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1. Preface
In this work we will discuss some of the work done in researching curves in 3D
space and their associated frames. Specifically we will look at some of the work
done regarding curves that are both rational and can have a frame defined in a
way that prevents it unnecessarily rotating along the tangent - these are called
rotation minimizing motions.
The second chapter is mostly an introduction of the necessary topics. How quater-
nions work and are related to rotation in three dimensional space is the most
important part. We also present a lemma we will use to create various corollar-
ies of later results. While the second chapter introduces Spherical motions, we
discuss them more deeply in the third chapter. There we present both rotation
minimization and an alternative definition of the Pythagorean hodograph, which
is a curve with a rational tangent length. In this same chapter we reference ”Über
zwangläufige rationale Bewegungsvorgänge” [1] by Bert Jüttler for the second part
of a proof.
In the fourth chapter we discuss a way of determing whether a quaternion poly-
nomial already represents of rotation minized motion, which was first shown in an
article called ”A comprehensive characterization of the set of polynomial curves
with rational rotation-minimizing frames” [3] by Rida T. Farouki, Graziano Gen-
tili, Carlotta Giannelli, Alessandra Sestini and Caterina Stoppato. While mostly
a reproduction of the original article, we have included some colloraries in the
Bernstein basis and mention some possible avenues for future research.
In the fifth chapter we discuss a theorem, which was first presented in an article
called ”Quaternion and Hopf map characterizations for the existence of rational
rotation-minimizing frames on quintic space curves” [4] by Rida T. Farouki as
Proposition 3 regarding sparial quintics. We present one of the implications from
it and a proof, which is significantly simpler, since the original work sought to
prove an equality and required a setup using Hopf maps. It was also done through
complex numbers, but here we use quaternions.
The final chapter present examples of some hodograph curves and their appearence
in 3D space. Some of those curves are example taken from an article called ”A
complete classification of quintic space curves with rational rotation-minimizing
frames” by Rida T. Farouki and Takis Sakkalis [2].
We also used a book called ”Pythagorean-Hodograph Curves: Algebra and Geom-
etry Inseparable” by Rida T. Farouki as a study resource, but do not quote from
it in our work. Part V of that book is the most relevant to our work, since it also
discusses Pythagorean Hodographs in 3D.
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2. Preliminaries

2.1 Spatial Curves
If we take three real C3 continuos functions x(t), y(t) and z(t), then the triplet
(x(t), y(t), z(t)) defines a curve in R3. Now should we for some reason wish to cre-
ate a triplet of orthonormal vectors at any point of the curve, where one is alligned
with the tangent - this is called a frame, we commonly choose the Frenet–Serret
frame. This is defined as follows:

Definition 1. Let c(t) = (x(t), y(t), z(t)) be a curve in R3. Then the Frenet-
Serret frame at a point c(t), which is not an inflection point, is defined as the
triplet

1. T (t) := c′(t)
||c′(t)|| , called the tangent

2. N(t) := T ′(t)
||T ′(t)|| , called the normal

3. B(t) := T (t) × N(t), caled the binormal

In 3D the curvature is equal to ||T ′(t)|| and since we don’t want division by
zero, we can’t define the normal and therefore also the binormal at inflection
points, which have zero curvature. Limits as we approach might not be equal
either. Since the frame is compossed of three unit vectors, then as the parameter
t changes, the frame can be though of as turning inside a unit sphere in R3.
If we move the frame from vector space and display it at c(t), it is unavoidable
that tangent for any curve but a straight line changes direction and normal and
binormal defined by it must follow. However often the Frenet–Serret frame has
rotation of the normal and binormal greater than what is necessary to maintain
orthonormality.

Example 2. Let’s take a Torus knot defined for instance as x(t) = rcos(2t),
y(t) = rsin(2t) and z(t) = −sin(3t) to see what we mean.
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Figure 2.1: Example 2:On the left we have a have the Torus knot with five example
frames. On the right we see the Unit Sphere and the curves traced by frames

Finding a way to alter the Frent-Serret frame to get rid of this unnecessary
rotation can be useful for multiple practical purposes like the movement of robotic
arms. We must however first find a good approach to rotations in R3, since we
are in essence creating a function, whose output for all t is a rotation that turns
the normal and binormal of the base frame around the tangent. We will call this
a correction of the frame. When we speak of rotation minimization, we imply an
existence of some measure that compares different frames. This quantity is defined
as the amount by which the normal and binormal rotate around the tangent. That
is T (t) × N ′(t) or T (t) × B′(t). Since the tangent doesn’t rotate around itself and
the binormal is defined by it and the normal, these are equivalent.

2.2 Quaternion Calculus
Research into RMFs comes from multiple angles. Some uses complex numbers to
interpret rotation in R3, but this work follows other studies using quaternions and
their natural relationship with rotations.

Definition 3. Quaternions are a four dimensional vector space over the real num-
bers, whose elements of the same name are built using basis vectors 1, i, j and k.
These vectors take the form a + bi + cj + dk, where a, b, c and d are real num-
bers. The basis vectors represent ”imaginary numbers” that satisfy the following
condition

i2 = j2 = k2 = ijk = −1.

Further multiplication is not commutative unless one of the elements is 1. These
six exceptions to commutativity are:

ij = −ji = k

jk = −kj = i

ki = −ik = j.
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We call a the quaternion’s scalar part and bi+cj+dk the quaternion’s vector part.

