

MASTER THESIS

Denis Iudin

Procedural Generator of Short Detective-like Stories

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Jakub Gemrot, Ph.D.

Study programme: Computer Science

Specialization: Computer Graphics and Game Development

Prague 2023

i

I declare that I carried out this master thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University has the right to conclude a license agreement on the use of this work as a

school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ signature

ii

I thank my family and friends for their understanding and support. I also want to thank my

supervisor Jakub Gemrot for his advice, kindness and patience.

iii

Title: Procedural Generator of Short Detective-like Stories

Author: Denis Iudin

Department / Institute: Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Jakub Gemrot, Ph.D.

Abstract: Procedural generation of interactive stories is still an understudied area, most of the

work on which is purely academic, while the application of these technologies in a practical, for

a wide audience, area promises good prospects. The reason lies in a large set of factors that

complicate the practical use of such systems. In this work, we solve some of them by proposing a

new algorithm for this, with the help of which we create a system that generates interactive

stories. We visualize the narratives of these stories, and on their basis we create a text quest on

the Twine platform.

Keywords: text game, procedural content generation, Twine

1

Contents

Introduction ... 3

1. Background .. 6

1.1 Artificial intelligence ... 6

1.2 Multi-agent system .. 6

1.3 Automated planning and scheduling ... 7

1.3.1 Stanford Research Institute Problem Solver ... 8

1.3.2 Planning Domain Definition Language .. 9

1.3.3 Constraint satisfaction problem .. 10

1.4 Procedural content generation ... 10

1.5 Interactive storytelling .. 11

1.5.1 Dramatic structure ... 12

1.5.2 Believable Agents .. 14

1.5.3 Consistency and coherence of narrative ... 14

1.5.4 Narrative experience .. 14

1.5.5 Story-Centric and Character-Centric Designs .. 14

1.5.6 Emergent narrative .. 15

1.5.7 Authorial Intent and Authorial Liberty ... 16

1.6 Games ... 18

1.6.1 Quests (Adventure games) ... 18

2. Related works .. 20

3. Narrative generation ... 23

3.1 System’s input and output .. 23

3.2 Architecture ... 27

3.3 Story world creation.. 28

3.4 Agent model ... 28

3.5 User model ... 29

3.6 Planning Domain ... 30

3.7 Planning Problem .. 32

3.8 Story Planning ... 34

3.9 Convergence model and constraints .. 35

4. Use cases ... 36

5. Implementation ... 40

5.1 Overview of software choice ... 40

5.1.1 General concept .. 40

2

5.1.2 Fast Downward ... 40

5.1.3 Graphviz .. 41

5.1.4 Twine ... 42

5.2 Generator ... 43

5.2.1 General algorithm .. 43

5.2.2 User interface .. 47

5.2.3 Implementation of the environment ... 48

5.2.4 Agent implementation .. 48

5.2.5 Player implementation specifics .. 49

5.2.6 Implementation of the story graph, graph nodes and states of the story world 50

5.2.7 Implementing goal states ... 50

5.2.8 Implementation of actions ... 51

5.2.9 Constraint implementation .. 52

5.3 External module – planner ... 52

5.4 External module - graph visualizer ... 53

5.5 External module - a platform for writing interactive literature, text games and visual novels

 ... 53

Conclusion .. 55

Future work ... 56

Bibliography .. 57

List of Abbreviations ... 68

List of Figures .. 69

A Attachments ... 70

A.1 Source code ... 70

A.2 User documentation ... 70

3

Introduction

Video games are an important part of modern culture and lifestyle. The number of people who

are more or less fond of them is over three billion people around the world [1]. Also, in 2011,

video games were officially recognized by the US government and the US National Endowment

for the Arts as a separate art form, along with theater, cinema and others [2]. Moreover, the

revenues of the gaming industry for 2021 amounted to $180 billion [3].

An important part of this industry is the production of high-budget games designed for a mass

audience. However, their development requires significant work of large teams, consisting of

hundreds of specialists in various fields, most of whom work on the creation of game content:

sounds, music tracks, geometric models, textures, levels, animation, texts, narration, quests [4,

5]. With the passage of time and the development of technology, the amount of content produced

only increases, requiring more and more financial resources and time. It would expect these

factors to automate and speed up the content creation process, however, with rare exceptions,

most content is still produced manually. As a result, content creation is seen as a bottleneck in

mind of development budget and production time [4, 6]. Procedural content generation methods

are a way to solve this problem, able to speed up the production of content by automating this

process and thereby take some of the burden off developers. The essence of this approach is that

game content is not created manually, but by a computer that executes a well-defined algorithm,

with limited or without human participation [4, 5].

This topic has been researched for several decades, and during this time, procedural content

generation methods have been used to create many types of content. For example, in Elite

Dangerous [7] and No Man's Sky [8], procedural generation methods are used to create a huge

(count goes into the billions) number of detailed star systems, in Borderlands [9] they are used to

generate items with various properties, taking into account those features that the player uses

most often, in Minecraft [10] are used to generate biomes and ecosystems, and separate systems

are also used in many games at once, for example, SpeedTree [11] for generating vegetation and

CityEngine [12] for generating urban environments [4, 13]. A separate type of procedural

content generation, also developing over time, is the generation and adaptation of narratives [14].

By narrative, we, according to the definition given in The Cambridge Introduction to Narrative,

mean the representation of an event or a series of events. Moreover, "event" here can be replaced

by "action". Without an event/action, the text will be only a description, but with them it will be

a narrative [15]. We will return to this issue below to consider it in more detail. However, at the

moment, most of the methods for procedural generation of narratives are not adapted to function

in a highly dynamic interactive environment. Therefore, they are not suitable for use in

commercial video games intended for a general audience, either as a method for generating a

scenario or as a method for generating quests (that are part of the narrative development

mechanism). This is confirmed by the extremely few attempts to use them in commercial

projects, which, at the same time, turn out to be very limited. For example, Left4Dead [16]

generates scenarios by dynamically creating encounters, which can hardly be called narrative

generation in the full sense of the word, nor is it quest generation [4]. The Elder Scrolls V:

Skyrim [17] dynamically generates quests using the Radiant Story system, randomly filling quest

templates with the correct entities: locations, enemy types, and reward options, which is a pretty

straightforward approach. This system is not designed to generate large, long and complex quests

[4, 18]. According to player feedback, quests generated by this system are significantly less

interesting than quests generated by traditional methods [19]. It is also eloquent that not exists a

single significant commercial game belonging to genres the essence of which is interactive

storytelling - visual novels and text quests, which would use the methods of procedural narrative

generation.

4

This situation is due to the fact that the generation of interactive narratives and quests for video

games has a number of problems, the main of which is the dynamic interaction between the

player, the environment, characters and the narrative itself as a whole. An important task in this

case is to ensure the player's control over the environment and, at the same time, maintain the

logical coherence of the narrative and the believable behavior of the characters. The essence of

this problem is that any interaction, even the most insignificant at first glance, can affect the

entire narrative as a whole. For example, killing a certain character important to the plot will

make it impossible for him to appear in the story. Accordingly, this is a threat to the consistency

of the narrative and requires a replanning (restructuring) of the narrative, taking into account this

fact, right at runtime [20]. Another significant problem is the need to provide a sufficient level of

variability, since the repetition of the same actions causes frustration for the players [21].

Another reason why commercial games do not use any complex form of quest generation, much

less narrative, such as planning, is that it reduces the developer's authorial control over the

system. This increases the likelihood that the generated quests will violate the overall author's

intent or will have a meaning conflict with each other [22]. That is, due to the imperfection of the

generation mechanisms and the reduction of author's control, the consistency and believability of

the narrative are reduced.

Thesis goals

In this thesis, we will focus on the challenges developers face when generating interactive

narratives and quests that we mentioned above, such as handling dynamic interactive

environments, maintaining narrative coherence, and believable agent behavior. We will also pay

attention to ways of introducing the author's (designer's) intentions into the system and methods

of maintaining the narrative in accordance with them, so that developers can influence the

algorithm by adjusting its parameters. To do this, we will formulate our concept of how this can

be achieved and implement it in the form of a prototype of a software tool that allows us to

procedurally generate a consistent and believable narrative which adapts to the actions of the

player in an interactive environment, taking into account the parameters set by the author of the

generated story.

We believe that such a system could be used as a tool for quest designers to help them calculate

all possible options for the development of the narrative given the parameters and interaction

factor with the player having the freedom to choose from at least several options in their actions.

This will allow to fix or cut some of these options that previously remained unaccounted for, due

to the limited development time and human abilities to predict non-linear sequences of events

with many factors influencing them. Thus, this system will help them save time and resources

either directly on development or on fixing errors caused by collisions in the narrative and player

behavior that will appear in the future. Also, it could be used as a direct tool for creating the

basis of quests (which, however, will need further processing by linguistic algorithms), and

transferred them in finished form directly into a development tool, for example, into a platform

for writing interactive literature, text games and visual novels - Twine [23], which will also

reduce development time and costs.

We will also describe the algorithm underlying the developed prototype, which uses the

principles of a multi-agent system with centralized regulation and the CSP methodology.

However, since the problem under consideration is quite complex and extensive, we do not set

ourselves the goal of creating a solution that is immediately ready for commercial use. Instead,

we will formulate a fairly general algorithm that has certain shortcomings, which we will

implement in a software prototype (and therefore we will restrict ourselves to the area of

dramatic adventure and detective stories) in order to test the prospects of our method as a whole.

5

Thesis structure

This thesis is organized as follows. It is structurally divided into three parts: theoretical,

development and implementation. The theoretical part includes Chapter 1, in which we describe

key terms and concepts, the context of our work, and Chapter 2, in which we present related

works. The development part includes Chapter 3, in which is present the proposed method for

generating narrative, and Chapter 4 showing use cases for our system. The third part, that

describes the implementation, is presented in Chapter 5, which describes the details of our

specific implementation of the tool for procedurally generating consistent narratives. At the end,

we present conclusions and indicate the area of future work.

6

1. Background

In this chapter, we will introduce the terms and key concepts that we will use and refer to in the

following. We will try to provide the reader with the amount of information that will be

sufficient to ensure their understanding, but we will not conduct a complete analysis, since this

work does not pretend to be an introductory material for a reader who is completely unfamiliar

with them. Thus, to begin with, we will acquaint the reader with such a concept as Artificial

Intelligence, consider certain areas of its application - planning and scheduling, multi-agent

systems, procedural content generation. We will also stay in more detail on explaining what

interactive storytelling and narrative generation are, and tell about their most important features.

In the end, we will touch on the topic of video games, covering such concepts as game design

and quests.

1.1 Artificial intelligence

It is not easy to give a precise definition for Artificial Intelligence, due to the fact that there is no

unambiguous definition of human intelligence. The consequence of this is that there are many

definitions of Artificial Intelligence, each of which is more or less vague. We will give a rather

fresh, but already generally accepted, definition given by Stuart Russell and Peter Norving. They

define Artificial Intelligence as "intelligent agents that receive information from the environment

and take actions that affect that environment". This definition connects several different areas of

Artificial Intelligence, holding them together through a machine capable of achieving a given

goal, perceiving and influencing the environment [24]. It is especially convenient for us, since

we are developing a multi-agent system and this type of Artificial Intelligence is closely related

to the concept of “intelligent agents”. In addition to the concept of multi-agent systems, the area

of artificial intelligence known as planning and scheduling is also important to us. We will

describe them below.

1.2 Multi-agent system

A multi-agent system is a computerized system that consists of several interacting computational

elements called intelligent agents. Agents have two important capabilities. First, they are capable

of autonomous action, independently deciding which actions to take to achieve the goals for

which they are programmed. Secondly, they are able to interact with each other. This interaction

is broader than a simple exchange of data, and rather resembles the social activities of people,

which they were inspired: cooperation and coordination [25]. Moreover, agents can differ

markedly in their structure and complexity. For example, the simplest type of intelligent agents

are reactive agents that simply perceive the environment and, based on their perception, act in

the condition-action paradigm, i.e. react to external stimuli. More complex agents are capable of

self-learning or have a set of personal characteristics and desires that influence their actions.

Also, an important part of MAS is that agents act in some environment (software or physical),

which they are able to perceive and which they are able to influence (change it).

7

An example of a scheme of the simplest intelligent agent (without a self-learning module) is

shown in Figure 1:

Our interest in MAS in the context of interactive storytelling and narrative generation is because

they are successfully used to model social systems, demonstrating social behavior, due to the fact

that they can be quite fine-tuned [26]. This quality makes it easy to relate agents to characters

within a narrative, assigning them specific roles to demonstrate believable and rational behavior.

1.3 Automated planning and scheduling

Automatic planning and scheduling is an area of artificial intelligence tasks that determines the

actions necessary to achieve the goal (planning) and group them into an ordered sequence

(scheduling) for subsequent execution. Used in areas such as intelligent agents and autonomous

robots.

Each specific problem, for the solution of which it is necessary to synthesize a plan, is called a

planning problem. It consists in choosing a sequence of actions that, step by step, transforms the

initial state of the system so that it corresponds to the goal state. The state is considered as a

specific configuration of the system (a set of atomic facts, state variables). Actions performed by

agents change state variables, which ensure the transition of the system from one state to another.

The set of all states is called the state space. Structurally (and graphically), it forms a graph in

which two states are connected by an edge if there is an action that can be performed to

transform the first state into the second.

The term planning domain refers to the set of actions and state variables specific to a given

planning problem. The planning problem itself is a broader concept than the domain that is its

component, including also the initial state and the list of goal states.

Formally, we can formulate the planning problem as a triple:

(Σ, s0, g)

where Σ is the planning domain describing states and actions (transition between states), s0 is

the initial state, and g characterizes the goal states.

Fig. 1 Scheme of the simplest intelligent agent.

8

Almost all planning algorithms are based on search and differ only in what space is explored

(state space, plan space) and how exactly they do it (forward search, backward search, domain

dependent) [27].

A serious complication with automatic planning is that the state space can grow extremely

rapidly, even exponentially, along with the number of state variables. Because of this, it is

subject to the curse of dimensionality and combinatorial explosion, which lead to the fact that the

number of states can reach hundreds of millions and their exploration by brute force becomes

impossible. To alleviate this problem, various heuristics are used to select the more relevant

action and cut the search space to reduce the number of states to be explored to a more

manageable number [28]. This problem is especially relevant when generating a narrative, since

complex stories imply the presence of a large domain (in this case, the number of state variables

is of primary importance) and, accordingly, the state space in them is astronomically large. But

even in a simple domain, such as the one presented in S. Ware et al. [29], which contains only 4

locations, 9 agent beliefs, and 7 actions, the number of states was 300 million, and the number of

edges was a billion.

The most popular languages for representing planning problems are STRIPS and PDDL, which

we consider below.

1.3.1 Stanford Research Institute Problem Solver

STRIPS (STanford Research Institute Problem Solver) was the first system that was created

directly for solving planning problems [30]. Subsequently, the name STRIPS was also used to

refer to the formal language describing the input data of this system. This language gained

popularity and became the basis for most modern languages for describing automatic planning

problems.

STRIPS offered a representation of the planning problem, which now is considered a classic. In

it, states are a set of instantiated atoms, and the operator is a triple (name, precondition, effect),

in which precondition and effect are sets of literals. Action itself is an instance of the operator:

precondition+ ⊆ s ∧ precondition– ∩ s = ∅ → (s – effects–) ∪
effects+

That is, actions are grouped into parameterized templates called action (operator) schemas. For

example, the “stack” action, which puts one cube on top of another in one of the classic

problems. There may be many separate actions for each pair of cubes. But it is more convenient

to group all such actions within the framework of one parameterized scheme “stack(x,y)”

where the parameter x - denotes the cube that will be on top, and y - the cube that will be on the

bottom. Specific actions are obtained by substituting specific constants for parameters. Only

specific schemes of actions can be applied, i.e. the actions themselves.

The description of each action scheme consists of two main parts: a description of the

preconditions which satisfy the action is applicable, and a description of the effect of the action.

Preconditions are specified using a single formula. In order to find out whether the action is

applicable in some considered state, it is necessary to check the truth of the precondition, i.e.

prove that the precondition corresponds to the set of axioms of the considered state. The effect

of an action is defined through two lists: a list of formulas that are added to the state, and a list of

formulas that are removed from the state because they become false as a result of applying the

action [27].

9

An example of action schemes in the STRIPS formalism is shown in Figure 2:

1.3.2 Planning Domain Definition Language

Planning Domain Definition Language (PDDL) is one of many languages based on the STRIPS

notation. Its distinguishing feature is that it was created as an attempt to standardize languages

for describing automatic planning problems. This was originally done to enable the International

Planning Competition. This language turned out to be a good decision, as a result of which the

community began to develop and improve it with each new competition, several separate

modifications were created. Thanks to constant development, this language remains modern and

relevant. The advantage of standardization provided by PDDL is that researches can be reused

and easily compared, although this comes at the cost of losing some expressive power compared

to domain-specific systems and languages [31].

Planning problems described using PDDL are divided into two files:

 Domain: for types, predicates, functions and actions.

 Problem: for objects, initial state and goal description.

Since this language is based on the STRIPS formalism, the descriptions created with it, although

they have some specific features, in general look very similar to STRIPS.

Most modern planners use this language to represent planning problems, which makes it the

most likely candidate for use in generating a narrative using multi-agent systems, where an

important component will be the planning by agents of their actions.

Fig. 2 An example of a planning problem domain in the classical representation,
where the constants are the blocks a,b,c, the predicates ontable(x), on(x,y), clear(x),
holding(x), handempty, and the action schemes are visible on the image itself.
Source: Roman Barták lectures slides, Planning and Scheduling, State space planning
(forward, backward, lifting, STRIPS).

10

1.3.3 Constraint satisfaction problem

Constraint satisfaction is a technology for describing and solving combinatorial optimization

problems. Accordingly, the constraint satisfaction problem consists of:

 Finite set of variables.

 Domains - finite sets of values for each variable.

 Finite set of constraints, each of which is an arbitrary relation over a set of variables and

can be defined extensionally (set of compatible tuples) or intentionally (formula).

Typical examples are: Sudoku (a type of puzzle with substitution of numbers according to a

constraint), coloring a graph according to given constraints, or the N-Queens problem.

The CSP solution is a full variable assignment that satisfies all constraints.

Usage of the CSP formalism is also possible for solving planning problems (for example, CSP

techniques are used in the Graphplan algorithm). The improvement of standard algorithms for

use with CSP techniques leads to an increase in the efficiency of planning. The problem is that

CSP uses static encoding, but the planning problem is dynamic because we do not know the

length of the plan beforehand. The solution to this problem was found in looking for plans of a

certain fixed length, and in case of failure, increasing this length. The planning problem can be

recoded into a constraint satisfaction problem using state variables that will describe the

properties of an object depending on the state as a function and which can be reduced to CSP

variables with a domain corresponding to a range of values. The initial and goal states can then

be encoded in the form of unary limiting conditions, and actions can be encoded in the form of

conditions linking action variables to "adjacent" state variables. The constraint satisfaction

technique is also used to extract the plan from the planning graph. The cost of increased

efficiency is the exponential increase in problem size due to CSP domains, while maintaining the

same number of variables [32].

