
MASTER THESIS

Natália Potočeková

Data Lineage Analysis for Databricks
Platform

Department of Distributed and Dependable Systems

Supervisor of the master thesis: doc. RNDr. Pavel Paŕızek, Ph.D.
Study programme: Computer Science

Study branch: Software and Data Engineering

Prague 2023

I hereby declare that I have authored this thesis independently, and that all
sources used are declared in accordance with the “Metodický pokyn o etické
př́ıpravě vysokoškolských závěrečných praćı“.
I acknowledge that my thesis (work) is subject to the rights and obligations arising
from Act No. 121/2000 Coll., on Copyright and Rights Related to Copyright and
on Amendments to Certain Laws (the Copyright Act), as amended, (hereinafter as
the “Copyright Act“), in particular § 35, and § 60 of the Copyright Act governing
the school work.
With respect to the computer programs that are part of my thesis (work) and
with respect to all documentation related to the computer programs (“software“),
I hereby grant the so-called MIT License. The MIT License represents a license
to use the software free of charge. I grant this license to every person interested
in using the software. Each person is entitled to obtain a copy of the software
(including the related documentation) without any limitation, and may, without
limitation, use, copy, modify, merge, publish, distribute, sublicense and / or sell
copies of the software, and allow any person to whom the software is further
provided to exercise the aforementioned rights. Ways of using the software or the
extent of this use are not limited in any way.
The person interested in using the software is obliged to attach the text of the
license terms as follows:
Copyright (c) 2023 Natália Potočeková
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software“), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sub-license, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions: The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the Software. THE SOFT-
WARE IS PROVIDED “AS IS“, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

In date .
Author’s signature

i

I would like to thank my supervisor, doc. RNDr. Pavel Paŕızek, Ph.D., for his
help, advice, and useful comments whenever I needed anything.
Thanks should also go to RNDr. Lukáš Hermann and Mgr. Lukáš Riedel for
their valuable advice regarding Manta Flow platform and ensuring I had all the
information needed to work on the thesis assignment.
I’m also extremely grateful to my parents, family, and friends for their support
throughout my studies. Without them, it would be very difficult to get this far.

ii

Title: Data Lineage Analysis for Databricks Platform

Author: Natália Potočeková

Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Pavel Paŕızek, Ph.D., Department of Distributed and
Dependable Systems

Abstract: Notebook-based technologies, like Databricks and Jupyter notebooks,
have gained popularity in recent years due to their adaptability and convenience.
A notebook is an interactive computational environment that allows users to
create documents that contain code, visualizations, and explanatory text in one
place. Notebooks provide a space for data exploration, analysis, and documen-
tation, enabling users to easily develop and present their work. The ability to
combine code execution with explanations and visualizations within a single doc-
ument promotes reproducibility, enhances collaboration among team members,
and motivates data scientists to efficiently work with data. In this work, we an-
alyzed the Databricks technology in order to extend the Manta Flow platform,
a highly automated data lineage analysis tool, to support this technology. We
designed and implemented a new scanner that provides basic support for analyz-
ing Databricks notebooks written in Python and Databricks SQL languages. We
also provide an implementation of a so-called shared context that can be used for
passing information between different scanners in the Manta Flow platform. To
visualize the interactions between languages and scanners we extended the Manta
graph with a new node type that represents the shared context. Alongside this,
we implemented a so-called language context to enable scanners to store infor-
mation useful for analysis of further cells written in the same language in a given
notebook. Finally, we demonstrate the functionality of the scanner and the result
graphs it produces on example Databricks notebooks.

Keywords: databricks, data lineage, data flow, symbolic analysis

iii

Contents

1 Introduction 3
1.1 Goals . 4
1.2 Glossary . 5
1.3 Outline . 5

2 Data lineage analysis using Manta Flow 7
2.1 Manta Flow platform . 7
2.2 Python scanner . 9
2.3 Embedded code service . 12
2.4 SQL scanner . 12

3 Databricks 15
3.1 Data warehouse vs Data lake . 15
3.2 Databricks Lakehouse . 16
3.3 Key concepts . 19
3.4 Notebooks and Queries . 21
3.5 External sources . 25
3.6 Extracting data from Databricks 25

4 Analysis 34
4.1 Data necessary for lineage . 34
4.2 REST API . 35
4.3 Unity Catalog API . 40
4.4 Prototype . 45
4.5 Hive metastore . 46
4.6 Databricks notebooks . 50
4.7 Spark context . 51
4.8 External sources . 54
4.9 Databricks SQL vs Hive SQL . 55
4.10 Summary . 60

5 Design 62
5.1 Scanner design . 62
5.2 Information extraction . 63
5.3 Context information in notebooks 65
5.4 Scanners integration . 84
5.5 Notebook analysis . 88
5.6 Result graph . 99

6 Implementation 101
6.1 Extractor . 101
6.2 Dataflow Generator . 102
6.3 Python scanner . 109
6.4 Testing . 111

1

7 Evaluation 113
7.1 Databricks SQL and Python interaction example 114
7.2 Python script with Pin nodes example 116
7.3 Limitations and Future Work . 116
7.4 Lessons learned . 117

8 Conclusion 119

List of Figures 122

A Attachments 123
A.1 User Documentation . 123
A.2 Contents of the Attachment . 123

2

1. Introduction
Notebook-based technologies, like Databricks and Jupyter notebooks, have gained
popularity in recent years due to their adaptability and convenience. A notebook
is an interactive computational environment that allows users to create docu-
ments that contain code, visualizations, and explanatory text in one place. Note-
books provide a space for data exploration, analysis, and documentation, enabling
users to easily develop and present their work. The ability to combine code ex-
ecution with explanations and visualizations within a single document promotes
reproducibility and enhances collaboration among team members. This flexi-
ble and interactive approach to data analysis has contributed to the popularity
of notebook-based technologies and motivates data scientists to efficiently work
with data and share their findings.

Jupyter Notebook [22] is an open-source web application that can be used
by data scientists to create shared documents. These documents can be used for
live coding, combining multimedia content, working with data using different lan-
guages, and more. However, the downsides of Jupyter Notebook are the difficulty
to keep in sync when working collaboratively on a notebook, no way of connecting
to the machine learning models, and not good scalability since Jupyter Notebook
usually works with data that fit into memory.

That is where Databricks takes place. Databricks [11] is a cloud-based plat-
form built on top of Apache Spark [28] that provides the same functionality as
Jupyter Notebook (even provides support for notebooks written in the Jupyter
Notebook platform itself) and on top of that provides support for data man-
agement, engineering, data science, and machine learning. Databricks provides
the Lakehouse Architecture which is available on 3 different clouds: AWS [1],
Azure [2], and Google Cloud [3]. Databricks also provides multiple options for
storing table and workspace metadata. The most popular options are a built-in
Hive metastore or newly a Unity Catalog metastore. With all of this combined
Databricks is a powerful tool for managing and working with large amounts of
data.

However, what if Databricks is only a small part of the technologies that
companies use for working with data? Even though Databricks is really popular
nowadays due to its powerful support and tools, it is still relatively new, so many
companies are only starting to explore their possibilities with Databricks and
while doing so still stick to other technologies, databases and tools for working
with data. Also, Databricks is not suitable for every use-case, hence companies
can use Databricks as only a part of the technology pool for data management.

Since many important business decisions are being made based on the data
that the company has available, it is absolutely necessary to know what is the
source of the data and what transformations have been used on them to produce
the results.

Imagine that you work in a company that was founded somewhere around
the 1980s. In the beginning, they build a simple data model that they used
for working with data. However, as years went by, the data model had to be
adapted, extended, and adjusted to fit the amount and the structure of data that
were produced and obtained each year. By the year 2023, the data model has

3

been changed many times, main architects that were there at the beginning of the
company have already left with their knowledge of the data model and the data
that are important for difficult business decisions seem to be odd according to the
manager so they ask you to check the data quality and correctness. In the 1980s
this would be relatively easy. The only thing needed would be to trace all tables
that were used and look at the transformations that have been done with them.
After a few days, the problematic transformation or data source would have been
discovered and the situation could be fixed easily. However, since we do not live
in the 1980s but 2020s the situation is much worse. To manually trace everything
would take months and business would suffer since the important decisions would
either be made on top of wrong data or would not be done at all due to missing
data.

To help with situations like these many companies use so-called cataloging
tools to navigate across the data solution. These cataloging tools such as Infor-
matica’s Enterprise Data Catalog or IBM’s Watson Knowledge Catalog automate
the data source discovery throughout the enterprise’s systems.

Cataloging is a useful way of navigating through data, however, one important
part is missing - the data transformations. For example, the cataloging systems
do not show you the origin of the data. In order to do so a data lineage has to be
created. Data lineage can be defined as a sort of life cycle that shows the data
origin and where it moves over time. Data lineage [9] is useful when trying to
analyze how information is used and tracking key bits of information that serve a
particular purpose. Over the past few years, several companies managed to create
their own data lineage solutions, one of which is the Czech-American company
Manta.

Manta started as a project of the Czech company Profinit, however quickly
became a separate company selling their own product called Manta Flow. Manta
Flow is a complex solution that supports data lineage analysis for over 40 tech-
nologies from the fields of business intelligence, data modeling, databases, or
programming languages. Thanks to the support of a wide range of technologies
(such as different SQL dialects or Python programming language) and the abil-
ity to integrate with data cataloging solutions such as Collibra Data Governance
Center or Alation Data Catalog, Manta Flow gains a lot of popularity among the
enterprise-level customers. However, no notebook technology has been supported
by Manta so far. That was the initial motivation for this thesis project.

1.1 Goals
The goal of this thesis project was to extend the Manta Flow platform for au-
tomated data lineage analysis with support for Databricks. The design of the
scanner and concepts used in it should be applicable to any technology that
uses notebooks in a similar manner as Databricks for example Jupyter Notebook.
Databricks supports multiple languages in notebooks and the scope of language
support in this thesis has been reduced to the Python language and SQL lan-
guage only. The reason behind this was that scanners for other languages were
either not available yet or not sufficient for usage yet. However, the design of the
solution had to support a simple addition of a new language scanner so that once
the scanners were available they could be used as soon as possible.

4

The list of specific goals includes:

1. Implementing support for invoking existing scanners for various languages
and technologies (Python and SQL).

2. Merging the results of supported technologies into one result graph.

3. Extending the Manta Python scanner to properly handle library procedures
and features typically used in Databricks notebooks.

4. Maintaining the shared context (analysis state) between the invocations of
different individual scanners (Python and SQL).

5. Implement extraction (loading) of metadata from the respective storage
(Hive metastore or Unity catalog).

1.2 Glossary
In this section, we define important terms related to this work.

A data lineage is a representation of the relationship between two entities. It
usually maps where the data originates from, how it is used and transformed,
and where it ends up. Usually, a data lineage is visualized by a graph, however,
other visualizations may be used as well.

A data flow is a relation of two objects where one is the source or provider
of the data and the other is a consumer of provided data.

Static analysis is an automated analysis of source code that is performed without
executing the code itself.

A Manta scanner is a part of the Manta Flow platform which is capable of
performing data lineage analysis for a specific technology (database management
system, ETL tool, or programming language).

A notebook is an interface to a document that contains runnable code snippets,
narrative text, and visualizations.

1.3 Outline
In this work, as first in Chapter 2 we introduce Manta Flow, and its tools for
data lineage computing, describe how to extend the platform to support more
technologies, and describe the concepts of tools that are important for this thesis.

Chapter 3, named Databricks, describes the Databricks technology, its main
concepts, processes, tools, and data entities.

Chapter 4, named Analysis, defines the scope of this project, then focuses on
identifying all features and tools that have to be used and supported in order to
compute the lineage for the Databricks platform.

5

Chapter 5, named Design, discussed the designs of solutions for problems dis-
covered in the Analysis chapter. It provides detailed design for all main concepts
necessary for the Databricks platform support in Manta.

Chapter 6, named Implementation, describes how the individual features have
been implemented and highlight the implementation details we considered impor-
tant.

Chapter 7, named Evaluation, demonstrates the functionality of the provided
solution, and discusses the limitations of the solution and lessons that we learned
when working on this project.

Lastly, Chapter 8, named Conclusion, summarizes the output of this work
and compares them to the original goals.

We also provide a Section A, Attachments, at the end of this thesis which
contains short user documentation and describes the contents of the attachment
provided alongside this work.

6

2. Data lineage analysis using
Manta Flow
Before we get to the main subject of this thesis let us describe how Manta Flow
works in general and what parts of the platform we used to create the scanner
for the Databricks technology.

2.1 Manta Flow platform
As mentioned above, Manta Flow is a software solution for automated data lin-
eage analysis created by Manta. Its goal is to help users visualize their data
pipelines which results in easier data governance, faster data incidents resolution,
and improved data quality. The key feature of Manta Flow is automation so
the data lineage analysis can be performed in a scope of a few hours for smaller
environments or days for huge environments.

Since every technology has a specific way of storing information and different
metadata structure, a new Manta scanner has to be developed for each supported
technology. It is obvious that the same approach cannot be used for DBMSs such
as Oracle and business intelligence tools such as PowerBI.

Thanks to the Manta Flow platform design, the company is capable of ab-
stracting the key concepts present in every technology and developing a new
scanner quickly based on the market needs. Currently, Manta supports over 40
technologies from the field of databases, BI, reporting, data modeling and inte-
gration, and programming languages.

Every scanner in the Manta Flow platform has the same high-level architec-
ture, which consists of two main components, Connector and Dataflow Generator.

1. Connector is further divided into two main parts:

(a) Extractor responsible for extracting (loading) all inputs needed for
dataflow analysis to a single location. The extracted information could
be stored on some server or other locations specified by users.

(b) Reader responsible for creating a general model used in Dataflow
Generator from the extracted data. The model contains interfaces
and classes that represent extracted entities in such a form, that the
Dataflow Generator and hence the analysis is not dependent on the
exact format from extraction. This helps to minimize the changes
that have to be made in case the extraction has to change (e.g.: the
API endpoint changed the response format a little bit).

2. Dataflow Generator which uses the Reader output to create a data lin-
eage graph that can be viewed by users.

Figure 2.1 shows the described scanner architecture.
The result graph generated by the Manta platform contains nodes and edges

that represent the lineage and dataflow in scanned environments and programs.
For example, in the case of databases, it contains nodes that represent tables,

7

Figure 2.1: High-level scanner architecture diagram

catalogs, or any other database entity stored in the scanned database. For BI tools
or programming language scanners, the graph can contain nodes that represent
reading/writing from/to standard input or some file, and nodes that represent the
analyzed scripts, functions, or modules. The edges between the nodes are oriented
and denote the lineage flow between nodes. Figure 2.2 shows an example graph
produced by the Manta platform (Python scanner) that denotes the following
lineage:

1. Data are read from a CSV file into a pandas Dataframe.

2. The Dataframe is split into two Dataframes. The first one contains the first
three columns, and the second contains the last two.

3. The two Dataframes are written into separate files.

Figure 2.2: Example Manta graph from Python scanner

In Manta also a lineage for one specific entity (e.g.: a column) can be depicted
by clicking on it. This is visible in Figure 2.2 in blue and yellow colors for the
column named last.

Now that we understand the overall function and concepts of Manta Flow, let
us describe the concrete scanners necessary for Databricks data lineage analysis.

8

2.2 Python scanner
In order to be able to analyze the parts of the notebooks that are written in
Python language the Python scanner [27] is necessary. Let us now describe how
the Python scanner works and what it needs in order to create a lineage graph.

The Python source code analysis could be summed up into the following
phases:

1. Extraction of code

2. Input processing

3. Call graph construction

4. Computing alias analysis

5. Symbolic data-flow analysis

6. Result graph creation

Let us now briefly describe each phase.

2.2.1 Extraction of code
The first step is collecting all input program codes in a single location. This
process is called extraction. There are two kinds of source codes that are needed
- application and libraries. Application is code written and provided by the user
and libraries are source codes that are used in programs, however, users did
not write them themselves. For example, there are built-in libraries available
in Python that can be used in any Python application by default and there are
many public libraries that can be downloaded and imported by users in their
input source codes.

The main goal is to analyze the application code so that users would see the
data pipeline of their own programs. However, in order to do so, libraries are
necessary since their methods can modify or transform data in a way that can
have an impact on lineage. Hence both the application code and libraries need
to be included in the analysis.

2.2.2 Input processing
Once all source codes are extracted they need to be loaded into memory and
processed. Python scanner processes the source code on its own without any
compilation or usage of interpreters. The reason behind this is that this strategy
allows bigger control of how the output is represented and hence easier and more
precise tailoring of representing data structures. On the other hand, this approach
has a downfall that it is not easily compatible with all versions and has to be
updated every time a new version of Python is released.

One example of input source code processing is syntactic sugar removal. For
example, when we have an expression ’Hello’ + ’world’ behind the scenes it
is equivalent to an expression ’Hello’. add (’world’). In order to be able to
analyze the behavior of expressions easier, those that represent the same thing

9

are transformed into a unified representation. In the provided example it would
be the form using the add method.

2.2.3 Call graph construction
After the code is processed the next thing that needs to be done is the compu-
tation of a call graph. The call graph represents the information about what
functions can be invoked from a given method (context). Since the callers and
callees do not change during the run of an analysis this can be pre-computed once
before the analysis begins which saves a lot of valuable time. The same applies to
imported modules and the functions they contain. Hence this phase also handles
the resolving of imports since functions from imported libraries can be invoked
as well.

2.2.4 Computing alias analysis
The next step that needs to be done is to figure out what expressions may ref-
erence the same data flow. This is called computing the aliases. This step is
important as the scanner needs to correctly assign and propagate data flows in
the symbolic analysis. Let us now show a simple example of the aliasing:

1 foo = ’Hello world ’ # foo aliases the value ’Hello world ’
2 bar = foo # bar also aliases the value ’Hello world ’

Aliases are computed per different parts of the input source code such as
functions, classes, and modules.

2.2.5 Symbolic data-flow analysis
After the computing alias analysis, the symbolic analysis can take place. Symbolic
analysis means that the input source code is analyzed without running the code
before, hence no runtime information is available. For example when we have
branching in the input source code using the if ... else ... statement the
analysis has no way of knowing which branch was actually used in runtime. Hence
it needs to consider both options.

The analysis starts on a so-called entry point which represents a function or
a file that is invoked first when the program is run by an interpreter. During the
run of symbolic analysis, all objects that need to be analyzed (functions, classes,
and modules) are put into a worklist.

The worklist algorithm processes the objects in the worklist one by one until
a fixed state over the dataflows is reached. That means that the algorithm stops
when there are no new flows created. In the Python scanner, the worklist contains
all objects reachable from the entry point at the beginning of the algorithm. To
represent a place where the function was invoked a so-called Invocation context
is used. The invocation context represents the function or method and the flows
associated with its arguments. When the analysis of a single function or method
is finished, the algorithm checks if the flows changed in any way. If yes, the
function/method and all its callers and callees need to be added back to the
worklist to be analyzed in the next iteration.

10

During the run of the analysis for a single function or method, the analy-
sis keeps a set of tracked expressions. In the beginning, the arguments of the
function/method are tracked. Other expressions that can be tracked later are
assignments and function/method calls. In the case of assignments, the left side
of the assignment is tracked and flows associated with the right side are propa-
gated to the left side expression. This is similar for function or method calls. For
example, when we pass the variable foo into the function as a first argument,
the flows associated with the variable will be propagated to the first argument of
the function. However, that means that the flows will be stored in the invocation
context of the called method rather then in the invocation context of the current
method.

The method calls and assignments we mentioned above construct a so-called
flow summary. The flow summary represents the flow data for a particular invo-
cation context. These flow summaries are then used to get the final result of the
analysis.

In order to speed up the execution of the analysis few approximations have to
be made. For example, the code from the libraries is not simulated. Instead, the
Python scanner contains so-called propagation modes. These propagation modes
are written for those library functions that have an impact on the lineage. The
propagation modes handle the data flow in a special way that is specific for each
function.

For example, when we use the Pandas method read csv the propagation
mode takes all of the UnknownResourceColumnFlows associated with the source
(the reason behind this is that there is no way to know precisely what columns
are present in the file since only symbolic analysis is performed), for each such
flow creates new PandasColumnFlow and registers it to the propagation target.
By doing this, the scanner preserves information that there were data read from
the CSV file and stored in the Pandas dataframe. Later, when there are some
transformations done with the data, the flows created here are used, hence the
lineage keeps extending.

Using the modifications the analysis is faster and can finish in a reasonable
time. However, the price for it is that the flows that can be tracked are limited
by the propagation modes that are implemented. All other information that is
not in the user input source code or propagation modes is lost.

2.2.6 Result graph creation
After the analysis is finished the results are transformed to a standard Manta
graph. That means that nodes and edges are added for those flows that are im-
portant for users to see such as file and database streams. This transformation is
done in the common Dataflow Generator for all intermediate languages supported
in Manta currently. This can be done since the output of the Connector does not
contain any language-specific information and hence the forward process can be
the same for all intermediate languages. After this phase, the graph is ready to
be visualized to the users.

11

2.3 Embedded code service
Another desired feature of Manta (Python scanner) is the ability to run the scan-
ner on small code snippets embedded in different technologies (e.g.: Databricks).
To do so, the Embedded code service has been used.

Embedded code service (or ECS for short) is a standalone service for the
analysis of an intermediate language code embedded in a different technology.
Each intermediate language has its own ECS that focuses on the language scanner
requirements. In our case, we will use the Python ECS.

The Python ECS is responsible for properly setting up the input for the
Python scanner, calling the Python scanner analysis, and then returning results
to the caller technology. Let us now describe this process in more detail.

The initial phase is the Initialization. This phase is responsible for initializing
and preparing graph for Python analysis. Then the Orchestration phase takes
place. This phase prepares a temporary directory where the input for the analysis
is put. Then each technology has its own Orchestrator that is responsible for
properly preparing all files that should be extracted and defining an entry point.
Then the extraction is executed and the configuration for analysis is prepared.
Next, the Python analysis is executed based on the configuration obtained in
previous phases. When the analysis finishes the result is transformed to a Manta
graph. Before the final results are returned the Cleanup phase takes place and
all data in the temporary directory and the directory itself are deleted. Then the
result graph obtained from the Python scanner is wrapped to a structure that
represents the result of the embedded code service and provides an interface for
working with the Python result graph such as merging it to a specified parent
graph or management of PIN nodes.

Figure 2.3 shows the high-level image of the ECS phases.

Figure 2.3: ECS phases high-level diagram

2.4 SQL scanner
In order to be able to analyze the SQL parts of notebooks we will need to use
an SQL scanner. In this section, we describe what a standard SQL scanner looks
like and what is each component’s function in order to create a lineage graph.

The standard SQL scanner has two major components - the Connector and
Dataflow Generator. The Connector is then divided into Extractor, Dictionary,
Model, and Resolver. The Extractor is responsible for extracting information

12

from a given database. The information can be for example DDL scripts, how-
ever, users can also manually provide scripts alongside the extraction. Then the
Dictionary contains, for each identifier, some information about what it repre-
sents based on the hierarchy of entities in the database. For example tables,
variables, datatype, builtin-functions, and more. The dictionary keeps all of this
information in one place so that it would be easier to work with them in fur-
ther phases. The Model component defines the abstract syntax tree (or AST for
short). The AST is then analyzed in the Resolver component. Resolver contains
the parsing and semantic analysis of the AST. Then the data are passed to the
Dataflow Generator. Dataflow Generator represents a bridge between Connec-
tor and Manta Flow platform itself. Its task is to transform the output of the
Connector to the common intermediate language structures that will be visual-
ized in the final graph. In other words, for each statement important from the
lineage point of view the Dataflow Generator produces source and target nodes
and connects them.

Now that we know the data flow in the SQL scanner let us describe it in more
detail. As we already mentioned, the Extractor component extracts the content
of the database and as a result, the scanner gets DDLs and the Dictionary. The
DDLs are then passed for language processing which has in the SQL scanners
four phases - lexical analysis, syntax analysis, semantic analysis, and further
processing. The Lexer component is responsible for the lexical analysis which
means that it takes the input DDL and parses it into tokens or lexemes (identifiers,
keywords, literals, and special symbols). Then the input syntax is analyzed in
the Parser component. This produces the AST tree usually slightly modified to
suit the analyzed technology. Then the AST is passed to the Resolver component
where the semantic analysis takes place. Semantic analysis analyses the meaning
of statements. For example, it answers the question what does a mean in the
SELECT a FROM t1 CROSS JOIN t2. It could be a column from t1 or t2, a
variable or any other construct. The semantic analysis gives answers to such
questions. Once all such questions are answered, further processing takes place.
In the case of the SQL scanners, further processing means that the data flow
analysis takes place in the Dataflow component. This component then produces
a graph that is passed to a Post-processing module. After that, the final graph
is ready. Figure 2.4 shows the whole workflow.

