling the model to generate more accurate and
appropriate slot values.

Dialogue History 5 train day m -:]

(a) Generation-based DST w/ Sequential Decoding

Dialogue History | train | day ‘,“_{ Monday]

Dialogue History | train = destination { London Kings Cross |
Dialogue History ‘hotel | ref “—»{ none)

Dialogue History [‘train |[day’| day of the departure ... Monday)

Dialogue History | train | destination | destination location... London Kings Cross]

Dialogue History hotel ref reference number... T5 none]

(c) Natural Language Augmented Prompt DST w/ Independent Decoding
Figure 2.4: The overview of generative DST approaches for the multi-domain

scenario using the Th model illustrates three different generative approaches.
Image source: Figure 1 of Lee et al. (2021).

Dialogue History C, Domain d,, Slot s, NL Description Value v

(Slot] destination location of the

train destination train, [Possible Values]

[User] ... London Kings Cross, ...
[System] ... day of the departure
Slot !
[Stot] [Possible Values]

Monday, ..., Sunday

[Domain]

train day

[User] Can you help me
find a train for Sunday. oo
I would like to visit

London Kings Street.

[Domain]

reference number

hotel of the hotel booking

Figure 2.5: Example of generative DST for multi-domain scenario using T5 model
with concrete examples for dialogue history, domain names, slot names, and nat-

ural language descriptions (types, set of valid values) for slots. Image source:
Figure 1 of Lee et al. (2021).

2.2.2 Action Selection / Dialogue Policy

The DM must also choose the next system action to generate an appropriate
system response. Recently, machine learning approaches based on supervised
and reinforcement learning have been used (Brabra et al., 2022). The supervised
approach learns the strategies for action selection from a set of labeled data.
In contrast, the reinforcement approach focuses on optimizing the strategies by
a trial-and-error process using reinforcements that represent rewards or punish-
ments.

30

Supervised Learning in Action Selection

The first standard approach for action selection is to use supervised learning to
train a classification model to predict the next system action based on the dia-
logue state (Brabra et al., 2022). McLeod et al. (2019) introduced an innovative
approach to dialogue policy training, where they leverage multi-task learning for
system action selection, using supervised learning and features from related tasks
such as slot-filling and user-intent classification. Su et al. (2016) represent dia-
logue policy as a neural network with one hidden layer. The input to the model
is the belief state. The output is the dialogue action, produced using a combi-
nation of softmax and sigmoid output layers to predict system dialogue acts and
associated slots.

The second approach is implementing an action selection model that produces
a system action directly from a user utterance, effectively combining NLU and
DM modules into one model. A common approach is based on the encoder-
decoder architecture, which takes a sequence consisting of the user utterance and
some optional information, such as dialogue history, as input and generates the
target sequence with a corresponding action. Zhao et al. (2017) implemented
such encoder-decoder model using CNNs and LSTMs.

Reinforcement Learning in Action Selection

While supervised learning usually serves as an initial step in developing an action
selection module, it has a substantial drawback. This approach typically trains
the module to choose the optimal action for the current turn without considering
the potential long-term implications of the action on the entire dialogue. Rein-
forcement learning can be used to develop an action selection module that can
strategically plan ahead (McTear, 2021).

In the context of reinforcement learning (RL), action selection is often rep-
resented as a policy that maps the dialogue state into system actions. Unlike
supervised learning approaches, RL aims to optimize the policy for long-term
rewards, which is well-aligned with the nature of dialogues, where the quality of
an action is often not immediately evident and can be influenced by the course of
the entire conversation. Frameworks such as Markov Decision Processes (MDPs)
(Young, 2000) and Partially Observable Markov Decision Processes (POMDPs)
(Young et al., 2007, 2010; Gasi¢ and Young, 2011) are usually utilized to model
the dialogue system response generation as a stochastic policy.

There are many approaches to finding the optimal policy in RL. One approach
is Deep Q-Networks (DQNs) (Mnih et al., 2015), a tool for approximating the Q-
function in RL. This concept was applied to dialogue systems by Li et al. (2017)
and Lipton et al. (2017), who leveraged DQNs in end-to-end task completion and
efficient exploration in dialogue systems.

Policy Gradient methods and the REINFORCE algorithm directly approx-
imate the policy and have also been used for policy optimization in dialogue
management, as demonstrated by Su et al. (2017).

Even though RL provides an elegant solution for long-term planning in dia-
logues, it also requires substantial data for effective training, and the commonly
available datasets often do not suffice (Li et al., 2017). Simulations of user interac-
tions or feedback from actual users can help to gather the necessary training data.

31

Moreover, in dialogue systems, RL is typically applied after an initial supervised
learning phase, or they can regularly alternate (Xiong et al., 2018).

2.2.3 End-to-End Dialogue Systems

End-to-end dialogue systems is an approach where a single neural network model
represents the entire dialogue system. These systems attempt to capture the
full complexity of the dialogue without needing separately trained components.
Typically, the input to end-to-end models is the user’s utterance, and the output
is the system’s response. This paradigm differs from traditional pipeline-based
approaches, where each dialogue system component is individually designed and
trained.

However, not all end-to-end models encompass the whole dialogue system.
Some models merge multiple, but not all, components into a single model, such
as Hybrid Code Networks (HCN) introduced by Williams et al. (2017). It con-
sists of four components: RNN, domain-specific knowledge encoded as software,
domain-specific system action templates, and conventional entity extraction mod-
ule for identifying entity mentions in text, as shown in Figure 2.6. The HCN cycle
starts with the user providing an utterance (step 1 in Figure 2.6) that is processed
and turned into features in several ways: a bag of words vector, utterance embed-
ding, entity extraction and its tracking (steps 2-5 in Figure 2.6). These feature
components are concatenated to form a feature vector, which is processed by an
RNN (steps 6-7 in Figure 2.6). The RNN calculates a hidden state vector and
passes it through a fully connected layer with a softmax activation, outputting a
probability distribution over possible system action templates that are masked to
remove non-permitted actions and normalized back into a probability distribu-
tion (steps 9-10 in Figure 2.6). Once an action is selected from this distribution,
developer code optionally fills in entities with values to produce a fully-formed
action (steps 11-13 in Figure 2.6), which can be either an API call or text that
is communicated to the user (steps 14, 15, 17 in Figure 2.6). This cycle repeats
for every user input. The taken action is also provided as a feature to the RNN
in the next timestep (step 16 in Figure 2.6). The HCNs offer flexibility and can
be trained using supervised and reinforcement learning.

o Action

Entity Entity mask
extraction tracking /@ Context

features

()

Normal-
ization.

J

Forecast() 0.93

WeatherBot
Dense +
softmax

Utterance embedding

What's the weather
this week in Seattle?

Bag of words vector

Anything else? 0.07

<city>, right? 0.00

Fully-formed ° o Chopse
N action
action
template

56° 65° 71° 74° 68

Anything else?
‘_

Figure 2.6: A Hybrid Code Network architecture displaying the operational loop.
Image source: Figure 1 of Williams et al. (2017).

32

The seq2seq (or encoder-decoder) architecture is usually a way to implement
the complete end-to-end dialogue system. These models directly map user ut-
terances to system responses, abstracting away the details of the intermediate
dialogue management tasks, as shown by Lei et al. (2018); Lin et al. (2020); Peng
et al. (2021); Kulhdnek et al. (2021).

33

3. Practical Dialogue
Management

This chapter will describe our own approach to dialogue management. The re-
search in dialogue systems has recently gravitated towards end-to-end neural
models that directly generate a system response given the user utterance. How-
ever, this approach is notorious for needing large amounts of annotated data,
which is hard to obtain. Moreover, end-to-end models that represent the whole
dialogue system, including NLG, are generally unsafe to use in practical applica-
tions due to their tendency to hallucinate and generate ungrounded outputs (Ji
et al., 2023), which makes such models generally unsafe for practical applications.

Therefore, in practice, dialogue systems often remain composed of multiple
separate modules: natural language understanding (NLU), dialogue management
(DM), and natural language generation (NLG). They can also join NLU and DM
into a single module. With this in mind, our goal is to explore potential improve-
ments in dialogue management (DM) methods, which could serve as a practical
starting point when designing new dialogue systems. Our approach leverages pre-
trained language models and focuses on supervised learning methods. Our focus
on supervised learning methods originates from the challenges of using reinforce-
ment learning, which requires substantial data and a fully functioning dialogue
system for effective training, as the system needs to be capable of interacting
with users or simulations. Therefore, supervised learning, with its lower data
requirements and more straightforward training process, offers a more practical
approach for training DM models.

This chapter delves into two components of dialogue management: dialogue
state tracking (Section 3.1) and action selection (Section 3.2). The former de-
scribes our approach to generate updated dialogue states. The latter proposes two
methodologies for action selection: a generative method and a classification-based
one, both utilizing distinct mechanisms to choose actions from a predefined set.
These proposed models aim to address practical challenges in designing efficient
dialogue systems.

3.1 Dialogue State Tracking

The section will introduce our approach to DST, which, similarly to Lee et al.
(2021), utilizes a pre-trained transformer T5 language model to generate dialogue
state. In their work, Lee et al. (2021) created a T5 model that uses dialogue
history, domain name, and slot name as input to produce the corresponding slot
value as a text output (see Section 2.2.1).

In contrast to their method, we use the T5 language model differently: We
use a custom text-based representation of the dialogue state. Our model receives
as input the text representation of the previous dialogue state, along with the
previous system response (providing a context of length one) and the current
user utterance, inspired by the end-to-end systems such as Kulhanek et al. (2021).
The output is an updated text representation of the dialogue state.

34

3.1.1 Theoretical Description of Generative DST

The proposed model for dialogue state tracking is based on the sequence-to-
sequence or encoder-decoder Transformer architecture (Section 1.4.1). At each
turn ¢, the model takes as input a sequence that consists of the text representation
of the previous dialogue state strg(S;_1), the context with the previous system
response C;_1, and the current user utterance Uy, and generates a text represen-
tation of the updated dialogue state strg(S;). We can express this functionally as
a parametrized mapping gpsrt from the tuple of (strs(Si—1), Ci—1,U;) to strg(Sy).
Formally,

strs(S;) = gpsr (strs(Si—1), Ci—1, Uy; 9) (3.1)

where, 6 represents the parameters of the model. The model can also be
interpreted as a probabilistic model representing the conditional probability dis-
tribution P(strg(S;)|strs(Si—1), Ci—1,Uy; 0).

At the start of the dialogue, strg(Sp) represents a text representation of the
initial empty dialogue state. Similarly, Cj is an empty string representing the
initial empty context. The function gpgr can be described as the encoding-
decoding process of the model:

H, = encoder(strg(Si—1), Cy—_1, Us; 0) (3.2)
strg(S;) = decoder(Hy;) (3.3)

where H; € R denotes the matrix of hidden states obtained after passing
the input sequence (strg(S;_1), Cy—1,U;) of length L through the encoder, and h
is the hidden size. The hidden states are fed into the decoder to generate the
updated dialogue state strg(S;).

The learning objective of the model is to find the parameters @ that minimize
the average negative log-likelihood (or equivalently maximize the log-likelihood)
of the dataset, also known as the cross-entropy loss (Equation 1.23). Formally,
suppose we denote the entire dataset as D, where each element (S;_1, Cy_1, Uy, S)
in D represents one turn in a dialogue. In that case, the objective function to
minimize is given by:

A« 1
0 = arg mein — > log P(strg(S;)|strs(S;—1), Ci—1,Uy; 0). (3.4)

|D| (St717ct71’Ut,St)€D

Here, |D| denotes the size of the dataset. The learning process aims to find
the model parameters that minimize this loss, as described in Section 1.3.3.

3.1.2 Dialogue State and the String Representation
Multi-domain Dialogue State

In a multi-domain dialogue system, the dialogue state denoted as S is a set of
ordered pairs (d*,S*¥), where d* denotes the domain name, and S* denotes the

domain state. Each domain state S* can be represented as a set of ordered pairs

(sk,oF), where s¥ represents a slot name and v¥ is its corresponding value. We

17 71

can formalize it as follows:

35

s ={(d", "} _ . (3.5)

=1
where for each k € 1,2, ..., n,
kE_ AN R
St = {(vai)}izl- (3.6)
Here, n represents the number of domains in the dialogue system, and my, is
the number of slots in the k-th domain. The set of domains {dk} and the set of

n
k=1

its corresponding slots {sf}mkl are finite and defined by the system’s capabilities.
1=

For each slot s¥, the set of all possible values {vfj }C,X_l can be infinite.

Dialogue State String Representation

The function strg() converts the dialogue state S into its string representation.
It iterates over each domain d* and corresponding domain state S* in S, converts
cach domain state S* into a string by concatenating the sorted slot-value pairs
(separated by commas), and then concatenates the domain name d* with the
string representation of its domain state S*. The string representations for all
the domains are then concatenated together (separated by semicolons). Formally:

1. For each ordered pair (d*, S*) in S, we start by alphabetically sorting the
pairs in ascending order of the domain names. This is done to maintain con-
sistency and readability, as the sorted string will always present information
about the same domain in the same relative position.