In addition, CSP can be used to test the consistency of the finished graph. Which can also be

used in the field of narrative generation, since maintaining the consistency of the narrative is one

of the most important goals.

1.4 Procedural content generation

As we mentioned above, procedural content generation is an algorithmic process of creating

content, both with and without human participation. The content created in this way can be of

any type: images, sounds, texts, 3D models, game rules and mechanics, quests, etc [33]. This

process can be either completely random or deterministic, for example, when creating an image,

the color of each individual pixel will depend on its coordinates [34].

The benefits of using PCG are that this method allows to speed up the content production

process, compared to completely manual production. At the same time, it allows to develop it in

large quantities (billions of star systems in Elite Dangerous [7] or No Man’s Sky [8] would be

almost impossible to create manually) and at the same time provide a sufficient level of content

diversity [4, 13].

In the case when content is generated with the participation of a person - the author or content

designer, then this is called a "mixed initiative". In this case, the computer and the human

designer work together to create content, but the ratio of their participation may be different. For

example, a computer can only offer some options to a human, while he makes the final decision

11

[35]. On the other hand, a content designer may only be able to set a few own wishes, and the

computer will do the rest of the work [36].

The main disadvantage of PCG is that the generated content may seem noticeably more artificial

to players compared to human-generated content, which will frustrate them. We mentioned this

effect above when talking about the Radiant Story system [19]. Usage of mixed initiative helps

to cope with this disadvantage. In the context of procedural narrative generation, this problem

becomes completely unacceptable, and tools for setting and regulating the author's intention are

used to solve it.

1.5 Interactive storytelling

Here, before continuing, we would like to note that there are two terms that are often used

synonymously and interchangeably - storytelling and narrative (the situation is similar with the

terms story and narrative). We will define them to avoid further confusion. Storytelling theorist

Olaf Bryan Wielk writes that story is the architecture of the elements of a story as a whole:

events, characters, and their relationships. A narrative is a sequence of story elements presented

in a specific order. Different narratives of the same story can be built by reordering the elements

of the story [37]. Also, Professor J. Martin from Media Design School Dusseldorf writes that

story - what is told. It is more creative, focused on the creative techniques and emotions of the

user. It’s the content. Narrative - how it is told. Narrative is more about the technical side, the

way the story is organized and represented. It’s a form [38]. Based on these statements, we will

define storytelling as the creative aspect of creating a story. For example, in the context of

storytelling, interactivity is understood as an artistic method. We will define narrative as the

technical aspect of creating a story. For example, interactivity in its context would be understood

as a technical feature of the way a story is told. As is evident, these are interrelated concepts, and

one cannot exist without the other, the only difference is what is emphasized when using a

particular term.

We give a diagram of the components of the stories in Figure 3:

Fig. 3 Diagram of story components, showing that narrative is an integral part of a story, and from
which it can be concluded that storytelling is the art of creating a story as a whole. Source: Story vs.
Narrative [37].

12

Interactive storytelling is a story format in which the storyline is not firmly defined in advance.

The author creates the basic structure of the story (setting), characters, story world

(environment), the initial state of the story world, but each user experiences a unique experience

based personally on their actions and interaction with the story. The architecture of interactive

storytelling systems includes the elements necessary to manage the narrative (drama manager),

the narrative experience (user model), and the behavior of the characters (agent model) [39].

Together, these subsystems generate believable characters (who act "like people"), change the

story world in runtime and respond to user actions, and ensure the consistency of narrative

discourse (i.e. events will unfold in a clear and consistent way).

The success of an interactive story depends on balancing the dramatic structure and providing a

sufficient degree of user interaction. Also, the narrative experience must be markedly different

depending on the choices made by the user when interacting with the story world, for which he

must have some degree of freedom of action [40]. This can be achieved with varying degrees of

success through branching, emergent, character-centric, and story-centric systems.

Several attempts have been made to formalize an evaluation system for interactive dramas

(although all projects currently in existence are academic or at an experimental stage). Most of

them end up using Likert scales to rate parameters such as player agency and fun, sometimes

replaced by more specific "interestingness", "surprise", "degree of empathy for the characters",

and others, depending on the purpose of the study [40]. A number of works use specific fitness

functions, for example, to calculate the “novelty” of a story, or vice versa, to calculate a story’s

adherence to classical structures [41]. However, the use of these methods provides only a rough

quantification of user experience, leaving out much of the subjective interpretation that underlies

human perception and interaction. More promising is the proposal by Mark O. Riedl and R.

Michael Young to evaluate the degree to which users understand the goals of the characters in

the story and their motivation [42].

1.5.1 Dramatic structure

An interactive story to be successful must provide the user with a narrative experience, which

will be dramatically interesting to him. Dramatic structure plays a significant role in ensuring the

dramatic interest of experience. Many theorists showed interest in the disclosure and synthesis of

the dramatic structure from ancient times, when Aristotle himself was engaged in this, to the

present day [40].

A three-act dramatic structure is considered classic, thanks to which conflicts arise logically,

develop, culminate and resolve.

13

A classic three-act dramatic structure is shown in Figure 4:

The five-act structure proposed by Freytag, and known as the "Freytag pyramid", is also quite

well known. It is believed that it outlines the main ups and downs that are usually found in an

interesting drama.

The five-act dramatic structure is shown in figure 5:

An interesting drama can arise without following one of the forms of the classical structure, for

example, there may be no completion. However, the closer the drama follows the "dramatic arc",

the more dramatic it seems to be. In one form or another, these dramatic structures have been

used in many previous studies of interactive drama. For example, the Oz Project [43] and

IDtension [44] require generated narratives to follow a "dramatic arc". The Facade uses a

structure that the authors call neo-Aristotelian (it is a theory of interactive drama based on

Aristotle's dramatic theory and its interpretation in the context of interactivity proposed by

Fig. 4 Story dramatic structure as a three-act structure. Source: “Procedural generation of branching quests for
games” [87].

Fig. 5 Dramatic structure known as the "Pyramid of Freytag". Source: “Celebrity Bowl: More
Marketers Than Ever Turn To Celebrity For Super Bowl Ads, But That’s Not The Whole Story”.

14

Laurel, but modified to address player-added interactivity, in which the user's roles and

constraints can be represented as a character in a drama) [45, 46].

Esslin argues that any drama must capture the attention and keep the audience engaged while

being consistently entertaining [40].

1.5.2 Believable Agents

The agent model takes in information about the story world and generates possible actions for

each character in the story, and it also handles the interaction of the characters with the user. Due

to such property as autonomy, agents are able to demonstrate believable behavior. By this, we

mean the perception of the agent's actions as if they were motivated by his inner beliefs, desires

and emotions, that he acts intentionally [39, 47].

1.5.3 Consistency and coherence of narrative

The next two important properties required for a successful interactive narrative are coherence

and consistency. Coherence expresses causal relationships between events and actions, forms a

“continuous whole” from the narrative, and provides actions with a logical necessity.

Consistency, on the other hand, expresses the absence of internal inconsistencies in the narrative

and behavior of the characters, for example, the detection and elimination of inconsistencies

caused by user actions that can annul the plot [48, 49].

1.5.4 Narrative experience

The interactive drama offers the user a story world in which he can exert real influence on the

narrative he is experiencing. All of the above factors, such as dramatic structure, believable

behavior of agents, coherence and consistency of the narrative, and, most importantly, the

possibility of many different interactions with the story world and influence on it, are important

components that make up an interesting narrative user experience. An interactive story that

provides a continuous, realistic way of interacting leads to a more immersive experience. Since

the very purpose of the existence of interactive stories is to allow the user to experience some

kind of experience - dramatic, educational, communication or training, then ensuring its quality,

fascination, interest and realism is the most important task in creating an interactive story, as

well as the main criterion for evaluating its success. Computing systems that can reason about

the narrative, manipulating it to provide a more immersive experience, are more efficient [42].

1.5.5 Story-Centric and Character-Centric Designs

There are two opposing approaches to the design of interactive dramas, driven by the desire to

alleviate the efforts of authors that result from the fusion of interactivity and narrative.

Authorship support is needed because, unlike traditional drama where the user is presented with

only one storyline, interactive drama has the potential to have more storylines due to the user's

ability to interact with the characters and the story world. Creating enough contingencies to

create a rich interactive environment and provide a compelling experience is often beyond

human capabilities or requires an unreasonable amount of time. One of these approaches focuses

on the plot, the other focuses on the characters.

Both of these approaches are based on fairly old concepts. So, even Aristotle in his "Poetics"

argued that the characters are secondary in relation to the action. Another, more modern, view

was expressed by the dramaturgist Lajos Egri in 1949, suggesting that the plot unfolds based on

the actions of the characters and that they can, in fact, "build their own story."

15

In line with the above concepts, story-driven processes for interactive drama focus on the overall

structure of a story in terms of a story arc and seek to automate approaches to organizing events

in such a way as to create a tightly structured story in which agents will act in the interests of

following the story's development plan. They often use POP planners because they can

automatically generate sequences of character actions (plans) to achieve story goals, and at the

same time provide a plausible causal relationship between these actions. However, such plans

give neither the author nor the user insight into the motivations of the characters and therefore

cannot avoid creating action sequences that are perceived as contradictory in means of the

characters' intended motivations. On the other hand, character-driven processes emphasize the

development of individually believable and autonomous characters that the user can interact with

and create a narrative through user-character interaction, without rigorously following a rigidly

structured plan. For example, this approach is used by the Thespian system, which can ensure

that characters are constantly motivated during interaction. It uses purposeful agents based on

decision theory to control virtual characters. The character's motives are coded as the agent's

goals. It provides an automated fitting system that provides the ability to adjust the motivations

of the characters according to the intended development of the plot. The characters thus created

will maintain their roles as long as the user's actions align with the expected development of the

plot. But when the user deviates from it, the characters will react to his actions in accordance

with their internal motives, trying to adapt to the changes. However, deviating from the author's

intended plot paths risks turning the interaction into a poorly structured or inconsistent story. To

prevent this, the author has to work out several potential ways of developing the story to adjust

the beliefs and motivation of the characters in accordance with them.

Attempts are also being made to combine both approaches, for example in the paper "Integrating

Story-Centric and Character-Centric Processes for Authoring Interactive Drama" by Mei Si,

Stacy Marsella and Mark Riedl [50].

The diagram, represent correlation of the coherence of the plot and the believability of the

characters is shown in figure 6:

1.5.6 Emergent narrative

With complete autonomy of agents, the user experience is completely determined by the

uncoordinated (or weakly coordinated) decisions of the characters with the drama manager and

user’s own actions. This kind of interactive narrative is called emergent (i.e. spontaneous)

narrative. The idea of this is that it is not always necessary to intervene to guide the user's

narrative experience towards a particular conclusion. It may be sufficient to create believable

Fig. 6 Influence of story-centric and character-centric
design on story properties. Source: “Character-Focused
Narrative Generation for Execution in Virtual Worlds” [74].

16

agents with detailed motivations and personalities, and then the random causal sequence of their

interactions with each other and the user will be perceived as a narrative. In such narratives,

events occur as a result of the natural development of the simulation, and are not created by the

author or explicitly planned in a way generated. Emergent systems are unique in that the author

usually has little influence on the plot and instead focuses on creating the initial state of the story

world. Examples of the use of emergent narrative are various simulation games (RimWorld [51],

Minecraft [10], the Crusader Kings series [52]) and learning environments.

Emergent systems, however, can not only fully automate narrative and the story world, but can

also include some form of narrative control to set some direction for the story's development

[14].

1.5.7 Authorial Intent and Authorial Liberty

Another important topic that arises in the context of interactive narratives is author's intent and

author's freedom.

Authorial intent is the ability of an autonomous interactive system to express the intentions of a

human designer (author) when generating a narrative. However, a generative approach to

interactive narrative, in which an automated system takes on part of the author's responsibility,

moves the human designer away from directly shaping the user experience, because, as a rule,

the human author is not present at runtime and cannot make decisions about how the user

experience should be adapted at a given point in time. Thus, the creation of interactive narratives

is often a process of predicting user actions under certain conditions and using computing

systems and structures to form a response to them. That is, the creation of interactive narrative

content in essence is endowing an automated computing system with the ability to make the

same decisions that a human designer would make in response to user actions. And the goal of

human designers is to embed their artistic vision and their author's intent into a computing

system. This situation leads to the need to develop methods that would allow authors and

designers to express their intention, through indirect influence, but more subtle and complex

adjustment of the drama manager. For example, Mark Riedl suggests using intermediate states

when creating a plan, the so-called "islands", which must be present somewhere in the plan, and

not just determine the initial and final states of the story world. This will allow the formation of

more complex narratives and will allow expressing the author's intentions by coding it in the

form of "author's goals" - some states of the story world through which it must pass and which

are determined by the author at the design stage. As an example of the complexification of

narrative plans, he gives the following example: according to the author's intention, the narrative

should develop in such a way that a character who starts out rich becomes poor, and then rich

again. Such a phenomenon is quite a challenge for planners. That is, if they are not given any

special instructions, but simply given an initial state in which the character is rich and an end

state in which the character is also rich, the planner will simply indicate that there is no problem

to solve. But it is possible to use "author goals" and have the planner embed the state in which

the character is poor into the resulting narrative structure [53].

With the question of incorporating the author's intent into the generation of an interactive

narrative, the question arises of how much freedom the author can be given to do so. T. Pedersen

et al. [54] propose to define the degree of authorial freedom as a continuum that ranges from

highly deterministic possibilities (Drama Manager) to complete creative freedom (Game

Master). They interpret the two poles of this continuum as two extremes (lack of freedom versus

complete freedom) in terms of what and how much the author can change. Depending on the

author's or designer's intentions, different ends of the spectrum may be more or less suitable for

his purposes. For example, if the author intends to convey a specific message, then a position

17

closer to the Drama Manager (so as not to distort this message) would be more appropriate on

the author's freedom continuum. If the goal is to convey some kind of experience of exploration

or interaction, for example, during education or training, then the user will have to rely more on

their own perception of the narrative. Thus, the distance between the author and the audience

will be greater, which means that there will be a gap in interpretation between what the author

wanted to say and the narrative that the audience perceived. This can give more freedom to adapt

the narrative without breaking its consistency and coherence, which makes a position on the

continuum closer to the Game Master more appropriate. T. Pedersen et al. consider this in the

context of the fact that the human author has the ability to influence the narrative at runtime, but

we extrapolate this also to the most common cases where this is not that. With the clarification

that the author's freedom manifests itself during the setting up of the system (Drama Manager),

and determining the boundaries of its ability to influence the adaptation of the narrative to the

user's actions.

The author's freedom continuum is shown in figure 7:

1.5.7.1 Drama manager

The Drama Manager is one of the components of the interactive narrative and is responsible for

managing the development of the narrative by monitoring the flow of events in the story world,

their coherence and consistency, according to the goals of the author, and, if necessary,

collaborating with the agent model to control or correct the actions of the characters. It is

important to note that in such a paradigm, communication between the drama manager and

agents occurs relatively infrequently, allowing them to act autonomously for the most part.

Drama managers cannot change any of the rules in the story world, and their ability to adapt the

narrative is limited to pre-prepared scenarios. Accordingly, T. Pedersen et al. consider the

manager of drama as one of the extremes of the continuum of authorial freedom, in the direction

of limiting freedom. By placing the author's freedom within these limits, he should only be

allowed to change the story's narrative discourse, but not its rules or setting [54].

1.5.7.2 Game master

At the other end of the author's freedom continuum, they place the Game Master, defining the set

of tools and functions available to him as similar to those available to the game master of

tabletop RPGs like Dungeons and Dragons. Tychsen et al. [55] divide the functions of the game

master toolkit into five groups: narrative flow, rules, engagement, environment, and virtual

world. Collectively, these groups represent complete control over the narrative in terms of

narrative rhythms, as well as the rules of the story world, even how exactly the player is involved

in the interaction. By placing the freedom of the author within these limits, he must be given

Fig. 7 Author's freedom continuum. Source: “Considering Authorial Liberty in Adaptive Interactive Narratives” [54].

18

complete control over the narrative and the opportunity to influence all its aspects (both

discourse and story as a whole) [54].

1.6 Games

One of the applications of interactive narratives is video games. They serve for entertainment

and often use drama as their basis. Moreover, this can apply to games of any genre - strategies,

shooters, RPGs, etc. However, often the interactivity of the narrative in them comes down to

choosing one of several alternatives designed by the authors in strictly defined places, and, as a

rule, this choice does not significantly change the story world. And the changes that take place in

the story world are also planned in detail by the authors. The only exceptions are games that

implement emergent gameplay, and which, in general, cope with the generation of emergent

narrative (for example, the aforementioned RimWorld [51], Minecraft [10], the Crusader Kings

series [52], also Dwarf Fortress [56]). However, their big problem is that they do a poor job of

maintaining coherence and consistency. Also, they are often inferior in expressive power and

ability to evoke empathy for characters, stories created with a more active participation of the

author and more fully expressing his intentions [38].

1.6.1 Quests (Adventure games)

Quests in literature are the essence of many stories - they are adventures, actions. According to

the analysis of Propp's fairytales [57], any adventure has a clear beginning - committing a crime

or understanding a problem, after which the hero leaves on a dangerous journey in order to solve

the problem. As a rule, there is no single adventure, in itself, it exists in the context of the story

world, and around it other situations and adventures are formed - both before it begins, in the

preliminary phase, which can only lead to it, and those that will happen after. For example, we

can recall Homer's Odyssey, when, it would seem, the main big adventure is over - the Trojan

War is over, and the hero simply returns home. However, in the process of returning, he

experiences a large number of new adventures before he reaches home. Moreover, even here a

new adventure arises when he has to deal with enemies. As Greimas notes [58], all these

adventures are equally structured trials for the hero and other characters, and the continuation of

the story as a whole depends on the outcome of each of them. Each completed adventure can

recursively generate a new one, as happens in many of the tales of the Thousand and One Nights.

According to Lima et al. [59], if the outcome of the adventure plan is non-deterministic, then

they acquire an even more complex hierarchical structure, which leads to variability.

Quests are present in many computer games, being both a subsystem in them (for example, in

role-playing games - RPG), and an independent genre. They represent missions or goals that

must be completed by the player. It is possible to say that they originated in 1975, when the text

game Colossal Cave Adventure [60] appeared in the quest genre, becoming the ancestor of

several genres of computer games at once, based on quests - computer role-playing games,

roguelike, and MUD (Multi-User Dungeons) . They have come a long way, and modern RPGs

are starting to incorporate some interactive storytelling techniques, but as we mentioned above,

their narrative structures are still very simple.

Lima et al. [59] also claims that during the last fourteen years there have been many attempts to

create a theory of quests in computer games, however, no work has yet completed this task,

because the concept of storytelling in video games is not properly understood. They mention a

lot of conflicting opinions about video game narrative. Thus, Aarseth [61] describes it as a "post-

narrative discourse", Tosca [62] claims that games are not run-time narratives at all, and only

after the completion of the quest can it be told as a story, Jenkins [63] defends a hybrid concept

combining games and narratology.

