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Abstract: This thesis tackles computation distribution in the IVIS data processing
and visualization framework. In the existing versions, so-called Jobs are being
executed only on the IVIS host machine, raising scalability concerns. The thesis
attempts to allow the distributed execution on manually-provisioned machines,
commercial cloud platforms, and an HPC cluster. It does so by introducing the
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Chapter 1

Introduction

IVIS is a data processing and visualization framework and a client-server web
application written in JavaScript. The framework allows its users to store and
manage user-defined data collections and create visualizations of such data. Ex-
amples of visualization may include charts accessible via the application client.
The framework also allows the execution of custom scripts that operate on the
data. The entire lifecycle of these scripts, from saving the code, building the
environment in which the scripts run to scheduling and executing the scripts, is
managed by the IVIS server. In its current implementation, all scripts (otherwise
known as jobs) are executed on the same machine as the IVIS server. This Job
execution model may pose performance and scalability issues for larger or more
resource-intensive framework applications.

This thesis extends the frameworkwith the option to perform this computation
on Internet-connected machines with Docker support. More abstractly, this thesis
implements a way to execute the jobs on so-called “job executors”. Concrete “job
executor” types implemented in this thesis include:

• any machine with Docker support and Internet connection

• Slurm-based HPC cluster

• a fixed-sized pool of automatically managed virtual machine instances via
the Oracle Cloud Infrastructure

The implementation defines an interface based on HTTP requests which
serve as the primary communication protocol between a “job executor” and the
IVIS server. On the IVIS server side, this interface exposes sensitive systems
whose integrity is vital to the IVIS server’s main functionality. That, among
other security reasons, is why every client and server uses SSL certificates for
authentication.
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Two auxiliary Docker applications are implemented: the Remote Job Runner
(RJR) and the Remote Pool Scheduler (RPS), both of which adhere to the same
HTTP interface defined above. RJR encapsulates job environment building and
running jobs. RPS serves as a proxy between multiple RJR instances and the
IVIS server in a pool configuration. RPS’s most important responsibilities are
authentication (in the direction from an RJR to the IVIS server) and request
delegation and scheduling (in the opposite direction).

Additionally, the Oracle Cloud Infrastructure pool implementation provides
the means to control the pool resources via the existing IVIS UI.

The Slurm-based implementation utilizes the slurm scheduling program
hosted on the HPC cluster’s frontend node for job scheduling and failsafe output
storage. Every operation is performed using a set of scripts that may schedule
other scripts to be executed or interact with the IVIS server to adhere to the
defined HTTP interface. Various other adaptations of existing tools and processes
were made to ensure compatibility with the IVIS server’s requirements.

The solution presented in this thesis achieves job execution distribution to
the executors listed above. The distributed execution of jobs directly improves
job throughput and improves hardware flexibility.

1.1 Thesis structure
The thesis is structured as follows. Chapter 2 provides a more detailed description
of the current implementation and introduces key concepts that permeate the
entirety of the IVIS application. In particular, it focuses on the existing architecture
of job execution and the interactions expected by the IVIS client and server. It also
introduces Docker, the containerization tool used in this thesis, the TLS protocol
properties, Oracle Cloud Infrastructure, and SLURM.

Chapter 3 creates a precise image of the problem. It provides example use
cases and the rationale behind the architectural decisions made. It also elaborates
on the implemented job executor types.

Chapter 4 introduces the solution following the problem description of the
third chapter. Chapter 4 elaborates on the lower-level IVIS server implementation
and introduces key changes and additions to support the architecture described
in chapter 3. We then move on to more detailed descriptions of the executor
implementations.

In chapter 5, we compare the parallel execution of Runs on different machines
with parallel execution on only the IVIS server to provide evidence that the
extension provides a throughput boost to the IVIS server.

Appendix A provides more detailed information about using the IVIS server
and accompanying software developed as part of the solution.
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Appendix B shows use cases and screenshots of the IVIS Framework as visual
material for the introductory chapter 2. It also contains screenshots of the newly
integrated UI elements introduced by the solution.
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Chapter 2

Background

IVIS framework allows data storage and processing with emphasis on the abil-
ity of the user to customize both the data formats and the computation. The
framework is a client-server web application that offers data processing and visu-
alizations. The user defines data processing in an administration interface. The
administration interface also serves for the configuration and management of all
IVIS-specific entities. Such entities are, for example, Panels that are used for data
visualization purposes, e.g., the creation of charts of data managed by IVIS.

2.1 IVIS
The IVIS Client is built with React 1 and Sass 2. Most of the critical UI elements
display tables or create/edit forms of entities (e.g., Signal Sets, Signal Set Records,
Tasks, Jobs, Job Runs). Most of the client-side implementation in this thesis
concerns these UI elements and only makes light modifications or additions.

The IVIS server is a NodeJS 3 application that uses MySQL server 4 and
Elasticsearch 5 for storage. The server provides all functionality required by
the client, and during runtime, it can be broken down into the server and Task
Handler processes.

2.1.1 Key concepts
IVIS uses many sorts of entities. The entities are manageable by authorized IVIS
users and represent all of the critical IVIS concepts, ranging from data visualization

1https://reactjs.org/
2https://sass-lang.com/
3https://nodejs.org
4https://www.mysql.com/
5https://www.elastic.co/elasticsearch/
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(so-called Panels) to data processing (Tasks, Jobs, Job Runs). In this section, we
will describe IVIS entities and concepts, and for this thesis, we will specifically
focus on a subset of all the entities. An example of the IVIS Client’s visualization
capabilities can be found in the Appendix B.2.

Singals and Signal Sets

IVIS introduces the concept of Signal Sets for data storage. A Signal Set is com-
posed of Signals. Each Signal Set Record, an instance of a Signal Set, is stored using
Elasticsearch, an indexing solution that can be queried to reveal the values of
individual Signals within the Record. A Signal may be of various types, including
an integer, boolean, text, JSON, timestamp, or blob. A simple example of a Signal
Set is a Singal Set containing a timestamp Signal and a temperature Signal. Each
Record would then be stored as a timestamp-float pair. Screenshots of the IVIS
Client’s Signal Sets UI can be found in the Appendix B.1.

Tasks and Jobs

For data processing, the IVIS framework defines a system of Tasks and Jobs. A
Task is a template that defines the code to be executed on not-yet-specified data
and parameters. Task data (in the form of Signal Sets) and parameters are specified
later during the creation of a Job.

Tasks’ code may be edited. Such action then affects Jobs derived from the
edited Task. Each Task has a type and a subtype. A Task type defines the pro-
gramming language of the Task code, and the subtype (dependent on the Task
type) defines the environment the Task’s code can rely on (for example, Python 6

packages installed).
A Job is always based on a Task. The Job specifies the data the Task’s code is

executed with by referencing a Signal Set. It also supplies other parameters the
Task requires, including Job’s triggers. If a Job is bound to a specific Signal Set, it
may be set to be triggered by a Signal Set record creation. A Job may also have a
periodic trigger, e.g., to run every 24 hours.

Job Run and Job State

A Job Run is an abstraction over the process executing the Job. Job Runs encapsu-
late the status, time of start and finish, and the output of a single execution of the
Task code using Job-supplied parameters.

Running Job may utilize a Job State. Job State serves as a persistent storage of
Job-related data between individual Job Runs. A Job’s State may be a representa-

6https://www.python.org/
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tion of a counter, the ID of the last Signal Set record used for computation or an
intermediate result that may help with the execution of the next Job Run, such as
the last value of a computation of an average.

The IVIS Client’s Task and Job UI screenshots can be found in the Appendix
B.3.

Task-Job-Job Run workflow

In the current implementation, the workflow for executing some code on some
data is as follows:

The user defines a Task, mainly the Task’s code. For now, only Python scripts
are supported as Task code. Upon saving a Task, the Task is initialized and built
by the IVIS server. The initialization and build steps produce an environment for
the user’s code and install dependencies (defined by the Task type and subtype).

A Job is created using an already existing Task. All Job parameters are supplied,
including Signal sets and Job triggers.

Triggers are enforced, and a Job is requested to be run automatically whenever
a trigger condition is satisfied. A Job may also be executed directly via the IVIS
client from a browser after the Job is created.

When a Job is requested to be run, a Job Run is created and scheduled. If the
Job can be run, the Task’s code is executed with specified parameters, otherwise,
the run is canceled. A single Job may not have two concurrently running or
scheduled Job Runs.

Task Handler

Under the hood, the Task Handler process properly schedules all the steps men-
tioned above. It enforces the correct ordering of the workflow steps under some
assumptions. One of such assumptions is, for example, that a Task’s code is
modified only when there are no Jobs of this Task running or scheduled. The
Task Handler process is created as a child process of the IVIS server process, and
it receives/sends messages from/to the IVIS server process.

Received messages indicate, for example, a request to start Task initialization,
to start Task build, or to start or terminate a Job Run. Client-side requirements
(such as live updates of Task build state) require the Task Handler to sendmessages
to the IVIS server process.

Task Handler is also responsible for the actual execution of Jobs (execution
of the Job’s Task code). Task Handler wraps the process executing a Job by, for
example, responding to the process’ output and writing to the process’ input. The
Task Handler may also interact with the Job Run process in other ways to ensure
that a Job may issue requests to the IVIS server described in the following section.
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Job Runtime Support

The aspects of the Task/Job system require additional support from IVIS, such as
a way to, for example, provide Elasticsearch (Signal Set storage) access and a way
to communicate updates to the Job’s State.