Addition and scalar multiplication are defined as would be expected of vectors.
Multiplication is dependent on the order due to noncommunicativity and therefore

(a1 + b1i + c1j + d1k)(a2 + b2i + c2j + d2k) =

= (a1a2 − b1b2 − c1c2 − d1d2) + (a1b2 + b1a2 + c1d2 − d1c2)i+
+(a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k.

We call the quaternion a − bi − cj − dk the conjugate of a + bi + cj + dk and it
will also be written as the original marker by ∗ as is usually done for conjugation
of matricies. All non-zero quaternion have a multiplicative inverse, because

(a + bi + cj + dk)(a − bi − cj − dk) = a2 + b2 + c2 + d2

and that result is a purely real number.
Since quaternion are based on vector, we can define both the cross product and
the dot product as if we were dealing with 4D Eucleidian space. Notice that
⟨Q, Q⟩ = ||Q||2 is satisfied and in fact in general

⟨P, Q⟩ = scal(PQ∗) = scal(Q∗P ) = scal(P ∗Q) = scal(QP ∗),

due to the squares of vector bases being −1. The dot product has a further
interesting property that is a subject of the following lemma:

Lemma 4. For any quaternions P and Q, we get that ⟨P i, Q⟩ = −⟨P, iQ⟩.

Proof. Let
P = a1 + b1i + c1j + d1k
Q = a2 + b2i + c2j + d2k.

Then
P i = −b1 + a1i + d1j − c1k
Qi = −b2 + a2i − d2j + c2k,

which gives us
⟨P i, Q⟩ = −b1a2 + a1b2 + d1c2 − c1d2

−⟨P, iQ⟩ = a1b2 − b1a2 + c1d2 − d1c2,

which is just a reordering of the previous terms.

Quaternion are especially useful due to easily representing rotations in 3D
space. Interpreting the vector (x, y, z) as a vector part of a quaternion

Q := 0 + xi + yj + zk,

we can apply a rotation around the axis represented by a vector (p, q, r) by an
angle of θ by conjugating Q with another quaternion

R := cos
θ

2 + psin
θ

2 i + qsin
θ

2j + rsin
θ

2k
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and the new rotated vector can then be interpreted as the vector part of the
quaternion RQR−1.
This is a way to express Rodrigues’ rotation formula, which for our case would
look like

(x, y, z)cosθ +
(︄

(p, q, r)
||(p, q, r)|| × (x, y, z)

)︄
sinθ+

+ (p, q, r)
||(p, q, r)||

(︄
(p, q, r)

||(p, q, r)|| · (x, y, z)
)︄

(1 − cosθ).

We will find it useful to make R a quaternion polynomial dependent on t. This
leads us to quaternions calculus, which is the natural extension of polynomials
to the quaternion numbers using the most natural definitions - replacing the real
numbers a, b, c and d in our quaternion definition, with real polynomials. If we let
a(t), b(t), c(t), d(t), e(t), f(t), g(t) and h(t) be eight real polynomials, then we can
keep our previous definitions and get:

1. [a(t) + b(t)i + c(t)j + d(t)k] + [e(t) + f(t)i + g(t)j + h(t)k] =

= [a(t) + e(t)] + [b(t) + f(t)]i + [c(t) + g(t)]j + [d(t) + h(t)]k

2. [a(t) + b(t)i + c(t)j + d(t)k][e(t) + f(t)i + g(t)j + h(t)k] =

= [a(t)e(t) − b(t)f(t) − c(t)g(t) − d(t)h(t)]

+[a(t)f(t) + b(t)e(t) + c(t)h(t) − d(t)g(t)]i

+[a(t)g(t) − b(t)h(t) + c(t)e(t) + d(t)f(t)]j

+[a(t)h(t) + b(t)g(t) − c(t)f(t) + d(t)e(t)]k

3. [a(t) + b(t)i + c(t)j + d(t)k]∗ = a(t) − b(t)i − c(t)j − d(t)k
4. [a(t) + b(t)i + c(t)j + d(t)k][a(t) + b(t)i + c(t)j + d(t)k]∗

= |a(t) + b(t)i + c(t)j + d(t)k| = a(t)2 + b(t)2 + c(t)2 + d(t)2

2.3 The form of a quaternion polynomial
Since some theorem demand a quaternion polynomial C(t) be in a specific basis, we
will also note that any quaternion polynomial C(t) of degree N can be written out
in two equally valid forms - the monomial and Bernstein bases. Certain aspects
of our study are much easier in one of those forms rather than the other.

Lemma 5. If we take the Bernstein basis expansion ∑︁N
i=0 Bi

(︂
N
i

)︂
ti(1 − t)N−i and

set it equal to monomial series expansion ∑︁N
i=0 Ait

i, then⎡⎢⎢⎣
AN

...
A0

⎤⎥⎥⎦ = T

⎡⎢⎢⎣
BN
...

B0

⎤⎥⎥⎦ ,
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where T is an invertible triangular matrix.
These matrix multiplication can be thought of as a change of coordinate system we
use to view our polynomials and the elements of the matricies are

tij = (−1)i+j

(︄
N

j − i

)︄(︄
N − j + 1

i − j

)︄

t−1
ij =

(︂
i−1
j−1

)︂
(︂

N
j−1

)︂ .