19

Since this genre is focused on a story, with an emphasis on plot and characters, and the player's

interaction with them, we consider quests to be the most suitable video game genre for

integrating procedural narrative generation systems. Also, this genre relies more than others on

the narrative means of literature and cinema, which also brings it closer to interactive

storytelling, many of the meanings, concepts and methods of which come from literature [64].

Equally important, the creation of the quests itself does not require advanced graphics or

physical environment simulation technologies, they can even be completely text-based, which

technically simplifies development.

20

2. Related works

The first attempt to explore interactive storytelling was James Meehan's Tale-spin system in

1977 [65]. This system produced original tales with morals in a fantasy setting. The stories

created by this system were purely textual and had a lot of inconsistencies. One of the features of

this system was that it contained a large amount of background knowledge about the story world,

which was created in the process of how the story was told. Agents were implemented in such a

way that they were semi-autonomous, had goals, emotions, and relationships [40].

The next large milestone was the "Universe" system [66] developed by Michael Lebowitz in the

1980s, which created endless stories in a soap opera setting. In it, an author had to set goals for

the storytelling system, and then she used those goals and pre-created plot fragments to create a

soap opera plot summary. The system created characters that were dynamically assigned roles in

these fragments. The relationships of the characters were central to the story. "Universe" used a

planner to select the sequence of actions that the characters in the story world should perform.

The planner in the "Universe" included in the narrative sequence only those actions that

contributed to the achievement of systemic goals, although systemic goals could be described at

a high level of abstraction, for example, "keep lovers apart" [40].

The first main interactive drama research group was “The Oz Project” in the 1990s, led by

Joseph Bates [43, 67]. Research has focused mainly on creating believable agents. This system

placed the user in a virtual environment inhabited by autonomous animated agents called

woggles. Each of these agents had a set of goals and beliefs, and worked autonomously to

achieve them. The user was able to give instructions to one of these characters by interacting

with it. Also, the characters interacted with each other. The group also explored interactive

narrative generation based on the plot graph structure. So, for example, to provide an interesting

experience for a user whose interest was determined by a specially defined rating function, a

special module (drama manager) - discretely manipulated the desires of agents to change the

narrative and direct the user experience towards those storylines that were rated as more

interesting. Interactive narrative was the focus of this project, but was seen as a sub-problem in

narrative generation in general, so they used an algorithm that works similarly with and without

the presence of an interactive user [40].

Also in the late 1990s, was created the “Defacto” system, which used a rule-based approach to

storytelling [68]. It had a database that stored rules about the relationship of characters, their

goals, social norms, intentions. These rules were encoded in a format that allowed the system to

reason about the intentions and actions of the characters. The result of the system was a list of

causally ordered actions, the result of which was assigned the status of "success" or "failure", to

achieve an outcome that is considered satisfactory and disturbing. Stylistically, this was designed

so that the user took on the role of a character in a story world in an Ancient Greek setting. The

story was dynamically created in text form, and the user could specify his actions by interacting

with it. After the interaction phase, the user was shown a graphically generated story. But until

the graphical output was made, the result of his actions was not known to him. “Defacto's”

specific focus on a particular story world and setting limits its applicability to other themes.

Also, its design was such that it does not provide a unique experience with each following use,

becoming predictable [40].

Façade was the first project in the field of interactive storytelling that really got a lot of attention,

including among a wide audience [69, 70]. Michael Mateas and Andrew Stern created this

system and released it in 2005. A year later, Façade won the Grand Jury Prize at the Slamdance

Independent Games Festival. The plot of Façade was that the player character was invited to visit

by his friends, a couple living together. As the story progresses, he dives into the couple's marital

21

problems. Through text input, the player could communicate with these characters, and what he

said to them influenced the story, including its outcome. The entire environment was designed

graphically and took place in the first person view. Architecturally, the Façade system included

such structural elements as: drama manager, beats, characters, plot variables, actions, and natural

language processing. The authors called “beats” are short sequences of actions that occur

throughout the story. They have been explicitly pre-created, with all actions in each beat being

predefined, and actions for roles assigned to ensure coordination between agents. The order in

which these beats occurred could be different, having their own prerequisites for occurrence and

introducing new ones as an effect, for other beats. Essentially, the plot graph was divided into

short chunks of actions that were performed based on the state of the story world, rather than in a

strictly defined order. Higher-level logic of goals and behavior of characters, close to autonomy,

was used inside the beats, to achieve local goals. Each session of the game lasted about half an

hour, and its variability was enough for several (up to 5) replays that retained its uniqueness [40].

Also in the early 2000s, the Liquid Narrative Group showed significant activity in the research of

interactive narratives. They created The Actor Conference, a storytelling system that used both

author-focused and character-focused designs to balance the conflicting concepts of plot

coherence and high character believability [71]. This system used a blackboard architecture to

coordinate agents. This transformed the process of narrative generation into a search in space for

hypotheses or partial plans. Then they upgrade this system by adding a 3D plan execution

environment to it and calling it Mimesis [20, 72, 73]. Because Mimesis was designed as a

common architecture, it is theoretically capable of running on any game engine. A distinctive

feature of this system was also that it sought to provide the user with the illusion of complete

freedom of action. In the case that the user performed an action that violated the current plan, the

system had two ways to respond to this - “adapt” or “intervene”. Adaptation was possible in

those cases when the plan was not strongly violated and it was possible to replan, including this

action in the plan for achieving the goal of the story. For example, if according to the plan, a

certain character was supposed to hack the vault, but the user tried to do it instead. In such a

case, as a result of the replanning, the story world could be changed in such a way that the user

would find this vault already open. If the user's action violated the plan too much and adaptation

was impossible, then the system intervened in the user's actions. For example, if he tried to kill a

character, later important for the continuation of the story, without which it is impossible to

achieve the goals of the story. This would critically violate the consistency of the narrative, then

the system would consider that he could not do this, for example, he missed. Technically, this is

implemented so that when Mimesis receives a request to create a plan, it creates a directed

acyclic graph. This graph is a plot structure, within which it can be changed if the user violates

its original structure. However, such changes are not enough to create a wide variety of unique

narratives [40].

The members of this group, in particular Mark Riedl, have written many theoretical papers as

part of their research into various aspects and problems of narrative generation. These articles

make a great contribution to the extension of the theory about the generation of interactive

narratives, being relevant to this day. They described the generation of character-based

interactive narratives [74], intelligent methods for controlling narratives in interactive systems

[20], managing the interaction between agents and the user of a multi-agent interactive system

[72], intention-oriented planner in a multi-agent environment [48], autonomous agents and their

believability in an interactive environment [47, 75], the integration of plot-centric and character-

centric designs in one interactive environment [42, 50], the inclusion of author's intentions in a

system that generates an interactive narrative [53].

We have not mentioned all the interactive storytelling systems that implemented some degree of

narrative control created in those years. Because we tried to describe and refer to the experience

22

of the most important and relevant works for us. But also noteworthy are such systems as: IDA

[76], U-DIRECTOR [77], PaSSAGE [78], IN-TALE [47], NOLIST [79], GADIN [80], OPIATE

[81], DED [82], IDtension [44, 83], BARDS [84], FAtiMA [85]. A complete and thorough

analysis of these systems was made by M. Arinbjarnar, H. Barber, D. Kudenko in their work “A

Critical Review of Interactive Drama Systems” [40].

Among modern research, we would like to highlight the works of Edirlei Soares de Lima, Bruno

Feijó and Antonio Furtado. In “Hierarchical Generation of Dynamic and Nondeterministic

Quests in Games” [59], they use hierarchical task decomposition and automatic planning to

create non-deterministic quests with multiple alternative outcomes in order to achieve interactive

dynamic narratives. In this paper, they write that events in interactive narratives and games have

a conceptual similarity to the functions identified by Propp [57]. In this case, in their opinion, a

promising approach to reconcile interactive narratives and games is to provide semantics for

such events using planning models for this. Also, by analyzing Propp's functions, they came to

the conclusion that these functions fit well with the STRIPS technique, where the preconditions

for the execution of a certain function will first be fulfilled by the effects of other functions. In

such a case, narrative plots could be seen as the result of backward planning. They write that an

effective approach in developing interactive storytelling elements in quests is to develop

dynamic non-deterministic planning models. Then, in the works “Procedural Generation of

Quests for Games Using Genetic Algorithms and Automated Planning” [86] and “Procedural

generation of branching quests for games” [87], they describe and use procedural content

generation techniques (in particular, combining genetic algorithms and automatic planning

algorithms) to create interactive quests with branching storylines based on the generated

narrative structure.

23

3. Narrative generation

In this chapter, we describe in detail the algorithm developed by us and the principles of

operating the system based on it. We will start the description at a high level, describing the

general architecture of the system, and its input and output. Then we will go into details,

describing in more detail the individual elements of the algorithm, describing the mechanism for

creating our specific multi-agent environment, agent and player models, the planning

mechanism, and the mechanism for ensuring the consistency and coherence of the generated

narrative.

3.1 System’s input and output

The input of the system is the intentions of the author, expressed as system settings (example of

input interface in Figure 24). Based on these settings are determined the rules by which the

system will work: the set of agents, their goals, the set of locations, the degree of randomization

of the location parameters when they are created, the actions available and not available to

agents, the degree of randomization of the result of actions, constraints, technical parameters

depend on this (number of nodes, seed for randomization). It also affects the generation of PDDL

files that are passed to the planner, i.e. on the behavior of agents.

The system output is a story graph. Based on which, the program generates two files. The first is

a file in the DOT format that describes the graph in the language of the same name. This

description contains information about the nodes, including their type (obtained in the usual way,

or obtained as a result of the counter-action of the system, whether it is the goal node),

information about the connections of the nodes to each other (oriented edges), as well as actions

(including their internal parameters: which agent acted, where, which agent was the target,

whether the action was successful or not). It also contains technical information about what kind

of graph to build (directed graph). Based on this information, it is possible to visualize the graph

using any program that works with the DOT format.

Excerpts of one of the files this format are shown as an example in Figures 8 and 9:

Fig. 8 An excerpt from a dot file.

24

An example of visualization is shown below in Figures 19, 20, 21, 22.

The second file generated by the system is an HTML file intended for the Twine platform. It also

stores information about the story graph, but not about everything, only about those states in

which the player has to act, and about goal states. The situation is similar with edges and the

actions associated with them. For each node is stored information about it and assigned textual

description (description the state of the world stored in it, and links with other nodes). When

entering the key from the OpenAI API, these texts are generated using the DaVinci-003 model,

which provides more colorful, human-like descriptions. Also, the text description is associated

with some actions and states resulting from their performance, not contained in the graph

initially, but generated in the process of converting to a format understood by Twine to provide

the player more information (for example, to report the result of an action to find evidence). In

addition to information about the graph, this file contains instructions for the Twine platform on

exactly how to run and playback this story, up to pointing out the required or undesired interface

elements and their associated features. This file can be played correctly only with Twine.

Fig. 9 An excerpt from a dot file.

25

An excerpt from one of these files is shown in Figure 10:

Figure 11 shows the playback of an interactive story obtained from the generated narrative using

Twine:

Fig. 10 An excerpt from an HTML (Twine) file.

Fig. 11 An interactive story playback.

26

Figure 12 also shows an interactive story playback in Twine, but using the DaVinci-003 text
generation model from OpenAI:

Figures 13, 14, and 15 show examples of the interactive story's reaction to the player's actions:
service messages that are not part of the story, but inform the player about its progress and the
results of his actions.

Fig. 13 An example of how an interactive story reacts to a player's loss.

Fig. 14 An example of the reaction of the interactive story to the successful discovery of evidence by the player.

Fig. 15 An example of the reaction of the interactive story to a player's victory.

Fig. 12 An interactive story playback (with using OpenAI).

27

3.2 Architecture

As shown in Figure 16, the architecture of our proposed story generation system consists of the

following subsystems: story world, drama manager, planner, constraints manager, output

module.

The architecture of our system is based on several logical interconnected modules that exchange

information between each other, performing transformations on it.

The user (author) enters his preferences and intentions using the program interface, which allows

him to configure it.

The representation of the environment is an imitation of a certain physical environment, divided

into separate areas (locations) with certain characteristics in which software agents operate and

interact (as well with each other). The state of this environment, including the agents in it, is the

state of story.

A story graph is a data structure consisting of nodes, each of which stores a specific state of the

story world, reached at some point and recorded in it. It is oriented, the edges are a

representation of the transition from one state to another. Transitions are carried out through the

actions of agents.

The drama manager controls the admissibility of changing the state of the story world by agents

(by using actions effects), making such changes to them, if necessary, so that they do not violate

the constraints, as well as the consistency and coherence of the narrative. From the environment

representation, it receives information about the changes that the acting agent is going to make to

the current state.

Fig. 16 Story generator architecture.

28

The constraint manager is used to create, store, and validate the constraints imposed on the story

world.

The planner is used by agents to create action plans. It makes plans based on the planning

domain and the planning problem. Interacts with the representation of the environment in such a

way that it receives a request from the acting agent to search for a plan, the found plan is

returned to the requesting agent.

The output module is responsible for converting the generated narrative (story graph) into other

formats. For example, translating it into the dot language, for rendering, or into Twine's own

language, for playback on this platform.

3.3 Story world creation

The story world can be defined as a set of settings, objects, and agents. Agents, through actions,

change the parameters and properties of objects and other agents, including themselves. Settings

determine what exactly can be changed, to what extent and in what way. The aggregate

configuration of all objects and agents, i.e. their own states, is the state of the story world.

Accordingly, by their actions, agents are able to change the state of the story world in which they

operate.

As the main type of objects, we distinguish locations - simulating the environment in which

agents are located and act. Each location has a number of parameters, such as: name, connections

(neighborhood, which makes it possible to move from one location to another) with other

locations, the presence or absence of evidence against an antagonist in this location, a list of

links on agents located in it.

The state of each individual agent is determined by the following parameters: name, role, status

(alive/dead), initiative value, emotional state variables (for example, the agent can be scared or

angry), desire variables (for example, the killer wants to complete his long-term plan and lure

another agent into a trap without being distracted by other goals), beliefs (reflect the agent's view

of the story world, including himself).

The settings define things such as whether a connection between locations is necessary to move

between them, or an agent can go to any one, as well as how many actions an agent can perform

in one “plot cycle”, for example, visit several locations in during one “turn”, or only one,

whether agents can interact with each other while in different locations (for example, talk on the

phone) or not, and also determines the sequence of actions of agents, the probability of success

of their actions (for example, some percentage probability or always success), as well as the very

principle of selecting available actions.

3.4 Agent model

We define agents (characters) using a tuple:

C = {R, B, E, D, G, I, A}

where:

• R is the role of the agent. Within different settings, agents are given different roles that

determine their behavior. This can be the role of a hero, or an ordinary average character, the

role of an antagonist, or the role of a villain's minion, etc.

29

• B is the beliefs of the agent, which he forms, perceiving the story world. As we already

mentioned, agents can only perceive a limited part of the story world at a time - only within the

location in which they are located. But they remember a lot of what they managed to perceive

before. For example, the roles of other agents, the locations where they saw other agents, the fact

of talking with them, and their own attitude towards them.

• E is the agent's emotions, which can change depending on the situation in which he finds

himself. For example, he may be frightened when he finds the body of another agent, or angry

when he recognizes the antagonist, which will affect his behavior.

• D is the agent's desires that arise during the execution of actions that last several "plot cycles"

and that are needed to make his actions more logical and predictable. For example, if an agent

intended to move to a certain location, but not a neighboring one, then in the next "plot cycle" he

will retain the desire to continue the path, instead of doing something else, although this is not

due to the current state of the story world, but only the internal state of the agent.

• G is the agent's goals, i.e. the specific state of the story world that the agent seeks to achieve in

the long term.

• I is the agent's intention. Each time the agent receives a request from the narrative generator,

the agent plans, seeking to find a way to fulfill its intention, which it re-formulates with each

new request. It is possible to call this a short-term goal. The agent formulates an intention based

on his role, his goals, emotions, desires and beliefs.

• A is a set of actions available to the agent for selection. The availability of actions depends on

the role of the agent, the current environment in the story world (the context of the environment),

his emotions and beliefs (for example, the agent managed to reveal the initially unknown

antagonist and now the action to neutralize the antagonist will appear in the set of actions

available to him, otherwise it will not be available to him).

We believe that the agent model formulated in this way makes it possible to flexibly customize

its behavior and ensure high believability of its actions, which is an important quality for

emergent narratives and when using Character-Centric design.

3.5 User model

In our case, the user can be understood in two ways. On the one hand, it is the author who uses

our system to generate the story. On the other hand, it is a player who will be able to play quests

created using our system. Their interests and needs are noticeably different.

It is important for the author to generate an interactive story in which he can integrate his

intentions. That is, to have an influence on the process of its generation. If the author is a

designer who wants to calculate the possible paths of the created quest, then he needs to specify

his domain database as accurately as possible. To do this, we provide the user with authorship

tools that allow him to choose the setting, the type of goals for agents, determine the presence or

absence of evidence in the location, set constraints imposed on the story world, and configure the

behavior of different types of agents. We also provide the ability to configure a more "service"

nature, that is, to determine the randomization of certain elements of the history (for example, set

the seed of generation, randomly connect locations, randomly determine the outcome of fights,

etc.) and specify preferences when visualizing the story graph (for example, hide "empty"

actions). However, all these settings can only be made before the start of generation, in the

30

preliminary phase. During the generation itself, the user no longer has the opportunity to

influence it.

It is important for the player to have an interesting narrative experience. Its important

components are the believability of agents and the variability of narratives. Therefore, we strive

to give the player as much freedom of action as possible, limiting it only to the scope of common

sense and the contextual availability of an opportunity to perform an action in a particular

situation: he can interact with agents (for example, talk), interact with the environment (for

example, look for evidence), move between adjacent locations, fight, etc. We do not seek to cut

off its capabilities for shortening the story graph. In addition, it is also important for quest

designers to foresee all possible actions of the player. Believability of agents is their high

autonomy. The player character is also an agent by its architecture, having all of its properties

that can be read by autonomous agents. They perceive the player as well as an agent, so they can

try to interact with him as with other agents: talk, give information, attack, try to trap, etc.

3.6 Planning Domain

Domain Database (DD) in our system is expressed by the following tuple:

DD = {P, L, O}

where:

• P is a set of atomic expressions representing a set of relations expressed as pairs px =

(objectTypex, objectNamex) that describe all objects in the story world. For example:

(ROOM, hall), (AGENT, Journalist). An atomic expression is an expression of the

form predicateName(t1,…,tn), where predicateName is the name of the predicate, and

t1,…, tn are ground terms.

• L is a set of ground literals that describe the properties and relationships of all objects in the

story world, in the form lx = (propertyx, objectNamex) or ly = (relationy0,

objectNamey1, objectNamey2). For example: (ALIVE, Journalist) or

(connected, (ROOM, hall), (ROOM, kitchen)). A literal is an atomic expression

or its negation, allowing the removal of a statement from the current state of the story world.