Note that the protocol described below (using and parsing input/output/other
descriptors) is Task-type specific to the only Task type currently present, a Python
type, and may be different for other Task types. The concepts and fundamental
requirements, however, remain the same.

In the current implementation, each Job Run is therefore expected to read
the first line of its standard input (describes the protocol, Task-type specific)
containing IVIS instance-specific and Job-specific data necessary for the Job to
fulfill its function (fundamental requirement). Items a Job may be interested in
are, most importantly, the Elasticsearch connection description and Job’s state.
The Job input data also includes a description of associated Signal Sets. These
Signal Sets are available via Elasticsearch.

For some operations, the running Job must have a way to indicate its need to
interact with the IVIS server. This is done by sending and receiving messages in
a Task-type-defined protocol.

The predefined message semantics are:

• Storing Job’s state

• Creation of a derived Signal set (e.g., for the calculation of an average value)

• Renewal of an access token (used for uploading files)

For example, in the Python task type, messages are written to an additional
file descriptor, monitored by the Task handler. A response to each message is
written to the Run’s standard input. The Job Run process may parse the response
and make other decisions based on its contents.

Although sufficient, this support is very crude. This is why the Python Task
type implementation provides a Python package that abstracts these interactions
into a more usable interface. The package introduces the Ivis singleton that reads
the Run’s initial input, parses it, and initializes all necessary resources. The Ivis
class also exposes an initialized Elasticsearch object and the higher-level functions
for sending messages (wrapping the crude messaging mechanism).

2.1.2 IVIS project structure
This section describes the structure and technical details of the IVIS project to set
the context for the solution implementation description. The project (without the
extension) is available on GitHub [1].
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On the client side, the main point of concern is the client/src/root-
trusted.js file that defines the structure of the user interface rendered by the
client. User interface contents are rendered using a Panel React element. General
content, e.g., navbar links and action buttons, is specified in the structure object
(returned by the getStructure function 7) via strings and callback functions
(called after entity data is fetched from the server).

The following subsections describe the directory structure of the server im-
plementation.

Configuration directories

The server/connfig directory contains the main configuration file that also
serves as the authorization system definition. It provides secrets, parameters,
roles, and permissions for the entirety of the server implementation.

The server/knex directory contains sample data (seeds) and database mi-
grations capturing incremental altering of the database structure with the option
to roll changes back (in FIFO fashion).

Endpoints

The server/routes directory centralizes the definition of all IVIS server end-
points accessible via HTTP. This includes API for embedded applications, server-
side events (SSE), and, most importantly, the REST API endpoints for all user-
manageable entities. Most REST API definitions are tiny and immediately delegate
work to appropriate Data Model functions.

Data Model Interface

Each entity managed by the IVIS server has its data manipulated via functions
defined in an entity-specific file inside the server/models folder. This includes
the CRUD operations required by the REST API and entity-specific operations
and queries, e.g., Job Run Start/Stop, Task code saving, etc.

Task Handler

The Task Handler implementation lies inside the server/services folder. There,
one may find both message processing and Job scheduling logic. Inside the jobs
subfolder resides the run management code. This includes the general run-
manager.js file and the python-handler.js file. In terms of the Bridge design

7https://github.com/smartarch/ivis-core/blob/master/client/src/
root-trusted.js#L90
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pattern, Tash Handler is in the Abstraction role, while the Python handler is a
concrete implementation. Task Handler resolves messages to stop/start/cancel a
run by selecting the run’s Task type handler to realize the operations.

Because each Task type might require a different environment and due to the
existence of Task subtypes, concrete handlers also implement the initialization
and the build of their corresponding Task type (including all the subtypes).

The runmanager provides common functions to handle all logic when running
a Job. This includes run termination and run messages.

Shared definitions

The server’s and client’s shared functionality and definitions of constants are
located in the shared directory. Most notably, the tasks.js file contains con-
stants related to the keys of Task types and subtypes, significant filenames for
the Task code, and Task state definitions. On the client side, shared constants,
among other uses, allow the translation of IVIS domain-specific terminology.

In the following sections, we will focus on some technologies used in the im-
plementation presented in this thesis. Namely, we will mention the TLS protocols
and Docker.

2.2 Technologies used
In the solution, we use various technologies to ensure security requirements and
ease of deployment. In some parts of the solution, we also interact with external
services like a commercial cloud service provider and a local HPC cluster. The
technologies and services are briefly described in the following sections to ease
further reading.

2.2.1 TLS
TLS is a set of protocols that allow secure communication between a client
and a server, primarily focusing on information interception and modification
prevention [2].

Nowadays, TLS is an integral part of Internet communication, particularly the
HTTPS protocol extension. Servers that support TLS authenticate themselves to
the connecting client using certificates. Servers’ certificates are backed by a chain
of trust - a chain of certificates signed by Certificate Authorities with so-called
Root Certificate Authorities (signing their own certificates themselves) being the
first certificates in the chain. The client usually preconfigures a set of “trusted”
CAs. To fulfill the purposes of the TLS protocols, “trusted” CAs should include
only the widely accepted Root CAs.
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For particular purposes, clients may allow other CAs to be “trusted”. This can
be done both globally for the entire client machine and (more importantly for this
thesis) on (programmatically) individual client’s basis (e.g., specifying a custom
CA for a specific HTTPS client instance or using the --ca-certificate option
of the standard utility wget).

For mutual authentication, TLS allows the client to send over their own
certificate. Client authentication can be enforced on the server’s side to restrict
access for unknown clients. Clients may also be uniquely identified using the
client’s certificate properties, e.g., the certificate serial number.

2.2.2 Docker

Docker is an application suite for deployment of software in virtualized envi-
ronments called containers. [3] Containers are individual isolated machine-like
applications that run more or less independently (e.g., a database container may
be completely independent, while a web server container may depend on the
database container). Containers are defined and built using a Dockerfile - a file
specifying steps (commands) to create a container from a base image. Examples of
operations are running commands inside the container or copying files from the
Docker host to the container. Base images may be based on lightweight (Alpine
Linux) or popular (Ubuntu, CentOS) Linux distributions.

Networking

Containers are attached to a network, and multiple containers may share a net-
work. By default, containers are isolated from the host machine’s network(s).
When running a container, ports or port ranges must be explicitly exposed on
the host machine.

Docker networking also provides a name resolution service. If a container is
assigned a container name, then this name may be used by other containers on
the same network as an address instead of the IP address of the container when
attempting communication.

Container Configuration

An application running inside a container may be configured or developed by
mounting files and folders from the host machine to locations inside the container.
This allows the application to be configurable without the need to rebuild the
container image using the Dockerfile. Other means of configuration include, for
example, setting environment variables when running a container.
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Applications and Docker Compose

Multiple containers may form a Docker Application. Containers forming an Ap-
plication exhibit a certain amount of dependency upon each other. The Docker
Compose tool enables easier deployment and configuration of such Applica-
tions. Docker Compose parses and realizes the docker-compose file. This file,
in a declarative fashion, defines Docker Applications by specifying individual
containers (their Dockerfiles or images, if not built directly, and other container
dependencies), network properties and container configuration.

2.2.3 Oracle Cloud Infrastructure
The Oracle Cloud Infrastructure (OCI) is a cloud service commercially provided
by Oracle. [4] In the proposed solution, we utilize its networking and computing
services.

OCI networking consists of a hierarchy of components. A Virtual Cloud
Network (VCN) represents a virtual network and is the largest object in the OCI
networking. The VCN is assigned an IP range and may be divided into subnets
accordingly. Access to and from a subnet is managed by Security Lists, a virtual
firewall attached to each subnet.

OCI Compute service provides the user with the means to create and manage
virtual machines of their choosing. Performance tiers of VMs are called Shapes,
and each compute VM must be attached to a VCN subnet.

2.2.4 SLURM
SLURM is an open-source software for cluster management and workload schedul-
ing. [5] SLURM jobs are written in the form of standard Bash scripts enriched
with some extensions allowing output capturing and customization of resource
allocation (e.g., timeouts, memory, and processor nodes).

The SLURM tools like srun and sbatch allow the automation of individual
steps of a job. The srun tool launches a command directly while sbatch is used
to schedule scripts asynchronously.

Each Job running via any of the slurm tools can be uniquely identified. The
job ID may be used to schedule jobs conditionally (after success, after termination).

The SLURM cluster management enables fine-grained control of access to the
cluster resources using partitions. Each cluster user gains access to resources
according to their membership in partitions. Access is limited in terms of priority,
hardware nodes, and time limitations on the job runtime.
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Chapter 3

Analysis

This thesis aims to allow Job execution outside of the IVIS server host. This
chapter examines requirements, use cases, and the rough architecture of the
solution.

3.1 Motivation
The possibility to separate the execution from the IVIS server host allows greater
flexibility for the user and the IVIS instance administration. The user should
be able to execute individual Jobs on specialized hardware, and the IVIS server
should become more stable as it can support more concurrently running Jobs.
More specific examples follow.

3.1.1 Increase in Job execution throughput
In the current implementation, the maximum amount of Jobs running in parallel
depends on the IVIS server host hardware. IVIS server does not limit the number
of running Jobs; therefore, the server may overload the host machine given
enough resource-intensive Jobs.

The ability to run Jobs outside the IVIS server host would allow the offloading
of resource-intensive Jobs to different machines, effectively increasing the number
of Jobs that can be executed in parallel.