13

Figure 2.4: SQL scanner phases high-level diagram

14

3. Databricks
Databricks is a cloud-based platform built on top of Spark [28] used for data
science, engineering, and analytics. Databricks combines the advantages of data
warehouses and data lakes into so-called lakehouse architecture.

3.1 Data warehouse vs Data lake
Both data warehouse and data lake are used as storage for large amounts of data.
Data warehouse [10] stores these data in a structured manner in files and folders
so that data are available for reporting and analysis. In order to store data in a
warehouse a schema has to be defined first. Then anytime data are stored in a
warehouse they are formatted accordingly to fit all data that were stored there
before. This allows data warehouses to provide highly performant and scalable
analytics which is useful for BI and reporting. However, the disadvantage of this
approach is that it is more expensive management-wise, and cannot process some
kinds of data. Hence there is no support for modern data science techniques and
machine learning which require data such as images and videos.

On the other hand, data lake [8] stores data in its raw format using a flat
architecture and object storage. A data lake is used when the schema is not known
or specified upfront, when all data are supposed to be in a single central location,
or when unstructured data needs to be processed. Any data type can be processed
in a data lake, even semi-structured and unstructured data such as images, videos,
and audio. Due to this data lakes can be used for machine learning, or advanced
analytics which are commonly used in today’s data science. However, since the
data are not structured in any way it is harder for data lakes to maintain reliable
data which can lead to inaccurate query results, poor performance, and poor BI
support.

In order to get the best of both worlds a combined approach is usually used
which is called Lakehouse.

Data lakehouse starts as a data lake that contains all data types and is
later converted to Delta Lake format which enables ACID transactions [5] from
traditional data warehouses on data lakes.

Key attributes of a lakehouse are:

• Transaction support

• Schema enforcement and governance

• BI support

• Storage is decoupled from computation

• Openness

• Support for diverse data types ranging from unstructured to structured data

• Support for diverse workloads

• End-to-end streaming

15

The difference between the data warehouse, data lake, and data lakehouse is
shown in Figure 3.1 which was taken from the article describing the differences
of given architectures [30].

Figure 3.1: Difference between data warehouse, lake, and lakehouse [30]

Let us now describe technologies and concepts used in Databricks in more
detail. To be more precise the Delta Lake in Section 3.2.1, Databricks Lakehouse
in Section 3.2, Key concepts in Section 3.3. Then we dive more into detail about
notebooks and queries in Section 3.4, external sources in Section 3.5, and last but
not least the tools that can be used for extracting data in Section 3.6.

3.2 Databricks Lakehouse
As we mentioned in the previous section, lakehouse combines the advantages
of data warehouses and data lakes. In Databricks, the implementation of the
lakehouse is called Databricks Lakehouse.

Databricks Lakehouse provides ACID transactions and data governance sim-
ilarly to data warehouses and combines it with the flexibility and cost-efficiency
of data lakes. This is used to enable business intelligence and machine learning
on data. Data are stored in a scalable cloud object storage in open source data
standards.

Primarily, lakehouse consists of two components: Delta tables and Unity Cat-
alog.

3.2.1 Delta Lake and Delta Tables
One of the most important concepts for platforms that work with data is the
storage layer. The storage layer is responsible for storing all data (e.g.: tables)
available in the platform in a pre-defined manner. In the Databricks Lakehouse
platform, the storage layer is called Delta Lake [29].

Delta Lake is an open-source software and it is an extension of the Parquet
data files with a file-based transaction log for ACID transactions and metadata

16

handling. It is fully compatible with Apache Spark APIs and it is used as a
default storage format for all operations in Databricks. If not specified otherwise,
all tables are stored as Delta tables. That means that when a new table is
created following actions take place:

1. the metadata used to reference the table is saved to the metastore in the
declared schema or database

2. both, data and metadata are saved to a folder (in Parquet format) in the
object cloud storage

Now that we know the high-level overview of the platform’s architecture, let
us describe the platform in more detail. In the following sections, we describe
what is metastore, what features it has, and the different kinds of metastores that
Databricks provides.

3.2.2 Metastore
Metastore is a top-level container that stores tables and views and permissions
for accessing data. Only admins can create metastores and assign roles and
permissions in the metastore to other users.

There are three options for metastore:

• Unity Catalog

• Hive metastore

• External metastore (legacy)

– External Apache Hive metastore
– AWS Glue Data Catalog

Previous versions of Databricks worked mostly with Hive metastore, however,
Unity Catalog provides a new metastore with better security and auditing.

Each metastore has a default storage location for managed tables in Amazon
S3. This storage is accessed with storage credentials that were created during the
metastore creation. In order to assure higher security, user code does not have
access to the credentials directly but Unity Catalog generates an access token for
each user or application separately so that they would be able to access requested
data.

External tables are stored in S3 as well, but in other paths and they can be
accessed by additional storage credentials added by admin.

Figure 3.2 shows the object model in the Unity catalog. This diagram was
created based on the article ”What is Unity Catalog?” [31].

17

Figure 3.2: The object model structure in Unity Catalog

Since Unity Catalog is currently the preferred metastore from Databricks point
of view, let us describe it in more detail.

Namespace

Unity Catalog organizes data in the so-called three-level namespace. The three
layers are Catalog, Schema, and Table.

Catalog is the highest layer and is used for organizing data assets. Users can
access the catalog only when USAGE data permissions are correctly set for them.

Schema is the second layer in the namespace and is used for organizing tables
and views. Sometimes schemas are also called databases. Data in the schema
can be accessed only with USAGE data permissions for the schema itself and
SELECT data permissions for a given table or view.

The third layer of the namespace is dedicated to tables and views which contain
rows of data. Tables can be created only with CREATE and USAGE permissions
for the parent schema and USAGE permissions for the parent catalog. To query
the table the SELECT permissions on the table are needed alongside USAGE
permissions on its parent schema and catalog.

There are two kinds of tables - managed and external.
Managed table is a default way to create a table and is stored in the managed

storage location which was configured during metastore creation. These tables
are managed in the Delta format only.

External table is stored outside the managed stored location and is not fully
managed by Unity Catalog. These tables can use the following formats: Delta,
CSV, JSON, AVRO, Parquet, ORC, and text.

In order to manage access to external tables, there are two object types used in
the Unity Catalog - storage credentials and external location. Storage credential
is an authorization and authentication mechanism for accessing data on the cloud.
An external location contains a reference to a storage credential and path on cloud
storage (it grants access only to the path and its child directories/files).

18

Alongside managed and external tables, views are in the third layer of the
namespace. They are read-only objects and are composed from one or multiple
tables and views in metastore (they can be in different schemas or catalogs).
Views are created by the SQL command CREATE VIEW in a standard way.

Cluster security mode

Now that we know the basic structure of the metastore another thing we need
to take a look at is the security aspect as well. In order to guarantee isolation
and access control Unity Catalog uses a so-called security mode. In order for
the cluster to access the Unity Catalog, it needs to have the appropriate security
mode configured (this means that the High Concurrency cluster is not available
in Unity Catalog).

Types of security modes:

• None

– no isolation

• Sigle user

– by default the person that created the cluster (can be transferred to
another user)

• User isolation

– multiple users, only SQL workloads supported

• Table ACL only

– workspace - local table access control

• Passthrough only

– workspace - local credential passthrough

3.3 Key concepts
Now that we know what Databricks is and what entities it used for storing data,
let us introduce the key concepts used in Databricks.

3.3.1 Workspace and account
The term workspace can have two meanings in Databricks.

1. Workspace is an environment deployed in the cloud that is used for access-
ing Databricks assets. Organizations can have one or multiple workspaces
depending on their needs and business logic.

2. Workspace is the User interface (UI) for Data Science & Engineering and
Machine Learning environments.

19

The workspace browser is the UI that lets users browse their notebooks, jobs,
libraries, and other files in the Data Science & Engineering and Machine Learning
environments.

A Databricks account is a single entity used for billing purposes or support.
One account can include multiple workspaces.

3.3.2 Authentication and authorization
Since Databricks is a cloud-based platform, authentication and authorization poli-
cies have to be provided to ensure data security. The following terms and concepts
are used in Databricks to do so.

User is an individual that has access to resources and the system. Users are
identified by their email address.

Service principal is a service identity that is used in the context of jobs, scripts,
automated tools, and CI/CD platforms. The service principal is represented by
an application ID.

Group is a collection of users and is used for easier identification and access
management.

The Access Control List (ACL) is a list of permissions for workspace, cluster,
job, experiment or table. The ACL specifies what users can access which objects
and what operations they can do with them.

The Personal Access Token is an opaque string constant used for authenti-
cation in the REST API and in tools that connect to the SQL warehouses in
Databricks.

3.3.3 Data Science and Engineering
Another feature that Databricks provides is the environment, where data scien-
tists can work together, and share their knowledge, data, and results. Exactly
for this purpose the Data Science & Engineering environment is provided by
Databricks.

Data Science & Engineering is an environment used for collaboration among
data engineers, data scientists, and data analysts. The following concepts are
used in this environment to ensure an understandable, easy, and intuitive work
with the environment itself and its entities. The entities users can work with are:

1. Notebooks

2. Dashboard

3. Library

4. Repo

5. Experiment

Notebook is an interface to a document that contains runnable code snippets,
narrative text, and visualizations. (More on notebooks in Section 3.4).

Dashboard is used for publishing graphs and visualizations from notebook
outputs and sharing them in a presentation format. Usually, a special job is
created for updating the dashboard.

20

Library in Databricks contexts is basically the same thing as libraries in pro-
gramming languages - a package of code that is available to notebooks or jobs
running on a cluster. There are “builtin“ libraries that are present for all runtimes
and also own libraries can be added if needed.

Repo is a folder that has a co-versioned folder content with some remote git
repository.

Expetiment is a collection of machine learning training runs.
The data assets can be accessed by following tools:

1. User interface (UI)

2. REST API (To see the REST API analysis please see Section 4.2)

3. Command-line interface (CLI)

For data management, the following concepts are used:

1. Databricks File System (DBFS)

2. Database

3. Table

4. Metastore

The Databricks File System (DBFS) is an abstraction layer over blob storage
that contains folders and files (libraries, data files, images). In the beginning,
this storage contains training datasets that can be used for learning how to work
with Databricks.

3.4 Notebooks and Queries
When working with data we have several options for how to do so. The first
option is to create a Databricks notebook. Databricks notebooks consist of so-
called cells. Each cell can be written in a different language that is supported in
Databricks. In order to execute the notebook code, the notebook is attached to
a cluster and then the cluster runs all the cells in the notebook in the order they
were written. Notebooks can be either run manually or the user can schedule
a so-called job that will execute the notebook automatically based on the job
parameters.

Another way to work with data is to create a query. Query is a simple SQL
script that can be run on a cluster and for simplicity, we can imagine it as if it
was a notebook with only one cell written in the SQL language.

Now that we know what notebooks are from a high-level point of view, let us
describe them in more detail.

21

3.4.1 Language Magic Command
Since notebooks enable writing the cell content in different languages, there has
to be a way how to distinguish which language is being used.

In Databricks these languages are enabled:

• Markdown

• Python (default for cell usually)

• SQL

• Scala

• R

When using any of these supported languages, the Language magic command
is used to define which language is being used. The following table contains
language and its commands:

Language Magic command
Markdown %md

Python %python
SQL %sql
Scala %scala

R %r

3.4.2 Spark context
As we know from the previous section, Databricks notebooks support the fol-
lowing languages for cells: Python, Scala, R, SQL, and Markdown. Out of the
mentioned languages, only Markdown does not execute any code. Since note-
books can contain cells in different languages we need to take a deeper look at
what information cells in different languages can pass to one another. In the
following sections, we describe how this can be done in Databricks.

Basic overview

According to the article about working with multiple languages on Databricks [17]
each language behaves as if it was in its separate virtual machine. That means
that by default languages do not see each other’s variables. However, there is one
option that can be used to change that. Since Databricks runs on Apache Spark
a so-called spark session is always created for each notebook. Using this spark
session, languages can share variable values and dataframes.

According to the article about different ways of passing data between lan-
guages [13], it is also possible to pass values using so-called widgets. However,
this solution only works when executing cells one by one interactively [6].

Since Manta performs static analysis of the code and hence scanners do not
execute the code, we focus on the spark session option from this moment further.

22

Spark session

As mentioned before, the most recommended way for sharing the variables and
their values is using the spark session since it is the only thing that is shared
among all languages. That means that if one language changes anything in the
context, it shows in all languages. This can be useful when we want to perform
multiple operations in a row but each of them would be easier to do in a different
language. For example, Python is great for accessing files and loading data from
them, however, SQL is better when creating tables and views. And for example,
R is better when we want to compute some statistics. Using this scenario, the
data that the languages would share could be like this:

1. Python cell loads data from the file and stores the dataframe and table
name into the spark context.

2. SQL cell uses the table name to access the data loaded by the Python
cell and based on some conditions returns a filtered set of results from the
original data.

3. R cell takes the latest SQL result and performs some statistical methods
on them.

Even though this is a very simple example it demonstrates greatly why using
a spark session is useful and hence why we need to be able to handle this concept
properly in our scanner. A thorough analysis of what kinds of operations can be
used to pass data using the shared context can be found in Section 4.7

3.4.3 Export
Databricks also provides different ways of exporting notebooks. Let us now de-
scribe the formats in which the notebooks can be exported. This description is a
base for the analysis in Section 4.6.1 that discusses the best format for our scanner.

DBC Archive
The first option for a single notebook export is a DBC archive.
DBC archive is a binary format that includes metadata and notebook com-

mand results. According to the Databricks documentation, it is a JAR file with
some sort of special metadata added and stored with the extension .dbc.

Source File
This option downloads the notebook as .scala, .py, .sql, or .r file. The

language of the file is determined based on the default notebook language. As an
example, we exported a simple notebook that contained Markdown, SQL, and
Python cells. The content of the file was in the following format:

1 # Databricks notebook source
2 # MAGIC %md
3 # MAGIC Following cell should create spark table from CSV data:
4

5 # COMMAND ----------
6

7 # MAGIC %sql

23

8 # MAGIC DROP TABLE IF EXISTS diamonds ;
9 # MAGIC

10 # MAGIC CREATE TABLE diamonds USING CSV OPTIONS (path "/
databricks - datasets / Rdatasets /data -001/ csv/ ggplot2 / diamonds .
csv", header "true ")

11

12 # COMMAND ----------
13

14 # MAGIC %md
15 # MAGIC Following cells should create Delta table stored at the

specified location .
16

17 # COMMAND ----------
18

19 # MAGIC % python
20 # MAGIC
21 # MAGIC diamonds = (spark.read
22 # MAGIC . format (" csv ")
23 # MAGIC . option (" header ", "true ")
24 # MAGIC . option (" inferSchema ", "true ")
25 # MAGIC .load ("/ databricks - datasets / Rdatasets /data -001/ csv/

ggplot2 / diamonds .csv ")
26 # MAGIC)
27 # MAGIC
28 # MAGIC diamonds .write. format (" delta ").save ("/ mnt/delta/ diamonds

")
29

30 # COMMAND ----------
31

32 # MAGIC %sql
33 # MAGIC DROP TABLE IF EXISTS diamonds ;
34 # MAGIC
35 # MAGIC CREATE TABLE diamonds USING DELTA LOCATION ’/mnt/delta/

diamonds /’
36

37 # COMMAND ----------
38

39 # MAGIC %sql
40 # MAGIC SELECT color , avg(price) AS price FROM diamonds GROUP BY

color ORDER BY COLOR

As can be seen in the snippet above, each cell is represented by a set of #
MAGIC comments and are divided by the # COMMAND ---------- comments.

IPython Notebook
Another option for notebooks export is the IPython notebook file. It is a

Jupyter notebook with the extension .ipynb.

HTML
The last option for notebooks export is the HTML file. The notebook is

converted to a standard HTML source code alongside lots of javascript functions
to preserve the notebook’s functionality properly.

24

3.5 External sources
Alongside creating and storing the data in Databricks, there is also an option
to interact with external sources. As can be seen in the Databricks documenta-
tion [19], both loading and storing from/to external sources can be done. Figure
3.3 shows the relationships between systems.

Figure 3.3: Databricks interaction with external sources

There are multiple formats and source and consumer technologies that are
supported in Databricks. Since there are many supported technologies, we men-
tion only a few most important in our opinion. To see the full list please see the
official documentation [19].

Regarding the formats, for example, the following data formats are supported:

• Delta Lake

• Parquet

• JSON

• CSV

• Binary

• Text

Databricks can also interact with messaging services like Kafka, or Kinesis that
are streaming from or to the message queues. Another possible way of interacting
with external technologies is to use the JDBC connection. In this way, Databricks
can connect with for example PostgreSQL, MySQL, Oracle, or MariaDB. The
last option we mention is integration with data services like Google BigQuery,
MongoDB, Cassandra, or ElasticSearch. Integration with these services is done
using the connection settings, networking settings, and security credentials.

3.6 Extracting data from Databricks
Now that we have a better image of Databricks and the key concepts used there,
let us describe the main tools available for extracting data. There are three most
used tools - REST API, Unity Catalog API, and JDBC connection. We describe
each of the mentioned tools in the sections below.

25

3.6.1 REST API
For obtaining information about clusters, notebooks, jobs, queries or workspace
as a whole, Databricks provides their REST API. In this section, we describe
those methods from the REST API that were suitable for our use case regarding
the extraction of data. To be more precise, we describe the groups of endpoints
and what their purpose is. Then later in Section 4.2 we describe those endpoints
that have useful information for extraction from the data lineage computation
point of view.

DBFS API 2.0

One of the useful information we could try to obtain is the information about
data sources stored in the file system. For this purpose, the Databricks REST
API provides a group of endpoints called DBFS API 2.0. This part of the API
interacts with different data sources without the need of including credentials
every time. However, it cannot be used with firewall-enabled storage. In the
following sections, we describe concrete endpoints that can be used to obtain the
information we need, the request we used, and the example response we got.

Get status

In order to receive information about a file or directory a request on endpoint
/api/2.0/dbfs/get-status has to be made with the path of the resource as a
request parameter. In case the resource does not exist a RESOURCE DOES NOT -
EXIST exception is thrown.

The following code sample shows the request structure we used to obtain the
information:

1 curl --netrc -X GET \
2 https ://< INSTANCE_URL >/ api /2.0/ dbfs/get - status \
3 --data ’{ "path ": "/ tmp/ HelloWorld .txt" }’ \
4 | jq .

And the following code sample shows the response we obtained:
1 {
2 "path": "/tmp/ HelloWorld .txt",
3 " is_dir ": false ,
4 " file_size ": 13,
5 " modification_time ": 1622054945000
6 }

List

Another useful action is listing the contents of directories or getting more details
about files. In order to do so a request on endpoint /api/2.0/dbfs/list has to
be made. The following code represents a request structure we used to test the
endpoint.

1 curl --netrc -X GET \
2 https ://< INSTANCE_URL >/ api /2.0/ dbfs/list \
3 --data ’{ "path ": "/ tmp" }’ \
4 | jq .

26

After the request, we obtained the following response. Note that due to the
fact that the response was really long, we show only the first object fully, then
the rest is replaced by the three-dot notation. However, all of the objects present
in the response have the same attributes available.

1 {
2 "files": [
3 {
4 "path": "/tmp/ HelloWorld .txt",
5 " is_dir ": false ,
6 " file_size ": 13,
7 " modification_time ": 1622054945000
8 },
9 {

10 ...
11 }
12]
13 }

As we can see, the information we obtain about files listed in the directory is
the same as the information described in the previous section that discussed the
data source details endpoint. The timeout for this method is approximately 60
seconds so only dictionaries with less than 10 000 files can be processed which is
a slight limitation.

Read

Now that we know how to get the list of all files present in the directory, we
need a way to get to their content. To do so, the REST API provides a read
method that returns the contents of a specified file. Maximal size is 1MB and
when exceeded a MAX READ SIZE EXCEEDED exception is thrown. If the file does
not exist a RESOURCE DOES NOT EXIST exception is thrown. In case the specified
path is a directory, the offset is negative, or the length is negative an INVALID -
PARAMETER VALUE exception is thrown.

The following code represents the request structure we used to test the end-
point:

1 curl --netrc -X GET \
2 https ://< INSTANCE_URL >/ api /2.0/ dbfs/read \
3 --data ’{ "path ": "/ tmp/ HelloWorld .txt", " offset ": 1, " length ": 8

}’ \
4 | jq .

We obtained the following response:
1 {
2 " bytes_read ": 8,
3 "data": " ZWxsbywgV28 ="
4 }

Workspace API 2.0

As we mentioned in Section 3.4 notebooks are one of the main ways to work
with data in Databricks. Since they can perform transformations with data,
create new data from the existing ones or simply reorganize the data structure,

27

we need to analyze their content in order to produce a lineage graph. In order
to get to the notebook contents, the REST API section called Workspace API
2.0 can be used. This group contains endpoints for notebooks and all related
actions regarding them. The maximum size per request is 10 MB. From this
API we cannot use import or delete functions since we cannot change customer’s
data. In the following sections, we describe useful methods that can be used for
extracting notebooks.

List

The first useful action that comes to mind is listing all available notebooks in
a specified directory or the whole workspace (which is represented by the root
directory). In order to do so, the REST API provides the GET method for listing
all contents of the workspace on the api/2.0/workspace/list endpoint.

In order to get to the notebook content request has to contain the authoriza-
tion token. In case the token does not provide sufficient access rights, the request
fails. The following code represents the request structure we used to test the
endpoint.

1 curl -X GET --header " Authorization : Bearer $DATABRICKS_TOKEN " \
2 https ://< INSTANCE_URL >/ api /2.0/ workspace /list \
3 --data ’{ "path ": "/ Users/ WORKSPACE_NAME " }’

For the request, we obtained the following response:
1 {
2 " objects ": [
3 {
4 " object_type ": " NOTEBOOK ",
5 "path": "/Users/ WORKSPACE_NAME /Data Lineage Test",
6 " language ": " PYTHON ",
7 " object_id ": 754855114107838
8 },
9 {

10 " object_type ": " NOTEBOOK ",
11 "path": "/Users/ WORKSPACE_NAME / UCtest ",
12 " language ": " PYTHON ",
13 " object_id ": 1582990291900299
14 },
15 {
16 " object_type ": " NOTEBOOK ",
17 "path": "/Users/ WORKSPACE_NAME / anotherTest ",
18 " language ": " PYTHON ",
19 " object_id ": 1582990291900320
20 }
21]
22 }

Export

Once we know the paths and names of notebooks in the directory or workspace,
we need to export their contents. For this purpose the export method on endpoint
/api/2.0/workspace/export is present. Let us now describe to what formats
the notebooks and directories can be exported.

28

When exporting notebooks one of the following four options can be selected
(please see Section 3.4.3 for a detailed description of the formats):

• SOURCE - exported as source code in the main language of the notebook

• HTML

• JUPYTER - Jupyter notebook format

• DBC - Databricks archive format

A directory can be exported only in dbc format.
To test the endpoint we used the request structure shown in the code sample

below. The parameters of the request were the path to a notebook, the format
of the export set to the SOURCE option and we also enabled the direct download
option so that the file would be stored in the file system.

1 curl --netrc --request GET \
2 https :// < INSTANCE_URL >/ api /2.0/ workspace / export \
3 --header ’Accept : application /json ’ \
4 --data ’{ "path ": "/ Users/ me@example .com/ MyFolder / MyNotebook ",

" format ": " SOURCE ", " direct_download ": true }’

When downloading notebook content there are two possible download meth-
ods:

• direct download - can be done only if the proper flag is set to true:
"direct download": true, file is then directly downloaded to the file
system

• base64 in JSON - when "direct download": false

The following example shows the download to a base64 format.
1 {
2 " content ": " Ly8gRGF0YWJyaWNrcyBub3RlYm9vayBzb3VyY2UKMSsx ",
3 }

Jobs API 2.1

Now that we know how to export the notebooks from the Databricks workspace,
we need to take a look at how to identify all the jobs that can be used to auto-
matically run the notebooks. To do so, the REST API provides a whole group
of endpoints called Jobs API 2.1. All of the methods available can be found on
the official documentation page [21].

However, we describe only two endpoints that we considered useful. The first
endpoint is for listing all jobs. The method is available on the /2.1/jobs/list
endpoint. We decided to skip the example response in this case, since the example
response was too long. However, the example response can be found in the
documentation [21]. Later, in Section 4.2 we show an example response with
only such information that we considered useful for lineage.

The second endpoint we would like to mention is the endpoint used to obtain
information about a single job. The method is available in the
/2.1/jobs/get/{job id} endpoint.

29

Queries API

Another part of the endpoints we describe are the endpoints that are used to
obtain information about queries. Queries are SQL scripts stored in the data
warehouses in Databricks and can be used in a similar fashion as jobs for note-
books. Hence these queries can be viewed as SQL scripts we want to extract and
then analyze to see the lineage.