• O are planning operators expressing various events and actions in the story world. Each o ∈
O, in accordance with the STRIPS formalism which we have already described, is defined as:

o = (name(o), precondition(o), effect(o)),

• name(o) is the name of the operator.

• precondition(o) is a set of literals that describe the preconditions of o (precondition must

be true for this operator to be possible, but it can be either positive or negative).

• effect(o) is a set of literals that describe the effects of o (these literals can also be either

positive or negative, after applying the operator effect they will become true for the current state

of the story world).

31

An example of a story domain and action schemes for a detective story according to the STRIPS

formalism implemented by us using the PDDL language is shown in Figure 17:

In this figure, we see a specific planning domain instance. It defines the predicates that we

mentioned above, denoted by P. Then there is a list of actions (we denoted them as O) that

operate on these predicates. Each action consists of a set of parameters, a set of preconditions,

and a set of effects.

The list of parameters specifies the variables with which this action will work. In the process of

building a plan, the planner will try to substitute in their place the objects of the story world (they

are constants from existing grounded literals, which we denoted as L) in such a way that the

formula in the preconditions has the evaluation "true".

The preconditions describe a number of predicates, as well as propositional connectives that

form a logical formula. The arguments to these predicates are expressed as variables specified in

the parameter list. As mentioned above, in the process of building a plan, the planner will try to

substitute objects of the story world (agents, locations) in place of these variables as arguments

to these predicates, so that this logical formula is true (this happens only if each predicate with

Fig. 17 An example of a detective domain encoded in the PDDL formalism.

32

substituting variables corresponds to one of the grounded literals). Only when the formula in the

preconditions has such an evaluation, the action is considered possible to perform.

The effects describe another logical formula, similar in structure to the one described in the

preconditions. However, in this case, it does not serve to check the conditions for performing an

action, but describes the change that occurs in grounded literals when a given action is

performed.

Consider this using the Kill action as an example:

We have three parameters: "k", "victim" and "r". We also have a number of preconditions: the

variable "r" must be a parameter of the ROOM(x) predicate, the variable "k" must be a

parameter of the ANTAGONIST(x)predicate, the variable "victim" must be a parameter of

the AGENT(x)predicate, the variables "k" and " victim", each separately, must be parameters

of the predicate alive(x), the variables "k" and "r" must be parameters of the predicate in-

room(x, y), similarly, the variables "victim" and "r" must be parameters predicate in-

room(x, y). It should be understood that the variable "k" must represent the antagonist-agent,

the variable "victim" must represent the normal-agent, the variable "r" must represent the

location, the killer agent and the victim agent must be alive at the time when the action starts

and be in the same location. The task of the planner is to find grounded literals that will match

the given predicates with the specified variables as parameters. This means finding agents of the

appropriate types and a location whose properties will meet the specified conditions in the world

state. At the end is described the effect of the action: a new grounded literal is created

corresponding to the predicate died(x) with the variable "victim", and a negation is added

to the grounded literal corresponding to the predicate alive(x) with the variable "victim".

This means that the result of the action will be to change the status of the victim agent from alive

to dead.

3.7 Planning Problem

In our system, planner solves planning problems expressed using a STRIPS-like formalism.

These problems are dynamically formulated by agents, according to their current intentions

(desired state of the story world). The intentions of agents are formed from a set of their

character (realized in the form of assigned roles), goals, and beliefs about the story world

obtained in the course of observing it (at the same time, the agent does not survey the entire story

world, but only the location in which he is, but he has a memory of what he observed earlier.

We express the planning problem (PP) with a tuple:

PP = (DD, S0, I)

Where DD is the planning domain (domain database), S0 is the initial state of the story world (it

is also valid to consider it the current state of the story world, since the agents are formulating a

planning problem an ongoing story), and I is the intention of the planning agent expressed as the

desired state of the story world.

It is possible that the question will arise why, when formulating the planning problem, we did

not mention the constraints that are imposed on the story world, forbidding it to move into

certain states. The reason is that agents do not know about them, so they do not consider them

when planning. These constraints are used by the drama manager, which has the ability to

interfere with the actions of agents, violating their plan. They are part of the regulation of the

narrative, but not of the problem of planning.

33

An example of a story problem for a detective story according to the STRIPS formalism

implemented by us using the PDDL language is shown in Figure 18:

In this figure, we see a specific instance of the planning problem. It contains a reference to the

planning domain that will be used to resolve it (we denoted it as DD), a list of objects, the initial

state of the story world (denoted us as s0), and a goal (denoted as I).

The list of objects corresponds to entities in the story world, such as agents and locations.

The initial state is described as a set of grounded literals, whose constants are the objects

mentioned above.

The goal is the agent's intention, expressed as a change in the initial state in such a way that it

contains the literal specified in the goal and does not contain those that contradict it. The task of

the planner is to find such an action in the chosen planning domain that would change the initial

state so that it corresponds to the goal.

Consider this using the problem presented above as an example:

It lists all locations and agents that exist in the story world and a description of the state of the

story world in which was located the agent who created this problem, as well as the goal of this

agent. It is important to consider that, in creating this planning problem, the agent uses his

beliefs, which may be wrong, but not accurate system information. In this case, this agent is

“Lawrence John Wargrawe”, located in the “Hall” location. His goal is to kill the agent

"Player", who is in the same location. He also has information about the topology of the story

world and the status of agent “John Gordon MacArtur”, who was killed by him in the same

“Hall” location. In this case, the plan that the planner will return will be simple and will consist

of just one step: apply the “Kill” action, using the objects "Lawerence John Wargrawe",

"John Gordon McArtur", "Hall" as its parameters, i.e. will look like: "Kill (Lawerence

John Wargrawe, John Gordon McArtur, Hall)".

Fig. 18 An example of a detective problem encoded in the PDDL formalism.

34

3.8 Story Planning

Quite often, the story worlds consist of a large number of different objects, the number of which

goes to tens, hundreds and even thousands of entities: characters, locations, objects, and so on. In

addition, as part of the interaction with the story world and the characters in it, users can perform

dozens of different actions. Characters can also perform a number of actions while interacting

with each other and with the story world. This seriously complicates the planning problem, since

the state space, given so many variables in the planning domain, reaches a huge size of hundreds

of millions of nodes [29]. Finding a narrative plan in a space of this size is already an extremely

difficult optimization problem, but we also impose additional requirements on it, related to the

logical coherence of the sequence of events, and the overall structure of the narrative, in order to

ensure its consistency.

In accordance with this, we believe that the classical search methods are not efficient enough,

further losing their effectiveness as the duration and complexity of the story increase (i.e. the

planning domain increases). By efficiency, we mean, among other things, the speed of search.

This factor is important, given the fact that we want to create a tool that allows to accelerate the

development of interactive stories and video games. If its use requires a supercomputer and days

of computing, its usefulness will be questionable. Therefore, our task was to simplify the search

problem and provide a sufficient level of performance.

A feature of our system is that it only generates stories, while the platform for their playback is

an external module. For example, it could be Twine. This imposes specific constraints on story

generation, since we cannot control an external module at runtime, but can only load a

predefined sequence of instructions into it. Because of this paradigm, the result of the program is

a plan that takes into account all the possible actions of the player in advance and is encoded as a

story graph, which can then either be rendered or converted into a set of instructions for Twine.

To achieve these goals, we combined the automatic planning method with the principle of

emergent narrative. We starting with a story graph consisting of a single node, the initial state.

We then give agents the ability to act completely autonomously to achieve their goals. At each

step of the algorithm, considering the selected state of the story world, the narrative generator

determines whose turn from agents to perform an action, and then sends a corresponding request

to this agent. Then we add the new state of the story world, obtained as a result of the

implementation of the agent's action, to the graph. The action itself is also added, encoding in the

form of edge connecting two nodes - the one in which it was applied and the one it caused to

appear. To reduce the number of possible nodes and edges, we resort to cutting them off,

ensuring that in any given state of the story world, each agent will choose exactly one particular

action. To do this, we use his models of emotions, desires and beliefs, taking into account also

his role and goals, so that he chooses his current intention, then we call the planning procedure,

which will build a plan for the agent to achieve his intention, and then choosing the first action

from the plan, assign him suitable parameters using the CSP technique. To keep the plans up to

date, we use the "turns" system, in which agents plan and perform actions in turn. These moves

cyclically replace each other as soon as all agents capable of acting in the current state of story

world perform an action. We do not undertake to direct the user's actions, because we strive to

give him as much freedom as possible, therefore they are the source of the story graph branching

factor. The creation of the story graph is completed when each branch of the graph reaches the

goal state. After that, we render the resulting story graph and convert it into a plan for Twine.

And although we adhere to the principle of emergent narrative, we need to ensure the coherence

and consistency of the narrative, which this kind of narrative does poorly. Therefore, we will use

the drama manager, for soft centralized regulation in cases where it is necessary. In essence, we

35

combine Story-Centric (in the form of centralized regulation with the help of a drama manager)

and Character-Centric (in the form of highly autonomous agents and emergence) designs.

3.9 Convergence model and constraints

To maintain the coherence and consistency of the narrative, as well as maintain the author's

intention, we use a method that we call "convergence". His idea is that all the narratives of a

generated story converge to some common configuration, while being otherwise completely

independent of each other and unique. Those, some events are bound to happen (or vice versa,

cannot happen), regardless of how the storyline developed before. For example, if an agent must

die solely at the hands of an antagonist, then no other agent can kill him. Alternatively, if the

antagonist must survive the first few "plot cycles", then in this case no one can harm him as long

as the "convergence" "protects" him.

To do this, we use constraints, a set of rules that the drama manager follows. They describe parts

of the configurations of both the state of the story world and the story graph itself, which are

considered to violate one of the properties of the narrative that we maintain. If such a violation is

detected, then the drama manager intervenes, which prevents the agent (or player) from taking an

action whose effect would lead to a violation. Instead, he performs a counter-action that replaces

the violating action. For example, if an agent performs a “move” action to go to a location where

he is currently not allowed to be. Then the drama manager will perform a counter-action that will

send the agent to another nearby location, which can be interpreted as the fact that the agent got

lost and did not go where he intended.

Some of the constraints can be set explicitly: for example, using the author's interface. It is

possible to call these constraints dependent on the story domain and the author's intent. This is of

the kind such as prohibition of movement between locations, control of the agent's status during

the required number of “plot cycles”, requirements to perform one action before performing

another, etc. The other part of the constraints is an integral part of the algorithm, they support

basic coherence and consistency, and do not depend on the domain. For example, they check the

status of an agent before requesting an action - an agent with the status "dead" cannot perform

actions. Also, the narrative should not enter the cycle, or enter the dead end, and the actions of

the agents should be evenly distributed.

36

4. Use cases

In this section, we will give examples of specific instances of the system, considering their input,

author's intentions, and generation results.

Example 1 - Dragon Age:

Here the inputs are the following settings: setting - fantasy, subsetting - dragon age, target types -

based on agent statuses, maximum number of nodes - 350, no random encounters, "do nothing"

actions are hidden, the protagonist must survive, the antagonist and enemy agents must be

cunning, the protagonist and regular agents must be aggressive towards the antagonist.

With this input, the characters are the protagonist Gray Warden and the antagonist Archdemon.

The world consists of the locations Lothering, Mages Tower, Brecilian Forest, Orzammar,

Denerim, Deep Roads. The following actions are available to the protagonist: move, speak, fight,

help mages, help templars, help elves, help werewolves, help Prince Belen, help Lord

Harrowmont. The following actions are available to the antagonist: move, fight. The following

constraints are imposed on the world:

1) The antagonist cannot leave the Deep Roads location until the protagonist is in the Denerim

location;

2) The protagonist cannot leave the Mage Tower, Brecilian Forest and Orzammar locations until

he performs another action than Move;

3) The protagonist cannot die;

4) The protagonist cannot return to the location where he has already been;

5) The antagonist cannot move to any location other than the Denerim location.

The goal of each agent is to kill the other.

The locations mentioned above represent the main locations in which the game took place, and

the actions represent the main choices and events in it. Constraints force the agents to follow the

structure of the game's story, playing through them in a unique order.

The author's intent is to simulate the player's progression through the Dragon Age Origins game

(main story events only). At the same time, the author is not interested in the results in which the

player fails. This will allow him to evaluate all possible combinations of ways of passing. If this

were done during the development process, the purpose of this could be to collect information to

assess the possibility of strengthening the connection of some events with each other (i.e.

subsequent events would be more directly related to the previous ones, contain references to

them).

As a result of the generation was obtained a file in dot format, which was then rendered into an

image in PNG format, and also an HTML file, which, when loaded into the Twine system, will

allow to bypass this graph in an interactive form, i.e. play as an interactive story.

On the graph, we clearly see all the possible ways to complete the main plot of Dragon Age (48

unique paths), divided into eight groups. These groups are determined by options for the order in

which the story choices are made (three main locations, with the ability to move between them in

free order, in each of which two choices are available). Returning to the author's intentions, the

37

author can analyze this graph and, based on it, come to the conclusion that it is too costly to

additionally work each possible path of the planned plot individually. However, if he will work

out not every possible way, but only general patterns (of branching order of passing), then this is

quite possible, since in this case the number of such patterns is small.

Figure 19 shows a fragment of the rendered graph from Example 1:

Example 2 - Random Detective:

In this case, the inputs are the following settings: setting - detective, types of goals - based on

agent statuses, seed - 0, maximum number of nodes - 350, location links are determined

randomly, the result of fights is determined randomly, the initiative of agents is determined

randomly, empty actions are skipped in the visualization, agents can find an evidence when

searching the location with a probability of 75%, the protagonist must survive, the antagonist and

enemy agents must be cunning and talkative, the protagonist and ordinary agents must be

aggressive towards the antagonist.

With this input, the characters are the protagonist (Player), John Gordon MacArthur (usual

agent) and Lawrence John Wargrave (antagonist). The world consists of the Living Rooms, Hall,

Rock and Beach locations. The following actions are available to the player and the usual agent:

move, talk, investigate the location (in search of evidence), neutralize the killer. The following

actions are available to the antagonist: move, talk, entrap, kill.

In this case, the author's intention is to obtain a narrative that corresponds in form to the average

detective story-taking place in a limited space (as a guideline serves Agatha Christie's story "Ten

Little Indians"). The author has no preferences for a specific development of events, but the

protagonist must survive in any scenario. The end goal may be to create the basis for an

interactive story.

As a result of the generation was obtained a file in dot format, which was then rendered into an

image in PNG format, and also an HTML file, which, when loaded into the Twine system, will

allow to bypass this graph in an interactive form, i.e. play as an interactive story.

Fig. 19 A fragment of the rendered graph from Example 1.

38

On the graph, we see a small generated story that matches the intentions of the author. In it, the

protagonist (player) has the opportunity to interact with the environment in different ways: talk

with other agents, explore locations, finding evidence and neutralize the killer, or even be

attacked by him. At the same time, this story world "lives", not concentrating only on the player.

If the player does nothing, or goes the wrong way, another agent will find the evidence himself

and expose the killer.

Figure 20 shows the rendered graph from Example 2, with the requirement that the protagonist

must survive:

However, we can change the conditions a bit, removing the requirement that the protagonist

must always survive and adding the random results of the fights. This will lead to some changes

in the graph. As it is possible to see, the graph has become larger as the antagonist manages to

"survive" more time.

Fig. 20 The rendered graph from Example 2, with the requirement that the protagonist must survive.

39

Figure 21 shows the rendered graph from Example 2, without the requirement that the

protagonist must survive:

Fig. 21 The rendered graph from Example 2, without requirement that the protagonist must survive.

40

5. Implementation

In this chapter, we will describe the details of the technical implementation of our system,

presenting a general description of its architecture. In particular a detailed description of the

algorithm as a whole and a description of the implementations of the interface, environment,

agents, graphs, states, actions, and constraints. As well as a description of the integrated third-

party modules.

5.1 Overview of software choice

5.1.1 General concept

From the very beginning, we planned to use some kind of IDE to create our system, so that it

would help facilitate the development process and implement all the subsystems of interest to us.

Initially, we considered using a game engine like Unity [88] because of their power. Then we

considered this idea unsuitable, since these software tools provide excessive capabilities for our

needs, for which we would probably have to pay in performance, which would negatively affect

the implementation process, since we did not have enough powerful computer equipment. In

addition, our goal was to simplify the overall design, not complicate it. With these considerations

in mind, we decided to go for a simpler IDE. It was also important to consider the choice of

language, as different IDEs support different languages. We concluded that a reasonable choice

would be to use one of the JIT languages, which provide both good computational speed and

convenience. They also have a wealth of expressive possibilities. The most well-known

languages of this type are C# and Java. This narrowed down our final choice to the already

familiar for our Microsoft Visual Studio [89] and IntelliJ IDEA [90].

When choosing between MVS and IntelliJ IDEA [90], we took into account several factors.

First, each of them supports different languages, and it was necessary to choose between C# and

Java. Since we had much more experience with C# than with Java, was chosen exactly this

language. Performance on our hardware also mattered. MVS ran stably and without freezes,

while IntelliJ IDEA [90] took a long time to start up and had occasional performance issues. We

also took into account the convenience of creating a graphical interface, in which MVS provides

more options than IntelliJ IDEA [90], thanks to the Windows Forms API. Therefore, in the end,

we decided to use the MVS IDE [89] (Microsoft Visual Studio Community 2017 version) and

the C# language, in which we wrote all the code.

To simplify the design, we planned to divide it into several modules that could be connected or

disconnected as needed. So, a third-party system, Fast Downward [91], is responsible for

automatic planning, and Graphviz [92] is responsible for visualizing interactive story graphs. We

eventually abandoned some of the originally planned external modules, since they only

complicated the design and use of the system, having implemented their functionality on our

own.

5.1.2 Fast Downward

Fast Downward [91] is a classic planning system based on heuristic search. It is capable of

dealing with common deterministic planning problems encoded using the PDDL language. Like

some other famous planners, Fast Downward [91] is a progression planner that searches the state

space of the world for forward planning problems [94]. We used the seq-opt-lmcut planner

41

configuration (sequential optimizing planner type with Landmark-Cut heuristic, one of the most

popular heuristics in optimal planning due to its efficiency in quickly finding optimal paths in

problems with a small number of key points and its universality for different tasks).

5.1.3 Graphviz

Graphviz [92] is a set of utilities for automatically visualizing graphs, described using the DOT

language.

The main tool from this set of utilities is "dot", which accepts a text file in the same language as

input. That file describes the nodes and their connections in the graph, as well as various

additional properties, such as their name, color, etc. "Dot" itself recognizes all connections of the

graph and arranges it in such a way as to minimize the number of intersections of edges in space.

However, manual adjustment or the introduction of preferences is not available. The resulting

graph can be displayed as a graphic (PNG), vector (SVG) or text file (PDF), and a number of

other formats are also supported. Also included in this set are tools such as "neato" - a tool for

creating a graph based on a "spring" model ("spring model", "energy minimized"), "twopi" - a

tool for creating a graph based on a "radial" model, "circo" is a tool for creating a graph based on

the "circular" model, "fdp" is a tool for creating an undirected graph based on the "fdp" model,

and some others.