Proof. By studying the coefficients that appear when we multiply out the Bern-
stein basis into the monomial basis we get the equalities

An =
n∑︂

i=0
Bi(−1)n+i

(︄
n

i

)︄(︄
N

n

)︄
.

Thus we get tij for the diagonal and above, because we start indices at 1 and not
0 and count the other way. Because elements below the diagonal include binomial
coefficients where the bottom number is the greater of the pair, they are zero and
so we can extend the definition to the whole matrix. Outside those elements, we
have products of a power of -1 and two binomial coefficients that are non-zero
along the diagonal, so the determinant is not zero and the matrix is invertable.
Observe that the ikth element of the matrix resulting from multiplying matricies
with elements tij and t−1

jk is equal to

k∑︂
j=i

(−1)i+j

(︂
N

j−i

)︂(︂
N−j+1

i−j

)︂(︂
j−1
k−1

)︂
(︂

N
k−1

)︂ .

This can be written as

(−1)i(N − k + 1)!
(N − i + 1)!

k∑︂
j=i

(−1)j

(i − j)!(j − k)! ,

if we are willing to define an inverse of a negative integer’s factorial to be 0 through
the Gamma function, because limx→y∈Z−

1
Γ(x+1) = 0. Now for k > i we have a

series full of zeroes. For k < i, we have an empty sum and for k = i we have one
term equal to one. We can therefore see that our inverse matrix is correct.

Example 6. If N = 2 and we have a quaternion polynomial in the form B2t
2 +

B12t(1 − t) + B0(1 − t)2, then the matrix T =

⎡⎢⎣1 −2 1
0 2 −2
0 0 1

⎤⎥⎦ and we can rewrite

it as (B2 − 2B1 + B0)t2 + (2B1 − 2B0)t + B0. On the other hand if the polynomial

is in the form A2t
2 + A1t + A0, then the inverse matrix T −1 =

⎡⎢⎣1 1 1
0 1

2 1
0 0 1

⎤⎥⎦ and we

can also write it as (A2 + A1 + A0)t2 + (1
2A1 + A0)2t(1 − t) + A0(1 − t).
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2.4 Spherical Motions
Definition 7. A 3x3 matrix M(t) = (e1(t)|e2(t)|e3(t)), which is orthonormal,
is called spherical motion. The trajectory of a point x on the unit sphere S2
undergoing the motion M(t) is the set of all points for which a real number t
exists so that the point can be interpreted as M(t)x. Each such point is usually
referred to as x(t). If the trajectory in question is a rational curve for all inputs
x, then the motion M(t) is called a rational spherical motion (RSM). Often it is
assumed M(0) = I3, so x(0) = x is the case for all x.

Note that the tangent, normal and binormal from 13 are an example of a
spherical motion, since they are an triplet of orthogonal vectors. However since
they require a curve without inflection point, they may not be defined for all t.

Example 8. Taking M(t) =

⎡⎢⎣sin(t + 1)sin(t) cos(t + 1) sin(t + 1)cos(t)
cos(t + 1)sin(t) −sin(t + 1) cos(t + 1)cos(t)

cos(t) 0 −sin(t)

⎤⎥⎦ ,

where M(t)M(t) = I3 and so det(M(t)) = 1, we can see a spherical motion.
The projected paths of the canonical basis vectors clearly follow the surface of the
sphere, so we can see M(t) is a spherical motion. Since sines and cosines are not
rational functions, this is not a rational spherical motion.

Example 9. This time we will take the more complicated matrix

M(t) = 1
4t2+20t+30

⎡⎢⎣ 8t + 20 4 4t2 + 20t + 22
4t2 + 20t + 20 4t + 10 −8t − 20

−4t − 10 4t2 + 20t + 28 4

⎤⎥⎦ ,

which is a rational spherical movement as seen from the facts that we used polymi-
als and the four basic operations and that det(M(t)) = 1 always.

Figure 2.2: Example 8 of a spherical motion on the left and Example 9 of a rational
spherical motion on the right. Note that the paths of vectros under rational spherical
motion need not be circles.
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3. Rotation-minimizing Motions
Definition 10. We say that a spherical motion M(t) = (e1(t)|e2(t)|e3(t))
is Rotation-minimizing if it satisfies

⟨e′
2(t), e3(t)⟩ = 0. (3.1)

Notice that once we choose the trajectory of the first basis vector e1, we are
quite constrained. Since e2(t) is defined as being of unit length, ⟨e′

2(t), e2(t)⟩ = 0
too and so to create a rotation-minimizing spherical motion, it is required that

e2(s) =
∫︁ s

s0
λ(t)e1(t)dt

||
∫︁ s

s0
λ(t)e1(t)dt||

e3(t) = e1(t) × e2(t),
where λ(t) is a real function.
Example 11. This is a trivial example of a rotation minimizing motion, which
keeps e2(t) fixed. As a result the other two vector follow circular paths. M(t) =⎡⎢⎣ sin(t) 0 cos(t)

4
5cos(t) 3

5
4
5sin(t)

−3
5cos(t) 4

5 −3
5sin(t)

⎤⎥⎦. Because e′
2(t) is a zero vector, we get ⟨e′

2(t), e3(t)⟩ = 0.