3.1.2 Utilizing specialized hardware
The delegation of Job execution, especially the cloud-based and SLURM cluster
extensions, should allow the user to utilize specialized resources outside the IVIS
server host. Examples may include standard scaling of computational resources
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like an increase in processing power and memory capacity or allocating Task-
specific hardware, such as powerful GPUs for CUDA 1 workloads, etc.

3.2 Solution architecture
From the perspective of a user or an administrator, we want to add the option to
manage remote resources and allow the choice of computational resources when
creating a Job. This implies creating at least one new IVIS entity (to represent the
remote resource) and making various client-side additions to manage the new
entities, and modifying the Job form (to specify where to execute a Job).

On the server’s side, we must integrate as smoothly with the existing (and
complicated) Job/Task functionality as possible. The solution roughly attempts
this by intercepting remote Job Run’s side effects and delegating them to the IVIS
server. Relevant messages between the IVIS server and the remote Executor are
sent over the Internet.

This section will examine how this thesis approaches the problem as a whole.
We will introduce the concept of a Job Executor and analyze some technical
challenges that arise from our attempt to distribute the Job execution in the IVIS
framework.

3.2.1 Job Executor
The solution introduced in this thesis creates an abstract entity, a Job Executor.
A Job Executor can be effectively thought of as a machine (or a set of machines)
that can properly execute Jobs like they would be executed on the IVIS server. A
Job Executor is expected to be able to receive simple Job-lifecycle commands (e.g.,
start a Job Run) and communicate the results of Job Runs back to the server via a
unified interface.

In terms of IVIS entities, a Job Executor is a regular entity the user can manage.
A Job Executor entity represents the machine available for execution, which is
why the entity exposes the abstract machine’s status (indicating readiness to
execute Jobs) and logs (for troubleshooting - e.g. invalid cloud service credentials).
The IVIS server itself is also classified as an immutable Job Executor. From now on,
we will refer to Job Executors excluding the IVIS server as remote Job Executors.

3.2.2 Challenges
This section lists challenges that need to be addressed by the solution and roughly
describes how the solution does so. In a nutshell, we need to ensure security and

1https://developer.nvidia.com/cuda-toolkit
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proper Job Run behavior replication or emulation to integrate with existing IVIS
functionality smoothly.

Security

Communication between the IVIS server and a remote Job Executor is generally
conducted via the Internet. Because a running Job is provided with access to
systems such as the Elasticsearch server and a running Job may issue requests
with complex server-side side effects, the Job Run’s actions and communication
must be verified by the server.

Currently, the IVIS server assumes the (local) requests to be correct and trust-
worthy since Job Runs are launched and managed directly by the IVIS server.
However, in the solution presented in this thesis (in an Internet-distributed sce-
nario), this blind trust is not acceptable. This is because otherwise, malicious
requests may be forged and sent both to the IVIS server and a remote Job Executor
to exploit them.

Each access and request coming from a remote Job Executor thus needs to
be authenticated and authorized before it is granted and performed, respectively.
Similarly, the Job Executor exposes its computational capacity to the Internet and
thus needs to authenticate the IVIS server as its master as well.

The contents of all communication between the IVIS server and a remote
Executor also need to be protected from forgery and eavesdropping. First, message
forgery would allow arbitrary remote code execution as the IVIS server would
need, at some point, to provide the remote Executor with the Task’s code it is
supposed to execute (the attack vector is the unencrypted Task code sent over
the Internet). Second, unauthorized data reading may pose a security risk if, for
example, the IVIS server manages sensitive Signals and Signal Sets. This data
exposure arises because the data would need to be transferred to the remote
Executor during Job execution.

The solution approaches these problems using SSL/TLS certificates and certifi-
cate authorities (CAs). The IVIS server acts as a local CA. With each Job Executor
creation and removal, the local CA creates and removes a client certificate key
pair for the Job Executor. The server and Executors authenticate themselves
mutually via server and client authentication defined by the TLS protocols. The
SSL/TLS usage also provides communication encryption, preventing message
forgery and eavesdropping.

Authorization is checked only on the server side to differentiate between
individual Job Executors. This is done to ensure that no Executor may modify data
related to Jobs whose Runs were assigned to a different Executor. Authorization
is not done on the Job Executor side, i.e., Job Executor implementation is intended
to communicate with only one “master” IVIS server instance.
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Remote Task build, Task code updates

As the execution of a Job itself is done outside the IVIS server, the environment
supporting the execution must also be replicated on a remote Executor. The entire
Task building process is thus replicated on each remote Executor when needed
by a Job running on that same Executor. The implementation assumes that when
a Task can be built locally on the IVIS server, it can also be built remotely. In the
case of a remote build failure, the implementation has no choice but to inform
about the failure via the Job Run that could not be executed (as the remote build is
triggered only by a request to run a Job). This is not identical to the IVIS server’s
handling of local build errors - an unbuildable Task cannot even be used to create
Jobs.

Another issue arises when the underlying Task itself is modified. We recall
that a Job is an instance of a Task - the Job specifies the data for execution and
triggers when to run the Task code. Therefore when a user changes the Task code,
type, or subtype, the environment must be rebuilt entirely. The Task modification
is propagated to the remote Executors on the first affected Job run request. Each
Job run request sends data used to build the Task, regardless of whether changes
were or were not made. To recognize changes, the remote Executor examines
this data (code, Task type, and subtype) and either schedules a build and a Run
or just a Run. In the implementation, the original IVIS server assumption that
the Task code is not modified when Jobs of that Task are running is reused in the
remote Executor implementation.

Scheduling

The IVIS server’s existing scheduling capabilities are reused in the remote exe-
cution scenarios. The only notable addition to the scheduling logic on the IVIS
server side is checking the status of a remote Executor before delegating the Job
run request to the Executor.

On the remote Executor side, a subset of the scheduling mechanisms of the
IVIS server is used. In a pool configuration, the IVIS server sends a Job run request
to a single node which is configured to schedule the Job Run among the pool peers.
Finally, in the SLURM implementation, the cluster frontend’s scheduler is used
along with shell scripts taking care of proper scheduling of dependencies, such as
the dependency on a build step terminating when the Task must be (re)built.

Remote Executor HTTP interface

The IVIS server needs to issue commands to remote Executors. Most remote
Executors are therefore required to implement an interface for the operations re-
quired by the IVIS server. Most of the Executor implementations provide an HTTP
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interface, the only exception being the SLURM-based Executor implemented via
SSH commands and shell scripts executed on the SLURM cluster.

The interface endpoints/operations can be described as follows:

• initiate a Job Run (and build the entire Task if needed)

• get a Job Run’s status (or report Run was not found)

• remove a Job Run from the remote Executor’s data storage (a sort of a
cleanup)

• stop a Job Run (or report Run was not found)

• remove a Task (cleanup purposes)

This interface gives the IVIS server all the control it needs over a Job Run’s
lifecycle. However, this interface covers only a part of the IVIS server’s servicing
of a Job Run.

IVIS server remote push interaface

The solution implemented in this thesis mimics the behavior of a Job Run as if it
was running locally. Job scheduling, start, stop, and status requests are directly
translated to the appropriate remote Executor’s interface (most commonly the
HTTP one). What remains is all the status reporting and state changes reported
by the IVIS server’s run manager. In other words, the actual Job outputs and
success and failure reports up to this point were not addressed either by the
remote Executor or by the IVIS server.

This thesis implements a push-based messaging of this information from the
Job Executor to the IVIS server via the IVIS server’s remote push interface. A pull
model would be too resource-intensive for both the IVIS server and the remote
Executors. This interface needs to address three types of messages which are
received by the IVIS server when a Job is running locally:

• Status report when a Run terminates

• Event emission for client-side components (live run output)

• Run requests (request to store a Job’s state, request to create a Signal Set)

This interface is implemented as an HTTP interface made of 3 endpoints, each
addressing exactly one of the message types mentioned above.

In addition to these endpoints, the IVIS framework also exposes the Elastic-
search instance to the Internet. Up to this point, Elasticsearch has been exposed
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only to localhost. However, remote Job Runs need to query Elasticsearch and thus
require Elasticsearch to be accessible via the Internet. To avoid requiring Executor-
specific modifications to the Task code in order to access the Elasticsearch instance
from a remote Executor, Elasticsearch is exposed on TLS-authenticated ports.
This restricts access to only remotely executing Jobs due to the usage of the local
CA. TLS authentication is also used for all the HTTP endpoints with an additional
layer of security in ensuring Executors modify data related to the runs only they
are responsible for.

In the following sections, a rough overview of the individual remote Job
Executor implementations is given.

3.2.3 Remote Job Runner

Remote Job Runner (RJR for brevity) is a Docker application consisting of an
NGINX 2 web server acting as a proxy and a NodeJS container running the
application logic. The RJR is the simplest form of a remote Job Executor, effectively
acting as described in previous sections. The RJR, at its core, is a remotely-
controllable subset of the Job running functionality of the IVIS server.

Architecture

The NGINX proxy container proxies all incoming traffic to the NodeJS application.
The proxy ensures the security requirements by utilizing client authentication.
IVIS server’s CA certificate is allowed to access the RJR’s HTTP interface serving
to receive commands from the IVIS server to execute, stop, remove a Job Run, or
query Job Run’s status.