We use this main tool to automatically generate a PNG image immediately after generating a

DOT file describing the generated story graph. However, this DOT file can be manually used for

visualization with another tool or another version of Graphviz.

42

An example of a short detective story created by our generator, visualized using graphviz is

shown in Figure 22:

5.1.4 Twine

Twine is a platform for writing interactive fiction, text-based games, and visual novels. Its great

advantage is ease of use - it allows users to export stories to HTML files that can be used locally

or uploaded to a website, viewed with any browser, and does not require programming skills,

since it uses its own markup language. In addition, its advantages are an intuitive interface and

undemanding both to the resources of the platform itself (which, moreover, is available online),

and to the games and stories created with its help. The workspace is presented as a visual scheme

with blocks-nodes (in which text is placed) and edges-transitions between them, implemented as

links. At the same time, the final view of the story can be flexibly modified using JavaScript and

CSS, entering it directly in the editor.

This module is also optional. Our system generates files in HTML format, which can be loaded

into Twine, which in this case is not a development tool, but a platform for running an interactive

story. Twine itself is available both as an online service and as a downloadable application.

Fig. 22 An example of a graph created with Graphviz and dot.

43

An example of the Twine graphical workspace (from where stories and quests also can be

launched) is shown in Figure 23:

5.2 Generator

5.2.1 General algorithm

The generator operation process is controlled by the logic implemented in the

StoryAlgorithm class. In this class are created and stored instances of most of the other

generator modules. Their work in it is synchronized, and the data of their work is stored and

transferred to those modules that need them in the future. This happens in the following order:

user-entered data (including settings) is read, the initial state of the story world is created and

initialized, instances of the necessary constraints are created, planning domains are generated, an

instance of the story (narrative) graph and its root are created, then graph nodes are expanded

cyclically, until while it is possible. After that, the story graph is visualized, and a control file for

Twine is created on its basis.

Reading the data entered by the user and the settings selected by the user occurs in the

ReadUserSettingsInput method, where they are written to the currentStoryState

entity. True to its name, it stores the current state of the story, including some of the settings that

are specific to a particular story. Since at the time of reading the entered data and settings, the

story has not yet begun to be generated, this variable will not contain anything other than

information about the settings, as a result of which it will be used to initialize the root node of

the story graph. Also in this method, data is passed to the pddlModule entity, which

implements interaction with the PDDL language, in particular, encoding information about the

planning problem and the planning domain for the current state of the story and writing them to a

file. To work correctly, it needs information about some settings. Finally, some of the settings

directly affect the definition and number of goal states, because this method also passes data

about them to the goalManager entity, which is an instance of the class responsible for

storing and processing information about goal states, as well as methods for manipulating them.

Fig. 23 Twine workspace example.

44

The initial state of the story world is created and initialized using the CreateInitialState

method. The first step here is the generation of locations, using the CreateLocationSet

method, which creates a set (dictionary) of pairs (static and dynamic parts of each created

location), each of which together makes up a single entity. Then, in a similar way, a set of agents

is generated using the CreateAgents method. The notable difference is that the "agent" is a

more complex entity than the "location", storing more data and methods. As a result, additional

methods are used to create and initialize agents in the future. For example, to prioritize their

actions (refer to them when expanding nodes), using the DistributionOfInitiative and

OrderAgentsByInitiative methods, passing information about the goal states of the

story (using the goalManager's AssignGoalsToAgents method) and their beliefs.

During this process, the CreateInitialState method accesses the user's settings, in

particular, the choice of setting, since this has a significant impact on the number of locations,

agents, their roles and names, as well as the definition of target settings, and some others. Then,

using the CreateEnviroment method, the location data is added to the

currentStoryState. Agents are also added there, one by one, but immediately after they

are created (using the AddAgent method called in the CreateAgent method). This is

because locations are given data about the agents located in them, so they are “forced to wait”

until the generation of agents is completed. This is necessary in order to be able to know exactly

where each of them is in the starting state.

Constraints are generated in the CreateConstraints method. In this method, depending on

the settings, instances of constraints of a different type are created (each type is represented by

the corresponding class), to which additional information is passed (a more detailed specification

of the type of constraint, specific parameters, such as the validity period of the constraint). The

constraintManager entity is responsible (including being used in this method) for

constructing, storing and providing constraints.

The planning domain is generated using the GeneratePDDLDomains method from the

PDDL-Module class, in which a PDDL file is generated to be passed to the planner. Depending

on the settings, its content may be different, but in general, it describes the planning domain:

locations, their connection with each other, the presence of evidence in them, agents, their status,

beliefs, being in locations, a description of possible actions to perform. Also, when creating this

file, a task is defined (based on the current state of story, the role of the agent and, accordingly,

its goal, and some other parameters), the execution of which will bring the agent closer to

fulfilling its goal (achieving the goal state of the story world). After creation, this file is saved in

the directory where the program files are located.

Then it created a root node for the graph, to which is assigned a start state, and also assigned

information about which agent will act first. This node is placed in the graph and marked as the

root node.

When the root node is ready and added to the empty graph, ran the CreateStoryGraph

method. In it, in a loop built a story graph. The loop is structured as follows: the root node is

passed to the BFSTraversing method, after which it is expanded, and then its descendants

are expanded. We describe this process in more detail below. Next, is launched the

BFSGoalAchieveControl method, which checks for the presence of goal states in the

graph (the number of required goal states is determined by a constant, i.e. configurable). Then

checked the condition: a positive result of the BFSGoalAchieveControl method and that

the number of nodes in the graph does not exceed a certain set number (depending on the

settings). If all conditions are met, then this method returns the completed story graph.

Otherwise, the graph is cleared and its construction starts again (since the generation process has

45

a number of adjustable elements with randomness, then, depending on the settings, the result of

new attempts to be either almost identical or noticeably different).

Returning to the BFSTraversing method, we can say that, step by step, node by node, the

graph is directly constructed. To do this, we used a breadth-first graph traversal algorithm. That

is, a queue and a list of visited nodes are created. Then, in a loop, limited on the one hand by the

presence of nodes in the queue (the root node enters it first), and on the other hand by the

maximum allowable number of nodes (it was explained above), the nodes are removed and

expanded from the queue one by one (except for those whose state is already marked as goal,

they are not expanded). To do this, with helps the GetActualAgentNumber method, is

determined which of the agents will be called by the Step method. In the Step method, the

selected agent is called with help the ActionRequest method provided by the

storyworldConvergence class entity. In this method, the previously selected agent's

perceptions and beliefs are updated (using the RefreshBeliefsAboutTheWorld method),

then, based on its current perceptions, beliefs, and goals, the agent calls pddlModule and uses it

to create a PDDL file describing the planning problem (using the GeneratePDDLProblem

method). After preparing the file, the agent calls the planner, providing it with PDDL files

describing the planning domain and the planning problem, and receiving in response an action

plan (using the CalculatePlan method). This plan is provided by the planner in the format

of a text file, so the agent has to parse it into “understandable” (for self) action entities that the

agent adds to the data structure - the plan. After that, the agent checks which of all actions are

currently available for him to perform by going through each type of action and comparing its

preconditions with his own role, state, beliefs, setting, settings and state of the world, after which

he remembers in a separate list those actions that can perform (using the

ReceiveAvailableActions method). Then, by calling the ChooseAction method, the

agent decides what action to perform, comparing the plan received from the planner with the list

of actions available to it. If the first action specified in the plan is in the list of available actions,

the agent remembers it as selected and continues. Otherwise, it decides not to perform any action

at all (an empty action). After selecting an action to perform, the agent accesses the

cspModule entity, using the AssignVariables method it provides, assigning variables to

actions. For example, in the case of a movement, the variables - the initial and final locations are

read directly from the plan and are substituted into the entity representing the action. In other

cases, the most appropriate variables are selected for substitution into actions, with using the

CSP methodology, since not all constraints can be reasonably encoded using PDDL, which

means that the planner may substitute them incorrectly. When the agent has selected the action

that is going to be performed and substituted all the necessary variables into it, then using the

ActionControl method, it accesses the storyworldConvergence entity. It must handle

the action itself, change the state of the story according to its effects, and add a new graph node,

and in case of collisions, handle them properly.

In the ActionControl method, the first step is to determine how the agent performed the

action - successfully or not (using the ProbabilityCalculating method). Then

performed a some number of checks: checking that all constraints are satisfied (using the

ConstraintsControl method), checking for the presence of dead end nodes in the graph

(using the DeadEndsControl method), checking for the presence of a node that is identical to

the already existed node in the graph (using the DuplicateControl method), checking for

the occurrence of cycles in the graph (with using the CyclesControl method). The scheme

of all checks is generally the same - the current state of the story world is cloned, the checked

action is applied to it, as a result of which the effects of this action change this test state. Then

created a special test node, into which inserted the newly created test state, after which checks

specific to it are performed in each case. After that, all test objects are destroyed. Based on the

46

results of the checks, different reactions to them are possible. If all checks are passed

successfully, then called the ApplyAction method to apply the effects of the action already

directly on the current state of the story world, after that a new node is created and it added to the

story graph. Also, if all the checks are passed successfully, except for checking a duplicate of the

newly created node (i.e. the exact same node that was obtained by applying the effects of the

action on the current state of the story is already present in the story graph), then calls the

DuplicateNodeConnecting method. It will connect the current expandable node and that

node in the graph, similar to the received test one, with a new edge. If detected a constraint

violation, but all other checks are successful, then calls the ActionCounteract method, in

which the system tries to find a more appropriate action to use, taking into account the current

state of the story world and graph configuration. As in the case of an action performed by an

agent, cspModule is used to assign variables to this action, and the potentially selected action,

before being applied, passes the appropriate checks using the CounterreactionControl

method. Further, similarly, if the new received state (and, accordingly, the node) is unique, the

ApplyAction method is called, but if such a node already exists in the graph, the

DuplicateNodeConnecting method is called. It should be clarified here that although the

chosen action is technically considered to be the chosen agent, it is actually chosen by the

storyworldConvergence entity, and this mimics the circumstance of why the agent's

action was unsuccessful and what happened instead. Also, if the detected "duplicate" node is the

parent of the considered current node (or itself), then the ActionCounteract method is also

called, as well as in all other combinations of failed checks not mentioned here.

After the Step method completes, in the loop checks all the edges of the newly expanded node

to check the nodes at the other ends of the edges. If the discovered nodes are not in the list of

already visited nodes (often these are newly created nodes), they are added to the queue, as well

as to the list of visited nodes.

After building the story graph, it is checked using the BFSGoalAchieveControl method.

This method, using the graph width traversal algorithm, identifies all nodes in which the target

state has been reached and counts their number.

When the story graph is built and validated, this graph is passed to the graphConstructor

entity. This entity, using the CreateGraph method, creates a file in the .dt format, in which it

describes the previously generated graph in the dot language so that it can be visualized by any

program that recognizes this language. For example, using Graphviz [92]. Then we visualize it

by running and configuring Graphiz using the Graphviz and GraphvizWrapper classes

methods.

After that, the story graph is passed to the twineGraphConstructor entity, which, using

the CreateTwineGraph method, creates a file in HTML format. This file describes the

generated graph using the syntax of the Twine system.

After that, the algorithm ends.

47

5.2.2 User interface

Figure 24 shows the graphical user interface.

Fig. 24 Graphical user interface.

The user interface is a form divided into several zones, each of which contains a certain set of

controls grouped according to their functional similarity.

In the Setting and Sub-Setting sections the user can select the setting in which the narrative will

be generated. In the Goal-type section, it is possible to select the types of goals that agents will

be guided. In the System settings section are grouped randomization settings for various

generation elements: whether to randomly generate links between locations or use preset ones,

whether random encounters should be present, whether the outcome of fights should be

determined randomly, whether agents should act in a random order or in a predetermined one. It

is also possible to define here: the seed for the random number generator, the maximum number

of nodes in the story graph, whether nodes and edges created by "empty" actions should be

hidden, and enter the key from the OpenAI API. In the Story settings section, settings are

specified that apply specifically to the generated story: is it possible and with what chance for

agents to find evidence against the antagonist, should the protagonist and antagonist be

guaranteed to "survive" a certain time and if so, how long, unique descriptions for the actions of

the antagonist and whether he should follow a certain order of action in order to achieve his

goals. In the Character behavior section is configured the behavior of agents: whether they

should behave more aggressively or more peacefully, be more sociable and cunning or vice

versa, etc. In the Files settings section is possible to choice and display the path where will be

written the output files created by the program and also possible choose their name (it will be the

same for a .dot file with a description of the story graph and an image generated on its basis). In

the Notes field is displayed auxiliary information: initially, there is a brief instruction for

configuring and launching the program, then there is displayed information about selected

element, and after launch there is displayed the status of the program (what exactly action it

48

performs, i.e. on what stage is it). Also there is a Start button, clicking on which will start the

generation process, if all the minimum required settings have been specified.

This interface was created using the Windows Forms system. It provides the ability to select and

place all the required elements in the graphic editor (GroupBox - for creating sections, i.e.

combining other elements into groups, RadioButton - a logical element that allows select (set

the value to "true") only one element this type from of the entire group, CheckBox - also a

logical element, but not limited in number, TextBox - a standard text field, with the possibility

of user input, Label - displays a predefined text, without support for user input, Button - an

element to which are attached a some number of events (triggers), allowing to flexibly define its

behavior, for example, perform certain actions when pressed). Once placed, the behavior of these

elements can be configured in the appropriate class. In our case, this is the MainWindow class.

In this class also declared an object of the StoryAlgorithm class that controls the run of the

program. Here it directly receives information about the settings selected by the user (set by

interacting with interface elements), as well as a command to start the generation process.

5.2.3 Implementation of the environment

The environment in which the agents operate is implemented using the LocationStatic and

LocationDynamic classes. These classes represent an abstraction of a certain

location (room/area) in which agents and various objects can be located. These locations are

"logistically" connected, in the sense that a link can be established between each pair of

locations. Such a connection, when the corresponding rule is activated, will serve as a condition

for the possibility of moving agents between these locations.

The representation of a single entity by dividing it into two classes is due to the fact that part of

the data is set once during the existence of this entity, and part of the data can change an

indefinite number of times during the program's operation, overwritten. Accordingly, static data

and dynamic data use their own classes. They are combined into a single entity using data

structures such as KeyValuePair and Dictionary.

The LocationStatic class contains information about the name of the location and what

other locations are associated with it, as well as methods for setting/getting this information, and

also changing it.

The LocationDynamic class stores information about which agents are in it, information

about the presence (or absence) of evidence and information about items that are stored in this

location. Similarly, methods for setting/getting this information and changing it.

5.2.4 Agent implementation

Agents are implemented in a similar way, where a single entity representing an agent is divided

into two classes. One of these classes stores immutable or rarely changed information (this is the

AgentStateStatic class), and the second information that changes during operation (this is

the AgentStateDynamic class). Also, to combine two components into a single entity, used

the KeyValuePair and Dictionary data structures.

The AgentStateStatic class stores information about the agent's name and role.

The role is implemented using an enumerator and serves as a behavior template for agents,

without the need to manually define it individually for each. For example, the availability of

49

actions, goals, as well as some features of obtaining perception are determined by being tied to

the role of the agent.

The AgentStateDynamic class stores information: about the agent's plan, the list of actions

available to him, his status (alive/dead), information about the agent's goals, his "emotional"

state (scared, angry), his intentions (go to a certain place, or lure another agent to a specific

location) and list of items belong to agent. It also stores information about the agent's beliefs, and

his assumption of the world around him (environment, other agents). And, of course, it contains

methods for assigning, receiving and changing this information, including by accessing third-

party modules. For example, to the planner.

The emotional state of an agent implemented using separate classes, each of which serves to

express a certain emotion. Objects of these classes are stored in the dynamic part of the agent.

These classes are generally similar to each other, containing information about whether the agent

is experiencing a given emotion at the current moment or not, as well as some specific

information about it. For example, if one agent is angry with another agent, then its

AgentAngryAt class object will store information about the agent with which he is angry (a

reference to him).

The agent's beliefs are expressed primarily by holding its own instance of the WorldContext

class. It stores what the agent thinks about the world and other agents. We note separately that he

only believes, but does not know, since this information may be incomplete and incorrect. So, it

stores: the agent’s assumption about where he is, about other agents in the location where he is,

in general - about the agents and locations present in the story world (of which the agent is

aware, and not about all in general) . Beliefs about agents are also stored using the special

BeliefsAboutAgent class, rather than directly using classes that represent agents

specifically. This class stores the agent's assumptions about the name, role, status, location, and

anger level of some other agent. Also, beliefs are additionally expressed remembering by agents

certain facts. For example, about finding evidence or a list of explored locations.

5.2.5 Player implementation specifics

Player representation has its own challenges. He must have several options for choosing how to

act, and at the same time it is difficult for us to assume what exactly he will do. At the same

time, since we are creating a plan that provides for all the options for the development of the

story, we cannot leave it to itself somehow decide during the runtime. The player's actions must

also be part of the plan, and must not conflict with it.

We consider the player as an agent, but with a unique role. When

storyworldConvergence sends an action request to this agent, it is handled differently.

The ActionRequest method has a separate fork that overrides the algorithm if the current

agent has the role of "player". Unlike the situation with an ordinary agent, the stage of drawing

up a plan is skipped here. After determining the actions available to the agent-player, no one is

chosen to be performed, but all they begin to be performed sequentially (using a cycle).

However, some actions may have options within themselves. For example, when one certain

location is connected to several others and it is possible to move to each of them. In this case,

each such action option is processed as a separate action.

It is worth bearing in mind that we are considering a human player as someone who only

controls the character assigned to control, but is not him. Therefore, the beliefs of the player

agent, his goals, perceptions, and everything else are calculated in the same way as for other

50

agents. And the set of actions available for performing (from which, in fact, the player will

choose) depends on the same set of factors as with ordinary agents.

5.2.6 Implementation of the story graph, graph nodes and states of the story world

The state of the story world is also implemented with a division into two classes. The one that

stores immutable or rarely changed information (WorldStatic class). And the one that stores

frequently changed information (WorldDynamic class). Also, similarly, they are combined

into a single entity using the KeyValuePair and Dictionary data structures.

WorldStatic stores information about a list of all locations in the story world (meaning their

static information, name and links to other locations), as well as settings relevant to this story.

The settings are displayed using enumerators and booleans values.

WorldDynamic stores information about the current state of all locations and information

about the current state of all agents.

The story graph is represented using the StoryGraph class, which stores a set of nodes and a

link to the root node.

Each node is implemented using the StoryNode class. It stores: the state of the story world,

information about the active agent, serial number and information about connections with other

nodes. Information about these connections is expressed using a set of edges that connect two

nodes in the graph. The Edge class is used to implement edges. Each object of this class stores

references to two nodes that are connected by this edge (marked as top and bottom). And also

information about the action, the application of which by the agent led to the formation of this

edge (the transition of the story world from one state, which is stored in the upper node, to a new

state, which is stored in the lower node).