Figure 3.1: Example 11: Here we see a Rotation Minimizing Motion

In this work the study of Rotation-minimizing Frames (RMFs) will be done
through Quaternion polynomials. First we note the exact way RMFs connect
together with quaternion polynomials. This is described by the following theorem:
Theorem 12. Every rational spherical motion (e1(t)|e2(t)|e3(t)) can be written
in terms of a quaternion polynomial C(t) as

(e1(t)|e2(t)|e3(t)) = C(t)(i|j|k)C(t)∗

C(t)C(t)∗ . (3.2)

This quaternion polynomial is called the motion polynomial of the RSM. Moreover,
the RSM is rotation-minizing if and only if

⟨C(t)′i, C(t)⟩ = 0 (3.3)

9



Proof. Recall that we define scalar products as in a 4D Eucleidian vector space.
That all spherical motion have a correspending polynomial was first proven by
Bert Jüttler in his work: [1]. Because for any C(t) as mentioned in the prelude,

f [X] = C(t)[X]C(t)∗

C(t)C(t)∗

is a rotational function in 3D space, the result of (3.2) is an orthonormal matrix.
The C(t)C(t)∗ in the divisor is a squared norm of the polynomial. Using direct
computation and Lemma 4 we now check that (3.1) is satisfied.

⟨e′
2(t), e3(t)⟩ = ⟨

(︄
C(t)jC(t)∗

C(t)C(t)∗

)︄′

, e3(t)⟩ =

= ⟨C(t)C(t)∗C ′(t)jC(t)∗ + C(t)C(t)∗C(t)jC ′(t)∗, e3(t)⟩
||C(t)||4

−⟨C(t)jC(t)∗C ′(t)C(t)∗ + C(t)jC(t)∗C(t)C ′(t)∗, e3(t)⟩
||C(t)||4 =

= ⟨C ′(t)C(t)∗e2(t) + e2(t)C(t)C ′(t)∗ − e2(t)C ′(t)C(t)∗ − e2(t)C(t)C ′(t)∗, e3(t)⟩
||C(t)||2 =

= ⟨C ′(t)C(t)∗e2(t) − e2(t)C ′(t)C(t)∗, e3(t)⟩
||C(t)||2 =

= ⟨C ′(t)C(t)∗e2(t), e3(t)⟩
||C(t)||2 − ⟨e2(t)C ′(t)C(t)∗, e3(t)⟩

||C(t)||2 =

= ⟨C ′(t)ie2(t), C(t)∗e3(t)⟩
||C(t)||2 + ⟨e2(t)C ′(t)i, e3(t)C(t)∗⟩

||C(t)||2 =

= 2⟨C ′(t)i, C(t)⟩
||C(t)||2 = 2⟨C ′(t)i, C(t)⟩

⟨C(t), C(t)⟩ .

Therefore the definition of being rotation-minimizing implies condition (3.3).

Definition 13. We say that a rational curve r(t) in R3 is a Pythagorean hodo-
graph (PH) if there exists a rational spherical motion M(t) so that the vectors
{r′(t), e1(t)} are linearily dependent. Moreover, we say that r(t) is a Rotation-
minimizing Pythagorean hodograph (RMPH) curve if M(t) is rotation-minimizing.

Example 14. An example of a Pythagorean Hodograph is the rational curve

x(t) = 1
4t4 − 2

3t3 − 1
2t2 + 2t, y(t) = 1

2t4 + t3 − 3
2t2 − 2t, z(t) = 1

2t4 + 1
3t3 − t2 − t

We then have

r′(t) = (t3 − 2t2 − t + 2, 2t3 + 3t2 − 3t − 2, 2t3 + t2 − 2t − 1)

10



and can use the Frenet-Serret frame

M(t) =

⎡⎢⎢⎢⎣
−t3+2t2+t−2
3t3+2t2−2t−3

−8t2−18t−7√
10(3t2+5t+3)3

12t5+20t4+3t3−18t2−14t−3√
10(3t3+2t2−2t−3)(3t2+5t+3)3

−2t3−3t2+3t+2
3t3+2t2−2t−3

5t2−5√
10(3t2+5t+3)3

15t5+40t4+25t3−25t2−40t−15√
10(3t3+2t2−2t−3)(3t2+5t+3)3

−2t3−t2+2t+1
3t3+2t2−2t−3

−t2−6t−4√
10(3t2+5t+3)3

−21t5−50t4−34t3+29t2+52t+24√
10(3t3+2t2−2t−3)(3t2+5t+3)3

⎤⎥⎥⎥⎦
as an example of the many rational spherical motions that satisfy {r′(t), e1(t)}.

Lemma 15. This definion is equivalent to the classical definion of a Pythagorean
hodograph, which requires that ||r′(t)|| is a piecewise rational function.

Proof. Linear dependence of {r′(t), e1(t)} is equivalent to the existence of a piece-
wise rational function λ(t), such that r′(t) = e1(t)λ(t). Since e1(t) is always a unit
vector, then

|λ(t)| = ||e1(t)|||λ(t)| = ||r′(t)||
and ||r′(t)|| is not only piecewise rational, but outright equal to |λ(t)|. Going the
other way we can use (3.2) and set

C(t)iC(t)∗

C(t)C(t)∗ = e1(t) = r′(t)
||r′(t)|| = r′(t)

λ(t) ,

so we have a polynomial C to use in defining

e2(t) = C(t)jC(t)∗

C(t)C(t)∗

e3(t) = C(t)kC(t)∗

C(t)C(t)∗

Example 16. Taking the previous example with x(t) = 1
4t4 − 2

3t3 − 1
2t2 +2t, y(t) =

1
2t4 + t3 − 3

2t2 − 2t, z(t) = 1
2t4 + 1

3t3 − t2 − t, we can see that when we use the
Frenet-Serret frame we have |λ(t)| = ||r′(t)|| = 3t3 + 2t2 − 2t − 3.