In order to retrieve information about queries, a request on endpoint
/api/2.0/preview/sql/queries has to be made. This endpoint returns a list
of all queries and information about them. Here again, we decided to skip an
example response since it was too long. The complete full response can be found
in the Documentation [15] and an example of the response with only information
useful for lineage computation can be found in Section 4.2.

Data sources

In case we would like to see the list of all available warehouses a GET method on
endpoint /api/2.0/preview/sql/data sources has to be called. The response
obtained from such a request would look as follows:

1 [
2 {
3 "id": "f7df1dfd -565d -4506 - accb -8 a1e0f8fad09 ",
4 "name": "starter - warehouse ",
5 " pause_reason ": null ,
6 " paused ": 0,
7 " supports_auto_limit ": true ,
8 " syntax ": "sql",
9 "type": " databricks_internal ",

10 " view_only ": false ,
11 " warehouse_id ": "3 d939b0cc668be06 "
12 }
13]

3.6.2 Unity Catalog API
When Databricks announced the Unity Catalog preview, they also created the
data lineage REST API. This API is an extension of the REST API mentioned in
the previous section, however, the methods present in the Unity Catalog version
are available only for the instances that have Unity Catalog enabled. In case
the Databricks instance uses still Hive metastore as a primary storage another
method has to be used. This situation is analyzed in Section 4.5. Let us now
take a look at the Unity Catalog API extension and the method it provides for
data retrieval.

For all following endpoints, the common prefix is: /api/2.0/unity-catalog

Metastores and External Locations

If we want to be able to download data information from all places users use in
their Databricks instance we might need to list all of the used metastores first.

When it comes to the information about metastores there are two methods
that can be called. The first one gathers information about all metastores used

30

by the instance, the second one gathers information from one specific metastore
based on the ID.

To obtain the list of all available metastores the <prefix>/metastores end-
point has to be used. We decided not to show the full request response, since
it was too long. However, we show an example response in Section 4.3 where
we analyze what parts of the obtained information are useful for data lineage
computation.

It is possible to retrieve information about external location storage as well.
In order to do so following endpoints can be used:

Method URI Endpoint name Function

GET <prefix>
/external-locations listExternalLocations

returns
array of
External-
Location-
Info

GET
<prefix>
/external-locations
/:name

getExternalLocation

returns
External-
Location-
Info

GET <prefix>/files listFiles

returns
array of
file infor-
mation

Catalogs

As mentioned in Section 3.2.2 there is a three-level namespace in Databricks.
The topmost level is the catalog. Hence the first step in order to get table and
lineage information is to get all available catalogs, since tables need to be referred
to using their full name in a form catalog.schema.table. In order to list all
catalogs in the metastore the /api/2.0/unity-catalog/catalogs endpoint can
be used.

The following code snippet shows an example request we used to test the
endpoint.

1 curl -n -v -X GET --header " Authorization : Bearer
$DATABRICKS_TOKEN " \

2 -H ’Content -Type: application /json ’ https :// DATABRICKS_INSTANCE /
api /2.0/ unity - catalog / catalogs

We decided to skip the example response in this case since it was too long.
We will show an example response with only the information necessary for the
lineage computation in Section 4.3. In order to see the full list of fields that are
returned please see the documentation [23].

There is also an option to get information about a single catalog through the
endpoint <prefix>/catalogs/:name.

31

Schemas

The second level in the three-level namespace hierarchy belongs to schemas. Using
the list of all available catalogs, we can list all schemas present in each of the
catalogs using the endpoint api/2.0/unity-catalog/schemas. The following
code snippet shows the request pattern we used to test the endpoint. Alongside
calling the endpoint a catalog name had to be passed as a parameter.

1 curl -n -v -X GET --header " Authorization : Bearer
$DATABRICKS_TOKEN " -H ’Content -Type: application /json ’ https
:// DATABRICKS_INSTANCE /api /2.0/ unity - catalog / schemas -d ’{"
catalog_name ": " NAME_OF_CATALOG "}’

We decided to skip the example response in this case since it was too long.
We will show an example response with only the information necessary for the
lineage computation in Section 4.3. In order to see the full list of fields that are
returned please see the documentation [25].

To get information about only one schema the endpoint
<prefix>/schemas/:name can be used.

Tables

Now that we know how to get all the catalogs and schemas, we can take a look at
how to get to the most important data entities - tables. Tables are used to store
data but are also a part of the Databricks lineage information. Unity Catalog
API offers an endpoint for listing tables in specified catalog and schema.

The request is as follows:
1 curl -n -v -X GET --header " Authorization : Bearer

$DATABRICKS_TOKEN " -H ’Content -Type: application /json ’ \
2 https ://< INSTANCE_URL >/ api /2.0/ unity - catalog / tables -d ’{"

catalog_name ": " CATALOG_NAME ", " schema_name ": " SCHEMA_NAME "}’

An example response alongside the useful information that can be used further
in lineage processing can be found in 4.2. We decided not to include an example
response here since it was too long. To see the full list of attributes that can be
obtained, please see the documentation [26].

3.6.3 JDBC connection
As we mentioned before, the Unity Catalog API can be used only for instances
that have Unity Catalog enabled. Since there still can be instances with Hive
metastore only, there has to be a way of connecting to the metastore to obtain
information. To do so, a JDBC connection to a cluster is used.

Let us now describe what is needed to successfully create the JDBC connection
string in order to connect to the cluster. The string needs following parameters [7]:

1 jdbc: databricks ://< Server Hostname >:443; HttpPath =<Http Path >[;
property =value [; property =value]]

The only optional parameter is the property and all others are required.
Hence users will have to provide information about (please see Figure 3.4 for
visual representation):

• Server Hostname - the address of the server

32

– this can be found in the URL of the Databricks workspace or in the
Advanced options section as the Server Hostname

• Http Path - the Databricks compute resources URL

– this part can be found in the cluster details, under the Advanced op-
tions as the HTTP Path

Figure 3.4: Cluster settings in Databricks

The following code snippet shows an example JDBC Databricks connection
string created for testing purposes of the JDBC connector provided by Databricks.

1 "jdbc: databricks :// dbc -a2716148 -b098.cloud. databricks .com :443;
HttpPath =sql/ protocolv1 /o /2655265824026948/0805 -133710 -
j7g9i5hv ";

Additionally to that, a user has to provide us the Access token with correct
rights for working with clusters and reading data. This access token is then
added to the properties under the name PWD which represents the password used
for authentication.

33

4. Analysis
In this chapter, we discuss the concrete goals set for this thesis project, the
technologies and tools that had to be explored, and the challenges that we faced
from the data lineage point of view. Also, we do a thorough analysis of available
data, tools, and concepts that are used in Databricks and are necessary in order
to produce a lineage graph for the Databricks Platform.

The goal of this thesis is to write a tool that will be able to show lineage for
Databricks notebooks. To be more precise there are several concrete steps that
needed to be done:

1. Extraction of data from Unity Catalog and Hive metastore.

2. Using the extracted data to analyze the Databricks notebooks (Python and
SQL cells).

3. Designing a solution that is easily extendable for other languages supported
in Databricks (R, Scala).

4.1 Data necessary for lineage
In order to fulfill the set goals, we need to obtain the necessary data from
Databricks first so that we could use them in the analysis later. In this sec-
tion, we describe what kinds of data are necessary for data lineage display. Then
in the following sections, we discuss how to obtain these data from different data
sources that Databricks provide - Unity Catalog and Hive metastore.

There are two kinds of entities we could consider as important for data lineage:

1. The data entities (stored in possibly different formats)

2. The source codes that are working with the data and produce lineage

Let us examine what kind of data can be found in Databricks for each category.

Data

As we mentioned in Chapter 3 data in Databricks are stored as tables or views in
different formats. Based on the object model described in Section 3.2.2, in order
to get to the tables stored either in Unity Catalog or Hive metastore we need to
know the available catalogs, schemas, and table or view names.

Additionally, Unity Catalog provides so-called lineage information. This lin-
eage information is at most 30 days old data records that show which notebook
worked with which tables. This information can be useful for us as a sort of
backup mechanism. In case the analysis of a notebook using Manta scanners
fails (for example some feature is not yet supported) the lineage information (if
available) could be used to fill the gaps and show better lineage information in
the final result.

The lineage information can be either table level or column level. The table-
level lineage shows the direction of how data flows between tables in a given

34

notebook. An example of table-level lineage from Unity Catalog can be seen in
Figure 4.1. The column-level lineage shows the exact columns from tables that
participated in the data lineage flow. An example of a column-level lineage can
be seen in Figure 4.2.

Figure 4.1: The example of table level lineage in Unity Catalog

Figure 4.2: The example of column level lineage in Unity Catalog

Source codes

The second group of entities that need to be extracted are the source codes.
As we mentioned in Section 3.4 there are two main source code types that are
interesting for us - notebooks and queries. Exact details of how the Databricks
notebooks look like can be found in Section 3.4. The queries are stored separately
from the notebooks, hence we need to find another suitable export strategy for
them as well.

Now that we know what kinds of data are necessary for data lineage, let us
explore different options on how to obtain them. As we mentioned in Section
3.2.2 there are two main ways where data can be stored in Databricks - the Unity
Catalog and Hive metastore. The following subsections discuss how we can obtain
all data necessary for data lineage using tools that Databricks provides.

4.2 REST API
As we mentioned in the previous section there are two categories of data we need
for data lineage - the data itself and programs that work with them. We already
described interesting endpoints in Section 3.6.1. In this section, we discuss which
methods are useful for computing lineage. In some cases, we show an exam-
ple response, and what parts of it contain useful information. The unnecessary
information in the response was replaced by three dots.

35

4.2.1 DBFS API 2.0
The first set of endpoints we mentioned in the previous chapter were endpoints
for retrieving information about files stored in the Databricks file system (DBFS).
For a single file or directory, we could obtain the following information:

1 {
2 "path": "/tmp/ HelloWorld .txt",
3 " is_dir ": false ,
4 " file_size ": 13,
5 " modification_time ": 1622054945000
6 }

From the information available, the first three attributes could be useful. The
path could be used as an identifier of the resource. Based on the information if
the resource is dictionary or not we can make decisions about further processing
and using the file size information we could for example filter those files that are
too large or we can use this information to prepare a buffer large enough to store
the file.

Another useful action is listing the contents of directories or getting more
details about files. As we mentioned in Section 3.6.1 the list method returns a
list of information for each file present in the directory. The information about
a single file is the same as for a single file. Hence, the method could be useful in
the manner that we would not have to make a separate request for each of the
files present in the directory.

When obtaining the content of each file we can get the following information:
1 {
2 " bytes_read ": 8,
3 "data": " ZWxsbywgV28 ="
4 }

This information can be used to properly store the files in our extraction
folder.

4.2.2 Workspace API 2.0
Another set of endpoints we mentioned in Section 3.6.1 was related to notebooks
and how to export them. In this section, we describe what has to be done to
extract the notebooks properly using the REST API.

The first step is listing all available notebooks in a specified directory. For an
easier description of the useful information, let us show the response for the list
method again:

1 {
2 " objects ": [
3 {
4 " object_type ": " NOTEBOOK ",
5 "path": "/Users/ WORKSPACE_NAME /Data Lineage Test",
6 " language ": " PYTHON ",
7 " object_id ": 754855114107838
8 },
9 {

10 " object_type ": " NOTEBOOK ",
11 "path": "/Users/ WORKSPACE_NAME / UCtest ",
12 " language ": " PYTHON ",

36

13 " object_id ": 1582990291900299
14 },
15 {
16 " object_type ": " NOTEBOOK ",
17 "path": "/Users/ WORKSPACE_NAME / anotherTest ",
18 " language ": " PYTHON ",
19 " object_id ": 1582990291900320
20 }
21]
22 }

Almost all of the fields we obtain in the response can be used further to obtain
the notebook content. The object type field defines if the item is a notebook or
directory. In the case of a directory type, a recursive call would have to be made.

The path field can be used for exporting the concrete notebook using the ex-
port method described in the following section. And the language and object id
can be used for more detailed notebook description.

Using the information from the list method, we can call the export method
to export the notebook in the specified format. These two steps are all that needs
to be done in order to export notebooks from Databricks using the REST API.

4.2.3 Jobs API 2.1
As we mentioned in Section 3.6.1 jobs can be used to execute notebooks automat-
ically based on some parameters. Hence, we would like to know how to extract
them, in case we would like to visualize them in the final graph as well.

In order to do so, the list method in the Jobs API would have to be called.
The following code sample contains an example response mentioned in the docu-
mentation [21]. Since the response was too long, we only show those parts of the
response that we considered useful.

1 [
2 {
3 "jobs": [
4 {
5 " job_id ": 11223344 ,
6 ...
7 "tasks": [
8 {
9 " task_key ": " Sessionize ",

10 " description ": " Extracts session data from events ",
11 " depends_on ": [],
12 " existing_cluster_id ": "0923 -164208 - meows279 ",
13 " spark_jar_task ": {
14 " main_class_name ": "com. databricks . Sessionize ",
15 " parameters ": [
16 "--data",
17 "dbfs :/ path/to/data.json"
18]
19 },
20 " libraries ": [
21 {
22 "jar": "dbfs :/ mnt/ databricks / Sessionize .jar"
23 }
24],

37

25 ...
26 },
27 {
28 ...
29 },
30 {
31 " task_key ": "Match",
32 " description ": " Matches orders with user sessions ",
33 " depends_on ": [
34 {
35 " task_key ": " Orders_Ingest "
36 },
37 {
38 " task_key ": " Sessionize "
39 }
40],
41 ...,
42 " notebook_task ": {
43 " notebook_path ": "/Users/user. name@databricks .com/

Match",
44 " base_parameters ": {
45 "name": "John Doe",
46 "age": "35"
47 }
48 },
49 ...
50 }
51],
52 "...
53 }
54]

The most useful information we can obtain calling this endpoint is the ID
of the job, the tasks it executes, their names, what they depend on, what data
and libraries they use, what notebooks they execute and what are their default
parameters. All of this information can be used in case we would like to visualize
the jobs in the result graph.

4.2.4 Queries API
Last but not least source code entities we would like to extract are queries.
Queries are one-cell executables that are written in SQL and can manipulate
with data entities.

To get a list of all available queries the list method from the Queries API group
has to be called. Note that due to the fact that the response was really long, we
show only the parts important for the lineage. The missing parts were replaced by
three dots. The complete full response can be found in the Documentation [15].

1 {
2 ...
3 " results ": [
4 {
5 " query_hash ": " string ",
6 " parent ": " string ",
7 "name": " string ",
8 " permission_tier ": " CAN_VIEW ",

38

9 " description ": " string ",
10 "tags": [
11 " string "
12],
13 ...
14 "query": " string ",
15 " data_source_id ": " string ",
16 " user_id ": 0,
17 ...
18 }
19]
20 }

The most important parts of the response are the fields query which contains
the SQL code that represents the query and the name field which contains the
name of the query. A possible useful field in the future could be the data -
source id which identifies the concrete warehouse where the query is stored.
Should we ever want to visualize this information, this field would be necessary
to do so.

4.2.5 Data sources
In case we would like to visualize different warehouses users have in their instance,
we would have to use the data sources endpoint described in Section 3.6.1. The
response obtained from such a request would look as follows:

1 [
2 {
3 "id": "f7df1dfd -565d -4506 - accb -8 a1e0f8fad09 ",
4 "name": "starter - warehouse ",
5 " pause_reason ": null ,
6 " paused ": 0,
7 " supports_auto_limit ": true ,
8 " syntax ": "sql",
9 "type": " databricks_internal ",

10 " view_only ": false ,
11 " warehouse_id ": "3 d939b0cc668be06 "
12 }
13]

When visualizing the warehouses we could use the id and name fields for the
warehouse identification.

4.2.6 Authorization
In order to be able to use the REST API one needs to be authenticated first.
For this purpose personal access token (PAT for short) or passwords can be used.
Tokens are preferred for authentication and are automatically enabled for all
Databricks accounts.

In order to work with the REST API we would need PAT from our customers
directly since there is no other way of getting to them. For example, they could
provide it in some sort of configuration. On the other hand, there is a possible
issue that customers will not be willing to share the tokens due to security reasons
(they could be worried that the token will be stored somewhere or that it will

39

grant access to the whole API which means also write operations). This could
however be solved by using tokens with limited access rights.

4.3 Unity Catalog API
As we mentioned in Section 3.6.2 Databricks created an extension of the REST
API called Unity Catalog API that provides information about data entities
stored in metastores and also lineage information related to them. In the fol-
lowing sections, we focus on important methods in order to compute the lineage
properly.

For all following endpoints the common prefix is: /api/2.0/unity-catalog

Metastores and External Locations

The top-level part of the whole Databricks architecture is the metastore. Metas-
tore contains all the information about the data entities stored inside of it as well
as the data entities themselves. In case users use multiple metastores in their
instance, it could be useful to show them in the final graph. Hence we need to
be able to obtain the metastore information. As we described in 3.6.2 there are
methods in the Unity Catalog API to do so.

The following response was returned when calling the <prefix>/metastores
endpoint which returns information about all metastores used by the instance.
Note that since the response was too long we only show the parts of the response
we considered useful for further use. Other parts were replaced by the three-dot
notation. To see the full example response please see the documentation [24].

1 {
2 " metastores ": [
3 {
4 "name": " databricksshared_metastore ",
5 " storage_root ": "s3 :// databricksshared /HERE -WAS -ID -OF

- METASTORE ",
6 ...,
7 " metastore_id ": "HERE -WAS -ID -OF - METASTORE ",
8 ...,
9 "cloud": "aws",

10 " region ": "us -east -1",
11 " global_metastore_id ": "aws:us -east -1: HERE -WAS -ID -OF -

METASTORE "
12 },
13 {
14 "name": " myunitycatalogmetastore ",
15 " storage_root ": "s3 :// myunitycatalogs3bucket /HERE -WAS

-ID -OF - METASTORE ",
16 ...,
17 " metastore_id ": "HERE -WAS -ID -OF - METASTORE ",
18 ...,
19 "cloud": "aws",
20 " region ": "us -east -1",
21 " global_metastore_id ": "aws:us -east -1: HERE -WAS -ID -OF -

METASTORE "
22 }
23]
24 }

40

The most important metastore information is the name and the storage root
path. Also, the global metastore ID is really important in case users want to scan
more than one Databricks instance.

As we also mentioned in Section 3.6.2 we can obtain information about Ex-
ternal Locations as well. This information could be useful in case we wanted to
connect the Databricks results with the results of other scanners in Manta.

Catalogs

When it comes to data entities the topmost entity is the catalog. As mentioned
in Section 3.6.2 there are methods available that gather information about the
catalogs.

An example response we can get for catalogs is shown as a code snippet below.
Please note, that since the response was long, we show only the useful information,
and everything else has been replaced with a three-dot notation. In order to see
the full list of fields that are returned please see the documentation [23].

1 {
2 " catalogs ": [
3 {
4 "name": " example ",
5 ...
6 " metastore_id ": " METASTORE_ID ",
7 ...
8 " catalog_type ": " MANAGED_CATALOG "
9 },

10 {
11 "name": " system ",
12 ...
13 " metastore_id ": " METASOTRE_ID ",
14 ...
15 " catalog_type ": " SYSTEM_CATALOG "
16 }
17]
18 }

From this information, the most important one is the name of the catalog and
possibly catalog type and metastore ID.

Schemas

On the second level of the namespace, there are schemas. Similarly to catalogs,
schemas have their API endpoints as well.

For an example request, we obtained a response shown as a code snippet below.
Please note, that since the response was long, we show only the useful information,
and everything else has been replaced with a three-dot notation. In order to see
the full list of fields that are returned please see the documentation [25].

1 {
2 " schemas ": [
3 {
4 "name": " default ",
5 " catalog_name ": " complicatedlineage ",
6 ...
7 " metastore_id ": " METASTORE_ID ",

41

8 " full_name ": " complicatedlineage . default ",
9 ...

10 },
11 {
12 "name": " information_schema ",
13 " catalog_name ": " complicatedlineage ",
14 ...
15 " metastore_id ": " METASTORE_ID ",
16 " full_name ": " complicatedlineage . information_schema ",
17 ...
18 },
19 {
20 "name": " lineagedemo ",
21 " catalog_name ": " complicatedlineage ",
22 ...
23 " metastore_id ": " METASTORE_ID ",
24 " full_name ": " complicatedlineage . lineagedemo ",
25 ...
26 }
27]
28 }

As can be seen in the example result above, there is always the default schema
created by the system, custom schemas created by users and then there is an
information schema created by the system as well.

Tables

Tables alongside views reside on the third level in the namespace. Unity Catalog
API provides methods for obtaining information about tables as we mentioned
in Section 3.6.2.

In order to get full lineage we need to iterate over all tables and their columns
and request lineage for them separately. Then the full lineage can be computed
by connecting the separate lineages based on common nodes.

To be able to iterate over the list of tables, we need to get it first. Unity
Catalog API offers an endpoint for listing tables in specified catalog and schema.

Let us describe the response on an existing example.
Suppose we have the following structure:

• catalog name: complicatedlineage

• schema name: lineagedemo

• we have 4 tables in the schema named dinner, dinner price, menu, price

The following code snippet shows a response to such a request. Note that since the
response was too long we show only the information useful for further processing
and the unnecessary information was replaced by the three-dot notation. To see
the full list of attributes that can be obtained, please see the documentation [26].

1 {
2 " tables ": [
3 {
4 "name": " dinner ",
5 " catalog_name ": " complicatedlineage ",
6 " schema_name ": " lineagedemo ",

42

7 " table_type ": " MANAGED ",
8 " data_source_format ": "DELTA",
9 " columns ": [

10 {
11 "name": " recipe_id ",
12 ...
13 " type_name ": "INT",
14 ...
15 },
16 {
17 "name": " full_menu ",
18 ...
19 " type_name ": " STRING ",
20 ...
21 }
22],
23 " storage_location ": "s3 :// LOCATION ",
24 ...,
25 " metastore_id ": " METASTORE_ID ",
26 " full_name ": " complicatedlineage . lineagedemo . dinner ",
27 ...
28 },
29 {
30 "name": " dinner_price ",
31 " catalog_name ": " complicatedlineage ",
32 " schema_name ": " lineagedemo ",
33 " table_type ": " MANAGED ",
34 " data_source_format ": "DELTA",
35 " columns ": [
36 {
37 "name": " recipe_id ",
38 ...
39 " type_name ": "INT",
40 ...
41 },
42 {
43 "name": " full_menu ",
44 ...
45 " type_name ": " STRING ",
46 ...
47 },
48 {
49 "name": "price",
50 ...
51 " type_name ": " DOUBLE ",
52 ...
53 }
54],
55 " storage_location ": "s3 :// LOCATION ",
56 ...
57 " metastore_id ": " METASTORE_ID ",
58 " full_name ": " complicatedlineage . lineagedemo .

dinner_price ",
59 ...
60 },
61 {
62 "name": "menu",
63 " catalog_name ": " complicatedlineage ",

43

64 " schema_name ": " lineagedemo ",
65 " table_type ": " MANAGED ",
66 " data_source_format ": "DELTA",
67 " columns ": [
68 {
69 "name": " recipe_id ",
70 ...
71 " type_name ": "INT",
72 ...
73 },
74 {
75 "name": "app",
76 ...
77 " type_name ": " STRING ",
78 ...
79 },
80 {
81 "name": "main",
82 ...
83 " type_name ": " STRING ",
84 ...
85 },
86 {
87 "name": " desert ",
88 ...
89 " type_name ": " STRING ",
90 ...
91 }
92],
93 " storage_location ": "s3 :// LOCATION ",
94 ...
95 " metastore_id ": " METASTORE_ID ",
96 " full_name ": " complicatedlineage . lineagedemo .menu",
97 ...
98 },
99 {

100 "name": "price",
101 " catalog_name ": " complicatedlineage ",
102 " schema_name ": " lineagedemo ",
103 " table_type ": " MANAGED ",
104 " data_source_format ": "DELTA",
105 " columns ": [
106 {
107 "name": " recipe_id ",
108 ...
109 " type_name ": "LONG",
110 ...
111 },
112 {
113 "name": "price",
114 ...
115 " type_name ": " DOUBLE ",
116 ...
117 }
118],
119 " storage_location ": "s3 :// LOCATION ",
120 ...
121 " metastore_id ": " METASTORE_ID ",

44

122 " full_name ": " complicatedlineage . lineagedemo .price",
123 ...
124 }
125]
126 }

The only useful information for this matter is the table names, column names,
and possibly the column type, full table name, location, and metastore ID.