2. For each domain d¥, we construct a string representation of its domain

state S* by iterating over all slot-value pairs (s¥,v¥) in S*. To maintain

1) 7
consistency, we sort the pairs in ascending order of slot names s¥. The string
representation of the domain state, denoted as strg(S*), is then formed as

follows:
m
strg(S*) = si+% 1 THof 3 (%, T+si 4+ 7 +f) if of # “None”, else ©7

=2

(3.7)
where s¥ is the slot name, v¥ is the slot value, and the sum operation
indicates string concatenation. Note that we ignore any slot-value pair
with a value of “None”, as these do not contribute meaningful information
to the dialogue state and would only make the string representation longer.

3. The overall string representation of the dialogue state strg(.S) is then con-
structed by combining the domain strings strg(S*), each prefixed by their
respective domain name d* and a hyphen for separation. A semicolon and
a space separate the individual domain strings:

Stl‘s(S) :dl + « _» + StI‘S(Sl) + Z(“; ” —f—dk + « _» + StI‘S(Sk)> (3 8)
k=2 :

if strg(S¥) # «7, else “”

where an empty string for strg(S*) signifies that the domain state S* does
not contain any slot-value pairs where the value is not “None”. In such a
case, we ignore this domain.

36

Inverse String Representation Function

The inverse function of strg(), which we denote as strg'(), converts the string
representation of the dialogue state back into its structured representation. This
process can be useful, for example, when we want to inspect the model’s output
in a structured form or when we need to compare the output to a ground-truth
dialogue state. The function operates as follows:

1.

Initialize an empty dialogue state S = {}, represented as an empty set of
domain-state pairs.

Split the string representation of the dialogue state, strg(S), into domain
sections. The domain sections are separated by a semicolon and a space
in the string representation. Thus, we can split the string representation
using this separator. Formally:

DomainSections = Split(strg(S), “;) (3.9)

. Iterate over each domain section in DomainSections. Each domain section

is a string representing a domain and its state. The domain name and the
string representation of its state are separated by “ - ”. Split the domain
section into the domain name d* and the string representation of its state
strg(S*). Formally:

d*,strg(S*) = Split(DomainSection, « -) (3.10)
Check if the domain name d* is recognized by the system. If it is not, skip

this domain section. If the domain name is recognized, initialize an empty
domain state S* = {}.

. Split the string representation of the domain state, strg(S¥), into slot-value

pairs. The slot-value pairs are separated by “, 7. Each is a string with the

slot name and the value separated by “ : ”. Formally:

SlotValuePairs = Split(strg(S*), «, 7) (3.11)

Iterate over each slot-value pair in SlotValuePairs. Split the slot-value pair
into the slot name s¥ and the value vF. Formally:

s¥ v = Split(Slot ValuePair, “ :) (3.12)

1) 7

Check if the slot name s¥ is recognized for the domain d*. If it is not, skip
this slot-value pair. If the slot name is recognized and the value v¥ is not
equal to "None” or if the system is configured to include "None” values,

add the slot-value pair to the domain state S*. Formally:

Sk =Sk U {(sF)} (3.13)

. If the domain state S* is not empty, add the domain-state pair to the

dialogue state S. Formally:
S =SuU{(d", S} (3.14)

. Finally, return the constructed dialogue state S.

37

Example

1. Consider the dialogue state S which is defined as follows:

S = {(hotel, {(area, north), (bookday, sunday),
(bookpeople, 5), (bookstay, 3), (intent, book_hotel),
(name, avalon), (stars, 4), (type, guesthouse)}),

(

train, {(departure, cambridge), (intent, find_train)})}

2. When applying the strg() function to the dialogue state S, we obtain the
following string representation:

StI‘S(S) =
hotel - area : north, bookday : sunday, bookpeople : 5, bookstay : 3,
intent : book_hotel, name : avalon, stars : 4, type : guesthouse;

train - departure : cambridge, intent : find_train

3. Finally, if we apply the inverse function strg’() to the string representation
of the dialogue state S, we recover the original dialogue state S.

3.1.3 The Input and Output Strings

As explained in Section 3.1.1, at turn ¢, the model takes the string representation
of the previous dialogue state strg(S;—1), the context with the previous system
response C;_1, and the current user utterance U, as inputs. These three compo-
nents are concatenated into a single string using unique segment tokens to denote
the beginning of each component.

We prepend a task description, denoted as 7', to the input string, a directive
for the T5 model that defines the task to be performed: "Update state”. For each
segment of the input, we use special tokens:

o S = [state] signifies the start of the dialogue state.
e (' = [context] marks the beginning of the context.
o U = [user] signals the start of the user utterance.

These tokens help the model identify the corresponding segments within the
input string X; at turn ¢, which can formally be expressed as follows:

Xt — T—i—“ 7’+S+“ 7’+St1‘s(St_1>+“. ”"—C—i—“ w_i_Ct_l_i_cc. 77+U+cc 7a_|_Ut (315)

The spaces separating the tokens and their corresponding values ensure proper
tokenization, while the periods at the end of each segment enhance readability and
set clear segment boundaries. This approach ensures that the model receives the
necessary information for DST in a well-structured string format that resembles
the natural language that the TH model was trained on and allows it to build
on its pre-existing language understanding capabilities to perform the task of
dialogue state tracking more effectively.

38

The output string Y; of our DST model at turn ¢ represents the updated
dialogue state, denoted as strg(S;). Formally:

Y; = strg(Sy). (3.16)

As with the input string, this representation is beneficial as it closely resem-
bles the standard text that the T5 model encountered during pre-training. It
consists of alphabetically ordered domain names, slot names, and slot values,
making it human-readable and easy to interpret. Moreover, this structured rep-
resentation assists in evaluating the performance of our DST model by enabling
easy comparison of the predicted dialogue state with the ground truth.

3.2 Action Selection

This section introduces our approach to action selection, which is similar in struc-
ture to our DST model. The goal of action selection is to determine the system’s
next response given the current dialogue state, the context of the previous system
response, the current user utterance, and the optional string representation of the
database counts, which represents the external knowledge base for the DM. We
propose two distinct methods for action selection: a generative method and a
classification-based method. In both cases, the task is to select some subset of
actions from the predefined set of actions A of size |A|.

3.2.1 Theoretical Description of Generative Action Selec-
tion

In the generative method, the model uses an encoder-decoder Transformer archi-
tecture, similar to the DST model (Section 1.4.1). However, instead of generating
a sequence of tokens to represent an updated dialogue state, this model outputs
a sequence representing the system’s action.

At each turn ¢, the task is to select a subset of actions A; C A. Given
the input sequence that consists of the string representation of the updated di-
alogue state strg(.S;), the context with the previous system response C;_j, the
current user utterance Uy, and the string representation of the database counts
strp(Dy), the model generates the string representation of the selected actions
stra(A;). Formally, we can express this as a mapping gas from the tuple of
(strg(Sy), Ci—1, Uy, strp(Dy)) to stra(As):

StI'A(At) = gAS (StI'S(St), Ct—b Ut7 StI'D(Dt); 0) 5 (317)

where 0 represents the parameters of the action selection model. The model
can also be interpreted as a probabilistic model representing the conditional prob-
ability distribution P(stra(A;)[strs(S:), Ci—1, Uz, strp(Dy); 0).

The function gas can also be described as the encoding-decoding process of
the action selection model:

H,; = encoder(strg(S;), Ci—1, Uy, strp(Dy); 0) (3.18)
str4(A;) = decoder(Hy; 0) (3.19)

39

where H, € RF*" denotes the matrix of hidden states obtained after passing
the input sequence (strs(S;), Cy_1, U, strp(Dy)) of length L through the encoder,
and h is the hidden size. The hidden states are fed into the decoder to generate
the system’s action str4(A;).

The learning objective of the action selection model is to find the parameters
6 that minimize the dataset’s average negative log-likelihood. Suppose we denote
the entire dataset as D, where each element (S;, C;_1, U, Dy, A;) in D represents
one turn in a dialogue. Then, the objective function to minimize is given by:

N 1
0 = arg mgin —— > log P(str(A:)|str(S:), Cr_1, Uz, str(Dy); 0),

|D| (St,thl,Ut,Dt,At)E'D
(3.20)
where |D| is the size of the dataset.

3.2.2 Theoretical Description of Classification-Based Ac-
tion Selection

In the classification-based action selection method, the task is again to select a
subset of actions A; C A using the same input as the generative method. At
a given turn t, the input consists of the string representation of the updated
dialogue state strg(.S;), the context with the previous system response C;_1, the
current user utterance U;, and the string representation of the database count
strp(D;). The output is a binary vector vecs(A;) of length equal to the number
of actions |A|, with 1 indicating that the corresponding action is selected and

0 otherwise. Formally, we can express this as a mapping fas from the tuple of
(strg(Sy), Ci—1, Uy, strp(Dy)) to veca(Ay):

VeCA<At) = fAS (StI‘S(St>, Ot—lu Ut7 StI‘D(Dt); 0) s (321)

where 0 represents the parameters of the classification model.

The model uses a pretrained language model, to process the input sequence
and compute the contextual embedding vector of the first token ([CLS]) as the
representation of the whole input. This embedding vector is then passed through
a fully connected layer with a size equal to the number of actions |A| and a
sigmoid activation function to obtain the probabilities for each action. Formally,
this can be written as:

Ht = LM(StI‘S(St), Ot—h Ut7 StI'D(Dt); GLM), (322)
P, = Sigmoid(FNN(H, [[CLS]];0rynN)), (3.23)
vecs(A:) = Binary(F;), (3.24)

where LM denotes the pretrained language model, Sigmoid is the sigmoid
activation function (Equation 1.14), FNN represents the fully connected layer,
[CLS] refers to the token in the sequence that represents the whole input (usually
the first one), and Binary is a function that converts the probabilities into a binary
vector based on a threshold (e.g., 0.5).

The task is a multi-label binary classification. The ground-truth set of actions
at turn t is defined as a subset of A and denoted as G;. Its corresponding binary

40

vector representation is a binary vector of length |A|, denoted as veca(G;). The
predicted vector of probabilities, the output from the Sigmoid function in our
model, is denoted as P,. For a given action a, the predicted probability and the
ground-truth binary value are obtained by indexing.

The binary cross-entropy loss (Equation 1.19) is used to compute the loss
between the predicted and ground-truth values. For a single action a it is defined
as:

BCE,(Gylal, Pla]) = —veca(Gy)[a] log(Pya]) — (1 — veca(Gy)[a]) log(1 — P(t?Ea]?é)

and the total binary cross-entropy loss for a dialogue turn ¢ is:

BCE(Gy, P,) = Y BCE,(Gy[a], P.[a]). (3.26)
acA
The learning objective of the classification model is to find the parameters
0 = 0., U OBpyy that minimize the dataset’s average binary cross-entropy loss.
If we denote the entire dataset as D, where each element (S, Cy_1, Uy, Dy, Gy) in
D represents one turn in a dialogue, then the objective function to minimize is
given by:

6 = arg min —|71)| 3 BCE(G,, P,), (3.27)
(S,Ci—1,Us,Dy,Gt)ED
where P, = Sigmoid (FNN(LM(strg(S;), Cy—1, U, strp(Dy); 0rar); Ornn)), | D]
is the size of the dataset, LM denotes the pretrained language model, Sigmoid is
the sigmoid activation function, FNN represents the fully connected layer, and
BCE denotes the binary cross-entropy loss.

3.2.3 Database and the String Representation
Database Structure

In a multi-domain dialogue system, the database result D can be represented as a
set of ordered pairs (d*, D*), where d* denotes the domain name, and D* denotes
the database results for that domain. Each database result D* is an ordered

k ok

list of database entries, where each entry e;? is a set of ordered pairs (s7,v;;

representing slot names and their corresponding values. This can be formalized
as follows:

_ E opky 1"
D={@ D"} (3.28)
where for each k € 1,2, ..., n,
k k1Pk
DF = [ej}jzl, (3.29)
and
my,
e? = {(sf,vfj)}izl. (3.30)

Here, n represents the number of domains in the dialogue system, py is the number
of database entries in the k-th domain that match the current domain state S*,
and my, is the number of slots for k-th domain.

41

The database results D* are fetched using the corresponding domain state
Sk Specifically, we retrieve all database entries that match the current domain
state, i.e., those where slots and values match those in the domain state. Each
database entry, however, can have additional slots and values that are not present
in the domain state. These slots can take on arbitrary values unconstrained by
the domain state.

Database Count String Representation

The function strp() converts the database D into a string representation with
information about the size of each domain database results list. It iterates over
each domain d* and corresponding database count |D¥| in D and forms a string by
concatenating the domain name d* with the number of database results for this
domain | D*|. The string representations for all the domains are then concatenated
together (separated by semicolons). Formally:

1. For each ordered pair (d*, D¥) in D, we start by alphabetically sorting the
pairs in ascending order of the domain names.

2. For each domain d*, we construct a string representation of its database
count |D*| by combining the domain name with the count. The string
representation of the database count, denoted as strp(|D*|), is then formed
as follows:

strp(|D¥|) = d* + ¢ - 7 + | DF| (3.31)

3. The overall string representation of the database count strp(D) is then
constructed by combining the domain strings strp (| D¥|), each separated by
a semicolon and a space:

n

strp(D) =strp(|D'|) + X_j(“; 7 4 strp(|D*))) (3.32)

With this, we have a consistent string representation of the database count,
which can be used as a part of the input to the action selection models. This
string representation helps to condense the information from the database into a
form that is easy to process by the model and can help to select the actions.

3.2.4 Action and String Representation
Delexicalized Action Representation

In our dialogue system, the subset of actions the model predicts at each turn,
denoted as A C A, consists of delexicalized action strings. Delexicalization (Hen-
derson et al., 2014) refers to removing the specific slot values from the action
strings, maintaining only the structural format of dialogue acts, i.e.,

[domain] - [intent] ([slot]).