We can use a pair of coprime real polynomials a(t) and b(t) to modify a poly-
nomial C(t) in a way that allows us to create a RMF. The properties of this pair
is described by the following lemma, which also includes an observation regarding
this modification of our quaternion polynomial:

Lemma 17. For any quaternion polynomial C(t) the curve defined by

r(s) :=
∫︂ s

s0
λ(t)C(t)iC(t)∗dt (3.4)

is a Pythagorean Hodograph if and only if λ(t) is a rational function, that insures
the integral is also rational. Further it is also rotation minimizing if there is a
pair of coprime real polynomials a(t) and b(t) that satisfy

⟨C(t)′i, C(t)⟩
⟨C(t), C(t)⟩ = 2 (a(t)b′(t) − a′(t)b(t))

a(t)2 + b(t)2 (3.5)
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Proof. The requirements on λ(t), are necessary to avoid the appearence of irra-
tional functions like natural logarithms and inverse trigonometric functions after
integration, whose derivatives are often real functions themselves.
If (3.5) is satisfied, than we can define D(t) := C(t)(a(t) − b(t)i) and by direct
computation

⟨D′(t)i, D(t)⟩ = ⟨(C(t)(a(t) − b(t)i))′ i, C(t)(a(t) − b(t)i)⟩ =

= ⟨(C(t)(a′(t) − b′(t)i) + C ′(t)(a(t) − b(t)i)) i, C(t)(a(t) − b(t)i)⟩ =

= 2 (a′(t)b(t) − a(t)b′(t)) ⟨C(t), C(t)⟩ + (a(t) + b(t)i)(a(t) − b(t)i)⟨C ′(t)i, C(t)⟩ =

= 2 (a′(t)b(t) − a(t)b′(t)) ⟨C(t), C(t)⟩ + (a(t)2 + b(t)2)⟨C ′(t)i, C(t)⟩.

Going one way we get ⟨C ′(t)i, C(t)⟩ = 0 implies ⟨D′(t)i, D(t)⟩ = 0. Going the other
way, we first assume that the polynomial D(t) exists and satisfies

C(t)iC(t)∗

C(t)C(t)∗ = D(t)iD(t)∗

D(t)D(t)∗ = e1(t),

then there must be a relationship of the form D(t) := C(t)(a(t) − b(t)i), for some
real polynomials a(t) and b(t).

Definition 18. If we have curve defined by (3.4) from C(t) of degree m and its
modifying polynomials a(t) and b(t) satisfy (3.5) and are individually of degrees
na and nb, we can say that the resulting hodograph is of a class (m, max(na, nb)).

Example 19. A hodograph made from C(t) = (7 − 19i − 26j − 2k)t2 + (−22 +
14i + 16j + 12k)t + 10, a(t) = 27t2 − 22t + 10 and b(t) = −19t2 + 14t would thus
be considered of class (2,2) as a result of a second degree Quaternion polynomial
and two second degree modifying polynomials.
Meanwhile making a hodograph from C(t) = 21t2 + (21 − 21i − 42j − 42k)t −
142 − 63i − 34j + 94k, a(t) = t − 2 and b(t) = 1 results in a class of (2,1),
because the modifying polynomial are of classes 0 and 1 and the higher number
takes precedence.

12



4. Quaternions, which are already
rotation minimized
Definition 20. F (n)

0 is the set of all polynomials C(t) ∈ H[t] of degree n that
satisfy (3.3).

This allows us to study all RMPHs that exist since all such hodographs are
represented by C(t). We will now define a set of numbers, which we refer to as
”Farouki’s numbers,” though we do not know of such a name existing outside
this work and given it is derived from a article with five authors, we may have
misattributed it. These appear as a part of Theorem 5.2 in the original paper:

Definition 21. Let C(t) = ∑︁N
i=0 Ait

i, then we define

c(n)
m :=

m∑︂
k=0

(k + 1)⟨Am−k, Ak+1i⟩ (4.1)

for any element of F (N)
0 , where n ∈ {0, ..., N} and m ∈ {0, ..., 2n − 2}. These are

the (n,m)-Farouki number of C(t).

If we write Farouki’s numbers for all C(t) of degree N in order by first n
and them m and allign those belonging to m = 0 in a collum, we get a triangle of
definitions that is N +1 rows tall and 2N −2 collums wide. Each row of definitions
in this ”Farouki triangle” then has a relationship with the preceding row that is
described by the following lemma:

Lemma 22. For any element of F (N)
0 , where n ∈ {1, ..., N} and m ∈ {0, ..., 2n−2}

we have
1. c(n)

m = c(n−1)
m for m ∈ {0, ..., n − 2}

2. c(n)
m = c(n−1)

m + (2n − m − 1)⟨Am−n+1, Ani⟩ for m ∈ {n − 1, ...., 2n − 4}
3. c(n)

m = (2n − m − 1)⟨Am−n+1, Ani⟩ for m ∈ {2n − 3, 2n − 2}

Proof. Because for m between 1 and n − 2 the definition of c(n)
m doesn’t include

