
BACHELOR THESIS

Filip Štrobl

Data logging and visualization for
Mailtrain using IVIS

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: prof. RNDr. Tomáš Bureš, Ph.D.
Study programme: Computer Science

Study branch: Programming and software
development

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I would like to express my gratitude to prof. RNDr. Tomáš Bureš, Ph.D. for
supervising, providing advice, and having patience with me for the long, long
time it took me to finally finish this thesis.

iii

iv

Title: Data logging and visualization for Mailtrain using IVIS

Author: Filip Štrobl

Department: Department of Distributed and Dependable Systems

Supervisor: prof. RNDr. Tomáš Bureš, Ph.D., Department of Distributed and
Dependable Systems

Abstract: Mailtrain is a self-hosted, free and open-source newsletter application
with advanced options for managing lists of subscribers, creating and sending
e-mail campaigns, and managing multiple users with granular permissions and
flexible sharing. The application lacks good options for analyzing and visualizing
its data for the purposes of tracking performance or security. IVIS is a framework
offering the data processing and visualizing tools Mailtrain needs, and the two
projects share many key technologies. In this thesis, we extend Mailtrain so that
it uses IVIS and its services for logging, visualization, and analysis of its data.
An emphasis is given to the extensibility of both the data logged from Mailtrain
and the ways it is visualized.

Keywords: newsletter data analysis visualization

v

vi

Contents

1 Introduction 5

2 Background 7
2.1 Mailtrain . 7

2.1.1 Concepts . 7
2.1.2 Architecture . 10

2.2 IVIS Framework . 11
2.2.1 Concepts . 11
2.2.2 Architecture . 13

3 Analysis 15
3.1 Mailtrain Events to be Logged . 15

3.1.1 Entity Activity Event Types 16
3.1.2 Tracker Event Types . 22

3.2 Logged Event Data Transformations 25
3.2.1 List Subscriptions . 26
3.2.2 Campaign Messages . 26
3.2.3 Channel Campaigns . 27

3.3 Proposed Visualizations . 27
3.3.1 Entity Activity . 27
3.3.2 List Subscriptions . 28
3.3.3 Campaign Messages . 29
3.3.4 Campaign Overview . 30
3.3.5 Channel Campaigns . 31
3.3.6 Channel Campaign Contributions 32

4 Solution Architecture 35
4.1 Architecture of the Integration . 35

4.1.1 Decomposition into Runtime Modules 36
4.1.2 Communication . 36

4.2 Mailtrain Extensions . 37
4.2.1 Spawning and Managing IVIS 38
4.2.2 Event Logging . 38
4.2.3 Displaying Visualizations from the Client 39

4.3 IVIS Extensions . 40
4.3.1 Mailtrain IVIS . 40
4.3.2 Modules by Logged Event Type 40
4.3.3 MVIS Activity Log . 42
4.3.4 Visualizations . 43

4.4 User Management and Authorization 44
4.4.1 Handling Requests From Mailtrain’s Server 44
4.4.2 Handling Visualization Embedding 44
4.4.3 Handling Direct Connection To IVIS 45

1

5 Implementation 47
5.1 IVIS Extensions . 47

5.1.1 New Extension Manager Events 47
5.1.2 Visualization-related Changes 48
5.1.3 Embedding . 49

5.2 Mailtrain Server . 52
5.2.1 MVIS Manager . 52
5.2.2 Activity Log . 53

5.3 MVIS Server . 54
5.3.1 MVIS Program Entry Point 54
5.3.2 MVIS Activity Log . 55
5.3.3 Communication With Mailtrain Through Node.js IPC . . . 56
5.3.4 Data Managing Modules 57
5.3.5 Built-in Tasks . 58
5.3.6 Template Viewing Permission Management 59

5.4 MVIS Client . 59
5.4.1 Charts And Data Providers 59
5.4.2 Built-in Templates . 61
5.4.3 Displaying The Visualizations 62

5.5 Mailtrain Client . 63
5.5.1 Visualization Requests And Embedding 63
5.5.2 Displaying The Visualizations From Mailtrain 63

5.6 Auxiliary Changes . 64
5.6.1 Integrating Mailtrain’s and IVIS’ Git Repositories 64
5.6.2 Configuration Files . 64
5.6.3 Installation Scripts . 65
5.6.4 Documentation . 65

6 Evaluation 67
6.1 Testing . 67

6.1.1 Manual Testing . 67
6.1.2 MVIS Testing . 68

6.2 Output Visualizations . 69
6.2.1 Entity Activity . 69
6.2.2 List Subscriptions . 70
6.2.3 Campaign Messages . 70
6.2.4 Campaign Overview . 71
6.2.5 Channel Campaigns . 71
6.2.6 Channel Campaign Contributions 71

7 Conclusion 73
7.1 Future work . 73

7.1.1 Improving Existing And Adding New Visualizations 74
7.1.2 A System For Custom Tasks And Visualizations 74
7.1.3 Updating Mailtrain And IVIS Libraries 74

Bibliography 75

List of Figures 77

2

A Attachments 79
A.1 Mailtrain Source Code . 79
A.2 IVIS-CORE Source Code . 79

3

4

1. Introduction
Mailtrain [15] is a self-hosted, free and open-source newsletter application, which
is, at the time of writing, actively used in production. Its features include
managing lists of subscribers, including their possible segmentation, and send-
ing newsletter campaigns to them, either manually, or automatically through
triggered or RSS campaigns. The application supports custom e-mail campaign
templates, including MJML-based templates, and is relatively easy to setup us-
ing Docker and built-in Zone-MTA. It is well suited for larger and enterprise-level
solutions, due to its support of multiple users with granular user permissions and
flexible sharing, as well as its system of hierarchical namespaces.

However, the application lacks good features for logging, analyzing, and visu-
alizing data of activity and performance of various entities, either for the purpose
of analyzing performance of lists or campaigns or for auditing user activity to be
able to detect possible mistakes and attacks. There exist some implementations
in Mailtrain for this purpose, namely the campaign statistics, displaying various
metrics of a campaign, and reports, which are custom data collection tasks pro-
grammed by users of Mailtrain. However, these features proved to be insufficient
in terms of their convenience or flexibility, so a better solution is needed.

To make the processing and visualization of data easier, one could use an
existing framework designed for this. The IVIS framework [19] is one such frame-
work, capable both of processing data using its tasks and of visualizing data
using its templates. Unlike most similar frameworks, IVIS focuses on flexibility,
by making its visualizations and data processing jobs fully programmable through
JavaScript and Python. The framework also provides various extensions to help
its integration into other applications, like embedding visualizations from its web
interface into other web pages.

These features alone would make IVIS a good candidate, but Mailtrain and
IVIS also share many core technologies and principles, making IVIS naturally
compatible and well integratable into Mailtrain. That said, the way in which
IVIS’ functionality needs to be integrated into Mailtrain has not been done before
and certain IVIS features needed for it are yet to be fully implemented.

The main goal of this thesis is to create a system for logging and visualizing
data in Mailtrain using IVIS. This entails:

1. making a system for logging data in Mailtrain which sends the data to IVIS,

2. designing the appropriate structure for the logged data in IVIS, as well as
the visualizations (either by using existing ones or programming new ones),

3. making a system for displaying IVIS’ visualizations of the logged data from
the Mailtrain application.

The bulk of the work will be done on the code in Mailtrain’s GitHub repository.
Some new features will also have to be added into IVIS’ repository, but care will
be put into making the new features flexible enough for general use, and not just
to serve Mailtrain.

The next chapter describes the existing projects to familiarize the reader with
them before any deeper analysis. Mailtrain is described first in section 2.1, and

5

IVIS is described second in section 2.2. In both cases, the sections are split into an
overview of the concepts, and an overview of the technologies used by the project.
In Mailtrain’s case, the overview of concepts is especially important, as the logged
events to be implemented may encompass most of Mailtrain’s functionality.

After the background, the Analysis chapter further specifies the requirements
of this work. The aim is to provide a description of events to be logged and the
accompanying visualizations, without implementing them yet. The first section
3.1 describes all events in Mailtrain’s existing functionality, for which logging to
IVIS should be implemented. The proposed events to be logged include complete
descriptions of the data they should log. The second section 3.2 describes trans-
formations of data in IVIS to make querying data easier. The final section 3.3
proposes visualizations for the logged data. Each visualization proposal contains
a description of the logged data the visualization uses and its intended visual
representation.

The Solution Architecture chapter describes the architecture of Mailtrain’s
and IVIS’ integration. In section 4.1, the integration is first described as a whole,
and problems such as communication between the two projects are addressed.
The next two sections, 4.2 and 4.3, describe the architectures of the extensions
from Mailtrain’s and IVIS’ side, which includes any new modules and their re-
sponsibilities. The final section 4.4 is dedicated to describing how the integration
handles user management and authorization.

The Implementation chapter explains the technical details of the integration’s
implementation, structured by the newly implemented modules. Section 5.1 ex-
plains extensions done to the stand-alone IVIS project, which is still independent
of Mailtrain. Sections 5.2, 5.3, 5.4, and 5.5 describe extensions done to the main
runtime code in Mailtrain, including Mailtrain-specific extensions to IVIS. The
final section 5.6 briefly describes changes done outside the main runtime code of
the project. This includes things such as changes of code for the application’s
setup, modifications of the git repository, and changes to any documentation or
configuration files.

The results of the work done in the thesis will be shown in the Evaluation
chapter. The first section of this chapter, section 6.1, shows how the imple-
mentation was tested to ensure that it works correctly. Section 6.2 then shows
how the resulting visualizations look by providing screenshots of them from the
application using testing data.

6

2. Background
Before delving further into the work of the thesis, it’s important to understand
the main concepts and workings of both Mailtrain and the IVIS framework. To
determine what data should be logged in Mailtrain and what visualizations it
could use, we need quite a thorough understanding of Mailtrain’s concepts. Sim-
ilarly, if we are to use IVIS as a framework for logging and visualization of data,
we should also understand its concepts, albeit not necessarily as thoroughly as
Mailtrain. To successfully integrate the two projects, we also need to know their
architectures and the technologies they use.

This chapter describes the concepts and architectures of both Mailtrain and
IVIS. The descriptions cover every important concept and technology relevant to
the goals of this thesis. Relevant details concerning existing implementation are
explained in later chapters, where they are used for analysis or implementation.

2.1 Mailtrain

The most important piece of software to this thesis is Mailtrain [15]. As stated
in the introduction, Mailtrain is a self-hosted newsletter application, which is
fully free and open source, using the GPL-V3.0 license [6]. This section describes
Mailtrain in more detail.

Mailtrain’s main purpose is to help users create and manage newsletters. It
helps by automatically managing subscribers in lists, including, for example, pro-
viding subscription forms to sign up, Messages are sent to subscribers using cam-
paigns, which are created by users inside Mailtrain, possibly with the help of its
various campaign content editors. The content of campaigns can also be defined
more generally using templates, where multiple campaigns can use a single tem-
plate. Campaigns may be sent manually to all subscribers of a list, or to only a
segment of a list, consisting of subscribers who satisfy custom user-made rules.
Campaigns may also be configured to be sent to a given subscriber automatically
when a custom trigger is activated for the subscriber.

A Mailtrain instance can have multiple lists, campaigns, etc. An umbrella
term for these objects is entities. Mailtrain supports having multiple users and
allows managing access to entities by different users. It achieves this with the help
of a hierarchical system of namespaces containing all of Mailtrain’s entities. Users
can share entities, or entire namespaces of entities, with other users. This makes
Mailtrain capable of managing large, enterprise-level environments of many users
with different permissions.

2.1.1 Concepts

Most of Mailtrain’s functionality happens through entities. Due to this design,
Mailtrain’s concepts align quite well with its entity types, so many concepts in
this section are described in terms of the corresponding entity type along with
its responsibilities.

7

List

Field SegmentSubscription
form

Subscription
Import

Link

Send
configuration

Mosaico
Template

Channel

0..*110..*

0..*0..1

0..*

1

0..*1

0..*

1

1

1..*

1..*

schema

0..*

0..*

0..*

1..*

0..1

0..*

1

0..*

0..*1

0..*

lists to
send to

0..*

0..1

+isTest

+type
+content
+trackLinkClicks
+trackOpens

Message

+status

0..*

0..1

0..*

0..*

clicked

triggered by

Campaign

Template
+type
+content

Trigger

+rules

Figure 2.1: A class diagram of Mailtrain’s most important entities

List

The central entity type in Mailtrain is a list, which is used to manage subscribers.
A subscription form is another entity type, which allows custom content of a list’s
subscription form. Filling out subscription forms is the main way new subscribers
are added to a list. The other way to add subscribers (apart from doing it by
hand) is using imports. Imports are tasks that add all subscribers from some
stored source (e.g. a CSV file) into a list. This may take a long time, so the
imports are stored as entities and their progress is tracked. If extra information
about a list’s subscribers is needed, Mailtrain supports adding custom fields to a
list, which is analogous to adding an extra column in a database table, where rows
represent subscribers. Lists can contain segments, which include a portion of the
list’s subscribers satisfying a given rule set. Subscribers in a segment can then be
treated separately, e.g. by sending an e-mail campaign only to subscribers in a
given segment. Some subscribers of a list can also be marked as test users, which
then allows them to receive testing messages.

Campaign

The second major entity type in Mailtrain is a campaign. Campaigns represent
an e-mail with custom content and possibly attached files (either through e-mail

8

or publicly accessible over HTTP) that gets sent to subscribers of a given list, or
multiple lists. There are currently 3 types of campaigns: regular, which is sent to
all target subscribers when launched, RSS, which is similar to a regular campaign,
but is intended to be viewed through an RSS feed, and triggered, which is sent to a
subscriber when they satisfy some given condition (a trigger). Mailtrain provides
several editors for editing campaigns’ content, such as the GrapesJS template
designer, or, more importantly, the Mosaico template designer. Mailtrain also
allows for the creation of templates, which multiple campaigns can use instead of
making their content from scratch every time. Mosaico itself uses templates to
customize the template editor, so Mailtrain also includes Mosaico templates as
entities, distinct from regular templates. Both templates and Mosaico templates
can also include files in their content. The user may send a test message of either
a campaign or a template to one or several test users of a given list. Finally,
a campaign may track subscribers opening e-mails or clicking on links in the
campaign’s content, but this can be opted out of in the campaign settings.

After a campaign is sent, all its sent messages are tracked. The bare mini-
mum of tracked data is how many messages were sent or have failed to be sent,
how many sent messages bounced back or were reported as spam, and which
subscribers unsubscribed because of this campaign. If link click tracking or open
tracking is enabled, Mailtrain also tracks the subscribers that opened the tracked
message or the subscribers that clicked any of the message’s links. In the case
of a triggered campaign, its triggers may also be logged (i.e. which triggers have
been triggered for which subscribers of the campaign’s target lists).

The way campaigns are sent can be configured using send configurations. Send
configurations also specify other mailer settings, such as mailer type or throttling,
as well as bounce handling using a variable envelope return path (VERP). Dif-
ferent campaigns may use different send configurations.

Channel

To better organize campaigns and simplify campaign creation, Mailtrain supports
channels of campaigns. Channels can specify some default parameters of their
campaigns. Each campaign may belong to at most one channel.

Report

The next entity type is a report. Reports are tasks for analyzing and displaying
data in Mailtrain. Reports are created first as report templates defining code
with parameters and reports themselves then apply concrete parameters to the
templates to use them. Eventually, user-made reports will likely be realized
through IVIS, and these original ones will be removed. This is why they are not
that important from the perspective of running the application.

Users, Namespaces and Entity Sharing

The two remaining entity types are used for administration: namespaces and
users. Every entity described above belongs to a namespace, with the only ex-
ception being the root namespace. Based on role assignment of entities or names-
paces, with roles defined in a configuration file, users have certain permissions to

9

access other entities (including namespaces), either in their own namespace, or
ones explicitly shared with them by other users (by assigning them a role).

Concepts Not Tied To Entities

There are several concepts left to describe which are not tied to entities and are
instead global in nature. To avoid troublesome subscribers, Mailtrain includes
a global blacklist to block given e-mail addresses. Mailtrain also has global set-
tings, which can be edited by users with given global permissions. Finally, the
application includes a user API, which can allow user-made programs to interact
with Mailtrain.

2.1.2 Architecture

Central
Runtime

…Services

…Clients

Mailers

MariaDB

…Worker
Sender

Services

Master
Sender
Service

Arrows = Requests

Color = Technology (Node.js, ReactJS, Others)

Figure 2.2: Runtime view of Mailtrain’s architecture

Like the majority of other web applications, Mailtrain’s architecture is split
into a frontend and a backend. Both are written in the ES6 standard of Java-
Script.

Frontend

The client-side frontend runs in the web browser and forms the main interface
for users’ communication with Mailtrain. The main library used by the frontend
is React [13], which utilizes the concept of Components assembled like HTML
using JSX to create webpages entirely using JavaScript. Another notable library
is Webpack [4], which bundles the code together for deployment.

To avoid cross-site scripting attacks and guarantee security, Mailtrain creates 3
URL endpoints that can be communicated with. The first is the trusted endpoint,
which is the main endpoint for Mailtrain’s UI when a user is logged in. The
second is the sandbox endpoint, which is used to host template editors. The
third one is the public endpoint, which is used to host content for subscribers,
e.g. subscription management forms or files linked to an e-mail.

10

Backend

The backend runs on a server using the Ubuntu [14] or CentOS [17] operating
system, or is deployed in a Docker [12] container. It is responsible for managing
a database of application data, controlling the application logic, and communica-
tion with users and subscribers, which entails not only communication with the
frontend, but also with e-mail servers of subscribers, and an API to be optionally
used by users’ own applications.

Most of Mailtrain’s backend code runs within Node.js [8]. From a runtime per-
spective, the code is split by functionality into multiple Node.js processes. The
central backend runtime component in Mailtrain is responsible for controlling all
main actions in the application, listening for requests from clients, and commu-
nicating with the other Node.js processes. The other processes, which Mailtrain
calls services, are usually responsible for doing computationally difficult tasks.
One service in particular - the sender service, is responsible for sending cam-
paigns, even spawns its own worker processes to make sending large campaigns
possible.

Mailtrain uses MariaDB [7] as an SQL database, and communicates with
it with the help of the Knex library [3]. Communication between any parent
Node.js process and its service is done using the Child process [9] module from
Node.js standard library, which is obtained when the service process is spawned.
Communication with clients is realized using a RESTful HTTP API. The sender
processes communicate with the intended mailers, to be able to send messages.
There is built-in support for using Zone-MTA [5] as a mailer, but using generic
SMTP is also supported, as well as Amazon SES [11].