4.4 Prototype
In order to test if the Unity Catalog API could be used to recreate Databricks
lineage in the Manta platform, we have decided to create a simple prototype script
that would extract lineage information for a specified catalog and schema. This
prototype has been developed and tested in cooperation with another member of
the Manta team.

The prototype works as follows:

1. Python script downloads the lineage information for all tables and columns
in the specified catalog and schema.

• The lineage has to be downloaded for each table and column separately
since Databricks provides only the lineage information that is directly
related to the table.

2. The results are saved into PostgreSQL and using transformations are con-
verted into CSV files that can be used in Manta.

• The JSON results were manually inserted into the database by the
Manta employee that used our Python script mentioned above for the
extraction.

3. Using the CSV files Manta can create a graph for the lineage.

The example result of this prototype was the graph shown in Figure 4.3.

Figure 4.3: Example graph from prototype

45

When we compare it to the graph from Databricks UI we can see that it is
exactly the same lineage, but the graphs for the tables and columns are merged
into one. (See Figure 4.1 and Figure 4.2 for Databricks lineage information)

4.5 Hive metastore
The original way of storing data in Databricks used to be the Hive metastore.
Even though Databricks introduced the Unity Catalog many users keep their
Hive instances untouched and have not yet migrated to the Unity Catalog. Due
to this we also have to analyze how to retrieve the data information from the
Hive metastore.

Since Databricks provides REST API for exporting notebooks and source
codes, we only need to analyze how to obtain information about tables and views
and what kind of information we are able to obtain. The following sub-sections
will discuss possible options for data retrieval from the Hive metastore.

4.5.1 Unity Catalog API behavior
We tried calling Unity Catalog API on the Databricks instance that does not
have Unity Catalog enabled. We tried the API call for listing all tables and
getting lineage information for a table. The following code samples will show
both requests and the results we obtained.

For listing all tables we used the following request:
1 curl -X GET --header " Authorization : Bearer $DATABRICKS_TOKEN "
2 -H ’Content -Type: application /json ’
3 https ://< INSTANCE_URL >/ api /2.0/ unity - catalog / tables

The obtained response was as follows:
1 {
2 " error_code ": " METASTORE_DOES_NOT_EXIST ",
3 " message ": "No metastore assigned for the current workspace ."

,
4 " details ": [
5 {
6 "@type": "type. googleapis .com/ google .rpc. RequestInfo "

,
7 " request_id ": "24381936 -1 ed5 -4153 - ae21 -221 e1e1d6bfe ",
8 " serving_data ": ""
9 }

10]
11 }

As can be seen in the response, we obtained an error response with a message
that there is no Unity Catalog workspace assigned for the instance. Hence we
cannot use the Unity Catalog to obtain any information about tables stored in
the Hive metastore.

The second thing that we needed to verify was if there were any lineage infor-
mation kept for Hive metastore tables. For that purpose, we tried the following
command for obtaining lineage information for the table
example.lineagedemo.dinner.

46

1 curl -n -v -X GET --header " Authorization : Bearer
$DATABRICKS_TOKEN "

2 -H ’Content -Type: application /json ’
3 https :// dbc -6236 ff65 -3 cdb.cloud. databricks .com/api /2.0/ lineage -

tracking /table - lineage
4 -d ’{" table_name ": " example . lineagedemo . dinner ", "

include_entity_lineage ": true }}’

We obtained the following response:
1 {
2 " error_code ": " PERMISSION_DENIED ",
3 " message ": " Cannot resolve metastore id from UserContext (

workspaceId : 2640600745528909) ."
4 }

As can be seen in the response, this API method cannot be used for obtaining
lineage information for the tables.

4.5.2 Hive metastore access
The original plan for accessing the Hive metastore in Databricks was to use the
Hive scanner from Manta. Firstly the analysis using the Hive scanner would be
done and then the following analysis would build on top of the scanner results.
However, we could not proceed with this plan as the Hive metastore support has
been disabled in the R38 version of Manta. Hence we needed to explore new
options how to obtain information from the metastore.

JDBC spark connection

In the cluster settings in Databricks, there is a JDBC spark connection available.
We decided to explore options that could use this connection and extract the
information from the metastore. We tried the following options:

1. JayDeBe in python [20]

2. simba in spring [18]

3. JDBC connector in Java

However, using the spark JDBC drivers was not successful. Either the proper
driver could not be found or there were issues when trying to access the metastore.

The second option we found was to create a jdbc:databricks connection
string and use Databricks custom JDBC connector. This solution was the only
one that was successful when connecting to the Databricks metastore. The fol-
lowing section describes this solution in more detail.

JDBC connection string

For the internal hive metastore, the only option that seemed to be working was
using the official JDBC connector [12] and connecting to the clusters in order
to obtain any information about the metastore content. For a brief overview
of what can be seen when connecting to the cluster, we have used the DBeaver

47

tool which has a Databricks plugin and shows the content in a more understand-
able way (note that the DBeaver has an official plugin from Databricks and is
hence equipped to show the Unity Catalog content as well as the Hive metastore
content).

The main difference between the Hive metastore and Unity Catalog is that
Unity Catalog uses a three-level namespace and Hive metastore uses only two
levels. Using DBeaver for brief data exploration gave us additional important
information. For instances where both Hive metastore and Unity Catalog meta-
stores are present, the full names of the tables need to be normalized to a three-
level namespace format. That is done in a simple manner. Databricks creates
an abstraction as if the Hive metastore contained one catalog called hive -
metastore. Hence everything that is located in the Hive metastore (schemas
and tables/views) is attached under this catalog. Figure 4.4 shows a screenshot
of the DBeaver displaying the content of Unity Catalog (green rectangle) and
Hive metastore (red rectangle) parts.

48

Figure 4.4: The DBeaver displaying Unity Catalog and Hive metastore contents

We described how to create a proper JDBC connection string in Section 3.6.1.
Now that we know how we can successfully connect to the Databricks cluster

using the JDBC connection string the only thing left is to figure out how to get
the table and schema-level information to our scanner. In order to do so, we need
to use SQL queries. To get the available schemas in the Hive metastore we need to
execute the SHOW DATABASES query. This will return a list of schema names that
are present in the Hive metastore and are accessible using the connection string
provided by the user (we need to take into account that users may not have access
to all tables and schemas). When we obtained the list of schemas, we need to get
the list of tables and views for all of them. This can be done using two queries.
Firstly we need to use the USE schemaName command to set the currently used
schema to the one we want to query. Then the SHOW TABLES query needs to be
called to obtain the list of all tables present in the schema (again only those that

49

are accessible with respect to the user rights and privileges). When listing views,
the first step is the same and the second uses the SHOW VIEWS query instead.
In order to get the names of tables or view columns the SHOW COLUMNS FROM
tableName query needs to be used.

The information about tables that can be obtained from the Hive metastore
is far more limited than the information provided by the Unity Catalog API
described in Section 4.3. The information available from Hive metastore is:

• table name

• name of each column of the table

• a Boolean value indicating if a table is temporary

4.6 Databricks notebooks
Previous sections focused on data entity retrieval and extraction. Now that we
know possible ways how to do so, let us focus on the source codes that work
with the data entities. In this section, we describe Databricks notebooks in more
detail.

Notebook in Databricks is similar to Jupyter Notebook used commonly in
Python. It is a collection of cells that can contain either some text information
or scripts written in supported language that can do some sort of transformation
with data. These computations are usually run on an Apache Spark cluster. In
Databricks, notebooks are created in workspaces.

4.6.1 Export
Databricks scanner has to call other Manta scanners like for example Python
scanner for analysis of the Python cells. Due to this, the notebooks have to be
exported in some way so that scanners could work with them. As we discussed
in Section 4.2.2 to export the notebooks we can use the REST API provided
by Databricks. However, there are multiple options for the export format as we
mentioned in Section 3.4. Let us take a deeper look at each of them and discuss
which option is the most suitable for the Databricks scanner.

DBC Archive

The first option for a single notebook export is a DBC archive which is a binary
format. To use this format we would have to know how to properly extract it
and how to work with the source codes that are stored in it. We tried to work
with the DBC archive ourselves and we found out that it behaves similarly to a
standard ZIP archive. Hence extraction would not be a problem. However, when
we successfully extracted the archive we found out, that the source code format
is not suitable at all. The source code is stored in a JSON structure that contains
a lot of metadata information alongside the executable notebook source codes.
This format would be difficult to work with and lots of pre-processing would be
needed to put it in a somewhat usable form.

50

Source File

The second option is to extract the notebook as a source file. That means that
the notebook is downloaded as .scala, .py, .sql, or .r file based on the default
notebook language. An example of this format can be found in Section 3.4.

To use this file format, some pre-processing needs to be done before the file is
passed to the language scanner. The pre-processing has to include deleting the
comments before the source code and filtering only cells that were written in a
given language.

Even though some pre-processing has to be done, the required changes are
not as extensive as they would be in the case of the DBC archive.

IPython Notebook

Another option for notebooks export is the IPython notebook file. It is a Jupyter
notebook with the extension .ipynb. This file format could be useful in the
future when the Python scanner would support Jupyter Notebooks. However, as
of now, the Python scanner cannot work with the Jupyter Notebooks files and
since this format contains a lot of javascript and metadata, it would be harder
to prepare it to a suitable form similarly as we mentioned in the case of DBC
archives.

HTML

The last option for notebooks export is the HTML file. We do not find this
format suitable for scanner usage because it uses a lot of javascript, the code is
not easy to read nor parse and it would be hard to write some sort of reasonable
processing for such files.

To summarize, we decided that the best option for exporting notebooks would
be the source file option since it requires the least amount of pre-processing, and
the structure and contents of the format are determined (since this format does
not contain any metadata that would make processing harder).

4.7 Spark context
As we know from Section 3.4.2, Databricks notebooks support the language in-
teraction using the spark context. In the following sections, we describe what
kinds of information can be passed from one language to another and also what
kinds of operations can be done with them.

Scala

The first language we take a look at is Scala. In Scala both read and write
operations can be done to spark session. For both actions, there are special
methods that are used in the source code. For reading it is the spark.conf.get
method and for writing it is the spark.conf.set method. The following code
snippet shows how to use these methods.

51

1 %scala
2 // Setter :
3 spark.conf.set("var. scala_var ", " my_value_scala ")
4 // Getter :
5 val var_scala = spark.conf.get("var. scala_var ")

Python

Just like in Scala, Python can perform both read and write operations. In order
to do so, the methods spark.conf.get and spark.conf.set can be used. The
following code shows an example usage of these methods.

1 # Setter :
2 spark.conf.set("var. python_var ", " my_value_python ")
3 # Getter :
4 var = spark.conf.get("var. python_var ")

R

Similarly to Python and Scala, R language can too perform both read and write
operations. However, the syntax is more complicated than in the first two lan-
guages. The following code snippet shows both setting a variable value and
getting a variable value using spark methods.

1 # Setter :
2 setEnvVar <- function (var_name , var_value) {
3 list_param <- list ()
4 list_param [[var_name]] <- as. character (var_value)
5 SparkR :: sparkR . session (sparkConfig = list_param)
6 return (TRUE) # to avoid return a session
7 }
8 setEnvVar ("var.r_var", " my_value_r ")
9

10 # Getter :
11 getEnvVar <- function (var_name) {
12 return (unname (unlist (SparkR :: sparkR .conf(var_name))))
13 }
14 var <- getEnvVar ("var.r_var")

SQL

The last supported cell language is SQL. In SQL reading the value of a variable
can be done using a simple construct ${variable name}. The following code
snippet shows the usage of this concept.

1 select * from ${var. table_name }

Hence we see that the SQL language can perform the read operation. However,
what about writing?

As of now, it seems that the SQL language can only read the variable value.
However, according to the article about SQL results [14], there is an option to
investigate the latest SQL query result directly from the python cell through the
sqldf variable (dataframe). This feature was supposed to be already released

but due to some issues it has been delayed and will be available in the Databricks

52

3.74 through 3.76 [4].

There is also an option to share dataframes (table-like structures) through the
spark context as well. In order to do so a spark dataframe has to be created and
saved to the spark context [17].

Let us now describe how this can be done in different languages.

Scala

Again the first language we look at is Scala. In order to pass a dataframe to
a spark context a method createOrReplaceTempView has to be called on an
existing dataframe. This method then creates a temporary view with a specified
name in the spark context. The temporary view can be then accessed as a normal
table or view, however, only by the following cells of the given notebook. An
example below shows how to use the mentioned method.

1 %scala
2 val nb = Seq (1, 2, 3).toDF("nb") // Creates a spark dataframe "nb"
3 nb. createOrReplaceTempView (" nb_tmp ") // Creates a temp table "

nb_tmp "

The nb tmp can now be used in any language for example in the SQL to do
the following query:

1 %sql
2 SELECT * FROM nb_tmp

Python

The concept of creating a temporary table in spark context stored in the spark
session is the same for Python and Scala.

Again the method createOrReplaceTempView needs to be called on an exist-
ing dataframe. The following example shows how this can be done in Python.

1 % python
2 dept = [(" Finance " ,10),
3 (" Marketing " ,20),
4 ("Sales" ,30),
5 ("IT" ,40)
6]
7 deptColumns = [" dept_name "," dept_id "]
8 deptDF = spark. createDataFrame (data=dept , schema = deptColumns)
9 deptDF . createOrReplaceTempView (" deptDF_tmp ")

The deptDF tmp can now be used in any language for example in the SQL to
do the following query:

1 %sql
2 SELECT * FROM deptDF_tmp

R

In order to pass dataframes from R to other languages few steps need to be
followed. The first step is to install all packages that contain methods for working
with spark. In this case, the packages needed are the magrittr and dplyr. Both

53

of the packages then need to be included as libraries in the code. Also in order
to be able to work with Spark a whole backend need to be included using the
require(SparkR) call. After all of these steps are fulfilled, the dataframe can
be stored using the createOrReplaceTempView method. The code snippet below
shows all steps that need to be done.

1 %r
2 install . packages (" magrittr ") # package installations are only

needed the first time you use it
3 install . packages ("dplyr") # alternative installation of the

%>%
4 library (magrittr) # needs to be run every time you start R and

want to use %>%
5 library (dplyr)
6 require (SparkR)
7 # Create list with 5 elements
8 my_input_list = list (56 ,78 ,90 ,45 ,67)
9

10 # Convert dataframe to list using data.frame ()
11 df <- data.frame(my_input_list) %>%
12 SparkR ::as. DataFrame ()
13 df
14

15 createOrReplaceTempView (df , " test_r ")

SQL

As was mentioned in the previous examples, the SQL language can read the
dataframes created in Scala, Python, or R as if they were normal tables or tem-
porary views. The write operation is not possible yet, the only write-like operation
is saving the latest SQL query result to the sql variable which we mentioned in
the previous sections discussing the Spark context and passing variables.

4.8 External sources
One of the many advantages of the Manta Flow platform is that it can show data
lineage between different systems. For example, if some BI tool uses a database
as a data source Manta can show the connected lineage when users scan both
technologies. As we learned in Section 3.5 Databricks supports integration with
several external sources. In the following sections, we focus on the technologies
that are important for Manta and can be used in Databricks.

Source systems

In this section, we describe how data can be loaded from some external database
(source system) into Databricks.

Let us now show how data can be loaded from Oracle. For other source
systems, such as Teradata or DB2 the data can be obtained in the same way as
for Oracle.

In order to load data from Oracle to Databricks, JDBC is used. To do so, the
correct driver has to be installed on the cluster.

Setting the connection to Oracle can be done in the following way:

54

1 driver = "cdata.jdbc. oracleoci . OracleOCIDriver "
2 url = "jdbc: oracleoci :RTK =5246...; User= myuser ; Password = mypassword

; Server = localhost ;Port =1521; "

Then when everything is set up properly, data can be loaded like this:
1 remote_table = spark.read. format ("jdbc")
2 . option (" driver " , driver)
3 . option ("url" , url)
4 . option (" dbtable " , " Customers ")
5 .load ()

Data from Oracle are available only in the notebook that loaded them. If
other notebooks want to use these data as well, they first need to be saved as a
table in Databricks or loaded by the notebook itself from Oracle. The following
snippet shows how the data can be saved as a table.

1 remote_table .write. format (" parquet "). saveAsTable (" SAMPLE_TABLE ")

Consumers

The Consumer technology we focus on is PostgreSQL. Writing data into SQL
databases is also done through the JDBC connection. The spark write function
is called in order to do so. An example of how Dataframe can be saved into
PostgreSQL using spark can be found below:

1 studentDf . select ("id","name","marks").write. format ("jdbc")\
2 . option ("url", "jdbc: postgresql :// localhost :5432/ dezyre_new ")

\
3 . option (" driver ", "org. postgresql . Driver "). option (" dbtable ",

" students ") \
4 . option ("user", " hduser "). option (" password ", " bigdata ").save

()

4.9 Databricks SQL vs Hive SQL
Since Databricks notebooks can contain cells written in SQL we needed to find a
way to analyze the SQL code in Manta. The initial idea was to use the existing
Hive scanner in order to do so since Databricks uses Hive metastore as one of
the possible options for storing metadata. However, as we found out, Databricks
created their own version of the SQL called Databricks SQL which is used in
the notebook cells. In order to determine if we still could use the Hive scanner
or if we needed a new one specialized in Databricks SQL we took a look at the
concepts Databricks SQL provides and compared it with Hive. The following
sections focus on the differences between the Hive and Databricks SQL dialects
when it comes to concepts that have a real impact on displayed lineage.

4.9.1 Queries not parsed by Hive
When we were trying to figure out the differences between Hive and Databricks
SQL dialects we found several queries and concepts that were not supported by
Hive. The initial issue is that Hive does not support a three-level namespace.
Hence no table names could be parsed properly when written in their full name

55

(e.g.: c1.s1.t1). Another issue is that there are some syntactic differences be-
tween Hive and Databricks SQL and queries that are possible in one but not
possible in the other. The following subsections contain those that could in our
opinion have an impact on lineage.

Catalogs
The first problem we encountered was that any query with keyword CATALOG

in it would not be parsed since Hive does not support the three-level namespace.
Hence if a user creates a new catalog using query CREATE CATALOG catalogName;
Hive scanner would not be able to parse it and we would not have information
that a new entity has been created. This is a sort of action that impacts lineage
greatly and hence we would like to see it in a graph. The same would be true for
dropping (deleting) catalogs using DROP CATALOG catalogName CASCADE;

External location
Another issue is that Hive does not support external locations at all. Hence

creating or updating an external location would not be parsed and hence would
not be present in the result graph. The following code samples contain the queries
for creating and altering the external locations:

1 CREATE EXTERNAL LOCATION s3_remote URL ’s3 ://us -east -1/ location ’
2 WITH (STORAGE CREDENTIAL s3_remote_cred)
3 COMMENT ’Default source for AWS exernal data ’;

1 ALTER EXTERNAL LOCATION descend_loc RENAME TO decent_loc ;

Another example where external locations are important from a lineage point
of view is when users create tables and store them in an external location. The
following query shows the table creation in an external location.

1 CREATE TABLE main. default . sec_filings LOCATION ’s3 :// depts/
finance / sec_filings ’;

Since we would like to see the external locations in the result graph because
it connects Databricks and other technologies together, this is a very important
feature that is not supported by Hive.

Create tables and views
In Databricks SQL tables can be created using different methods and source

formats. For example, the following query shows how to create a table using a
CSV file which is not supported in Hive SQL.

1 CREATE TABLE student USING CSV LOCATION ’/mnt/ csv_files ’;

Another feature related to table creation is creating tables with generated
columns. This can be done using the GENERATED keyword as shown in the follow-
ing example.

1 CREATE TABLE rectangles (a INT , b INT , area INT GENERATED ALWAYS
AS (a * b));

Neither of these features is supported by Hive.
Databricks SQL is also less strict on the keyword order. For example, the

following query that specifies table comments and properties will not pass in
Hive SQL. However, if we swapped the TBLPROPERTIES and COMMENT keywords,
the command would pass.

56

1 CREATE TABLE student (id INT , name STRING , age INT)
2 TBLPROPERTIES (’foo ’=’bar ’)
3 COMMENT ’this is a comment ’;

Databricks SQL is also less strict on how the values need to be passed. The fol-
lowing example creates a table with user-defined table properties without passing
values as a string.

1 CREATE TABLE T(c1 INT) TBLPROPERTIES (’this.is.my.key ’ = 12, this.
is.my.key2 = true);

This cannot be parsed by Hive SQL. However, when we change the query to
pass strings (as shown in the following example) the query can be parsed.

1 CREATE TABLE T(c1 INT) TBLPROPERTIES (’this.is.my.key ’ = ’12 ’, ’
this.is.my.key2 ’ = ’true ’);

Regarding views, Databricks SQL provides an option to create a temporary
view. This construct is not supported in Hive SQL at all. Since this concept is
widely used by Databricks users we would lose an important part of the lineage
in the result graph should there be no support for this feature. The following
code shows an example of creating a temporary view.

1 CREATE TEMPORARY VIEW subscribed_movies
2 AS SELECT mo.member_id , mb.full_name , mo. movie_title
3 FROM movies AS mo
4 INNER JOIN members AS mb
5 ON mo. member_id = mb.id;

Another feature related to views is supporting multiple Lateral views in one
statement. For example, the following query would not pass.

1 SELECT * FROM person
2 LATERAL VIEW EXPLODE (ARRAY (30, 60)) tableName AS c_age
3 LATERAL VIEW EXPLODE (ARRAY (40, 80)) AS d_age;

However, when using only one lateral view the query passes with no issues.
1 SELECT * FROM person
2 LATERAL VIEW EXPLODE (ARRAY (30, 60)) tableName AS c_age

Alter tables
When working with tables we ran into an issue with altering tables. To be

more precise we had issues with queries that tried to alter the table by using
foreign keys. The following code samples contain an example problematic query:

1 ALTER TABLE pets ADD CONSTRAINT pets_persons_fk FOREIGN KEY(
owner_first_name , owner_last_name) REFERENCES persons ;

According to this article [16] Hive does not support foreign keys. Another
problem in our Hive parser could be missing columns. Either way, we would
not have information about changing a table if did not have a parser that could
analyze such a code.

Another issue was with renaming columns. When we used the query ALTER
TABLE StudentInfo RENAME COLUMN name TO FirstName; the parser had is-
sues with the RENAME COLUMN keywords. Again this is a very important feature
since we would like to show users when some column has been renamed.

57

Lambda functions
A new feature that is not supported in Hive at all is the lambda function

which is a parametrized expression that can be passed to a function. Using this
lambda function users can control the behavior of the expression. The following
example shows a lambda function for sorting.

1 (p1 , p2) -> CASE WHEN p1 = p2 THEN 0
2 WHEN reverse (p1) < reverse (p2) THEN -1
3 ELSE 1 END

The following example will show how the lambda functions can be used in the
SELECT statements.

1 SELECT array_sort (array(’Hello ’, ’World ’),
2 (p1 , p2) -> CASE WHEN p1 = p2 THEN 0
3 WHEN reverse (p1) < reverse (p2) THEN -1
4 ELSE 1 END);

In order to properly show lineage for the latest example we would need to
have a scanner that would be able to parse and analyze these functions. Hence
this is another important feature that is not supported in Hive at all.

USE commands
The USE SCHEMA schemaName; command is used to set the current default

schema to the one specified in the command. We need to be able to detect this
as it dictates which tables are being used when no schema is specified. Since
Hive supports only two-level namespace, the command that is used instead of
this is USE default;. Another command that is related to this issue and is not
supported by Hive is the USE CATALOG catalogName; command. This command
sets the default catalog which is used when no catalog is specified in a table name.
Both of these features are extremely important in order to properly show the lin-
eage.

FROM VALUES statements
When exploring queries that specify some values using the FROM VALUES state-

ments we found out that these statements are not supported in Hive. This can be
problematic in situations when we use these statements in queries that produce
lineage like SELECT queries for example SELECT c1 FROM VALUES(1) AS T(c1);.
Another issue related to the FROM VALUES statements was the field name queries.
For example, following query could not be parsed by the Hive scanner:

1 SELECT addr. address .name
2 FROM VALUES (named_struct (’address ’, named_struct (’number ’,

5, ’name ’, ’Main St’),’city ’, ’Springfield ’)) as t(addr);

Another example is in a selection query that uses expressions.
1 SELECT c1 + c2 FROM VALUES (1, 2) AS t(c1 , c2);

Since the Hive scanner would not be able to parse these queries we would
not see any lineage information in the result graph regarding these examples and
hence would lose an important part of the lineage information.

58

Functions
The functions in Hive and functions in Databricks have different ways to be

defined. In Hive it is defined in a programming language and then referenced by
name like this:

1 CREATE TEMPORARY FUNCTION country AS ’com. hiveudf . employeereview .
Country ’;

On the other hand, Databricks SQL has a special syntax for function defini-
tion. An example of a function definition in Databricks SQL is in a code sample
below.