For instance, the dialogue act restaurant-inform(name=The Big Belly) in
its delexicalized form would become restaurant-inform(name). This delexical-
ization process enables generalization across similar actions and vastly reduces
the space of possible actions to predict, allowing the system to handle unseen
instances more robustly.

42

Action String Representation str,,

To form the basic string representation of a set of actions A, denoted as str,(A),
we begin by lexicographically sorting the delexicalized actions in A, which ensures
consistency in the representation. These sorted actions are then concatenated into
a string, separated by commas and spaces. Formally, the process can be described
as:

1. Sort the actions in A lexicographically, obtaining the ordered list A’.

2. Form stry,(A) by combining the sorted actions in A’ each separated by a
comma and a space:

n

stra,(4) = A1+ > (% 7+ A'[k]) (3.33)

k=2

where n is the size of the sorted action list A’.

Structured Action String Representation str,4

A different approach to forming a string representation of actions A involves
grouping the actions by their corresponding domains. This string representation,
denoted as stry, consists of the domain name followed by its associated actions.
The process of forming stra(A) can be outlined as follows:

1. First, group the actions in A by their respective domains. We can achieve
this by splitting each action into the domain and the action parts, then ap-
pending the action part to the list of actions for the corresponding domain.
We denote this grouped action representation as GG, a set of ordered pairs
(d*, A), where d* is the domain name and A* is the list of actions for the

domain. Formally:

_ [k Ak
G ={(d", A"}, (3.34)
where for each k € 1,2, ...,n,
E_ [k1™
AF={af}™" (3.35)

Here, n represents the number of domains in the dialogue system, and ny
is the number of actions in the k-th domain.

2. For each domain d* in G, we construct a string representation of its action
list A* by iterating over all actions a¥ in A¥. To maintain consistency, we
sort the actions a¥ in lexicographical order. The string representation of
the domain’s action list, denoted as str(A¥), is then formed as follows:

mg
stra(AF) = af + (%, 7 + af) (3.36)

1=2

3. The overall string representation of the actions A, denoted as stra(A), is
then constructed by combining the domain-action strings str(A*), each
prefixed by their respective domain name d* and a hyphen for separation.
A semicolon and a space separate the individual domain-action strings:

n

stra(A) =di +“ - "4 stra(A") + D (%5 T+ dF 4+ - 7 +stra(4)) (3.37)

k=2

43

Inverse Action String Representation Function str '

The inverse function of strA, which we denote as strj'(), converts the string
representation of actions back into the set of actions. The function operates as
follows:

1.
2.

6.

Initialize an empty set of actions A = {}.

Split the string representation of actions, stra(A), into domain-action sec-
tions. A semicolon and a space in the string representation separate the
domain-action sections. Thus, we can split the string representation using
this separator. Formally:

DomainActionSections = Split(str4(A),“;) (3.38)

Iterate over each domain-action section in DomainActionSections. Each
domain-action section is a string representing a domain and its associated
actions. The domain name and the string representation of its action list
are separated by “ - 7. Split the domain-action section into the domain
name d* and the string representation of its action list str4(A*). Formally:

d*, str 4 (A*) = Split(DomainActionSection, « -) (3.39)

Check if the system recognizes the domain name d*. If not, skip this domain-
action section. If the domain name is recognized, split the string represen-
tation of the domain’s action list, strs(A*), into individual actions. The
actions are separated by “, ”. Formally:

Actions = Split(str4(A*%),“,) (3.40)

[terate over each action in Actions. For each action a¥, form the complete
action (dialogue act) by combining the domain name d* with the action
string separated by a hyphen. Append the complete action string to the
action set A. Formally:

A= AU (d* + “ + action) (3.41)

Once all domain-action sections are processed, return the list of actions A.

Example

Consider the following set of actions A:

A = {booking-request(bookday), general-greet,
restaurant-inform(area), restaurant-inform(food),

restaurant-inform(name), restaurant-inform(pricerange) }

Applying the strs,(A) function, we obtain the action string representation:

44

stra,(A) =booking-request(bookday); general-greet; restaurant-inform(area);
restaurant-inform(food); restaurant-inform(name);

restaurant-inform(pricerange)

Similarly, applying the strs(A) function, we get the structured action string
representation:

str4(A) =booking - request(bookday); general - greet;
restaurant - inform(area), inform(food), inform(name),

inform(pricerange)

To retrieve the set of actions A from the string representation, we apply the
str* function and we get A.

3.2.5 The Input and Output for Action Selection

As outlined in the Sections 3.2.1 and 3.2.2, at turn ¢ the action selection models
take the string representation of the updated dialogue state strg(S;), the context
with the previous system response C;_i, the current user utterance U;, and the
string representation of the database counts strp(D;) as inputs. We use unique
segment tokens to denote the beginning of each component.

A task description, denoted as T, is also prepended to the input string for
the generative method. The task description, in this case, is "Generate actions”.
The other special tokens we use are the same as those used for dialogue state
tracking, with an additional token R = [database] that marks the beginning
of the database results counts. Therefore, the input string X; at turn ¢ can be
expressed formally as follows:

Xe=T+“7+85+“7+strg(S) +“ 7+C+“7+Ciy

+4 7+ U+ 4+ Ui+ "+ R+ 7 +strp(Dy).

In the case of the classification-based method, the input string is the same but

without the task description 7" and the following space. The output Y; of our

action selection model at turn ¢ represents the selected actions. For the genera-

tive method, this is the string representation of the selected actions, denoted as
stra(A;), formally:

(3.42)

}/t = Stl‘A(At). (343)
The inverse function str;* can be used to obtain the action list A, where
At = Str;ll (n)

In the classification-based method, the output is a binary vector that indicates
the selected actions:
Y; = veca(Ay). (3.44)
This binary vector is then converted to action list A;, using the indices of 1s in
the vector to select corresponding actions from the 1-1 mapping between indices
and actions.

45

4. Experiments

In this chapter, we will introduce the MultiWOZ dataset (Section 4.1) and eval-
uation metrics used for DST (Section 4.2) and action selection (Section 4.3).
Section 4.4 describes details of model training.

4.1 The MultiwOZ Dataset

In dialogue systems, the availability of high-quality datasets plays a vital role in
research and experimentation. One such dataset is the Multi-Domain Wizard-of-
Oz dataset or MultiWOZ, which is a common benchmark dataset for task-oriented
dialogue systems.

4.1.1 MutliwWOZ

Budzianowski et al. (2018) introduced the Multi-Domain Wizard-of-Oz (Multi-
WOZ) dataset to address the limitation in the scale of available data, which has
been a significant obstacle in dialogue research. The dataset is a fully-labeled
collection of human-human written conversations covering several domains and
topics, making it a rich source for dialogue modeling.

At a size of 10,438 dialogues, it offers extensive resources for both training
and evaluating dialogue systems. The dialogues span 8 domains: attraction,
bus, hospital, police, hotel, restaurant, taxi, and train, with 7,032 multi-
domain dialogues. The corpus was randomly split into a train, test, and validation
set, with test and validation sets containing 1000 dialogues each. Each dialogue
consists of a goal, multiple user and system utterances, and a belief state and set
of dialogue acts with slots per turn.

The data collection process for MultiWOZ is based on crowd-sourcing, elimi-
nating the need for professional annotators. The procedure followed the Wizard-
of-Oz set-up (Kelley, 1984), which allows the collection of annotated dialogues.
The procedure involved workers who participated in dialogue creation and en-
sured a wide diversity in the dataset. One worker played the user role, while the
other acted as the system. Each user was given a set of tasks and goals within
the conversation, and the system was tasked with assisting the user, creating an
authentic taks-oriented dialogue exchange.

4.1.2 MultiwOZ 2.1

In subsequent iterations, improvements were made to the MultiWOZ dataset,
addressing issues identified in the original version, MultiWOZ 2.0. The first sig-
nificant update, MultiwOZ 2.1, was introduced by Eric et al. (2020), who found
the original version to contain substantial noise in the dialogue state annotations
and the dialogue utterances.

To resolve this issue, MultiwOZ 2.1 involved a re-annotation to fix common
errors found in MultiWOZ 2.0. Furthermore, spelling errors were corrected, and
entity names were standardized to improve the dataset’s consistency. As a result,
changes were made to over 32% of state annotations across 40% of the dialogue

46

turns. 146 dialogue utterances were corrected by aligning slot values with the
dataset ontology. Moreover, MultiWOZ 2.1 integrated additional annotations
such as user dialogue act information and multiple slot descriptions for each
dialogue state slot.

4.1.3 MutliWOZ 2.2

Following MultiWOZ 2.1, Zang et al. (2020) introduced MultiWOZ 2.2, which
further enhanced the quality and usability of the dataset. This version aimed to
resolve the remaining annotation errors and inconsistencies in MultiWOZ 2.1 and
introduce new elements to enrich the dataset.

In MultiWOZ 2.2, the researchers found and corrected dialogue state anno-
tation errors in approximately 17.3% of the utterances compared to version 2.1.
They also changed the dataset’s ontology by disallowing vocabularies for slots
that could hold many values, such as name and booking-time. In addition, they
introduce slot span annotations for user and system utterances that are bene-
ficial for dialogue state tracking models that utilize span annotations to locate
where slot values are mentioned in the utterances. Lastly, another new feature
in MultiWOZ 2.2 included active user intents and requested slots for each user
utterance. These additional annotations were designed to provide more in-depth
insights into the user’s objectives and requests.

By introducing a new schema, standardizing slot values, correcting annota-
tion errors, and adding span annotations, active intents, and requested slots,
MultiWOZ 2.2 provides a more reliable and comprehensive resource for dialogue
system research. Therefore, we use this dataset in our experiments. The dataset
is split into training, validation, and test sets, as shown in Table 4.1.

Train Validation Test
Dialogues 8438 1000 1000
Turn pairs (user + system) | 56776 7374 7372

Table 4.1: MultiWOZ 2.2 dataset split with sizes.

4.1.4 Train Dataset and its Subsets

In our experiments, we utilize the entire training dataset, denoted as D™ and
specific subsets of this dataset to train models under conditions of data limitation.
These subsets are derived from D"" using a ratio parameter r, which we chose
to take on values from the set {0.3,0.5,1.0}, where value 1.0 signifies the entire
dataset. The subsets are created as follows:

« For each domain d*, a random subset of size r of dialogues with d* as
their primary domain is chosen. We use the primary domain with which a
dialogue typically starts but often evolves to include other domains as the
conversation progresses. These subsets are chosen reproducibly by fixing
the seed for random selection.

« Therefore, each training subset D™ includes dialogues (and all associated
turns) proportionate to the size r for each domain d* within D%#®. This

47

approach helps to maintain the domain imbalances present in the origi-
nal dataset, D" where certain domains, such as restaurant, are more
prevalent than others, like taxi.

4.1.5 Dialogue State Ontology

Our dialogue management leverages an ontology based on the MultiWOZ 2.2
dataset. This ontology comprises eight domains, each with slots that encapsulate
the necessary details for carrying out a conversation within that domain. The
slots are divided into two types - non-categorical and categorical.

Non-categorical slots have a large or dynamic set of possible values, and there
is no pre-defined list for these slots. Instead, their values are extracted from
the dialogue history. On the other hand, categorical slots naturally take a small
finite set of values. In every domain, we also include common slots intent and
requested that MultiWOZ 2.2 introduced as a new feature (Sebsection 4.1.3) to
help us keep track of the user’s intents and requested slots. A list of possible slots
for each domain in the MultiWOZ 2.2 dataset is provided in Table 4.2.

Domain | Categorical Slots | Non-Categorical | Common Slots
Slots
restaurant | pricerange, area, | food, name, book- | intent, requested
bookday, bookpeo- | time

ple
attraction | area, type name intent, requested
hotel pricerange, park- | name intent, requested
ing, internet,

stars, area, type,
bookpeople, book-
day, bookstay

taxi - departure, desti- | intent, requested
nation, arriveby,
leaveat
train destination, depar- | arriveby, leaveat intent, requested
ture, day, bookpeo-
ple
bus day departure, destina- | intent, requested
tion, leaveat
hospital - department intent, requested
police - name intent, requested

Table 4.2: The slots for each domain in the MultiWOZ 2.2 dataset.

Since the police domain has very few dialogues in the training set (145 di-
alogues), the number of possible slot values in this domain does not reflect the
proper attributes of the slots. We classify them by referring to similar slots in dif-
ferent domains instead, following the approach used by Zang et al. (2020). There-
fore, our dialogue state does not contain a domain, domain state pair (d*, S*) for
police.

48

4.1.6 Supported Actions

Our experiments focus on delexicalized actions for the action selection model
represented as dialogue acts with the form [domain]-[intent] ([slot]) such as
restaurant-inform(name). All actions are lowercase and do not always involve
a slot, like general-reqmore, general-bye, or booking-inform. We denote the
initial set of all possible actions gathered from the D' as A" It consists
of 248 actions, i.e., | A" = 248. Appendix A.1 contains all actions and their
support.

Our focus is on actions that occur frequently enough in the MultiWOZ 2.2
dataset, specifically, those appearing in at least K turns (with X' = 10) within
the training set. This approach filters out less frequent actions and leaves us with
a set of supported actions, denoted as A. In the context of training data subsets,
if we refer to all possible and supported actions for a subset of size r, we use the
notation A" and A,., respectively.

