FACULTY
OF MATHEMATICS

AND PHYSICS
Charles University

BACHELOR THESIS

Filip Kastl

An alternative SSA construction
algorithm for GCC

Department of Applied Mathematics

Supervisor of the bachelor thesis: doc. Mgr. Jan Hubicka, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

Author’s signature

il

Dedication. I would like to thank Jan Hubicka for putting much of his time into
guiding me. I would also like to thank my close ones for cheering me on even
when I felt overwhelmed.

il

iv

Title: An alternative SSA construction algorithm for GCC

Author: Filip Kastl

Department: Department of Applied Mathematics

Supervisor: doc. Mgr. Jan Hubicka, Ph.D., Department of Applied Mathematics

Abstract:

SSA form is a very important concept in compiler internal code representation.
®-functions are an integral part of SSA form. Braun, Buchwald, Hack, Leif3a,
Mallon and Zwinkau introduce a new algorithm for SSA construction and another
related algorithm for reducing the number of ®-functions. These algorithms are
not yet implemented in the GCC compiler.

Firstly, we introduce, implement and test a basic code generation API based on
the SSA construction algorithm. We list the possible extensions and usecases
of the API. Then we implement the ® optimization as a standalone pass. We
use it to measure the number of redundant ®-functions produced by other GCC
passes. Finally, we conclude that GCC would benefit from including both of these
algorithms.

Keywords: compiler, SSA form, optimization

vi

Contents

Introduction|
1 Background|
(1.1 GIMPLE intermediate language|
(1.2 Optimization passes|
(1.3 Control Flow Graph|
[1.4 Static Single-Assignment Form|.
[1.4.2 Minimal and pruned SSA|.
1.5 SSA construction algorithm motivation|
g
[1.5.1 Value numbering| .
[1.6

®-elimination algorithm motivation|

2 Overview of implemented algorithms|

1

SSA construction algorithm overview|

R.2

®-elimination algorithm overview|

[3 A new code generation API|

[3.1 Filling and sealing|
3.2 Memory|
[3.3 Example code generation| .

[4 Implementation|

4.1 Implementation of the SSA construction algorithm|
[4.1.1 Appending statements and the algorithm|.
[4.1.2 Finalize: From Hack representation to GIMPLE|(.
[4.1.3 Why use a custom representation?|
[4.2 Implementation of the ®-elimination algorithm|

5 Resul [qG onl
[5.1 Applying Hack APIto GCC|.

O 0 I NN G w

— =
o O

13
13
17

21
23
24
24

[5.1.1 Optimization pass intossal
[5.1.2 Insertingcodel.

[5.2 Measuring ®-elimination eftectivity in GCC|

[Conclusion|

[Bibliography|

A" Building the modified GCC|

35
36
37

39

41

43

Introduction

Before a program can be executed it has to be compiled. Compilation is the process
of translating source code written in a programming language to instructions
executable by a computer. Compilers are programs that compile other programs.

Compilers are usually able to optimize code during compilation. These opti-
mizations are not done over source code text and only some of them are done over
machine code. They are usually done over some intermediate representation [1].

Compilers build data structures over the intermediate representation to help
with optimizations. Among others there are the control flow graph (CFG) and
the static single-assignment (SSA) form. Both of these structures are crucial for
modern compilers [1].

The GNU Compiler Collection (GCC) is currently one of the most popular
compilers [2]. It implements a traditional SSA construction algorithm from
Cytron, Ferrante, Rosen, Wegman, and Zadeck [3].

Braun, Buchwald, Hack, Leifa, Mallon, and Zwinkau [4] introduced a new
algorithm for SSA construction. Compared to the traditional algorithm it does
not require the whole CFG to be constructed beforehand. It can therefore be used
while we are building an intermediate representation and its CFG.

A part of the SSA construction algorithm is a cleanup phase. It deals with
®-functions which are structures present in SSA form. We expect that this cleanup
phase will be useful as a standalone ®-function optimization algorithm.

The goal of this thesis is to evaluate the utility of the new SSA construction
algorithm and the ®-function optimization algorithm in GCC.

Using the new SSA construction algorithm we design an API for generat-
ing intermediate representation in SSA form — more specifically the GIMPLE
intermediate language in SSA form. The long-term goal is to eliminate non-SSA
GIMPLE from GCC which the API makes possible. That would however be out of
scope for a bachelor thesis so instead we implement a basic version of the API
and showcase that it can substitute the traditional SSA construction algorithm in
simple cases. We also discuss other usecases for the API for the time before the
long-term goal is achieved.

As the ®-function optimization is a part of the SSA construction algorithm

3

we also implement it. We take this opportunity to measure how effective this
algorithm is as a standalone optimization to surprisingly good results.

« Chapter|l|reviews the theory of compilers and the details of GCC needed
to understand the thesis.

« Chapter 2| describes the algorithms that we aim to implement.
« Chapter [3|describes the code generation API we designed.

« Chapter 4 describes how we approached the implementation of the API
and the algorithms.

+ Chapter [5|showcases GCC using the APIL. Here we also measure the utility
of the ®-function algorithm.

Chapter 1

Background

In this chapter we review the theoretical concepts and GCC codebase details
necessary to understand this thesis.

1.1 GIMPLE intermediate language

Compilers use intermediate representation of code for most optimizations. This
intermediate representation is called an intermediate language (IL). GCC uses
three intermediate languages—GENERIC, GIMPLE and RTL. When compiling
with GCC we represent the program first in GENERIC, then we convert into
GIMPLE, then into RTL and only then we proceed to generating machine code
[2]. In this thesis we will be dealing only with the GIMPLE IL.

In GIMPLE, we represent statements by the gimple class and its subclasses.
There are different types of statements, for example assignment statements, func-
tion call statements, return statements, conditional statements and more. See
Listing

Each statement has at most 3 operands. There are exceptions, for example
function calls. We represent an operand of a GIMPLE statement by the tree

Listing 1 In order: assignment, call, return and conditional.

a=>b + 2;
a = fun (a, b, 4);
return a;
if (a < b)
goto <bb3>;
else
goto <bb4d>;

structure. The tree structure serves a lot of purposes in GCC. In this thesis we
will consider tree representation of variables, SSA names (we talk about SSA
names later), constants and memory accesses. More details about GIMPLE can be
found in GCC 8.0 GNU Compiler Collection Internals, Chapter 12 [2].

We call the operands of a statement the right hand side (rhs) of the statement.
If the statement assigns to a variable or an SSA name x, we call this x the left hand
side (lhs) of the statement.

1.2 Optimization passes

In GCC the process of compilation is done in steps called passes [2, Chapter 9].
A pass gets some representation of the program being compiled as its input and
produces a different form of the program. There are optimization passes whose
goal is to optimize the program in some way. For example the copy propagation
pass, the dead code elimination pass and the full redudancy elimination pass are
optimization passes. There are also passes that convert the program from one
representation to another—for example from GENERIC to GIMPLE. We say that
those passes generate code. Some passes may insert fragments of code into the
program. That is also code generation.