For the persistence of Job Run data, the RJR uses an SQLite database.
Each request that the RJR cannot fulfill is delegated to the IVIS server via

the corresponding endpoint (Job state manipulation, event emission, etc.), and
the response is returned to the Job Run. The request proxying is done by the
NodeJS application that monitors the Job Run process itself. Figure 3.1 captures
the interactions between the RJR and the IVIS server.

A Job Run accesses the Elasticsearch instance via Elasticsearch libraries. This
implies that the runtime support must ensure a connection is made to the proper
Elasticsearch instance and provide a certificate to gain access to it. Hence the
RJR includes a modified version of the IVIS Python package. The modification
guarantees correct certificates, and the Elasticsearch connection is configured
upon Run’s start.

2https://nginx.org/en/
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Figure 3.1 Diagram of the Remote Job Runner intended architecture
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Deployment

To use the RJR, user intervention is needed in various steps of the Executor
creation. First, the user needs to build the RJR application on their chosenmachine
and ensure it is reachable via the Internet. Second, the user must configure the
Job Executor with necessary data, such as the address of the IVIS server. Third,
the user must create the Job Executor of the RJR type in the IVIS client, manually
copy the Executor’s certificates, and provide the certificate of the IVIS certificate
authority. After these steps, the RJR Docker application may run and IVIS server
may utilize the machine as a remote Executor.

3.2.4 Remote pool

The remote pool is a general extension of the Remote Job Runner implementation.
A remote pool organizes a set of RJRs under a single master node which hosts
the Remote Pool Scheduler Docker application (RPS for brevity). The RPS host
schedules and proxies all requests to the correct RJR instance. The interface of
and communication with the RPS is designed to be nearly identical to the RJR
interface.

Architecture

The RPS application uses an Apache container acting as a proxy in both directions
and a NodeJS application for scheduling, routing, and verification. The RPS
application is provided with addresses of the pool peers expected to carry out Job
execution and implement the remote Executor HTTP interface. In the solution
presented in this thesis, the pool peers are running the Remote Job Runner
application described in previous sections.

The RPS acts as a scheduler and router for requests from the IVIS server
toward the individual Executors (running RJR). Thus, when the pool is instructed
to execute a Job, the RPS must keep a mapping of a Job Run to the address of the
Executor responsible for its execution. This data can be later used to correctly
route other requests, such as the request to retrieve the status of a Job.

The RPS application also performs request proxying in the reversed direction.
When a Job Run needs to make a request to the IVIS server host (e.g., an Elastic-
search connection attempt), a proper client certificate must be used to sign the
request. To simplify this process, the RPS application provides proxying endpoints
to the pool peers and is configured to use its own certificate to forward requests
to those endpoints. Figure 3.2 may clarify the idea behind the architecture.

The RPS requires SSL client authentication when receiving commands via the
Remote Executor HTTP interface to maintain the security requirements. It also
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Figure 3.2 Architecture diagram of the RPS
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requires that the pool peer proxying endpoints are accessible only by the pool
peers and that their communication is not exposed to the Internet.

Deployment

It is possible to set up a remote pool using the RPS application manually. In this
thesis, the remote pool concept is used in the implementation of the cloud-based
Executor pool, which is deployed automatically.

In the case of manual deployment, individual peers must be configured in
such a way that they are accessible only by the RPS host. Peers themselves (since
unreachable from the Internet) do not use certificates and point all their requests
toward appropriate RPS proxying endpoints.

The RPS host is configured similarly to the HTTPS-secured Remote Job Runner
deployment described in the previous section. I.e., the RPS is set up on the
host machine, the IVIS Remote Executor entity is created, and its certificates
are manually injected along with the proper configuration of the IVIS server’s
endpoints. Additionally, the RPS must be provided with a list of addresses of the
pool peers.

Some endpoints of the RPS application are Peer-only, and some are IVIS-
server-only. Peer-only endpoints include the Elasticsearch proxying and IVIS
server proxying endpoints. These endpoints can be mapped to a specific port
which allows limiting of the traffic on the RPS host’s firewall level.

3.2.5 Oracle Cloud Infrastructure pool
Support for a commercial cloud service provider is a desirable extension of the
remote Executor concept. This extension adds a permanent user-manageable
Oracle Cloud Infrastructure (OCI) homogenous virtual machine pool, given that
the user has provided their OCI credentials. Usage of the OCI is arbitrary, and
other cloud services can be integrated in the future.

Architecture

The OCI pool implementation automates the deployment of the remote pool
consisting of an RPS application and RJR applications running on different virtual
machines. The OCI pool implementation sets up the OCI networking and virtual
machines to satisfy the remote pool constraints (mainly the endpoint isolation)
and securely injects all required configurations so that the pool is ready to receive
commands.

As the OCI is an Internet service, failure must be indicated to the user, and
sufficient administrative tools and information must be available for usage and
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display. These include failure logging, “forced” removal of an Executor (a danger-
ous operation supposed to be executed only when every other automated method
of removal fails), and Global Executor Type state.

The Global Executor Type state contains information related to all remote
Executors of the same type (e.g. the OCI Pool type). Some cloud services introduce
rather tight limits to their services, e.g., the OCI limits the number of Virtual
Cloud Networks. The Global Executor Type state ensures such limited resources
can be shared among multiple instances of remote Executors of the same type.
For example, the OCI Virtual Network is subdivided into isolated subnets, each
allocated for one and only one OCI pool Executor. The allocation of the subnets
is kept in the Global Executor Type state to allow more straightforward subnet
allocation when creating a new Executor. Additionally, the state allows the
removal of the entire Virtual Cloud Network on demand by storing the network’s
identifier.

Deployment

There are two criteria for the usage of this extension. First, the user must inject a
valid OCI configuration file bound to an OCI API key pair and the key pair. These
files are generated and downloaded from the OCI interface and are supplied on
IVIS startup as part of the IVIS configuration. Second, the user should find and
select the OCI Compute VM shape the pool peers should use. 3

3.2.6 SLURM cluster
Finally, we introduce a fundamentally different remote Executor Type implemen-
tation. This Executor utilizes a local SLURM cluster by connecting to and issuing
commands from a cluster’s frontend node.

Architecture

The cluster’s frontend node shares its /home directory with the cluster. This
means that both the user of the frontend node and the cluster job may modify and
access those files. Executor data is stored in this shared filesystem in predefined
locations. Some data is persisted due to implementation details, to store the Task
code or to make retrieval of run data possible in case the IVIS shuts down before
a Job Run finishes.

As the frontend node is a rather limited machine, the frontend node serves
only for scheduling Jobs and retrieval of outputs. Computation, the environment

3https://docs.oracle.com/en-us/iaas/Content/Compute/References/
computeshapes.htm
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setup, etc., must be done by scheduling cluster jobs carrying those tasks out. This
means that neither the frontend node can serve as a host for the RJR application
nor can the cluster itself, as the RJR must be available continuously and cluster
jobs are time-limited (idle RJR instance would be a waste of the cluster’s resources
even if jobs were not time-limited).

IVIS server thus connects to the frontend node via SSH and executes com-
mands on behalf of a remote Executor when needed. Job scheduling is delegated
to the SLURM cluster management. All administrative tasks ranging from out-
put collection and Job status retrieval to Job environment setup (building a Job),
are implemented as Bash scripts utilizing the SLURM tools and their scheduling
options.

Run push requests, normally performed by the RJR, are performed fromwithin
the Run itself. This is done with yet another modified version of the IVIS Python
package and a Job Run wrapper script handling Run’s output and status reporting.

Deployment

The IVIS server uses a single SSH key pair to connect to the SLURM frontend node.
The user must provide the hostname of the frontend node, username, password,
and the name of the partition to use by the Executor. On Executor creation,
the IVIS server injects all the scripts and sets up the filesystem structure on the
frontend node.
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Chapter 4

Implementation

This chapter describes the implementation of the solution. Most changes and
additions are made to the server side of the framework. The implementation
attempts to integrate with much of the existing IVIS framework code, and even
external applications (such as the RJR and RPS) follow the structure and architec-
ture of the IVIS server. One section is dedicated to the few client-side changes and
additions made behind the scenes. The last sections are focused on the individual
executor types implemented.

4.1 Containerized deployment of the framework

To simplify deployment, a Docker application for the IVIS Framework was created.
Initially, the IVIS repository contained setup scripts that severely modify the host
machine. Reinstallation of the framework thus becomes quite cumbersome.

The IVIS Containerized repository contains the Docker application and a
Dockerfile that builds the IVIS server and client. The application creates a proxy
container for HTTPS communication towards the IVIS server, an Elasticsearch
container, a MYSQL database container, and the IVIS server container.

As the implementation utilizes SSL/TLS protocol and requires that the IVIS
acts as a Certificate Authority, certificates are created as a part of the setup
process. Additionally, due to the usage of SSH (by the Slurm remote executor
implementation), SSH key creation is also part of the setup process.

The only prerequisite for deployment is a valid registered domain name for
all of the IVIS endpoints (as is required for the original script-based installation).
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4.2 Newly introduced entities

The implementation introduces key entities representing the Job executor and the
Global executor Type State. In the IVIS framework, each entity is associated with
a relational database table of the entity type (e.g., jobs, tasks, etc.). This section
focuses on the schemata of the tables associated with newly added entities.

Each IVIS-managed entity must have a namespace field for access-control
purposes. The implementation fully integrates with both the namespace system
and the entity-sharing system that the IVIS framework provides.