After filtering out actions with less than K occurrences in A" we have
|A| = | A1 | = 210. Examples of filtered actions are hotel-select (phone) with
support 1, restaurant-select (address) with support 5, or action with support
8, such as train-offerbook(duration).

4.2 Dialogue State Tracking Metrics

Let’s denote the ground-truth dialogue state as S and the predicted dialogue
state as .S, where

n N R
§={(@.s")" and §= {(d &)} (4.1)
where for each k € 1,2,...,n,

G S IR (C)

1771

(4.2)

i=1"
In the above equations, n is the number of domains, m, is the number of

slots in the k-th domain, d* and Eik are the ground-truth and predicted domain
names, respectively, s¥ and §f are the ground-truth and predicted slot names,
respectively, and v¥ and f}f are the ground-truth and predicted values respectively.

Let’s define the test dataset D', which consists of L dialogue turns. Each
turn [has a ground-truth dialogue state S; and a predicted dialogue state S,
Based on this structure, we compute the following evaluation metrics for dialogue
state tracking.

4.2.1 Domain Level Metrics

For each domain d*, we compute the True Positives (TP), False Positives (FP),
and False Negatives (FN) across the D' as follows:

TPy = |{l:d" € S and d* € S},
FPy = |{l:d" ¢S and d* € 5},
FNg = |{l:d* € S, and d* ¢ S}}|.

49

Then we can compute precision, recall, and F1-score for each domain as:

TPdk
Pp=—— 4.3
@ T TPy + FPy’ (43)
TPdk
Ry——_ ¢ 4.4
@ T TPy + FNy' (44)
Pdk . de
Flg=2. -4 4 45
d Pdk —|— de ()

4.2.2 Slot Level Metrics

Similar to domain level metrics, for each slot sF in each domain d*, we first
compute TP, FP, and FN across the dataset:

TPy = |{l: (s5,05) € SF and (sF,0F) € 8],
FPy =|{l: (sf,vf) s Slk and (s'?,vk) e g;c}|,
k k

FNg = |{L: (s,0%) € SF and (sF,0) ¢ &},

The precision, recall, and F1-score for each slot are calculated as follows:

TP,

Pa = TPy + FPy’
ZTWPS? Z

By = TP, + FN,.'
Py Ry

Fle=2- Py Ry

4.2.3 Global Slot Level Metrics

In addition to individual domain and slot level metrics, we can calculate the
global metrics by accumulating the results from all individual slots:

n mg

TPglobal = Z Z TPsfa
k=11i=1
n mg

FPglobal = ZZFPsf’
k=11=1
n mg

FNglobal = ZZFNsi%

k=11i=1

where n is the total number of domains, m,, is the number of slots in the k-th
domain, and T' P, F P, and F' N, are the true positive, false positive, and false
negative counts for the %-th slot in the k-th domain, respectively.

With these global counts, the overall precision, recall, and F1-score are calcu-

lated as follows:

50

TP, global

P, global —

TP, global + P, globa17
Rglobal = TPglObal)
TPglobal + FNglobal

Flglobal _9. P, global * Rglobal

P, global + Rglobal

4.2.4 Joint Goal Accuracy

Joint goal accuracy (JGA) is computed as the proportion of turns where the
entire dialogue state is correctly predicted:

{l . Sl == Sl}|

|
A= 4.
JG 7 (4.6)

4.3 Action Selection Metrics

In the action selection task, we aim to predict a set of actions for each dialogue
turn. We denoted the set of all possible actions as A. Suppose we have a test
dataset D' of L dialogue turns, where each turn [consists of a predicted action
set 4; C A and the corresponding ground-truth action set A4, C A.

4.3.1 Action Level Metrics

For each possible action a in the action set A we calculate True Positives (TP),
False Positives (FP), and False Negatives (FN) across the D' as follows:

TP,=|l:a€ A and a € A,
FP,=|l:a¢ A and a € Ay,
FN,=|l:a€ A and a ¢ A4)].

We can then calculate precision, recall, and F1-score for each action as:

TP
P =9
¢ TP, +FP,’

B TP,
“ TP, +FN,’
Pa'Ra
Fl,=2.--2%2"92.
P,+ R,

4.3.2 Turn Level Accuracy

We can also define an accuracy metric on a turn level, where we consider a turn
as correct if the entire action set is predicted correctly:

51

|l : Al == Al|

In this case, the predicted action set 4, is considered correct if it is precisely the
same as the ground-truth action set A;.

ACC = (4.7)

4.3.3 Macro Averaged Metrics

Additionally, macro-averaged versions of the precision, recall, and F1-score can
be calculated. These metrics compute the metric independently for each action
and then take the average (hence treating all actions equally):

macro = P
|A| Z
macro = Ra;

|A| z

F1 macro = Fl

P>

4.3.4 Weighted Averaged Metrics

The weighted-averaged versions of the precision, recall, and F1-score can be cal-
culated by giving more importance to the more frequent actions in the dataset.
The number of instances of that action in the dataset weights each action’s met-
ric. Let N, denote the total number of instances of action a in the dataset, and
N denotes the total number of instances. The weighted averages are defined as
follows:

Pweighted Z N Paa

aGA

Rweighted Z N Raa
aEA

Flweighted Z N Fl
aEA

In these formulations, actions with more instances contribute more to the over-
all metrics, making them beneficial when dealing with datasets with imbalanced
action distributions.

4.4 Model Training Details

We use the HuggingFace Transformers library! (Wolf et al., 2020) to implement
our models. We employ the ‘google/flan-t5-base’ model for dialogue state track-
ing and action generation. The FLAN T5 model (Chung et al., 2022) is a variant

'https://github.com/huggingface/transformers
’https://huggingface.co/google/flan-t5-base

52

https://github.com/huggingface/transformers
https://huggingface.co/google/flan-t5-base

of the T5 (Raffel et al., 2020). Its configuration comprises 12 Transformer en-
coder and decoder layers, 12 attention heads, and a hidden size of 768. It has
a maximum positional embedding of 512, defining an upper limit on input size.
We further decreased the maximum input length to 260 tokens and the output
length to 230 tokens, as no examples in our dataset exceeded this limit. Any
input exceeding this limit is truncated to ensure compatibility. The dropout rate
for this model is 0.1. We use a learning rate of 1072

For the classification approach foraction selection, we utilize the ’roberta-
base’® model. RoBERTa (Liu et al., 2019) is an improved version of BERT
(Devlin et al., 2019). It includes 12 Transformer layers, 12 attention heads, and
a hidden size 768, with the same maximum input size and dropout rate as the
FLAN T5 model. We use a learning rate of 2 - 1075,

Both models are trained with the Adam optimizer (Kingma and Ba, 2017),
an efficient and widely-used method for training deep neural networks. Scripts
used for training the models are described in Appendix A.3. The trained models
are available at HuggingFace hub.*

3https://huggingface.co/roberta-base
‘https://huggingface.co/jaroslavsafar

93

https://huggingface.co/roberta-base
https://huggingface.co/jaroslavsafar

5. Results and Discussion

In this chapter, we present the results of our evaluation using both automatic
metrics (see Section 4.2, 4.3) and human evaluation. We present the results in
two main sections: results for dialogue state tracking in Section 5.1 and for action
selection in Section 5.2. The final Section 5.3 is dedicated to manual analysis.

5.1 Dialogue State Tracking Results

In this section, we present the performance of our dialogue state tracking (DST)
models, trained on various subsets of the available training dataset. Each model
is denoted as flan-t5-base-DST(r), where the parameter r signifies the relative
size of the training set D" used, as explained in Section 4.1.4.

Performance of baseline DST models: SGD-baseline (Rastogi et al., 2017) and
TRADE (Wu et al., 2019), on MultiWOZ 2.2 dataset as described by Zang et al.
(2020) are summarized in Table 5.1.

We evaluate the models using several metrics discussed in Section 4.2. These
include joint goal accuracy (JGA), global precision (Pgiopal), global recall (Rgiobal),
and global F1 score (Flgoba). Table 5.2 summarizes our models’ performance on
the test dataset D'*'. As we can see, our approach is effective, as indicated
by the high scores across all metrics. As expected, the flan-t5-base-DST(1.0)
model, trained on the full training set D3 achieved the highest scores across
all metrics. However, both models trained on smaller datasets - specifically,
flan-t5-base-DST(0.5) and flan-t5-base-DST(0.3) - also showcase impressive per-
formance. The minimal decrease in scores as the size of the training set decreases
emphasizes our models’ robustness in data scarcity conditions.

This good performance is likely due to the power of the pre-trained Flan-T5
language model, which captures complex patterns in dialogue data. Even when
the training dataset is pruned, the model performs effectively in dialogue state
tracking due to its pre-training on a large corpus. This resilience against the size
of the training set demonstrates our approach’s potential in situations where the
availability of training data might be limited. All the evaluation scripts, metrics,
and results are in the attached files described in Appendix A.3.

Model JGA
TRADE 0.454
SGD-baseline | 0.420

Table 5.1: Performance of baseline DST models based on the JGA metric. Source:
Table 4 of Zang et al. (2020)

5.2 Action Selection Results

In this section, we present the results of the action selection models trained on var-
ious subsets of the training data. Each model is referred to as flan-t5-base-AS(r)

o4

Model JGA Pglobal Rglobal Flglobal
flan-t5-base-DST(1.0) | 0.736 | 0.984 | 0.969 0.977
flan-t5-base-DST(0.5) | 0.723 | 0.983 0.968 0.975
flan-t5-base-DST(0.3) | 0.702 | 0.981 0.965 0.973

Table 5.2: Performance of DST models trained on different subsets of the training
set. JGA denotes joint goal accuracy, Pyoba refers to global precision, Rgiopal is
global recall, and F'lgpa stands for global F1 score. All models are evaluated
with ground-truth dialogue state from the previous turn S;_; on the input.

or roberta-base-AS(r), for generative or classification based models respectively,
where r indicates the relative size of the training set DY used.

The models were evaluated using metrics described in Section 4.3, including
turn level accuracy (ACC), weighted average versions of precision, recall, and F1
score (Py, Ry, Fly), and macro average versions of the same metrics (Py,, Ry,
F1,). The performances of these models on the test dataset D" are summarized
in Table 5.3.

Model ACC | Py Ry Fl, | Pm R F1,,
flan-t5-base-AS(1.0) 0.197 | 0.517 | 0.480 | 0.465 | 0.281 | 0.228 | 0.226
flan-t5-base-AS(0.5) 0.192 | 0.503 | 0.489 | 0.466 | 0.257 | 0.230 | 0.220
flan-t5-base-AS(0.3) 0.198 | 0.509 | 0.491 | 0.466 | 0.261 | 0.232 | 0.224
flan-t5-base-AS(1.0)* | 0.194 | 0.502 | 0.471 | 0.455 | 0.263 | 0.221 | 0.217
(0.5)
3)

flan-t5-base-AS * 10.190 | 0.496 | 0.484 | 0.461 | 0.249 | 0.226 | 0.215
flan-t5-base-AS(* 0.194 | 0.496 | 0.480 | 0.455 | 0.249 | 0.224 | 0.215
roberta-base-AS
roberta-base-AS
roberta-base-AS
roberta-base-AS
roberta-base-AS
roberta-base-AS

1

0.
0.
1.
0.
0.

0) |0.184 | 0.515 | 0.425 | 0.449 | 0.227 | 0.161 | 0.176
5) 10.168 | 0.499 | 0.421 | 0.446 | 0.218 | 0.162 | 0.178
3) |0.146 | 0.461 | 0.340 | 0.373 | 0.175 | 0.109 | 0.125
0)* | 0.182 | 0.507 | 0.422 | 0.444 | 0.217 | 0.159 | 0.172
5)
3)

*10.167 | 0.490 | 0.413 | 0.436 | 0.218 | 0.159 | 0.175

1.
(0.
(0.
(1.
(0.
(0.3)* | 0.146 | 0.461 | 0.337 | 0.370 | 0.177 | 0.108 | 0.124

Table 5.3: Performance of action selection models trained on different subsets
of the training set. ACC denotes turn level accuracy, Py, Ry, F1,, refer to the
weighted average versions of precision, recall, and F1 score respectively, and P,
R, F1,, are the macro average versions of the same metrics. The models marked
with * are evaluated with the input containing the dialogue state generated from
the corresponding DST model flan-t5-base-DST trained on the same dataset (with
the same r), representing the actual use in the real setting. Models without *
are evaluated in a standard way, with the input containing only the ground-truth
values.

It is crucial to highlight that the task of action selection is challenging. The
full training dataset D" encompasses 248 possible actions. As described in
Section 4.1.6, we pruned the action space to use only those actions with the
support of at least 10, resulting in 210 actions. For smaller datasets D{2™ and
Drain | the action space is typically pruned more, but the overall action set remains
large, with at least 200 actions. Thus, selecting actions is difficult from the point
of view of machine learning tasks. Particularly in the classification setting as a

multi-label classification into more than 200 classes. Hence, the metric scores of

55

the action selection models is not as high as those of the DST models.

When comparing the models’ performances, we note a few significant patterns.
Firstly, as expected, both generative (flan-t5) and classification (roberta-base)
models perform better when trained on a larger dataset, which suggests that
having more training data is beneficial.