We define the order in which passes are run in a pass queue.

GCC implements both interprocedural passes that work on multiple functions
at once and intraprocedural passes that work on a single function at a time. In
this thesis we will only focus on intraprocedural optimizations. When refering to
the function that we are currently modifying we will use the name cfun since
that is the name used in the GCC codebase.

1.3 Control Flow Graph

A control flow graph (CFG) is a standard way to organize itermediate representa-
tion.

Definition 1.1 (Basic block [3]). The statements of a program are organized into
(not necessarily maximal) basic blocks, where control-flow enters a basic block at
its first statement and leaves the basic block at its last statement.

Definition 1.2 (Control Flow Graph (CFG) [3]]). A control flow graph is a directed
graph whose nodes are the basic blocks of a program and two additional nodes, Entry
and Exit. There is an edge from Entry to any basic block at which program can be
entered, and there is an edge to Exit from any basic block that can exit the program.

The other edges of the graph represent transfers of control (jumps) between the basic
blocks.

Listing 2 GIMPLE code

% m;
m;

=B =
[e]
o

M
M;
foo;

Listing 3 The same GIMPLE code in SSA form

M_3 % m_4;
= m_4;
M_5;
foo_6;

M_
fo
m_
M_

0 N o O»
nn o

Definition 1.3 (Successors and predecessors [3]]). For each node X, successor of
X is any node Y with an edge X — Y in the graph. Similarly for predecessors.

1.4 Static Single-Assignment Form

Many optimizations in GCC rely on the program being in static single-assignment
form.

Definition 1.4 (Static Single-Assignment Form (SSA) [1]). An intermediate repre-
sentation of a program is in static single-assignment form if and only if we assign
to each variable name only once.

Since programs usually assign to a variable multiple times we distinguish
between different left hand side occurences of a variable by assigning unique SSA
names to these occurences. Each SSA name corresponds to a variable. However a
variable can have multiple SSA names. When talking about SSA names of variables
we usually subscript numbers to the names of the variables. See Listings[2and|[3for
examples of code before and after assigning SSA names. Note the two assignments
to variable M.

1.4.1 &-functions

It is possible and quite common that a variable is defined in two different branches
of the program. In the example [1] in Listing [4] we have two branches where the
variable x gets defined. Each of these definitions of x will get a different SSA name.
Which of the SSA names should we use for the x operand in the last statement?

Listing 4 A conditional in non-SSA form

if (flag)
x = -1;
else
x = 1;
y = X * a;

Listing 5 A conditional in SSA form

if (flag)
x_1 = -1;
else

X—
x_3

In this situation we combine multiple definitions using a ®-function. Operands
of ®-functions are SSA names. A ®-function evaluates to the operand that corre-
sponds to the path we took to get to the ®-function. In Listing [5/the ®-function
evaluates to x_1 if we took the true branch or to x_2 if we took the false branch.

1.4.2 Minimal and pruned SSA

For a given program it is possible to create different SSA representations. However
these representations can differ in the number of ®-functions. We want the
compiler to work as efficiently as possible. Therefore we want to minimize the
number of ®-functions that we work with. Here are the definitions of pruned
SSA form and minimal SSA form - restrictions on the number of ®-functions.

Definition 1.5 (Pruned SSA form [4]]). A program is said to be in pruned SSA
form if each ®-function (transitively) has at least one non-® user.

Definition 1.6 (Path convergence [4]). Two non-null paths in CFG X, X, ..., X
and Yy, Yy, ..., Yg are said to converge at a block Z if and only if the following
conditions hold:
Xo# Y
X] = Z = Yk
Xi=Y)=(3G=Jvk=K)

Definition 1.7 (Necessary ®-function [4]). A ®-function for variable v is necessary
in block Z if and only if two non-null paths in CFG X, ..., Z and Y, ..., Z converge at a
block Z, such that the blocks X andY contain assignments to v.

Definition 1.8 (Minimal SSA form [4]). A program with only necessary ®-functions
is in minimal SSA form

Note that the "minimal” SSA form as we have defined it does not have to be
truly minimal and that even "necessary” ®-functions as we have defined them
may be redundant in some situations. These are just the standard names for these
definitions.

1.5 SSA construction algorithm motivation

We will call the process of converting GIMPLE (or any other IL) into SSA form
SSA construction. This involves assigning SSA names and computing placements
of ®-functions.

Cytron, Ferrante, Rosen, Wegman, and Zadeck [3] present an efficient SSA
construction algorithm. This algorithm is widely known and used [5, 6]. GCC
currently implements this algorithm. However, over the years researchers found
other SSA construction algorithms. One of them is an algorithm from Braun,
Buchwald, Hack, Leifla, Mallon, and Zwinkau [4]. The algorithms from Cytron et
al. could be described as operating in forward direction and the algorithm from
Braun et al. could be described as operating in backward direction [4]] so we will
refer to these algorithms as the forward algorithm and the backward algorithm [4].
These are the only SSA construction algorithms we will consider in this thesis.

Both the forward and the backward algorithms are able to produce SSA form
that is minimal and pruned. Both articles contain a proof of this [4, 3]. However,
forward algorithm requires the whole input program to already be represented
as a CFG in non-SSA form [4]. In contrast, the backward algorithm works even
on incomplete CFG. It is therefore possible to use it while still generating code
and building CFG.

Our long-term goal is to eliminate usage of non-SSA GIMPLE in GCC. Cur-
rently, GCC converts GENERIC into GIMPLE, then it constructs CFG and then it
builds SSA. It could be possible to go from GENERIC directly into GIMPLE CFG
in SSA form. This would save time during compilation and would make the GCC
codebase more elegant. This thesis is an effort towards this goal.

Another application of backward algorithm could be the GCC just-in-time
(JIT) compilation framework. JIT compiler usually does not have the whole CFG
available. Therefore, using the forward algorithm is not possible and the JIT
framework currently does not use SSA. With the backward algorithm it may
be possible to use SSA in GCC JIT. That would enable us to use more powerful
optimizations in GCC JIT.

We will not refer to the forward algorithm again in the rest of the thesis.
Therefore let us switch to calling the backward algorithm (from Braun et al.) just

9

Listing 6 Local value numbering: Source program.

a = 42;

b = a;

c = a + b;
a = c¢c + 23;

Listing 7 Local value numbering: SSA form

1: 42
2: v_1 + v_1
3: 23
4: v_2 + v_3

the SSA (construction) algorithm.

1.5.1 Value numbering

The authors of the SSA construction algorithm [4] formulate it not in terms of
SSA names but in terms of value numbers [7]. Value numbering is a standard
technique for eliminating redundancies in a program. We assign numbers to
expressions—the same numbers to equivalent expressions [8]. Instead of refering
to variables we then refer to value numbers of expressions. The authors of the
SSA algorithm use value numbering to model SSA construction. See Listing[q]
and Listing

1.6 ®-elimination algorithm motivation

The authors of the SSA construction algorithm prove that it outputs SSA form that
is pruned and minimal [4]. However, this proof assumes that we include a clean
up phase. Without the cleanup the algorithm produces minimal SSA on most but
not all CFGﬂ The cleanup phase is handled by another algorithm introduced
in the same article. It can be viewed as a part of the SSA construction algorithm
or as a separate algorithm. We will call this algorithm the (strongly-connected
component based) ®-elimination algorithm. As the name suggest it makes use of
the concept of strongly connected components (SCCs) in graphs.