2.2 IVIS Framework

IVIS [19] is the software we shall use to extend Mailtrain to make it capable
of displaying visualizations of its data. This section describes the framework in
more detail.

The IVIS framework is used for processing and visualizing data from various
data sources. Its main features are flexibility and the ability to extend other
domain-specific applications. The framework is sometimes advertised as a frame-
work for data generated by Internet of Things (IoT) and Cyber-Physical Systems
(CPS) environments, but its focus on flexibility allows it to accommodate the
needs of Mailtrain well enough, despite Mailtrain not necessarily belonging to
either of those categories. There exist multiple variants of the framework, the
one this thesis uses and refers to as ”IVIS” is known as IVIS Core.

2.2.1 Concepts

This subsection describes IVIS’ concepts in more detail. If in need of more infor-
mation, the IVIS Core GitHub repository also contains its own description of its
concepts [18].

11

WorkspaceRecord

Signal Set

1

0..*

1..*

1

1

0..*

0..*

1

0..*0..*

queried
signal sets

manipulated
signal sets

0..*0..*

executed
code schema

storage

Task
+code
+parameters

Task

+givenParams

1

0..*

executed
code

Template
+code
+parameters

Panel

+givenParams

Signal
+dataType

Figure 2.3: A class diagram of IVIS’s entities

Data Organization

The data collected by IVIS are organized into a structure of records and signal
sets. To use a typical example for IVIS, if we have a monitoring system of several
sensors collecting data at the same time, a signal represents data from a single
sensor. Each signal has a data type and must belong to some signal set. A signal
set represents a set of one or multiple signals, and a record is a set of values
for each signal of some signal set. A good analogy is to think about signal sets
as database tables, signals as table columns, and records as table rows. In the
typical example, data is gathered from real-life sensors, each providing signals
measured in the real world, but IVIS also allows us to insert signal set records
without any of the signals corresponding to a real-life sensor.

Data Processing

The data processing in IVIS is handled by tasks and jobs. A task defines the code
to be run, along with any files to use, and task parameters. The code is pro-
grammed fully by the user, giving them complete control over the transformation
of data. Currently, tasks support Python code with a few additional libraries,
those being EnergyPlus, Numpy, and Pandas. A job is an instance of a task with
given parameters, e.g. what signal sets it operates on, as well as trigger settings,
meaning if the job should activate periodically, or activate when a certain signal
set is updated.

Visualizations

A similar level of complete control is seen in IVIS’ visualizations, which, unlike
most other popular visualization frameworks, are programmed directly from Java-
Script code. This method is less accessible than GUI editors, but ultimately
more flexible and powerful. To make the process of creating new visualizations
easier, IVIS contains pre-implemented common visualization elements in its code,

12

which it calls charts. Charts are components of React code that can be used and
built upon by user-made visualizations. Instantiating the visualizations’ code
in IVIS is realized using templates. Similarly to IVIS’ tasks, templates define
the visualization code and parameters. Templates are instantiated using panels,
which specify the parameter values, e.g. what signal sets to visualize. Panels are
organized using workspaces. Each panel must belong to a workspace.

As a standalone application, the main method of IVIS’ user interface is a
web interface for modifying data and viewing visualizations. As an extension
of another application, IVIS also provides an option to modify its data through
code and even allows embedding visualizations in another web window. The
embedding functionality is very powerful, since unlike panels, one can visualize
a template directly, without the need to create a panel or a workspace. In that
case, the template’s panel and workspace are only virtual.

Extending the Framework

To simplify the task of using IVIS as an extension to other applications, the frame-
work provides an extension manager, which can be used to extend the desired
functionality using custom code. Extending IVIS this way is done by creating a
Node.js program, defining all needed extensions in the code, and then importing
the IVIS code. The result is an IVIS core program that has all the required exten-
sions. IVIS allows extending its code at pre-defined points, where each extension
point is identified with a keyword. Here are the extensions most important to
this thesis (without their keywords):

1. create extra routes, which means either server-side REST call listeners, or
client-side web page content providers,

2. prepare extra services after IVIS starts,

3. define built-in templates and tasks, which can be used similarly to normal
templates and tasks, but do not need to be stored in a database.

Administration

Finally, IVIS includes tools for administration, which are identical to the ones
in Mailtrain, described in section 2.1.1. Every entity (task, job, template, etc.)
belongs to a namespace, and IVIS users can share these entities manually, or
automatically with their role.

The data stored by IVIS can be shared to the granularity of signals in a signal
set, meaning access of users to IVIS’ data can be controlled to the point where
a user has access to only a subset of signals of each record in a given signal set.
There is no way to restrict users’ access to signal sets record-wise. If one wants
to keep some records accessible and some records not, they have to be stored in
separate signal sets.

2.2.2 Architecture
Mailtrain and IVIS are developed largely by the same people, and so the archi-
tectures of Mailtrain and IVIS are almost identical. Just like Mailtrain, IVIS is

13

Central
Runtime

…Services

…ClientsMariaDB

Elastic-
Search

…Data
Sensors

Arrows = Requests Color = Technology (Node.js, ReactJS, Others)

Figure 2.4: Runtime view of IVIS’ architecture

also written in ES6 JavaScript and has an architecture split into a frontend and a
backend. Since Mailtrain’s architecture has been explained in section 2.1.2, this
section only explains the architectural differences between the two projects.

Frontend Differences To Mailtrain

The frontend runs in a web browser and uses the React [13] library to build web
pages that are then bundled using Webpack [4]. Unlike Mailtrain, IVIS aims
to provide potentially complex visualizations, which is a difficult task without
a proper library. The libraries IVIS uses to help build its visualizations are the
various libraries by D3 (Data-Driven Documents) [1].

Like Mailtrain, IVIS splits access to it into three endpoints. The function of
the trusted endpoint is identical to Mailtrain. The sandbox endpoint is used to
host user-defined panels, which may be potentially unsafe. The third endpoint
in IVIS is an API endpoint, which is meant to be used by applications working
with IVIS’ data.

Backend Differences To Mailtrain

The backend runs on a server using the Ubuntu [14] or CentOS [17] operating
system. Just like Mailtrain, the backend Node.js [8] runtime is split into a cen-
tral component and services. In the case of IVIS, no service spawns additional
subprocesses. Since IVIS does not manage newsletters, it does not use mailers,
and its communication with clients is primarily done through its web interface.
IVIS however expects to be connected to sources of data, which it calls sensors.
The sensors supply IVIS with the data they measure so that the data can be
processed and visualized. The way the backend communicates with sensors can
be configured in the code and is therefore not limited to any single technology.

IVIS also needs a way to quickly analyze its signal set data. For this purpose
IVIS indexes its signal set data with Elasticsearch [16]. Elasticsearch is a dis-
tributed search engine with a REST API, capable of quick access, analysis, and
aggregation of indexed data.

14

3. Analysis
This chapter analyzes Mailtrain and determines both the events worthy of logging,
and the visualizations to be added, which are meant to utilize data mainly from
the logged events. The descriptions of logged events include information about
all their logged data. The descriptions of visualizations include what data they
draw from and how they display it. The proposed events and visualizations
also include a rationale behind why they are useful and worthy of being added.
However, this chapter will mostly not describe any technical or implementation
details, although it may touch on how the data should be organized in order to
be queried effectively.

The events to be logged are described first. Described events are split into
categories, where events from a single category can be stored together. The
descriptions may be split further if there is notable difference between the event
types, although this is only to make the description more clear, and does not
affect implementation. The description of logged data for each event category is
structured as a schema of a relational database table, hinting at how the events
may be stored.

Before the section on visualizations, there is a section describing data trans-
formations of the logged events. For some visualizations, querying the logged
data as-is would be inefficient. Therefore, a section is dedicated to describing
the necessary transformations of data to make using the proposed visualizations
practical.

The final section describes the visualizations. This entails describing what
data they use and how they display them.

3.1 Mailtrain Events to be Logged
This section describes an analysis of Mailtrain’s functionality to find events wor-
thy of logging to IVIS. While the logged data are used mainly by visualizations,
logging the events is useful by itself, since if more visualizations will be made in
the future, they will be able to use this data as well. Also, even without visualiza-
tions, IVIS allows manually viewing records without any custom visualizations,
which ensures that logged events are accessible to users.

The described events are split into categories called event types. Logged events
of a single event type are semantically close together, meaning they are likely to
be queried together, and they usually also share a significant part of their data
schemas. For these reasons, each event type describes a schema for logged data,
which is shared by all of the logged events of this type. The shared schema allows
them to be stored in the same place, and therefore easily queried together.

The schema of each event type is structured as a schema of a relational
database table, because for IVIS to utilize logged data effectively, it needs to store
the data into signal sets, which are structured this way. Due to this requirement,
it is best to format the data like this from the start and avoid having to transform
the data during logging. The data may also have rather high redundancy, which
is not recommended for standard SQL databases. However, data is queried using
ElasticSearch, which is not a standard SQL database, and IVIS itself does not

15

yet have the functionality needed to query ElasticSearch with advanced query
operators such as joins, so the redundancy in the schemas is somewhat justified
by this.

When analyzing the possible events to be logged, some data were found that
could be useful in some situations, but it was decided to not log them, mostly
because it would be too inefficient or complicated (e.g. information about entity
settings). If any future extensions decide to extend the data that is logged, in
many cases new events may not need to be created, and instead it should be
enough to simply extend the data logged by some already existing events.

3.1.1 Entity Activity Event Types
A part of the intended functionality this thesis aims to add to Mailtrain is the
ability to track activity of the application’s entities and global settings. This
kind of activity is usually done by users of Mailtrain and include activities such
as creations, modifications, and deletions of entities, or changing states of certain
entities (e.g. launching a campaign). The goal of logging these activities is to
allow administrators to track the activity of the application. Among other things,
tracking the application’s entity activity is useful to spot any disruptive activity,
either as a result of an error or an intentional attack.

The purpose of tracking activity data is shared accross all of these events,
which makes a case for assigning the same event type to all of them. However,
in case of entity activity, various events tend to differ greatly in their logged
data schemas, so storing all of them in a single table or signal set would lead to
very complex schemas. Therefore, the entity activity events are further split into
events based on entity type. That said, entities of some types always belong to a
parent entity (e.g. every list field belongs to a list). The events of these entities
are merged with the event type of their parent entity.

For the logged data to be useful, every record of entity activity should contain
a timestamp of when the event happened, information about the type of activity
that was done (e.g. that a campaign was launched), the ID of the user making
this action, if the activity was caused by one (this user is called the actor of
the activity), and the ID of the affected entity. Certain entity activity events
may also log extra data in addition to the three base fields, such as the status
of a campaign, but omitting one of the three fundamental fields is very rare,
so unless explicitly mentioned, all logged entity activity events are assumed to
contain these three fields. The following paragraphs describe the logged events
in more detail.

The vast majority of entities in Mailtrain can be manipulated with using three
types of actions: create, update, and delete. Since all of these actions represent
some events when the entities are manipulated with, they are therefore potentially
worthy of logging. For brevity, we shall refer to these events as CUD.

If complete information about a change in an entity is needed, then details
about the changes of the entity should be logged. However, entities often contain
several fields of data, which vary greatly among entities of different types. Logging
these details would require either an extra field of the log data for every field of
the entity, or have only one field of the logged data which would contain all the
data about the entity at once. The first of these options is too complex, and the

16

second is not very useful, so in the end it was decided to only log a few key fields
of entities instead of all of them.

Some of the actions listed below can be executed in multiple ways, most
importantly by a user in a web interface, or through Mailtrain’s API. Regardless
of the source, the events should be logged, and the logged events account for all
of these scenarios.

List Activity

The list entities should log the fundamental CUD events. In addition, since
campaign messages are sent to subscribers of lists, and actions of subscribers to
the campaign messages (e.g. unsubscribing) are potentially relevant to the lists
themselves, a launch of a campaign should be logged for all lists targeted by that
campaign. The data of this event should contain ID of the list, but also ID of the
sent campaign.

It is also possible for Mailtrain users to create, update and remove subscrip-
tions manually. These events should also be logged, and they should include the
ID of the subscription in their data. However, subscriptions can also be changed
by the subscribers or automatically, and these events should not be logged in
entity activity.

• logged data: timestamp, actor, activity type, list ID, changed subscription
ID (if any)

• activity types: CUD of a list, CUD of a subscription

List fields are also represented as entities in Mailtrain, but every field belongs
to exactly one list, and does not make sense without a list. Therefore, rather than
logging fields as their own type, every logged field event should also contain the
ID of the field’s list. A list’s fields only define what data does the list store about
its subscribers, and actual subscriber data are stored within the list’s subscription
tables. Therefore, we only need to log CUD events for lists’ fields.

• logged data: timestamp, actor, activity type, list ID, field ID

• activity types: CUD of a field

Similarly to fields, imports also only make sense in context of a list, so they
are logged as a part of the list event type, and their logged data should contain
the ID of the import’s list. Import runs are handled over longer time periods,
where the state of an import run is tracked using an import’s status database
entry. For that reason, along with CUD, imports should also log a status change
event. Events of status change should also contain the new status of the import.

• logged data: timestamp, actor, activity type, list ID, import ID, changed
import status (if any)

• activity types: CUD of an import, import status change

17

Segments also always belong to exactly one list, so they are also logged under
the list event type. Segments only define rules which a subset of a list’s subscribers
can satisfy, and otherwise do not have any state (the subscribers satisfying the
segment’s rules are queried on demand), so we only need to log their CUD events.

• logged data: timestamp, actor, activity type, list ID, segment ID

• activity types: CUD of a segment,

These are all the events logged under the list event type. Altogether they form
this data schema:

• logged data: timestamp, actor, activity type, list ID, changed subscription
ID (if any), field ID (if any), import ID (if any), changed import status (if
any), segment ID (if any)

• activity types: CUD of a list, CUD of a subscription, CUD of a field,
CUD of an import, import status change, CUD of a segment

Subscription Form Activity

Subscription forms are used by lists, but one form can be used by multiple lists,
so the forms’ log events are kept independent from lists’ log events as their own
event type. Other than lists using forms for subscription entry, there is no extra
functionality to forms, so CUD events are all that needs to be logged about them.

• logged data: timestamp, actor, activity type, subscription form ID

• activity types: CUD of a subscription form,

Campaign Activity

Like other entities, campaigns should log their CUD events. A campaign can
belong to at most one channel, so their current channel should be included in the
CUD event data, if they belong to one. Also, since campaigns can have multiple
different types that have different functionality, it may be useful to include the
campaign type in create event logs.

Running a campaign in Mailtrain works similarly to running an import, i.e.
tracking the campaign’s (overall) state is done using its status database entry.
For that reason, a status change event (with the new campaign status in its data)
should also be logged.

A regular campaign can be reset, which discards data about its sent messages
and returns the campaign to a state before it was sent. In practice, a campaign
reset is used rarely, but should still be logged.

• logged data: timestamp, actor, activity type, campaign ID, campaign
type (if the campaign was just now created), channel ID (if the campaign
belongs to one), changed campaign status (if any)

• activity types: CUD of a campaign, campaign status change, campaign
reset

18

A campaign can be set to track clicks of the links in its content. Therefore,
knowing which links the campaign contains is important in terms of analyzing the
campaign’s statistics. In the existing code, links are not entities, and as such do
not allow CUD events. Instead, links are registered for tracking when a campaign
launches, and removed when it resets. Since we already log a campaign reset, we
only need to log the link registration, when a new link is added to be tracked.
This event should contain the link’s ID, as well as its URL.

• logged data: timestamp, actor, activity type, campaign ID, link ID, link
URL

• activity types: link registration

A user can test-send a campaign’s message to a number of test users. Unlike
sending regular campaign messages, this isn’t included in the campaign’s statis-
tics, so it should also be differentiated from a regular campaign send event. A
campaign message can be test-sent to one testing subscriber of a given list, or
to all testing subscribers of a given list, so the logged test-send events should
include the target list’s ID, and if only a single subscriber is selected, the ID of
that subscriber.

• logged data: timestamp, actor, activity type, campaign ID, list ID, sub-
scriber ID (if any)

• activity types: campaign test-send

Triggers of a triggered campaign only define conditions that trigger send-
ing the campaign’s message. The triggering of triggers then happens based on
subscribers’ actions (i.e. not because of Mailtrain’s users). Therefore the only
loggable activity events for triggers are CUD, and since each trigger belongs to
exactly one campaign, they should be logged with the ID of the owning campaign
in the event’s data.

• logged data: timestamp, actor, activity type, campaign ID, trigger ID

• activity types: CUD of a trigger

The campaign may contain files along with its content. These may differ by
the method they are sent to the subscribers with the campaign: either they are
directly attached to the e-mail (those are called attachments by the campaign),
or they are publicly accessible via HTTP and linked from the campaign’s content
(those are simply called files by the campaign). The files are not fully fledged
entities, e.g. they can only uploaded or removed, and not updated. They are
also likely tied directly to the content of the campaign, and so logging them
when the content itself is not logged probably won’t yield useful information. For
that reason, while the upload or removal of files should be logged, no concrete
information about the manipulated files needs to be specified.

• logged data: timestamp, actor, activity type, campaign ID

• activity types: add attachments, remove attachments, add files, remove
files

19

When put together, the events of a campaign form this schema:

• logged data: timestamp, actor, activity type, campaign ID, campaign
type (if the campaign was just now created), channel ID (if the campaign
belongs to one), changed campaign status (if any), link ID (if any), link
URL (if any), list ID (if any), subscriber ID (if any), trigger ID (if any)

• activity types: CUD of a campaign, campaign status change, campaign
reset, link registration, campaign test-send, CUD of a trigger, add attach-
ments, remove attachments, add files, remove files

Template Activity

Templates define the content and files for campaigns. Similarly to campaigns,
templates can be test-sent to test subscribers of a given list, so a logged event of
a test-send should also contain the list’s ID and the subscriber’s ID if it is sent
to only one subscriber. Templates may also link files, but unlike campaigns, they
only define HTTP files, and not e-mail attachments. Like campaigns, the logged
file manipulation events also do not need to include any details of the changed
files. In summary, their logged events are CUD, test-sends, and upload or removal
of files.

• logged data: timestamp, actor, activity type, template ID, list ID (if any),
subscriber ID (if any)

• activity types: CUD of a template, template test-send, add files, remove
files

Mosaico Template Activity

Mosaico templates are very similar to normal templates. One difference is that
Mosaico templates cannot be test-sent. Another difference is that apart from
content files, they can also upload Mosaico block thumbnail files. Those files are
distinguished from the content files but otherwise logged in the same way. The
logged events for Mosaico templates are CUD and upload or removal of either
content files, or block thumbnail files.