5.2.7 Implementing goal states

By the goals that agents are trying to achieve, we understand a certain state of the story world

that satisfies a number of agent-specific conditions. For example, in a detective setting, the goal

of ordinary agents and the player may be to neutralize the killer. Therefore, all states in which

the killer is dead, in this example, will be considered as a goal. When constructing a graph, nodes

with such states in which this condition is met are considered finite and are not expanded.

For representation, we use the Goal class. This class stores an indication of the types of goal

and the goal state itself, in which the condition has already been met, allowing it to be considered

the goal standard. Goal types come in three types and are represented using the GoalTypes

enumerator. These include the status (alive/dead) of certain agents, the presence of an agent in a

certain location, an agent possession by a certain object. Dividing goals into several types allows

them to be more flexible in their specification, and check only the necessary aspects of the state

when checking its compliance with the goal, rather than making a full comparison.

The control of whether a certain state corresponds to the goal state occurs in the

ControlToAchieveGoalState method of the GoalManager class. In it, the check

occurs in such a way that first the key specifications of a particular state are read (whether the

player is alive, whether the antagonist is alive, the number of surviving agents, etc.), and then, in

accordance with the specified type of goal, made specialized checks corresponding to it.

51

Also, the agent's goal type affects the choice of intent when building a PDDL file describing a

planning problem. For example, an agent who has the goal of finding an antagonist will

systematically move around and research locations in search of evidence. While the antagonist

himself will try to stay in the locations along with a small number of other agents, or lure them

into empty locations in order to eliminate them later.

5.2.8 Implementation of actions

Actions serve to transform one state of the world (current) into another (next). They have a

precondition that must be met for the action to be applied, as well as effects, which are things

that will be changed in the state of the world.

They are implemented using the PlanAction virtual class. This class contains all the variables

and methods that are used by the derived classes. In particular: arguments, success status,

description, methods for adding arguments, displaying a description, checking preconditions,

applying effects (if the action succeeds), and behavior when the action fails.

Based on this class created separate descendant classes for each required action. For example:

Move to move, Talk to talk, Kill to change the status of an agent, etc. Each individual class

redefines: its arguments, descriptions and algorithms for checking preconditions and applying

effects, in order to match the specifics of a particular class.

To check preconditions used the CheckPreconditions method. It is passed a verifiable

state of the story world, which is checked for compliance with the preconditions. For example, in

the Move class checks the status of the agent performing the action (passed as an argument), as

well as the presence of this agent at the point of departure and its absence at the point of arrival

(the names of both are also passed as arguments). If all preconditions are met, then the method

returns a boolean value - true, if at least one is not met, then returns a value - false. Accordingly,

agents can at least simply add them to their list of actions available for execution only when this

check is passed successfully.

There is also a PreCheckPrecondition method, used in cases where arguments have not

yet been passed to this class, to write them to variables. This method allows to use them as his

own parameters.

To apply effects used the ApplyEffects method. Unlike the CheckPreconditions
method, it is passed not a copy of the state of the world, but a reference to the current state of the

story world, which this method directly changes. For example, in the same Move class, the

moving agent is removed from the location in which it is located and added to the one it was

heading to. The agent's beliefs also change accordingly. In this case, the passed arguments are

only used to identify (by name or id) their originals in a mutable state. All manipulations take

place precisely with the state, directly with locations and agents getting from it, but with nothing

passed as an argument.

If the action failed then called the Fail method. This method defines the appropriate behavior

for the action. In the already mentioned Move class, the action will simply be marked as

unsuccessful (with the help of the corresponding boolean variable), but in the Kill class (with

the rule for random battle results enabled), this method describes the outcome of the action

directly opposite to that which happens when it is successfully executed, those the killer dies.

52

5.2.9 Constraint implementation

Constraints are used to maintain the consistency and coherence of the story, as well as to support

the author's intent. They represent various conditions, the fulfillment (or non-fulfillment) of

which by the agents and the player will force the system to react to their behavior, responding to

their actions with counter-actions (or, in fact, replacing their action with another one).

Constraints are implemented using the abstract class WorldConstraint. Based on this class

implemented derived classes for more specialized constraints. To restrict access to a location

used the RestrictingLocationAvailability class, which defines 11 types of possible

options for restricting movement or being in locations. For example: a ban on re-visiting, an

indication that a location should be visited only once, or at least once, a ban on moving before

another agent arrives at a certain place or leaves a certain place, etc. Each type has its own

validation algorithm, even within the same class. But the validation method inherited from

WorldConstraint requires immediately providing it with all the necessary data that may be

required for any type of constraint (checked state, graph, check type, target locations, target

agents, expiration, etc.). The output of the check result always occurs in a boolean format,

implying an answer to the question - is the constraint satisfied or not. To limit the

communication between agents used the ForbiddenToSpeak class. For restrictions on the

status (alive/dead) of agents used the ConstraintAlive class. To restrict the direct actions

of agents used the ActionsRestricting class.

During the generation process, for each specific constraint (with a specific type and parameters)

created its own object that stores all the necessary information for a specific constraint.

Examples of such specific constraints are: "it is not allowed to put an antagonist in the status of

"dead" during the first five turns", "a specific agent must visit each location at least once", "a

hero agent cannot leave the village location without completing actions to complete the quest"

and so on. The presence of this or that constraint is determined by the settings. All generated

objects representing constraints are added to the target manager's list, which stores them.

While validating the action (for its correctness), in the loop, all objects representing the

constraints are accessed (their list is provided by the constraint manager), with a call to their

method that checks the compliance of the resulting state of the story world with the specified

conditions.

5.3 External module – planner

To implement planning by agents, we use a third party program called Fast Downward [91]. To

it are transferred two files: the planning domain and the planning problem, in the PDDL format.

In response, this planner returns a text file with a plan.

For direct work with Fast Downward [90] used the FastDownwardWrapper class, which

defines two methods: Run and RunFastDownward. In the Run method created a process, its

settings are specified, and then the process is started. In this case, it means launching the

command line with the required command to activate Fast Downward [91] and specify the files

to use for it. The RunFastDownward method defines parameters for running the Run method.

Such as: launching the command line, specifying the executable file, choosing a method for

planning, the name of the used PDDL files. Then from it is launched the Run method. And it

returns a boolean value characterizing the success of the launch (or, conversely, failure).

53

The FastDownward class contains methods for: launching the wrapper, processing the plan

(reading the file with the plan, parsing the data in it, converting them into program entities -

objects of certain classes perceived by the generator program) and error detection.

5.4 External module - graph visualizer

To visualize graphs, we also use an external module, a program called Graphviz [91]. It is

presented in several versions, available both for installation on a personal computer and for

online use. Since we are creating a file in the .dot format, and any of the versions of this program

can process it, it is permissible to use any version. Our implementation uses the desktop version,

which is launched using the command line. This choice was made due to the fact that web

versions allocate limited resources to users for generation and often do not allow scaling the

resulting image in good quality. While in some cases we generate very large graphs. Generating

such large graphs requires some time and computing power, and quality-preserving scaling is

necessary in order to be able to consider their arbitrary details.

As in the case of Fast Downward [91], for the direct work of Graphviz [92] we use the

GraphvizWrapper class, which defines two methods: Run and RunGraphviz.

Functionally, they are generally similar to methods from the FastDownwardWrapper class.

Similarly, in the RunGraphviz method, the wrapper is initialized and launched. In the Run

method, is created, initialized and configured (indicating the using executable file, working

directory, commands, etc.) the process, which starts processing the system-generated .dot file

and generating the corresponding visualization image based on it.

The creation of a file in the .dot format, which is passed to Graphviz [92], is described in the

GraphСonstructor class. It occurs in such a way that all nodes and edges in the graph are

traversed in a cycle, their characteristic specificities are determined (for example, is the state

stored by the node, goal or not). Then, in accordance with the received data, generated a text

corresponding to the dot graph description language, which is added to a file of the appropriate

format. Some user-defined settings (for example, do not display empty actions on the graph)

affect the appearance of the generated graph. In this case, special algorithms are used to

eliminate unnecessary nodes (and edges, respectively), and then correctly connect the nodes and

edges remaining in the graph, preventing the occurrence of "breaks".

5.5 External module - a platform for writing interactive literature, text games

and visual novels

As a platform that could playback the story based on the graph we generated, at the same time

allowing the player to interact with it interactively, we chose Twine. This platform is available

both as a desktop program and as a web application. It also provides both the ability to create

user stories (acting as an editor) and upload already created ones. To do this, it uses HTML files,

as well as its own language (in fact, there is even a choice of several ways to present

information, but we worked with the default one). To start working with this platform, it is

enough to upload the generated HTML file into it, no additional actions or settings are required.

A running story (or a text-based game) appears as text in a window, which, depending on the

purpose, is formatted accordingly (for example, text, clicking on which will lead to a transition

to another state, is highlighted in blue, underlined and has larger font).

Since the interface for interacting with Twine is only graphical, we did not create any wrappers

for working with this platform. Interaction is carried out manually. Methods for converting the

generated story graph into a format understood by Twine are described in the

54

TwineGraphConstructor class. It does this by adding the necessary code that tells Twine

how to interact with the given story, how to display, what title, where the entry point, etc., into

the appropriate file. Then there is a loop through the generated graph, in which each node and

each edge is considered separately. Based on their type, properties, and stored information, an

appropriate block of code is created to write to the HTML file for Twine. For example, read

information in which location the player-agent is located, what other agents are there, converted

into a connected sentence in natural language (English), which is written in the same capacity to

the created file, so that the player has information about the environment. In the OpenAI class is

described the CompletionRequest method, with the help of which (by creating an HTTP

Client and using it to send a POST request to the specified URL, specifying authorization

parameters and request type, and catching the response using HttpResponseMessage) the

graph constructor for Twine can use the model to generate text, passing it its own generated text

as a prompt, and receiving from it a more extended version, more colorful and similar to that

written by a human. The edges are also converted to text, but already allowed to interact with

them, redirecting to a new state when clicked. This text itself is created on the basis of the action

recorded in this data structure. Since the player may be able to view and act only in the story

world on their turn when the player agent had the opportunity to do so, states in which the player

agent could not act are not included in the description. It is transformed in such a way that the

edges (actions) lead either to those nodes in which the player agent acts, or to those that are

created by the constructor to provide additional information. Thus, the actions of other agents

themselves remain "behind the scenes" for the player, he is faced only with their results.

55

Conclusion

Within the framework of this thesis, we explored various approaches to creating interactive

stories, figured out what makes them interesting, what are their most important features, and how

they can be applied in practice. Based on this, we have formulate our own goal - on base

procedural narrative generator to create a tool that allows to visualize all possible ways of

developing a narrative in a given domain (which, from our point of view, should be useful to

game designers, instead of calculations "manually"), and to generate interactive stories (quests).

We found out that this method of using procedural narrative generators is still a little-studied

area.

To fulfill our goal, we have developed an algorithm that allows speeding up the creation of an

interactive narrative, which usually takes quite a long time. At the same time, we applied an

approach that we see as quite innovative – a combination of high emergence and centralized

regulation with the help of a Drama Manager. We believe that it allows achieving several goals

at once: to speed up the generation of narrative, and combine the believability of agents from

emergent narratives with the consistency and coherence of narratives based on centralized

regulation and planning. We were encouraged by the results, because initially we were going to

limit ourselves to very short narratives in the detective genre and use a very small domain for

this. However, in the end we were able to significantly complicate the domain and add a second

genre. At the same time, generation still takes place in a reasonable time and narratives of more

complex stories are created than we originally planned. In addition, we managed to integrate into

our system the ability to use language models for text generation based on neural networks from

OpenAI, which allow us to express the narrative generated by our system using texts similar to

those created by a human, which allows us to create of full value interactive stories with internal

coherence, consistency and expressed in the appropriate way. We also showed that it is possible

to visualize the narrative generated by our system in an understandable way, and to create an

interactive story (quest game) from it, which will be possible to play on a third-party platform.

Finally, we described our technical implementation of the story generation system. In the process

of working on it, we somewhat went beyond the originally planned area of work, because we

saw several interesting opportunities.

56

Future work

In the process of working on this thesis, we saw many opportunities to expand it. For start, we

would like to improve the author's capabilities in the sense of modifying and editing the story.

We see a rather successful and elegant solution for it in using downloadable "scripts", in the

form of separate files that the author could edit, completely customizing the domain without

having to correct the system code for such changes. We also see further opportunities for

improvement by expanding the model of relationships between agents to make them even more

plausible. Another interesting opportunity for further work is to introduce and control dramatic

structures, which would improve the experience that such systems should provide to users. A

logical step for improvement is also seen to complicate quests, adding sub-goals to them,

opportunities to achieve the main goal without finishing the story, but starting a new one in the

already changed story world. We also consider an increase in the number of platforms to which

the generated narrative can be transferred to create a quest to be a good opportunity for

improvement. For example, limit ourselves not only to Twine, but also expand to Squiffy and

Unity [87].

We understand that all this together is a huge and complex job, but even each of the mentioned

features individually can significantly improve our system. The implementation of several at

once will be a noticeable advance in the field under study, since there are not so comprehensive

works in it yet.

57

Bibliography

1. CLEMENT, Jessica. Number of video gamers worldwide in 2021, by region. In: Statista

[online]. 25.10.2022 [accessed 2023-05-26]. Available from:
https://www.statista.com/statistics/293304/number-video-gamers/

2. STRAUSS, Ben. Video Games Are Art, Says U.S. Government. In: Business Insider

[online]. 18.05.2011 [accessed 2023-05-26]. Available from:
https://www.businessinsider.com/video-games-are-art-says-us-

government-2011-5

3. WIJMAN, Tom. The Games Market and Beyond in 2021: The Year in Numbers. In:

Newzoo [online]. 22.12.2021 [accessed 2023-05-26]. Available from:
https://newzoo.com/insights/articles/the-games-market-in-2021-

the-year-in-numbers-esports-cloud-gaming

4. HENDRIKX, Mark, Sebastiaan MEIJER, Joeri VAN DER VELDEN and Alexandru

IOSUP. Procedural content generation for games: A survey. ACM Transactions on

Multimedia Computing, Communications, and Applications [online]. 2013, 9(1), p. 1-22

[accessed 2023-05-26]. ISSN 1551-6857. Available from DOI:
10.1145/2422956.2422957

5. TOGELIUS, Julian, Alex J. CHAMPANDARD, Pier L. LANZI, Michael MATEAS, Ana

PAIVA, Mike PREUSS and Kenneth O. STANLEY. Procedural Content Generation:

Goals Challenges and Actionable Steps. Artificial and Computational Intelligence in

Games [online]. 2013, 6, p. 61-75 [accessed 2023-05-26]. ISSN: 1868-8977. Available

from DOI: 10.4230/DFU.Vol6.12191.61

6. AMATO, Alba. Procedural Content Generation in the Game Industry. In: KORN, Oliver

and Newton LEE, ed. Game Dynamics [online]. Cham: Springer International Publishing,

2017, 31.03.17, p. 15-25 [accessed 2023-05-26]. ISBN 978-3-319-53087-1. Available

from DOI: 10.1007/978-3-319-53088-8_2

7. FRONTIER DEVELOPMENTS. Elite Dangerous [software]. 2014 [accessed 2023-05-

26]. Available from: https://www.elitedangerous.com/. System requirements:

OS Windows 8/10 64-bit, CPU Quad Core CPU (4 x 2Ghz), memory 6 GB RAM, GPU

Nvidia GTX 470/AMD R7 240.

8. HELLO GAMES. No Man's Sky [software]. 2016 [accessed 2023-05-26]. Available

from: https://www.nomanssky.com/. System requirements: OS Windows 7, CPU

Intel Core i3, memory 8 GB RAM, GPU Nvidia GTX 480.

9. GEARBOX SOFTWARE. Borderlands [software]. 2009 [accessed 2023-05-26].

Available from: https://borderlands.com/. System requirements: OS Windows

XP/Vista, CPU 2.4 Ghz or equivalent processor with SSE2 support, memory 1GB RAM

(2GB recommended with Vista), GPU 256mb video RAM or better.

https://www.statista.com/statistics/293304/number-video-gamers/
https://www.businessinsider.com/video-games-are-art-says-us-government-2011-5
https://www.businessinsider.com/video-games-are-art-says-us-government-2011-5
https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming
https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming
https://doi.org/10.1145/2422956.2422957
http://doi.org/10.4230/DFU.Vol6.12191.61
http://doi.org/10.1007/978-3-319-53088-8_2
https://www.elitedangerous.com/
https://www.nomanssky.com/
https://borderlands.com/en-US/

58

10. MOJANG STUDIOS. Minecraft [software]. 2009 [accessed 2023-05-26]. Available

from: https://www.minecraft.net/. System requirements: OS Windows 7, CPU

Intel Core i3 3210 | AMD A8 7600 APU or equivalent, memory 4 GB RAM, GPU

Nvidia GeForce 400 Series or AMD Radeon HD 7000 series with OpenGL 4.4.

11. INTERACTIVE DATA VISUALIZATION, INC. SpeedTree [software]. 2002 [accessed

2023-05-26]. Available from: https://store.speedtree.com/. System

requirements: OS Windows 7/8/10/11, CPU Multi-core Intel series or higher, Xeon or

AMD equivalent, memory 4GB RAM.

12. ESRI R&D CENTER ZURICH. CityEngine [software]. 2008 [accessed 2023-05-26].

Available from: https://www.esri.com/en-us/arcgis/products/arcgis-

cityengine/overview. System requirements: OS Windows 8/10, CPU 2 GHz dual-

core (minimum Core2 Duo compatible Intel/AMD), memory 16 GB RAM, GPU

Nvidia—GeForce 600 and later / Quadro 600 and later or AMD-Radeon HD 7000 and

later.

13. FREIKNECHT, Jonas and Wolfgang EFFELSBERG. A Survey on the Procedural

Generation of Virtual Worlds. Multimodal Technologies and Interaction [online]. 2017,

1(4) [accessed 2023-05-26]. ISSN 2414-4088. Available from DOI:
10.3390/mti1040027

14. KYBARTAS, Ben and Rafael BIDARRA. A Survey on Story Generation Techniques for

Authoring Computational Narratives. IEEE Transactions on Computational Intelligence

and AI in Games [online]. 2017, 9(3), p. 239-253 [accessed 2023-05-26]. ISSN 1943-

068X. Available from DOI: 10.1109/TCIAIG.2016.2546063

15. ABBOTT, H. Porter. The Cambridge Introduction to Narrative [online]. Cambridge

University Press, 2014 [accessed 2023-05-26]. ISBN 9780521887199. Available from

DOI: 10.1017/CBO9780511816932

16. TURTLE ROCK STUDIOS. Left4Dead [software]. 2008 [accessed 2023-05-26].

Available from: https://www.l4d.com/. System requirements: OS Windows

7/Vista/XP, CPU Pentium 4 3.0GHz, memory 1GB RAM, GPU 128 MB, Shader model

2.0, ATI 9600, NVidia 6600 or better.

17. BETHESDA GAME STUDIOS. The Elder Scrolls V: Skyrim [software]. 2011 [accessed

2023-05-26]. Available from: https://elderscrolls.bethesda.net/skyrim.