An in its defining sum we immediately get c(n)
m = c(n−1)

m .
Between n − 1 and 2n − 2 we can observe

c(n)
m = c(n−1)

m + n⟨Am−n+1, Ani⟩ + (m − n + 1)⟨An, Am−n+1i⟩ =

= c(n−1)
m + (2n − m − 1)⟨Am−n+1, Ani⟩,

which follows from ⟨Am−n+1i, An⟩ = −⟨Am−n+1, Ani⟩.
The last three are the simple equations c

(n)
2n−1 = n⟨An, Ani⟩ = 0, c

(n−1)
2n−3 = (n −

1)⟨An−1, An−1i⟩ = 0 and c(n−1)
m = 0 for all m greater than 2n − 2.

This triangle of numbers is important, because its last row can be used to
determine whether C(t) ∈ F (n)

0 , by what values it takes:

13



Theorem 23. C(t) ∈ F (n)
0 is equivalent to

c(n)
m =

m∑︂
k=0

(k + 1)⟨Am−k, Ak+1i⟩ = 0 (4.1)

for all m ∈ {1, ...2n − 2}.

Proof. Observe that demands of Lemma 17 imposed on

⟨C ′(t)i, C(t)⟩ = ⟨
N∑︂

j=0
jAjitj−1,

n∑︂
j=0

Ajt
j⟩ =

2n−1∑︂
i=0

c
(n)
i ti,

imply that C(t) being in the set F (N)
0 is equivalent c(N)

m = 0 for all m.

4.1 Degree 3
Theorem 24. The non-trivial elements of F (3)

0 are those polynomials
C(t) = C(A3t

3 + A2t
2 + A1t + 1), where the following properties are satisfied:

1. C, A1, A2, A3 ∈ F and C is nonzero
2. the span of 1, A1 and A2 is R + Rj + Rk
3. the vector part of A3 is a pure vector, parallel to the vector product (A1i) ×

(A2i), whose component along i is 1
3⟨A1, A2i⟩

A monic polynomial t3 + A2t
2 + A1t + A0, where A0 ∈ F, is a non-trivial elements

of F (3)
0 if and only if it satisfies the first two points and A0 is a pure vector, parallel

to the vector product (A1i) × (A2i), whose component along i is −1
3⟨A1, A2i⟩.

Proof. We need to make sure Farouki’s numbers fullfil c
(3)
0 = c

(3)
1 = c

(3)
2 = c

(3)
3 =

c
(3)
4 = 0 This means that ⟨i, A1⟩, ⟨i, A2⟩, ⟨A1, A2i⟩ − 3⟨i, A3⟩, ⟨A1i, A3⟩ and

⟨A2i, A3⟩ are all 0. All of them being equal to zero is equivalent to the following
three properties, which all memebers of F (3)

0 most therefore satisfy:
1. A1 and A2 are orthogonal to i, meaning they are members of R + Rj + Rk
2. the component of A3 along i is equal to 1

3⟨A1, A2i⟩
3. A3 is orthogonal to both A1i and A2i

Simply adding the second property, that the span of 1, A1 and A2 is R+Rj +Rk,
gives us non-triviality. The first property of the theorem is also mainly intended
to prevent triviality. The third property of theorem is the fusion of the second and
third general properties just proven, and therefore is actually true for all members
of F (3)

0 regardless of triviality.
We can use t3 + C2t

2 + C1t + C0 = C0(C−1
0 t3 + C2C−1

0 t2 + C1C−1
0 t + 1), to see how the

non-triviality condition applies to the monic polynomial.

Corollary 25. By using Lemma 5 we get A3 = B3 − 3B2 + 3B1 − 1, A2 =
3B2 − 6B1 + 3, A1 = 3B1 − 3. This allows us to write a version of the Theorem
for when the polynomial is written as C times a polynomial in the Bernstein basis.
The three properties become:
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1. C, B1, B2, B3 ∈ F and C is nonzero
2. the span of B1 and B2 is R + Rj + Rk
3. the vector part of B3 − 3B2 + 3B1 is a pure vector, parallel to the vector

product (B1 − 1)i × (B2 − 2B1 + 1)i, whose component along i is 3⟨(B1 −
1), (B2 − 2B1 + 1)i⟩

For the monic polynomial we can use the lemma again and get B0 must be a
pure vector, parallel to the vector product ((B1 − B0)i × (B2 − 2B1 + B0)i, whose
component along i is −3⟨(B1 − B0), (B2 − 2B1 + B0)i⟩.

4.2 Degree 4
Because according to the lemma, some conditions are indentical for degree 4, we
find the relevant theorem partly matches. Specifically c

(4)
0 , c

(4)
1 and c

(4)
2 have the

exact same definition as c
(3)
0 , c

(3)
1 and c

(3)
2 .