• logged data: timestamp, actor, activity type, Mosaico template ID

• activity types: CUD of a Mosaico template, add files, remove files, add
block thumbnail files, remove block thumbnail files

Send Configuration Activity

Since send configurations only define rules for sending e-mail messages, we only
need to log CUD for them.

• logged data: timestamp, actor, activity type, send configuration ID

• activity types: CUD of a send configuration

20

Channel Activity

Channels only serve the function of grouping campaigns and providing default
settings for new ones. However, the users might want to see what campaigns a
channel contained at a given time, and so, in addition to CUD, a campaign being
added to or removed from a channel shall also be logged. The campaign log data
has to contain the IDs of the added or removed campaign.

• logged data: timestamp, actor, activity type, channel ID, campaign ID
(if any)

• activity types: CUD of a channel, add campaign to the channel, remove
campaign from the channel

Report Activity

Reports may be removed in the future, so logging their activity probably does
not need to be very thorough, but until they are removed, it’s at least good to
log their basic manipulation events. Therefore, CUD events should be logged for
both reports and report templates. The following schema describes report event
data:

• logged data: timestamp, actor, activity type, report ID

• activity types: CUD of a report

And the following schema describes report template event data:

• logged data: timestamp, actor, activity type, report template ID

• activity types: CUD of a report template

Namespace Activity

Namespaces only provide hierarchical structure to other entities, so their only
relevant log events are CUD.

• logged data: timestamp, actor, activity type, namespace ID

• activity types: CUD of a namespace,

User Activity

The only relevant log event for user entities, apart from CUD, is a password reset.
Users themselves can do many more actions of course, but those are handled by
the other entity activity event logs.

• logged data: timestamp, actor, activity type, user ID

• activity types: CUD of a user, password reset

21

Entity Sharing Activity

A key feature of Mailtrain’s security system is entity and namespace sharing using
roles. Users may share an entity with another user by assigning the user a role
within that entity. To log this action, we need to know the entity, the assigned
role, and the user the role is assigned to. Sharing entities works the same way for
every entity, so all these events are logged in the same way. This results in the
entity type being variable, so the entity is now defined by a pair of its type and
its ID. Also, note that unlike most events, an activity type is not needed, since
the only activity type possible is role assignment.

• logged data: timestamp, actor, entity type ID, entity ID, user ID, assigned
role

Global Settings and Blacklist Activity

Finally, users may also manipulate certain settings which are not tied to an entity
with an ID, so no entity ID is included in the following log data.

The first event type is the modification of the global settings. The events
belonging to it only need the timestamp and actor ID as data.

• logged data: timestamp, actor

The next event type is the modification of the blacklist, i.e. add or remove
an e-mail address from the blacklist. These events, alongside the timestamp and
actor ID, also log the e-mail address being added or removed.

• logged data: timestamp, actor, activity type, e-mail address

• activity types: blacklist e-mail, un-blacklist e-mail

3.1.2 Tracker Event Types
While logging entity activity is useful for administration, the goal of this thesis
is also to log and visualize various statistics of lists and their campaigns. This is
very useful for owners and maintainers of lists, because it allows for the analysis of
effectivity, performance, and reception of campaigns, long-term list performance,
comparing the performance of campaigns, etc. These trackers of lists and cam-
paigns log events related to subscribers of lists, and since lists may have many
subscribers, the amount of data logged is likely to be much larger than that of
entity activity logs.

There are some considerations regarding the European Union General Data
Protection Regulation (GDPR) [20]. Certain data logged by the proposed trackers
satisfies GDPR’s definition of personal data, and as such, GDPR’s regulations
apply to this data. Unfortunately, advanced subscriber privacy management is
beyond the scope of this thesis, so in practice, many obligations (for example,
deleting the data based on a user’s request) are left up to Mailtrain’s users to
be dealt with manually. However, if the users decide that they do not need
subscribers’ personal data, or that they do not want to deal with the obligations
associated with GDPR, there shall be a configuration option in Mailtrain, which
controls whether any sensitive data is included in event logs.

22

List Tracker

One of the two central entities in Mailtrain is a list. The function of lists is to
manage subscriptions, and so the purpose of a list tracker is to track the lists’
subscriptions.

There are several ways a subscription can be altered. New subscriptions can
be added using the list’s subscription form, a subscription may be updated to
change the preferences of the user, the subscription may change status (e.g. when
a user unsubscribes), and the subscription may be deleted by a periodic inac-
tive subscription cleanup service. Subscriptions may also be created, updated,
and deleted manually. While the manual subscription manipulations are already
logged in entity activity, both cases need to be logged in a list tracker, since the
two logs serve different purposes, with the goal of the entity activity log being
mostly the ability to track the user who did it.

Every list tracker log needs to contain a timestamp, the ID of the logged
subscription and the ID of the subscription’s list, and the type of activity that
was logged.

When a subscription is created, updated, or deleted, some information about
the subscription should also be logged. The two important variables are the
subscription’s e-mail address and whether the subscription is marked as a test
subscription. In terms of GDPR, the e-mail address of the subscription is sensitive
information, so it should not be logged when logging sensitive data is not config-
ured to be on. Still, we may want to identify a subscription based on some known
e-mail address, even if we cannot store it directly. Luckily, this is achievable if
we simply also log a hash of the e-mail address.

In all list tracker events, including a subscription status change, it’s important
to log the status of the subscription. Additionally, given a time interval, it’s useful
to be able to know the difference between counts of subscriptions with a given
status over that interval. There are more than 2 possible values of subscription
status, so with the log data proposed so far, it would be difficult to compute
this difference from the logs. To make this easier, an extra variable is added to
the log containing the previous status of the logged subscription if it had one.
Also, for this method to work well, when a subscription is deleted, its deletion
event log should contain its last status in the previous subscription status and
not its current subscription status. With this, computing the difference between
counts subscriptions with a given status over a time interval is simple: it is the
difference between logs containing the status as a current subscription status and
logs containing the status as a previous subscription status.

With all that taken into account, we get the following schema:

• logged data: timestamp, activity type, list ID, subscription ID, e-mail ad-
dress (if sensitive data is logged), e-mail address hash, whether the subscrip-
tion is a test subscription, subscription status (if any), previous subscription
status (if any)

• activity types: CUD of a subscription, subscription status change

Lists can also be divided into segments, and there was some thought put into
how subscriptions belonging to segments would be logged. It would be somewhat
problematic, because the inclusion of some rules, such as a subscriber not opening

23

an e-mail for a given time can cause a subscriber to start belonging to a segment
at an arbitrary point in time. Mailtrain currently only checks which subscribers
belong to a segment on demand (e.g. when a campaign is being sent), but logging
subscriber segment inclusion over time would require periodic checking, which
would be ineffective if there were many lists. For that reason, logging inclusion
of subscriptions in segments is not implemented in this thesis.

Campaign Tracker

The second of the two central entities in Mailtrain is a campaign. The campaigns
in Mailtrain serve the function of sending messages with given content to sub-
scribers. The purpose of a campaign tracker is to track campaigns’ messages and
the subscribers’ reactions to them. A campaign message is identified by the ID of
its campaign, an ID of the target subscription, and the ID of the subscription’s
list, so each log should contain these values, as well as a timestamp and the type
of event that was logged. The following paragraphs describe logged campaign
tracker events.

We want to know all the intended recipients of a campaign. Every intended
recipient should be sent a message, but in rare cases, sending the message may
fail, so the set of recipients of a campaign is the union of successfully sent messages
and failed messages. This means we should log both a success and a failure to send
a message. Messages can also be test-sent, but these messages do not contribute
to the total sent messages. While test-sent messages should also be logged, they
should be distinguished from those sent after a campaign launches.

• logged data: timestamp, activity type, campaign ID, list ID, subscription
ID

• activity types: message sent, message failed to send, message test-sent

In the case of triggered campaigns, it’s also useful to know when a certain trigger
was triggered. The log of a trigger event should include the ID of the trigger.

• logged data: timestamp, activity type, campaign ID, list ID, subscription
ID, trigger ID

• activity types: trigger triggered

After a message is sent, it may still encounter events worth logging. In case the
e-mail message is not deliverable, it may bounce back, which can be detected by
Mailtrain. It’s also possible for a spam complaint about the message to be sent
back by the e-mail server, which Mailtrain can also detect. The user may also
choose to unsubscribe using the link inside the message. All three of these events
should be logged.

• logged data: timestamp, activity type, campaign ID, list ID, subscription
ID

• activity types: message bounced back, message received spam complaint,
subscriber unsubscribed using this message

24

When interacting with the content of the message, subscribers may be tracked
when they open an image (this is achieved using a tracking image with no con-
tent), or click a link in the message’s content. Both events are to be logged, with
link clicks also including the clicked link’s ID with the logged data. By default,
both opening a message and clicking a link are only logged the first time they are
tracked for each message, because logging them repeatedly would require large
amounts of disk space, and also because knowing whether a subscriber opened a
message or clicked on a link at least once is useful enough on its own. If Mail-
train’s users wish, the application shall allow turning on repeated logging of these
events in its configuration. A third log-worthy event is the first time a subscriber
clicks on any of the links in a message’s content. This gives general information
about the subscribers that clicked on at least one link of the message.

Loading the content of the tracking image or links makes the subscriber con-
nect to the Mailtrain server through HTTP, from which Mailtrain can deduce
the time of clicking the link, the user’s IP address, device type, and approximate
geolocation (which is translated into a country). These data may be included
when logging either a message opening, a specific link click, or a general link
click. However, the IP address, device type, and country are all sensitive infor-
mation, so they should only be logged when logging sensitive data is enabled in
the configuration.

• logged data: timestamp, activity type, campaign ID, list ID, subscription
ID, link ID (if the activity type is link clicked) IP address (if sensitive data
is logged), device type (if sensitive data is logged), country (if sensitive data
is logged)

• activity types: message opened, link clicked, any link clicked for the first
time

Altogether this gives us this schema:

• logged data: timestamp, activity type, campaign ID, list ID, subscription
ID, link ID (if the activity type is link clicked) IP address (if sensitive data
is logged), device type (if sensitive data is logged), country (if sensitive data
is logged)

• activity types: message sent, message failed to send, message test-sent,
message bounced back, message received spam complaint, subscriber unsub-
scribed using this message, message opened, link clicked, any link clicked
for the first time

3.2 Logged Event Data Transformations
The event data as described in the previous section have a set structure. That
structure makes some queries of the data by visualizations more effective, but
other queries less so. The goal of this section is to propose a few transformations
of the logged event data. In IVIS’ terms, a data transformation is meant to
process the data from one or several signal sets into a new signal set for the
transformed data, without modifying the original signal sets’ data.

25

These transformations are mainly important for the visualizations to be able
to query the data faster and more efficiently. That is why the transformations’
utility will be omitted for now and will be left to be explained in section 3.3,
which proposes the visualizations.

3.2.1 List Subscriptions
The first data transformation is meant to create a signal set displaying subscrip-
tion counts of a list over time. This is quite difficult to do so far but can be done
using list activity and list tracker event data.

At a list’s creation, its subscription count is zero. The list’s creation time can
be found in list activity, or simply assumed that it is at some point before the
first list tracker event. Then, given a point in time, the subscription count of
the list at that point is the difference between the count of the list’s list tracker
events with subscription status ’subscribed’ and the count of the list’s list tracker
events with previous subscription status ’subscribed’.

This would be computationally expensive if it would have to be done on
demand for many time points, but there are possible optimizations. The first one
is that the chart does not need to be granular to the level of single subscriptions,
the values over time may be aggregated into buckets of short time intervals, like a
minute. The second one is that the transformed data only needs to be computed
once, and then saved to the transformed signal set, where it can be looked up.
This means the schema of this transformed signal set would be simple:

• logged data: list ID, timestamp, subscription count

If a record displaying subscription counts at a given point exists, then to get the
next record at another time point, one only needs to compute the difference of
the aforementioned events between the two time points to get the difference of
subscription counts in that time, and then add this difference to the subscription
count of the previous record to get the new subscription count. This way the
data can be computed relatively easily over time.

3.2.2 Campaign Messages
The second data transformation is very similar to the List Subscriptions transfor-
mation, only this time it is meant to display cumulative counts of various events
of campaigns. Assuming the output of this transformation is a new signal set, its
schema contains these fields:

• logged data: campaign ID, timestamp, number of failed messages, number
of sent messages, number of opened messages, number of bounced messages,
number of spam complaints, number of unsubscribes, number of subscribers
who clicked on at least one link number of link clicks (this last one means
multiple data fields, one for each known link)

The variable amount of fields due to link click fields will be left aside for now.
Assuming we know the required links and want to know the values of a record
given point in time and a previous record, we can calculate them by taking the

26

values of the previous record, and adding to them the counts of the corresponding
campaign’s tracker events, which occurred between the two time points. This can
be done even for links, as campaign tracker entries for a clicked link contain the
link’s ID. Also, unlike the previous transformation, no subtraction is done, as a
cumulative amount of events cannot diminish with time. And like in the previous
transformation, if there is no previous record, we can assume that the previous
values are zero and take into account all of the campaign’s tracker events before
the given time point.

To briefly touch on the problem with links, since different campaigns have
different links, the variable link click count would be pretty much impossible to
implement in a relational database. This suggests that this data would be split
into multiple tables by their campaign, which would solve this problem. This is
a more technical problem, however, so it is beyond the scope of this chapter. It
is further explained in Chapter 4.

3.2.3 Channel Campaigns
The third data transformation aims to create a signal set with information about
channels’ campaigns. Channel activity events log when a campaign is added to
or removed from a channel, but there isn’t a simple way to deduce from that data
which campaigns belong to a channel at the current time.

The solution is to create a signal set containing records corresponding to
the current campaigns in channels. Each record would represent a campaign
belonging to a channel. This would mean that the records would have to be
actively updated, added, or removed when a campaign’s inclusion in a channel
changes.

The campaign entries should also contain some overview of their current statis-
tics. The data fields of interest would be the event types of the schema in the
campaign messages transformation, as described in section 3.2.2, except the link
clicks, which would make creating a schema impossible, as this time, all of a
channel’s records should be in a single signal set. Each record should also contain
a timestamp of the time the campaign was created, so that the campaign records
can be sorted time-wise. This leads to the following schema:

• logged data: channel ID, campaign ID, timestamp of campaign creation,
number of failed messages, number of sent messages, number of opened mes-
sages, number of bounced messages, number of spam complaints, number
of unsubscribes, number of subscribers who clicked on at least one link

3.3 Proposed Visualizations
The following section describes the proposed visualizations to be added to Mail-
train. The source of data for these visualizations should be logged events or
results of some data transformation described in the previous section.

3.3.1 Entity Activity
The last section defined events of entity activity, which are logged when Mail-
train’s entities are manipulated. As stated before, the purpose of having these

27

 time

Namespace
1 activity

Figure 3.1: A draft of the entity activity visualization

events is to be able to search if any of the entities have been manipulated im-
properly, either because of an error or an attack.

There are two common ways of searching for these kinds of activities. The
first is the activity of a specific entity, where we suspect some known entity of
being improperly manipulated, so we view the activity done to that entity and
look for events that might have caused it. The second is the activity of a user,
where we suspect some user in Mailtrain may be malicious (for example, their
account may have been taken over by an outside attacker), and we want to see
all the events that the user caused over some time.

Both of these methods can use the same visualization. Events occur over time,
so the visualization should display a timeline, and the events may be displayed
as points on the timeline. Hovering over a point with the cursor should display
a tooltip to learn more about the details of the event the point represents. This
means displaying what type of event it is, the exact time the event was logged,
the user who caused it to happen, and all other information relevant to the event.

However, there should be a distinction in the controls. The chart of activity
of a specific entity should have a selection of the entity, which probably means
an entity type selector, and a selector of a specific entity so that the visualization
would show only the events relevant to it. These selectors may even be optional,
which would allow displaying events of multiple entities at the same time. To
somewhat differentiate different activities, ones from different entities or different
entity types would be distinguished by color. On the other hand, the user activity
visualization would only contain a user selector, to filter the events based on which
user caused them to happen.

3.3.2 List Subscriptions
For maintainers of a list, it is useful to see the list’s performance over time. This
allows them to judge both the short-term and long-term effects of their actions on
the list. Knowing the state of the list over various time periods can help address
possible long-term issues the list may have. This is why each list should have a

28

 #subs

 time

Figure 3.2: A draft of the list subscriptions visualization

visualization displaying its performance over an interval of time.
With that in mind, the main metric to judge how well a list is doing, with

regard only to data from the list, is the list’s subscriber count. For this reason, the
base of the list subscriptions visualization for a given list is a line chart displaying
subscriber count over time. The visualization can obtain this data from the list
subscription transformed data, described in section 3.2.1.

However, simply displaying subscriber count over time without any context
does not communicate much information. The list’s subscriber count is affected
by various actions to the list, e.g. sending a campaign, or importing subscribers.
Fortunately, all of these actions are already logged as list activity events, which
were described in section 3.1.1. With them, we can grant additional context to
the subscriber count line chart by also displaying points on the timeline signifying
that an event took place. These events need to be filtered to only include events
relevant to the list. Like the entity activity visualization, users may hover over
the events to show a tooltip providing more information about the event.

3.3.3 Campaign Messages
Similarly to the list subscriptions visualization, a campaign messages visualization
should display the performance of a selected campaign over time, and since a
campaign defines the content of a message that is to be sent to subscribers,
tracking its performance means tracking the events of its messages. In the case
of regular campaigns, the information it provides is likely more short-term, due
to campaigns only serving to send a single batch of messages.

The visualization has the form of a line chart, but with multiple lines, each
representing a different event type. Each event line shows the cumulative count
of events of a given type at a given time. The amount of event types is rather
numerous, so the event lines may be split into three categories.

The first category contains cumulative counts of three activity types. Two
of them are sent messages and failed messages, which show how many messages
were intended to be sent. The third one is opened messages, which shows how

29

 sent

 time

opened

clicked link 1

failed to send

clicked link 2

unsubscribed

complained

bounced

counts:

Figure 3.3: A draft of the campaign messages visualization

many people got to see the message.
The second category also contains three activity types, those being logged

events of e-mail bounce-backs, complaints, and unsubscribes this campaign has
received.

The last category shows link clicks. Since a campaign can have any number
of links, the amount of event lines in this category is not known ahead of time.

The three categories may manifest as three distinct visualizations, or there
may be only one visualization, but the lines should have toggleable visibility.
Both of these options are viable.

Just like the list subscriptions visualization, the campaign messages line chart
also displays events of the campaign’s activity, defined in section 3.1.1, to provide
additional context to the campaign’s performance. The data for lines is obtained
from the transformed campaign messages records, as defined in section 3.2.2.