1 CREATE FUNCTION area(x INT , y INT) RETURNS INT
2 RETURN area.x + y;

Since functions can be used in queries that are important for lineage, this
feature is important in order to gain complete lineage knowledge.

JSON Path expressions
Hive SQL does not support JSON paths at all. Hence when used in the

selection queries there would be no lineage shown since the query could not be
parsed properly. This could lead to a loss of important lineage information on
customers’ side. The following example shows a simple JSON path expression
used in the SELECT statement.

1 SELECT raw:owner , raw:OWNER , raw :[’owner ’], raw :[’OWNER ’] FROM
store_data ;

Join
The last feature we will focus on is the table join. In Databricks SQL there is

an option to use so-called JOIN LATERAL [32] for joining two tables. In this kind
of join the right-hand table is specified as a sub-query and the join condition is
specified in the WHERE clause of the sub-query.

The following example shows how lateral joins can be used in Databricks SQL.
1 SELECT id , name , deptno , deptname
2 FROM employee
3 JOIN LATERAL (SELECT deptname
4 FROM department
5 WHERE employee . deptno = department . deptno);

Showing which tables were combined is a really useful feature and we would
like to be able to provide this in the result graph.

4.9.2 SQL scanner
In the previous section, we discussed the differences between the Hive SQL and
Databricks SQL dialects. In this section, we will discuss what options are there
for the notebook SQL analysis and which is the best one to be used.

The first option is to use the already existing Hive scanner available in Manta
as was planned from the beginning. The advantages are that the scanner is
already developed and available in Manta hence no additional work needs to be
done. On the other hand, there are many differences between the two dialects so
we would possibly not be able to analyze all of the customer’s codes.

59

The second option is to take the current Hive scanner and add support for
the Databricks SQL-specific constructs. This solution has the advantage that it
would be only an extension and there would be no need to spend a lot of time
on the configuration of the scanner. The huge disadvantage of this approach is
that by mixing the two dialects together we could potentially create a mess in
customers’ lineage since the scanner would try to produce the lineage for concepts
that are illegal in Hive. So instead of an error message that the user has incorrect
input, they could get lineage that would not correspond with Hive standards.

The third and final option is to create a separate scanner for Databricks SQL
and integrate it into the Manta platform. The advantage of this solution is that
the scanner would be specialized in one technology only. Another advantage is
that the scanner would have to be designed from scratch so it could be adapted
for some Databricks-specific constructs from the beginning and would be easier to
extend in the future. A disadvantage of this solution is that it takes a non-trivial
time to develop a new scanner and properly integrate it into the Manta platform.
Hence there would be higher time requirements for the project.

After discussions with the consultants from Manta, we have decided that the
third option is the most reasonable one. Merging Hive and Databricks SQL
together would cause confusion and would need several workarounds in order to
adapt the scanner properly. Due to this, a decision that a new scanner needs to be
developed has been made. However, since it is a huge task, this new Databricks
SQL scanner will not be the subject of this thesis. In our solution, we will use
the developed Databricks SQL scanner as a black box that has been delivered to
the Manta platform by Manta employees.

4.10 Summary
Now that we took a deeper look at all the challenges, concepts and issues let us
briefly summarize the goals for the design of the scanner.

In sections 4.1 we concluded that there are two major groups of data that
need to be extracted. The data entities and source codes. Section 4.2 showed
possible ways for extracting the source codes and related entities like files stored
in DBFS, jobs used for scheduling notebooks, and queries. Then in Section 4.3
we described possible ways for extracting information about metastores, catalogs,
schemas, and tables. We showed, that the concept can be used by writing a small
prototype described in Section 4.4.

As we found out, the Unity Catalog API cannot be used for instances that do
not have Unity Catalog enabled. Those instances can use only Hive metastore
for storing the metadata. In Section 4.5 we described how we can access the Hive
metastore using the JDBC driver provided by Databricks.

Then we moved to the languages used in scripts and how to analyze them.
In Section 4.6 we picked the best source format for exporting the notebooks
using the REST API. Related to the notebooks themselves, we discussed a very
important feature of Databricks - the spark context for notebooks. In Section
4.7 we described how it can be used, and why we need to take it in mind in our
scanner as well.

Since Manta supports multiple technologies, databases, and BI tools among
them, we decided to take a closer look at the option of connecting Databricks

60

to external sources. In Section 4.8 we described how Databricks connects to the
databases such as Oracle and PostgreSQL.

The last thing that needed to be analyzed more deeply was the option of
using an existing Hive scanner to analyze the SQL cells. However, how we found
out in Section 4.9 the differences between Hive SQL and Databricks SQL are
too extensive, and hence a new SQL scanner had to be developed by Manta
employees.

Hence the main goals for the design are:

1. Design the extractor part of the scanner to use the API methods from the
REST API analysis.

2. Design a way to support exchanging information between different cell lan-
guages.

3. Design the algorithm for the notebook analysis that uses external scanners
(Python and Databricks SQL scanners) to analyze the notebook body.

4. Merge the results from the external scanners and Unity Catalog lineage
information into one result graph that can be displayed to users.

61

5. Design
In this chapter, we focus on describing our design of solutions for problems and
goals we uncovered during the analysis.

5.1 Scanner design
The first task that needed to be solved was the overall design of the scanner, the
components it should have, and how they should interact with each other. Figure
5.1 shows the standard Manta scanner architecture applied on the Databricks
scanner use-case.

Figure 5.1: Standard Manta scanner architecture applied on Databricks use-case

Let us now describe each component in more detail. The first component
is the Extractor shown in the green rectangle in the Figure. The extractor is

62

responsible for downloading all data necessary for further analysis. In the case
of Databricks, the Extractor is responsible for getting information about tables,
schemas, and catalogs from all available metastores and downloading the source
codes of notebooks, jobs, and queries present in the Databricks user workspace.
To do so, the extractor uses tools that Databricks provide such as the REST API,
Unity Catalog API, and the JDBC connector to Hive metastore.

Once all data are extracted, they are stored in some temporary folder in
Manta and can be further processed. That is the job of a so-called Resolver.
The Resolver takes the raw extracted data and transforms them into a unified
model that is further used in the analysis. Once all the data are transformed to
a suitable form, they are again stored in a folder and prepared for analysis.

The Analysis module takes the transformed data and performs a static anal-
ysis of the source codes. In our case, the analysis consists of using the ECS for
Python and Databricks SQL to obtain lineage information about cells and even-
tually for the whole notebook. Once the analysis is finished, the results are sent
to Post-processor. Post-processor transforms the result to a suitable form that
can be passed to the common Generator which is responsible for producing the
output graph. In our case, the post-processing consists of properly merging the
results of different scanners together into one graph object. This graph is then
processed by Generator and transformed into a Manta graph that can be viewed
in the application.

5.2 Information extraction
Now that we know the overall layout of the scanner let us focus on concrete steps
in more detail. The first step we want to describe is the extraction of data. One of
the goals of this thesis is to implement the Hive metastore information extraction.
However, since the whole Databricks scanner has to combine both Unity Catalog
and Hive metastore extraction a unified model has to be used.

The first step is to extract the raw data. In the case of the Unity Catalog
extraction, the high-level workflow could work like this:

1. Extractor uses the Unity Catalog API to extract all information about
available tables, schemas, and catalogs. Also, the lineage information for
tables and their columns can be extracted.

2. Extractor uses the REST API to download notebooks, jobs, and queries.

3. All extracted data are stored in a temporary folder.

For easier imagination of the workflow please see Figure 5.2.

63

Figure 5.2: Unity Catalog extraction workflow

When it comes to the Hive metastore extraction, the workflow goes like this:

1. Extractor uses the JDBC connector from Databricks to get information on
tables and schemas. Since Hive metastore has no catalogs, no information
can be extracted about them. Also, Hive metastore does not provide lineage
information of any kind, so they cannot be extracted either.

2. Extractor uses the REST API to download notebooks, jobs, and queries.

3. All extracted data are stored in a temporary folder.

For a visual representation of the workflow please see Figure 5.3.

Figure 5.3: Hive metastore extraction workflow

Using these workflows, all of the necessary data can be obtained from the
Databricks instance. However, there are some differences between the data that
we can get from the Unity Catalog and Hive metastore. Due to this, we need
to transform the data into a unified model. For example, since Hive metastore
does not have any catalog layer, we need to create one artificially. We know, that
Databricks did that as well when they introduced Unity Catalog. The way they
did it was by adding the hive metastore catalog and putting all Hive metastore
data there. This is exactly what we need to do as well. For each table obtained
from Hive metastore a hive metastore catalog name will be added.

To have a unified way of working with data, there is an interface for each data
entity that is extracted. It does not matter from which metastore the data are,

64

all of them are saved in a way that is compliant with the model interfaces. The
entities with their own interfaces are:

• catalog

• schema

• table

• table column

• table-level lineage information

• column-level lineage information

• notebook

• notebook command (cell)

• workspace

• query

All of these transformed data are then stored in a so-called repository folder.
The structure of the repository folder is shown in Figure 5.4. To have the hierar-
chy represented in code there is a Repository class that stores information about
the transformed extracted data. All of the data stored in the repository folder
are prepared to be used by the analysis.

Figure 5.4: Repository folder structure

5.3 Context information in notebooks
There are technologies that support writing scripts, notebooks, or other kinds of
source codes in multiple languages. With this being possible, users can use the
language that fits the use case the best. As a result, we can get a source code that
combines for example Python, SQL, and Scala. Technologies that support this
are for example Databricks, Jupyter Notebooks, and to some extent Talend. Since
we would like to be able to analyze these kinds of source codes, we had to come up

65

with a solution for how to pass information between different languages that need
to be analyzed. The solution for this problem is to create a shared context that
would be passed to scanners and would contain all information necessary for other
scanners. In addition to that, each language will need to have its own context so
that the information about already analyzed parts of the code (like variables and
their values, imported libraries, etc.) would be available when analyzing another
part of the source written in the same language.

To sum up, we need to have two kinds of context - shared and language-
specific. The shared context has to be more general since it has to be a sort of a
bridge between different technologies used by Databricks (or other notebook tech-
nology such as Jupyter) whereas the language context is designed specifically for
a given language in order to store as much information from analysis as possible
so that we would get better results from future analysis of cells.

The following sections provide detailed insight into both kinds of contexts and
their usage workflows.

5.3.1 Shared Context - Sharing data between scripts in
different languages

This section describes the design for a context used for scanners to be able to
share values and tables with each other just as they can in Databricks (and other
scanners). Based on the fact, that cells can be written in different languages and
can share information between them, we need to have a so-called shared context
which is responsible for holding information about the values that can be passed
from one language to another. An example of a situation where this context is
needed is shown in Figure 5.5, where the first cell is written in Python language
and stores values into the spark context. The second cell is written in Databricks
SQL and uses the values in the query.

Figure 5.5: Shared context properties example in Databricks

66

5.3.2 Language Context - Sharing data between scripts in
specific language

However, there is a need for one more type of context. Imagine a situation shown
in Figure 5.6. There are two cells written in the Python language. The first cell
contains all of the imports necessary for the work, the second cell does some part
of the work using the imports from the previous cell.

Figure 5.6: Language context example

If we only analyzed the notebook cell by cell, the first cell would not produce
any lineage since it’s only imports. The second cell could generate some lineage,
however, we wouldn’t have information about what libraries were imported and
the analysis would end up in error. This is exactly the reason why we need to have
a so-called language context. The language context holds information necessary
only for one particular scanner in order to have a complete set of information
for analysis of the following cells (such as imports, variables, etc.). This context
is specific for each scanner since each technology needs different things for its
analysis. This is the biggest difference between the two kinds of context we need to
use. The shared context has to be more general since it has to be a sort of a bridge
between different technologies used by Databricks (or other notebook technology
such as Jupyter) whereas the language context is designed specifically for a given
language in order to store as much information from analysis as possible so that
we would get better results from future analysis of cells.

Now that we understand the concept of the language context and what it
is used for let us design the language contexts for Python and Databricks SQL
languages. In the following sections, we introduce a solution for each language
separately.

Python local context
The initial idea was to use the Python scanner’s internal structures to repre-

sent the current state of the analysis. However, that would mean that we would
have to put large structures/objects from the Python scanner to the context which
did not seem like a good idea. That’s why another proposed solution was to have
a context that would remember all previously analyzed cells (source codes) and

67

the latest result graph produced by the analysis. Then when a new cell should
be analyzed, the previous cells would be stocked before the cell and the analysis
would run on all of them together. The previous cells would be analyzed again,
however, no context information would need to be inserted in the scanner since
all of the contexts would be analyzed again. This solution is slower but does not
require any changes in the Python scanner and hence the scanner can be used
as a black box. One thing that would be problematic is that the values in the
global context cannot be stored as single values. To demonstrate the problem let
us have the following situation:

1 % python
2 # some other code in the cell
3 spark.conf.set("var1", "foo")
4 # some other code in the cell
5 --
6 %scala
7 # some other code in the cell
8 spark.conf.set("var1", "bar")
9 # some other code in the cell

10 --
11 % python
12 # another python cell that needs to be analyzed

We have 2 cells. The first one in Python the second one in Scala. Both of the
cells write the value into the var1. Now when the third cell also written in the
Python language would be analyzed, the value of var1 would change from bar
to foo again which is not correct. That’s why we would have to store a set of
all possible values for each variable. This again leads to imprecise information in
the result graph. On the other hand, no extensive changes are required for the
Python language local context (or any other language scanner for this matter).

Other resources that could be in the local context are the Databricks libraries.
These would be added to the code that should be analyzed.

Databricks SQL language context
When it comes to Databricks SQL there are not many language-specific fea-

tures that need to be remembered in the language context. Only the value of
the current schema and catalog need to be stored so that other languages would
be able to work with proper values. Hence all we need to do for this context is
to store a set of possible values for both the default schema name and default
catalog name.

5.3.3 Context Usage Example
Now that we defined what kinds of contexts are needed let us demonstrate how
the communication between the Databricks scanner and other scanners would
work using the contexts. Figure 5.7 shows the passing of the context information
for Python and Databricks SQL languages.

68

Figure 5.7: High-level communication diagram

69

Let us now describe the components in the diagram in more detail.
The management layer is responsible for managing the contexts during the

analysis. Hence it needs to know what languages are supported for analysis, what
source codes are available for analysis, needs to remember the already analyzed
results, and should anything be missing in analysis (such as some library or an-
other source code referenced in currently analyzed source code) the management
layer should try to find it and provide it for analysis. Should the management
layer run out of resources and there is still something missing the missing file
name should be stored in some sort of error log so that the user would be in-
formed about it. When the analysis of all source codes and cells is finished, the
results will be passed for processing to another component in the scanner.

The Embedded code service (ECS) for Python scanner is responsible for setting
up the Python scanner and running the analysis on the inputs it got. In our case
the ECS will get context information and cell for analysis, then runs the Python
scanner. When the Python scanner finishes execution, results are returned to the
management layer alongside updated context information. Then the management
layer updates contexts according to the results of the cell analysis and obtained
context information.

The service for Databricks SQL will be really similar to ECS but not as general
since it will be done for only one language. We have decided to include this service
so that the work with embedded code scanners would be the same for intermediate
languages and all other languages. Hence this service will be responsible for taking
the context, setting up the Databricks SQL scanner, running the analysis, and
then returning the results of the analysis back to the Management layer.

To preserve a united way of working with embedded code scanners, each lan-
guage needs to have its own service that will be responsible for setting up the
scanner based on the context. For intermediate languages it will be an ECS
implementation, for other languages it will be similar to Databricks SQL ser-
vice. In the diagram, this is represented by the Other technology scanner service
component.

5.3.4 Shared context design discussion
In this section, we focus on the design for the shared context part of the assign-
ment. Before the design can be proposed, we need to know what exactly can be
shared between languages. Based on the analysis of the spark context (see Sec-
tion 4.7) variable values and dataframes representing tables can be passed using
the spark context. Since we needed to design a solution that could be used in a
more general manner by any scanner that would need it, we gathered information
from the Manta employees which analyzed Jupyter notebooks, and Talend. In
the case of Jupyter notebooks, the situation has been really similar to Databricks
since both variables and tables could be passed using the context. Additionally,
some Jupyter kernel information could be passed as well. In the case of Talend,
there is a context present that can be filled with variables and their values.

In our thesis, we focus only on the variables and how to share their values
across languages. In the following sections, we describe possible approaches.

70

Variable in Shared Context

For variables, we need to remember the name of the variable and the value of
the variable. For example, if we have in Python the following string variable
bar = "bar" we would need to have a record that a variable named bar has a
value "bar". However, in order to do so, scanners need to be able to work with
constants and their values. There are scanners that are capable of this to some
extent (for example the Python scanner that has ConstantFlow for representing
the constants) but there are still limitations for example if the value of some
variable is read from an input, we have no possible way to determine the exact
value. Due to this, there should be some default UNKNOWN value used when we
know that some shared variable was used but we don’t know the exact value of
it.

Here can be a slight problem with multiple possible values. For example, if we
had one cell in Python language that sets the variables based on some condition,
there would be multiple possible values for the shared variables. Then if we had
another cell in SQL that inserts these values into the table, the Databricks SQL
scanner needs to consider all possible options. For an illustration see Figure 5.8.

Figure 5.8: Multiple possible values example

Due to this, we need to find a solution that would be able to handle multiple
possible values. The following sections discuss different options we have for this
case.

Storing a list of all possible values
The first option we have when it comes to multiple values is that the values

would be stored in a list. Hence if for example variable foo could have values
"bar" or "barbar" then the record for the variable would be something like this:
foo = ["bar", "barbar"] (we used a sort of Python notation to denote that
the values would be stored together in one list). In this case, we would need to
have only one context that would remember all of the possible values in the list.
However, there would be a problem that we would not know which values belong
together. Let us take a look at an example situation in Figure 5.9.

71

Figure 5.9: Example of variable values context

In this situation, there are two possible outcomes: either the s1.t1 table
should be used or the s2.t2 table should be used. However, if we only kept the
lists of values, we would also have pairs s1.t2 and s2.t1 which are not valid.
This would lead to over-approximation of analysis results.

To summarize this option, an advantage would be that only one context would
be needed. The disadvantage would be that it is an over-approximation hence not
valid options are analyzed as well. Also, a slight limitation is that SQL scanners
cannot work with sets, so we would have to have some sort of ”manager” that
would be responsible for passing the values one by one.

Prototype-like context idea
Another idea we could use for the shared context that considers multiple values

would be a prototype-like context design. In the beginning, there would be one
empty parent context created. This context would be sent to the scanner that
needs to analyze the first cell of the notebook. In case some branching occurs
(if-else, loop, etc.) a child context would be created from the parent context
(cloning) and the possible shared context values would be written there. Once
the branch would end, the current context would be set back to the child’s parent.
In case some change occurs in the parent context after some child has already
been created, the change needs to be propagated to the child as well. Using this
pattern we would get a list of contexts with only possible valid options (we would
avoid the Cartesian product in the first mentioned solution). On the other hand,
we would need to work with multiple possible contexts and call other scanners
on all of them. However, since it is not usual to have tons of shared variables in
scripts (since scripts in Databricks are usually single-purposed) we do not mind
taking care of more contexts if we could in the end reduce the number of callings
of other scanners and improve the accuracy of the analysis.

Since this concept is not as easy to imagine as the previous one, let us demon-
strate it in an example shown in Figure 5.10.

72

Figure 5.10: example of multiple contexts due to branching

In the beginning, an empty first context would be created. This context would
be sent to the analysis. Let us now have the following situation. In this case, the
workflow with context could look like this.

1. On lines 2-5 the original context is as it was

2. On line 6 there is an if statement. This would lead to the creation of a child
context. The workflow should be something like this (the # comments will
symbolize what would need to happen):

1 % python
2 if num > 0:
3 # here call the context manager to create a child context
4 spark.conf.set(" myapplication . schema ", "s1") # write to

the context value "s1" for variable myapplication . schema
5 spark.conf.set(" myapplication .table", "t1") # write to the

context value "t1" for variable myapplication .table
6 # here call context manager to switch back to the parent (

end of branch section)
7 else:
8 # here call the context manager to create a child context
9 spark.conf.set(" myapplication . schema ", "s2") # write to

the context value "s2" for variable myapplication . schema
10 spark.conf.set(" myapplication .table", "t2") # write to the

context value "t2" for variable myapplication .table
11 # here call context manager to switch back to the parent (

end of branch section)
12

13 spark.conf.set(" myapplication . catalog ", "c") # write to the
context value "c" for variable myapplication . catalog

14

15 ------------------
16 %sql
17 # Input for the SQL scanner : global Databricks context ,

local SQL context , text of SQL command with unresolved
references to variables ${...}

73

18 # Contexts include all (valid) combinations of values for
the referenced expressions (catalog , schema , table)

19 # SQL scanner need precise inputs (not just one big set as
Python /Java scanners)

20 SELECT * FROM ${ myapplication . catalog }.${ myapplication .
schema }.${ myapplication .table}

21

For this situation the contexts would look like this:

1. Original first context
1 myapplication . catalog = "c"
2

2. Context for the if block
1 myapplication . schema = "s1"
2 myapplication .table = "t1"
3 myapplication . catalog = "c"
4

3. Context for the else block
1 myapplication . schema = "s2"
2 myapplication .table = "t2"
3 myapplication . catalog = "c"
4

All of these contexts would be returned after the end of the analysis. As can
be seen in this example, the values that were written to a parent context are also
propagated to the child contexts.

As mentioned before, this could lead to a potentially large number of contexts.
For example, let us take a look on the following situation:

1 % python
2 if condition1 :
3 spark.conf.set(" myapplication . schema ", "s1")
4 spark.conf.set(" myapplication .table", "t1")
5 else:
6 spark.conf.set(" myapplication . schema ", "s2")
7 spark.conf.set(" myapplication .table", "t2")
8

9 if condition2 :
10 spark.conf.set(" myapplication . catalog ", "c1")
11 else:
12 spark.conf.set(" myapplication . catalog ", "c2")

In this case, we would need to have five contexts since we have one parent
context and then 4 branch possibilities. Figure 5.11 shows the division of contexts.

74

Figure 5.11: Larger number of contexts example

Here is one problem. Not only there is a large number of contexts but the
changes that happened in the second if-else statement need to be somehow prop-
agated to the first two contexts of the first if-else statement. if they did not, we
would have the following contexts shown in Figure 5.12.

Figure 5.12: An example of possible contexts

However, this situation does not contain context with the correct possible
options since we have four of them right now:

75

• c1.s1.t1

• c1.s2.t2

• c2.s1.t1

• c2.s2.t2

None of these options is present in any of the created contexts. So what
would have to happen is that four additional contexts would have to be added
that would be cloned from the already existing children. The situation is shown
in Figure 5.13.

Figure 5.13: An example of all needed contexts

However, what we can notice in this situation is, that the first if-else statement
fully covers all of the options (in other words we know that one of the branches
needs to be executed). Hence we can do a little optimization here and create
copies of context only from the blue and green ones. Then the situation would
look like shown in Figure 5.14.

76

Figure 5.14: An example of reduced contexts

Thanks to this, we would have only seven options for context, where one
is empty (the parent context) so it could be reduced, and then six possibilities
remain. Since the last four contexts contain everything that their parents contain
and more, we would take only these contexts for further analysis in other scanners.
So that means, that from the Cartesian product we reduced to four callings of
the SQL scanner in this situation. Which is way better.

An important note here is, that this approach would be used only for the
variables in a shared context. Usually, scripts do not contain many of those,
that’s why we don’t mind taking care of multiple contexts because, in the end, it
would lead to fewer scanner callings.

To summarize this option, the advantages would be that we get more accurate
results and a lower number of options that have to be analyzed. On the other
hand, we would have a larger amount of contexts to work with and all scanners
that would work with this kind of context would have to be adapted to the
concept, which can be really time-consuming.

77

5.3.5 Shared context - final design solution
In order to have a somewhat functional solution in some reasonable time we
cannot afford to implement hard and time-consuming solutions as a part of the
thesis. Hence in this design, we will focus on finding some compromise between
difficulty, efficiency, and time consumption. The approach we would like to take
is to have a working solution even though it would be slower at first and then
later to optimize it to be better, more precise, and faster. Now that we have
stated the rationale behind the design, let us describe what the context would
look like.

The shared context needs to store information about variables - their names
and values and tables/temporary views created through a spark from dataframes
- their names and a pointer to their node. Should some other scanner later
in the future need something else, the context can be easily extended to store
information about anything they will need.

The workflow for the shared context would look something like shown in
Figure 5.15.

78

Figure 5.15: Shared context workflow

79

In order to provide some sort of unified way of working with the context and
in order to forbid uncontrollable modifications of the context, the context has its
own interface for adding and updating values of variables or tables/views.