4.2.1 Job executor

A Job executor entity abstracts a machine or service capable of executing IVIS
Jobs. Its name and description string fields exist for UX purposes; the type
field specifies the type of the executor as distinguished in the previous chapter.
Further, Job executor data (usually specific to the executor type) is stored in the
parameters field in the form of stringified JSON, much like the parameters of a
Task.

We recall that each executor is associated with its certificate. The certificate’s
serial number is used to authorize some Job requests from a remote executor.
Thus, each executor has a cert_serial filled to mitigate filesystem accesses, as
the number of requests that need to be verified may be significant. This should
also reduce request latency.

The status and log fields serve troubleshooting purposes. The status field
indicates the deployment or creation status (either ready, failure, or provisioning),
and the log field contains additional information in the case of executor creation
failure.

Finally, the state string field is a space for executor-type-specific data which
must be persisted between server restarts. The usual format is, again, a stringified
JSON.

To represent the localhost executor (the IVIS server host), the job_executors
table is prepopulated with an entity of a special type local and a reserved
identifier. The local executor may be neither modified nor deleted and is always
in a “ready” state. An identical approach can be observed in the root namespace
creation.

4.2.2 Global Executor Type State

This relatively simple entity keeps data common to all executors of a specific
type. Thus, for each executor type, exactly one pre-created Global State entity
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exists. Each State Entity has a type-specific data field state, a log field, and a
lock field.

The lock field is utilized to ensure (via the ACID properties of the underlying
relational database) that the global state is modified by one and only one Job
executor (e.g., during an allocation of resources from a shared pool, such as
subnets of an IP address range).

4.3 IVIS server Job lifecycle

This section describes the lifecycle of locally-run Jobs. This introduction is
necessary to understand the modifications done by the solution presented in this
thesis.

The IVIS server launches a separate process (the Task handler process) to take
care of Task building and Job Run scheduling. The process receives messages
from the IVIS server and, after some processing, places them in a work queue
for further processing. The message types defined in the shared/jobs.js file
represent purposes of the messages. Some types reference events of the the
Task lifecycle ( INIT, BUILD and DELETE_TASK ), some are related to Job/Job Run
Lifecycle ( RUN, SIGNAL_TRIGGER, STOP, DELETE_JOB ) and the ACCESS_TOKEN
type is related to Job Run runtime support.

Because Task or Job Run lifecycle is specific to the Task’s type, some mes-
sages’ handling is dispatched based on the Task’s type. The messages are dis-
patched to so-called handlers. An example of a handler may be found in the
server/services/jobs/python-handler.js file. The handler is supposed to
implement and export functions for handling certain steps (message types) of
the Task or Job Run lifecycle, namely the init, build, run, stop and remove
functions.

The Task lifecycle message types of concern are the initialization and build
types. The initialization step includes the creation of the Task’s directory, the
creation of a virtual environment, and the installation of Task’s-type-specific
libraries. The build step should handle the propagation of any modifications of
the Task’s files made by the user.

The implementation makes several assumptions about the Task build system.
First, Jobs may run concurrently. Second, Task builds, and initializations may run
concurrently. Third, rebuilding/reinitializing a Task while the Job of that Task is
running is not allowed, i.e., not accounted for.
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Figure 4.1 Sequence diagram of the first phase of Run start

4.3.1 Running a Job

We will describe the Python handler’s (the only handler present so far) way
of running a Job, and we will introduce the general procedures leading to Job
execution on the IVIS server. On a technical level, this is replicated in the RJR
implementation.

The scheduling checks whether the run conditions are met upon processing a
RUN message type. These include the minimal defined delay between the same Job
Runs or whether a Job is not already running. After checks, a Run configuration
is created. The Run configuration contains all parameters necessary for a Job Run
to be performed and includes, for example, identifiers of the Task, Job, Job Run,
and most importantly, the Job Run input (connection details for Elasticsearch,
assigned signal sets, and signals, and Job state). The configuration is then passed
to the createRunManager function. The Run manager is a JavaScript closure
encapsulating handlers for Job lifecycle events. More exactly, it is an enclosed
object with onRunFail, onRunSuccess and onRunEvent handlers. The Run
manager closure also periodically refreshes the Job Run’s access token for the
IVIS API and sandbox endpoints. Figure 4.1 roughly visualizes the initialization
of a Job Run.

The Run manager handlers are general and are shared among all Task types
as they are passed to the Task-type-specific handler (the Python handler). The
manager-returned handlers are used to modify the overall Job Run’s status (in the
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case of onRunFail and onRunSuccess) or are used to communicate Job Run’s
requests at Job Run runtime (onRunEvent). The Task-type-specific handlers are
thus expected to call the supplied Run management handlers when specific events
occur (Run success, failure, or a Run request).

Run requests & Job runtime support

The Run Manager’s onRunEvent function handles events occurring during a Job
Run execution. These events indicate that the Job has emitted output or a request.

Job Run’s output is processed and conditionally persisted by the Task Handler
and may be viewed by the user in the Job Run’s Output in the IVIS Client.

Job Run requests represent operations that need to happen under the supervi-
sion and assistance of the IVIS server. Currently, there are two Job request types
(defined in the shared/jobs.js file): STORE_STATE, which requests storage of
the supplied JSON as the Job’s new state, and CREATE_SIGNALS, which specifies
a new computed Signal to be created.

The RunManager provides a general interface, and thus the Task-type-specific
handlers must ensure that a Job Run can communicate its needs properly, i.e., all
of the underlying inter-process communication (between the Task Handler and
the Job Run process) is left to the implementation of the Task type handler. For
the purposes of this thesis, the Python handler’s communication will be described
as most of the remote Job execution functionality is derived from it.

The Python handler (server/services/jobs/python-handler.js) imple-
ments Job execution by launching a a separate process, invoking a Python inter-
preter on the root Job file. In addition to standard I/O streams, it adds another file
descriptor to the process. We will call this descriptor the file descriptor 3. The
handler expects the Task code to utilize the IVIS Python package 1.

The handler registers callbacks on various events on the process’ standard
output and error and reacts to writes to the file descriptor 3 to implement runtime
event handling. The Job Run process writes its requests to the file descriptor, the
handler parses and propagates the request to be processed by IVIS, and writes
the result to the standard input of the Job Run process. On the Job Run’s side,
the protocol is implemented in the IVIS Python package to separate the levels
of abstraction (see the _send_request_message and _send_request_message
methods). In addition, Run Manager-supplied callbacks signaling Run success
and failure are registered for the exit event of the Job Run process.

The Python handler provides the Job Run with input data (configuration,
connection detail, signals, parameters, etc.) in the form of a JSON string on the
first line of the standard input. Parsing, utilization, and encapsulation of this

1main functionality implemented in server/lib/tasks/python/ivis/ivis/helpers.py
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information are also done by the IVIS Python package in the constructor of the
Ivis class. Therefore, all Tasks must construct this object as soon as possible.

In the Task code, the user may use any of the create_signal_set,
create_signal, store_state methods to interact with the IVIS server. The
elasticsearch property provides an initialized Elasticsearch library object capa-
ble of interacting with the Elasticsearch server. Figure 4.2 attempts to explain the
runtime support visually. Arrows ending with circles represent the mandatory
interface imposed by the Run manager. The way these events are triggered from
the Task code and how the results are communicated back to the calling code is
up to the Task-type implementation.

4.4 Integration of Executors
This section focuses on the modifications done concerning the Job entity, the
lifecycle of Job Runs and the support of their remote execution.

The relationship of an executor to a Job is represented in a new field in the
Jobs table. The executor_id field refers to the executor assigned to execute the
Job.

4.4.1 Remote push HTTP interface
We need to allow remotely executing Jobs to have the same side effects on the
IVIS server as a locally executing Job. These side effects include Run’s status
updates, event emissions for the Clientside updates, and the fulfillment of Run
Requests (as they require the IVIS server to be completed). We create an HTTP
interface suited for precisely those purposes.

The HTTP interface implementation assumes it is accessible only using a
valid client certificate (signed by the IVIS local CA) and that the certificate’s
serial number is passed in the request headers. Recall that a Job executor’s
certificate serial number is saved in the cert_serial field of each Job executor.
The certificate serial number, along with Job and Run identifiers sent as part
of each request’s body, is used to check whether the supposed An executor is
authorized to manipulate the data it is requesting to manipulate.

The /rest/remote/status endpoint informs the IVIS server of a remotely-
executed Run’s progress. This includes the state (scheduled, running, success,
failed) and, optionally, the output of the Run along with a Run’s termination
timestamp. As requests over the Internet may arrive in a different order, prior-
itization of state updates is implemented, with the terminating states (success,
failed) having the highest priority. If a lower-priority state write is attempted, it
is not persisted.
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Figure 4.2 Sequence diagram of the execution of a Python Job
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The /rest/remote/emit endpoint propagates Run’s updates to the IVIS
Client’s components, such as the live-updated Run Output console. (available
in the Run log or on the Task development page). The IVIS server implements
serverside events endpoints, and the Client’s Run Console component interacts
with the endpoint to deliver live Run output updates. After remote-Run-related
checks, the emit endpoints merely emulate the event as if it were emitted locally.

Finally, the /rest/remote/runRequest endpoint performs both Run request
types (store Job state and create Signal set). After remote-Run-related checks,
it performs the request exactly like a Run Manager. Contrary to the already
described endpoints, the runRequest endpoint returns data in its response.