3.3.4 Campaign Overview

Messages Link clicks User actions
Total: 1024 Total: 345 Total: 41

opened:
350

sent (but
unopened): 654

failed: 20

link 1:
126

link 2:
120

link
3: 99

unsubscribed:
28

bounced:
6

complained:
7

Figure 3.4: A draft of the campaign overview visualization

30

The campaign overview visualization uses similar data as campaign messages,
but formats them differently.

The campaign overview visualization aims to display a statistical summary of
a single campaign. Like campaign messages, the visualization is split into three
categories, this time three pie charts, each displaying the values of each of its
arcs, but also their sum.

The first pie chart should display the amount of sent messages, failed messages,
and opened messages. However, the idea is for the pie chart’s sum to equal the
number of recipients, and its arcs then be visualized as a fraction of all recipients.
This would work if the pie chart only contained sent and failed messages, but it
also contains opened ones. We can solve this by subtracting the opened messages
from the failed messages. The result can be viewed as follows: the first arc
contains the messages which were not successfully sent, the second arc contains
the successfully sent messages that were not opened, and the third arc contains
messages that were both sent and opened. An opened message must have been
successfully sent, so the difference between sent and opened messages always
yields a non-negative number.

Similarly, the third pie chart has arcs corresponding to the number of e-
mails that bounced, the number of e-mails rejected as spam, and the amount of
unsubscribes.

The middle pie chart’s arc corresponds to the campaign’s links. As stated in
the Campaign Messages section, this means that the number of arcs is not known
ahead of time.

Unlike campaign messages, the campaign overview visualization does not need
statistics over time, it only needs a single result from all the so far logged data
in the campaign’s tracker. This means that processing data directly from cam-
paign tracker events would not be as computationally expensive as it would be
in the case of campaign messages. Still, the data is the same as the data of lines
in the campaign messages visualization at its most recent point. This means
that the visualization may simply use the most recent record from the campaign
messages transformed signal set, described in 3.2.2, which would save even more
computation time.

3.3.5 Channel Campaigns
A channel is used for grouping campaigns, and it is safe to assume that campaigns
in the same channel have a similar purpose. Therefore it could be useful for
channel maintainers to be able to compare statistics of the channel’s campaigns,
which could help them assess how the campaigns are performing over time. This
visualization is meant to serve this purpose by providing an overview of the
performance of recent campaigns in the selected channel.

The channel campaigns visualization is essentially a modified bar chart. The
bars are grouped by three, with each bar group representing one campaign. The
bars themselves are divided into segments, with each segment having a height
proportional to the value it represents. Each group of three bars has a similar
meaning to a campaign overview visualization as described in section 3.3.4, except
with bars instead of pies.

The first column’s segments represent the amount of failed messages, sent

31

 statistics

campaign1 campaign2 campaign3 campaign4

Figure 3.5: A draft of the channel campaigns visualization

but unopened messages, and opened messages. The third column’s segments
represent the amount of bounced e-mails, spam complaints, and unsubscribes.
Unlike campaign overview, each campaign in the channel campaigns visualization
serves only as a preview and does not need to display detailed data about itself.
For that reason, the campaign’s middle column is not segmented. Instead, the
column represents the number of people who clicked on at least one link in the
campaign. Other values of columns correspond to the non-link-related pies in the
campaign overview visualization. All this data about the channel’s campaigns
is obtainable from the channel campaigns transformed signal set, described in
section 3.2.3.

With that in mind, the columns of a single campaign already provide a gener-
ous amount of information, and having too many campaigns in this visualization
may be overwhelming. A good idea may be to set an upper limit for the number
of displayed campaigns to show only the most recent ones.

3.3.6 Channel Campaign Contributions

cp1

cp2

cp3
cp4

cp5

other

Last monthTime interval:Opened
messagesStatistic:

Figure 3.6: A draft of the channel campaign contributions visualization

A more direct way of comparing campaigns in a channel is by comparing

32

only certain statistics of the campaigns. This allows users to quickly identify
which campaigns contributed most or least to a channel, which can be used to
adapt the content of future campaigns accordingly. For example, if users want
to increase link clicks, and find that certain campaigns receive more link clicks
than others, they can make the content of future campaigns more similar to those
highly clicked campaigns.

The way to visualize this information is by using a simple pie chart, where
each slice represents the selected statistic of a single campaign. We need to be
able to select the statistic we want to compare, so a radio-type selector with
possible statistics should be present. Finally, most of the time we do not need
to compare all campaigns of the channel, but only ones from a certain time, so a
time range selector should also be added.

Meaningful campaign statistics which can be compared are: sent messages,
failed messages, opened messages, bounced e-mails, spam complaints, unsub-
scribes, and link clicks. As for link clicks, only general link clicks (the nubmer
of users who clicked on at least one link) are comparable. Comparing specific
link clicks would also require a selector of the link URL, which would drastically
complicate the design of the visualization for little benefit. With that in mind, all
of this data can be queried from the channel campaigns transformed signal set,
described in 3.2.3. The records taken into account with regard to a time interval
would be those records with the campaign’s creation time within that interval.

33

34

4. Solution Architecture
In the previous chapter, we identified all logged events and visualizations to be
added to Mailtrain. Before implementing them directly, we need to describe
how Mailtrain and IVIS are to be integrated, which then lays a foundation for
full implementation. This chapter describes the integration, both from a static
module view and from a runtime view.

The first section describes the integration’s architecture from the perspective
of how the two projects are connected. This mostly covers the integration from
a runtime point of view. The description includes how the integration allows
various Mailtrain and IVIS processes to communicate.

Afterward, the architecture of the integration is described in two chapters
as descriptions of extensions implemented for Mailtrain’s and IVIS’ side of the
integration respectively. In contrast to the previous chapter, these sections focus
more on the static decomposition of the architecture, i.e. describing all newly
added modules, and existing modules that were modified.

Lastly, the extension made in this thesis must provide authorization with
respect to Mailtrain’s authorization system, so that it does not leak data that
should only be visible to some users. Therefore, the final section of this chapter is
dedicated to explaining how security is handled so that IVIS can accept authorized
requests without leaking any data to unauthorized persons.

4.1 Architecture of the Integration

Both Mailtrain and IVIS are already existing applications with their own archi-
tectures. Therefore the integration architecture is designed as extensions on the
side of Mailtrain and IVIS. Explanations of Mailtrain’s and IVIS’ extensions are
reserved for future sections. Before that, this section instead focuses on how the
two projects are connected. This includes both the code and runtime perspective.
However, from a code standpoint, Mailtrain and IVIS are simply two separate
modules and further decomposition is left for sections describing the extensions
themselves, so the runtime perspective is prioritized.

Mailtrain
Central
Runtime

…Mailtrain
Services

MariaDB
IVIS

Central
Runtime

…IVIS
Services

MariaDB

Elastic-
Search

Arrows = Requests Color = Technology (Node.js, Others)

HTTP/S

Node.js IPC

HTTP/S

Figure 4.1: Runtime view of the integration’s architecture

35

4.1.1 Decomposition into Runtime Modules

Mailtrain and IVIS share most of their key technologies, and have almost identical
architectures. Both use Node.js for server-side code and React for client-side code,
both can run their backend on Ubuntu or CentOS operating systems, and both
use MariaDB as an SQL database to store their data. Additionally, as stated in
section 2.1 on Mailtrain’s background, if we want to extend IVIS with our code,
we need to use IVIS’ extension manager, which necessitates directly including
IVIS from another Node.js process.

Due to the commonalities between Mailtrain and IVIS, it might be possible to
run IVIS directly from Mailtrain’s code, making them share one runtime process.
This would bring some advantages, for example, communication between them
would be very easy since one project could directly call the methods of the other.
Unfortunately, there are many more disadvantages. First, this would impede
the integration’s scalability. Due to the nature of JavaScript, it is impossible
to create a multi-threaded process in Node.js. Mailtrain already needs to split
its computational load to other processes, so adding IVIS to it would needlessly
slow it down. Second, even if the projects share many properties, they were
not designed with this integration in mind. Running them from a single process
could cause conflicts of functionality, and even if all of them are accounted for
now, more errors may appear when IVIS receives an update.

Therefore the projects are to be split into two runtime components (in fact
possibly more, since both Mailtrain and IVIS can run as multiple runtime com-
ponents themselves). Since a custom Node.js program is needed to use IVIS’
extension manager, the solution is to create a wrapper program defining all the
extensions, and make Mailtrain launch it as a new process on its startup, along-
side other Mailtrain service processes.

A similar problem is how to treat the databases. While both Mailtrain and
IVIS use MariaDB, they use different databases themselves to avoid conflicts of
table names, etc. From a runtime perspective, both databases are accessed from a
single MariaDB instance. However, they can also be separate MariaDB instances,
which may allow future extensions to run IVIS on a completely separate machine
from Mailtrain, allowing for even more scalability in the future (even if it is not
implemented in this thesis).

4.1.2 Communication

At runtime, Mailtrain and IVIS need to coordinate and share some of their data,
which requires some amount of communication between them. Both Mailtrain
and IVIS have methods of communication with their child processes, but the
existing methods are not sufficient for the needs of this integration. This section
describes how the communication between Mailtrain and IVIS is handled from a
general technical perspective.

The section focuses on server-to-server communication. While client-to-server
communication is affected by this integration as well, its needs are supported by
existing communication methods in Mailtrain and IVIS, so it does not require
any special treatment. Therefore it will be omitted here.

36

Communication via a Node.js IPC

As stated in the previous section, IVIS is launched from Mailtrain on each startup.
Mailtrain already manages other Node.js processes (which it calls services) and
launches them on startup in a consistent way. the process is started using the
fork() function of the child process [9] module in the Node.js standard library.
This function is designed to spawn a child Node.js process, and after spawning
it, it returns a handle for communicating with the child process.

The inter-process communication (IPC) handle provides a simple, reliable, and
secure way to send messages both ways between Mailtrain and IVIS server pro-
cesses. Unfortunately, both Mailtrain and IVIS servers are comprised of multiple
Node.js processes and the child process handle can only be used to communicate
between the parent and the spawned child, which in this case is the central Mail-
train server process and the central IVIS server process. Due to the advantages of
communication using the child process handle, it is the preferred server-to-server
communication method, where it is possible to use it.

Communication via HTTP

However, for any communication between other processes than Mailtrain’s and
IVIS’ central server processes, the required child process handle is inaccessible,
so a different method of communication needs to be used. Fortunately, the only
communication not between Mailtrain and IVIS central server processes is com-
munication of Mailtrain’s Activity Log module (explained in section 4.2.2), in
which case the recipient is always the central IVIS process, i.e. only the sender
may be a random process. This is very convenient, as both Mailtrain and IVIS
central server processes can be communicated with by anyone using HTTP calls
to their REST API. Therefore, HTTP is the communication method used where
the target process cannot be reached using a child process handle.

There is still a problem with authentication because HTTP requests can be
impersonated, so the recipient needs to recognize that a request comes from
a trusted sender. This can be achieved using a secret token that all trusted
processes know. Each of these cross-process requests then includes the token in
its data, and the recipient can confirm its validity by checking that it is the same
as their own secret token. Once a request like this is validated, since it comes
from another server process, no more permissions need to be checked, i.e. the
request has global access to the recipient’s data (limited to what the request itself
can do, of course). Therefore, this token shall be called a global access token.

Because IVIS and all other communicating processes are spawned by Mailtrain
or by some other process that was in turn spawned by Mailtrain, we do not even
need to store this access token permanently. Instead, Mailtrain shall generate a
global access token at each startup, and pass it to all of its child processes when
it spawns them.

4.2 Mailtrain Extensions
Regarding the integration, Mailtrain has several responsibilities it needs to man-
age. First, it needs to spawn IVIS on every startup, so that it can work with

37

IVIS later. It is also up to Mailtrain to detect events established in Chapter 3. It
then needs to send these events to IVIS where they are logged, so that IVIS has
up-to-date information about the state of Mailtrain. Finally, Mailtrain should
display IVIS’ visualizations from its own client site, so Mailtrain should modify
its client to allow for these visualizations to be displayed.

4.2.1 Spawning and Managing IVIS
One module added to Mailtrain in this integration is dedicated to managing IVIS
as a child process. As stated in section 4.1.1, Mailtrain spawns the IVIS process
using the fork function from the child process module of the Node.js standard li-
brary. The described module is responsible for this functionality. Other processes
spawned by Mailtrain also send a message notifying the main process that they
have started. To retain consistency, this module should also listen for a message
from the IVIS process that it has started, and log it in the standard log (i.e. not
the event log which transfers data into IVIS).

This module should also handle communication with the IVIS process to some
degree. The description of the integration’s architecture proposed two types of
communication with IVIS: via the child process IPC, and HTTP. In both cases,
the responsibility of this module is to encapsulate this functionality into simple
and easy-to-understand functions, which can be called directly from the process
code.

In the case of communication via the child process handle, all possible requests
are those designed in this extension, so each request type can be mapped to one
function. Similarly, incoming requests are also all known, so a response can be
coded directly in this module.

In the second case, we only need to consider outgoing HTTP requests, since
IVIS does not need to communicate with Mailtrain using its processes. IVIS
includes an API endpoint that can be extended to provide any functionality, and
Mailtrain is most likely to communicate only with IVIS using the API, to keep
the convention of trusted routes being used only by IVIS clients. That said, due
to the flexibility of HTTP, only one general-use function needs to be provided,
which sends a request to IVIS given a URL path, HTTP method, and request
data.

As mentioned in the previous section, HTTP requests are authenticated using
a global access token generated on each startup of Mailtrain, and passed to any
child processes. As a module for managing communication with IVIS, this module
also has a responsibility of generating this token, or recognizing that it was passed
from a parent process and accepting it.

4.2.2 Event Logging
The detection and logging of events in Mailtrain is handled by a new code module
named Activity Log. This module is meant to track events reported to it by
Mailtrain, process them as needed, and send them to IVIS to be logged. Activity
Log provides an interface for logging an event, which can be used by other modules
of Mailtrain in which the event happens. This means that many other modules in
Mailtrain have to be changed to use this interface when they encounter an event

38

to be logged.
Processing the data by Activity Log mostly means formatting it to be ac-

cepted by IVIS. This usually requires little to no work, as IVIS’ extensions can
be programmed to accept this data. The most important part of processing is
stripping sensitive data off the event data if a setting to log them has not been
turned on in the configuration.

Regarding the sending of logs, it would be inefficient to send the logs one by
one, since they can be very numerous. Therefore, Activity Log instead builds a
queue of events to be sent, and once it reaches a certain threshold of messages,
or some time passes, it sends them in bulk.

From a runtime perspective, the Activity Log is not differentiated. Instead,
Mailtrain splits itself into multiple processes, all of which use Activity Log inde-
pendently in their own process. This leads to having multiple queues, so not all
events will be logged in the order they happened, but since pretty much all of
them include a timestamp, logging them out of order does not break anything.

Synchronization of Data

Activity Log does not store its event queues in the database. This means that if
an unexpected crash occurs, some events may be lost. To keep IVIS up to date
with Mailtrain’s state despite this, we would need to add some functionality that
synchronizes the data with IVIS. However, even if we designed Activity Log to be
completely reliable, we would still need the synchronization, because a user may
replace Mailtrain’s database for another one, either as a backup or a migration
from another machine, and Mailtrain wouldn’t be turned on to log this. The user
could also simply update Mailtrain from an older version.

The solution is for Activity Log to include functionality to send information
about Mailtrain’s data to IVIS to synchronize them. The function only needs to
be invoked once on each startup, which is as soon as possible after a crash, an
update, or a database change. While the synchronization cannot fully restore all
of the lost data, it can at least restore some portion of it (e.g. subscriber count
of lists), and inform IVIS whether any entities have been removed, so IVIS does
not have to dedicate resources to tracking them anymore.

4.2.3 Displaying Visualizations from the Client
Finally, the client side of Mailtrain has a responsibility to display the logged data
to the users. This entails making new pages for visualizations to be displayed or
extending existing pages to display the visualizations. Mailtrain has pre-defined
styles and a flexible structure of client routes, so most of the work in adding a
new page is creating an appropriate React component for the page, and adding it
into the client routes structure. Once it is added, Mailtrain automatically takes
care of displaying it as an item in the appropriate menus to be navigated to and
rendered.

Another thing to solve is how to display the visualizations themselves. Luck-
ily, IVIS has an intended way to implement displaying its visualizations from
other sites, which is by embedding them. The IVIS project contains a JavaScript
module called embedding, which contains methods that embed various entities

39

from IVIS into other web pages. The module is not used by IVIS itself. In-
stead, it is intended to be imported and used by other applications, to simplify
embedding IVIS’ content in other pages. The pages which display the visualiza-
tions in Mailtrain’s client shall therefore use the embedding module to embed the
visualizations inside them.

4.3 IVIS Extensions
The responsibilities of IVIS added by this thesis are accepting data sent to it by
Mailtrain’s Activity Log and storing them appropriately, transforming the data
where needed, and providing client-side visualizations. Unlike Mailtrain, most
new code forms new modules and little is added to existing modules. The volume
of added code is also larger than in Mailtrain’s extensions, so IVIS’ extensions
are split into more modules than Mailtrain.

4.3.1 Mailtrain IVIS
Since IVIS is a standalone application designed for various uses, the code of IVIS
should not be modified to the needs of Mailtrain directly. Instead, it should
either be extended generally, so that multiple applications can benefit from the
extension, or it should be extended from Mailtrain’s code using IVIS’ extension
manager. This can be done by creating a new Node.js program, which we will call
MVIS (short for Mailtrain IVIS). Its main module, which is called on its startup,
defines all extensions to IVIS that are needed to implement the integration with
Mailtrain. After defining them, it launches IVIS’ code directly inside itself, for
which all the defined extensions then become accessible. Some extensions are sim-
ple and require only a few lines of code to write, such as changing the application
title, but some extensions need to be split into their own code modules.

4.3.2 Modules by Logged Event Type
A large portion of the responsibilities of MVIS is managing IVIS’ entities, e.g.
signal sets or jobs, and due to the large volume of code, it may be beneficial
to split these responsibilities into multiple modules. This chapter describes how
that is achieved and the reasoning behind it.

Let us now explain how logged data is stored in IVIS. As mentioned in section
2.2 on IVIS’ background, for IVIS to use its data effectively, it needs to store them
in signal sets, which are similar to database tables. The proposed events from
section 3.1 support this format of data. Therefore the extensions must define
several signal sets, to which the logged events are then stored.