As we mentioned earlier, the variables need to have stored their names and
values (or the default value UNKNOWN if we don’t know the value precisely). For
the tables, the context stores the table/view name and the node that represents
the table so that the table can be matched later in the graph. When it comes to
the variable values, we will have to keep all possible values of the variable in the
context as a set. This is due to the fact that for now, the proposed solution of
analyzing code cells of the same language consists of repeating the analysis since
we have to put the previously analyzed cells into the current cell (please see the
Section Python local context for more detail).

Another issue we needed to discuss is, how to write the variable values into
the context. There are several options for this situation. The first option is to
modify the Python scanner extensively and write the values in propagation modes.
Another option is to extend the flow summary that the Python scanner produces
in their worklist algorithm to contain the variables/tables flow information and
the ECS would take the information out of the summary and put it into the
context. In order for ECS to know which variables should be written into context
there would have to be some sort of flag that would represent that the variable
is in the shared context. The last but definitely not least option is a sort of
compromise between the two already mentioned approaches. There would be two
kinds of objects, a so-called Insight and Outsight. These two classes would be
immutable. The Insight would contain all relevant values that were found during
the analysis of the Python cell. The Outsight on the other hand would contain any
information that the Databricks scanner needs to provide to the Python scanner
before the analysis begins like the already known variable values. The values
that should be written into the Insight will be written there in the propagation
mode that is responsible for handling the spark methods that set values into the
context. The Outsight values would be taken out of the Outsight in propagation
modes that handle spark methods that get values from the spark context. Then
after the analysis, the Databricks scanner would update the shared context based
on the values in the Insight.

The option with the Insight and Outsight objects is the best trade-off be-
tween changes in the Python scanner, the generality of the solution, and easiness
of use. However, this option would not solve the issue with over-approximation.
Since the variable values would be written in propagation modes, we would not
have the information on which variables values are valid combinations. However,
since Databricks notebooks do not contain that many shared variables, the over-
approximation is not that big of an issue here. Hence, we selected the Insight
and Outsight approach as the most suitable option.

Notebooks calling each other
In Databricks users can use their custom libraries that can be imported in

notebooks and also can call another notebook from the current notebook. This
can result in a chain of callings between notebooks. From what we tested, each
notebook has its own spark context, so the only way for notebooks to pass values
to each other is the input variables and the returnValue which stores the output

80

value of the notebook.
In this section, we discuss how these situations could be handled with respect

to the optimized design that was described in the previous section. As of now,
the details will focus on the Python scanner mostly, since it is the subject of this
thesis, however, these thoughts can be applied to any other scanner that will be
used in the future for Databricks or any other notebook technology analysis.

In Python, notebooks can call each other using the dbutils.notebook.run
method. Let us demonstrate this concept with a simple example. Let us have
a simple notebook called notebookA which defines values for catalog, schema,
and table names. Let us also have another notebook called notebookB which
takes catalog, schema, and table name as a parameter and creates a new table
catalog.schema.table. Then we could call the notebookB from notebookA in a
following way:

1 dbutils . notebook .run(" notebookB ", 60, {" catalog ": catalog , "
schema ": schema , "table": table })

In Python scanner method callings are usually handled by propagation modes.
However, in this case, it is not possible to properly replicate the data flow in
the propagation mode, since we need to call the analysis of another notebook
first. The solution to this would be to extend the shared context to contain
a list of notebooks that need to be analyzed with the arguments they take as
input. The propagation mode created for handling this situation would note the
notebook name into the Insight object (mentioned in the previous section) and
the Databricks scanner would then update the shared context accordingly.

Then when the Databricks scanner would see, that the updated context con-
tains a list of notebooks that need to be analyzed, it would finish the analysis
of the current notebook and after that would start the analysis of the following
notebook that is required in the current notebook. We need to keep in mind,
that every time we detect a notebook that calls another notebook, the parent
notebook needs to be analyzed again since notebooks can share values through
input arguments and return values. Another thing that needs to be considered is,
to store some sort of flag, that a notebook call was already handled, so that the
analysis would not be in an endless loop. This leads to implementing a worklist
algorithm over nested notebooks. The complete design of the worklist algorithm
can be found in Section 5.5.3.

Concrete example
Let us now demonstrate step by step how communication would look like in

real-life examples. Let us have the following situation shown in Figure 5.10.
As can be seen in the Figure, one cell is written in Python, then the second

cell is written in Databricks SQL and uses values set by the previous cell. The
communication would go as follows:

1. Databricks scanner would prepare new context. Then would create an
empty Insight and Outsight (based on the empty shared context) and would
pass it alongside scripts to the ECS for Python.

2. ECS for Python would take the information and would set up the Python
scanner accordingly.

81

3. ECS would send scripts to the Python scanner for analysis.

4. When the Python scanner finishes analysis, ECS returns the updated In-
sight to the Databricks scanner.

5. Databricks scanner updates the context information (shared context with
values from Insight and language context with the currently analyzed cell)
and takes a look if some error occurred. If not the analysis continues with
another cell.

6. Databricks scanner sends the current version of shared context, new
Databricks SQL context, and scripts to the Databricks SQL service.

7. The Databricks SQL service will prepare the Databricks SQL scanner ac-
cordingly.

8. Since we have more than one option of inputs for Databricks SQL scan-
ner, one option at a time the service would pass the values and scripts to
Databricks SQL scanner.

9. For given inputs Databricks SQL runs analysis and returns results.

10. All results are collected by the service, then written to the context, in case
something changed in Databricks SQL specifics, the language context is
updated as well.

11. When all options were analyzed, updated contexts are returned to the
Databricks scanner.

12. Databricks scanner looks if there was any error, if not, then it will end
analysis.

13. The results will be passed to the component responsible for composing the
final graph.

Figure 5.16 contains a visual demonstration of this workflow in time.

Figure 5.16: Notebook analysis workflow

82

Another situation that might occur is when one notebook imports other note-
books as can be seen in Figure 5.17.

Figure 5.17: Notebook calling another notebook example

The situation would be handled in the following fashion:

1. Databricks scanner would send the first cell for analysis to ECS for Python
alongside the context information in an Outsight.

2. ECS would set up a Python scanner and send the cell for analysis.

3. Python scanner finishes analysis and returns results.

4. Databricks scanner saves the cell to the local context, and updates shared
context accordingly based on the data from Insight.

5. Since there are no issues, Databricks scanner sends second cell to ECS
together with current versions of context information.

6. ECS again sets up a Python scanner and runs analysis on all previous cells
from context and the current one.

7. When the Python scanner encounters the dbutils.notebook.run method
it notes into the Insight that the analysis of this notebook is needed.

8. When analysis finishes, the Python scanner returns results.

9. ECS returns the results to Databricks scanner.

10. Databricks scanner updates the shared context based on Insight and sees
that notebook needs to be analyzed.

11. Databricks scanner saves the current Python language context and starts
the analysis of the second notebook in the same manner as the first one.

12. Once all cells from the second notebook are analyzed (supposed there were
no following notebook calls) the analysis of the first notebook takes place
again with the updated values from notebookB.

13. When the last cell of notebookA is finished, the results are sent to the
component responsible for combining graphs.

83

Figure 5.18 shows a UML sequence diagram for this situation.

Figure 5.18: Notebook calling another notebook workflow

5.4 Scanners integration
In previous sections, we discussed the challenges related to shared context and
how they can be solved. In this section, we describe how the information from the
shared context can be passed to Python and Databricks SQL language scanners.

84

5.4.1 Python
As we briefly hinted in the previous section, in order to pass information to or
from the Python scanner we will use the so-called Insight and Outsight objects
implemented by Manta employees. Let us now describe in detail how this idea
works.

In situations where a Python scanner is called for analysis of embedded code,
there is often a need for passing external information, that is important for the
caller technology but does not affect the Python analysis in any other way. To
enable this, Manta employees created an interface called Insighter. The basic
idea is, that the caller technology creates an empty Insighter object and passes
it to the Python scanner. During the analysis, the propagation modes that are
designed to work with Insigher use the passed object and write information into
the Insighter. The important note here is, that the Python scanner does not
know about the external technology that is called it. Python scanner only works
with the Insighter interface and it is up to the developers of the external tech-
nology scanner to implement the Insighter object and related propagation modes
correctly. After the analysis ends the Insighter object can be transformed into
an immutable object called Insight that contains all gathered information from
the Python scanner. In our case, this is used for gathering variable values that
were written into the spark context via method spark.conf.set.

In a similar manner, there is sometimes a need to provide information for the
Python scanner (such as variable values) before the analysis begins. To do so
an Outsight interface can be used. Again, it is up to developers to implement
the interface properly and also to implement related propagation modes that use
the values provided by external technology and pass them to Python analysis
correctly. In our case, this is used for passing all already gathered variable val-
ues from shared context to Python scanner, so that when the spark.conf.get
method is called, the Python scanner would have all available information pre-
pared.

Another important thing related to the Insighter and Outsight are so-called
Pin nodes. The Pin nodes are special kinds of nodes used to visualize the flow
that would otherwise be skipped or missed. For example, let us have a notebook
with two cells as can be seen in the code snippet below:

1 # cell 1
2 spark.conf.set(" tableName ", input ())
3 ---
4 # cell 2
5 print(spark.conf.get(" tableName "))

This is a very simple example where the first cell takes the value that the user
wrote on standard input and saves the value into the spark context as variable
tableName. Then the second cell takes the value of the variable tableName from
the spark context and writes it on standard output. Without the Pin node sup-
port, there would be no flow shown since the Python scanner shows only terminal
operations that have some data flow in it. The first cell would be evaluated like
this:

1. input() call would be found and an appropriate flow representing it would
be created

85

2. then the spark.conf.set method would be found, and it would get the
constant "tableName" and the flow representing console read as parameters.
The propagation mode for this method would note into the Insighter that
the value of the variable "tableName" is UNKNOWN since the input value is
not known.

3. There would be no edge present because there has not been any interesting
dataflow from the point of the Python scanner.

A similar situation would be for the second cell. However, having the pin
node that would represent the write to spark context (and hence to Insighter)
and then another pin node that would represent the value present in the spark
context (that Python scanner obtained from the Outsight) we would have the
situation shown in Figure 5.19.

Figure 5.19: Pin nodes placeholders example

Here, we can see at least the information about the fact that some data flow is
present in the notebook. However, we don’t see that the data read from the input
were printed to the output. This can be easily fixed. Each pin node has to have
its own name. By naming the input pin node by the name of the variable that
was written into spark context and by naming the output pin node by the name
of the variable that was obtained from Databricks scanner through Outsight, we
would be able to find the input pin and output pin with the same name and
connect them with the edge. Then the graph would look like shown in Figure
5.20. The pin nodes are connected by an edge and hence we can see that the data
from the input are the ones that were put to the output.

Figure 5.20: Pin nodes connected example

There is one more improvement that could be done in this situation. Com-
bining the two pin nodes into one node that would represent the spark context

86

itself. Then what we would see is that the information from input was written
into spark context and then eventually taken out of it and written to input. Then
the graph would look like shown in Figure 5.21.

Figure 5.21: Spark context node example

Support for all the actions we described regarding Pin nodes was provided by
Manta employees in the Embedded code service implementation. As mentioned
in Section 2.3 Embedded code service is a tool that is supposed to be used by
external technologies to analyze their embedded Python code using the Python
scanner.

To be able to use the ECS for Databricks, the ECS implementation needs to be
adjusted. The first step is to define a configuration that contains all information
needed to set up the Python scanner properly. In our case, the configuration has
to contain the Insighter, Outsight, notebook name, and additional resources such
as libraries used in the notebook.

Then we need to define how the source codes and libraries should be stored
in the file system so that the Python scanner would be able to work with them
properly.

Once these two steps are done, the only thing that needs to be done then
is that the Databricks scanner would call the ECS on the Python cells with the
configuration that would contain an empty Insighter, and Outsight filled with
variable values that are already in the shared context, the external libraries that
are available and the notebook name.

In the Python scanner, an Insighter collaborative propagation mode has to
be implemented that would handle the spark.conf.set method in a way that
would write the variable name and value to the Insighter and would create an
appropriate input pin flow that would be then transformed into a pin node that
represents the variable. Also, an Outsight collaborative propagation mode has
to be implemented for the spark.conf.get method. This method would take
the value from the Outsight for a given variable name, create an appropriate flow
that would represent the variable value later in Python analysis, and also create
an output pin flow that would be transformed to a pin node representing the
variable as input from an external source.

In Databricks scanner, the functionality for connecting the Pin nodes provided
by ECS result can be used when merging analysis results into the final graph.

5.4.2 Databricks SQL
Now that we described how to interact with the Python scanner, let us dive into
Databricks SQL. As we mentioned in Section 4.9 the original plan was to use the
Hive SQL scanner. However, the differences between Hive and Databricks SQL

87

were too big and a new scanner had to be developed specifically for the Databricks
SQL. This scanner had been developed by Manta employees and hence is not part
of this thesis. Nevertheless, we use this scanner to analyze the SQL cells from
Databricks notebooks.

To do so, we use an Embedded service for the Databricks SQL scanner. This
service is really similar to the Python embedded service but it is not as com-
plicated. Embedded code service had to be designed in a way that any new
technology can be easily added in the manner described above. Since Databricks
SQL is a technology related to Databricks only, the service has been tailored
for the Databricks scanner only. This service has also been developed by Manta
employees and its code is not a part of this thesis. However, what needs to be
implemented is the configuration class (similar to the Python configuration de-
scribed in the previous section). In our case, this configuration has to contain
values of the catalog and schema that are currently considered as default, and all
variables with their values we have in shared context since these variables can be
referenced in SQL scripts.

Since the possible values of the default catalog name and default schema name
can be a set of values (due to branching or any other similar situation) we need to
call the analysis on all possible pairs of values. Each result has to be stored since
each combination represents a different situation. All of the gathered results will
then be merged into the final graph after the analysis ends.

Using the USE commands the value of the default catalog or schema can be
changed. In order to know the values, we need to modify the existing Embedded
code service to store these values in the Embedded code result class. The values
are already present in the result from the Databricks SQL scanner, so the only
thing that has to be done is to take them and properly store them in the result
class of the ECS. Then in the Databricks scanner, the Databricks language context
is updated based on these values.

5.5 Notebook analysis
After the successful extraction of information, the analysis takes its place. In our
thesis, we focus on the analysis of Databricks notebooks. In the following sections,
we describe workflow designs necessary for analyzing notebooks using the external
scanners in Manta as well as the algorithms that need to be implemented.

5.5.1 Analyzers
In this section, we describe the design for combining different approaches to
notebook analysis. Databricks scanner has to combine the Unity Catalog lineage
and the lineage produced by Manta scanners based on the notebook source codes.
The approach of using Manta scanners has higher priority than the one that
uses Unity Catalog lineage information. The reason behind this is that Unity
Catalog provides only information related to tables and columns. Using the
Manta scanners we can see also the transformations that were performed with
data. However, there are situations when Manta scanners do not produce any
lineage (for example when users use constructs that are not yet supported), and
due to this, we have the Unity Catalog lineage as a sort of backup plan.

88

The top-level part of the notebook analysis starts in the Dataflow task class.
This class represents an entry point for the analysis. All the extracted data are
provided to this class and are then used for the lineage computation. There the
analysis using the Manta scanners is performed first and if it fails, the Unity
Catalog approach is used instead.

To unify the way of calling different approaches of analysis, easier addition of
new approaches, reordering of priorities, or removing some approaches we propose
the following design. The Dataflow task has a so-called dispatcher that contains
a list of analyzers ordered by priority. Each analyzer implements a common
interface and has method analyze that takes analyzer context and notebook
information as parameters and returns a Boolean representing the success or
failure of the analysis. In the Dataflow task, the only thing that has to be done
is calling the analyze method on the dispatcher. Inside of the analyze method
the dispatcher tries to call the analyzers based on the priority. Now, two things
can be done - either all available analyzers are called or only the highest priority
analyzer is used. This can be set by users depending on what they prefer. The
results of each called analyzer are stored separately and are marked by a flag that
indicates which analyzer produced the result.

For easier imagination, let us demonstrate the proposed design in our current
situation with two kinds of analyzers - one for Unity Catalog lineage, the other
for calling external scanners from Manta. Figure 5.22 shows the workflow for this
scenario:

Figure 5.22: Analyzers workflow

Since the subject of this thesis is the analysis of notebooks using external

89

scanners, let us now describe the analyzer responsible for this approach.

External scanners analyzer

As we mentioned in Section 4.6 Databricks notebooks are basically ordered groups
of cells that contain the source codes written in possibly different languages. In
this section, we describe how to handle the analysis of a single notebook using
the external scanners analyzer. The main idea of the analyzer is as follows:

1. Iterate over notebook cells.

2. For each supported language call the language scanner with proper shared
context and language context.

3. Save the results of the external scanners.

4. If the analysis of a cell was successful continue with another one.

Since calling the language scanner service takes a little bit of overhead in terms
of data preparation, we decided to create a handler for each language we support.
Currently, only handlers for Python and SQL are implemented. However, once
Scala and R languages will be supported in Manta, new handlers can be easily
added in a similar manner as for Python or SQL. The handlers take the parent
node, notebook information, and the cell itself as parameters.

In the case of Python, based on the shared context an Insighter and Outsight
are created as we described in Section 5.4. Another thing that has to be done
is that cell source code is enriched to contain the definition of a spark context
variable. This needs to be done in order for the Python scanner to work properly.
Without this, the Python scanner would not know to what object the source code
refers when using the spark variable. This is caused by the fact, that Databricks
initializes this variable internally when running the notebook, hence this step is
not present in the notebook source codes.

Then the ECS for Python is called and once results are returned, they are
saved to a helper result class. This class contains the notebook name and the
result returned from ECS. The Python handler updates the ECS result to contain
the latest result only since Python cells are analyzed in a way that all previously
analyzed cells are analyzed alongside the current one. For more details please see
Section 5.3.2 that describes the language context for Python.

For SQL the concept is basically the same as for Python. For each SQL cell,
the code is sent to the Databricks SQL service alongside the information about
available variable values and default catalog and schema values. Then when the
result is returned it is saved to a helper result class that stores all results produced
by the SQL service, not only the latest. The reason behind this is that SQL cells
are analyzed separately one by one, hence all results need to be stored.

Using this pattern handlers for any language can be added easily and without
extensive changes in already existing code.

90

5.5.2 Analysis context
Based on the design from the previous section we need to design a way to prop-
erly store the results of analyzers and also find a way how common information
for analyzers can be passed easily. For these purposes, we introduced a so-called
analyzer context. This class is created in the Dataflow task class which is also
a top-level entry point to the analysis. There, common information like out-
put graph and node provider are stored. This analyzer context is then passed
through the dispatcher to all called analyzers. When the called analyzer finishes
the analysis of a notebook, the results will be stored in the analyzer context under
the notebook information and also with a flag that denotes which analyzer pro-
duced the result, since we can have a situation that combines multiple approaches
together.

When the analysis of all notebooks is finished, all results for all notebooks are
taken from the analyzer context and are merged into the final graph.

5.5.3 Worklist algorithm
This section describes the worklist algorithm that should be used in the analysis
of notebooks.

Worklist over notebooks

The basic idea of the worklist algorithm is that we will work with the Invocation
contexts of notebooks that will contain all data about a notebook, its shared
and languages context, and any other data necessary for the analysis. Then we
have the Analyzer Context, which will contain data based on the analyzer work
(external scanners analyzer mostly) like new invocations that need to be added to
the worklist (based on the results from the Python scanner - e.g.: if one notebook
calls another one), the results of the analysis for each notebook invocation that
has been analyzed at least once, the dependencies of notebooks and the node
provider. The Analyzer Context is maintained by the main Dataflow Task class
and will be passed to/from analyzers for the analysis of individual notebooks. The
worklist algorithm at the beginning creates notebook invocation contexts for each
notebook that is available. Then it will add all created invocation contexts to the
worklist set. Then the iteration over the worklist ordered set starts. While the
set is not empty the algorithm will call the dispatcher for the notebook analysis.
The dispatcher would run the external scanner analyzer first (highest priority)
and that analyzer would try to analyze the notebook cell by cell. Then when
the analysis finishes successfully the analyzer creates results from the data that
it got from the external scanner and will compare it with the result we have
from the previous analysis (if we have any). If the result changed the notebook
invocation context alongside with context of all notebooks the current notebook
is dependent on will be added to the Analyzer Context as new invocations that
need to be analyzed since analyzers do not have access to the worklist that is
located in the Dataflow task class. Hence, the Analyzer Context will be used
as a sort of temporary storage of information that needs to be passed from the
analyzer to the Dataflow task. Also, the new result from the notebook analysis
will be stored in the analyzer context. The External scanner analyzer will then

91

return true (if the analysis was successful) to the dispatcher and the dispatcher
will return true (if successful) to the dataflow task. The dataflow task will take
a look at the analyzer context if some invocation context should be added to the
worklist. If so, the invocation contexts are added to the worklist and the set
in the analyzer context will be cleared. Then the algorithm continues until the
worklist is empty. When the worklist is empty, the results for all notebooks are
collected and added to the final graph. Once everything is added, the analysis
finishes and the process moves on to the next stage.

Figure 5.23 contains a visual representation of the worklist algorithm work-
flow.

92

Figure 5.23: Worklist over notebooks workflow

93

For a better understanding of the algorithm, the following pseudo codes will
describe the most important components that contain logic regarding the worklist
algorithm.

DatabricksDataflowTask
This section will provide the pseudocode for the top-level part of the anal-

ysis algorithm which works with the worklist. This process will happen in the
DatabricksDataflowTask class.

1 method doExecute (input , outputGraph):
2 if no notebooks present in input:
3 return
4

5 analysisContext = new context for analysis
6 worklist = new worklist instance
7

8 for each notebook on input:
9 create an empty invocation context

10 add the empty IC to the worklist
11 end
12

13 while(worklist not empty):
14 notebookIC = worklist . getNextNotebookInvocationContext ()
15 pass the notebookIC and analysisContext to the dispatcher for

analysis and wait for results
16 add all invocation contexts from analysisContext to the

worklist
17 end
18

19 gather all analysis results from analysisContext and apply them
to the outputGraph

ExternalScannersDatabricksAnalyzer
This section describes the algorithm of the analyzer that works with external

scanners.
1 method analyze (analysisContextinvocationContext):
2 newResult = new analyzer result for external scnanners analyzer
3 notebook = invocationContext . getNotebook ()
4

5 for each command in notebook :
6 match command type:
7 case PYTHON :
8 newResult = PythonECS . analyze (command , invocationContext .

getSharedContext (), invocationContext . getPythonContext ())
9 case SQL:

10 newResult = DatabricksSQLService . analyze (command ,
invocationContext . getSharedContext (), invocationContext .
getSQLContext ())

11 default :
12 not supported yet
13

14 oldResult = analysisContext . getOldResultforNotebookIC (
invocationContext)

15

16 if newResult != oldResult :
17 add new invocation contexts to analysis context based on

results from analysis

94

18 store new result for invocation context to analysis context

Worklist over cells

This section contains an explanation of why we decided that the worklist through
the notebook invocation contexts is sufficient.

First, let us describe the idea behind the worklist algorithm through the cells.
The worklist algorithm would iterate over the individual cells of a single notebook
until the results of the analysis would achieve a consistent state. This would have
been needed in case the cells could use something that would be defined in the
following cells. Let us demonstrate an example:

1 # Databricks notebook source
2 def doSmth (vname , newVal):
3 spark.conf.set(vname , newVal)
4 doCrazy ()
5

6 # COMMAND ----------
7

8 doSmth ("var1", " valueC ")
9

10 # COMMAND ----------
11

12 def doCrazy ():
13 print("Hello World")

In this example, the first cell written in Python calls method doCrazy() which
is defined in the third cell. If this behavior would be possible then we would
need to have a worklist over cells as well so that we would be able to get the
information about the doCrazy() method definition to the first cell. However,
during our analysis and research, we found out that this behavior is not supported
by Databricks. In Databricks the notebooks are executed cell by cell. Each cell
can refer to what has been done in previous cells, however, it cannot use anything
that will only be defined in the following cells. For illustration, we provide a
screenshot of the previous example when we tried to run it in Databricks.

95

Figure 5.24: Error when referencing future definition

As can be seen in Figure 5.24, the notebook execution will end with NameError
hence this notebook is not valid and cannot be properly executed as a whole.

During our discussions and analysis, we created a few problematic scenarios
and tried to analyze if the notebook invocation context worklist is sufficient or if
there is a situation that needs the cell worklist algorithm. The following sections
will contain examples, a description of the situation, and an explanation of the
sufficient solution. The situations will be written in pseudo-code.

Refer to existing spark context variable
In this situation, we have the first cell written in Python that contains a

definition of a method that sets a variable with a given name to a spark context
with a value valueA. Then we have a second cell written also in Python that
calls the method that is defined in the first cell with value var1. Then we have a
cell in SQL that uses the value of the variable called var1 as a parameter of the
query. The last cell is written in Scala and sets the value of the variable called
var1 to a value valueB.