When comparing models trained on the same subset of data, the generation
models consistently outperform the classification models across all metrics. This
can be attributed to the generation model’s capacity to generate new sequences,
making them more versatile and capable of handling unseen situations during
training.

Another interesting observation is the comparison between models evaluated
with ground-truth dialogue state and the ones evaluated with the dialogue state
generated from the corresponding DST model (models denoted *) that was trained
on the same train dataset D", As expected, models evaluated with the ground-
truth dialogue state perform better. The drop in performance for models using
generated states highlights the cumulative error in a dialogue system where the
output of one module serves as the input for the next. However, the relatively
small difference between the performances underlines our models’ robustness and
ability to operate despite the uncertainty introduced by previous modules.

Notably, the ACC metric used in our evaluation is a strict one. It expects an
exact match between the predicted and the ground-truth action sets. The ACC
value approaching 20% for the flan-t5-base-AS(1.0) is a good result considering
this context. The distribution of actions is also incredibly unbalanced, introducing
additional complexity into the learning process. The details about the support
for each action are provided in the Appendix A.1, and all the metrics and results
are in the attached files described in Appendix A.3.

In conclusion, while the task of action selection in the setting of MultiWOZ
with a considerable action space is challenging, the performance of the proposed
models shows their ability to tackle this complex task.

5.3 Manual Analysis

We conducted a human evaluation of a subset of the model’s predictions and com-
pared them to the ground truth, which allowed us to understand the qualitative
performance of the models. One such analysis is shown in the Appendix A.2.

Dialogue State Tracking

The generative DST modes are generally very good at predicting the state of
the dialogue based on the user’s utterance, context, and the previous state. They
can understand and keep track of complex conversations involving multiple topics
(like booking a train, finding a hotel, or making restaurant reservations). They
correctly identify and encode crucial information (like dates, destinations, and
preferences) in the predicted dialogue state. We encountered only a few examples
where the prediction was wrong, and the mistake was usually only at one slot,
allowing the overall dialogue state to represent the information very well.

o6

Action Selection

Predicting the appropriate system actions is a more challenging task. Both gen-
erative and classification models do reasonably well, but they often miss some
actions or predict extraneous ones. The classification model is more accurate in
predicting necessary actions than the generative model. The generative model
sometimes predicts actions that provide more information than the user has re-
quested, indicating a potential over-generation issue.

Both models struggle with complex user utterances involving multiple requests
or steps. The models often miss some actions required to address these complex
queries fully. This suggests the need for improvement in handling nuanced or
multi-step user requests. A key limitation is that the models only sometimes
fully understand the context or user intent, leading to missed or incorrect actions.
For example, they might fail to provide necessary information or request more
information without reason. Also, the models occasionally fail to adapt to the
conversational flow and produce actions that feel somewhat out of place. Such
behavior is expected because the models were trained in a supervised setting,
and their training goal was to predict actions at a turn level. Finetuning the
models using RL techniques to create a full policy would undoubtedly improve
the performance of action selection models.

o7

6. Conclusion

In this thesis, we presented a study on using pretrained neural architectures for
practical dialogue management. The primary aim was to study approaches to
dialogue management for practical applications, focusing on two fundamental
modules of dialogue systems: dialogue state tracking (DST) and action selection.
Three models were proposed and evaluated, trained on varying dataset sizes which
allowed an exploration of the model’s performance under data-limited conditions.

For the DST task, we introduced the generative model flan-t5-base-DST(1.0),
which utilized the robustness of the T5 pretrained language model (Raffel et al.,
2020; Chung et al., 2022) to generate a custom text representation of the current
dialogue state based on the user utterance, context, and text representation of
the previous dialogue state. This model achieved impressive results, achieving a
joint goal accuracy (JGA) of 74% (Table 5.2), the highest across all evaluated
models, and demonstrated a remarkable ability to process and encode complex
details from the current user utterance, context, and previous dialogue state,
consequently generating an accurate, updated dialogue state.

The action selection task contained two separate models: a generative model
flan-t5-base-AS(1.0) also based on the T5 pretrained language model (Raffel et al.,
2020; Chung et al., 2022), and a classification RoOBERTa (Liu et al., 2019) based
model roberta-base-AS(1.0). These models used similar input as the DST model,
specifically, the user utterance, context, the current dialogue state (which would,
in a real-world setting, be the output of the DST model), and database count
information to select delexicalized actions to execute by the system. Despite the
inherent challenges of the task, given the large number of possible actions and
the complexity of the conversational context, both models showed reasonable
performance.

While the models demonstrated potential in handling the complexities of di-
alogue management, their limitations are equally vital for subsequent research.
The task of action selection, in particular, showed that these models struggle with
complex or multi-step user requests. They are prone to miss or misinterpret ac-
tions that are not immediately apparent or direct, leading to a less-than-optimal
response. This observation reveals the necessity of incorporating tools for more
holistic and forward-looking approaches to handling dialogues.

Using supervised learning to train our models was an intended choice driven
by our objective to build practical dialogue management. This approach is com-
monly employed as an initial step in creating practical dialogue systems, providing
a foundation that can be further improved with other techniques. One area for
further research is the application of reinforcement learning (RL) to improve the
performance of action selection models, transforming them into policies that can
look ahead to achieve task completion. The RL approach, however, requires a
fully functioning dialogue system capable of interacting with users or simulations
to train. A well-performing supervised model as a starting point is also a pre-
ferred scenario. Another possible area for future research is exploring the use of
lexicalized actions. Delexicalized actions, while beneficial for the current scope
of the work, contain only part of the complete information about the action.
However, a model that predicts delexicalized actions well is a prerequisite for an

o8

effective lexicalization process.

In conclusion, this thesis demonstrated the potential and limitations of apply-
ing pretrained language models to practical dialogue management. The proposed
models, especially for DST, have achieved notable success and show promise for
future applications and improvements.

99

Bibliography

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiw:1607.06450, 2016. URL https://arxiv.org/abs/1607.
06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. In Yoshua Bengio and Yann Le-
Cun, editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1409.0473.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term de-
pendencies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157-166, 1994. doi: 10.1109/72.279181.

Antoine Bordes, Y-Lan Boureau, and Jason Weston. Learning end-to-end goal-
oriented dialog. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=S1Bb3D5gg.

Hayet Brabra, Marcos Baez, Boualem Benatallah, Walid Gaaloul, Sara Bouguelia,
and Shayan Zamanirad. Dialogue management in conversational systems: a
review of approaches, challenges, and opportunities. IEFE Transactions on
Cognitive and Developmental Systems, pages 1-15, 2022. doi: 10.1109/TCDS.
2021.3086565. URL https://hal.science/hal-03626466.

Petter Brandtzaeg and Asbjgrn Fglstad. Why people use chatbots. 11 2017. ISBN
978-3-319-70283-4. doi: 10.1007/978-3-319-70284-1_30.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Jack Chess, Jack Clark, Chris Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. arXiv preprint arXiv:2005.14165, 2020. URL https:
//arxiv.org/abs/2005.14165.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Ifnigo Casanueva, Ste-
fan Ultes, Osman Ramadan, and Milica Gasi¢. MultiWOZ - a large-scale
multi-domain Wizard-of-Oz dataset for task-oriented dialogue modelling. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 5016-5026, Brussels, Belgium, October-November 2018. As-
sociation for Computational Linguistics. doi: 10.18653/v1/D18-1547. URL
https://aclanthology.org/D18-1547.

Guan-Lin Chao and Ian R. Lane. BERT-DST: Scalable end-to-end dialogue state
tracking with bidirectional encoder representations from transformer. CoRR,
abs/1907.03040, 2019. URL http://arxiv.org/abs/1907.03040.

60

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
https://openreview.net/forum?id=S1Bb3D5gg
https://hal.science/hal-03626466
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://aclanthology.org/D18-1547
http://arxiv.org/abs/1907.03040

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. A survey on dialogue
systems: Recent advances and new frontiers. SIGKDD Faxplor. Newsl., 19
(2):25-35, nov 2017. ISSN 1931-0145. doi: 10.1145/3166054.3166058. URL
https://doi.org/10.1145/3166054.3166058.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using RNN encoder—decoder for statistical machine translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1724-1734, Doha, Qatar, October 2014.
Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL
https://aclanthology.org/D14-1179.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William
Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma,
Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen,
Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping
Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling
instruction-finetuned language models, 2022. URL https://arxiv.org/abs/
2210.11416.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179-
211, 1990. ISSN 0364-0213. doi: https://doi.org/10.1016/0364-0213(90)
90002-E. URL https://www.sciencedirect.com/science/article/pii/
036402139090002E.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyang
Gao, Adarsh Kumar, Anuj Goyal, Peter Ku, and Dilek Hakkani-Tur. Multi-
WOZ 2.1: A consolidated multi-domain dialogue dataset with state correc-
tions and state tracking baselines. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 422—-428, Marseille, France, May
2020. European Language Resources Association. ISBN 979-10-95546-34-4.
URL https://aclanthology.org/2020.1rec-1.53.

Milica Gasic, Filip Jurcicek, Blaise Thomson, Kai Yu, and Steve Young. On-
line policy optimisation of spoken dialogue systems via live interaction with
human subjects. 2011 IEEE Workshop on Automatic Speech Recognition and
Understanding, ASRU 2011, Proceedings, 12 2011. doi: 10.1109/ASRU.2011.
6163950.

61

https://doi.org/10.1145/3166054.3166058
https://aclanthology.org/D14-1179
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://aclanthology.org/N19-1423
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://aclanthology.org/2020.lrec-1.53

Milica Gasi¢ and Steve Young. Effective handling of dialogue state in the hidden
information state POMDP-based dialogue manager. ACM Trans. Speech Lang.
Process., 7(3), jun 2011. ISSN 1550-4875. doi: 10.1145/1966407.1966409. URL
https://doi.org/10.1145/1966407.1966409.

Rahul Goel, Shachi Paul, Tagyoung Chung, Jérémie Lecomte, Arindam Mandal,
and Dilek Hakkani-Tiir. Flexible and scalable state tracking framework for
goal-oriented dialogue systems. CoRR, abs/1811.12891, 2018. URL http:
//arxiv.org/abs/1811.12891.

Rahul Goel, Shachi Paul, and Dilek Hakkani-Tiir. HyST: A hybrid approach for
flexible and accurate dialogue state tracking. CoRR, abs/1907.00883, 2019.
URL http://arxiv.org/abs/1907.00883.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Michael Heck, Carel van Niekerk, Nurul Lubis, Christian Geishauser, Hsien-Chin
Lin, Marco Moresi, and Milica Gasic. TripPy: A Triple Copy Strategy for Value
Independent Neural Dialog State Tracking. In Proceedings of the 21th Annual
Meeting of the Special Interest Group on Discourse and Dialogue, pages 35—
44, 1st virtual meeting, July 2020. Association for Computational Linguistics.
URL https://aclanthology.org/2020.sigdial-1.4.

Matthew Henderson, Blaise Thomson, and Steve Young. Deep Neural Network
Approach for the Dialog State Tracking Challenge. In Proceedings of the SIG-
DIAL 2013 Conference, pages 467-471, Metz, France, August 2013. Association
for Computational Linguistics. URL https://aclanthology.org/W13-4073.

Matthew Henderson, Blaise Thomson, and Steve Young. Robust dialog state
tracking using delexicalised recurrent neural networks and unsupervised adap-
tation. In 2014 IEEE Spoken Language Technology Workshop (SLT), pages
360-365, 2014. doi: 10.1109/SLT.2014.7078601.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735-1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.
1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9.8.1735.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. The curious case of
neural text degeneration. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/forum?id=rygGQyrFvH.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 448-456, Lille, France, 07-09 Jul 2015.
PMLR. URL https://proceedings.mlr.press/v37/ioffel5.html.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, and Pascale Fung. Survey of hallucination in
natural language generation. ACM Comput. Surv., 55(12), mar 2023. ISSN
0360-0300. doi: 10.1145/3571730. URL https://doi.org/10.1145/3571730.

62

https://doi.org/10.1145/1966407.1966409
http://arxiv.org/abs/1811.12891
http://arxiv.org/abs/1811.12891
http://arxiv.org/abs/1907.00883
http://www.deeplearningbook.org
https://aclanthology.org/2020.sigdial-1.4
https://aclanthology.org/W13-4073
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=rygGQyrFvH
https://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1145/3571730

Filip Jurcicek, Blaise Thomson, and Steve Young. Natural Actor and Belief
Critic: Reinforcement Algorithm for Learning Parameters of Dialogue Systems
Modelled as POMDPs. ACM Trans. Speech Lang. Process., 7(3), jun 2011.
ISSN 1550-4875. doi: 10.1145/1966407.1966411. URL https://doi.org/10.
1145/1966407 .1966411.

J. F. Kelley. An iterative design methodology for user-friendly natural language
office information applications. ACM Trans. Inf. Syst., 2(1):26-41, jan 1984.
ISSN 1046-8188. doi: 10.1145/357417.357420. URL https://doi.org/10.
1145/357417.357420.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language
modeling. In 1995 International Conference on Acoustics, Speech, and Signal
Processing, volume 1, pages 181-184. IEEE, 1995.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In F. Pereira, C.J.
Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in neu-
ral information processing systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf. Commonly referred
to as the ”"AlexNet” paper.