A data transformation in this context means code that queries one or sev-
eral input signal sets, and based on their data, adds or transforms data in some
other output signal set. In MVIS, data transformations are implemented in two
ways: using IVIS tasks or jobs, and directly writing the transformations in MVIS
code. IVIS jobs run in another process, which makes them more suitable for
computation-heavy transformations. However, since they have to be run in an-
other process, it takes some time for them to start, and there is no good way for

40

MVIS code to wait until a job is finished. For this reason, smaller and more ver-
satile actions can be done manually in MVIS code. Regarding IVIS tasks, since
we know what tasks are needed, they are implemented as built-in tasks using the
extension manager. This way, unlike regular tasks, IVIS’ database does not need
to be changed every time the task’s code is updated.

An obvious option to decompose this code is into modules of signal sets, and
data transformations. However, signal sets or data transformations may have
very little in common among themselves. The better option is to decompose
them into modules based on the types of events they manage, or more generally,
the types of entities they manage. This way, for example, transformations of
campaigns mostly interact only with campaign-related signal sets. The following
subsubsections describe these modules and their responsibilities.

Entity Activity Module

One such module is responsible for maintaining entity activity data. It defines one
signal set for each event type of entity activity event types, as they were defined
in section 3.1.1. This means it defines separate signal sets for lists, subscription
forms, campaigns, templates, Mosaico templates, send configurations, channels,
reports, report templates, namespaces, users, shares, global settings, and black-
list, for a total of 14 signal sets. Each signal set contains signals corresponding
to all the logged data listed when describing each event type.

Lists Module

Another module is responsible for maintaining list data. It defines a signal set
for logging list tracker events, as described in section 3.1.2. Unlike entity activity
signal sets, which contain all entity activity events of a given entity type, a list
tracker signal set is to be instantiated for each list separately, since the amount
of events in them is likely to be very large, so splitting the events by their lists
makes data in each of these signal sets easier to query. Consequently, the signal
sets themselves can omit the list ID from the signals (since a list ID of a record
is now determined by the record’s containing signal set) and store only the rest
of the logged data as signals.

For each list, the module also manages a job that transforms the data from the
list tracker signal set into a subscription counts transformed signal set, which was
described in section 3.2.1. Similarly, since this signal set is instantiated for every
list, it can omit the list ID from its signals. The job aggregates and accumulates
the subscription counts, which is a computation-heavy task, so it is implemented
as an IVIS job.

Finally, for each list, the module also instantiates a signal set that stores list
activity events (described in section 3.1.1) of that list only. This is for security
reasons. As described in section 2.2.1, signal sets cannot control permissions for
each of their records individually, meaning if a user is allowed to view one record
from a signal set, then they are allowed to view all records from the signal set.
This means that when a user views a list subscriptions visualization (as described
in section 2.2.1), they must query entity activity data from a signal set dedicated
only to the list’s data, otherwise, they would have permission to see entity activity
data of all other lists.

41

Campaigns Module

A similar module to the one above is for managing campaigns. For each campaign,
it defines a campaign tracker signal set, which stores the campaign’s tracker
events, described in section 3.1.2. For each campaign, it also defines an IVIS
job, which transforms the campaign tracker data into another transformed signal
set for each campaign, which contains logged data as described in section 3.2.2.
And lastly, for each campaign, it also creates a signal set dedicated to storing the
campaign’s activity data, so that permissions to view one campaign’s data can
be separated from permissions to view another. Similarly to signal sets in the
module managing lists, Since signal sets only contain data of a single campaign,
they can also omit the campaign ID signal.

The jobs transforming the campaigns’ data have an extra responsibility com-
pared to ones transforming list data, as the transformed signal sets’ signals include
click counts of each link. This means that the jobs need to detect newly regis-
tered links for the campaign, extend the schema of the transformed signal set to
include a new field for the number of the link’s clicks, and then also include the
link’s clicks as events the jobs look for.

Channels Module

Finally, there is a module for channels, which for each channel defines a signal
set of this channel’s campaigns, as described in section 3.2.3. Once again, since
there is a signal set for each channel, the signal set may omit the channel ID from
its signals.

The module contains a data transformation code, which adds or removes
campaigns from the channel’s signal set based on some of the channel’s entity
activity events (the ones logged when a campaign is added or removed from the
channel), and update the record if the campaign’s statistics change. This task is
implemented directly in MVIS’ code, since its functionality is rather broad, and
at the same time not too computationally expensive.

4.3.3 MVIS Activity Log
All of the modules in the previous subsection are meant to store certain events
sent to MVIS by Mailtrain’s Activity Log. However, we also need a system that
accepts these events and stores them inside the appropriate signal sets. This is
why MVIS also has an Activity Log module.

Similarly to the Activity Log on Mailtrain’s side, MVIS’ Activity Log exposes
an interface meant to be used by other modules. This time the interface provides
functions to register a listener for events of a particular type. Then, when MVIS
receives a batch of events from Mailtrain, the Activity Log sorts the events by
their type, and callbacks each of the registered listeners with the events of the
given type. The content of the listener function can then react to these new events.
Usually, there should be a function that stores the events in the appropriate signal
set. The described listener design allows having multiple functions reacting to a
single event but the listeners can also be used to react to events in other ways.
For example, many signal sets correspond to a specific entity. These signal sets
need to be created on the entity’s creation, and deleted on its deletion, which can

42

be done by registering a listener in the Activity Log, that listens for creations
and deletions of the given entity type, and creates or deletes corresponding signal
sets in response.

The module also accepts Mailtrain’s messages for the synchronization of data
at each startup. When it receives synchronization data from Mailtrain, MVIS
modules that maintain signal sets should also react to it and update their data.
This includes creating or deleting some of their signal sets tied to entities in
Mailtrain. Some signal sets may also update their data, which includes syn-
chronization of subscriber counts for each existing list, and synchronization of
campaigns belonging to a channel for each existing channel. It does not include
synchronization of event counts from campaign messages, as since the data from
campaigns is usually only important over shorter time periods, synchronizing the
event counts would not bring much benefit.

4.3.4 Visualizations

Finally, let us address the module for visualizations. As stated at the beginning
of this section, IVIS already provides options for embedding panels or templates
in other client applications. We can deduce which signal sets are used for what
visualization directly from code, so panels need to be instantiated. Furthermore,
we also know the templates used at any point, so templates do not need to be
instantiated either, and built-in templates can be used instead, which, like built-in
tasks, do not require manually changing the database when they are updated.

The actual built-in templates need to be created, which are programmed as
client-side React code defining what data are queried from the server and how
they are displayed. Alongside the definition of their content on the client side,
each built-in template also needs to be registered with its parameters on the
server side, so that it can be embedded. This is mostly for security reasons, as
parameters of the template need to be known for IVIS to understand what signal
sets can an embedded template query.

The module implements several server-side listeners, which, on receiving a
request to embed a visualization, provide the appropriate built-in template, its
parameters, and an access token. The built-in template and its parameters are
passed since they may be dependent on the data which may be only known to
IVIS. The access token is returned to allow data from the template to be securely
queried. Another REST route should be implemented for requests of data that
are known only by Mailtrain and not IVIS. This call simply relays the client’s
request to Mailtrain to find out certain entity properties. Details about both why
the token needs to be passed and why an extra REST route for Mailtrain data is
needed are explained in section 4.4.2.

Regarding built-in templates, IVIS does not provide support for embedding
built-in templates, so it needs to be extended to be able to embed them. This
is an extension that can be made to IVIS itself since it can be useful to more
applications than just Mailtrain.

43

4.4 User Management and Authorization
As stated in section 2.1 on Mailtrain’s background, Mailtrain provides a rather
advanced system of permission management. It allows multiple users, each with
permissions controllable to the level of different actions to entities, thanks to user-
configurable roles. It also supports a hierarchical system of namespaces, where if
a user has a role in a given namespace, they also receive certain permissions on
all entities in the given namespace. This is quite a complex system, and when
users interact with IVIS, it should understand the permissions the users have
with respect to Mailtrain. Not providing the same permissions could cause a
data leak, where unauthorized users see information about an entity they should
not have access to.

The most thorough way of mapping user permissions from Mailtrain to IVIS is
to clone the entire structure: copy the hierarchy of namespaces, copy every entity
but place the appropriate signal sets and jobs instead of it, and copy the placement
of users and their permissions. However, this would be very complicated to make,
and in many ways, users usually will not be interacting with IVIS in a way for
this to be needed, so permission management is done differently.

There are several ways in which IVIS interacts with the outside environment,
and as such requires to check certain permissions. The first are requests from
Mailtrain’s server, each of which contain a batch of events passed to Mailtrain’s
Activity Log, or synchronization data. The second are requests from Mailtrain’s
clients when they require data for an embedded template displaying a visualiza-
tion. The potential third way is a direct connection to the IVIS server from its
web client.

4.4.1 Handling Requests From Mailtrain’s Server
In the first case, checking for permissions is very simple. If a request is a batch
of events or synchronization data from Mailtrain’s server, then no permissions
need to be checked, because the Mailtrain server is a safe environment. The
only problem is verifying whether a request is really from Mailtrain. Luckily,
this is a problem already solved in section 4.1.2 describing the communication
between Mailtrain and IVIS, where the communication is achieved either using
a safe communication handle from Node.js, or using HTTP authenticated with a
shared secret global access token.

4.4.2 Handling Visualization Embedding
The second way IVIS is communicated is when a Mailtrain client requests data
for an embedded template. In this case, a client is not a trusted environment,
so permissions need to be checked in some way, and without the knowledge of
permissions that Mailtrain has, this cannot be done directly. Luckily, for the
most part, this is not necessary.

An embedded entity in IVIS runs in its sandbox endpoint. The sandbox
endpoint in IVIS does not check permissions based on user credentials, instead,
it checks them based on an access token. Unlike the previously mentioned global
access token, this token is scheduled to expire after a minute, but as long as the
client has it, they can renew it to prolong its validity, regardless of who they

44

are. The only problem with this is that in order to acquire the access token,
authentication is necessary. Fortunately, this only needs to be done at the initial
request to view an embedded template, even if the visualization continues to
query data after that.

The way to solve this is to use an indirect call through Mailtrain’s server.
While IVIS does not know the permissions of the client’s user, Mailtrain does,
and so the first call to request data for an embed is always directed to Mailtrain’s
server. As described in section 4.3.4, an initial request needs to be made to obtain
the built-in template and its parameters anyway, so it is easy to also make it serve
as a request for an access token.

Once the Mailtrain server receives the client’s request, it checks if the user has
the appropriate permissions to view this embed, and may immediately reject the
request if the permissions aren’t satisfied. If the user has the required permissions,
the Mailtrain server can now relay the client’s request to IVIS. As has been
explained in the previous section, this server-to-server communication is safe,
and IVIS accepts Mailtrain’s request. Once the Mailtrain server receives request
data, including the token, it returns them to the client, which can then use it to
query the required data directly from IVIS.

Finally, sometimes a visualization may need data that is known only to Mail-
train. However, since the template is embedded in an iframe element, any tokens
used to authenticate the user in Mailtrain’s server are not accessible to the tem-
plate inside. Therefore, the template must do a relayed request again, this time
through IVIS. IVIS then relays the request to Mailtrain, which checks the user’s
permissions and either returns the data or denies the request. For this request
to work, IVIS needs to remember the Mailtrain user which is tied to each access
token, so that it can tell Mailtrain which user is doing the request. That in turn
requires Mailtrain to include the user’s ID in the original request where the access
token is initialized.

4.4.3 Handling Direct Connection To IVIS
A final problem is that IVIS also has a direct web interface, and if a user wants to
use it, Mailtrain would need to offload permission checks to Mailtrain for every
request, which would be cumbersome. In the end, the main feature of IVIS from
the perspective of user interaction is providing embedded visualizations. This is
why we have decided to not implement anything to solve this last problem. The
administrator of Mailtrain should gain access to IVIS from the default admin
login. If a non-administrator user wants to have access to some of IVIS’ entities,
then the administrator has to grant them the permissions manually.

45

Mailtrain
Server

Mailtrain
Client

IVIS
Server

request embed

request embed

reject request

alt
user does
not have
permission

user has
permission
to view
the template

template data & token
template data & token

request signal set data

signal set data

refresh token

request Mailtrain data
Mailtrain data

request Mailtrain data

Mailtrain data

Figure 4.2: A sequence diagram of a request to embed a template

46

5. Implementation
The previous chapter described the general architecture of the integration of Mail-
train and IVIS, as well as the decomposition of the extension into modules, in-
cluding their responsibilities. These modules are further described in this chapter
from a detailed, technical perspective of their implementation. Sometimes, files
containing the implemented code will be referenced. The files’ paths represent a
path from the root directory of Mailtrain’s GitHub repository, e.g. /README.md
represents a file in the repository’s root directory.

The descriptions are split by module, and by the project they are extending.
Extensions of standalone IVIS are described first, as they can be mostly explained
on their own. After that, the modules of the integration are described in the
general direction of data flow. This means the sections describe logging event data
and managing IVIS at Mailtrain’s server, the data being stored and transformed
by IVIS’ server, the data being visualized by IVIS’ client, and visualizations being
displayed from Mailtrain’s client respectively.

The final section is dedicated to describing changes done outside of the main
application code, which mostly means modifications of Mailtrain’s setup code,
configuration, and documentation.

5.1 IVIS Extensions

IVIS is a framework for general-purpose data processing and visualization, de-
signed to be easily extensible and integrable into other applications. Therefore,
its code should not be manipulated to serve Mailtrain’s needs at the expense of
IVIS’ flexibility. With that in mind, IVIS was extended in a few ways through-
out the development of the work done in this thesis, and while the extensions
were generally done to serve Mailtrain’s needs, they were implemented as general
features that can be used by various applications seeking to integrate IVIS into
them, or simply use its services. This way the main draws and advantages of the
framework are not harmed. Apart from the extensions, several existing bugs were
also found in IVIS and fixed during the development of this extension, which, of
course, also does not harm IVIS in any way.

5.1.1 New Extension Manager Events

The extension manager is an IVIS module that allows extending IVIS using
JavaScript code. It works by exposing a publish-subscribe interface to be used
by the extending code, which can then register listener functions to insert its
own functionality or reactions to certain events happening in IVIS. The frame-
work already provides many extension points which can be ‘subscribed to’, but
there were a few events that were not extendable, but needed to be added to the
extension manager’s published events for the integration with Mailtrain to work
properly.

47

Global Access Authentication

The first of these is global access authentication, which in Mailtrain’s case is
done by a global access token, as described in section 4.1.2. This is done by
inserting an extension manager method to IVIS’ code which authenticates an in-
coming HTTP request. Before authenticating using the other ways, the extension
manager method invokes any listener functions subscribed to this event, which
is called app.validateGlobalAccess, with the request object as a parameter.
If no functions are subscribed, by default the global access authentication fails
and authentication proceeds as usual. If a function is subscribed to this event,
it may inspect the request, and if it decides that it satisfies the conditions for
authentication, it can let the authentication function know, which then results in
the request getting authenticated as administrator. Extension manager methods
cannot return values, so the extension manager instead passes a reference to an
object to the listener function, which then mutates it to mark the authentication
as successful.

Application Is Ready

Another new extension manager event is called app.ready. As might be hinted
at by the name, this event invokes its subscribers when IVIS is ready to provide
its services. This means that it has finished its initialization and is prepared
to respond to requests from external agents. This event is mainly useful for
synchronization when another application needs to wait for IVIS to start before
it can use it.

Install Sandbox Routes

The last added event is called client.installSandboxRoutes. IVIS’ pages in a
web browser are each represented by a URL. However, since IVIS is a single-page
application, these URLs do not correspond to the content of web pages served
by the server. Instead, the page URLs are only relevant to the client to know
what content to display. In the code, these URLs are organized into a tree-like
structure and it is this structure that we want to be able to extend. IVIS has
two endpoints, those being the trusted endpoint used for native IVIS code, and
the sandbox endpoint used for foreign, potentially unsafe code.

The structure of the two endpoints is distinct, i.e. each endpoint has a client
URL structure handled by its own code. Extensibility is already provided for
the trusted endpoint as client.installRoutes, which is done by passing the
structure to the listeners, which can then modify it at will. Extending the sandbox
structure is done in the same way. Since all visualizations are run in the sandbox
endpoint, making this event extensible is key to using built-in templates, the
details of which will be described in section 5.4.

5.1.2 Visualization-related Changes
Visualizations developed in this thesis all use IVIS’ visualization library, located
in the /client/src/ivis directory of IVIS’ GitHub repository (this time not

48

Mailtrain’s). This mostly includes either charts, which are single React compo-
nents representing an element of a visualization, and data providers, which are
React components designed to make querying IVIS’ server for data easier.

In the case of charts, the notable changes include LineChartBase, which
received new optional properties onSelect and onDeselect, that allow other
charts to use it to react to mouse movement in the chart. Another changed chart
is StaticPieChart, which received minor changes to its visual customization
options, those being an option to display text at the pie’s center, and an option
to display both percentages and real values of the pie’s slices.

In the case of data providers, changes were mostly made to allow data queried
using the providers to be processed using asynchronous functions. From MVIS’
perspective, this is because sometimes visualizations require additional data from
Mailtrain in relation to the data queried from MVIS’ server. Therefore, after
the query, MVIS needs to send another HTTP request before it can display the
data, which data providers did not allow for in their previous state. The changes
are simply to add an optional property to the provider components, which is the
data transformation function that can be used asynchronously after the data is
queried. The data providers affected by this are TimeSeriesDataProvider and
related data providers, such as TimeSeriesProvider.

5.1.3 Embedding
IVIS already includes an embedding module which is meant to be run from other
applications to embed IVIS’ visualizations in their web pages. However, this
module has a few drawbacks which don’t allow it to be practically used in certain
ways. This subsection describes the changes done to this module to expand the
situations in which it is suitable to be used.

So far the module has had functions for embedding panels and templates,
which receive, among other parameters, an IVIS access token to be able to au-
thenticate in IVIS, and information about the embedded entity. Both panels and
templates are entities the program doesn’t know beforehand, so the embed func-
tions have to first make a REST call to IVIS to get information about them, and
only then proceed with embedding.

Once the function knows the embedded entity, it creates a new HTML iframe
element in the selected page, linking to a generic panel render page in IVIS. The
initialization parameters of the entity are passed to the iframe from outside by the
function using the Window.postMessage() JavaScript method. The Window.-
postMessage() is also used for all other communication between the iframe and
its parent window.

Inside the iframe, an IVIS React component called UntrustedContentRoot
manages communication between the parent window and the visualization tem-
plate component, which UntrustedContentRoot contains inside itself. If an ini-
tialization request is received, the component loads the appropriate template and
passes the initialization parameters to in via React’s props. Figure 5.1 shows
a schema of how these components are layered. In the case of Mailtrain, the
“browser web page the user views” would be content from Mailtrain’s trusted
endpoint.