In this situation we do not have any issues as the Python scanner will analyze
the first cell and then the first two cells. From that, we will get a record in the
shared context that notes that has var1: [valueA] pair stored. The SQL scan-
ner will get the shared context and will correctly put the valueA as a parameter
in the query. Lastly, the Scala analysis will add another possible value to var1 so
the context will contain the var1: [valueA, valueB] record.

Refer to non-existing spark context variable
1 % Python cell 1
2 def doSmth (vname)
3 spark. context .set(vname , " valueA ")
4

5 % SQL cell 1
6 SELECT spark. context .get("var1") FROM table

96

7

8 % Python cell 2
9 doSmth ("var1")

10

11 % Scala cell
12 spark. context .set("var1", " valueB ")

In this example we have the exact same notebook, however, we switched the
second and third cells. So now the SQL cell tries to access a variable that has
not yet been initialized in the spark context with any value. There are 2 possible
scenarios in this case:

1. Either there is some old record from the previous run of the notebook
that has some spark record for the var1 variable with some value and the
notebook run will be successful - however in this case our scanner has no
chance of knowing the value, hence we would not be able to analyze it either
way.

2. The second option is that the var1 does not exist in the spark context at
all. In this case, the notebook run fails hence the notebook is not valid.

Hence we don’t have to support this situation since it is not a valid state.

SQL function call
1 % Python cell 1
2 def doSmth (vname)
3 spark. context .set(vname , " valueA ")
4 def doSmth2 (vname , newval)
5 spark. context .set(vname , newval)
6 doCrazy ()
7

8 % Python cell 2
9 doSmth ("var1")

10

11 % SQL cell 1
12 STORED PROC proc1
13 SELECT spark. context .get("var1") FROM table
14 CALL proc1
15

16 % Python cell 3
17 doSmth2 ("var1", " valueC ")
18

19 % SQL cell 2
20 CALL proc1

In this case, we have the first cell written in Python that defines two functions
that set values for variables in the spark context. The second cell calls the first
method that will set the value for var1 to valueA. Then we have an SQL cell
that defines a function and calls it (the function uses the value of var1 in a select
statement). Then there is a python cell that sets the value of var1 to valueC.
Then there is again an SQL cell that calls the procedure defined in the previous
SQL cell.

The callings orders are correct here since the second cell will first create the
spark variable var1 with value valueA. Hence the shared context would con-
tain a record var1: [valueA]. The shared context would be used by the SQL

97

cell and the value of var1 would be correctly found. Then the context would
be updated by the python cell to var1: [valueA, valueC]. The second SQL
cell would work with both possible values in the context, however the correct
valueC would be there amongst possible values, and the rest would be a result
of over-approximation caused by the Python scanner. Hence the situation would
be handled properly.

Refer to the method defined later
1 % Python cell 1
2 def doSmth (vname)
3 spark. context .set(vname , " valueA ")
4 def doSmth2 (vname , newval)
5 spark. context .set(vname , newval)
6 doCrazy ()
7

8 % Python cell 2
9 doSmth ("var1")

10

11 % SQL cell 1
12 STORED PROC proc1
13 SELECT spark. context .get("var1") FROM table
14 CALL proc1
15

16 % Python cell 3
17 doSmth2 ("var1", " valueC ")
18

19 % SQL cell 2
20 CALL proc1
21

22 % Scala cell
23 spark. context .set("var1", " valueB ")
24 spark. context .set("var2", " valueF ")
25

26 % Python cell 4
27 def doCrazy ()
28 file. write("path1", spark. context .get("var2"))
29

30 % Scala cell
31 spark. context .set("var2", " valueG ")

This situation is similar to the very first example we mentioned in this chap-
ter. Here the first cell defines two methods and the latter one refers to a method
that is defined in Python cell 4 which means that it is defined later in the note-
book. That would not be a problem if the method doSmth2(vname,newval) has
not been called before the definition of the doCrazy() method. Hence this note-
book would end in NameError since the method doCrazy() would not have been
known when calling the doSmth2 method.

Refer to a value of another notebook
1 % Python cell 1
2 tableName = dbutils . notebook .run(" notebookB ", { catalog : "c",

schema : "s"})
3

4 % Python cell 2
5 doSmth (tableName)

98

In this case, the first Python cell contains the calling of another notebook
called notebookB and uses its return value as a parameter for a method that
will do something with it. In this case, when analyzing the first cell, we will
find out that currently analyzed notebook calls notebookB and that we have
no record in context for its return value. Then it would be recorded that the
notebookB has been called (and hence needs to be analyzed) and the analysis
would continue with an unknown return value. Then the analysis of the current
notebook would end after the second cell which worked with the UNKNOWN value
and both notebookB and the current notebook would be added to the worklist
again. Hence the problem of not having a value from the previous cell would be
solved by the notebook invocation context worklist algorithm.

After analysis of all of the mentioned examples, we concluded that the worklist
over the notebook invocation contexts would be sufficient for now.

5.6 Result graph
The last thing that needs to be properly discussed and analyzed is the result
graph that is presented to users in the Manta viewer. In this section, we describe
what kinds of nodes we have to represent Databricks entities in Manta and their
hierarchy.

5.6.1 Data entities
Firstly we take a look at the data entities. In Databricks, we have a three-
level namespace that is represented by catalogs, schemas, and tables. It is only
natural that for easy and useful representation we use the three-level hierarchy
in our graph as well. Hence, all tables are represented by a top-level node that
is named using the catalog name, a second-level node that is named using the
schema name, a third-level node that is named using the table name, and then on
the fourth level, we visualize the columns of the table. In case we know nothing
about the columns of the table there will be one column node present with the
name TABLE COLUMNS UNKNOWN. In the details of the column, we can show the
details we obtained (if any) from the Unity Catalog API.

Also, since all data entities are bound to the instance they are created in, the
whole hierarchy described above has to be nested in a node that represents the
current instance.

Figure 5.25 shows the mentioned hierarchy of nodes for representing tables.
There is an instance called databricksDemo which contains two catalogs named
quickstart catalog and system. The quickstart catalog contains schema
called lineagedemo and inside of it is one table called grades. Since we have no
information about columns, there is only one column with the TABLE COLUMNS
UNKNOWN name. The system catalog contains a schema named information -
schema, inside of it table named tables that has one column named table name.

99

Figure 5.25: Data entities node hierarchy example

5.6.2 Source codes
Other entities that have to be visualized properly are the source codes. In this
thesis, we focus on the notebooks. In Databricks workspace, notebooks can be
nested in different folders. We would like to preserve this hierarchy in our graph
as well since users have to be able to distinguish between two notebooks that have
the same name but are stored in different folders. Hence, there should be nodes
that represent the folder structure where the notebook is saved. Then there is
a node that represents the notebook itself. Under this node, the results of the
analysis are attached. Figure 5.6.2 shows an example of a notebook called Python
test that is stored in a folder test folder. Under the Python test notebook
node there is an attached result from the Python scanner that shows a read from
the standard input.

In the future, queries and jobs will be represented in a similar way to note-
books.

Figure 5.26: Data entities node hierarchy example

100

6. Implementation
Now that we have described our solutions for the biggest issues and obstacles we
encountered, let us take a look at the way these solutions are implemented. The
following sections focus on specific parts of the implementation such as extraction
of information, context implementation, worklist algorithm, and extensions in the
Python scanner.

6.1 Extractor
Extraction is usually the first step when trying to visualize lineage, hence it is only
natural to dive into it as first. In the following sections, we describe the common
model, representing Databricks entities, that is used in the scanner and then we
describe the Hive metastore extraction in more detail as it is the subject of this
thesis. Databricks scanner contains also classes that support the Unity Catalog
extraction, however, since they are not a part of this thesis project they were
developed by other Manta employees and hence will not be described further.

6.1.1 Common model
Since there are multiple ways of extracting information from Databricks (Unity
Catalog or Hive metastore extraction) we need to have a unified way to represent
them. That is why we created a common set of interfaces for each entity we need
to extract. The list of the entities is as follows:

• catalog

• column

• column lineage

• notebook

• notebook command

• query

• schema

• table

• table lineage

• workspace

There were also a few more entities we needed to add artificially for easier work
with the extracted data. The first step was creating a column identifier which
is basically just a connection of the column to its table. Another connection we
needed to add was the table identifier. This identifier connects the table with its
schema and catalog.

101

The next step we needed to do was to add a proper way of storing the ex-
tracted data. To do so, Databricks Extractor uses serialization. Hence, we defined
another set of interfaces that define a way to serialize all information we want to
pass to the analysis. From the list of entities above, the only entities that do not
have the serializable interface are the catalog, schema, and workspace. This is
due to the fact that catalog and schema are a part of the table identifier and the
workspace is a part of the notebook information.

Of course, alongside the interfaces, we need to have a proper implementation
of them. Each of the extracted entities has its own class that implements a given
interface. The naming convention goes as follows: ExtractedDatabricks<name -
of the entity>.

6.1.2 Hive metastore
Now that we know the common model used in the scanner, we can describe in
more detail the classes used for the Hive metastore extraction.

DatabricksMetastoreConnectionManager is a class responsible for manag-
ing the connection to Databricks through the JDBC connector we mentioned in
Section 4.5. The two basic actions this class does are creating a new connection
and verifying that the connection is still open.

DatabricksMetastoreClient represents the client that is used for communi-
cation with the Hive metastore. In this class, there are methods for obtaining
all of the information available in Hive metastore such as schemas, tables, table
columns, and views. This class uses the connection manager described above to
connect to the Hive metastore.

DatabricksMetastoreDataProvider represents the top-level class responsible
for obtaining the information from the Hive metastore. The provider uses the
client class to obtain the available things from the metastore. For all information
that cannot be obtained returns either an empty set or other suitable represen-
tation of empty information.

TableInfo is used to represent the table and view raw information obtained
from the JDBC driver connected to the Databricks instance.

MetastoreTable represents the class that takes the raw information and bundles
them together properly. This information is then transformed into the common
model described above.

6.2 Dataflow Generator
In this section, we describe our implementations of the most important or inter-
esting classes that can be found in the Dataflow Generator part of our scanner.
We describe the implementations of the contexts we designed in Section 5.3, the
worklist algorithm-related classes from Section 5.5.3

102

6.2.1 Context
In this section, we describe how we implemented the shared and language contexts
we designed in Section 5.3. We show the shared context implementation as first
and then the language context implementation for both Python and SQL.

Shared Context

As mentioned in Section 5.3.1 the shared context is responsible for storing the
values that are put in the spark context for the Databricks notebook. These
values can then be used by any language the cells of the notebook are written in.
This section will describe what kinds of information can be stored in the shared
context implementation for now and what are the plans for the future.

For now, we store only variable names and their values in the shared context.
Hence the context works with classes that represent the variable value. As of
now, we know, that Databricks supports only simple types like string, number,
or boolean as a value for global variables stored in the spark context. Due to this
reason, we decided to create a class named VariableValue which is an abstract
parent for each class that should represent any value of a variable. Then we
created classes for each allowed type of value. Figure 6.1 shows the hierarchy of
the values and methods they provide.

Figure 6.1: Hierarchy of variable values classes in shared context

As can be easily deduced from the names, the StringValue class represents
the string values, the NumberValue represents any kind of numerical value (inte-
ger, float, etc.), and the BooleanValue represents the boolean values of variables.

Should any other variable value type be needed, it can be easily added. The
only thing that has to be done is to implement the VariableValue class with
a defined generic type T (type of value) and that’s it. All methods defined in
the context work with the VariableValue itself, so no additional changes in the
context should be needed.

In the future, it is planned to also support creating tables and temporary
views so the model of classes used in shared context will be enriched to support
these features.

The interface provides methods for the following actions:

• get a value for a variable specified by its name

103

• add a value for a variable specified by its name

• get all valid combinations of variable values in the context

• create a copy of the context

All operations with the shared context use this interface and not concrete im-
plementations of it. Thanks to this, It does not matter what kind of implemen-
tation (Cartesian product, prototype-like, etc.) we choose as long as we properly
implement the interface. In our case, we implemented the version of shared con-
text that uses the Cartesian product to return the valid variable combinations.
This implementation can be found in the class SharedContextCartesianImpl.

In order to represent one combination of possible variables values combination
we implemented the VariableValuesCombination class. This class is a wrapper
class for a simple map that has names of variables as keys and VariableValue as
value. We decided to provide this class for easier manipulation with the combi-
nations. Also, actions that would be frequently used by anyone working with the
context can be added easily to this class. Hence, the methods are implemented
only in one place and other scanners can only use them, there is no need for them
to have their own implementation.

Language context

As mentioned in Section 5.3.2 the language-specific contexts are used to store
any additional information that can be used during the analysis of a code in a
given language or any result information specific for that language that should
be used later in the analysis. In this section, we describe the interface and classes
used in the parent interface of all language-specific contexts, and in the follow-
ing subsections, we describe concrete interfaces for Python and Databricks SQL
languages.

What all language-specific contexts have in common is that during the analysis
of a cell, some error could have occurred that we would like to inform users about.
Due to this reason, we have AnalysisErrorRecord class that contains the error
type and description. Another thing that may be useful for any language is the
option of adding additional resources available for the analysis (like libraries).
Due to that, we added the Resource class that contains the resource name and
source code.

The interface provides methods for the following actions:

• get records for errors specified by their type

• save a new error record - given the type and description of the error

• get a resource (library or any other kind) by the name

• get all resources stored in the context

• save a new resource - using the resource name and code

• create a copy of the context

104

The implementation of this interface can be found in the abstract class called
ALanguageSpecificContextImpl. This class serves as a parent class for all lan-
guage context implementations. Operations with resources and errors are already
implemented in this class. Hence when adding a new language context, only the
language-specific functionality has to be implemented.

Python language specific context

Additionally to the features mentioned in the previous section, Python language
context has to store the previously analyzed cells (this is instead of huge Python
scanner analysis context classes so that we would not lose information about pre-
viously available libraries, variable values and any kind of information that could
be accessed in the current cell). Hence, we created AnalyzedCell class that con-
tains the source code of a cell that has already been analyzed. There is an interface
PythonLanguageSpecificContext that extends the LanguageSpecificContext
interface to define all methods necessary for the Python language context. An
implementation of this interface can be found in the

PythonLanguageSpecificContextImpl class. The interface adds the follow-
ing methods:

• add the cell that has already been analyzed to the context

• get all previously analyzed cells

Databricks SQL language-specific context

Additionally to the common properties, the Databricks SQL requires to remem-
ber the default catalog and default schema value. However, since these values
have to be string values, we have decided to require the string values only.

Again, there is an interface called DatabricksSQLLanguageSpecificContext
that extends the LanguageSpecificContext interface to define all methods nec-
essary for the Databricks SQL language context. An implementation of this inter-
face can be found in the DatabricksSQLLanguageSpecificContextImpl class.
The interface adds the following methods:

• get the values of the default catalog

• add a value of the default catalog

• get the values of the default schema

• add a value for the default schema

6.2.2 Analysis
In this section, we focus on classes that are used for the notebook code analysis.
Firstly we take a look at the main analysis class called DatabricksDataflowTask,
then we describe the classes used for the worklist algorithm and last but not least
we describe the analyzer for external scanners.

105

Dataflow Task

As mentioned above, the DatabricksDataflowTask is the main class for the anal-
ysis. This class is responsible for reading the extracted information, performing
the analysis of the notebooks using the worklist algorithm, and creating the final
graph using the results of the notebook analysis. Let us now describe the classes
that are used for each of these responsibilities.

DatabricksGraph represents the input for the analysis. This class contains
the notebooks and queries available from extraction. This class has been devel-
oped in cooperation with Manta employees as queries were not the subject of this
thesis.

DatabricksNodeProvider is a class that provides nodes that represent note-
books or tables. In case the nodes already exist, the existing instances are re-
turned and in case there is no suitable node a new one is created. This class has
been developed in cooperation with Manta employees since it also supports Unity
Catalog features that are not a part of this thesis.

DatabricksAnalyzerContext represents the context that is passed to the an-
alyzers. This class contains the final Graph instance that represents the output
graph, also the DatabricksNodeProvider is present there so that proper nodes
can be found in analyzers. Another important thing that is stored here are the
actual notebook summaries for given invocation contexts (necessary for the work-
list algorithm to work correctly), the list of new invocation contexts that should
be added back to the worklist set, and the pairing between notebooks and their
DatabricksNotebookGraph information (lineage information). This class is used
by both the Unity Catalog analyzer and External scanners analyzer.

Once all data are properly read, the worklist algorithm takes place. The
following section describes the classes related to the worklist algorithm.

Worklist

As we described in Section 5.5.3 we use the worklist algorithm to ensure we get
the correct results back from the analysis of notebooks. Let us now describe the
classes used in the algorithm implementation.

DatabricksWorklist is a class that represents the worklist. The class contains
a queue for invocation contexts of notebooks and provides methods like adding
and removing invocation contexts into the queue.

NotebookInvocationContext is an immutable class representing an invoca-
tion context of a notebook. Invocation context is a basic unit over which the
worklist algorithm is executed. It contains all information that is necessary to
track in order to determine if the results are stabilized or not. To be precise
the invocation context contains the shared context reflecting the initial state at
the beginning of the analysis, language contexts reflecting the initial state at the
beginning of the analysis, notebook graph (contains notebook cells, name (iden-
tifier)).

106

NotebookSummary is a class for storing the notebook and its shared and lan-
guage contexts that are updated throughout the analysis of a notebook. In case
the current invocation context and notebook summary differ from the invocation
context and notebook summary from the previous run of analysis, the updated
version of the invocation context is created and put back to the worklist so that
it would be analyzed again.

Analyzers

Analyzers are responsible for applying a certain analysis approach to get lineage
results from notebooks. The following classes are used to analyze notebooks.

DatabricksAnalyzerDispatcher is the top-level class responsible for apply-
ing the analyzers in the proper order based on their priority. There is also an
option to define which analyzer should be used. This can be specified via enum
DatabricksAnalyzerDispatcherMode.

DatabricksAnalyzer is a common interface for every analyzer used in the
Databricks scanner. Currently, it only contains one method called analyze. This
method takes the DatabricksAnalyzerContext and NotebookSummary as
parameters. It returns a boolean value representing if the analysis was successful
or not.

As we mentioned above, we currently have two analyzers in our scanner - one
for Unity Catalog and one that uses external scanners from Manta to analyze
notebook source codes. Since the Unity Catalog part of the scanner is not part
of this thesis, we will only describe the latter analyzer.

ExternalScannersDatabricksAnalyzer represents the approach of analyzing
notebook source codes. This class is responsible for calling the Python scanner
and Databricks SQL scanner. This is done via handlers. The PythonComman-
dAnalysisHandler class is responsible for using the ECS for Python to analyze
the Python commands. There are several steps that have to be done in order to
do so:

1. Create an empty DatabricksInsighter instance.

2. Create a DatabricksOutsight instance filled with values from the shared
context.

3. Create a PythonDatabricksConfiguration instance using the created in-
sighter and outsight.

4. Add additional libraries (if there are any present) to the configuration.

5. Create the final version of the code that should be sent to analysis - use all
previously analyzed cells and put them before the current cell code. Also,
add initialization of the spark context at the beginning so that the Python
scanner would be able to work with the spark variable.

107

6. Use ECS to get the result of the analysis. Pass the configuration, script
name, node representing the notebook and the code to be analyzed as pa-
rameters.

7. In case the analysis was not successful return false

8. Save the result as the PythonExternalScannerResult in case the analysis
was successful.

9. Create an Insight from the Insighter and based on the values in it update
the shared context.

10. Update the language context by adding the current cell to the list of already
analyzed cells.

11. Return true.

PythonExternalScannerResult is a wrapper class that connects notebook
with the result from the Embedded code service for Python. This result is then
used when creating the final graph that should be displayed to users. This is done
via a method apply from the common interface for results DatabricksAnalyz-
erResult. The apply method for Python takes the result from the ECS, and
checks if it has any lineage. If it does, firstly the pin nodes are properly connected
under one node that represents the spark context. Then, the result is merged to
the final graph.

Now that we described the process for Python language, let us do the same
for Databricks SQL language.

DatabricksSqlCommandAnalysisHandler class is responsible for using the
ECS for Databricks SQL to analyze the SQL commands. In order to do so, these
steps need to be executed:

1. Iterate over all possible values of the default catalog stored in the language
context.

2. Iterate over all possible values of the default schema stored in the language
context.

3. Get all possible variable values combinations from the shared context.

4. Create new ContextDatabricksSQLEmbeddedCodeConfiguration for the
ECS using the catalog value, schema value and variable values.

5. Use the ECS to analyze the current SQL cell.

6. Save the result from ECS as the DatabricksSQLEmbeddedCodeResult and
based on it update the language context accordingly.

7. Create a new DatabricksSqlExternalScannerResult instance when the
final result should be returned using the embedded code results saved from
previous analysis.

108

DatabricksSqlExternalScannerResult is a wrapper class that stores results
from the analysis of each of the SQL cells present in a notebook. Then same as
for Python, once the final graph needs to be created, the apply method from the
common DatabricksAnalyzerResult interface. This method iterates over each
of the results and merges them into the final graph.

6.3 Python scanner
Since Python scanner has already been developed, the only thing we had to
do was add new propagation modes to support Databricks spark methods for
working with variables, implement the Insighter, Insight and Outsight classes
so that the Databricks scanner can properly pass information into the Python
scanner and also get additional information out of the Python scanner. We also
needed to extend the Embedded code service for Python to support Databricks.
The following subsections describe each extension in more detail.

6.3.1 Python scanner classes
For proper communication between Python scanner and Databricks scanner when
it comes to shared variables, we had to implement the following classes (can be
found in the Python scanner analysis module in the externalinfo.databricks
folder):

DatabricksInsighter is an implementation of the Insighter interface specifically
for Databricks. In the insighter, we had to implement the method createInsight
that takes the stored information and transforms them into an immutable object
that is used later in the Databricks scanner. To do so, we created a few helper
classes for easier representation of variables and their values.

DatabricksVariableValueInfo is a wrapper class that contains all informa-
tion about variables we need to have in the shared context in Databricks. To be
precise the class contains the variable value, type, and validity information. The
validity information is an enum that is used to determine how precise the value is.
It can be either so-called constant flow (Python scanner is 100% sure about the
value) or it can be value flow which represents variable values that were somehow
processed (e.g.: string concatenation) or their value is unknown from the start
(e.g.: value read from the standard input).

DatabricksInsight is an immutable object that is used in Databricks scanner
to properly update the shared context values. The insight contains methods for
returning all of the variables that are available and returning information about
a specific variable based on the variable name.

DatabricksOutsight represents the object that is passed into the Python scan-
ner before the analysis is filled with values of variables that were already present
in the shared context. Then, whenever a value from shared context is requested
in code, the Outsight is used to find proper values. From the Python scanner

109

point of view, the Outsight is read-only, from the Databricks scanner point of
view the Outsight is write-only.

6.3.2 Propagation modes
In order to be able to work with the variables from shared context properly, we
had to add two new propagation modes to the Python scanner’s pyspark plugin.

SparkConfGetPropagationMode is the propagation mode responsible for the
handling of the spark.conf.get method used for getting variables from the spark
context. This propagation mode uses the DatabricksOutsight class to create
flows that represent the variable values properly. The spark.conf.get method
takes one parameter that represents the variable name for which the value should
be taken out of the spark context. The handling of this method in our propagation
mode goes as follows:

1. Take all LiteralFlows that contain string value and represent variable
name from the propagation source.

2. For each possible variable name take all possible variable values from the
Outsight based on the variable name (if present) and create proper flow
based on the validity info of the variable value.

3. Register all newly created flows to the propagation target. Also, create
InputPinFlow that will be used to create an input pin node for the variable
and register it to the propagation target.

SparkConfSetPropagationMode is the propagation mode used for handling
the spark.conf.set method used for storing variables into the shared context.
The spark.conf.set takes two parameters - variable name and variable value
that should be stored in the spark context. This propagation mode uses the
DatabricksInsighter to store values of shared variables so that Databricks scan-
ner would have all necessary information available. To handle this method the
following steps need to be done:

1. Take all LiteralFlows that contain string value and represent variable
name from the propagation source’s first argument.

2. Take all LiteralFlows that represent variable value from the propagation
source’s second argument.

3. For each possible variable name and for each of the possible variable values
add a new record to the Insighter.

4. Take all PythonFlows present in the second argument values in the propa-
gation source. These flows represent the unknown variable values as there
can be read from the standard input, read from a file, database, or any
other action of a similar kind.

5. For each possible variable name and each of the unknown value flows cre-
ate a record in the Insighter with the value set to UNKNOWN. Create the
OutputPinTerminal that will be used to create output pin for a given vari-
able and register it to the propagation target.