We implement the ®-elimination algorithm for multiple reasons. Firstly,
we would like our implementation of the SSA algorithm to produce minimal

The algorithm does not create minimal SSA form in the case of irreducible CFG. This type of
CFG is rare [9] but we would like to handle it nontheless

10

SSA. Another reason is that we expect that this algorithm will prove useful as
a standalone optimization in GCC. When converting to SSA, GCC produces
SSA form that is minimal and pruned. However, other optimizations break this
property and redundant ®-functions accumulate over time. The ®-elimination
algorithm could be able to remove a significant portion of them if placed into the
right place in the pass queue. In this thesis we measure (see Chapter[5) how many
redundant ®-functions get found by the ®-elimination algorithm. Aside from
being a metric of the effectiveness of this algorithm outside the original context,
these measurements may be insightful for understanding how optimization passes
in GCC interact.

11

12

Chapter 2

Overview of implemented
algorithms

In this chapter, we describe the SSA construction algorithm and the ®-elimination
algorithm as they are introduced in Braun, Buchwald, Hack, Leifla, Mallon, and
Zwinkau [4].

2.1 SSA construction algorithm overview

See Listings[8|and [9] for the pseudocode of the SSA construction algorithm from
the original article [4]].

The algorithm is split into multiple functions. The functions readVariable,
writeVariable and sealBlock form an API for code generation. The algorithm
ensures that the resulting code is in SSA form. It does not actually assign any
SSA names. It assigns value numbers instead. However, as we noted in Chapter
SSA names and value numbers are analogous.

Be aware that to use the API correctly we must generate code only by
appending statements to basic blocks. Inserting statements in the middle of a
basic block is not allowed. It is a limitation of the algorithm. We did not, however,
find it to be a major inconvenience.

For now let us also assume that all the statements we are generating have a
left hand side.

The function readVariable translates variables to value numbers. Let us
assume we want to append a new statement to a basic block. If the statement has
any variables as operands, the operands have to be converted to value numbers.
Therefore we call readVariable on all operands.

Whenever we append a statement we must call the writeVariable function
to register that this statement is the new definition of its left hand side variable.

13

Listing 8 SSA construction algorithm pseudocode part 1

local value numbering

writeVariable (variable, block, value):
currentDef [variable] [block] <- value

readVariable (variable, block):
if currentDef [variable] contains block:
local value numbering
return currentDef [variable] [block]
global value numbering
return readVariableRecursive(variable, block)

global value numbering

readVariableRecursive (variable, block):
if block not in sealedBlocks:
Incomplete CFG
val <- new Phi(block)
incompletePhis [block] [variable] ¢« val
else if |block.preds| = 1:
One predecessor: No phi needed
val <- readVariable(variable, block.preds[0])
else:
Break potential cycles with operandless phi
val <- new Phi(block)
writeVariable (variable, block, val)
val <- addPhiOperands(variable, val)
writeVariable(variable, block, val)
return val

addPhiOperands (variable, phi):
Determine operands from predecessors
for pred in phi.block.preds:
phi.appendOperand(readVariable(variable, pred))
return tryRemoveTrivialPhi (phi)

14

Listing 9 SSA construction algorith pseudocode part 2

detect and recursively remove a trivial phi function

tryRemoveTrivialPhi (phi):
same <- None
for op in phi.operands:

if op = same || op = phi:
continue # Unique value or selfreference
if same != None:

The phi merges at least two values: not trivial
return phi
same <- op
if same = None:
same <- new Undef ()
Remember all users except the phi itself
users <- phi.users.remove(phi)
Reroute all uses of phi to same and remove phi
phi.replaceBy (same)

Try to recursively remove all phi users,
which might have become trivial
for use in users:
if use is a Phi:
tryRemoveTrivialPhi (use)
return same

handling incomplete CFG

sealBlock (block):
for variable in incompletePhis[block]:
addPhiOperands (variable,
incompletePhis [block] [variable])
sealedBlocks.add(block)

15

Keeping track of definitions is crucial to correctly translating variables into value
numbers.

How exactly does readVariable know which SSA name to choose for which
occurence of a variable? Suppose we have a statement s in a basic block b and
its operand o. Operand o is an occurence of a variable v. To preserve the original
meaning of the program, we want to find the last (in terms of program execution
order) assignment a to v (its value number). The algorithm approaches this task
by searching backwards from the location of statement s.

Firstly, let us consider what happens in the context of a single basic block.
Since a basic block is just a list of statements, we may simply traverse the list
backwards until we find a. However, thanks to writeVariable we already have
a cached. We call the mapping between variables and their latest definition
currDef. We keep this mapping for each block.

Let us now consider what happens if a is not present in the same basic block
as s. In that case we recursively search the predecessors of b. We use the function
readVariableRecursive for this. Suppose that recursive calls on predecessors
all returned an assignment. We only wanted one assignment a but now we have
assignments ay, ay, ..., a,. Therefore we add a ®-function ®(ay, ay, ..., a,) to b. This
®-function now serves as a.

But sometimes the ®-function is not needed—it may be trivial:

Definition 2.1 (Trivial ®-function [4]). We call a ®-function p trivial if and only
if it just references itself and one other value v any number of times.

Any occurence of a trivial ®-functions p as an operand of a statement can be
replaced by an occurence of vsince p always evaluates to v. We therefore remove
all trivial ®-functions as soon as we can. A very common case where we would
end up with a trivial ®-function is when there is only one predecessor. We do
not bother to create a ® in this situation. We just pass on the statement that we
got from the recursive call on the single predecessor.

Before we explain how the algorithm handles incomplete CFG, let us introduce
the concepts of filled and sealed blocks. A basic block is filled when no additional
statements will be added to it. We require that a block is filled before any
edges leading from it are added. We seal a block (this is an explicit action)
when no additional edges leading into it will be added.

The algorithm is designed to work with incomplete CFG. With incom-
plete CFG, it is possible that the following situation arises: We are calling
readVariable on a variable v from a basic block b. Variable v does not have
a definition in b and b is not sealed. If b was sealed, we would just query its
predecessors and created a ®-function. However at this moment, we have no way
of determining all operands that the ®-function will have in the final generated
code. This situation is quite common. It arises every time we are building a

16

loop. To solve it we put an operandless ®-function in b. This ®-function now
defines v for this block. We keep track of operandless ®-functions of each basic
block. When a basic block is sealed and we find that there is an operandless ® for
variable vwe fill in its operands. We are able to do that now since all predecessors
are now present.