Jonas Kulhanek, Vojtéch Hudecek, Tomas Nekvinda, and Ondrej Dusek. AuGPT:
Auxiliary tasks and data augmentation for end-to-end dialogue with pre-trained
language models. In Proceedings of the 3rd Workshop on Natural Language Pro-
cessing for Conversational Al pages 198-210, Online, November 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2021.nlp4convai-1.19.
URL https://aclanthology.org/2021.nlp4convai-1.19.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the IEEFE, vol-
ume 86, pages 2278-2324, 1998.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. Dialogue state tracking with
a language model using schema-driven prompting. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pages 4937—
4949, Online and Punta Cana, Dominican Republic, November 2021. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.404.
URL https://aclanthology.org/2021.emnlp-main.404.

Wengiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, and
Dawei Yin. Sequicity: Simplifying task-oriented dialogue systems with single
sequence-to-sequence architectures. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1437-1447, Melbourne, Australia, July 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P18-1133. URL https://aclanthology.
org/P18-1133.

63

https://doi.org/10.1145/1966407.1966411
https://doi.org/10.1145/1966407.1966411
https://doi.org/10.1145/357417.357420
https://doi.org/10.1145/357417.357420
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://aclanthology.org/2021.nlp4convai-1.19
https://aclanthology.org/2021.emnlp-main.404
https://aclanthology.org/P18-1133
https://aclanthology.org/P18-1133

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao, and Asli Celikyilmaz. End-
to-end task-completion neural dialogue systems. In Proceedings of the Eighth
International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 733-743, Taipei, Taiwan, November 2017. Asian Feder-
ation of Natural Language Processing. URL https://aclanthology.org/
I17-1074.

Zhaojiang Lin, Andrea Madotto, Genta Indra Winata, and Pascale Fung. MinTL:
Minimalist transfer learning for task-oriented dialogue systems. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 3391-3405, Online, November 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.273. URL
https://aclanthology.org/2020.emnlp-main.273.

Zachary Lipton, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal Ahmed, and li Deng.
BBQ-Networks: Efficient exploration in deep reinforcement learning for task-
oriented dialogue systems. Proceedings of the AAAI Conference on Artificial
Intelligence, 32, 11 2017. doi: 10.1609/aaai.v32i1.11946.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqgi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.
URL http://arxiv.org/abs/1907.11692.

Ilya Loshchilov and Frank Hutter. Loshchilov, ilya and hutter, frank. CoRR,
abs/1711.05101, 2017. URL http://arxiv.org/abs/1711.05101.

Christopher D. Manning and Hinrich Schiitze. Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, MA, 1999.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115-133, 1943.

Sarah McLeod, Ivana Kruijff-Korbayova, and Bernd Kiefer. Multi-task learn-
ing of system dialogue act selection for supervised pretraining of goal-oriented
dialogue policies. In Proceedings of the 20th Annual SIGdial Meeting on Dis-
course and Dialogue, pages 411-417, Stockholm, Sweden, September 2019. As-
sociation for Computational Linguistics. doi: 10.18653/v1/W19-5947. URL
https://aclanthology.org/W19-5947.

Michael McTear. Conwversational AI Dialogue Systems, Conversational Agents,
and Chatbots. Morgan & Claypool Publishers, 2021.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 26. Cur-
ran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper_
files/paper/2013/file/9aa42b31882ec039965£3c4923ce901b-Paper.pdf.

64

https://aclanthology.org/I17-1074
https://aclanthology.org/I17-1074
https://aclanthology.org/2020.emnlp-main.273
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
https://aclanthology.org/W19-5947
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,
and Demis Hassabis. Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529-533, 2015.

Nikola Mrksi¢, Diarmuid O Séaghdha, Blaise Thomson, Milica Gasi¢, Pei-hao Su,
David Vandyke, Tsung-Hsien Wen, and Steve J. Young. Multi-domain Dialog
State Tracking using Recurrent Neural Networks. CoRR, abs/1506.07190, 2015.
URL http://arxiv.org/abs/1506.07190.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayandeh, Lars Liden, and Jian-
feng Gao. Soloist: Building task bots at scale with transfer learning and ma-
chine teaching. Transactions of the Association for Computational Linguistics,
9:807-824, 2021. doi: 10.1162/tacl.a_00399. URL https://aclanthology.
org/2021.tacl-1.49.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global
vectors for word representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1532—
1543, Doha, Qatar, October 2014. Association for Computational Linguistics.
doi: 10.3115/v1/D14-1162. URL https://aclanthology.org/D14-1162.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Im-
proving language understanding by generative pre-training. OpenAl blog,
2018. URL https://cdn.openai.com/better-language-models/language_
models_are_unsupervised multitask_learners.pdf.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAl blog,
2019. URL https://cdn.openai.com/better-language-models/language _
models_are_unsupervised multitask_learners.pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the lim-
its of transfer learning with a unified text-to-text transformer. J. Mach. Learn.
Res., 21(1), jan 2020. ISSN 1532-4435. URL https://www. jmlr.org/papers/
volume21/20-074/20-074.pdf.

Janarthanan Rajendran, Jatin Ganhotra, Satinder Singh, and Lazaros Poly-
menakos. Learning End-to-End Goal-Oriented Dialog with Multiple Answers.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3834-3843, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1418.
URL https://aclanthology.org/D18-1418.

Abhinav Rastogi, Dilek Hakkani-Ttr, and Larry P. Heck. Scalable Multi-Domain
Dialogue State Tracking. CoRR, abs/1712.10224, 2017. URL http://arxiv.
org/abs/1712.10224.

65

http://arxiv.org/abs/1506.07190
https://aclanthology.org/2021.tacl-1.49
https://aclanthology.org/2021.tacl-1.49
https://aclanthology.org/D14-1162
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://www.jmlr.org/papers/volume21/20-074/20-074.pdf
https://www.jmlr.org/papers/volume21/20-074/20-074.pdf
https://aclanthology.org/D18-1418
http://arxiv.org/abs/1712.10224
http://arxiv.org/abs/1712.10224

Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017.

Alexander I Rudnicky, Eric H Thayer, Paul Constantinides, Chris Tchou, Ravi
Shern, Kevin A Lenzo, Wei Xu, and Alice Oh. Creating natural dialogs in the
carnegie mellon communicator system. In Proc. 6th Furopean Conference on
Speech Communication and Technology (Eurospeech 1999), pages 1531-1534,
1999. doi: 10.21437/Eurospeech.1999-344.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323:533-536, 1986.

Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle
Pineau. Building End-to-End Dialogue Systems Using Generative Hierarchical
Neural Network Models. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAT’16, page 3776-3783. AAAI Press, 2016.

Bayan Shawar and Eric Atwell. Chatbots: Are they really useful? LDV Forum,
22:29-49, 07 2007. doi: 10.21248/j1cl.22.2007.88.

Pei-Hao Su, Milica Gasi¢, Nikola Mrksi¢, Lina Maria Rojas-Barahona, Stefan
Ultes, David Vandyke, Tsung-Hsien Wen, and Steve J. Young. Continuously
learning neural dialogue management. CoRR, abs/1606.02689, 2016. URL
http://arxiv.org/abs/1606.02689.

Pei-Hao Su, Pawet Budzianowski, Stefan Ultes, Milica Gasi¢, and Steve Young.
Sample-efficient actor-critic reinforcement learning with supervised data for
dialogue management. In Proceedings of the 18th Annual SIGdial Meeting on
Discourse and Dialogue, pages 147-157, Saarbriicken, Germany, August 2017.
Association for Computational Linguistics. doi: 10.18653/v1/W17-5518. URL
https://aclanthology.org/W17-5518.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to se-
quence learning with neural networks. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/
file/al4acb5a4f27472c5d894ec1c3c743d2-Paper . pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30, pages 5998-6008. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper. pdf.

Yuxuan Wang, R. J. Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J.
Weiss, Navdeep Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy
Bengio, Quoc V. Le, Yannis Agiomyrgiannakis, Rob Clark, and Rif A.
Saurous. Tacotron: A fully end-to-end text-to-speech synthesis model. CoRR,
abs/1703.10135, 2017. URL http://arxiv.org/abs/1703.10135.

66

http://arxiv.org/abs/1606.02689
https://aclanthology.org/W17-5518
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1703.10135

Joseph Weizenbaum. ELIZA — a computer program for the study of natural
language communication between man and machine. Commun. ACM, 9(1):
3645, jan 1966. ISSN 0001-0782. doi: 10.1145/365153.365168. URL https:
//doi.org/10.1145/365153.365168.

Jason Williams, Antoine Raux, and Matthew Henderson. The dialog
state tracking challenge series: A review. Dialogue & Discourse, April
2016. URL https://www.microsoft.com/en-us/research/publication/
the-dialog-state-tracking-challenge-series-a-review/.

Jason D Williams and Steve Young. Partially observable Markov deci-
sion processes for spoken dialog systems. Computer Speech & Language,
21(2):393-422, 2007. ISSN 0885-2308. doi: https://doi.org/10.1016/j.
csl.2006.06.008. URL https://www.sciencedirect.com/science/article/
pii/S0885230806000283.

Jason D. Williams, Kavosh Asadi, and Geoffrey Zweig. Hybrid code networks:
practical and efficient end-to-end dialog control with supervised and reinforce-
ment learning. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 665-677, Van-
couver, Canada, July 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1062. URL https://aclanthology.org/P17-1062.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite,
Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natu-
ral language processing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 38—
45, Online, October 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-demos.6. URL https://aclanthology.org/2020.
emnlp-demos. 6.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl, Caiming Xiong, Richard
Socher, and Pascale Fung. Transferable multi-domain state generator for task-
oriented dialogue systems. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 808-819, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1078.
URL https://aclanthology.org/P19-1078.

Wenhan Xiong, Xiaoxiao Guo, Mo Yu, Shiyu Chang, Bowen Zhou, and
William Yang Wang. Scheduled policy optimization for natural language
communication with intelligent agents. CoRR, abs/1806.06187, 2018. URL
http://arxiv.org/abs/1806.06187.

Steve Young. Probabilistic methods in spoken dialogue systems. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 358, 12 2000. doi: 10.1098/rsta.2000.0593.

67

https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://www.microsoft.com/en-us/research/publication/the-dialog-state-tracking-challenge-series-a-review/
https://www.microsoft.com/en-us/research/publication/the-dialog-state-tracking-challenge-series-a-review/
https://www.sciencedirect.com/science/article/pii/S0885230806000283
https://www.sciencedirect.com/science/article/pii/S0885230806000283
https://aclanthology.org/P17-1062
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/P19-1078
http://arxiv.org/abs/1806.06187

Steve Young, Jost Schatzmann, Karl Weilhammer, and Hui Ye. The hidden
information state approach to dialog management. volume 4, pages IV-149, 05
2007. ISBN 1-4244-0728-1. doi: 10.1109/ICASSP.2007.367185.

Steve Young, Milica Gasi¢, Simon Keizer, Francois Mairesse, Jost Schatzmann,
Blaise Thomson, and Kai Yu. The hidden information state model: A practical
framework for POMDP-based spoken dialogue management. Computer Speech
¢ Language, 24:150-174, 04 2010. doi: 10.1016/j.cs1.2009.04.001.

Dong Yu and Li Deng. Automatic Speech Recognition: A Deep Learning Approach.
Springer, 2014.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo
Zhang, and Jindong Chen. MultiWOZ 2.2 : A dialogue dataset with addi-
tional annotation corrections and state tracking baselines. In Proceedings of the
2nd Workshop on Natural Language Processing for Conversational Al pages
109-117, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.nlp4convai-1.13. URL https://aclanthology.org/2020.
nlp4convai-1.13.

Tiancheng Zhao, Allen Lu, Kyusong Lee, and Maxine Eskenazi. Generative
encoder-decoder models for task-oriented spoken dialog systems with chat-
ting capability. In Proceedings of the 18th Annual SIGdial Meeting on Dis-
course and Dialogue, pages 27-36, Saarbriicken, Germany, August 2017. As-
sociation for Computational Linguistics. doi: 10.18653/v1/W17-5505. URL
https://aclanthology.org/W17-5505.

Luk4s Zilka and Filip Jurcicek. LecTrack: Incremental dialog state track-
ing with Long Short-Term Memory Networks. In Proceedings of the 18th
International Conference on Text, Speech, and Dialogue - Volume 9302,
TSD 2015, page 174-182, Berlin, Heidelberg, 2015. Springer-Verlag. ISBN
9783319240329. doi: 10.1007/978-3-319-24033-6_20. URL https://doi.org/
10.1007/978-3-319-24033-6_20.