110

6.3.3 Embedded code service
As we mentioned in Section 2.3 the Embedded code service for Python is used
as a sort of bridge between Python scanner and other technologies that have
Python embedded in their source codes. Since the Embedded code service for
Python has already been implemented, the only thing that had to be done was
extending the ECS to support Databricks. In order to do so, the following classes
were implemented:

PythonDatabricksConfiguration represents the configuration specific for the
Databricks technology. The configuration contains the insighter and outsight
classes that are supposed to be passed to the Python scanner, the name of the
notebook that is supposed to be analyzed, and external libraries.

DatabricksOrchestrator is the class responsible for properly preparing the in-
put on the file system for the Python scanner. In our case, the orchestration
process goes like this:

1. A new file with the name of the notebook (specified in the configuration)
is created in the input folder.

2. The content of the notebook is copied from the input to the file on the file
system.

3. For each available resource a new file in the input folder is created and filled
with the library content.

4. An initial EntryPointLocation is created based on the created files in the
input folder and returned.

We also had to add the Databricks technology to the main Orchestration
class so that the proper orchestrator would be called.

6.4 Testing
To test the implemented code and scanner as a whole, we used the three-level
testing approach.

The first level are the Unit tests. Each class that was implemented has a set
of unit tests for all accessible methods that test the correct input and output as
well as the behavior in the edge cases such as null values.

The second level are the Integration tests. These tests are implemented for
the extractor and dataflow generator separately. The extractor part of the scanner
is tested if all of the test data from our test instance are properly extracted into
a temporary folder. For the dataflow generator, the results of the analysis are
tested. That means that we prepare the input for the analysis, run the analysis
and check if the result graph contains all edges and nodes we expect it to contain.

The third and final level is the Qualification testing. In these tests, we test
the whole scanner if it works as expected in the Manta Flow platform. These
tests are performed manually on the installed Manta instance. The test data are
extracted from our test instance using the ExtractionScenario and then the

111

analysis is run using the DataflowScenario. In case both scenarios are finished
successfully the result graph is viewed in the Manta Viewer and compared with
the expected results.

112

7. Evaluation
In this chapter, we would like to demonstrate that the main features implemented
in this thesis work as expected, namely the worklist algorithm, the shared and
language contexts, supporting analysis of both Databricks SQL and Python lan-
guage cells, and usage of Pin nodes in Python scripts. Since the worklist algorithm
is the backbone of the analysis, we cannot demonstrate it on its own, however, its
correctness is a necessary pre-requisite for the correct results of all other features.

For showing the results of the mentioned features we use the script shown in
Figure 7.1.

Figure 7.1: Databricks notebook used for evaluation

Note that the analyzed source code was created to highlight the scanner func-
tionality and it may not make sense to execute it in a production environment.
However, with some minor adjustments, the example would make sense even to

113

be used by users in the real world. In terms of the Python and SQL syntax, all
source code is valid.

7.1 Databricks SQL and Python interaction ex-
ample

The first major goal of this thesis was to support analysis for both Python and
Databricks SQL languages. In this section, we show that we fulfilled this goal
and we show that we managed to support the interaction between the mentioned
languages.

This feature is related to cells Cmd 3 to Cmd 5 in Figure 7.1.
The Cmd 3 cell (written in Python) defines a simple function, that sets three

spark context variables called source.tableName, source.name col and
source.age col. That means, that the values that were passed as parameters
of the function are stored in the spark context and hence are available to all
languages in the notebook.

The Cmd 4 (written in Python) cell calls the function defined in Cmd 3 cell
and passes the following values as arguments:

• a value read from a standard input using the input() function for the table
name

• an array of constants ("name" and "age") for the column names

Then the Cmd 5 cell (written in SQL) executes a simple SELECT query on the
table with the name of the table and columns taken from the spark context.

The result graph for this part of the notebook can be seen in the blue rectangle
in Figure 7.2. The light red node denotes a Databricks table and the dark red
node represents the result of the SELECT query from the Cmd 5. The name of the
Databricks table is unknown. This proves, that the interaction between languages
(and shared context implementation alongside it) works as expected. Let us
explain why. Firstly Python scanner analyzes the part where the table name
is the value that was read from the standard input. Since in static analysis
the value is not known, the Python scanner sets the value to unknown. Then
when Databricks SQL takes the name from the shared context only the name
unknown is available. In this example, we can also see that the language context
implementation works properly as well since we did not have any information
about the catalog and schema names for the table, but the Databricks scanner
used the default values set in the Databricks SQL language context which are set
to the value default.

114

Figure 7.2: Result graph for the evaluation example
115

7.2 Python script with Pin nodes example
Another important feature we would like to demonstrate is using the Pin nodes to
properly connect the shared context usages in the Python scanner. This feature
is related to cells Cmd 4 and Cmd 6 in Figure 7.1.

As we already mentioned in the previous section, the Cmd 4 cell calls the
function that stores the shared context variables. However, for this feature, the
important part is, that the table name is read from the standard input via the
input() method.

Then the Cmd 6 cell takes the value of the table name variable from the shared
context and prints it to output using the print() method.

The result graph for this part can be seen in the green polygon in Figure 7.2.
There are two yellow nodes connected through a light red node. The first yellow
node is a Python node representing the reading from standard input. Then the
edge to the light red node represents writing into the spark context. The light
red node represents the spark context itself. Then the last yellow node represents
write to the standard output produced by the Python scanner. The edge from the
spark context node to the standard output write node represents reading from the
spark context. You may have noticed, that there is no edge that would connect
the spark context and the Databricks SQL result in the previous example. This
is caused by the fact, that Databricks SQL does not support pin nodes yet, hence
there is no way to connect it.

7.3 Limitations and Future Work
As we demonstrated in previous sections, our Databricks scanner implementation
provides a solid base for the analysis of simple Databricks notebooks written in
Python and SQL. However, there are features that need to be implemented in
the future to analyze the Databricks notebooks fully. In the following sections,
we describe the limitations of the current implementation and our plans for the
future.

7.3.1 Notebooks calling each other
As it turned out, Databricks supports too many concepts and features and to
support it all would be too large for this thesis. Hence we decided to create a
scanner that supports the base concepts and would be easily extendable with
new features. One of these features is the ability of notebooks to call each other.
To add support for this feature, the language and shared contexts would have to
be extended to store the notebook results and to note that a certain notebook
called another notebook with given parameters. The results would then have to
be taken into account when deciding if the notebook should be put back to the
worklist. Also, a mechanism for exchanging notebook parameters would have to
be designed. Last but not least few propagation modes would have to be added
to the Python scanner in order to support the dbutils.notebook.run method
responsible for calling other notebooks.

116

7.3.2 Latest result from Databricks SQL
Another interesting feature, that Databricks added shortly before the implemen-
tation of this thesis has finished, is the ability of Python, Scala, and R to access
the latest SQL result by using the sqldf dataframe. Using this feature, the latest
query results produced by SQL cells in the notebooks can be directly represented
as dataframes and further processed by the mentioned three programming lan-
guages. To add support for this feature a mapping between the results produced
by Databricks SQL scanner and Python scanner inputs would have to be designed
and implemented. After this only small changes in the Python scanner would be
required like adding proper propagation modes.

Temporary views and tables in Spark

Regarding the spark context support, in our thesis, we focused only on variables
and their values. However, the spark context also provides an option for sharing
the dataframes. Hence another feature that has to be implemented in the future is
extending the shared context to store the dataframe values similarly to variables
store their values. It is probable that the model used in context would have to
be extended with classes that would represent columns or table rows. Alongside
that, proper propagation modes would have to be added to the Python scanner.

Adding support for Scala and R

As we mentioned before, in our thesis we support only Python and SQL languages
as currently, Manta does not support the Scala and R languages. However, if
in the future the scanners for these languages are available, the support for the
languages could be added to the Databricks scanner as well. To do so, a few steps
have to be done. The first step is creating ECS for each language and the second
step is extending the external scanner analyzer to call respective ECS, store its
results, and define how the results should be merged into the final graph. After
these steps, the support for Scala and R should be finished from the Databricks
scanner point of view.

7.4 Lessons learned
In this section, we would like to summarize the main lessons we learned during
our work on this project. However, we will mention only the main points we
consider useful for someone who would like to create a similar scanner in the
future.

The first surprising and interesting discovery we made was that constants can
be useful for data lineage. In Manta the constants were mostly ignored when
producing lineage. For example, writing a constant value to standard output
in Python using the print() function would result in an empty lineage. This
proved to be a big obstacle in our case since constants are used a lot in Databricks
to denote tables name, schemas, catalogs, queries, and other entities. Also, the
shared variable names and values can be constants but have to be tracked in
order to compute a correct lineage for a Databricks notebook. Hence we needed

117

to come up with different solutions on how to deal with this issue - for example
using the Insight and Outsight for passing constants etc.

Another interesting issue related to the constant was connecting scanners with
completely different workflows and analysis mentality. As we mentioned above,
the Python scanner mostly ignores constants that are not important for the lin-
eage, however, in order to be able to analyze a SQL script by the Databricks SQL
scanner, the constant values for the table names had to be provided, otherwise,
the SQL scanner would fail. We solved this issue by using the language con-
text and the shared context in combination with Python Insight and Outsight.
Python Insight and Outsight were used to track constants and then the contexts
were used to pass these values to the Databricks SQL scanner.

The last but definitely not least discovery we would like to mention is the
fact that Databricks does a lot of processes and editing in the background. In
order to be able to compute the lineage properly, we had to dive deep into the
Databricks processes (which was hard in some cases as there has not been a lot
of documentation on them) and simulate them in our scanner. An example of
this could be the initialization of a spark context for a notebook. Databricks
does this in the background automatically, so the notebooks can use the spark
variable without creating it first. However, the Python scanner needs to know
that the spark variable is representing a spark context, hence we had to manually
add the initialization ourselves.

To summarize, creating this scanner was a new challenge that has never been
done in Manta before. The project discovered some major issues and challenges
that had to be overcome in order to compute a lineage properly. On the other
hand, this project also helped us to shape our view and perspective on what is
important for lineage and what is not. Connecting different technologies together
has proven to be a tough challenge, however, the outcomes are really promising,
and in the future, hopefully, more scanners like this can be created.

118

8. Conclusion
In this thesis project, we have managed to develop a new Databricks scanner
capable of analyzing simple notebooks written in Python and Databricks SQL.
The scanner is a part of the Manta Flow production deployment in the preview
mode.

The scanner currently supports the elementary functionality of Databricks
notebooks written in Python and Databricks SQL, such as extraction of notebooks
and data entities from Unity Catalog and Hive metastore, and interaction of
languages through the shared context. However, to be able to fully analyze the
Databricks notebooks, several features need to be implemented in the future. A
few examples are notebooks calling each other, using the latest SQL result, or
temporary views and tables created in Python that can be used in SQL.

As we have shown in the previous chapter, the scanner works as expected and
provides a reasonable graph for this project’s main goals.

We also managed to analyze the workflow of notebooks calling each other,
however, since the scope of the task would be too large it would result in extending
the scope of the thesis way beyond what was initially intended. However, when
implementing this feature in the future, the workflow analysis and design proposed
in this thesis can be used as a starting point which could make the development
easier.

Additionally, the design of the external scanners analyzer provides an easy
way of extending the Databricks functionality when it comes to the notebook cell
languages. Once Manta has the Scala and R scanners available, including them
in the Databricks scanner notebook analysis should not be hard.

119

Bibliography
[1] url: https://aws.amazon.com/.
[2] url: https://azure.microsoft.com/en-us.
[3] url: https://cloud.google.com/.
[4] sqldf not defined. url: https://community.databricks.com/s/questio

n/0D58Y00008tImnwSAC/sqldf-not-defined.
[5] ACID transactions. url: https://www.databricks.com/glossary/acid-

transactions.
[6] Can you share variables defined in a Python based cell with Scala cells?

url: https://community.databricks.com/s/question/0D53f00001GHV
QBCA5/can-you-share-variables-defined-in-a-python-based-cell-
with-scala-cells.

[7] Configure the Databricks ODBC and JDBC drivers. url: https://docs.
databricks.com/integrations/bi/jdbc-odbc-bi.html#jdbc-driver.

[8] Data lake. url: https://en.wikipedia.org/wiki/Data_lake.
[9] Data lineage. url: https://www.techopedia.com/definition/28040/

data-lineage.
[10] Data warehouse. url: https://en.wikipedia.org/wiki/Data_warehous

e.
[11] Databricks. url: https://www.databricks.com/.
[12] Databricks JDBC Driver. url: https://mvnrepository.com/artifact/

com.databricks/databricks-jdbc/2.6.25.
[13] Databricks widgets. url: https://docs.databricks.com/notebooks/

widgets.html.
[14] Develop code in Databricks notebooks. url: https://docs.databricks.

com/notebooks/notebooks-use.html#explore-sql-cell-results-in-
python-notebooks-natively-using-python.

[15] Get a list of queries. url: https://docs.databricks.com/api/gcp/
workspace/queries/list.

[16] Hive foreign keys? url: https : / / stackoverflow . com / questions /
9696369/hive-foreign-keys.

[17] How to work with multiple languages on Databricks. url: https://medium.
com / @robin . loche / how - to - work - with - multiple - languages - on -
databricks-e22dea9f8c7.

[18] i want to use simba.spark.jdbc driver in sprint boot to connect to databricks
with token. url: https://stackoverflow.com/questions/71291919/
i- want- to- use- simba- spark- jdbc- driver- in- sprint- boot- to-
connect-to-databricks-wi.

[19] Interact with external data on Databricks. url: https://docs.databrick
s.com/external-data/index.html.

120

https://aws.amazon.com/
https://azure.microsoft.com/en-us
https://cloud.google.com/
https://community.databricks.com/s/question/0D58Y00008tImnwSAC/sqldf-not-defined
https://community.databricks.com/s/question/0D58Y00008tImnwSAC/sqldf-not-defined
https://www.databricks.com/glossary/acid-transactions
https://www.databricks.com/glossary/acid-transactions
https://community.databricks.com/s/question/0D53f00001GHVQBCA5/can-you-share-variables-defined-in-a-python-based-cell-with-scala-cells
https://community.databricks.com/s/question/0D53f00001GHVQBCA5/can-you-share-variables-defined-in-a-python-based-cell-with-scala-cells
https://community.databricks.com/s/question/0D53f00001GHVQBCA5/can-you-share-variables-defined-in-a-python-based-cell-with-scala-cells
https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html#jdbc-driver
https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html#jdbc-driver
https://en.wikipedia.org/wiki/Data_lake
https://www.techopedia.com/definition/28040/data-lineage
https://www.techopedia.com/definition/28040/data-lineage
https://en.wikipedia.org/wiki/Data_warehouse
https://en.wikipedia.org/wiki/Data_warehouse
https://www.databricks.com/
https://mvnrepository.com/artifact/com.databricks/databricks-jdbc/2.6.25
https://mvnrepository.com/artifact/com.databricks/databricks-jdbc/2.6.25
https://docs.databricks.com/notebooks/widgets.html
https://docs.databricks.com/notebooks/widgets.html
https://docs.databricks.com/notebooks/notebooks-use.html#explore-sql-cell-results-in-python-notebooks-natively-using-python
https://docs.databricks.com/notebooks/notebooks-use.html#explore-sql-cell-results-in-python-notebooks-natively-using-python
https://docs.databricks.com/notebooks/notebooks-use.html#explore-sql-cell-results-in-python-notebooks-natively-using-python
https://docs.databricks.com/api/gcp/workspace/queries/list
https://docs.databricks.com/api/gcp/workspace/queries/list
https://stackoverflow.com/questions/9696369/hive-foreign-keys
https://stackoverflow.com/questions/9696369/hive-foreign-keys
https://medium.com/@robin.loche/how-to-work-with-multiple-languages-on-databricks-e22dea9f8c7
https://medium.com/@robin.loche/how-to-work-with-multiple-languages-on-databricks-e22dea9f8c7
https://medium.com/@robin.loche/how-to-work-with-multiple-languages-on-databricks-e22dea9f8c7
https://stackoverflow.com/questions/71291919/i-want-to-use-simba-spark-jdbc-driver-in-sprint-boot-to-connect-to-databricks-wi
https://stackoverflow.com/questions/71291919/i-want-to-use-simba-spark-jdbc-driver-in-sprint-boot-to-connect-to-databricks-wi
https://stackoverflow.com/questions/71291919/i-want-to-use-simba-spark-jdbc-driver-in-sprint-boot-to-connect-to-databricks-wi
https://docs.databricks.com/external-data/index.html
https://docs.databricks.com/external-data/index.html

[20] JayDeBeApi 1.2.3. url: https://pypi.org/project/JayDeBeApi/.
[21] Jobs. url: https://docs.microsoft.com/en-us/azure/databricks/

dev-tools/api/latest/jobs.
[22] Jupyter Notebook. url: https://www.databricks.com/glossary/jupyte

r-notebook.
[23] List catalogs. url: https://docs.databricks.com/api/gcp/workspace/

catalogs/list.
[24] List metastores. url: https://docs.databricks.com/api/gcp/workspa

ce/metastores/list.
[25] List schemas. url: https://docs.databricks.com/api/gcp/workspace/

schemas/list.
[26] List tables. url: https://docs.databricks.com/api/gcp/workspace/

tables/list.
[27] MANTA Python scanner. Team software project, MFF UK, 2021.
[28] Unified engine for large-scale data analytics. url: https://spark.apache.

org/.
[29] What is Delta Lake? url: https://docs.databricks.com/delta/index.

html.
[30] What is delta-lake? url: https://www.databricks.com/blog/2020/01/

30/what-is-a-data-lakehouse.html.
[31] What is Unity Catalog? url: https://docs.databricks.com/data-

governance/unity-catalog/index.html.
[32] What the heck is a lateral join anyway? url: https://jonmce.medium.

com/what-the-heck-is-a-lateral-join-anyway-4c3345b94a63.

121

https://pypi.org/project/JayDeBeApi/
https://docs.microsoft.com/en-us/azure/databricks/dev-tools/api/latest/jobs
https://docs.microsoft.com/en-us/azure/databricks/dev-tools/api/latest/jobs
https://www.databricks.com/glossary/jupyter-notebook
https://www.databricks.com/glossary/jupyter-notebook
https://docs.databricks.com/api/gcp/workspace/catalogs/list
https://docs.databricks.com/api/gcp/workspace/catalogs/list
https://docs.databricks.com/api/gcp/workspace/metastores/list
https://docs.databricks.com/api/gcp/workspace/metastores/list
https://docs.databricks.com/api/gcp/workspace/schemas/list
https://docs.databricks.com/api/gcp/workspace/schemas/list
https://docs.databricks.com/api/gcp/workspace/tables/list
https://docs.databricks.com/api/gcp/workspace/tables/list
https://spark.apache.org/
https://spark.apache.org/
https://docs.databricks.com/delta/index.html
https://docs.databricks.com/delta/index.html
https://www.databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://www.databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://docs.databricks.com/data-governance/unity-catalog/index.html
https://docs.databricks.com/data-governance/unity-catalog/index.html
https://jonmce.medium.com/what-the-heck-is-a-lateral-join-anyway-4c3345b94a63
https://jonmce.medium.com/what-the-heck-is-a-lateral-join-anyway-4c3345b94a63

List of Figures

2.1 High-level scanner architecture diagram 8
2.2 Example Manta graph from Python scanner 8
2.3 ECS phases high-level diagram . 12
2.4 SQL scanner phases high-level diagram 14

3.1 Difference between data warehouse, lake, and lakehouse [30] . . . 16
3.2 The object model structure in Unity Catalog 18
3.3 Databricks interaction with external sources 25
3.4 Cluster settings in Databricks . 33

4.1 The example of table level lineage in Unity Catalog 35
4.2 The example of column level lineage in Unity Catalog 35
4.3 Example graph from prototype 45
4.4 The DBeaver displaying Unity Catalog and Hive metastore contents 49

5.1 Standard Manta scanner architecture applied on Databricks use-case 62
5.2 Unity Catalog extraction workflow 64
5.3 Hive metastore extraction workflow 64
5.4 Repository folder structure . 65
5.5 Shared context properties example in Databricks 66
5.6 Language context example . 67
5.7 High-level communication diagram 69
5.8 Multiple possible values example 71
5.9 Example of variable values context 72
5.10 example of multiple contexts due to branching 73
5.11 Larger number of contexts example 75
5.12 An example of possible contexts 75
5.13 An example of all needed contexts 76
5.14 An example of reduced contexts 77
5.15 Shared context workflow . 79
5.16 Notebook analysis workflow . 82
5.17 Notebook calling another notebook example 83
5.18 Notebook calling another notebook workflow 84
5.19 Pin nodes placeholders example 86
5.20 Pin nodes connected example . 86
5.21 Spark context node example . 87
5.22 Analyzers workflow . 89
5.23 Worklist over notebooks workflow 93
5.24 Error when referencing future definition 96
5.25 Data entities node hierarchy example 100
5.26 Data entities node hierarchy example 100

6.1 Hierarchy of variable values classes in shared context 103

7.1 Databricks notebook used for evaluation 113
7.2 Result graph for the evaluation example 115

122

A. Attachments

A.1 User Documentation
In order to run the Databricks scanner extraction and analysis, there are several
requirements for the environment that have to be fulfilled:

• You need to have Java 11 installed on your computer.

• You need to have the Manta Flow platform installed on your computer.
Note that this can be a major obstacle since only customers or employees
of Manta have access to this program.

A.1.1 Building the project
Our code consists of the Hive metastore extraction-related classes, and all of the
Dataflow Generator classes related to the analysis of notebooks using external
scanners. These source codes are only a part of the whole Databricks scanner in
Manta. However, all of the code that is a part of this thesis is already a part
of the Manta Flow in a preview release mode. Hence, no building of the project
is necessary, since the Databricks scanner is already a part of the Manta Flow
installation package. During the deployment of the Databricks scanner into the
Manta Flow, all modules of the Databricks scanner are built so that all module
dependencies would be satisfied.

A.1.2 Running the Databricks scanner in Manta Flow
If the user has the Manta Flow platform installed on their computer, they need
to do the following steps.

1. Create a connection for Databricks. In this step, the credentials to the
Databricks instance have to be specified alongside the Personal Access token
used for authentication.

2. Create a workflow that executes the Extraction Scenario and DataFlow
Scenario. The Extraction Scenario is responsible for extracting the data to
the computer and the DataFlow Scenario is used to analyze the extracted
data.

3. After the execution of the scenarios is finished the results can be viewed in
Manta Flow Viewer.

A.2 Contents of the Attachment
The files distributed alongside this work contain all the source codes of the
Databricks scanner, images used in this work, and the Latex source codes used
to create this work. Let us now describe the folder structure.

123

All of the images used in this thesis can be found in the img folder. This
folder further divides the images into subfolders based on the chapter where the
image has been used. There are the following subfolders:

• analysis - contains images used in Chapter 4, Analysis

• background - contains images used in Chapter 2, Data lineage analysis using
Manta Flow

• databricks-overview - contains images used in Chapter 3, Databricks

• design - contains images used in Chapter 5, Design

• evaluation - contains images used in Chapter 7, Evaluation

• impl - contains images used in Chapter 6, Implementation

The Latex source codes can be found in the tex-source folder.
Last but not least, the source codes of the Databricks scanner can be found

in the source-code folder. The folder further divides into sub-folders:

• Databricks - contains the source codes for Databricks scanner implementa-
tion

– Connector - contains the source codes for the Extractor and Resolver
model parts of the scanner.

– Dataflow - contains the source codes for the Generator part of the
scanner.

• ECS - contains the classes that had to be added to the Embedded Code
Service for Python

• Model - contains classes that were added to a common Manta Flow platform
model

• Python - contains the classes that had to be added to the Python scanner

124

	Introduction
	Goals
	Glossary
	Outline

	Data lineage analysis using Manta Flow
	Manta Flow platform
	Python scanner
	Embedded code service
	SQL scanner

	Databricks
	Data warehouse vs Data lake
	Databricks Lakehouse
	Key concepts
	Notebooks and Queries
	External sources
	Extracting data from Databricks

	Analysis
	Data necessary for lineage
	REST API
	Unity Catalog API
	Prototype
	Hive metastore
	Databricks notebooks
	Spark context
	External sources
	Databricks SQL vs Hive SQL
	Summary

	Design
	Scanner design
	Information extraction
	Context information in notebooks
	Scanners integration
	Notebook analysis
	Result graph

	Implementation
	Extractor
	Dataflow Generator
	Python scanner
	Testing

	Evaluation
	Databricks SQL and Python interaction example
	Python script with Pin nodes example
	Limitations and Future Work
	Lessons learned

	Conclusion
	List of Figures
	Attachments
	User Documentation
	Contents of the Attachment