The function for embedding also takes care of periodically refreshing the given

49

A browser web page the user views

A web page script
- queries initialization data from IVIS’ server
- spawns the iframe, and sends the data to it

A HTML iframe to IVIS’ sandboxed endpoint

An UntrustedContentRoot component
- accepts init data from the parent window
- transfers them to the template

A template component of the IVIS visualization
- accepts template parameters via props
- renders the visualization

Figure 5.1: A schema of an embedded IVIS visualization

access token so that the visualization can be viewed for a longer time.

Multiple Embeds In A Single Window

Listening for messages sent by Window.postMessage() is done by adding a lis-
tener function for an event of type ’message’ to some HTML element in the
current browser window, which then calls the listener function anytime the ele-
ment gets notified of a message event. The initial message is sent from the parent
window to the iframe, but messages can be sent the other way too, e.g. when the
embedded content wants to inform the parent window of its height. So far, when
embedded IVIS content, controlled by the UntrustedContentRoot component,
sends a message to the parent window, it sends it to the entire window, without
identifying the origin of the message. This means that if the parent window em-
beds more than one visualization at a time, it cannot distinguish messages from
different iframes.

This can be fixed by giving each iframe a unique ID. One parameter of the
embedding functions is the ID of the DOM element inside which the iframe with
the embedded content will be inserted. This DOM element ID should be unique
among the window’s other DOM elements, which is sufficient to distinguish dif-
ferent iframes.

Therefore, the embedding module has received two important changes. The
first is that, when initializing an iframe, it passes the ID inside the iframe, which
is done with a sendId parameter added to the query of the embedded content’s
URL. The second is that any received message events are only accepted if they
are identified by the appropriate DOM element ID, otherwise, they come from a
different iframe and are left to be handled by their intended listener.

The UntrustedContentRoot IVIS component was also updated to recognize
the sendId parameter in its URL’s query, and to add this ID to every message it
sends to its parent window, so that it can be properly distinguished from messages
from other iframes.

50

Embedding For Single-Page Applications

When a function for embedding a visualization is called, among other things in
its initialization, it sets up a call to IVIS, which refreshes the given access token.
The call then automatically repeats approximately every 30 seconds. Before the
extensions, however, the only way to turn this refreshing off was to refresh the
whole web page, which would terminate all currently running JavaScript code
tied to it.

The problem with this is that single-page applications rarely switch or refresh
pages, meaning that even if a user changes the content of the page, then any code
for automatic refreshing of access tokens keeps running, even if it is not needed
anymore.

This is solved by making the access token refreshing function keep a local
variable indicating whether to keep refreshing and return a stopping function,
which sets this local variable to indicate that refreshing should stop. The entire
embedding function then returns this stopping function to the caller, which can
then call it once the token is no longer needed.

Built-in Template Embedding

So far, IVIS’ embedding module supports embedding panels and templates, but
not built-in templates. Since it is beneficial for Mailtrain to use built-in templates,
some extensions were made for IVIS to also support embedding them.

First, on the server side, a new method for generating a restricted access token
was added. Methods for generating a restricted access token are different for each
entity type. For example, when making a token for a regular template, the token
creation entails finding the template entity in the database, assigning its basic
permissions to the token, and then also assigning permissions to any signal sets
and signals the template specified in its parameters. Built-in templates are not
stored in the database, so their method only grants permissions to the required
signals and signal sets.

On the client side, it must be possible for built-in templates to be displayable
when embedded, as existing client-side embedding functionality only allowed em-
bedding regular templates. Luckily, built-in templates are accessible directly from
client code, so their content can be hard-wired into a client route. In the case of
embedded content, which is always served from IVIS’ sandbox endpoint, one only
needs to add a custom sandbox path to the template, which can be done using
the extension manager method client.installSandboxRoutes, as described in
section 5.1.1. One technical detail is that the template should still be displayed
as a child of an UntrustedContentRoot component, which, in the case of an
embedded template, takes care of communication with the parent window.

Finally, the embedding module had to be slightly updated to account for
these changes. This means adding a new method embedBuiltinTemplate, which
is similar to a method for embedding a regular template, but instead of a template
ID receives a path to the built-in template. The function also doesn’t need to
make a REST call to IVIS to find out details about the built-in template, since,
as built-in templates are directly accessible from code, the function already knows
all it needs to know.

51

5.2 Mailtrain Server
The first step of the implementation is at Mailtrain’s server. The responsibilities
of Mailtrain’s server are to log proposed events to IVIS and to manage IVIS as a
separate process called MVIS, which also includes managing communication with
it. The following sections describe the implementation of modules responsible for
this, as well as extensions of any related existing modules.

5.2.1 MVIS Manager
The first new module added to Mailtrain is responsible for spawning MVIS on
Mailtrain’s startup and managing communication with MVIS at runtime.

Spawning MVIS

The functionality of spawning MVIS is put into a new file called /server/-
lib/mvis.js. Spawning MVIS is a straightforward task. As stated in section
4.1.2, Mailtrain already spawns other processes using a Node.js function fork().
There is a wrapper implementation of this function in Mailtrain, which handles
terminating the child process after Mailtrain terminates, so all that needs to
be done is use this wrapper function to spawn MVIS’ root code file, located in
/mvis/server/index.js.

IPC Management Using Child Process

Once MVIS is spawned, and its child process handle is obtained, the code also
sets up listeners to various calls from IVIS using the Node.js child process IPC,
namely calls to synchronize, query information about entities, and announcing
that MVIS is ready (the events will be further explained in future sections).
Along with spawning MVIS itself, this functionality is contained in a function
called spawn(), which is called on Mailtrain’s startup.

HTTP Communication Management

Management of communication with MVIS’ API using HTTP is also rather sim-
ple. If MVIS’ global access token is to be generated by Mailtrain on each startup,
it needs to be shared with all child processes of Mailtrain, including MVIS itself.
A good way to do this is as an environmental variable, which can be specified in
the fork() function.

Therefore, the file /server/lib/mvis-api.js shall export a token variable.
If the process was spawned as a child of Mailtrain, the token is accessible in an
environmental variable called MVIS API TOKEN. If the process is Mailtrain’s root
process, then this environmental variable does not exist, in which case the token is
generated as a long random string using the Node.js crypto [10] library. This way,
no matter where the file is imported from, the token variable either generates
the token or gets its value passed from a parent process. One remaining thing
is that the environmental variable needs to be passed to MVIS and other child
processes of Mailtrain which use Activity Log, namely sender-master for sending
e-mails (which needs to pass it on to its subprocesses), and importer for handling
list imports.

52

To handle the actual communication with MVIS, the module exports two
functions for HTTP GET and POST requests to MVIS API. The module already
knows the global access token, and it also needs to know MVIS’ API URL base,
which must be noted in a configuration file during MVIS’ installation. Then,
since the HTTP method is built into the functions’ names, all the functions need
to know are arguments of the target URL path and possibly the request body or
extra configuration of the request. With these data, the function can then realize
the request using the Axios [2] JavaScript library, where the global access token
is inserted into the request’s HTTP headers.

5.2.2 Activity Log
The core functionality of the Activity Log is contained in a new file /server/-
lib/activity-log.js. The module provides several functions for logging events
described in section 3.1. Different kinds of events contain different schemas
of data, so this is reflected in the functions. The functions logListTracker-
Activity() and logCampaignTrackerActivity() are meant to be called to log
the tracker events, while logEntityActivity() logs events of entity activity.
Even though entity activity contains multiple event types, most entity activity
events share the basic data schema, i.e. timestamp, actor, activity type, and
entity ID, so if logEntityActivity() also includes an identifier for entity type,
and an argument for any extra data which the event wants to log in certain
fields, which is implemented as a JavaScript object with key-value pairs, allow-
ing to specify the fields and their data. That said, there are some logged events
not tied to entities, and for them, special functions had to be made with appro-
priate parameters, those being logShareActivity, logSettingsActivity, and
logBlacklistActivity.

Every event log includes a timestamp in its data, and a timestamp can be
computed inside the logging functions, so for that reason, a timestamp is not in
any of the functions’ parameters and is instead computed when the functions are
called. Similarly, many events of entity activity include an actor, which is the ID
of a user causing the event. In Mailtrain’s code, user IDs are usually not worked
with directly, and instead, the user making a change is identified with a context
variable, which contains the user information, along with other details of their
authentication. To make calling the logging functions more convenient, they do
not include the actor ID in their parameters directly. Instead, the entire context
variable is passed to them through parameters, from which the functions then
extract the actor’s ID.

Sending Logged Events To MVIS

The Activity Log needs to communicate with MVIS from potentially different
processes, so it imports the module for communication with MVIS using HTTP,
defined in the previous section. Now sending of logged event data is done us-
ing HTTP requests, but doing so using a request for each event log would be
inefficient. For that reason, the functions for logging do not send the events to
MVIS right away. Instead, the module maintains a queue of events to be logged,
and sends them to MVIS in bulk with a single request once the queue exceeds

53

a given length (e.g. 100 events), or once some time passes with the queue not
being empty (e.g. 1 second).

The queue is a global variable in the scope of the Activity Log module, and
adding events to the queue is done asynchronously. This may cause synchroniza-
tion problems, where two functions may decide to send the queue to MVIS at a
similar time, which would duplicate the sent data. To avoid this problem, there
is also a module-wise global variable informing whether the queue is being sent
at the time. Then, if, after appending data to the queue, a function wants to
send the data to MVIS, it first needs to check that another function already is
not doing the same.

Another synchronization problem is that if events are added to a queue while
it is being sent to MVIS, some data may be lost. That is why, when the Activity
Log is sending events, it isolates the queue being sent and makes the functions
append their events to a different queue, which is then used for the next request.

Extending Modules To Use Activity Log

With the logging functions defined, the other modules now only need to use it.
Code-wise, this task is simple, as for each logged event, one only needs to insert
a call of an appropriate logging function with appropriate variables into the code
processing this event. Sometimes this also includes slightly restructuring the
code, such as modifying a Knex database query to return IDs of the modified
entities instead of only modifying them without any additional information, but
the changes are mostly minor. The main challenge is finding the code which
processes each logged event in the first place, which is made difficult since for the
most part, Mailtrain lacks in-depth documentation of its code.

Talking about those changes in detail would probably not bring much new
information. Nevertheless, the modified files in which Activity Log functions
were inserted include most of the files in /server/models/ and in /server/-
services/. They also include two additional files of /server/routes/rest/-
subscriptions.js and /server/lib/importer.js.

5.3 MVIS Server
After events from Mailtrain’s server are logged, they are sent to MVIS’ server to be
stored and processed. Management of this logged data is the main responsibility
of the MVIS server. This entails creating signal sets for the data to be stored
in and managing jobs for transforming the data. Responsibilities also include
accepting the event data from Mailtrain to be logged, and of course, integrating
the extensions of MVIS with IVIS in the first place.

5.3.1 MVIS Program Entry Point
The entry point of MVIS’ code in Mailtrain’s repository is located in /mvis/-
server/index.js. This is the code that is spawned as Mailtrain’s child process,
and its responsibility is to apply any extensions by MVIS into IVIS’ functionality,
and then launch IVIS inside of its process with the applied extensions.

54

Launching a custom Node.js program with the defined extensions which then
includes the original has to be done not only for the main process, but for all
of IVIS’ services as well, i.e. IVIS’ app builder, task handler, and ElasticSearch
handler. Even if the services’ actual functionality is irrelevant for now, they
need certain extensions as well to function properly. For example, MVIS adds an
extra configuration file for IVIS (the reasons for which will be explained in later
sections), and all of IVIS’ processes should know about it, which is achieved using
an extension manager event dedicated to setting extra configuration. Ensuring
that the extended services are spawned instead of the default ones is once again
done using the extension manager, which allows setting the paths to the services’
entry points. That said, we don’t want to define many extensions repeatedly
for every executable. Therefore, the extensions used by multiple processes are
defined in a shared extensions-common.js file, which is then imported by all of
the extended services’ entry files.

Many defined extensions are simple, such as changing the application title to
Mailtrain IVIS, or setting the extra configuration file. These can be defined in a
few lines directly in the common extensions file or the target executable’s entry
code. However, many extensions are more complicated. In fact, all other modules
in MVIS are eventually used in some extension set by this module, otherwise, it
would be impossible to make them be used by IVIS.

5.3.2 MVIS Activity Log
The Activity log module in MVIS is responsible for accepting the event data from
Mailtrain and providing an interface for other modules to react to these events
being received, either to store them or to create, update, or remove signal sets and
jobs dedicated to single entities from Mailtrain. Its code is located in /mvis/-
server/lib/activity-log.js. The interface is realized as a publish-subscribe
interface which other modules subscribe to if they want to react to certain event
logs. The reactions to the messages can be listened to based on their event
type, i.e. campaign tracker, list tracker, or different types of entity activity (list,
campaign, template, etc.).

A special server route is set up using the extension manager to listen for events
sent by Mailtrain’s activity log. Every time MVIS receives a request containing
a batch of events from Mailtrain, the Activity log splits the events by their event
type, which yields several batches of events of a single type. For each batch of
events, the Activity log then calls all the listeners for the batch’s event type.

Letting listeners react to batches of events instead of single events leads to
more efficiency since storing events into signal sets can be done using a single call
for the whole batch of events. That said, there is a problem with this approach,
which is that it does not call the listeners in any particular order. To give an
example, the module managing campaign signal sets registers a listener which
listens for campaign events and reacts to campaign creation or removal events
by creating or removing a signal set dedicated to the campaign. The module
also registers another listener which then listens for campaign tracker events and
inserts them into those dedicated signal sets. Creating the signal set should
happen before inserting the records, but removing the signal set should happen
after, to avoid records being inserted into a non-existent signal set. To help

55

with coordinating these listeners, the Activity log provides three functions for
registering listeners: before(), on(), and after(). The on() function registers
listeners that want to store events into signal sets. Listeners subscribed using
before() are called before all listeners subscribed using on(), which makes the
function ideal for creating signal sets before any events are inserted into them.
Similarly, listeners subscribed to after() are called after on(), which is ideal for
removing signal sets.

5.3.3 Communication With Mailtrain Through Node.js
IPC

MVIS sends messages to its parent Mailtrain process using the Node.js child
process IPC on several occasions. In some cases, a response is required from
Mailtrain, but the system for IPC in Node.js does not support this, so a special
system must be made for it. This is done using a system of request IDs. Put
simply, when a function desires to receive a reply from Mailtrain, it sends a
message and in its data includes a unique request ID number (in practice, the
number is incremented modulo a very large number with each request, which
should achieve uniqueness). Mailtrain is expected to reply to this message with a
message containing the same request ID, so the function can set up a promise that
is resolved when this reply message is received. There are 3 kinds of messages
sent to Mailtrain using Node.js IPC.

Synchronization Request

The first is a request for synchronization of data with Mailtrain (as described
in section 4.3.3). From an implementation perspective, it is more beneficial for
MVIS to initiate the request for synchronization once it is prepared to synchro-
nize the data, since Mailtrain does not know when that happens. Mailtrain’s
MVIS manager module was extended to respond to the request with information
about its entities, i.e. an object with lists containing Mailtrain’s campaigns, lists,
and channels as JavaScript objects. Each entity contains its ID. Each list also
contains the count of the list’s subscribers, and each channel contains the IDs of
its campaigns. Once MVIS receives this information, it uses this data to update
the instances of signal sets dedicated to the given entities. The synchronization
of lists’ subscriber counts is done by inserting a ‘synchronization’ event into each
of the lists’ tracker signal sets, containing the subscriber count with its data,
which tasks transforming the trackers’ data then use to update counts of list
subscribers. The synchronization of channels’ signal sets is done by updating the
records to include the data from signal sets of the campaigns belonging to the
signal according to the synchronization data.

Entity Information Request

The second kind of message is a request for entity information. It is similar to
the synchronization requests but may be sent at any point in MVIS’ runtime
when a visualization needs information about Mailtrain’s entities. The request
includes IDs of entities about which information is needed, as well as an ID of the
Mailtrain user making the request. The ID is needed since the request is indirectly

56

made by a client, which may not have permission to access some entities. The
need for the user’s ID also means that on the creation of an access token for a
visualization, Mailtrain needs to send IVIS the requesting user’s ID, and IVIS
needs to remember it alongside the access token.

Once Mailtrain receives the request, it checks permission for each of the re-
quested entities in regards to the user, and sends back a message with information
from the database about each of the entities which the user was authorized to
view.

MVIS Ready Message

The third kind of message is a message that MVIS is ready. As stated in section
5.1.1, this is a newly implemented extensible IVIS event, so all that needs to be
done is to set the extension manager to send a message to Mailtrain once MVIS is
ready. Mailtrain then waits for this message before it starts to ensure that MVIS
is not communicated with while it is still not prepared.

5.3.4 Data Managing Modules
The responsibility of modules managing data is to maintain signal sets, either
global ones or ones ties to single Mailtrain entities, and jobs related to them.
The modules should also register proper methods to Activity log to store events
or update signal set instances based on the events.

Functions Used For Implementation

Both signal sets and jobs already have IVIS functions for creating, updating, and
deleting them in code. Properties required to create a signal set include (among
other things) its ID, name, and a schema of signals in a JSON structure, which for
each signal specifies its name, data type, etc. Signal sets also include a function
for inserting a batch of records into them.

Properties required to create a job include its name, task specifying its code,
parameters given to that task, and signal sets that trigger the job to activate when
they get updated. The last property is useful to set jobs to activate automatically
when their input signal sets update. This is used by the list managing module to
set the subscription counting job of each list to activate when the list’s tracker
signal set is updated, and by the campaign managing module to set the campaign
message event counting job of each campaign to activate when the campaign’s
tracker signal set is updated.

The above-described functions, along with functions to subscribe to MVIS
Activity log events form the majority of the Node.js implementation of MVIS’
data managing modules. There is one exception with channels, which is described
below.

Querying Data

When a campaign is updated, and the channel module is notified of it through
Activity log, the channel module wants to know if the campaign belongs to a
channel, and if it does, the module must update the record of that campaign in

57

the campaign’s channel’s signal set. The way to find the campaign’s channel is
to do a query of the channel activity signal set for the most recent event where
the campaign in question was added or removed to some channel. Then, if the
result is an event where the campaign was added, it must belong to the channel
in the event’s data. If the result is an event where the campaign was removed,
or no such event exists, then the campaign does not belong in any channel at the
moment.

Once the campaign’s channel is known, another query needs to be made to
find out the statistics of the campaign. This is done as a request for the most
recent record in the campaign’s signal set which contains counts of the campaign’s
various message events over time (as described in section 3.2.2). The campaign’s
record in the channel’s signal set can then be found by the ID of the campaign
and updated with the returned data.