Theorem 26. The elements of F (4)
0 are those polynomials

C(t) = C(A4t
4 +A3t

3 +A2t
2 +A1t+1), where the following properties are satisfied:

1. C, A1, A2, A3, A4 ∈ F and C is nonzero
2. A1, A2 ∈ R + Rj + Rk
3. the component of A3 along i is 1

3⟨A1, A2i⟩
4. A4 is orthogonal to A2i and A3i and its component along i is 1

2⟨A1, A3i⟩
5. 3⟨A1, A4i⟩ = ⟨A2, A3i⟩

Elements C(t) of F (4)
0 are non-trivial if and only if exactly ONE of the following

conditions is satisfied:
1. the span of 1, A1 and A2 is R + Rj + Rk
2. the span of 1, A1 and A2 is a plane R + Ru for some unit vector u that is

orthogonal to i
3. the span of 1, A1, A2 and A3 is still R + Rj + Rk

Proof. The five properties and the first of the non-trivial triplet come from avoid-
ing obvious triviality and from Farouki’s numbers of which there are seven, when
studying F (4)

0 . Here again the span of 1, A1 and A2 being R + Rj + Rk gives us
non-triviality.
If the span of 1, A1 and A2 is instead included in some plane R+Ru for some unit
vector u that is orthogonal to i, then the second Farouki number, which implies
A3 and i and orthogonal, also implies A3 is either an element of this plane or the
if it joins our three elements the new span of 1, A1, A2 and A3 is still R+Rj+Rk.
If it is the element of the plane, we are forced into non-triviality. However the latter
along with the third through sixth Farouki’s numbers implies triviality instead.
From here we can be the unique form of theorem - a triplet of non-trivialising
conditions that destructively intefere.

Corollary 27. By using Lemma 5 again we get A4 = B4 − 4B3 + 6B2 − 4B1 + 1,
A3 = 4B3 − 12B2 + 12B1 − 4, A2 = 6B2 − 12B1 + 6, A1 = 4B1 − 4. This allows us

15



to write a version of the Theorem for when the polynomial is written as C times a
polynomial in the Bernstein basis. The five properties of the first list become:

1. C, B1, B2, B3, B4 ∈ F and C is nonzero
2. the span of B1 − 1 and B2 − 2B1 + 1 is R + Rj + Rk
3. the component of B3 − 3B2 + 3B1 − 1 along i is 2⟨B1 − 1, (B2 − 2B1 + 1)i⟩
4. B4−4B3+6B2−4B1+1 is orthogonal to (B2−2B1+1)i and (B3−3B2+3B1−1)i

and its component along i is 8⟨B1 − 1, (B3 − 3B2 + 3B1 − 1)i⟩
5. ⟨B1 −1, (B4 −4B3 +6B2 −4B1 +1)i⟩ = 2⟨B2 −2B1 +1, (B3 −3B2 +3B1 −1)i⟩

The three properties of the second list become:
1. the span of 1, B1 − B0 and B2 − B0 is R + Rj + Rk
2. and span of 1, B1 − B0 and B2 − B0 is a plane R + Ru for some unit vector

u that is orthogonal to i
3. the span of 1, B1 − B0, B2 − B0 and B3 − B0 is still R + Rj + Rk

Theorem 28. For all n ≥ 5, F (n)
0 always contains at least one non-trivial element.

Proof. C(t) = (n − 2)itn + nktn−1 + jt + 1 is an example of one, because we always
get ⟨(2 − n)ntn−1 + n(n − 1)jtn−2 − k, (n − 2)itn + nktn−1 + jt + 1⟩ = 0.

4.3 Observations
There are several observation we have, when it comes to finding C(t) ∈ F (N)

0 of
degree N . If we take C(t) = C(∑︁N

i=1 Ait
i + 1), then we always have the conditions

A1, A2 ∈ R + Rj + Rk and AN is perpendicular to AN−2i and AN−1i. If we wish
to find the coefficients An, then we probably should not set more then N −⌈N−1

4 ⌉,
because we have N + 1 quaternion coefficients and 2N − 2 conditions. This may
be an area of potential research.
Also if we have C(t) ∈ F (N)

0 and wish to find C(t) + AN+1t
N+1 ∈ F (N+1)

0 , then we
are always required to satisfy N + 1 new conditions (per the lemma the N − 1
others are already satisfied). This seems to imply a possibility of always finding
AN+1 for N ≤ 3, but beyond it this is unlikely in general and possibly at all. This
could be another avenue of research into characterizing RMPHs.
Before our work moved in a more general direction, we considered whether what we
called Farouki’s triangle may have some relationship to functions that seemingly
emulate Pascal’s triangle or some degenerate form of those. We aren’t certain what
research into this area could uncover, but it is a possibility for future research as
well.
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5. Characterisation of RMPHs of
Class (2,2)
Theorem 29. If we have a quaternion polynomial

C(t) = B2t
2 + 2B1t(1 − t) + B0(1 − t)2

with non-zero B0, then a RMPH of degree (2,2) exists if these Bernstein basis
coefficients satisfy

2B1iB∗
1 = B2B∗

0 − B0B∗
2 = 2vect(B2iB∗

0). (5.1)
Proof. Since (5.1) does not change, when we apply multiplication by a quaternion,
and B−1

0 = B∗
0

|B0|2 is defined, we can make use of

B2t
2 + B1t(1 − t) + B0(1 − t)2 =

(︂
B2B−1

0 t2 + B1B−1
0 t(1 − t) + (1 − t)2

)︂
B0

and without loss of generality only study instances of second degree polynomials,
where B0 = 1. Now (5.1) says that B1iB∗

1 equals the vector part of B2i. Let’s take
B1 freely and real numbers U, V, P, Q, such that

B1 = U + V i + P j + Qk.