4.4.2 Job lifecycle modifications

We will describe critical changes to the Job lifecycle steps described above needed
to integrate the Job executor concept. As mentioned, the remote execution sce-
narios expect that when a Task is buildable locally, it is probably also buildable
remotely. Thus the current Task creation, initialization, and build are left un-
changed to detect build failures.

Preparing the Task’s code for transfer to a potential remote executor in the
future is the only vital addition to this part of the lifecycle. This step is imple-
mented on the Task Handler level by reacting to Task initialization success and
Task build success. After these success events, the Task code is archived into a
tar archive via the newly-added task-archiver module 2. The module is also
used to retrieve the archives when supplying them to the remote executors later.

For the implementation of the run and stop steps, we have to differentiate
between local and remote Job execution on the Task Handler level because some
of the steps made by the Task Handler are by the solution’s architecture performed
on the remote executor’s side only. This includes the removal of build-related
event listeners or the creation of the Run Manager closure. In the implementation,
if we recognize that a run or a stop request is related to a remote executor, we
delegate the request to the newly-added dispatcher function and immediately
return. Figure 4.3 shows the Run stop is handled when running locally.

The dispatcher functions 3 perform run or stop requests based on the execu-
tor’s type. They dispatch the requests to the lowest-level interface for commu-
nication with remote executors (HTTP for RJR and RPS-based, SSH for SLUMR
types).

2server/lib/task-archiver.js
3defined in server/services/jobs/remote-machine-handler.js
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Figure 4.3 Sequence diagram of the local Run stop

4.4.3 OCI pool and SLURM specifics

As the OCI Pool and SLURM implementations are deployed automatically, some
construction and destruction processes must occur. When creating a Job executor,
the executor is created in the background, and the user is informed via the
executor’s status.

For OCI Pool, this means the allocation of an unused subnet where the RPS-
backed pool will be deployed, as well as the VMs, which will host the RPS and RJR
agents. After deployment, a necessary configuration is done by issuing commands
via SSH.

For SLURM, SSH configuration is done, and executor’s filesystem structure is
created. Configuration mainly consists of the injection of various scripts to be
executed via the srun and sbatch commands.

Destruction usually undoes all the mentioned steps made by initialization. To
enable the user to handle initialization and removal failures manually, the Job
executor entity may be Forcefully Removed . Forceful removal frees up resources
on the IVIS server’s side and removes the entity ignoring all errors that the
removal process may emit. This means that remote resources such as subnet or
VM allocation may leak. Forceful removal is therefore supposed to be used only
when the automatic removal fails, and the user frees up all allocated resources
(communicated via the IVIS client). Failure reporting and resource allocation
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information is available in the executor log when a failure occurs.

4.5 Server-side additions and modifications
This section will list some of the changes made to the IVIS server. We will focus
on the mentioned issues or mechanisms introduced in this thesis. All paths
mentioned in this section are relative to the ivis-core/server directory.

4.5.1 Minor additions

For certificate support initialization, the certs/remote directory now con-
tains a setup script that creates the IVIS server CA for certificate sign-
ing and a script for IVIS server’s certificate creation. Lastly, there is the
remote_executor_cert_gen.sh script used to create a client/server certificate
for a remote executor. The lib/remote-certificates.js file exports helper
functions for manipulation of the executor certificates and works in tandem with
the scripts.

To simplify SSH usage elsewhere in the code, the SSHConnection class was
implemented in the lib/instance-ssh.js file. This class wraps the ssh2 4

client to allow asynchronous command execution and connection reuse. The
lib/instance-ssh.js file also exports some helper functions concerning file
uploads and connectivity checks.

The lib/task-archiver.js file exposes helper functions for unified archiv-
ing of Task code.

4.5.2 Remote executor communication

The general entry point to executor communication is the lib/remote-
executor-comms.js file. It declares the handlers for various operations required
by the implementation based on the type of executor. It also implements essential
communication for RJR and RPS, as they are just HTTP requests via a preconfig-
ured HTTPS client. As the OCI Pool is implemented in terms of an RPS-backed
pool, only the SLURM implementation must be implemented differently (SSH).

The SLURM pool communication is implemented in the
lib/pools/slurm.js file. The implementation only delegates the re-
quests (to run, stop, get the status of a Run, etc.) to the appropriate script injected
when the executor was created. All communication with the cluster itself is done
via SSH.

4https://www.npmjs.com/package/ssh2
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4.5.3 Remote executor pool setup
As mentioned above, for automatically-deployed executors, the creation step
differs by performing additional work in the background as opposed to plain
storage of data from the user in the case of RJR and RPS pool executor types.

The OCI Pool setup works in 2 layers: the OCI layer and the VM (host
machine) layer. On the OCI layer, we set up all OCI infrastructure to host
the VMs. We use the official OCI SDK 5 and SSH. This is implemented in the
lib/poools/oci/basic/oci-basic.js file.

On the host machine layer, we want to inject all data RJR and RPS need to func-
tion on the host. We do this as part of the instance setup process, and the majority
of the configuration templates can be found in the lib/poools/oci/basic/rjr-
setup.js file.

4.5.4 Data model modifications
The major addition of this thesis is the Job executor entity. Each entity in the
IVIS Framework has represented in its own file inside the models folder. The
models/job-execs.js file thus represents operations over our Job executor.

In addition to all the required functions enabling an entity to be integrated
with the IVIS entity CRUD forms and basic manipulation of the Job executor
data fields, we significantly modify the creation and deletion processes by adding
background initializers and destructors. Intializers and destructors are defined
in the executorInitializer and executorDestructor objects, respectively
and are the primary mechanism for background setup/destruction of the OCI and
SLURM implementations.

Other additions include the ability to view executor certificate data for cer-
tificate injection in case of manual executor setup (RJR and RPS Pool) and the
implementation of forced removal.

4.5.5 REST API endpoints
IVIS server exposes its entities and operations on them via a REST API. We add
standard CRUD operations for Job executors in the /server/routes/rest/job-
execs.js file along with the job-executor-specific forced removal endpoint.

In the /server/routes/rest/remote-run-push.js file, we introduce the
/remote/emit, /remote/runRequest and the /remote/status endpoints and
verification functions. These endpoints should be restricted to remote executors
only and are expected to be used by remote executors as described in the Remote
Push HTTP interface section 4.4.1. All request handlers in this file expect a

5https://github.com/oracle/oci-typescript-sdk
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certificate serial number supplied in the request headers. In the implementation
presented in this thesis, this certificate number injection is configured on the
level of the reverse proxy that proxies all requests to the IVIS server. Recall that
the certificate serial number is used to restrict requests to make it more difficult
for an executor to attempt to modify data on behalf of a different executor.

4.5.6 Task handler modifications

The Task Handler process dispatches the Task and Job Run lifecycle messages
and initializes Runs in the IVIS’s internal representation. With the addition of
remote executors, some mechanisms need to be either bypassed or diverted.

In some places, we detect a remotely-executed Run and follow a new execution
path. This includes the handling of a stop message and the handling of a start of
a Job Run. In the following 2 paragraphs, we show the reasons for the change in
execution flow.

When handling a local stop message, the handler, apart from stopping the
Run, also issues an event in case the Run is being observed in the IVIS client. This
is undesirable as the remote executor itself will issue these emissions when the
Job Run actually stops.

When handling the start of a Job Run, similar logic applies. This com-
bined with the basic need to dispatch remote run/stop messages according to
the executor type implies the usage of the dispatch functions defined in the
server/services/jobs/remote-machine-handler.js file.

4.6 Client-side additions

As the existing IVIS UI is quite expressive, no significant additions were needed.
Apart from bugfixes 6 and adjustments 7, we only introduce the Job executor
entity pages, including listing all executors and the CRUD form for the user. These
additions can be located in the client/src/settings/job-executors folder.

One notable addition to the form system is the support for a password param-
eter type. The parameter system is a way to customize the forms and get special
input from the user. This system is utilized in some Tasks. For example, when
creating a Job, the moving average Task template makes the user enter a number
for the mean window size. For the SLURM implementation, we need to store the
user’s credentials, and thus we add the password parameter type.

6server-side events URL detection when nonstandard ports are used
7ParamTypes field label and description translation
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4.7 Remote Job Runner application

We recall that RJR enables IVIS to utilize a remote machine to Run its Jobs. The
RJR is a Docker application consisting of an Nginx container acting as an HTTPS
reverse proxy and a NodeJS application container that implements the RJR’s
functional requirements. The Nginx proxy is expected to accept only certificates
of the supplied IVIS CA.

The following subsections will focus on how the NodeJS application works.
When writing RJR, we attempted to mimic the file structure of the IVIS server.
Thus, some path patterns seem familiar. All mentioned paths are relative to the
RJR project root.

4.7.1 Remote control REST API

The Remote Control REST API serves the IVIS server to command the RJR. It is an
HTTP interface, roughly described in the swagger.yml file and implemented in
the /src/app-build.js, /src/routes/run.js, and /src/routes/task.js
files. The implemented endpoints are:

• POST /run/(run_id) - starts a Run

• POST /run/(run_id)/stop - stops a Run

• GET /run/(run_id) - queries a Run’s status

• DELETE /run/(run_id) - performs cleanup of a Run from the RJR’s per-
sistence

• DELETE /task/(task_id) - performs cleanup of a Task from the RJR’s
filesystem

4.7.2 Persistence and data model

The RJR uses a simple SQLite database to store two main data collections.
First, it keeps evidence of all running or finished Runs for the master IVIS

instance. The job_runs table contains the Run output, error message, and a status
field. Second, the data in task_build_cache table is used to detect whether a
Task (re)build is necessary.
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4.7.3 Job Run lifecycle
The RJR implements a subset of the original IVIS server’s Job-running function-
ality. This was done to simplify the implementation process and ensure that a
Run is performed as close to the original implementation as possible. This way
of implementing the Job runtime management may also come in handy if more
Task types and subtypes were to be supported in the future.