5.3.5 Built-in Tasks

Part of the functionality of data managing modules in MVIS is done in Python,
which is the language IVIS tasks are written in. There are 2 tasks in MVIS, which
are used for transforming list data and campaign data respectively. Both are re-
alized as built-in tasks since they are known at the time of development. To dif-
ferentiate the task code written in Python from other code written in JavaScript,
the code for built-in tasks is placed in files /server/builtin-files/tasks/, in-
cluding the tasks’ parameters, which mostly include the IDs of input and output
signal sets. The built-in tasks’ code and parameters are then registered on each
startup of MVIS using IVIS’ extension manager so that they can be used.

Both are based on IVIS’ existing built-in aggregation task, which transforms
a signal set containing records with values into another, which contains statistics
(e.g. minimum, maximum, average) of those records aggregated by buckets of
time intervals. The statistic was modified into a plain count aggregation, where a
record of a given type counts as a single value. In both cases, the gathered values
are not only aggregated but also accumulated over time. When the jobs are first
initiated, they also insert a record with a timestamp of the campaign’s or list’s
creation (which is also passed as a parameter to the task) and otherwise all zero
values to their output signal set.

List Processing Task

The list processing task calculates the difference of subscriber counts for each
bucket, based on subscription status and previous subscription status signals of
list tracker records, as described in section 3.2.1. The task also checks if any
bucket contains a synchronization event of list subscribers in the list tracker,
described in section 5.3.3. If a synchronization event is detected in one of the
buckets, then the count of subscribers in it is added to the difference of subscribers
in the interval between the synchronization event in the bucket and the bucket’s
end, and the resulting value becomes the new synchronized subscriber count. If
multiple synchronization events are detected in a single bucket, only the most
recent one is needed to be known.

58

Campaign Processing Task

The campaign processing task calculates cumulative values of various events of
its campaign tracker. Unlike the list processing task, it does not need to subtract
any values or look for synchronization events. However, it does need to look for
link registration events, and if it finds any such event for a link whose click count
does not have a signal in the output signal set, it has to extend the signal set’s
schema to include the new signal. The task then computes the cumulative values
for all events and clicks of all known links simultaneously.

5.3.6 Template Viewing Permission Management
As stated in section 4.4.2, users from Mailtrain authenticate themselves to view
templates using IVIS’ access tokens. These tokens grant permissions permission
based on parameters of the chosen template, but also a selected IVIS user to
which the token ‘belongs’. This user is called an impersonated user. The total
permissions are an intersection of these two sets of permissions so that no data
leaks.

Since Mailtrain’s users viewing an embedded template are not meant to mod-
ify anything, it is a good idea to make the impersonated user have read-only
permissions for everything in Mailtrain, to avoid granting the users permission to
edit anything by accident. This MVIS user entity is called Mailtrain User, and
there only needs to be one used by all of Mailtrain’s users. If every generated to-
ken for an embed impersonates Mailtrain User, then anyone using the token does
not have access to writing anything in MVIS, and combined with the intersection
of permissions of the selected template and its parameters, it ensures that the
user can only query data for the requested visualization.

Mailtrain User can be created by defining a new IVIS role in MVIS’ config-
uration, which gives the assignee of this role read-only access to every entity in
MVIS, and then creating a user in MVIS with this role. Then, to impersonate
the user in an access token, one only needs to include the Mailtrain User’s ID as
a parameter when using IVIS’ function to generate the token.

5.4 MVIS Client
Once data are stored and potentially transformed in MVIS’ server, they can be
queried by MVIS’ client to be visualized. Since we already know all visualiza-
tions in development time, the visualizations are realized using built-in templates.
IVIS already provides functionality for displaying templates, and extensions were
made in this thesis to allow IVIS to also display embedded built-in templates.
Therefore, most of the work done on MVIS’ visualizations is coding the built-in
templates themselves.

5.4.1 Charts And Data Providers
As stated in section 5.1.2, charts in IVIS represent single elements of a visualiza-
tion, implemented as a single React component, while data providers are React
components designed to query data from IVIS’ server. IVIS already provides

59

several charts and data providers in its code that are usable by extensions, and
while some of them were used by MVIS, some needed to be made without using
any of them. In these cases, at the very least, the code of the existing charts and
data providers in IVIS was able to provide a general guide of how charts work,
which lead to slightly smoother implementation. The code for MVIS’ charts and
data providers is located in the /mvis/client/src/ directory of Mailtrain’s git
repository.

DocsDataProvider

The only newly implemented provider is called DocsDataProvider, which is used
to query single signal set records, called documents in ElasticSearch terms, given
a signal set and its signals, and optionally instructions to filter or sort the data
in a particular way. It is needed because IVIS’ data providers for querying docu-
ments limit their queries to a given time interval of their timestamp values. The
newly implemented data provider does not have this constraint and can query
documents with any timestamp in a single query.

Once the documents are received from MVIS, the visualization may need to
query additional data from Mailtrain, so an optional processDataFun property
can be passed to the provider, which may modify the documents after they are
queried.

Finally, a renderFun is passed to the provider, which, given the resulting doc-
uments, renders the visualization. When DocsDataProvider obtains the queried
and processed documents, it calls renderFun with the documents as an argument,
letting it render the visualization using the data.

The following code shows how DocsDataProvider may be used:

const visualization = <DocsDataProvider
sigSetCid={"signal_set_1"}
sigCids={["signal_5", "signal_6"]}
sort={[{

sigCid: "signal_timestamp",
order: "desc"

}]}
limit={5}
renderFun={docs => <GroupedSegmentedBarChart

config={{barGroups: docsToBarGroups(docs)}}
height={400}

/>}
processDataFun={fetchMailtrainDataIntoDocs}
loadingRenderFun={null}

/>;

EventLineChart

The EventLineChart is a component for displaying a line chart together with
vertical lines signifying events. The component uses a chart from IVIS called
LineChart, which takes care of displaying the lines and dynamically loading
necessary data. EventLineChart then adds the vertical event lines obtained by

60

querying a single signal set containing the activity events, to the created line chart
so the lines are displayed together. The chart also modifies the tooltip displayed
when the chart is hovered over to include information about the events. This was
made possible by adding onSelect and onDeselect properties to the charts in
IVIS, as explained in section 5.1.2.

EventChart

This chart still uses an existing chart in IVIS called TimeBasedChartBase to
make dynamically querying data based on a selected time interval easier. Line-
Chart uses TimeBasedChartBase as well, so their interfaces are quite similar.
This allows EventChart to contain similar code to EventLineChart. One differ-
ence with EventLineChart is that EventChart can query multiple signal sets for
activity events, and events from different queries can have different colors.

GroupedSegmentedBarChart

The final chart developed in this thesis is a bar chart in which the bars are
organized into groups (hence it is grouped), and each bar is also vertically split
into segments (hence it is segmented). This chart is the only one coded completely
from scratch, although its code is loosely based on IVIS’ BarChart. The chart
does not query data dynamically, as that is generally quite difficult. Instead, it
is meant to receive the data directly in its parameters, which define the structure
of the chart, i.e. the groups of bars, the bars of each group, the segments of each
bar, and properties (such as labels or values) of all of them.

The chart also includes a tooltip when hovered over each segment, which gives
some extra information about the segment, its bar, and its group.

5.4.2 Built-in Templates
As stated before, charts represent single elements of a visualization, usually only
focused on displaying data, and sometimes also querying it. Templates are com-
posite elements representing a whole visualization. They usually consist of charts,
along with data providers to query data, and also extra control elements helping
to make the visualization more flexible. Often, a template only uses a single chart
with some helper components. This is the case with most of the used templates,
and all of the used charts.

The EventLineChartTemplate adds a selector of time range and a selector of
line visibility to the original EventLineChart. This template is then used for list
subscriptions and campaign messages visualizations, described in sections 3.3.2
and 3.3.3 respectively. Its final render can be seen in sections 6.2.2 and 6.2.3.

The EventChartTemplate is used to display the entity activity visualization
(described in section 3.3.1) and adds a selector for filtering events by their type,
a selector for filtering events of a single entity, and a selector for filtering events
done by a single user. Its render is shown in section 6.2.1.

The GroupedSegmentedBarChartTemplate is used to display the channel
campaigns visualization as described in section 3.3.5, and uses the newly imple-
mented DocsDataProvider to query the most recent entries from a given chan-

61

nel’s campaigns signal set to display their statistics. Its render is displayed in
section 6.2.5.

There are also a few charts from IVIS which are used as well. The Range-
ValuePieChart is a new template used to display the channel campaign con-
tributions, described in section 3.3.6, which uses a StaticPieChart with added
selectors for a time interval to search the channel’s campaigns in and for a statis-
tic to compare the campaigns with, along with IVIS’ TimeSeriesProvider to
query campaign records in the selected interval. Its render is shown in section
6.2.6.

The NPieCharts template is used for the campaign overview visualization
from section 3.3.4 and uses multiple static pie charts and a DocsDataProvider
to query the latest entry from the selected campaign’s messages signal set. Its
render can be seen in section 6.2.4.

Obtaining Extra Data From Mailtrain

Sometimes, a visualization needs more data than what is easily accessible from
MVIS’ signal sets. This mostly entails details about entities, for example, names
of campaigns. In that case, the visualization needs to request Mailtrain to get
this data.

Since the initial request for embedding a visualization is done through Mail-
train, it is sometimes possible for Mailtrain to inject the required data in the
template parameters while the request is passing through it. This is the case
with EventChart, EventLineChart, and NPieCharts.

In other cases, the visualizations must do these requests during their runtime.
Luckily, this was already handled in sections 5.1.2 and 5.3.3, ensuring that the
visualization has space to query the data and that the query can be satisfied with
regard to the permissions of the user viewing the visualization.

5.4.3 Displaying The Visualizations
As explained in section 4.3.4, all templates are realized as built-in templates,
since they are known at the time of development. Built-in templates used to not
be embeddable in IVIS, but an extension was made for IVIS to allow for this, as
explained in section 5.1.3.

With that in mind, each built-in template needs to be registered on the server
side with its parameters, as IVIS needs to know the parameters to be able to
grant permissions to the template to query certain signal sets. Additionally, for
built-in templates to be displayable from an embed, a client route needs to be
installed at the sandbox endpoint of MVIS for each of the built-in templates us-
ing the extension manager. The routes are done for each visualization instead of
each template, where ’visualization’ refers to one of the visualizations described
in section 3.3. This means that two routes representing two different visualiza-
tions may display the same template, only with different parameters. This is
the case with EventLineChartTemplate, which is used both by list subscriptions
and campaign messages visualizations. Generally, though, the visualizations are
paired one-to-one with templates.

Each visualization also requires a server route in MVIS which, given a REST
call to it, returns information about the visualization’s template and parameters,

62

as well as a newly initialized access token for that template. As was said in the
previous paragraph, two routes representing two different visualization requests
may use the same template. The visualizations are usually also parametrized in
some way, e.g. the campaign messages visualization takes as a parameter the
campaign whose message event counts should be visualized, which then affects
the returned template parameters.

5.5 Mailtrain Client
Once visualizations of the logged data are accessible from MVIS, it is up to
Mailtrain’s client to create space for the visualizations in its web pages, and
embed the visualizations to be displayed.

5.5.1 Visualization Requests And Embedding
Embedding the visualizations is the first part of the extended functionality in
Mailtrain’s client. The first step to embedding a visualization in IVIS is obtain-
ing the template used for the visualization along with its parameters, and an
appropriate access token that grants permission to query the template’s data.
This needs to be done using an initial request to IVIS.

As explained in section 4.4.2, requests from Mailtrain’s client to access an
MVIS visualization need to be relayed through Mailtrain’s server, to be able
to check the user’s permissions. The previous section 5.4.3 described the routes
that MVIS sets up, which provide the necessary data to display each visualization.
Mailtrain’s server then sets up a route for each of these visualizations as well. Each
one first checks the appropriate permissions needed to access the visualization,
which may lead to it rejecting the request. For most visualizations linked to
an entity, e.g. subscriptions of a list, the permission check amounts to checking
whether the user has permission to view the visualized entity. For the entity
activity visualization, which visualizes the activities of every single entity, global
permissions are needed, which only the administrator has, so the visualization
can be accessed only by them.

If the permissions are sufficient, the route relays the request to the respective
route in IVIS to obtain the visualization. Once it is returned to Mailtrain’s server,
it may insert some additional data about its entities if they are needed, and then
return the result to the client.

Once Mailtrain’s client receives the answer to the initial request, it has all it
needs to embed the template. Therefore it imports IVIS’ embedding module and
uses the newly added embedBuiltinTemplate function to insert the embedded
visualization into a target DOM element on the currently displayed page. This
functionality is contained in the file /client/src/lib/embed.js.

5.5.2 Displaying The Visualizations From Mailtrain
With the embedding functionality implemented, Displaying the visualizations
from Mailtrain’s web pages is a straightforward task.

If a new page needs to be added for a visualization, then a new React com-
ponent representing the page’s content should be made, which then needs to be

63

inserted into Mailtrain’s client routes structure, so that Mailtrain can link to the
page and display it. This is the case for the entity activity visualization, which
is accessible from Mailtrain’s administration dropdown menu. Since the menu is
always present, but not all users have permission to access this visualization, the
menu should contain the link only if the user has appropriate permissions.

The visualizations may also be added to an already existing page, in which
case it is only needed to add elements with unique DOM element IDs for the visu-
alizations to be embedded into. This is the case for all other visualizations. The
list subscriptions visualization was inserted in a page listing the list’s subscribers,
the campaign overview and campaign messages visualizations were inserted in
a page containing the campaign’s statistics, and the channel campaigns channel
campaign contributions visualizations were inserted in a page listing the channel’s
campaigns.

As stated in section 5.1.3, after the embedded templates are not needed any-
more, it is required to call a stopping function to prevent any owned access tokens
from refreshing indefinitely and causing a memory leak. This is why each React
component containing an embedded visualization calls the stopping function in
its componentWillUnmount() method.

5.6 Auxiliary Changes
While the JavaScript code forms most of the implemented code, Mailtrain also
relies on several pieces of auxiliary code to be practically usable in production.
Changes done to Mailtrain in this thesis require some changes to these areas as
well.

5.6.1 Integrating Mailtrain’s and IVIS’ Git Repositories
One of these changes is about the organization of Mailtrain’s and IVIS’ reposito-
ries. Mailtrain has a distinct Git repository from IVIS but expects to use IVIS as
a part of it. The inclusion of IVIS code is achieved using a Git submodule, which
allows a specific commit of a Git repository to be included in a folder of another
Git repository. In this case, IVIS is a submodule of Mailtrain’s repository, located
in folder /mvis/ivis-core/.

5.6.2 Configuration Files
Another change concerns Mailtrain’s configuration files. There are several things
that Mailtrain’s or IVIS’ code cannot deduce from its code alone and needs con-
figuration files for. The biggest change is the definition of the Mailtrain User role
in MVIS, as described in section 5.3.6. MVIS’ configuration files are located in
/mvis/server/config/, so that is where Mailtrain User has to be defined.

There are also some settings on Mailtrain’s side which are needed be put
in its configuration files located in /server/config/. These settings include
things such as whether Mailtrain’s Activity Log should log sensitive user data,
or whether link clicks should be logged repeatedly for a single link, which is an
option described in section 3.1.2. Other settings are mostly technical in nature,

64

such as the information about which URL should be used to reach MVIS over
HTTP.

5.6.3 Installation Scripts
To make Mailtrain easy to set up in production, there are several installation
scripts included in Mailtrain’s repository. The scripts are differentiated by the
target operating system, and by whether the application should set up public
HTTPS endpoints, or whether it should only make endpoints locally accessible.
IVIS also has installation scripts, and they are structured in the same way.

In the case of both Mailtrain and IVIS, the installation has three stages.
First, any prerequisite applications, such as MariaDB, are installed. The second
stage installs the application itself, which includes updating configuration files
to include the user’s settings and installing node modules. The final stage sets
up the application as a service to be executed on each startup of the host server
machine.

Because of the integration, the installation scripts for Mailtrain now also need
to include the installation of IVIS. Since Mailtrain spawns IVIS on its startup,
only the first two phases of IVIS’ installation have to be done. IVIS’ installation
is also configurable, so it is called with some modified variables so that it can run
under Mailtrain. The main variable modification done in this way is specifying
the operating system user who owns the directories to be mailtrain, which is a
user generated by Mailtrain’s installation script to run the application.

5.6.4 Documentation
Lastly, there are some minor changes to be done concerning Mailtrain’s documen-
tation. The main piece of up-to-date documentation in Mailtrain is a README.md
file in its root directory, which contains basic information about Mailtrain’s fea-
tures, and an installation guide.

Adding MVIS to Mailtrain caused an increase in used HTTP endpoints, which
users wanting to install Mailtrain now need to account for, so this information
has been added to the README.md file. A similar piece of information is contained
in the installation script help text, so it was changed too to inform users that
they have to set up additional DNS entries if they want to use Mailtrain with
HTTPS.

65

66

6. Evaluation
This chapter describes how the implemented integration was evaluated. This
entails describing any tests made to verify the integration’s correctness, as well
as showing screenshots of the completed visualizations.

6.1 Testing
Despite Mailtrain being a fairly large project, the tests it contains are limited
mostly to testing user logins and subscriptions. The relatively small scope of
these tests is likely due to the technologies involved; Apart from setting up Mail-
train itself, thorough tests of Mailtrain would also require setting up a custom
e-mail server to be able to test sending messages from campaigns. The tests
would also possibly require a system which simulates subscribers’ interactions
with Mailtrain’s messages. This would be very difficult to implement, which is
likely why tests of these features are not included in the project.

The tests developed in this thesis have similar limitations, so any larger-scale
newly implemented tests avoid having to interact using e-mail, so that setting up
any extra servers is not necessary.

6.1.1 Manual Testing
A basic but important testing method is manual testing of the integration. As
stated before, tests using e-mail are difficult to implement automatically, but
since Mailtrain is a newsletter application, of which sending messages through
e-mail is a key feature, it was at least tested manually on a small scale. Other
testing methods also omit parts of Mailtrain from their runtime, so this method
is important to test the functionality of the application as a whole.

Tested Modules

One group of modules tested exclusively using manual testing are existing Mail-
train modules extended to log events to IVIS using the Activity Log. The changes
done to these modules are usually limited to single lines of code in a select few
functions of each module. Due to the small scope of these changes, manual testing
is likely sufficient to detect any errors in the new functionality.