System requirements: OS Windows 7/8.1/10 (64-bit Version), CPU Intel i5-750/AMD

Phenom II X4-945, memory 8 GB RAM, GPU Direct X 9.0c compliant video card with

512 MB of RAM.

18. Skyrim:Radiant. In: Unofficial Elder Scrolls Pages [online]. 2011- [accessed 2023-05-

26]. Available from: https://en.uesp.net/wiki/Skyrim:Radiant

https://www.minecraft.net/
https://store.speedtree.com/
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
http://doi.org/10.3390/mti1040027
http://doi.org/10.1109/TCIAIG.2016.2546063
https://doi.org/10.1017/CBO9780511816932
https://www.l4d.com/
https://elderscrolls.bethesda.net/skyrim
https://en.uesp.net/wiki/Skyrim:Radiant

59

19. Are Radiant Quests Having An Adverse Effect Open World Games and Unique Quests

Within?. In: Reddit [online]. 15.10.2016 [accessed 2023-05-26]. Available from:
https://www.reddit.com/r/Games/comments/57no58/are_radiant_quests

_having_an_adverse_effect_open/

20. YOUNG, Robert and Mark RIEDL. Towards an architecture for intelligent control of

narrative in interactive virtual worlds. In: Proceedings of the 8th international conference

on Intelligent user interfaces [online]. New York, NY, USA: ACM, 2003, 12.01.2023, p.

310-312 [accessed 2023-05-26]. ISBN 1581135866. Available from DOI:
10.1145/604045.604108

21. JOHNSON, Daniel. Animated Frustration or the Ambivalence of Player Agency. Games

and Culture [online]. 2015, 10(6), p. 593-612 [accessed 2023-05-26]. ISSN 1555-4120.

Available from DOI: 10.1177/1555412014567229

22. HROMADA, Tomáš, Martin ČERNÝ, Michal BÍDA and Cyril BROM. Generating Side

Quests from Building Blocks. In: SCHOENAU-FOG, Henrik, Luis Emilio BRUNI,

Sandy LOUCHART and Sarune BACEVICIUTE, ed. Interactive Storytelling [online].

Cham: Springer International Publishing, 2015, 11.12.2015, p. 235-242 [accessed 2023-

05-26]. Lecture Notes in Computer Science. ISBN 978-3-319-27035-7. Available from

DOI: 10.1007/978-3-319-27036-4_22

23. KLIMAS, Chris. Twine [software]. 2009 [accessed 2023-05-26]. Available from

https://twinery.org/

24. FAGGELLA, Daniel. What is Artificial Intelligence? An Informed Definition. In: Emerj

Artificial Intelligence Research [online]. 21.12.2018 [accessed 2023-05-26]. Available

from: https://emerj.com/ai-glossary-terms/what-is-artificial-
intelligence-an-informed-definition/

25. WOOLDRIDGE, Michael J. An introduction to multiagent systems. New York: J. Wiley,

2002, 488 p. ISBN 0-471-49691-x.

26. LAWTON, Graham. AI can predict your future behavior with powerful new simulations.

In: New Scientist [online]. 2.10.2019 [accessed 2023-05-26]. Available from:
https://www.newscientist.com/article/mg24332500-800-ai-can-

predict-your-future-behaviour-with-powerful-new-simulations/

27. GHALLAB, Malik, Dana S. NAU and Paolo TRAVERSO. Automated planning and

acting [online]. New York, NY: Cambridge University Press, 2016 [accessed 2023-05-

26]. ISBN 9781107037274. Available from DOI: 10.1017/CBO9781139583923

28. BÜCHNER, Clemens, Patrick FERBER, Jendrik SEIPP and Malte HELMERT. A

Comparison of Abstraction Heuristics for Rubik’s Cube. In: Proceedings of the ICAPS

2022 Workshop on Heuristics and Search for Domain-independent Planning [online].

16.06.2022 [accessed 2023-05-26]. Available from:

https://www.reddit.com/r/Games/comments/57no58/are_radiant_quests_having_an_adverse_effect_open/
https://www.reddit.com/r/Games/comments/57no58/are_radiant_quests_having_an_adverse_effect_open/
https://doi.org/10.1145/604045.604108
https://doi.org/10.1177/1555412014567229
https://doi.org/10.1007/978-3-319-27036-4_22
https://twinery.org/
https://emerj.com/ai-glossary-terms/what-is-artificial-intelligence-an-informed-definition/
https://emerj.com/ai-glossary-terms/what-is-artificial-intelligence-an-informed-definition/
https://www.newscientist.com/article/mg24332500-800-ai-can-predict-your-future-behaviour-with-powerful-new-simulations/
https://www.newscientist.com/article/mg24332500-800-ai-can-predict-your-future-behaviour-with-powerful-new-simulations/
https://doi.org/10.1017/CBO9781139583923

60

https://ai.dmi.unibas.ch/papers/buechner-et-al-

icaps2022wshsdip.pdf

29. WARE, Stephen G., Edward T. GARCIA, Alireza SHIRVANI and Rachelyn FARRELL.

Multi-Agent Narrative Experience Management as Story Graph Pruning. In: Proceedings

of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

[online]. 2019, 15(1), p. 87-93 [accessed 2023-05-26]. ISSN 2334-0924. Available from

DOI: 10.1609/aiide.v15i1.5229

30. FIKES, Richard E. and Nils J. NILSSON. Strips: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence [online]. 1971, 2(3-4), p. 189-

208 [accessed 2023-05-26]. ISSN 00043702. Available from DOI: 10.1016/0004-
3702(71)90010-5

31. FOX, Maria and Derek LONG. PDDL+: Modeling continuous time dependent effects. In:

Proceedings of the 3rd International NASA Workshop on Planning and Scheduling for

Space [online]. 27.10.2002 [accessed 2023-05-26]. Available from:
https://planning.wiki/_citedpapers/pddlplus2003.pdf

32. BARTÁK, Roman. Constraint Satisfaction for Planning and Scheduling. In: Proceedings

of the 14th International Conference on Automated Planning and Scheduling [online].

3.06.2004 [accessed 2023-05-26]. Available from:
https://ktiml.mff.cuni.cz/~bartak/ICAPS2004/download/ICAPS_2004_T

utorial.pdf

33. SHAKER, Noor, Julian TOGELIUS and Mark J. NELSON. Procedural Content

Generation in Games: A Textbook and an Overview of Current Research [online]. Cham:

Springer International Publishing, 2016 [accessed 2023-05-26]. Computational Synthesis

and Creative Systems. ISBN 978-3-319-42714-0. Available from DOI: 10.1007/978-
3-319-42716-4

34. MOURATO, Fausto. Enhancing automatic level generation for platform videogames

[online]. Lisbon, 2015 [accessed 2023-05-26]. Dissertation. NOVA University Lisbon,

FCT NOVA - NOVA School of Science and Technology. Dissertation supervisors

Manuel Santos, Fernando Birra. Available from:
https://run.unl.pt/bitstream/10362/18497/1/Mourato_2015.pdf

35. PEREZ, Mijael R. Bueno, Elmar EISEMANN and Rafael BIDARRA. A Synset-Based

Recommender Method for Mixed-Initiative Narrative World Creation. In: MITCHELL,

Alex and Mirjam VOSMEER, ed. Interactive Storytelling [online]. Cham: Springer

International Publishing, 2021, 04.12.2021, p. 13-28 [accessed 2023-05-26]. Lecture

Notes in Computer Science. ISBN 978-3-030-92299-3. Available from DOI:
10.1007/978-3-030-92300-6_2

36. SMITH, Gillian, Jim WHITEHEAD and Michael MATEAS. Tanagra: A mixed-initiative

level design tool. In: Proceedings of the Fifth International Conference on the

Foundations of Digital Games [online]. New York, NY, USA: ACM, 2010, 19.06.2010,

https://ai.dmi.unibas.ch/papers/buechner-et-al-icaps2022wshsdip.pdf
https://ai.dmi.unibas.ch/papers/buechner-et-al-icaps2022wshsdip.pdf
https://doi.org/10.1609/aiide.v15i1.5229
http://doi.org/10.1016/0004-3702(71)90010-5
http://doi.org/10.1016/0004-3702(71)90010-5
https://planning.wiki/_citedpapers/pddlplus2003.pdf
https://ktiml.mff.cuni.cz/~bartak/ICAPS2004/download/ICAPS_2004_Tutorial.pdf
https://ktiml.mff.cuni.cz/~bartak/ICAPS2004/download/ICAPS_2004_Tutorial.pdf
http://doi.org/10.1007/978-3-319-42716-4
http://doi.org/10.1007/978-3-319-42716-4
https://run.unl.pt/bitstream/10362/18497/1/Mourato_2015.pdf
https://doi.org/10.1007/978-3-030-92300-6_2

61

p. 209-216 [accessed 2023-05-26]. ISBN 9781605589374. Available from DOI:
10.1145/1822348.1822376

37. WIELK, Olaf. Story vs. Narrative. In: Beemgee [online]. 18.12.2014 [accessed 2023-05-

26]. Available from: https://www.beemgee.com/blog/story-vs-narrative/

38. MARTIN, J. Interactive Narrative vs. Interactive Storytelling. In: Between drafts

[online]. 8.04.2022 [accessed 2023-05-26]. Available from:
https://betweendrafts.com/2022/04/08/interactive-narrative-vs-

interactive-storytelling/

39. BOSTAN, Barboros and Tim MARSH. Fundamentals Of Interactive Storytelling. AJIT-

e: Online Academic Journal of Information Technology [online]. 2012, 3(8), p. 19-42

[accessed 2023-05-26]. ISSN 1309-1581. Available from DOI: 10.5824/1309-
1581.2012.3.002.x

40. ARINBJARNAR, Maria, Hether BARBER and Daniel KUDENKO. A Critical Review

of Interactive Drama Systems. In: AISB Symposium [online]. 08.04.2009 [accessed 2023-

05-26]. Available from:
https://www.cs.uky.edu/~sgware/reading/papers/arinbjarnar2009crit

ical.pdf

41. HERVAS, Raquel, Antonio SANCHEZ-RUIZ-GRANADOS, Pablo GERVAS and

Carlos LEON. Calibrating a Metric for Similarity of Stories against Human Judgment. In:

International Conference on Case-Based Reasoning [online]. 28.09.2015 [accessed 2023-

05-26]. Available from: https://ceur-ws.org/Vol-1520/paper14.pdf

42. RIEDL, Mark and Robert YOUNG. Narrative Planning: Balancing Plot and Character.

Journal of Artificial Intelligence Research [online]. 2010, 39, p. 217-268 [accessed 2023-

05-26]. ISSN 1076-9757. Available from DOI: 10.1613/jair.2989

43. BATES, Joseph. The Oz Project [software]. 2002 [accessed 2023-05-26]. Available

from: https://www.cs.cmu.edu/afs/cs/project/oz/web/oz.html

44. SZILAS, Nicolas. IDtension [software]. 2003 [accessed 2023-05-26]. Available from:

http://tecfa.unige.ch/perso/szilas/IDtension/install/. System

requirements: having Java installed (JRE).

45. LAUREL, Brenda. Computers as Theatre. Boston: Addison-Wesley Longman Publishing

Co, 1991, 211 p. ISBN 978-0-201-51048-5.

46. MATEAS, Michael. A Neo-Aristotelian Theory of Interactive Drama. In: Papers from

the 2000 AAAI Spring Symposium [online]. 20.03.2000 [accessed 2023-05-26]. Available

from: https://cdn.aaai.org/Symposia/Spring/2000/SS-00-02/SS00-02-
011.pdf

https://doi.org/10.1145/1822348.1822376
https://www.beemgee.com/blog/story-vs-narrative/
https://betweendrafts.com/2022/04/08/interactive-narrative-vs-interactive-storytelling/
https://betweendrafts.com/2022/04/08/interactive-narrative-vs-interactive-storytelling/
http://dx.doi.org/10.5824/1309-1581.2012.3.002.x
http://dx.doi.org/10.5824/1309-1581.2012.3.002.x
https://www.cs.uky.edu/~sgware/reading/papers/arinbjarnar2009critical.pdf
https://www.cs.uky.edu/~sgware/reading/papers/arinbjarnar2009critical.pdf
https://ceur-ws.org/Vol-1520/paper14.pdf
https://doi.org/10.1613/jair.2989
https://www.cs.cmu.edu/afs/cs/project/oz/web/oz.html
http://tecfa.unige.ch/perso/szilas/IDtension/install/
https://cdn.aaai.org/Symposia/Spring/2000/SS-00-02/SS00-02-011.pdf
https://cdn.aaai.org/Symposia/Spring/2000/SS-00-02/SS00-02-011.pdf

62

47. RIEDL, Mark and Andrew STERN. Believable Agents and Intelligent Story Adaptation

for Interactive Storytelling. In: GÖBEL, Stefan, Rainer MALKEWITZ and Ido IURGEL,

ed. Technologies for Interactive Digital Storytelling and Entertainment [online]. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2006, p. 1-12 [accessed 2023-05-26]. Lecture

Notes in Computer Science. ISBN 978-3-540-49934-3. Available from DOI:
10.1007/11944577_1

48. RIEDL, Mark and Robert YOUNG. An Intent-Driven Planner for Multi-Agent Story

Generation. In: Autonomous Agents and Multiagent Systems, International Joint

Conference [online]. New York City, New York, USA, 2004, vol. 2, p.186-193 [accessed

2023-05-26]. Available from DOI: 10.1109/AAMAS.2004.10054

49. KAPADIA, Mubbasir, Jessica FALK, Fabio ZÜND, Marcel MARTI, Robert W.

SUMNER and Markus GROSS. Computer-assisted authoring of interactive narratives.

In: Proceedings of the 19th Symposium on Interactive 3D Graphics and Games [online].

New York, NY, USA: ACM, 2015, 27.02.2015, p. 85-92 [accessed 2023-05-26]. ISBN

9781450333924. Available from DOI: 10.1145/2699276.2699279

50. SI, Mei, Stacy MARSELLA and Mark RIEDL. Integrating Story-Centric and Character-

Centric Processes for Authoring Interactive Drama. In: Proceedings of the AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment [online].

2008, 4(1), p. 203-208 [accessed 2023-05-26]. ISSN 2334-0924. Available from DOI:
10.1609/aiide.v4i1.18698

51. LUDEON STUDIOS. RimWorld [software]. 2013 [accessed 2023-05-26]. Available

from: https://rimworldgame.com/. System requirements: OS Windows XP, CPU

Core 2 Duo, memory 2 GB RAM, GPU Intel HD Graphics 3000 with 384 MB of RAM.

52. PARADOX DEVELOPMENT STUDIO. Crusader Kings [software]. 2004 [accessed

2023-05-26]. Available from: https://www.paradoxinteractive.com/. System

requirements: OS Windows XP, CPU Pentium II 450 MHz, memory 64MB RAM, GPU

4 Mb Video Card.

53. RIEDL, Mark. Incorporating Authorial Intent into Generative Narrative Systems. In:

Proceedings of the AAAI Spring Symposium on Intelligent Narrative Technologies II

[online]. 2009 [accessed 2023-05-26]. Available from:
https://faculty.cc.gatech.edu/~riedl/pubs/riedl-aaai-ss09.pdf

54. PEDERSEN, Thomas Anthony, Tilde Hoejgaard JENSEN, Vladislav ZENKEVICH,

Henrik SCHOENAU-FOG and Luis Emilio BRUNI. Considering Authorial Liberty in

Adaptive Interactive Narratives. In: WÖLFEL, Matthias, Johannes BERNHARDT and

Sonja THIEL, ed. ArtsIT, Interactivity and Game Creation [online]. Cham: Springer

International Publishing, 2022, 10.02.2022, p. 181-188 [accessed 2023-05-26]. Lecture

Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering. ISBN 978-3-030-95530-4. Available from DOI:
10.1007/978-3-030-95531-1_13

https://doi.org/10.1007/11944577_1
https://doi.ieeecomputersociety.org/10.1109/AAMAS.2004.10054
https://doi.org/10.1145/2699276.2699279
https://doi.org/10.1609/aiide.v4i1.18698
https://rimworldgame.com/
https://www.paradoxinteractive.com/
https://faculty.cc.gatech.edu/~riedl/pubs/riedl-aaai-ss09.pdf
https://doi.org/10.1007/978-3-030-95531-1_13

63

55. TYCHSEN, Anders, Michael HITCHENS, Thea BROLUND and Manolya KAVAKLI.

The game master. In: Proceedings of the Second Australasian Conference on Interactive

Entertainment [online]. Sydney: Creativity & Cognition Studios Press, 2005, p. 215–222

[accessed 2023-05-26]. ISBN 978-0-9751533-2-1. Available from:
https://dl.acm.org/doi/pdf/10.5555/1109180.1109214

56. BAY 12 GAMES. Dwarf Fortress [software]. 2006 [accessed 2023-05-26]. Available

from: https://www.bay12games.com/dwarves/. System requirements: OS XP

SP3 or later, CPU Dual Core - 2.4GHz+, memory 4GB RAM, GPU 1GB of VRAM -

Intel HD 3000 GPU/AMD HD 5450/Nvidia 9400 GT.

57. PROPP, Vladimir. Morphology of the Folktale [online]. Second edition. Austin:

University of Texas Press, 1968 [accessed 2023-05-26]. ISBN 9780292748095.

Available from DOI: 10.7560/783911

58. GREIMAS, Algirdas Julien. Sémantique structurale: recherche de méthode. Paris:

Librairie Larousse, 1966, 262 p. ISBN 2030703141.

59. SOARES DE LIMA, Edirlei, Bruno FEIJÓ and Antonio L. FURTADO. Hierarchical

generation of dynamic and nondeterministic quests in games. In: Proceedings of the 11th

Conference on Advances in Computer Entertainment Technology [online]. New York,

NY, USA: ACM, 2014, 11.11.2014, p. 1-10 [accessed 2023-05-26]. ISBN

9781450329453. Available from DOI: 10.1145/2663806.2663833

60. CROWTHER, William. Colossal Cave Adventure [software]. 1976 [accessed 2023-05-

26]. Available from: https://jerz.setonhill.edu/intfic/colossal-cave-

adventure-source-code/

61. AARSETH, Espen. Quest Games as Post-Narrative Discourse. In: RYAN Marie-Laure,

ed. Narrative across Media: The Languages of Storytelling. Lincoln, NE, USA:

University of Nebraska Press. 2004, p. 361-376. ISBN 978-0-8032-8993-2.