Run Manager, Job handlers, and the Task Handler process are defined in the
src/jobs directory. Most of the implementation is identical to the IVIS server’s
implementation with minor tweaks regarding reducing work queue message types
and adapting the handlers to support remote execution, e.g., reporting events to
the IVIS server.

One major addition to the Run lifecycle is the implementation of a build cache.
In our model, the IVIS server does not signal Task code changes to all remote
executors. Instead, the Task code is bundled in the Job run request, and the Task’s
type, subtype, and code are compared with locally stored data on each executor.
The executor decides whether to rebuild the Task (i.e., whether any of the type,
subtype, or code has changed) for each Run request.

4.7.4 Python runtime package
For Python support, the IVIS server uses a special package that abstracts the
communication between the Run and the IVIS instance. As RJR mimics most of
the IVIS server’s Job running functionality, most communication of the Run is
proxied by the RJR to the IVIS server in the same way the IVIS server reacts to
local Run messages.

The only difference is the Elasticsearch instance access. The IVIS server’s
Python package creates an Elasticsearch connection instance. Using the proxying
approach is thus impractical. Since SSL secures the RJR’s communication and
Elasticsearch supports SSL configuration, we modify the initialization of the
Python package. When creating the Elasticsearch connection, we supply the
configured SSL certificates. As the client authentication is done by the IVIS
HTTPS proxy, we gain RJR verification for free. For the data isolation, it is
expected that Job Run inputs are always correct and that Jobs will not attempt to
tamper with other Jobs’s Elasticsearch data.

4.8 Remote Pool Scheduler application
The Remote Pool Scheduler (RPS) is a simple proxying and routing application.
Its purpose is to represent multiple RJR applications in a pool configuration and
to act as a communication point for the IVIS server.

42



It serves as a proxy for the RJRs to communicate with the IVIS server using
only one SSL certificate and as a scheduler for the IVIS server. The RPS selects
the pool peer to execute the Run, forwards the request to the chosen executor,
and keeps a mapping of the Run ID to the correct executor should any other
requests regarding that Run come from the IVIS server. Also note that the RPS
pool architecture requires only one allocation of a public IP address after all pool
peers are set.

4.8.1 Networking and container configuration
In the pool configuration, the security requirements guaranteed by SSL certificates
are imposed only on the communication channel between the IVIS server and the
RPS. The RPS expects that the pool RJR instances (pool peers) are inaccessible
from the Internet and that the RPS has exclusive access to the subnet where
the pool peers listen. The RPS’s endpoints replace the pool peers’ addresses to
the IVIS server and Elasticsearch. This centralization simplifies the certificate
management: only one executor certificate is required - the certificate the RPS is
using to proxy pool peer requests.

RPS exposes four ports. Only one of those ports shall be exposed to the
Internet. The rest should be exposed only to the pool peer network. The public
port accepts IVIS server’s requests and implements the same HTTP interface for
Run management as the RJR. The three “peer-only” ports are forwarding ports
where each RJR sends its requests intended for the IVIS server’s trusted, sandbox
and Elasticsearch endpoints.

The proxying architecture uses ports and does not utilize, for example, Docker
networking (note that the RPS is attached to the host’s network). This is due to
configuration issues arising when configuring Docker and a firewall. The required
configuration (as expected by the RPS) is currently achievable by modifying the
firewall on the RPS and RJR pool peers.

4.9 OCI pool implementation
The OCI Pool Implementation combines the RPS-backed pool and the Oracle
Cloud Infrastructure for automated deployment of remote resources. It utilizes
the OCI SDK to instrument all OCI-specific components from the networking
to the virtual machine running the RJR and RPS applications. The machines
and the RJR and RPS applications are configured via SSH. This implementation
demonstrates the automation of a homogenous virtual machine pool creation and
removal.

To allow the implementation to support careful resource sharing across the
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OCI pools, we use the remote executor Type State 4.2.1. We use the state to keep
track mainly of the heavily-limited network resources.

Once the OCI API key is configured, this executor type implementation is
automatic. The only required user input is the shape specification of the underly-
ing pool machines and the pool size, 𝑃 for brevity. The implementation creates 𝑃
virtual machines of the same shape attached to the same (executor-only) subnet
of a single VCN (see OCI 2.2.3). 𝑃 − 1 pool machines run only the RJR application,
and one selected machine (master peer) runs both the RPS and RJR applications.
Figure 4.4 shows the deployment diagram of an OCI Pool and explicitly states the
OCI networking elements used and their relation to the OCI pool implementation.

The majority of the implementation of this executor type manages the
OCI resources belonging to an executor (a pool). The creation and configu-
ration of the networking resources and the pool peers are implemented in the
server/lib/pools/oci/basic/oci-basic.js file. This file exports only a
minimal interface, interconnecting all the OCI SDK functionality and configu-
ration templates from the server/lib/pools/oci/basic/rjr-setup.js file.
During the configuration of the target machines, IVIS server instantiates these
templates to get configuration commands for execution.

Other specific aspects implemented include the forced removal (4.4.3) and the
general type locking (4.2.2) to prevent multiple OCI pool creation requests from
racing each other for resources.

4.10 SLURM pool implementation

This section describes themost conceptually divergent implementation of a remote
executor. The SLURM cluster is an HPC cluster managed by the SLURM workload
management software and can be accessed only via its (in our case, low-powered)
frontend node. The nature of mentioned remote executor architectures was that
of a permanently-listening server software reacting to IVIS server’s requests. This
design is no longer possible due to the limitations of the cluster’s frontend node,
namely the performance, and networking. The SLURM executor is implemented
in the server/lib/pools/slurm/slurm.js file.

The SLURM executor accesses the cluster frontend node via SSH. It executes
a set of scripts injected during executor creation. These scripts perform desired
actions, like running and stopping a Run, by invoking the job scheduling tools
srun and sbatch to delegate most of the work to the cluster itself. We heavily
rely on the fact that a SLURM job (our running script) may schedule other SLURM
jobs.
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Figure 4.4 Deployment diagram of the OCI Pool (size = 3)
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4.10.1 Executor setup on SLURM frontend node
We persist the executor data in the filesystem shared between the frontend node
and the cluster. The creation of the SLURM executor on the IVIS server initializes
executor-specific folder with subfolder structure for the following purposes:

• the task folder for Tasks - their extraction and build step

• the cert, certificate, folder

• the inputs folder for temporary Run input storage before the Run itself
executes

• the outputs folder for Run output storage in case the IVIS server does not
pick them up immediately

• the cache folder for detection of the need to rebuild a Task

• the utils folder for scheduling scripts, the IVIS runtime support Python
package, and special wrappers

The exact path for each folder and executable is defined in the
server/lib/pools/slurm/paths.js file. The classes ExecutorPaths,
TaskPaths and RunPaths represent executor, Task, and Run-related paths (each
parametrized by the respective entity ID). The classes also centralize the knowl-
edge needed to create shell variable expansion strings for scheduling scripts’
paths.

Using the path objects, the IVIS server also creates and injects schedul-
ing scripts tailored for the executor’s paths. The script structure is ready to
be expanded with more Task types and subtypes and can be found in the
server/lib/pools/slurm/scripts.js file. The file also exports functions
for creating the script invocation commands to hide the command complexity.

4.10.2 Task and Run management scripts
Each Task type implements its own initialization and run script. Both the initial-
ization and run steps are almost identical to the IVIS server’s initialization and
build and run actions. In addition to the expected (IVIS-server-like) workflow, the
scripts indicate the success and failure to integrate with other higher-level scripts.
Additional scripts perform the removal of all redundant outputs and manage build
caching.

In the case of a step failure, the Run fail and build fail scripts inform the
IVIS server of the events via an HTTP request. The high-level run and build,
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stop, remove, and status scripts implement respective executor actions akin to
the Remote Control Interface of the RJR 4.7.1. The server-side’s implementation
executes those high-level scripts via SSH.

Utilities

Finally, we introduce the “isolated utilities” repository. It is a collection of Task
type-specialized Job runtime support utilities. We only need to support the Python
Task type. Thus the repository contains the Python IVIS package modified so
that the Run requests, usually delegated to the parent process of the Run, are
handled by the package’s IVIS class since all certificates and data are parsed and
available in the IVIS class.

Additionally, there is the “wrapper” script that effectively launches and reports
a Run. It does so by launching a subprocess, providing Run input data to the
subprocess, and monitoring its outputs. It buffers the outputs and sends them to
the IVIS server along with proper event emissions. The wrapper also properly
terminates a Run by communicating Run-related events to the IVIS server.
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Chapter 5

Results and discussion

From the architecture itself, we should see a significant increase in Job execution
throughput. In this section, we will verify this claim and analyze the meaning of
the results.

5.1 Evaluation

5.1.1 Methods
We created a simple benchmarking Task to stress the CPU. The Task simulates a
high load on the IVIS server (request handling or running too many Jobs).