2.2 &-elimination algorithm overview

In order for the SSA construction algorithm to produce minimal SSA form on
every CFG we have to run the ®-elimination algorithm. Let us describe how it
operates. But first we have to introduce some definitions and a lemma.

Definition 2.2 (Redundant set of ®-functions [4]). A non-empty set P of ®-
functions is redundant if and only if the ®-functions just reference each other
or one other value v.

Definition 2.3 (Strongly-connected component [10]). Let <> be a binary relation
on the vertices of a graph such that x <> y if and only if exists an oriented path both
from x to y and from y to x.

Strongly-connected components (SCCs) are the subgraphs induced by the
equivalence classes of <.

Definition 2.4 (Data flow graph on ®-functions). Data flow graph is a directed
graph G = (V, E) whereV is the set of all -functions in the program and an edge
leads fromu € Vtov € Vif and only if u references v.

Lemma 2.5 ([4]). Let P be a redundant set of ®-functions with respect tov. Then
there is a strongly-connected component S C P that is also redundant.

Proof. Consider the condensation P’ of P (we contract each SCC into a single
vertex). Since P’ is acyclic [10] it has a leaf s”. Because s’ is a leaf, the ®-functions
in the corresponding SCC S may only refer to v or each other and therefore S is
redundant. [

We have now defined which ®-functions we consider to be redundant. The
purpose of the PHI removal algorithm is to remove these ®-functions. The process
makes use of Lemma [2.5]

The general idea is that we search for strongly-connected subgraphs of G
which are also redundant and remove them. Once there are no connected redun-
dant subgraphs, by Lemma [2.5|there are no redundant sets of ®-functions.

For pseudocode of the ®-elimination algorithm see Listing[10] The algorithm is
supposed to be run by calling removeRedundantPhis on the set of all ®-functions
in the program.

17

Listing 10 ®-elimination algorithm pseudocode

proc removeRedundantPhis (phiFunctions):
sccs <- computePhiSCCs(inducedSubgraph (phiFunctions))
for scc in topologicalSort(sccs):
processSCC(scc)

proc processSCC(scc):
inner <- set()
outerOps <- set()
for phi in scc:
isInner <- True
for operand in phi.getOperands():
if operand not in scc:
outerOps.add (operand)
isInner <- False
if isInner:
inner.add (phi)

if len(outerOps) = 1:
replaceSCCByValue (scc, outerOps.pop())

else if len(outerOps) > 1:
removeRedundantPhis (inner)

The function removeRedundantPhis takes a set of ®-functions as its input.
It finds redundant SCCs in the set and removes them from the program. We now
describe how the function achieves this. Firstly, the function computes SCCs in
the data flow graph induced by the input ®-functions. Then it processes each
SCC in a topological order. This is done by calling processSCC on the SCC.

The function processSCC takes a set of ®-functions which form an SCC as
its input. Its purpose is to determine if the SCC is redundant (in the context of
the whole program). If it is then the function removes the SCC from the program.
Otherwise, the function attempts to find and remove redundant SCCs inside the
input SCC by calling removeRedundantPhis. The algorithm is recursive.

How do we know that an SCC Pis redundant? We collect the set of values that
do not belong into P but are present as operands of ®-functions from P. We call
this set outerOps. If the size of this set is bigger than 1, Pis not redundant. If the
size of this set is exactly 1, Pcan be removed. If the set is empty, the corresponding
basic blocks are unreachable. The SCC is skipped in this case.

Which ®-functions from SCC P do we consider when searching for inner
SCCs? We consider those ®-functions that reference only other ®-functions from
P. We collect them into the inner set.

What does it actually mean to remove an SCC? Some statements may use

18

the values computed by the ®-functions as their operands. If we just deleted the
®-functions, we would be left with statements with undefined operands. However,
note that we only delete redundant sets and that redundant sets of ®-functions
always have a single value v originating outside the set. Therefore, each ®-
function in the set evaluates to v. We can replace all references to the ®-functions
in the program to references to v. This is what the function replaceSCCByValue
does. Braun et al. [4]] do not provide pseudocode for this function. Its meaning is
clear.

19

20

Chapter 3

A new code generation API

We introduce a new API for generating GIMPLE code in SSA form. We call this
API the Hack AP We do not expose readVariable and writeVariable as
does the API from the SSA construction algorithm article [4]. Value numbering
and other inner workings of the SSA construction algorithm are hidden behind
the Hack API. We use the Hack API while building CFG to append statements to
basic blocks. The API produces GIMPLE code in SSA form that is minimal and
pruned.

It is also possible to modify the API to apply light optimizations to the code
while constructing it [4, Section 3.1]. We discuss these on-the-fly optimizations
in Chapter

To start generating GIMPLE code with its API, create an instance of class
hack_builder. Its public methods form the APL

Before we create a statement we first have to represent its operands. We do
that using hvar structures. There are multiple types of hvars:

« LOCAL represents a local variable of cfun (the current function we are
compiling). It is created by calling the method new_local. Specifying a
GCC VAR_DECL tree means creating a named variable. Otherwise, a GCC
type tree has to be specified and the result is an anonymous variable.

« PARAM is similar to LOCAL. It represents a cfun parameter. It cannot be
anonymous. We create it by calling new_param. We have to specify a GCC
PARM_DECL tree.

« INVAR represents a variable or a constant that we do not assign an SSA

'In programmer jargon “hack” usually means a solution that is inelegant or clumsy. We do
not want to say that about the API. When deciding how to name the API one of the names of the
authors of the SSA construction algorithm simply caught our eye. We did not think of a better
name since so we kept this one.

21

name to. For example we may already have an SSA name and want to
use it in the code we are generating. Or— more often—INVAR represents a
constant like 5, 0 or true. We create it by calling new_invar.

» MEMORY represents an access to memory. We will discuss memory later in

this chapter in Section

« OUTVAR is used when mixing already existing code and code generated
through our API. How this is done will be shown in an example in Sec-
tion

Creating a statement and appending it happens as a single function call. We
always specify the basic block to which we are appending. Here are the methods
we use to append statements. GIMPLE has many more types of statements. We
aimed to implement a subset of GIMPLE that is big enough to showcase the
functionality of the APL

void append_assign (basic_block bb, enum tree_code code, hvar *left,
hvar *opl);

void append_assign (basic_block bb, enum tree_code code, hvar *left,
hvar *opl, hvar *op2);

void append_assign (basic_block bb, enum tree_code code, hvar *left,
hvar *opl, hvar *op2, hvar *op3);

Appends an assignment to variable left. The right hand side is an expression
with up to three operands. tree_code specifies the type of the expression (for
more details see GCC 8.0 GNU Compiler Collection Internals[2, Section 11.3]).

void append_cond (basic_block bb, enum tree_code pred_code,
hvar *left, hvar *right);

Appends a conditional.

void append_return (basic_block bb);
void append_return (basic_block bb, hvar *retval);

Append a return statement with or without the return value operand.

void append_call_vec (basic_block bb, tree fn, hvar *left,
const vec<hvar *> &args);

void append_call_vec (basic_block bb, tree fn,

const vec<hvar *> &args);

Appends a call to a function. Operands are passed in a vector.