62. TOSCA, Susana. The quest problem in computer games. In: GOBEL, Stefan et al., ed.

Proceedings of 1st International Conference on Technologies for Interactive Digital

Storytelling and Entertainment 2003 [online]. Darmstadt: Fraunhofer IRB Verlag. 2006

[accessed 2023-05-26]. Available from:
https://www.researchgate.net/publication/273946826_The_Quest_Prob

lem_in_Computer_Games

63. JENKINS, Henry. Game Design as Narrative Architecture. Computer [online]. 2004,

44(3), p. 118-130 [accessed 2023-05-26]. Available from:
http://www.madwomb.com/tutorials/gamedesign/Theory_HenryJenkins_G

ameDesignNarrativeArchitecture.pdf

https://dl.acm.org/doi/pdf/10.5555/1109180.1109214
https://www.bay12games.com/dwarves/
http://doi.org/10.7560/783911
http://dx.doi.org/10.1145/2663806.2663833
https://jerz.setonhill.edu/intfic/colossal-cave-adventure-source-code/
https://jerz.setonhill.edu/intfic/colossal-cave-adventure-source-code/
https://www.researchgate.net/publication/273946826_The_Quest_Problem_in_Computer_Games
https://www.researchgate.net/publication/273946826_The_Quest_Problem_in_Computer_Games
http://www.madwomb.com/tutorials/gamedesign/Theory_HenryJenkins_GameDesignNarrativeArchitecture.pdf
http://www.madwomb.com/tutorials/gamedesign/Theory_HenryJenkins_GameDesignNarrativeArchitecture.pdf

64

64. HITCHENS, Joe. Special Issues in Multiplayer Game Design. In: LARAMEE, François,

ed. Game Design Perspectives. Hingham, MA, USA: Charles River Media, Inc., 2002.

ISBN 978-1-58450-090-2.

65. MEEHAN, James. TALE-SPIN, An Interactive Program that Writes Stories. In:

Proceedings of the 5th international joint conference on Artificial intelligence [online].

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1977, vol. 1, p. 91-98

[accessed 2023-05-26]. Available from:
https://www.ijcai.org/Proceedings/77-1/Papers/013.pdf

66. LEBOWITZ, Michael. Planning stories. In: Proceedings of the Ninth Annual Conference

of the Cognitive Science Society. Seattle, WA, USA: Psychology Press, 1987, p. 234–

242. ISBN 9780805801668.

67. BATES, Joseph. Virtual Reality, Art, and Entertainment. Presence: Teleoperators and

Virtual Environments [online]. 1992, 1(1), p. 133-138 [accessed 2023-05-26]. ISSN

1054-7460. Available from DOI: 10.1162/pres.1992.1.1.133

68. SGOUROS, Nikitas. Dynamic, user-centered resolution in interactive stories. In:

POLLACK, Martha, ed. Proceedings of the Fifteenth international joint conference on

Artificial intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1997, vol. 2, p. 990-995. ISBN 9781558604803.

69. MATEAS, Michael and Andrew STERN. Façade: An experiment in building a fully-

realized interactive drama. In: Game Developers Conference. San Jose, CA, USA, 4-8

march, 2003.

70. MATEAS, Michael and Andrew STERN. Façade [software]. 2005 [accessed 2023-05-

26]. Available from: https://www.playablstudios.com/facade. System

requirements: OS Windows.

71. RIEDL, Mark. Actor Conference: Character-focused Narrative Planning. In: The Georgia

Institute of Technology website [online]. 2002 [accessed 2023-05-26]. Available from:
https://faculty.cc.gatech.edu/~riedl/pubs/tr03-000.pdf

72. RIEDL, Mark, C. J. SARETTO and Robert YOUNG. Managing interaction between

users and agents in a multi-agent storytelling environment. In: Proceedings of the second

international joint conference on Autonomous agents and multiagent systems - AAMAS

'03 [online]. New York, NY, USA: Association for Computing Machinery Press, 2003, p.

741-748 [accessed 2023-05-26]. ISBN 1581136838. Available from DOI:
10.1145/860690.860694

73. YOUNG, Robert, Mark RIEDL, Mark BRANLY, Arnav JHALA, Richard MARTIN and

C. SARETTO. An architecture for integrating plan-based behavior generation with

interactive game environments. Journal of Game Development [online]. 2004, 1(1), p. 1-

https://www.ijcai.org/Proceedings/77-1/Papers/013.pdf
https://doi.org/10.1162/pres.1992.1.1.133
https://www.playablstudios.com/facade
https://faculty.cc.gatech.edu/~riedl/pubs/tr03-000.pdf
https://doi.org/10.1145/860575.860694

65

29 [accessed 2023-05-26]. Available from:
https://faculty.cc.gatech.edu/~riedl/pubs/jogd.pdf

74. RIEDL, Mark and Robert YOUNG. Character-Focused Narrative Generation for

Execution in Virtual Worlds. In: BALET, Olivier, Gérard SUBSOL and Patrice

TORGUET, ed. Virtual Storytelling. Using Virtual RealityTechnologies for Storytelling

[online]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, p. 47-56 [accessed 2023-

05-26]. Lecture Notes in Computer Science. ISBN 978-3-540-20535-7. Available from

DOI: 10.1007/978-3-540-40014-1_6

75. RIEDL, Mark and Andrew STERN. Failing Believably: Toward Drama Management

with Autonomous Actors in Interactive Narratives. In: GÖBEL, Stefan, Rainer

MALKEWITZ and Ido IURGEL, ed. Technologies for Interactive Digital Storytelling

and Entertainment [online]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, p.

195-206 [accessed 2023-05-26]. Lecture Notes in Computer Science. ISBN 978-3-540-

49934-3. Available from DOI: 10.1007/11944577_21

76. MAGERKO, Brian. Story Representation and Interactive Drama. Proceedings of the

AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

[online]. 2005, 1(1), p. 87-92 [accessed 2023-05-26]. ISSN 2334-0924. Available from

DOI: 10.1609/aiide.v1i1.18721

77. MOTT, Bradford W. and James C. LESTER. U-director: a decision-theoretic narrative

planning architecture for storytelling environments. In: Proceedings of the fifth

international joint conference on Autonomous agents and multiagent systems [online].

New York, NY, USA: ACM, 2006, 08.05.2006, p. 977-984 [accessed 2023-05-26]. ISBN

1595933034. Available from DOI: 10.1145/1160633.1160808

78. THUE, David, Vadim BULITKO, Marcia SPETCH and Eric WASYLISHEN. Interactive

Storytelling: A Player Modelling Approach. Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment [online]. 2007, 3(1), p. 43-48

[accessed 2023-05-26]. ISSN 2334-0924. Available from DOI:
10.1609/aiide.v3i1.18780

79. BANGSO, Olav, Ole JENSEN, Finn JENSEN, Peter ANDERSEN and Tomas KOCKA.

Non-Linear Interactive Storytelling Using Object-Oriented Bayesian Networks.

Proceedings of the International Conference on Computer Games: Artificial Intelligence

[online]. 2004 [accessed 2023-05-26]. Available from:
https://vbn.aau.dk/ws/files/132449/nolist.pdf

80. BARBER, Heather and Daniel KUDENKO. Generation of Adaptive Dilemma-Based

Interactive Narratives. IEEE Transactions on Computational Intelligence and AI in

Games [online]. 2009, 1(4), p. 309-326 [accessed 2023-05-26]. ISSN 1943-068X.

Available from DOI: 10.1109/TCIAIG.2009.2037925

81. FAIRCLOUGH, Chris. Story Games and the OPIATE System [online]. Dublin, 2004

[accessed 2023-05-26]. Ph.D. dissertation. University of Dublin - Trinity College.

https://faculty.cc.gatech.edu/~riedl/pubs/jogd.pdf
http://doi.org/10.1007/978-3-540-40014-1_6
https://doi.org/10.1007/11944577_21
https://doi.org/10.1609/aiide.v1i1.18721
https://doi.org/10.1145/1160633.1160808
https://doi.org/10.1609/aiide.v3i1.18780
https://vbn.aau.dk/ws/files/132449/nolist.pdf
https://doi.org/10.1109/TCIAIG.2009.2037925

66

Dissertation supervisor Padraig Cunningham. Available from:
https://www.scss.tcd.ie/publications/theses/phd/TCD-CS-PHD-2004-

02.pdf

82. ARINBJARNAR, Maria and Daniel KUDENKO. Schemas in Directed Emergent Drama.

In: SPIERLING, Ulrike and Nicolas SZILAS, ed. Interactive Storytelling [online].

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, 27.11.2008, p. 180-185 [accessed

2023-05-26]. Lecture Notes in Computer Science. ISBN 978-3-540-89424-7. Available

from DOI: 10.1007/978-3-540-89454-4_24

83. SZILAS, Nicolas. IDtension: A narrative engine for interactive drama. 1st International

Conference on Technologies for Interactive Digital Storytelling and Entertainment

[online]. 2003 [accessed 2023-05-26]. Available from:
http://nicolas.szilas.free.fr/research/Papers/Szilas_tidse03.pdf

84. PIZZI, David, Fred CHARLES, Jean-Luc LUGRIN and Marc CAVAZZA. Interactive

Storytelling with Literary Feelings. In: PAIVA, Ana C. R., Rui PRADA and Rosalind W.

PICARD, ed. Affective Computing and Intelligent Interaction [online]. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2007, p. 630-641 [accessed 2023-05-26].

Lecture Notes in Computer Science. ISBN 978-3-540-74888-5. Available from DOI:
10.1007/978-3-540-74889-2_55

85. AYLETT, Ruth, Joao DIAS and Ana PAIVA. An affectively driven planner for synthetic

characters. In: LONG, Derek, Stephen Smith, Daniel Borrajo and Lee McCleskey, ed.

Proceedings of ICAPS06 International Conference on Automated Planning and

Scheduling [online]. Cumbria, UK: AAAI, 2006, p. 2-10 [accessed 2023-05-26]. ISBN

978-1-57735-270-9. Available from:
http://www.macs.hw.ac.uk/~ruth/Papers/planning/ICAPS06.pdf

86. DE LIMA, Edirlei Soares, Bruno FEIJÓ and Antonio L. FURTADO. Procedural

Generation of Quests for Games Using Genetic Algorithms and Automated Planning. In:

2019 18th Brazilian Symposium on Computer Games and Digital Entertainment

(SBGames) [online]. Rio de Janeiro, Brazil: IEEE, 2019, p. 144-153 [accessed 2023-05-

26]. ISBN 978-1-7281-4637-9. Available from DOI: 10.1109/SBGames.2019.00028

87. DE LIMA, Edirlei Soares, Bruno FEIJÓ and Antonio L. FURTADO. Procedural

generation of branching quests for games. Entertainment Computing [online]. 2022, vol.

43 [accessed 2023-05-26]. ISSN 18759521. Available from DOI:
10.1016/j.entcom.2022.100491

88. UNITY TECHNOLOGIES. Unity [software]. 2005 [accessed 2023-05-26]. Available

from https://unity.com/. System reqirements: OS Windows 7/10 or macOS

HighSierra 10.13+, CPU X64 architecture with SSE2 instruction set support, GPU

DX10/11/12-capable or Metal-capable Intel and AMD.

https://www.scss.tcd.ie/publications/theses/phd/TCD-CS-PHD-2004-02.pdf
https://www.scss.tcd.ie/publications/theses/phd/TCD-CS-PHD-2004-02.pdf
https://doi.org/10.1109/TCIAIG.2009.2037925
http://nicolas.szilas.free.fr/research/Papers/Szilas_tidse03.pdf
https://doi.org/10.1007/978-3-540-74889-2_55
http://www.macs.hw.ac.uk/~ruth/Papers/planning/ICAPS06.pdf
https://doi.org/10.1109/SBGames.2019.00028
http://doi.org/10.1016/j.entcom.2022.100491
https://unity.com/

67

89. MICROSOFT. Microsoft Visual Studio [software]. 1997 [accessed 2023-05-26].

Available from: https://visualstudio.microsoft.com/. System

requirements: OS Windows, CPU 1.8 GHz or faster, memory 1GM RAM.

90. JETBRAINS. IntelliJ IDEA [software]. 2001 [accessed 2023-05-26]. Available from:

https://www.jetbrains.com/idea/. System requirements: OS Windows 10 or

macOS 10.15+ or Linux supports Gnome and KDE, memory 2GB RAM.

91. HELMERT, Malte and Silvia RICHTER. Fast Downward [software]. 2004 [accessed

2023-05-26]. Available from https://www.fast-downward.org/. OS Windows 10

or macOS 11 or Ubuntu 3.8, Python 3.8.

92. AT&T LABS. Graphviz [software]. 1991 [accessed 2023-05-26]. Available from:

https://graphviz.org/

93. HELMERT, Malte. The Fast Downward Planning System. Journal of Artificial

Intelligence Research [online]. 2006, vol. 26, p. 191-246 [accessed 2023-05-26]. ISSN

1076-975. Available from DOI: 10.1613/jair.1705

https://visualstudio.microsoft.com/
https://www.jetbrains.com/idea/
https://www.fast-downward.org/
https://graphviz.org/
http://doi.org/10.1613/jair.1705

68

List of Abbreviations

PCG - Procedural Content Generation

AI - Artificial intelligence

MAS - Multi-agent system

APS - Automated planning and scheduling

STRIPS - Stanford Research Institute Problem Solver

PDDL - Planning Domain Definition Language

CSP - Constraint satisfaction problem

IS - Interactive Storytelling

POP - Partial-Order planning

EN - Emergent narrative

DAG - Directed acyclic graph

RPG - Role-playing game

NPC - Non-playable character

IDE - Integrated Development Environment

MVS - Microsoft Visual Studio

JIT - Just-in-time (compilation)

API - Application Programming Interface

CSS - Cascading Style Sheets

69

List of Figures

Fig. 1 Scheme of the simplest intelligent agent. ... 7

Fig. 2 An example of a planning problem domain in the classical representation, where the constants are

the blocks a,b,c, the predicates ontable(x), on(x,y), clear(x), holding(x), handempty, and the action

schemes are visible on the image itself. Source: Roman Barták lectures slides, Planning and Scheduling,

State space planning (forward, backward, lifting, STRIPS). .. 9

Fig. 3 Diagram of story components, showing that narrative is an integral part of a story, and from which

it can be concluded that storytelling is the art of creating a story as a whole. Source: Story vs. Narrative

[37]. ... 11

Fig. 4 Story dramatic structure as a three-act structure. Source: “Procedural generation of branching

quests for games” [87]. ... 13

Fig. 5 Dramatic structure known as the "Pyramid of Freytag". Source: “Celebrity Bowl: More Marketers

Than Ever Turn To Celebrity For Super Bowl Ads, But That’s Not The Whole Story”. 13

Fig. 6 Influence of story-centric and character-centric design on story properties. Source: “Character-

Focused Narrative Generation for Execution in Virtual Worlds” [74]. ... 15

Fig. 7 Author's freedom continuum. Source: “Considering Authorial Liberty in Adaptive Interactive

Narratives” [54]. .. 17

Fig. 8 An excerpt from a dot file. ... 23

Fig. 9 An excerpt from a dot file. ... 24

Fig. 10 An excerpt from an HTML (Twine) file. .. 25

Fig. 11 An interactive story playback. ... 25

Fig. 12 An interactive story playback (with using OpenAI). .. 26

Fig. 13 An example of how an interactive story reacts to a player's loss. .. 26

Fig. 14 An example of the reaction of the interactive story to the successful discovery of evidence by the

player. .. 26

Fig. 15 An example of the reaction of the interactive story to a player's victory. 26

Fig. 16 Story generator architecture. .. 27

Fig. 17 An example of a detective domain encoded in the PDDL formalism. ... 31

Fig. 18 An example of a detective problem encoded in the PDDL formalism. ... 33

Fig. 19 A fragment of the rendered graph from Example 1. ... 37

Fig. 20 The rendered graph from Example 2, with the requirement that the protagonist must survive. .. 38

Fig. 21 The rendered graph from Example 2, without requirement that the protagonist must survive. ... 39

Fig. 22 An example of a graph created with Graphviz and dot. .. 42

Fig. 23 Twine workspace example. ... 43

Fig. 24 Graphical user interface. ... 47

file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607104
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607105
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607105
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607105
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607105
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607106
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607106
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607106
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607107
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607107
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607108
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607108
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607109
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607109
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607110
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607110
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607111
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607112
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607113
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607114
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607115
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607119
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607120
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607121
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607122
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607123
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607124
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607125
file:///D:/Desktop/Diploma%20Thesis/IudinDenisDPelectronicversion%20—%202.docx%23_Toc140607126

70

A Attachments

 A.1 Source code

The source code is hosted on the Github repository

(https://github.com/vonHimik/NarrativeGeneratorForTwine). As well there is an archive with a

compiled program, ready for use immediately after unpacking. This archive also contains ready-

to-use generated files for Twine corresponding to the examples given in the Use Cases section. It

is possible to download them to Twine to see the final result, compare the interactive story and

the presented visualization of its development paths.

 A.2 User documentation

The repository (and also archive with the program) contains instructions (readme) for installing

and using the program. Besides, it contains auto-generated documentation in HTML format that

describes all used classes, methods, and variables.

	Introduction
	1. Background
	1.1 Artificial intelligence
	1.2 Multi-agent system
	1.3 Automated planning and scheduling
	1.3.1 Stanford Research Institute Problem Solver
	1.3.2 Planning Domain Definition Language
	1.3.3 Constraint satisfaction problem

	1.4 Procedural content generation
	1.5 Interactive storytelling
	1.5.1 Dramatic structure
	1.5.2 Believable Agents
	1.5.3 Consistency and coherence of narrative
	1.5.4 Narrative experience
	1.5.5 Story-Centric and Character-Centric Designs
	1.5.6 Emergent narrative
	1.5.7 Authorial Intent and Authorial Liberty
	1.5.7.1 Drama manager
	1.5.7.2 Game master

	1.6 Games
	1.6.1 Quests (Adventure games)

	2. Related works
	3. Narrative generation
	3.1 System’s input and output
	3.2 Architecture
	3.3 Story world creation
	3.4 Agent model
	3.5 User model
	3.6 Planning Domain
	3.7 Planning Problem
	3.8 Story Planning
	3.9 Convergence model and constraints

	4. Use cases
	5. Implementation
	5.1 Overview of software choice
	5.1.1 General concept
	5.1.2 Fast Downward
	5.1.3 Graphviz
	5.1.4 Twine

	5.2 Generator
	5.2.1 General algorithm
	5.2.2 User interface
	5.2.3 Implementation of the environment
	5.2.4 Agent implementation
	5.2.5 Player implementation specifics
	5.2.6 Implementation of the story graph, graph nodes and states of the story world
	5.2.7 Implementing goal states
	5.2.8 Implementation of actions
	5.2.9 Constraint implementation

	5.3 External module – planner
	5.4 External module - graph visualizer
	5.5 External module - a platform for writing interactive literature, text games and visual novels

	Conclusion
	Future work
	Bibliography
	List of Abbreviations
	List of Figures
	A Attachments
	A.1 Source code
	A.2 User documentation

	Закладки Word
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B28
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B36
	B47
	B48
	B49
	B50
	B51
	B52
	B53
	B54
	B55
	B56
	B57
	B58
	B59
	B60
	B61
	B62
	B63
	B64
	B65
	B66
	B67
	B68
	B69
	B70
	B71
	B72
	B74
	B75
	B76
	B77
	B78
	B79
	B80
	B73
	B82
	B83
	B84
	B85
	B86
	B87
	B88
	B81
	B89
	B90
	B91
	B92
	B93