Now we also take a real number X, so that
X = B1iB∗

1 − B2i.
We can then derive that our condition demands that B2 must be of the form
B2 = (X − B1iB∗

1)i = (U2 + V 2 − P 2 − Q2) + Xi + 2(UP − V Q)j + 2(UQ − V P )k
and so we need only to find a pair of polynomials that satisfy (3.5) to prove the
implication in this direction. The pair that does this is:

a(t) = ||B1||2t2 + 2U(1 − t)t + (1 − t)2

b(t) = Xt2 + 2X(1 − t)t

Corollary 30. By using our Lemma 5 on polynomial forms and its inverse matrix
for degree 2 we get B2 = A2 + A1 + A0, B1 = 1

2A1 + A0 and B0 = A0. This allows
us to write a version of the Theorem for C(t), when written in the monomial basis
with a non-zero A0. After clearing the fraction, expanding and gathering, the
condition takes the form

A1iA∗
1 + 2(A0iA∗

1 + A1iA∗
0) + 4A0iA∗

0 =
= 2(A2A∗

0 − A0A∗
2) + 2(A1A∗

0 − A0A∗
1)[+2(A0A∗

0 − A∗
0A0)] =

= 4vect(A2iA∗
0) + 4vect(A1iA∗

0)[+4vect(A0iA∗
0)]

The modifying polynomials are

a(t) = (1 − t)2 + scal[A1 + 2A0](1 − t)t + ||12A1 + A0||t2

b(t) = −2scal[(A2 + A1 + A0)i](1 − t)t − scal[(A2 + A1 + A0)i]t2
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6. Gallery of RMFs
These four example were previously presented in works [2] and [4].

Example 31. If we take C(t) = t2 + (−1 + 2i − 2k)t − 64
41 + 28

41j + 50
41k, we can use

the pair a(t) = t − 1 and b(t) = 2 can transform this into a hodograph:

x′(t) = t4 − 2t3 + 87
41t2 + 8t + 812

1681

y′(t) = −4t3 + 264
41 t2 + 268

41 t − 6400
1681

z′(t) = −384
41 t2 + 256

41 t + 3584
1681

Figure 6.1: Example 31: On the left we have the curve with five example frames. On
the right we see the Unit Sphere and the curves traced by frames

Example 32. If we take C(t) = t2 + (−2 + i + 2j + k)t − 10
9 − 25

9 j − 20
9 k, we can

use the pair a(t) = t − 2 and b(t) = 1 can transform this into a hodograph:

x′(t) = t4 − 4t3 − 20
9 t2 + 20t + 925

81

y′(t) = 2t3 − 40
9 t2 + 10

9 t + 400
81

z′(t) = −4t3 + 140
9 t2 − 100

9 t − 500
81

.
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Figure 6.2: Example 32: On the left we have the curve with five example frames. On
the right we see the Unit Sphere and the curves traced by frames

Example 33. If we take C(t) = 21t2+(21−21i−42j−42k)t−142−63i−34j+94k,
we can use the pair a(t) = t − 2 and b(t) = 1 can transform this into a hodograph:

x′(t) = 441t4 + 882t3 − 8610t2 + 7434t + 14141

y′(t) = −3528t2 − 25032t + 60496

z′(t) = −1764t3 + 4956t2 + 11844t − 21500

Figure 6.3: Example 33: On the left we have the curve with five example frames. The
actual hodograph has been scaled down by 10000, so the frames are visible. On the
right we see the Unit Sphere and the curves traced by frames
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Example 34. If we take C(t) = (7−19i−26j−2k)t2+(−22+14i+16j+12k)t+10,
we can use the pair a(t) = 27t2 − 22t + 10 and b(t) = −19t2 + 14t can transform
this into a hodograph:

x′(t) = −631t4 − 260t3 − 327t2 − 440t − 156

y′(t) = 960t4 − 1080t3 − 120t2 + 240t

z′(t) = 440t4 − 1880t3 + 1560t2 − 320t

Figure 6.4: Example 34: On the left we have the curve with five example frames. Here
again the hodograph has been scaled, so the frames are visible. On the right we see the
Unit Sphere and the curves traced by frames.
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Conclusion
We have introduced an alternative view of the Pythagorean hodograph in Defini-
tion 13 based on the desire for an axis of its frame to always point in the same
direction as its tangent, which possibly opens a new way to study how rotation
minimizing motions fit into the wider space of spherical motions. We then re-
viewed a categorization of RMPHs based on Farouki et al’s study through what
we called ”Farouki’s numbers,” which are defined in (4.1) from the RMPH’s quater-
nion polynomial. During this chapters we also pointed out possible future paths
of research.
In the next chapter we presented a theorem about second degree polynomials
derived from another work Farouki. We have shown that one implication can
be proven relatively simply using quaternions, which is distinct from the original
proof using complex numbers. Specifically if a second degree polynomial fullfils
(5.1), then it is rotation minimizing. In this and all previous chapters we have
also derived collararies to theorems, which have certain assumptions on whether a
quaternion polynomial is in Bernstein basis or in the monomial basis, in the other
of the two bases.
We would like to undertake further study of categorization of RMPHs and possi-
ble relationships between what we have termed ”Farouki’s numbers” and functions
similar to Pascal’s triangle to look for a potential simplification of the process dis-
covered by Farouki et al, if such is possible.
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