22

hvar *append_outvar (basic_block bb, hvar *local);

A virtual statement that does not get translated into GIMPLE. Appending this
statement tells the Hack builder to compute an SSA name for an hvar even though
no GIMPLE statement using the SSA name may be generated. The purpose of
these statements will be explained in an example in Section [3.3]

hvar *append_handled_component (basic_block bb, tree ref,
vec<hvar *> &operands);

Another virtual statement that does not get translated into GIMPLE. It will get
explained later in Section

When we do not have any more statements to append, we call the method
finalize. Untill this point, hack_builder only remembered which statements
we wanted to append where. Now it actually creates SSA names and GIMPLE
statements and we are left with GIMPLE code in SSA form.

3.1 Filling and sealing

Filling blocks and sealing blocks are concepts which distinguish the Hack API
from other code generation APIs. We have to keep these concepts in mind when
using the APL

A block is filled when no more statements will get appended to it. We seal a
block when no more predecessors will get added. As formulated in the original
article [[4]] sealing is an explicit action. We use the function set_block_sealed
to seal a block. For Hack API we also decided to make filling an explicit action—a
call to set_block_filled. We did this to remind programmers to think about
filled blocks when using this APL

The original article [4] formulates this rule concerning filled blocks: We may
add successors only to filled blocks. The motivation behind this rule is that
when we seal a block we are sure that its predecessors already contain all their
statements and are able to provide variable definitions.

In GCC codebase it is currently much easier to use functions which split blocks
and split edges instead of creating blocks and edges manually. Splitting a block
means creating two blocks from one and linking them with an edge. Splitting an
edge means creating two edges from one and putting a new basic block between
them. Both of these operations however potentially create unfiled blocks with
successors. That conflicts with the rule. Thankfully we found out that the rule
can be made more lenient and allow us to first create the CFG structure and then
start appending statements.

23

We formulate a new version of the rule: We may only seal blocks whose
predecessors are filled. The same property as with the original rule holds:
When we seal a block its predecessors are filled and therefore are able to provide
variable definitions.

3.2 Memory

Let us talk about memory accesses. In GIMPLE we represent an access to memory
by ARRAY_REF, MEMORY_REF, COMPONENT_REF and other trees. The other trees
are rare so in this thesis we only support the listed ones. For our purposes a
memory access has two to three operandsﬂ The first operand may or may not
be another memory access. Memory accesses can nest into each other this way.
Each type of memory access has operands that are and operands that are not
important to building SSA.

When we want to append a statement with a memory access in it we first call
the function append_handled_component on the same block for each memory
access. We have to provide the memory access tree but with the important
operands marked with the error_mark_node tree. We also have to provide a
vector of hvars corresponding to the marked operands in order from the Oth
operand to the 2nd from the outermost tree to the innermost. If we already have
a memory access tree with some operands that are not valid SSA values we can
use the function extract_operands_to_be_renamed that collects the important
operands in the correct order and replaces them with error_mark nodes.

3.3 Example code generation

We showcase how to use the Hack API on a function that generates a fragment
of code. This function (gimple_divmod_fixed_value) already exists in GCC in
./gcc/value-prof . cc. We rewrote it to use the Hack API.

Suppose that we are compiling a program with a division statement. The
divisor is a variable. Further suppose we measured that the divisor has a high
probability of being a specific value. Suppose we want to divide by a constant
whenever we can. Therefore we insert a conditional. If the divisor truly equals
value we divide by value. Otherwise we divide by the divisor variable. We can
also do the same with a modulo statement. See Listing

We assume that the CFG is already created and looks as shown in Figure

?We do not support the last two operands of ARRAY_REF that are used for more advanced
array accesses.

24

bbl

TRUE
FALSE

bb2 bb3

y

Tbh’-’l

Figure 3.1 CFG structure

Listing 11 Code to be generated

if (op2 != value)
tmp = opl / op2;
else

tmp = opl / value;

Listing 12 Initializing the builder and creating hvars

hack_ssa_builder builder;

hvar *opl = builder.new_invar (gimple_assign_rhsl (stmt));
hvar *op2 = builder.new_invar (gimple_assign_rhs2 (stmt));
hvar *value_as_invar = builder.new_invar (value_as_ssa);

hvar *tmp = builder.new_local (optype);

25

Listing 13 Appending statements

/* bbl. x/

builder.set_block_sealed (bbl);

builder.append_cond (bbl, NE_EXPR, op2, value_as_invar) ;
builder.set_block_filled (bbl);

/* bb2 (false branch). x/

builder.set_block_sealed (bb2);

builder.append_assign (bb2, code, tmp, opl, value_as_invar);
builder.set_block_filled (bb2);

/* bb3 (true branch). */
builder.set_block_sealed (bb3);
builder.append_assign (bb3, code, tmp, opl, op2);
builder.set_block_filled (bb2);

/* bbd. */
builder.set_block_sealed (bb4d);
hvar *out = builder.append_outvar (bb4, tmp);
builder.set_block_filled (bb4);

We initialize the builder and create hvars. Since dividend op1 and divisor
op2 are already SSA values, we create an INVAR for each of them. We also create
an invar for value because it is a constant. We create a LOCAL for the quotient
tmp. Initialization of hvars is shown in Listing

Before appending anything to a basic block we mark it as sealed. After we have
appended all statements to a basic block we mark it as filled. This way we follow
the rule (Section that blocks must be sealed only after their predecessors
were filled. First we append a conditional statement to basic block bb1. Then we
append an assignment with division (or modulo) in it to block bb2 and then block
bb3. Appending statements is shown in Listing

We want to pass the value of tmp to the rest of the program into which we
are inserting the code fragment. However the SSA construction algorithm does
not know this and will not compute an SSA name for tmp at bb4. Therefore
we append a virtual OUTVAR statement to block bb4 to force the algorithm to
compute the SSA name. This is the standard way how we handle inserting code
into existing functions using the Hack APL

Now we are done with appending statements. We call the method finalize.
At this point the builder has placed GIMPLE statements at the locations
we specified. We retrieve the SSA that the variable tmp has in bb4 using
ssa_from_outvar. Now we free the memory taken up by the builder and the
Hack representation (this frees even hvars so the SSA value has to be retrieved

26

Listing 14 Finalization

builder.finalize ();
tree ret = builder.ssa_from_outvar (out);
builder.release ();

at this point). Finalization and memory freeing is shown in Listing

27

28

Chapter 4

Implementation

In this chapter we discuss the implementation details of the SSA construction
algorithm and the ®-elimination algorithm.
The SSA construction algorithm is implemented in the

./gcc/insert-gimple-ssa.cc
file. The ®-elimination algorithm is implemented in the

./gcc/scep.cc

file.