We intentionally limited the CPU performance available to the IVIS server
Docker container by specifying cpus:0.5 in the compose file. The limitation
ensures a more evident CPU bottleneck and creates headroom should the host
machine experience additional load. For host CPU usage monitoring, we used
Zabbix 1 on another machine and installed the Zabbix Agent software on the IVIS
server Host.

The benchmarking Task calculates as many SHA1 hashes in 60 seconds as
possible and reports the count, start, and end time to the standard output. This is
done ten times.

5.1.2 Data
We first gathered reference data for the IVIS server running only one benchmark-
ing Job. We will state the statistical properties of the sample and, because the
score will vary from machine to machine, we shall focus on the relative ratios of
parallel execution in different scenarios. For two parallel Jobs, we expect roughly

1https://www.zabbix.com/
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Listing 1 Benchamrking script.

import hashlib
from datetime import datetime

def bench(inp, seconds):
startTime = datetime.now()
print("start: ", startTime)

counter = 0
while (datetime.now() - startTime).total_seconds() < seconds:

sha_1 = hashlib.sha1()
for i in range(100000):

sha_1.update(inp)
sha_1.hexdigest()
counter += 1

print("end: ", datetime.now())

return counter

inp="inputString".encode('utf -8')
batchLengthSecs=60

for i in range(10):
print(bench(inp, batchLengthSecs))
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Test Type Average Median Average Deviation Min Max

Single Job 737.7 746.5 28.36 699 784

IVIS Parallel 1 376.6 379.5 9.28 358 398
IVIS Parallel 2 368 369.5 6.2 351 376

IVIS & SLURM 786.9 791 14.3 748 810

IVIS & OCI 776.5 774 16.2 753 815

IVIS & RJR 702.3 721.5 46.52 581 757
IVIS & RJR (clean) 731.375 728.5 13.625 712 757

Table 5.1 Benchmark results for Jobs executed on the IVIS server in different scenarios

Test Type Average Median Average Deviation Min Max

OCI Single Job 2482.9 2488.5 14.74 2435 2514

OCI Parallel 1 2574.7 2577 6.28 2553 2585
OCI Parallel 2 2546.1 2548 7.26 2512 2558

Table 5.2 Benchmark results for Jobs executed on the OCI pool of size two

a 50% decrease in the benchmark value when running only on the IVIS server.
For benchmarks running in parallel, but on different machines, we expect little
change compared to the reference data.

During data gathering, the time gap between parallel jobs did not surpass
2 seconds (which is insignificant given the differences we are looking for) and
the overall host machine CPU utilization was always below 25% (leaving enough
room for all the processes).

5.1.3 Results
The IVIS & RJR (clean) result is the previous result cleared of outlier values 581
and 591.

We can see that running Jobs can (obviously) overload the IVIS server. Even
when comparing the worst-case measurements (that is, the ratio between mini-
mum and maximum) of the Single and Parallel server-only benchmark, we see
more than 40% performance drop.

We can also see that the delegation of Runs to other executors, as expected,
helps the server maintain the performance level for locally-executed Runs. Due
to the the sheer size of the observed ratios, we can conclude that the solution has
substantially increased Job execution throughput.

The table dedicated to the OCI implementation shows that Job Runs are
correctly distributed by the RPS. This fact may also be observed in the logs of the
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RPS application.

5.2 Discussion
The execution throughput uplift we showed directly implies better scalability of
the framework. Potential applications may include the automation of special-
ized HPC workloads based on real-time data, allowing GPU workloads in the
framework or general expansion of commercial cloud support.
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Chapter 6

Conclusion

We successfully extended the IVIS server with a way to execute Jobs both on
manually set-up machines and automatically managed resources. We ensured
the security and integration with the existing Job-running functionality by intro-
ducing the Remote Executor entity and locally-issued certificates.

We also implemented four executor types demonstrating the possibilities of
the extension along with two auxiliary applications, the Remote Job Runner and
the Remote Pool Scheduler, enabling job execution and machine aggregation,
respectively.

The solution allows users to offload Jobs to different machines, bringing more
hardware flexibility and performance (by scalability). The solution may be further
improved by implementing more complex scheduling and pool management. For
example, adding parametrized dynamic machine allocation in the cloud-based
executors for cost optimization.

6.1 Future work

6.1.1 IVIS messaging
To further simplify the implementation of remote Executors, the IVIS server and
Executors could use a centralized messaging system for both Run status updates
and event emissions. This modification would also require careful examination
of the existing IVIS codebase to assess the feasibility and possible extension into
other parts of the IVIS framework.

6.1.2 More Executor types
We demonstrated support of technologies, ranging from hand-configured ma-
chines and automatically-deployed virtual machines to an HPC cluster with
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limited frontend capabilities. The solution differentiates between Task types and
subtypes. These facts combined should allow Jobs to use specialized hardware.
For example, we might implement a Python-CUDA subtype and use an Executor
that supports CUDA.
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Appendix A

Usage Guide

A.1 Containerized IVIS setup

Read this section and then follow the ivis-containerized/README.MD file.

Three DNS A/CNAME records and a certificate for all those domains are
required. If we own a domain example.com, we can use ivis.example.com,
sbox.example.com, api.example.com.

For the Elasticsearch address, we recommend using the same name as for the
trusted endpoint (in our example ivis.example.com).

In the git cloning steps, moving the entire ivis-core folder to ivis-
containerized/ivis-core is also fine.

A.2 Using OCI pool executors

For OCI credential configuration, see the ivis-containerized/README.MD file.

The free VM.Standard.E2.1.Micro shape can be used. Be patient. The in-
stallation of required packages and prerequisites, including Docker, and the build
of the RJR/RPS image may take a long time (especially on the Micro instances).
Individual peer setup is done in parallel. SSH command execution may be moni-
tored in the silly log (not enabled by default, to enable, modify log.level in the
ivis-containerized/config/ivis/default.yaml file).

In the case of forced removal, terminate the pool peers in the OCI console
and remove the associated subnet from the IVIS VCN.
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A.3 Example tasks
Users may define their Tasks’ code or use a “wizard” when creating a Task.
Unfortunately, only the Moving Average wizard is correct at this point. Even the
moving average Task was initially incorrect. However, because the Task uses both
Signal Set manipulation and the Job State, we partially corrected it to showcase
the functionality. Other Task wizards are incompatible both in terms of package
dependencies and even in terms of the IVIS overall Job API.

To use the Moving Average task, please refrain from using the Timestamp
Singal set. Create a Generic Signal Set and add an individual timestamp Signal
(for example, an integer) and use this Signal as the timestamp Task parameter, as
the task code is not adapted for those Signal sets.

For simpler testing, adjustment of the Moving Average Task to print the
computed average on the standard output can be suitable - this way, the values
will be shown in the Job’s log.

A.4 Manual Remote Job Runner and Scheduler
deployment

Follow the ivis-remote-job-runner/README.MD file. For the port parameter,
choose the one from the Docker compose file. Remember to inject the IVIS-
supplied certificates. These are available either from the Executor Settings (top
right corner) or by clicking the star-shaped icon for the corresponding Executor
in the Executors Table.

Figure A.1 Executor actions - display Certificates

Figure A.2 Executor settings - display Certificates
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As a hint, for RJR, usually only the server_name directive of the proxy con-
figuration needs to be modified and the ivisCore, useLocalCA, and es sections
of the YAML configuration file have to be adjusted.

The remote pool scheduler is supported on the IVIS server. The deploy-
ment, however, is much more elaborate than for the RJR. Preconfiguration of
the RPS in a similar way to the RJR will be needed. However, it must also be
ensured that the accessibility of the RPS ports as stated in the remote-pool-
scheduler/README.MD file, section Configuration to guarantee security.

A.5 SLURM executor job output
For unknown reasons, very short SLURM Executor Jobs do not produce complete
output. We suspect this is due to buffering reasons.

A.6 Online repositories
All the code described in this thesis is available on GitHub:

• IVIS-core: https://github.com/BohdanQQ/ivis-core

• IVIS-containerized: https://github.com/BohdanQQ/
ivis-containerized

• RJR: https://github.com/BohdanQQ/ivis-remote-job-runner

• RPS: https://github.com/BohdanQQ/ivis-remote-pool-scheduler

• Remote Utilities: https://github.com/BohdanQQ/
ivis-isolated-runner-utils
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Appendix B

IVIS UI Screenshots

B.1 Signal Sets

Figure B.1 The Signal Set Signal Table
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Figure B.2 The Signal Set Records Table filled with example data

B.2 Visualization

For the template definition, we used the example LineChart located in ivis-
core/examples/templates/linechart.js.
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Figure B.3 The Panels Table
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Figure B.4 Workspace Panel displaying a Signal Set visualization

B.3 Tasks and Jobs

In this section, we show screenshots of Task and Job lifecycles. We first create the
Moving Average Task using the Moving Average wizard and make modifications
to the Task’s Python code so that it prints the moving average to its standard
output. Then we create a Job with the created Task and supply parameters and
run the Job once.
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Figure B.5 The Job configuration form - basic parameters, triggers
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Figure B.6 The Job configuration form - Task parameters

Figure B.7 The Run output of the finished moving average job with values printed out
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Figure B.8 Output of a triggered Run when the value 3000 was added in a Signal Set
Record

B.4 Implementation screenshots

In this section, we showcase the UI of parts of the solution presented in this thesis.

Figure B.9 The Executor table
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Figure B.10 The OCI Executor creation form
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Figure B.11 The Executor selection list in the Job creation form
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