Another module tested is Mailtrain’s client, which received extensions to em-
bed and display the visualizations from MVIS on certain existing pages, and a
couple of new ones. The goal is to test that the new pages exist and that all visu-
alizations are successfully embedded and displayed in the correct position. Due
to the mostly visual nature of Mailtrain’s client, this would be almost impossible
to test automatically anyway, so, once again, manual testing should be sufficient.

Actions Done During Testing

To test the modules extended with Activity Log calls, every event that is logged
should happen in Mailtrain at least once, so that the coverage of new code is
as thorough as possible. This entails causing all events described in section 3.1,

67

i.e. creating a list, creating a campaign and launching it, clicking a link in the
campaign’s message’s content, etc.

It should be checked that all of the events were successfully logged in MVIS.
This can be checked without the need for visualizations, using IVIS’ user interface
accessible from a web browser. There, signal sets in MVIS can be inspected,
including records contained within them.

Eventually, all visualizations described in section 3.3 should become acces-
sible. The pages they are located in are described in section 5.5.2. Once each
visualization is accessible, its page should be checked to confirm it successfully
embeds the proper visualization in the correct position on the page. The content
of the visualizations is tested elsewhere, so it does not need to be checked at this
point.

This test was done with Mailtrain being locally installed, and using a custom
send configuration set to send campaign e-mails via SMTP using a test e-mail
address located at an existing e-mail service. Several other test e-mails were
created for the purpose of this test, but their count was minimal, and in theory,
only a single address is needed, which can then serve both as a sender and a
recipient.

6.1.2 MVIS Testing
The second testing method tests MVIS by simulating Mailtrain’s input to insert
test data into MVIS. Afterward, it can be tested that the data were logged prop-
erly and that visualizations resulting from them are displayed correctly. This
method tests the application on data that is less diverse, but of larger size than
the first method. There is also some automation involved.

Tested Modules

The modules tested are all modules of MVIS which are part of Mailtrain’s project.
This includes MVIS’ Activity Log, modules in MVIS responsible for managing
signal sets and jobs, MVIS’ builtin tasks, and builtin templates in MVIS’ client.

The added module responsible for testing also uses Mailtrain’s Activity Log
module to log data to MVIS, so the Activity Log’s functionality is also tested.

Actions Done During Testing

The test is done using an executable, located in /mvis/test-embed/. Once it
is executed, it spawns MVIS as Mailtrain would, and serves as a mockup of
Mailtrain which then communicates with MVIS, including logging test data into
it. The data is slightly randomized to make it feel more natural, but the state
of data in key moments (e.g. when a campaign is launched, or after all data is
logged) is deterministic. Due to this determinism, it can be checked if the data
was logged correctly.

Once test data is logged, the test executable starts a local HTTP server, where
all of MVIS’ embedded visualizations are accessible. It should then be checked
that the visualizations’ content is displayed properly. Since this mostly concerns
the visual representation of the content, it needs to be done manually. Sometimes,
the visualizations may require additional data from Mailtrain, which the test also

68

only provides a mockup for, but it provides it regardless so that the visualizations
are displayed without errors.

The manual testing method explained in section 6.1.2 works with only a very
small amount of data, so any visualizations resulting from it look overly simple.
In contrast, due to the larger amount of logged events, the testing method in this
chapter produces visualizations that look much more like ones that may be seen
in production. For that reason, their output is used in the next section to show
how the visualizations look like.

6.2 Output Visualizations
Finally, this section shows the outputs of all proposed visualizations. The visual-
izations use test data generated using a test executable in /mvis/test-embed/.

Since the data is only a mockup, the entities are named in a way that includes
their ID, e.g. ‘campaign of ID 3’. This leads to redundancy in some visualizations,
which display entity names including their ID, e.g. ‘campaign of ID 3 (ID 3)’. In
production, entity names are unlikely to include their ID, so this redundancy will
not exist.

6.2.1 Entity Activity

Figure 6.1: The entity activity visualization using test data

The entity activity visualization, as described in section 3.3.1 shows events
organized by time, and optionally filtered by type of entity, a single given entity,
or the user causing the events to happen.

Figure 6.1 shows this visualization as displayed from MVIS, including a tooltip
providing extra information on events near the cursor. The dropdown of filtered
entity is only enabled when events are filtered by an entity type, at which point
the dropdown only shows entities of the filtered type. The events in the figure
are not filtered, therefore the filtered entity dropdown is disabled.

69

6.2.2 List Subscriptions

Figure 6.2: The list subscriptions visualization using test data

The list subscriptions visualization was described in section 3.3.2. Figure 6.2
shows the visualization from MVIS displaying subscription counts of a list from
the test data. The screenshot includes a tooltip with extra information on the
precise subscriber count at the selected point, and additional information about
nearby activity events of the list.

6.2.3 Campaign Messages

Figure 6.3: The campaign messages visualization using test data

The campaign messages visualization was described in section 3.3.3. Figure
6.3 shows its MVIS visualization. The visualization shows various metrics of the
campaign, but it is generally not meant for all to be displayed at the same time,
so only opened message counts and link clicks are enabled in the screenshot.

70

Similarly to the previous screenshots, this one also includes a tooltip with precise
counts of line values at a point hovered over with a cursor, as well as information
about nearby campaign events.

6.2.4 Campaign Overview

Figure 6.4: The campaign overview visualization using test data

The campaign overview visualization, described in section 3.3.4, shows a sum-
mary of the current state of a selected campaign in the form of three pie charts.
Figure 6.4 shows a screenshot of this visualization.

6.2.5 Channel Campaigns

Figure 6.5: The channel campaigns visualization using test data

The channel campaigns visualization, described in section 3.3.5, displays the
performance of its recent campaigns with each campaign being represented as
a group of three columns. Figure 6.5 shows a screenshot of this visualization.
Although the limit for the number of displayed campaigns is larger, The test
data used only generates three campaigns, so the visualization stretches them to
the size of the whole bar chart.

The visualization also shows a tooltip when a segment is hovered over, which
gives the user information about the column and its group.

6.2.6 Channel Campaign Contributions
Lastly, the channel campaign contributions visualization, described in section
3.3.6, displays a pie chart with selected metrics of campaigns within a given
interval. Figure 6.6 shows a screenshot of this visualization, which compares

71

Figure 6.6: The channel campaign contributions visualization using test data

the number of messages that bounced back of campaigns created within the last
month of viewing the visualization.

72

7. Conclusion
The goal of this thesis was to extend Mailtrain with logging, processing and
visualizing data of its entities, which includes basic data about all entities being
modified by Mailtrain’s users, and more detailed data about the performance of
Mailtrain’s lists and campaigns. This was meant to be achieved using the IVIS
framework, which would be integrated into Mailtrain and provide most of the data
processing and visualization functionality, limiting most of the work to designing
a data logging system, data storage schemas, and visualization templates for
IVIS. The goal was eventually fulfilled, but it proved to be more complicated
than expected.

The implementation included both client-side and server-side code. The work
entailed scanning the majority of Mailtrain’s server code for potentially loggable
events. Additionally, to make the integration work properly, IVIS’ code also had
to be extended in multiple ways. Getting to understand the projects’ codebases
was a rather difficult task due to their very sparse documentation, combined
with their code being written in a dynamically typed programming language.
Lastly, both Mailtrain and IVIS have not had their software updated for a long
time now, with the versions of technologies that they use being outdated to the
point where up-to-date interfaces and documentation of several libraries used by
the projects have noticeably changed. Among other things, this also makes the
projects capable of running only on relatively old versions of operating systems,
which may soon no longer be supported.

That said, ultimately, the integration was successfully implemented, and the
final result looks serviceable. The implemented logging system logs a majority
of Mailtrain’s events which modify Mailtrain’s state in some way. There are
many more logged events that the current visualizations use and it is likely that
most event data, which visualizations implemented in the future will need, are
already sufficiently logged. The implemented visualizations make a good amount
of previously hard-to-access or inaccessible information easy to see and analyze,
which should assist Mailtrain’s users who wish to improve the performance of
their newsletters. The integration of IVIS into Mailtrain itself has also made a
lot of new data processing and visualization-related functionality accessible to
Mailtrain, which Mailtrain’s future features will hopefully be able to make good
use of.

IVIS has also received its share of extensions in this thesis. While they are
much less far-reaching than in the case of Mailtrain, they should still help IVIS
broaden the number of situations in which it can be used.

7.1 Future work

The last thing to explain is how the work done in this thesis impacts future work
on Mailtrain. Implementing the integration of IVIS into Mailtrain has brought
new possibilities for features that may be implemented into Mailtrain in the
future. There is also space for further refining and improving Mailtrain’s already
existing features.

73

7.1.1 Improving Existing And Adding New Visualizations
The existing visualizations provide a decent amount of information about the
activity of Mailtrain’s entities, and performance of the its lists, campaigns, and
channels. So far the visualizations were not used in production. It may be useful
to gather some user feedback and update the visualizations accordingly, so that
using the visualizations is a better experience.

Furthermore, since the system for embedding IVIS templates in Mailtrain
already exists, the majority of work done when adding a new visualization only
amounts to programming the visualization template. Therefore, if Mailtrain’s
users have reasonable requests for new visualizations, it should be relatively easy
to implement them to be displayed from Mailtrain.

7.1.2 A System For Custom Tasks And Visualizations
As stated before, Mailtrain has a built-in system for creating custom user tasks
for processing data, called reports. With the functionality brought to Mailtrain
by IVIS, it may now be possible to realize reports completely using IVIS’ features.

The new IVIS-based report system would need to allow Mailtrain users to
create their own IVIS tasks and jobs, which they would then be able to run.
This would lead to having various user-made signal sets, which would require
further refining permission mapping from Mailtrain to IVIS, so that it is clear
which Mailtrain users have access to which MVIS signal sets. The signal sets
themselves, mostly ones related to entity activity, would also need to be split by
single entities to be able to restrict permissions to non-administrator users, if the
signal sets are to be accessible to the users’ tasks.

If this new report system is implemented, it could also be rather easily ex-
tended with user-made visualizations, by also allowing Mailtrain users to create
their own IVIS templates and panels.

7.1.3 Updating Mailtrain And IVIS Libraries
The versions of libraries that Mailtrain and IVIS use are often outdated, some-
times by years from the latest version, which, at this time, leads to some minor
development problems, like having to use an interface or a library function that
is no longer used in the latest version, but for which an alternative does not exist
yet in the old version, which means that if the libraries are updated, the code
will have to be changed.

Due to this state of the projects, it is only possible to run them in old operating
system versions that are almost no longer supported. Despite their newer features,
this low compatibility means fewer people are likely to use them. Furthermore,
soon it may be impossible to run Mailtrain or IVIS anywhere.

This is why, despite being mentioned last, updating Mailtrain and IVIS is a
very high-priority task and it is very likely that completing it will become the
next goal in Mailtrain’s and IVIS’ development.

74

Bibliography
[1] Mike Bostock. D3: Data-driven documents. URL https://d3js.org/,

Accessed July 8th 2023.

[2] Axios contributors. Axios. URL https://axios-http.com/, Accessed July
16th 2023.

[3] Knex contributors. Knex.js. URL https://knexjs.org/, Accessed July 8th
2023.

[4] Webpack contributors. Webpack. URL https://webpack.js.org/, Ac-
cessed July 8th 2023.

[5] ZoneMTA contributors. ZoneMTA GitHub repository. URL https://
github.com/zone-eu/zone-mta, Accessed July 8th 2023.

[6] Free Software Foundation. GNU general public licence. URL https://www.
gnu.org/licenses/gpl-3.0.en.html, Accessed July 8th 2023.

[7] MariaDB Foundation. MariaDB, accessed july 8th 2023. URL https://
mariadb.org/, Accessed July 8th 2023.

[8] OpenJS Foundation. Node.js. URL https://nodejs.org/, Accessed July
8th 2023.

[9] OpenJS Foundation. Node.js Child process. URL https://nodejs.org/
api/child_process.html, Accessed July 8th 2023.

[10] OpenJS Foundation. Node.js Crypto. URL https://nodejs.org/api/
crypto.html, Accessed July 16th 2023.

[11] Amazon Inc. Amazon SES, accessed july 8th 2023. URL https://aws.
amazon.com/ses/, Accessed July 8th 2023.

[12] Docker Inc. Docker. URL https://www.docker.com/, Accessed July 8th
2023.

[13] Facebook Inc. React. URL https://react.dev/, Accessed July 8th 2023.

[14] Canonical Ltd. Ubuntu. URL https://ubuntu.com/, Accessed July 8th
2023.

[15] MailtrainOrg. Mailtrain GitHub repository. URL https://github.com/
mailtrain-org/mailtrain, Accessed July 8th 2023.

[16] Elastic NV. Elasticsearch. URL https://www.elastic.co/
elasticsearch/, Accessed July 8th 2023.

[17] The CentOS Project. CentOS, accessed july 8th 2023. URL https://www.
centos.org/, Accessed July 8th 2023.

75

https://d3js.org/
https://axios-http.com/
https://knexjs.org/
https://webpack.js.org/
https://github.com/zone-eu/zone-mta
https://github.com/zone-eu/zone-mta
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://mariadb.org/
https://mariadb.org/
https://nodejs.org/
https://nodejs.org/api/child_process.html
https://nodejs.org/api/child_process.html
https://nodejs.org/api/crypto.html
https://nodejs.org/api/crypto.html
https://aws.amazon.com/ses/
https://aws.amazon.com/ses/
https://www.docker.com/
https://react.dev/
https://ubuntu.com/
https://github.com/mailtrain-org/mailtrain
https://github.com/mailtrain-org/mailtrain
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://www.centos.org/
https://www.centos.org/

[18] SmartArch. IVIS CONCEPTS.md file. URL https://github.
com/smartarch/ivis-core/blob/master/CONCEPTS.md, Accessed July 8th
2023.

[19] SmartArch. IVIS-CORE GitHub repository. URL https://github.com/
smartarch/ivis-core, Accessed July 8th 2023.

[20] European Union. General data protection regulation. URL https://gdpr.
eu/, Accessed July 16th 2023.

76

https://github.com/smartarch/ivis-core/blob/master/CONCEPTS.md
https://github.com/smartarch/ivis-core/blob/master/CONCEPTS.md
https://github.com/smartarch/ivis-core
https://github.com/smartarch/ivis-core
https://gdpr.eu/
https://gdpr.eu/

List of Figures

2.1 A class diagram of Mailtrain’s most important entities 8
2.2 Runtime view of Mailtrain’s architecture 10
2.3 A class diagram of IVIS’s entities 12
2.4 Runtime view of IVIS’ architecture 14

3.1 A draft of the entity activity visualization 28
3.2 A draft of the list subscriptions visualization 29
3.3 A draft of the campaign messages visualization 30
3.4 A draft of the campaign overview visualization 30
3.5 A draft of the channel campaigns visualization 32
3.6 A draft of the channel campaign contributions visualization 32

4.1 Runtime view of the integration’s architecture 35
4.2 A sequence diagram of a request to embed a template 46

5.1 A schema of an embedded IVIS visualization 50

6.1 The entity activity visualization using test data 69
6.2 The list subscriptions visualization using test data 70
6.3 The campaign messages visualization using test data 70
6.4 The campaign overview visualization using test data 71
6.5 The channel campaigns visualization using test data 71
6.6 The channel campaign contributions visualization using test data 72

77

78

A. Attachments

A.1 Mailtrain Source Code
The source code for Mailtrain is attached to the electronic version of this thesis
in the form of a git repository. The branch mvis-dev contains the integration
implemented in this thesis. All changes to files in all commits to this branch are
a part of the thesis’ implementation.

At the time of writing, the source code is also accessible online at https:
//github.com/PhiStCZ/mailtrain/tree/mvis-dev, and will likely remain ac-
cessible until the changes are merged into Mailtrain’s GitHub repository [15].

A.2 IVIS-CORE Source Code
The source code for IVIS is attached to the electronic version of this thesis in
the form of a git repository. The branch mailtrain-dev-latest contains the
extensions implemented for IVIS in this thesis. All changes to files in all commits
to this branch are a part of the thesis’ implementation.

Similarly to Mailtrain’s source code, this source code is also accessible online at
https://github.com/PhiStCZ/ivis-core/tree/mailtrain-dev-latest, and
will remain accessible at least until the changes are merged into the IVIS-CORE
GitHub repository [19].

79

https://github.com/PhiStCZ/mailtrain/tree/mvis-dev
https://github.com/PhiStCZ/mailtrain/tree/mvis-dev
https://github.com/PhiStCZ/ivis-core/tree/mailtrain-dev-latest

80

	Introduction
	Background
	Mailtrain
	Concepts
	Architecture

	IVIS Framework
	Concepts
	Architecture

	Analysis
	Mailtrain Events to be Logged
	Entity Activity Event Types
	Tracker Event Types

	Logged Event Data Transformations
	List Subscriptions
	Campaign Messages
	Channel Campaigns

	Proposed Visualizations
	Entity Activity
	List Subscriptions
	Campaign Messages
	Campaign Overview
	Channel Campaigns
	Channel Campaign Contributions

	Solution Architecture
	Architecture of the Integration
	Decomposition into Runtime Modules
	Communication

	Mailtrain Extensions
	Spawning and Managing IVIS
	Event Logging
	Displaying Visualizations from the Client

	IVIS Extensions
	Mailtrain IVIS
	Modules by Logged Event Type
	MVIS Activity Log
	Visualizations

	User Management and Authorization
	Handling Requests From Mailtrain's Server
	Handling Visualization Embedding
	Handling Direct Connection To IVIS

	Implementation
	IVIS Extensions
	New Extension Manager Events
	Visualization-related Changes
	Embedding

	Mailtrain Server
	MVIS Manager
	Activity Log

	MVIS Server
	MVIS Program Entry Point
	MVIS Activity Log
	Communication With Mailtrain Through Node.js IPC
	Data Managing Modules
	Built-in Tasks
	Template Viewing Permission Management

	MVIS Client
	Charts And Data Providers
	Built-in Templates
	Displaying The Visualizations

	Mailtrain Client
	Visualization Requests And Embedding
	Displaying The Visualizations From Mailtrain

	Auxiliary Changes
	Integrating Mailtrain's and IVIS' Git Repositories
	Configuration Files
	Installation Scripts
	Documentation

	Evaluation
	Testing
	Manual Testing
	MVIS Testing

	Output Visualizations
	Entity Activity
	List Subscriptions
	Campaign Messages
	Campaign Overview
	Channel Campaigns
	Channel Campaign Contributions

	Conclusion
	Future work
	Improving Existing And Adding New Visualizations
	A System For Custom Tasks And Visualizations
	Updating Mailtrain And IVIS Libraries

	Bibliography
	List of Figures
	Attachments
	Mailtrain Source Code
	IVIS-CORE Source Code