4.1 Implementation of the SSA construction algo-
rithm

The SSA construction algorithm works with value numbers. It would be clumsy
to emulate this using the standard structures which represent GIMPLE statements
and variables in GCC—the tree and gimple structures. Instead, before building
the final GIMPLE code with the function finalize, we use our own represen-
tation. We call it the Hack representation. This way we avoid the complexity of
extending the standard GCC structures and are able to implement the algorithm
more elegantly.

Hack representation mimics the GCC’s representation of GIMPLE to a degree.
Instead of representing variables, constants and memory acceses by different
kinds of trees, we use hvars (Hack variables). Instead of representing statements
by gstmts, we use hstmts (Hack statements). We call the process of translating
Hack statements into GIMPLE statements and translating value numbers into
SSA names commiting the statements and commiting the SSA names.

29

There are LOCAL, PARAM, INVAR, MEMORY and OUTVAR hvars. For explanation
of the types of hvars, see Chapter

Here is a list of the classes representing different types of statements. It
bears similarities to the set of GIMPLE statements. In comparison to GIMPLE,
Hack representation currently has fewer types of statements. This thesis aims
to implement only the generation of a subset of GIMPLE statements that is big
enough to showcase the functionality of the SSA algorithm.

« hstmt_with_lhs is an abstract class. Its meaning is explained bellow.

- hstmt_assign represents an assignment. hstmt_assign mimics the
GIMPLE assignment class gassign.

- hstmt_call represents a call to a function.

- thstmt_const is a virtual statement. Statements defining INVARs
are not part of the code we are generating. However, when using
INVAR as an operand, we need a value number. The value number
we use is the value number of this virtual statement. We also use
hstmt consts as default definitions of LOCALs and PARAMs.

- thstmt_handled_component is a virtual statement that represents
a memory access.

— hphi represents a -function.
« hstmt_cond represents a condition at the end of basic block.
» hstmt_return represents a return statement.

+ Thstmt_outvar is a virtual statement used when mixing already existing
code with code newly generated by the AP See Section [3.3|for an example.

Some statements have operands. Operands of statements are always value
numbers. Value numbers are represented as pointers to their defining
statements.

Some statements do not have their GIMPLE counterpart. Those are the virtual
statements (marked in the hierarchy with ¥). We do not commit virtual statements
to GIMPLE. Each type of virtual statement fulfills a special purpose instead (as
noted in the hierarchy).

Only statements that inherit from hstmt_with_lhs may (or may not) have
a left hand side. Other statements never have a left hand side. A statement that
has a left hand side does not store its value number in any explicit way. Its
value number is simply its address in memory. However, the statement stores
information about the variable it assigns to in the form of hvar.

30

4.1.1 Appending statements and the algorithm

How do we keep track of appended statements? We keep a hash map from basic
blocks that we encounter to structures of type hack_bb. hack_bb contains a list
of Hack statements and a seperate list of Hack ®-functions and additional data
relating to the specific basic block and the SSA construction algorithm.

When appending a statement we call read_variable for each hvar operan
The function read_variable is able to map hvars to value numbers that cur-
rently define them. In comparison with the original formulation of readVariable
we extended the function to also handle INVAR and MEMORY variables and default
definitions of variables. For these special cases an hvar sometimes contains a
pointer to a special virtual statement. Once we have a Hack statement with value
numbers for each of its operands we call write_variable which marks down
that in this basic block this statement currently defines the relevant hvar.

We implemented the algorithm as a recursive algorithm. It would have been
better to remove the recursion and use an explicit stack. However, for showcasing
that the algorithm can be implemented in GCC this implementation is sufficient.

4.1.2 Finalize: From Hack representation to GIMPLE

Let us describe what happens when the function finalize is called.

Firstly, we commit ssa names—we traverse all basic blocks and assign SSA
values to statements with a left hand side. We may traverse the blocks in any
ordelﬂ For statements that assign to a LOCAL or a PARAM we create a new SSA
name. For statements that assign to an INVAR we do not create a new SSA
name since each INVAR already has an SSA value (stored in its corresponding
hstmt_const). MEMORY Hack variables and hstmt_handled_component are han-
dled analogously. OUTVARs never occur as a left hand side. Once SSA names have
been commited, all statements with left hand side have a valid SSA value. There-
fore we now have a mapping from value numbers to SSA values.

After SSA names have been commited we commit the statements—we traverse
all basic blocks and translate Hack statements into GIMPLE statements. Since
we are now able to map value numbers to SSA names we can convert any Hack
statement into GIMPLE with SSA values as operands. Therefore we are once
again free to travers basic blocks in any order and commit all statements.

'read_variable and write_variable correspond to the readVariable and
writeVariable functions from the SSA construction algorithm

?This is helpful because we store basic blocks as keys in a hash table so they are not ordered
in any meaningful way.

31

4.1.3 Why use a custom representation?

Before moving on let us consider the choice to create a new representation. When
implementing value numbering passes it is a standard practice to use a custom
representation. It makes implementing value numbering optimizations easier. In
Section [5| we extend the Hack API with an on-the-fly optimization and we expect
that more optimizations will get added in future.

We are also able to keep our representation lightweight and allocate it as we
see fit. This way on-the-fly optimizations will remove unnecessary statements
before they are commited into GIMPLE and save memory and processing time.

4.2 Implementation of the ®-elimination algo-
rithm

Let us now move on to the implementation of the SCC-based ®-elimination
algorithm. This algorithm serves as a cleanup procedure for the SSA construction
algorithm. Without it there are some sidecases where the SSA construction
algorithm will not produce the desired (minimal and pruned) SSA form. We also
expect the algorithm to prove useful as a standalone optimization.

We implement this algorithm as an optimization pass working with GIMPLE
statements. We named this pass strongly-connected copy propagation (SCCPE

We could have implemented the algorithm on the Hack representation. The
advantage of this approach would be that ®-functions would get optimized before
they got commited into GIMPLE which would save time. The disadvantage is
that the ®-elimination could not be run idependently of the SSA construction
algorithm which is something we aim for. We want the ®-elimination to also
serve as a cleanup pass for when other optimization passes break the minimality
of SSA form. As we show in Chapter |5\ many ®-functions can be removed this
way.

The algorithm requires computing strongly-connected components. We chose
to compute SCCs using Tarjan’s algorithm [[11] because other passes in GCC also
implement it and it outputs SCCs in a reverse topological order which we just
reverse to get the topological order we need. Tarjan’s algorithm is often presented
as a recursive algorithm. However, GCC should be able to optimize even massive
programs in which case a recursive algorithm could run out of stack memory and
we hope that this pass could get integrated into GCC soon. Therefore we opted
to remove the recursion using the stack data structure.

SWe later found that a GCC pass with the same acronym already exists so a different name
will have to be chosen before the implementation is integrated into GCC

32

The original algorithm only considers ® statements. We decided to broaden
its scope and also include copy statements. A copy statements is an assignment
which assigns one variable to another. Copy statements can be viewed as ®-
functions with only one operand. This extension does not interfere with the
original algorithm and does not introduce any significant slowdown.

sccp_propagate is the main function of the implementation. Its input is a
GCC vector of all ®-functions and copy statements in the cfun (the function we
are currently compiling). We removed recursion from the algorithm by the same
means and for the same reason that we described when talking about the Tarjan’s
algorithm. The stack that we are using to remove recursion is named worklist.