68

https://aclanthology.org/2020.nlp4convai-1.13
https://aclanthology.org/2020.nlp4convai-1.13
https://aclanthology.org/W17-5505
https://doi.org/10.1007/978-3-319-24033-6_20
https://doi.org/10.1007/978-3-319-24033-6_20

List of Figures

1.1 Unrolled recurrent neural network 17
1.2 The Gated Recurrent Unit (GRU) 18
1.3 The Transformer architecture 20
1.4 The Transformer multi-head self-attention 22
2.1 The architecture of the BERT-DST model 28
2.2 The architecture of the TripPy model 28
2.3 The architecture of the TRADE model 29
2.4 The overview of generative DST approaches for the multi-domain
scenario using the TH model 30
2.5 Example of generative DST for multi-domain scenario using T5
model 30
2.6 A Hybrid Code Network architecture 32
A.1 Directory structure of the project 87

69

List of Tables

4.1 MultiWOZ 2.2 dataset split 47
4.2 MultiWOZ 2.2 slots 48
5.1 Performance of Baseline DST models 54
5.2 Performance of DST models 55
5.3 Performance of action selection models 55
A.1 Actions and their support 75

70

List of Abbreviations

ASR automatic speech recognition. 7, 9
CNN convolutional neural network. 16, 17, 19, 31

DAG directed acyclic graph. 12, 13, 16, 17
DM dialogue management. 4, 8, 26, 30, 31, 34, 39
DNN deep neural network. 12, 13, 15

DST dialogue state tracking. 8, 26, 27, 29, 34, 38, 39, 54, 56, 58, 80
FNN feed-forward neural network. 16, 17
GRU Gated Recurrent Unit. 17, 27, 29

LLM large language model. 24, 27
LM language model. 10, 11

LSTM Long Short-Term Memory. 17, 27, 31

MDPs Markov Decision Processes. 27, 31
MLE maximum likelihood estimation. 11

MLM masked language model. 23-25

NLG natural language generation. 4, 8, 9, 34
NLP natural language processing. 9, 23, 25, 26

NLU natural language understanding. 4, 7-9, 27, 31, 34
POMDPs Partially Observable Markov Decision Processes. 27, 31

RL reinforcement learning. 31, 32, 57, 58

RNN recurrent neural network. 12, 17-19, 27, 32
SGD stochastic gradient descent. 16

TTS Text-To-Speech. 8, 9

71

List of Glossaries

action selection A sub-component of dialogue management module, which de-
termines the system’s response to the user’s latest utterance, based on the
information present in the updated belief state. 8, 9, 26, 31, 34, 39, 51, 53,
54, 58

automatic speech recognition The process that translates spoken language
into written text. 7

backpropagation The backpropagation algorithm is used in artificial neural
networks to calculate the gradient of the loss function with respect to the
network weights using the chain rule of differentiation. It is a two-step
process: a forward pass to calculate the network output and determine the
loss, and a backward pass to calculate the gradient of the loss with respect
to each weight and adjust the weights to minimize the loss. It is commonly
used with the gradient descent optimization algorithm. 12, 16

belief state A data structure maintained by the dialogue state tracking system
that represents the dialogue history. It is a dynamic structure, continually
updated with new information extracted from user utterances as the con-
versation progresses. It includes various elements such as slots and their
assigned values, user preferences, and past system actions. 26, 27, 31

convolutional neural network Convolutional neural network (CNN) is a class
of deep learning neural networks, most commonly applied to analyzing and
processing visual inputs such as images. 16

deep neural network A deep neural network is an artificial neural network
with multiple layers between the input and output layers. The DNN rep-
resents, in the form of a directed acyclic graph, the correct mathematical
manipulation to turn the input into the output, whether it be a linear re-
lationship or a non-linear relationship. 12, 13, 16, 27

dialogue act Dialogue acts are the structured semantic representations of an
utterance in the context of a conversation created by NLU. They are often
structured as an intent, which captures the purpose of the utterance, and
slots, which are specific pieces of information related to the intent. Slots
usually have assigned values. 7, 8

dialogue context Dialogue context refers to the information from previous ut-
terances that helps to understand and interpret subsequent ones. It provides
continuity to the dialogue and enables the system to maintain the coherence
and relevance of the conversation. 7

dialogue management The component of a dialogue system responsible for
controlling the flow of the conversation. It includes dialogue state tracking
and action selection. 4, 8, 26, 27, 34

72

dialogue state tracking A sub-component of dialogue management. DST is
responsible for maintaining a representation of the dialogue’s context by
managing a data structure known as the "belief state’. This belief state
includes various elements such as slots and their assigned values (extracted
through NLU), user preferences, and past system actions. 8, 9, 26, 27, 34,
49, 52, 54, 58

directed acyclic graph A directed acyclic graph (DAG) is a concept from
graph theory in mathematics. A DAG is a finite directed graph with no
directed cycles. It consists of vertices and edges (ordered 2-tuples of ver-
tices), with each edge directed from one vertex to another so that following
those directions will never form a closed loop. 12

embedding In machine learning, embedding is a mapping from discrete objects,
such as words, tokens, or items, into a vector of continuous values. This
mapping allows these objects to be represented in a way that captures
semantic or contextual meaning. In NLP, word embeddings represent words
in a high-dimensional space where the distance and direction between words
indicate their semantic relationship. 19, 27

feed-forward neural network A feed-forward neural network, or FNN, is an
artificial neural network where connections between the nodes do not form
a cycle. The information in a feed-forward network moves in only one
direction, forward, from the input layer, through the hidden layers, to the
output layer. 16

language model A type of statistical model that is used to predict the proba-
bility of a sequence of words or generally tokens. 10, 11, 34

logits In machine learning, logits are the raw, non-normalized predictions a
model produces. In the context of neural networks, logits often refer to
the vector of raw predictions that a classification model generates before
passing through an activation function, such as a softmax or sigmoid func-
tion, which transforms the logits into probabilities. 20

Markov assumption In the context of language models, the Markov assump-
tion states that the probability of a token in a sequence is dependent only
on a fixed number of previous tokens, rather than all the preceding tokens.
10, 12

maximum likelihood A statistical method or function that is used for estimat-
ing the values of the parameters of a model from data so that these data
are the most probable. 11

n-gram A contiguous sequence of n items, such as words or tokens. N-grams are
widely used in natural language processing and computational linguistics.
10-12

73

natural language generation The part of a dialogue system that transforms
the representation of the system’s intended response into a coherent and
natural-sounding text. 4, 8

natural language processing A field of artificial intelligence that focuses on

the interaction between computers and humans through natural language.
9, 23, 26

natural language understanding The component of a dialogue system which
interprets the meaning of the input text. 4, 7, 27

recurent neural network Recurrent neural networks (RNNs) are a type of ar-
tificial neural network designed to recognize patterns in data sequences, such
as text, genomes, or sound. Unlike feed-forward neural networks, RNNs can
use their internal state (memory) to process sequences of inputs. 17, 27

speech synthesis Speech synthesis, also known as text-to-speech (TTS), is the
process of converting written text into spoken words. This technology is
critical for spoken dialogue systems, enabling them to communicate with
users in natural language speech. 8, 9

token In the context of natural language processing, a token typically refers to
the smallest unit of processing in a language model. Depending on the
actual model, a token could represent an individual word, a subword, or
even a single character. The process of converting text into such tokens is
referred to as tokenization. 10, 19

topological ordering In the context of a DAG, a topological ordering is a linear
ordering of its nodes such that for every directed edge (u,v) from node u
to node v, u comes before v in the ordering. 13

transformer An architecture introduced in the ”Attention is All You Need”
paper by Vaswani et al., 2017. It is based on self-attention mechanisms and
feed-forward networks. The architecture includes an encoder and a decoder,
each composed of a stack of identical layers.. 12, 19, 34, 35, 39

turn In a conversation, a turn refers to the opportunity for a participant to
speak or respond. In task-oriented dialogue systems, turns are typically
alternated between the user and the system. 7

utterance An utterance is a continuous block of speech or text from one par-

ticipant in a conversation. It represents a coherent expression of a single
thought or idea. 7

74

A. Attachments

A.1 Action support

Table A.1: Actions and their support.

Action Support | Supported
general-reqmore 10866 True
general-bye 7288 True
booking-inform 4314 True
booking-book(ref) 3919 True
general-welcome 3882 True
restaurant-inform(name) 3043 True
hotel-inform(choice) 2837 True
train-inform (leaveat) 2584 True
hotel-inform(name) 2495 True
restaurant-inform(choice) 2460 True
train-inform(trainid) 2370 True
restaurant-inform(food) 2359 True
restaurant-inform (area) 2235 True
hotel-inform(type) 2165 True
train-inform(arriveby) 2141 True
train-offerbook 2050 True
attraction-inform(name) 1946 True
restaurant-inform (pricerange) 1890 True
hotel-inform(area) 1738 True
hotel-inform (pricerange) 1680 True
attraction-inform(area) 1651 True
hotel-request (area) 1601 True
attraction-inform(choice) 1591 True
general-greet 1585 True
train-offerbooked (ref) 1552 True
restaurant-inform(address) 1530 True
train-inform(choice) 1480 True
attraction-inform(address) 1469 True
taxi-inform(type) 1464 True
attraction-inform(type) 1463 True
taxi-inform(phone) 1451 True
train-request(leaveat) 1426 True
attraction-inform(entrancefee) 1418 True
restaurant-request(food) 1394 True
hotel-inform(stars) 1380 True
attraction-inform(phone) 1328 True
booking-request (bookday) 1266 True
hotel-recommend (name) 1230 True

75

Table A.1: Actions and their supports (continued)

Action Support | Supported
train-inform(destination) 1222 True
attraction-inform(postcode) 1201 True
restaurant-inform(phone) 1194 True
restaurant-recommend (name) 1186 True
train-request(departure) 1177 True
train-request(day) 1173 True
hotel-inform(internet) 1170 True
attraction-recommend(name) 1123 True
train-request(destination) 1101 True
hotel-inform(parking) 1091 True
booking-book(name) 1081 True
train-inform(departure) 1052 True
hotel-request (pricerange) 1020 True
train-offerbooked(price) 1001 True
train-inform(price) 895 True
booking-nobook 894 True
restaurant-request (area) 845 True
hotel-inform (address) 782 True
booking-request(bookpeople) 763 True
train-request(arriveby) 745 True
booking-book(bookday) 744 True
train-inform(day) 735 True
restaurant-inform(postcode) 731 True
train-inform(duration) 730 True
booking-request(booktime) 691 True
booking-request(bookstay) 690 True
restaurant-request(pricerange) 686 True
attraction-request(type) 676 True
restaurant-nooffer 666 True
booking-book(bookpeople) 664 True
attraction-request(area) 646 True
taxi-request(leaveat) 557 True
taxi-request(departure) 542 True
hotel-inform(phone) 538 True
restaurant-nooffer(food) 516 True
hotel-inform(postcode) 512 True
booking-book(booktime) 476 True
train-request(bookpeople) 455 True
hotel-select 451 True
taxi-request(destination) 416 True
restaurant-select 408 True
booking-book(bookstay) 399 True
hotel-nooffer(type) 395 True
train-offerbooked(trainid) 346 True

76

Table A.1: Actions and their supports (continued)

Action Support | Supported
hotel-recommend (area) 335 True
attraction-recommend (entrancefee) 327 True
taxi-request(arriveby) 324 True
attraction-recommend(address) 324 True
hotel-request(stars) 312 True
train-offerbooked(bookpeople) 311 True
restaurant-recommend(food) 303 True
hotel-nooffer 297 True
restaurant-recommend (area) 292 True
restaurant-nooffer(area) 292 True
hospital-inform(address) 289 True
attraction-recommend (area) 278 True
hotel-recommend(pricerange) 268 True
attraction-nooffer(area) 267 True
attraction-nooffer(type) 254 True
hospital-inform(phone) 251 True
hospital-inform(postcode) 247 True
hotel-recommend (stars) 244 True
restaurant-recommend (pricerange) 242 True
police-inform(phone) 234 True
hospital-inform(name) 231 True
booking-inform(name) 228 True
train-select 223 True
hotel-select(type) 223 True
police-inform(postcode) 211 True
hotel-request(parking) 210 True
hotel-request(type) 210 True
police-inform(address) 209 True
attraction-select 205 True
hotel-nooffer(area) 195 True
hotel-nooffer(stars) 189 True
train-offerbooked(leaveat) 185 True
taxi-inform(departure) 183 True
restaurant-recommend (address) 182 True
restaurant-select(food) 170 True
hotel-nooffer(pricerange) 167 True
attraction-recommend(type) 163 True
hotel-request (internet) 162 True
hotel-recommend(type) 160 True
hotel-recommend (internet) 156 True
taxi-inform(destination) 154 True
taxi-inform(leaveat) 149 True
train-offerbook (trainid) 145 True
restaurant-nooffer(pricerange) 145 True

77

Table A.1: Actions and their supports (continued)

Action Support | Supported
hotel-recommend(parking) 143 True
attraction-recommend(postcode) 135 True
train-offerbook(leaveat) 128 True
police-inform(name) 126 True
attraction-recommend(phone) 122 True
hotel-recommend (address) 118 True
train-offerbooked (arriveby) 102 True
hotel-select(pricerange) 99 True
taxi-inform(arriveby) 98 True
train-offerbooked(departure) 91 True
attraction-nooffer 91 True
attraction-request(name) 90 True
train-offerbook(arriveby) 89 True
train-offerbooked(destination) 88 True
booking-book 87 True
attraction-select(type) 84 True
train-inform(ref) 83 True
restaurant-select(pricerange) 83 True
hospital-request(department) 79 True
hotel-select(area) 78 True
hospital-inform(department) 75 True
restaurant-select(area) 75 True
restaurant-select(name) 73 True
train-offerbooked(day) 72 True
hotel-request(name) 70 True
booking-nobook(name) 69 True
booking-inform(bookday) 67 True
attraction-request(entrancefee) 64 True
hotel-select(name) 64 True
restaurant-recommend (phone) 60 True
restaurant-inform (ref) 59 True
booking-nobook(bookday) 58 True
booking-inform(bookpeople) 58 True
booking-nobook(booktime) 52 True
train-select (leaveat) 48 True
restaurant-request(name) 46 True
hotel-inform (ref) 46 True
restaurant-recommend (postcode) 46 True
hotel-select(stars) 45 True
train-offerbook(destination) 42 True
general-thank 42 True
hotel-inform 41 True
taxi-inform 39 True
train-nooffer 38 True