The function replace_scc_by_value handles the operation of replacing
references to a redundant SCC from other statements. This functions takes
advantage of the fact that GCC supports iterating over uses of an SSA name in
linear time.

The operation of replacing an SSA name v by another SSA name u is com-
mon in GCC. Some GCC data structures need to be updated when that happens
so that they keep track of changes correctly. A single function that would ex-
ecute all the cleanup necessary is currently missing from the GCC codebase.
One has to call multiple cleanup functions. This led us to implement functions
cleanup_after_replace and cleanup_after_all replaces_done. One is
supposed to be called after the replacement operation modified a statement. The
other is supposed to be called after after a pass is finished with all the replace
operations it has to do. These functions are implemented in the ./gcc/tree-
ssa-propagate.cc file.

33

34

Chapter 5

Results and discussion

5.1 Applying Hack API to GCC

To showcase our implementation of the Hack code generation API we used it to
implement inserting code fragments in the value profiling [12]] pass and conversion
of GIMPLE to SSA GIMPLE.

5.1.1 Optimization pass intossa

The pass intossa located in . /gcc/tree-intossa. cc is responsible for convert-
ing non-SSA GIMPLE to SSA form. We modified it so that it optionally uses the
Hack API for the conversion. The commandline flag ~-fnew-intossa of the gcc
binary switches from the original implementation to the Hack API one.

Using the Hack API intossa we successfully ran 11420 out of 23526 GCC
testcases from the execute . exp suite—about 49%. This suite does not only check
that GCC is able to compile the test files but also that the compiled binary runs
correctly. These are not bad results considering that we implement only a subset
of GIMPLE statements. This shows we have a working prototype of intossa
implemented using the Hack APL

To show that the Hack API is capable of doing on-the-fly optimizations we
implemented a simple local redundancy elimination. If we are to append an
assignment statement s and we have already seen an assignment statement ¢
with the same right hand side in the same basic block we do not append s and
instead set t as the definition of the left hand side variable of s. See Listing|15{and
Listing [16/for example of how this redundancy elimination works. This example
is taken from a short program we were able to compile with the Hack API intossa.

Our implementation of intossa using Hack API is inefficient. Instead of
modifying existing GIMPLE statements it removes them and creates new ones.

35

Listing 15 A fragment of code before redundancy elimination

c = a + b;
d = a + b;
e = a + b;
D.2764 = e;

return D.2764;

Listing 16 A fragment of code after redundancy elimination

c_7 = a_2(D) + b_1(D);
8 = c_7;
return _8;

We expect that with further work it would be possible to modify the Hack API to
support in-place modifications.

We also measured how fast the Hack API intossa is compared to intossa us-
ing the traditional algorithm. For this measurement we chose the biggest GCC
testcase we were able to compile using the Hack API intossa—PR2807 Aver-
aged accross multiple runs the new intossa implementation runs for 0.26s until
finalize and then for 0.14s. The work in finalize is mostly allocating GIMPLE
statements. The original implementation runs for 0.25s. Our implementation runs
longer. However, if we disregard allocating new GIMPLE statements the new
implementation does not introduce any statistically significant slowdown. We
can therefore expect that intossa implemented using an extension of the Hack API
that would support modifying existing GIMPLE in-place would be comparably
fast to the original intossa implementation.

5.1.2 Inserting code

Some passes insert code into the program that is being compiled. We expect that
they could profit from being rewritten using our API. We rewrote three functions
from the value profiling pass located in . /gcc/value-profiling.cc:

gimple_mod_pow2
gimple_mod_subtract
gimple_divmod_fixed_value

generate code using the Hack API. Each of these function inserts GIMPLE code
into the program to make it more efficient based on previous profiling. We have

!As it still was not big enough we duplicated its code about 30 times.

36

benchmark total (1) removed (1) % (1) total (2) removed 2) % (2)

deepsjeng 2788 274 9.83 5332 103 1.93
exchange2 4436 766 17.27 9902 316 3.19
gcc 294166 15764 5.36 694294 5171 0.74
leela 6868 666 9.70 5155 37 072
mcf 872 120 13.76 1682 25 1.49
omnetpp 50552 3078 6.09 14137 23 0.16
perl 88200 13734 15.57 111122 1219 1.10
x264 28936 2568 8.87 45369 519 1.14
xalancbmk 132536 9524 7.19 236223 3211 1.36
Xz 6980 518 7.42 8452 95 1.12

Table 5.1 Removed ®-functions measurements

already shown one of these modified functions in Section We think that after
rewriting the functions their implementation is more elegant.

We compiled a program for each of the functions where the modified function
successfully inserted the desired code.

If more types of GIMPLE statements are added to the Hack API we expect
that more passes that insert code could be rewritten to use the API. For example
sanitizers and inlining would profit from the redundancy elimination described
in the Section since those are passes that often insert the same code into the
same function multiple times.

5.2 Measuring ®-elimination effectivity in GCC

To measure how useful is the ®-elimination algorithm in GCC we ran the standard
GCC benchmarks using a modified GCC with the ®-elimination pass inserted
into the pass queue. For each run we measured how many ®-functions (only
®-functions, no copy statements) were present before executing the pass and
how many of them did the pass identify as redundant. See Table |5.1|for these
counts and the percentages of removed statements. We inserted the pass at two
different locations in the optimization queue (so over one run of GCC the pass
was executed twice). We inserted the pass after early optimizations and after late
optimizations.

For the exact placement of the pass in pass queue see the corresponding patch
attached to this thesis. Notably the first pass is placed after the phiopt and
merge_phi passes. This means that we really give GCC a chance to remove as
many ®-functions it can before we make the measurements.

The results are surprising. Even though that GCC generates minimal pruned
SSA form, after early optimizations are done the SSA form is in a state where we

37

SCCs 1 2 3 4 5 6 7 8 9 10

50878 50496 299 54 9 15 0 0 3 0 2

Table 5.2 Encountered SCCs measurements

are able to remove a significant portion of ®-functions—sometimes over 17%.

We expected that the late optimizations should eliminate almost all redun-
dant ®-functions. However a non-negligible ammount of redundant ®-functions
survived even those optimizations.

With some insight into what the benchmarks compute we may guess that
the ammount of redundant ®-functions correlates with the level of abstraction
of the program. For example one of the benchmark is compiling GCC itself.
The codebase of GCC was not originally written in C++ but in C—a language
with arguably far less abstraction—and GCC’s developers aim for efficiency over
abstraction. Coincidentaly, GCC has the smallest percentage of redundant ®-
functions found in the first pass. On the other hand the benchmark deepsjeng
contains a lot of C++ abstraction and the percentage of redundant statements
found in the first pass is almost double compared to the GCC benchmark.

We also measured how many redundant ®-function SCCs of which size we
encountered. The resulting counts are summed accross all benchmarks. See the
Table 5.2l

From the results it is clear that SCCs containing only a single ®-function are
by far the most prevalent. An SCC of this type is equivalent to a trivial ®-function
from Definition Detection of trivial ®-functions is much easier than detection
of redundant SCCs. It is surprising that early optimizations are currently not able
to remove these ®-functions.

The effectiveness of the ®-elimination algorithm exceeded our expectations.
Firstly, this proves the ®-elimination algorithm worthy of inclusion into GCC.
Secondly, this is a motivation to closely investigate early optimization passes in
GCC and try to determine why do so many redundant ®-functions emerge.

38

Conclusion

The goal of this thesis was to evaluate the utility of the SSA construction algorithm
presented by Braun, Buchwald, Hack, Leifla, Mallon, and Zwinkau [4] and its
®-function cleanup phase as a standalone optimization pass is GCC. To achieve
this goal we designed and implemented a basic code generation API using the SSA
construction algorithm. We also fully implemented the ®-function optimization
pass.

Our results include:

« We were able to partially rewrite the GCC pass that converts GIMPLE into
SSA form to use the new API. We successfully ran a significant amount of
standard GCC tests using the modified pass.

« We identified that the API could be useful for inserting code. We showed
that this is possible on the value profiling pass.

« We measured the number of ®-functions that the cleanup pass finds and
removes. We found out that GCC optimizations produce a surprising
ammount of redundant ®-functions.

Now that we have designed an API using the new SSA construction algorithms,
many opportunities and usecases present themselves. Our long-term goal is to
use the API to eliminate non-SSA GIMPLE from GCC. The APT has to be extended
to handle all types of GIMPLE statements first. The API could also be useful in
the GCC JIT framework. We can leverage the fact that the API works with value
numbers and implement some on-the-fly optimizations. Inlining and sanitization
passes could then use the API when inserting code and would profit from the
optimizations.

In conclusion, we showed that both the SSA construction algorithm and its
cleanup phase have promising applications in GCC—applications that the article
introducing these algorithms does not list. While further work will be needed
for the SSA algorithm to reach its full potential, the cleanup algorithm already
produces useful results.

39

40

Bibliography

[1]

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Always Learning. Pearson, 2014. 1SBN:
9781292024349.

R.M. Stallman and GCC Developers Collective. GCC 8.0 GNU Compiler
Collection Internals. 12th Media Services, 2018. 1SBN: 9781680921878.

Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F
Kenneth Zadeck. “Efficiently computing static single assignment form and
the control dependence graph”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 13.4 (1991), pp. 451-490.

Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leif3a,
Christoph Mallon, and Andreas Zwinkau. “Simple and efficient construc-
tion of static single assignment form”. In: Compiler Construction: 22nd
International Conference, CC 2013, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings 22. Springer. 2013, pp. 102-122.

Diego Novillo. “Design and implementation of Tree SSA”. In: Proceedings
of GCC developers summit. Citeseer. 2004, pp. 119-130.

Chris Lattner and Vikram Adve. “LLVM: A compilation framework for
lifelong program analysis & transformation”. In: International symposium
on code generation and optimization, 2004. CGO 2004. IEEE. 2004, pp. 75-86.

Preston Briggs, Keith D Cooper, and L Taylor Simpson. “Value numbering”.
In: Software: Practice and Experience 27.6 (1997), pp. 701-724.

Thomas VanDrunen and Antony L Hosking. “Value-based partial redun-
dancy elimination”. In: International Conference on Compiler Construction.
Springer. 2004, pp. 167-184.

Donald E Knuth. “An empirical study of FORTRAN programs”. In: Software:
Practice and experience 1.2 (1971), pp. 105-133.

M. Mares and T. Valla. Priivodce labyrintem algoritmi. CZ.NIC, z.s.p.o., 2017.
ISBN: 9788088168195.

41

[11] Robert Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM
journal on computing 1.2 (1972), pp. 146-160.

[12] Z.Dvorak, J. Hubicka, P. Nejedly, and J. Zlomek. “Infrastructure for Profile
Driven Optimizations in GCC Compiler”. In: (2002). URL: http: //www .
ucw.cz/~hubicka/papers/proj/index.html.

[13] GCC Developers Collective. Installing GCC. 2023. URL: https://gcc.gnu.
org/install/index.html (visited on 07/20/2023).

42

http://www.ucw.cz/~hubicka/papers/proj/index.html
http://www.ucw.cz/~hubicka/papers/proj/index.html
https://gcc.gnu.org/install/index.html
https://gcc.gnu.org/install/index.html

Appendix A

Building the modified GCC

To build modified GCC we start with the commit
d9d6774527bcccbce0394851aa232f8abdaadedc
from 2023/04/27. We create the git directory $GCC_DIR.

mkdir $GCC_DIR

git clone git://gcc.gnu.org/git/gcc.git $GCC_DIR/

cd $GCC_DIR

git checkout d9d6774527bcccbce0394851aa232f8abdaadedc

The SSA construction patches

To add the new code generation API we apply the patch api.patch. We can also
optionally apply the patch intossa.patch to modify the SSA construction pass
to support building using the API and the patch valueprof .patch to modify
value profiling to use the APL

git apply api.patch
git apply intossa.patch
git apply valueprof.patch

We use the -fnew-intossa flag to tell GCC to use the Hack API during SSA
construction.

The ®-elimination patch

To add the new ®-elimination pass we apply the patch sccp.patch.

git apply sccp.patch

43

Building GCC

After we have applied all the patches we wish to apply we may proceed to building
GCC. First we create a new directory $BUILD. The directory $BUILD must not be
a subdirectory of $GCC_DIR.

mkdir $BUILD

cd $BUILD
$GCC_DIR/configure
make

To compile with the modified GCC we use the following command
$BUILD/gcc/xgcc -B $BUILD/gcc/ <options> <source files>
It is also possible to install the modified GCC and have it available in PATH.

The build process and also installation is described in greater detail on the official
GCC website [[13]].

44

	Introduction
	Background
	GIMPLE intermediate language
	Optimization passes
	Control Flow Graph
	Static Single-Assignment Form
	Φ-functions
	Minimal and pruned SSA

	SSA construction algorithm motivation
	Value numbering

	Φ-elimination algorithm motivation

	Overview of implemented algorithms
	SSA construction algorithm overview
	Φ-elimination algorithm overview

	A new code generation API
	Filling and sealing
	Memory
	Example code generation

	Implementation
	Implementation of the SSA construction algorithm
	Appending statements and the algorithm
	Finalize: From Hack representation to GIMPLE
	Why use a custom representation?

	Implementation of the Φ-elimination algorithm

	Results and discussion
	Applying Hack API to GCC
	Optimization pass intossa
	Inserting code

	Measuring Φ-elimination effectivity in GCC

	Conclusion
	Bibliography
	Building the modified GCC