78

Table A.1: Actions and their supports (continued)

Action Support | Supported
restaurant-inform 38 True
hotel-recommend(postcode) 33 True
train-offerbook(departure) 33 True
train-nooffer(leaveat) 32 True
train-offerbook(bookpeople) 30 True
hotel-recommend(phone) 29 True
booking-nobook(bookstay) 29 True
hotel-select(choice) 28 True
train-offerbooked 28 True
hotel-nooffer(parking) 27 True
attraction-select(area) 27 True
booking-inform(booktime) 26 True
attraction-inform 26 True
attraction-select(name) 26 True
train-offerbook(day) 25 True
hotel-nooffer(internet) 25 True
train-select(arriveby) 24 True
attraction-select(entrancefee) 24 True
booking-inform(bookstay) 23 True
train-inform 22 True
train-select (trainid) 21 True
train-offerbook(price) 20 True
train-nooffer(departure) 18 True
booking-nobook(bookpeople) 17 True
train-nooffer(destination) 17 True
train-select(departure) 16 True
train-select(day) 15 True
restaurant-select (choice) 15 True
restaurant-recommend(choice) 14 True
train-nooffer(day) 14 True
booking-nobook(ref) 13 True
booking-inform(ref) 13 True
attraction-inform(openhours) 12 True
hotel-recommend 12 True
attraction-recommend (choice) 11 True
hotel-select(parking) 11 True
train-select(destination) 11 True
restaurant-recommend 11 True
train-inform(bookpeople) 10 True
hotel-select(internet) 10 True
train-offerbooked(duration) 9 False
hotel-recommend(choice) 9 False
hotel-nooffer(name) 8 False
taxi-request(bookpeople) 8 False

79

Table A.1: Actions and their supports (continued)

Action Support | Supported
train-offerbook(choice) 8 False
train-offerbook(duration) 8 False
attraction-recommend 7 False
train-nooffer(arriveby) 6 False
train-select(choice) 5 False
restaurant-select(address) 5 False
attraction-select(choice) 5 False
hotel-nooffer(choice) 4 False
attraction-nooffer(name) 4 False
restaurant-nooffer(name) 4 False
train-offerbook(ref) 3 False
attraction-recommend(openhours) 3 False
train-offerbooked(choice) 3 False
booking-request 2 False
train-nooffer(trainid) 2 False
train-nooffer(choice) 2 False
hotel-select(address) 2 False
taxi-request 2 False
train-select(bookpeople) 2 False
attraction-select(phone) 1 False
restaurant-nooffer(choice) 1 False
hotel-select(phone) 1 False
taxi-request(type) 1 False
train-select(price) 1 False
attraction-nooffer(choice) 1 False
taxi-inform(choice) 1 False
police-inform 1 False
train-request 1 False
taxi-request(bookday) 1 False
attraction-request(phone) 1 False
attraction-select(address) 1 False
restaurant-request 1 False
attraction-nooffer(address) 1 False

A.2 Dialogue Analysis Example

Following is the example and analysis of 3 first turns of a dialogue that shows
the effectiveness of the DST model (trained on the entire train dataset) and the
shortcomings of action prediction models:

1. User uterance:
“We need to find a guesthouse of moderate price.”

80

Context:
None in this turn, as this is the first user utterance in the dialogue.

Reference string state:
“hotel - intent: find_hotel, pricerange: moderate, type: guesthouse”

This is a summary of the key attributes of the hotel that the user
wants to find. In this case, they're looking for a hotel, specifically a
guesthouse, in a moderate price range.

Predicted string state:
“hotel - intent: find_hotel, pricerange: moderate, type: guesthouse”

The predicted state matches the reference state, which means the
model correctly understood the user’s intent and the specifications
they’re looking for in a hotel.

Reference actions:

— hotel-request(area)
— hotel-request(stars)
These actions indicate that the system should be requesting more in-

formation about the area and star rating of the guesthouse that the
user wants to find.

Predicted actions using generative model:

— hotel-inform(choice)
— hotel-inform(pricerange)
— hotel-inform(type)
— hotel-request (area)
The predicted actions include informing the user about choices, the

price range, and type of guesthouses, and also includes a request for
more information about the area, like in the reference actions.

Predicted actions using classification model:

— hotel-inform(choice)

— hotel-request (area)

The classification model predicted actions include informing the user
about choices and requesting more information about the area. Unlike
the generative model, it doesn’t include actions to inform about the
price range and type.

. User utterance:
“I would like it to have a 3 star rating.”

Context:
“I can help you with that. Do you have any special area you would
like to stay? Or possibly a star request for the guesthouse?”

Here, the system asks for more details about the guesthouse, including
the desired star rating. The user responds by expressing a preference
for a 3-star guesthouse.

81

Reference string state:

“hotel - intent: find_hotel, pricerange: moderate, stars: 3, type: guest-
house”

This state indicates that the user is still looking for a hotel, with the
additional specification that they want a 3-star guesthouse.

Predicted textual state:
“hotel - intent: find_hotel, pricerange: moderate, stars: 3, type: guest-
house”

The predicted state matches the reference state, indicating that the
model has correctly incorporated the user’s newly expressed preference
for a 3-star guesthouse.

Reference Actions:
— booking-inform
— hotel-inform(area)
— hotel-inform(name)
— hotel-inform(stars)
— hotel-inform(type)
These actions suggest that the system should provide some information

related to booking, and about the area, name, star rating, and type of
the hotel.

Predicted actions using generative model:

— hotel-inform(choice)
— hotel-inform(pricerange)
— hotel-inform(stars)
— hotel-inform(type)
— hotel-request(area)
The generative model’s predictions are partly aligned with the refer-

ence, although it includes an action to request information about the
area and doesn’t include the action to provide booking information.

Predicted actions using classification model:

— hotel-inform(choice)
— hotel-inform(type)
The classification model’s predictions are more limited and do not

include actions to provide information about the area, the name, or
the star rating of the hotel, nor about booking.

. User utterance:
“Yes, please, for four people.”

Context:
“The Bridge Guest House is a 3 star guesthouse. It is in the south
area. Would you like to book a room?”

In response to the system’s suggestion and booking query, the user con-
firms their interest in booking a room for four people at the suggested
guesthouse.

82

e Reference string state:
“hotel - bookpeople: 4, intent: book_hotel, name: bridge guest house,
pricerange: moderate, stars: 3, type: guesthouse”
The reference state indicates that the user intends to book a hotel for
four people. The specific hotel, the Bridge Guest House, is a moder-
ately priced 3-star guesthouse.

o Predicted string state:
“hotel - bookpeople: 4, intent: book_hotel, name: bridge guest house,
pricerange: moderate, stars: 3, type: guesthouse”

The predicted state matches the reference state, indicating that the
model correctly understood the user’s booking intent, hotel choice,
and number of people for the booking.

« Reference actions:
— booking-request(bookpeople)
The reference action indicates that the system should process the re-
quest to book a room for four people.
e Predicted actions using generative model:

— booking-request(bookday)
— booking-request(bookstay)

The generative model incorrectly predicts actions to request booking
day and duration, while the user already confirmed the booking for
four people.

e Predicted actions using classification model:

The classification model does not predict any actions, indicating that
it has failed to capture the user’s intent to book a room for four people.

A.3 Source Code Description and Usage

This section provides a brief overview of the source code used for training and
evaluation of our models. For a more detailed understanding of the code, we rec-
ommend direct examination of the Python scripts and associated documentation
within the source code.

The codebase used for training and evaluation of our models is structured as
follows (Figure A.1): the root directory of the project, project_root, contains
the following subdirectories and files:

e requirements.txt is used to install packages into a Python environment.
To install the required packages, you can call

pip install -r requirements.txt
o src: Contains all source Python scripts for model training and evaluation.

Important scripts to note are:

83

— main_action_classification.py,
— main_action_generation.py,

— main_state_update.py,

evaluate_pipeline.py.

These scripts accept several command-line arguments, as described
below.

o data: Contains the following:

— cache: A cache for the dataset. If this does not exist, it will be created.
— database: Contains JSON files with database entries for each domain.

— actions_support.csv: A CSV file with the values in Appendix A.1.
» models: Stores trained models.

e results: Saves metrics and results of evaluations.

If you’re interested in the output of our models, we recommend examining
the contents of the results folder. This directory contains subdirectories
named test<r>, where <r> is the ratio of the training dataset that the
model was trained on (30, 50, or 100). Each test<r> folder contains two
subfolders:

— generated_state: Contains results for action selection models using
the generated dialogue state as input.

— ground_true_state: Contains results for action selection models us-
ing the ground-truth dialogue state as input.

Each of these subfolders includes metrics and results:

* test_action cla metrics.csv,
* test_action_gen metrics.csv,
* test_state_metrics.csv

* test_results. json,

* test_results.csv,

* test_results_subset.json

* test_results_subset.csv.

A.3.1 evaluate_pipeline.py

This script is used for evaluating the models. An example of running this script
in a terminal is:

python evaluate_pipeline.py

--state_model name or_path "[DST_model]"
--action_cla_model name or_path "[AS classification_model]"
--action_gen model name_or_path "[AS_generation_model]"
--use_predicted_states False

84

--save_path "../results/test_all/ground true_state"
-—dataset_name ’test’

--random_seed 42

--data_path "../data"

A.3.2 main action _classification.py

This script is used for training the action classification model. The command to
run this script in a terminal is:

python main_action_classification.py
--model name_or_path ’roberta-base’
--model_root_path "../models/action_classification"
--local model False

-—tokenizer name ’roberta-base’
-—train subset size 1.0

--batch_size 32

--max_seq_length 509

-—epochs 30

--learning_rate 2e-5
--early_stopping patience 15
--data_path "../data"

A.3.3 main_action_generation.py

This script is used for training the action generation model. Example command:

python main_action_generation.py
--model_name_or_path ’google/flan-t5-base’
--model_root_path "../models/action_generation"
--local model False

—--tokenizer_name ’google/flan-t5-base’
--train_subset_size 0.5

--batch_size 16

--max_source_length 260
--max_target_length 230

—--epochs 50

--learning rate le-4

-—early_stopping patience 20

--data_path "../data"

A.3.4 main_state_update.py

This script is used for training the DST model. Example command:

python main_state_update.py
--model_name_or_path ’google/flan-t5-base’
--model_root_path "../models/state"
--local_model False

85

--tokenizer_name ’google/flan-t5-base’
--train_subset_size 0.5

--batch _size 16

--max_source_length 260
--max_target_length 230

—-—epochs 50

--learning rate le-4

--early_stopping patience 15
--data_path "../data"

Please refer to the individual scripts for more detailed information about each
argument.

86

project_root

— requirements.txt
— srC

— main_action_classification.py
— main_action_generation.py

— main_state_update.py

L evaluate_pipeline.py
— data

cache

database

actions_support.csv

— models

L

— results

model _files

— test30

generated_state

ground_true_state

— testb0

generated_state

ground_true_state

— test100

generated _state

ground_true_state

Figure A.1: Directory structure of the project.

87

	Introduction
	Theoretical Background
	Dialogue Systems
	Chatbots and Task-oriented Dialogue Systems
	Task-oriented Dialogue Systems and Their Traditional Architecture

	Language Modeling
	Language Models
	N-grams and n-gram Language Models
	Estimating n-grams Probabilities
	Text Generation Using Language Models

	Deep Neural Networks
	Understanding Deep Neural Networks
	Building Blocks of DNNs
	Training Deep Neural Networks
	Feed-forward and Convolutional Neural Networks
	Recurrent Neural Networks
	Sequence-to-Sequence Architecture

	Transformers
	Transformer Encoder-Decoder Structure
	Input, Output, and the Embeddings
	Positional Encoding
	Multi-Head Attention
	Feed-Forward Networks, Residual Connections, and Layer Normalization

	Pretrained Language Models
	Transfer Learning in NLP
	Pretrained Language Models and Pretraining Methods
	Fine-tuning Large Language Models
	Influential Large Language Models

	Dialogue Management and Related Work
	Early Dialogue Management
	Modern Approaches to Dialogue Management
	Dialogue State Tracking
	Action Selection / Dialogue Policy
	End-to-End Dialogue Systems

	Practical Dialogue Management
	Dialogue State Tracking
	Theoretical Description of Generative DST
	Dialogue State and the String Representation
	The Input and Output Strings

	Action Selection
	Theoretical Description of Generative Action Selection
	Theoretical Description of Classification-Based Action Selection
	Database and the String Representation
	Action and String Representation
	The Input and Output for Action Selection

	Experiments
	The MultiWOZ Dataset
	MutliWOZ
	MultiWOZ 2.1
	MutliWOZ 2.2
	Train Dataset and its Subsets
	Dialogue State Ontology
	Supported Actions

	Dialogue State Tracking Metrics
	Domain Level Metrics
	Slot Level Metrics
	Global Slot Level Metrics
	Joint Goal Accuracy

	Action Selection Metrics
	Action Level Metrics
	Turn Level Accuracy
	Macro Averaged Metrics
	Weighted Averaged Metrics

	Model Training Details

	Results and Discussion
	Dialogue State Tracking Results
	Action Selection Results
	Manual Analysis

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	List of Glossaries
	Attachments
	Action support
	Dialogue Analysis Example
	Source Code Description and Usage
	evaluate_pipeline.py
	main_action_classification.py
	main_action_generation.py
	main_state_update.py

