

BACHELOR THESIS

Ekaterina Milyutina

Efficient representation of k-mer sets

Computer Science Institute of Charles University

Supervisor of the bachelor thesis: Mgr. Pavel Veselý, Ph.D.

Study programme: Computer Science

Study branch: General Computer Science

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University has the right to conclude a license agreement on the use of this work as a

school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ signature

I want to express sincere gratitude to my supervisor Mgr. Pavel Veselý, Ph.D. for all

his invaluable help and mentorship in writing this thesis. I extend my thanks to the

project consultant, Karel Břinda, Ph.D., whose expert insights significantly improved

my understanding of this complex topic. I thank my family and my fiancé who

supported me through this academic journey.

Title: Efficient representation of k-mer sets

Author: Ekaterina Milyutina

Institute: Computer Science Institute of Charles University

Supervisor of the bachelor thesis: Mgr. Pavel Veselý, Ph.D., Computer Science Institute of

Charles University

Consultant: Karel Břinda, Ph.D.

Abstract: In this thesis we explore and compare various methods for efficient k-mer set

representation. We evaluate traditional de Bruijn graph representation techniques against

greedy approximation algorithms for the Shortest Superstring Problem. We describe the linear-

time implementation of the well-known Greedy algorithm by Ukkonen [1990] and extend it to

another related algorithm, called TGreedy. In addition, we test selected algorithms on a

bacterial genome and pangenome to highlight the differences in the size of their output

representation and the computational resources used, providing an insight into their respective

efficiencies.

Keywords: k-mers, k-mer set representation, de Bruijn graphs, Simplitigs, Shortest Superstring

problem, overlap graphs, mask

1

Contents

Preface .. 3

Preliminaries ... 5

1. K-mers ... 6

1.1. Introduction to k-mers .. 6

1.2. Representations of k-mer Sets ... 8

1.2.1. de Bruijn Graph ... 8

1.2.2. Unitigs ... 9

1.2.3. Simplitigs ... 10

1.2.3. Matchtigs ... 12

1.3. Simplitigs Algorithm .. 14

1.3.1. Time Complexity Analyze .. 14

2. Shortest Superstring Problem ... 15

2.1. Introduction to Shortest Superstring Problem .. 15

2.2. Greedy Algorithm for SSP .. 15

2.3. Overlap Graph ... 16

2.4. Linear-time implementation of Greedy (Greedy AC) .. 18

2.4.1. Aho-Corasick Automaton ... 18

2.4.2. Greedy_AC Algorithm ... 19

2.5. TGreedy ... 21

2.5.1. Cycle Cover .. 22

2.5.2. MGREEDY .. 22

2.5.3. TGREEDY Algorithm .. 23

3. Connection between k-mers and SSP .. 25

3.1. Linking k-mers representation problem and SSP .. 25

3.1.1. Mask .. 25

3.2. Utilizing SSP Algorithms for K-mers ... 26

4. Experiments ... 28

4.1. Objective .. 28

4.2. Setup .. 28

4.2.1. Programming Environment and the Computational Resources..................................... 28

4.2.2. Input Values ... 29

4.2.3. Data Collection ... 30

4.3. User Manual ... 31

2

4.4. Results ... 32

4.4.1. Comparison of Superstrings’ Lengths ... 33

4.4.2. Comparison of Computational Efficiency ... 36

Conclusion ... 40

Bibliography .. 42

List of Figures.. 44

Attachments .. 46

A.1. Tables .. 46

A.2. Technical Documentation .. 48

A.2.1. MAIN Modules .. 48

A.2.2. HELPER Modules .. 53

A.2.3. ALGORITHM Modules .. 60

3

Preface

The main goal of this thesis lies in exploration, comparison and identification of the most

efficient methods for representing k-mer sets, which are the sets of all possible

subsequences of length k that can be extracted from a genomic sequence and are crucial

elements in genomics. By assessing different representational strategies, this work aims to

contribute to the broader understanding of k-mer sets data storage and manipulation with

it.

In Chapter 1 we start with an analysis of de Bruijn graphs, commonly used structures for

representing k-mer sets, and their representation methods. The focus is given to the known

state-of-the-art methods, like unitigs and simplitigs, which are vertex-disjoint paths in the

de Bruijn graph, and computations of such sequences from de Bruijn graphs and in some

cases straight from the k-mer set.

Building on this foundation, the contribution of this thesis is to investigate the connections

between k-mers set representations and a well-known NP-hard problem, the Shortest

Superstring Problem (SSP). Superstrings are an essential concept in study of k-mer sets

representations, as they are results of merging the simplitigs and unitigs, and finding the

shortest superstring will lead to optimizing the size of the k-mers representation.

Chapter 2 is dedicated to the investigation of the SSP problem and its well-known greedy

approximation algorithms. In addition, we introduce overlap graphs as an essential

foundation for greedy algorithms with improved guarantees, and discuss in detail these SSP

methods. Particular focus is directed towards a linear-time implementation of the greedy

approach (Greedy_AC) that uses a modified Aho-Corasick automaton to find the longest

Hamiltonian Path in the overlap graph. In addition, this thesis explores other greedy

algorithms based on the cycle cover, such as MGreedy and its improved version, TGreedy,

linear-time implementation of which will be introduced for the first time.

By the investigation of de Bruijn graph representations and the Shortest Superstring

Problem, in Chapter 3 we derive the conclusion that the SSP greedy algorithms have the

potential to optimize the representation of k-mer sets, providing better size of representation

in expense of more computational resources, such as runtime and memory usage. Under

such observation, Greedy_AC and TGreedy algorithms can be utilized for the k-mer set

4

representation. In this chapter we introduce the concept of mask, applied to the superstring,

enabling the preservation and identification of the original k-mers while preventing false

positives. Different types of masks, such as binary and case sensitive, is explored and the

observations about construction of the mask is obtained.

The practical part, described in Chapter 4 of this thesis, involves the prototype

implementation of some of the mentioned algorithms in Python. Despite Python’s

limitations with large k-mer data sets, it suffices for testing these approaches.

The methods selected for the implementation are: algorithm for simplitigs construction

from the hash table of k-mers proposed by Břinda, Baym and Kucherov [2021]; linear time

implementation of Greedy of Ukkonen [1990]; and TGreedy, first introduced by Blum et

al. [1994], for which we describe the first linear-time implementation.

Through the experiments with these three approaches, the aim is to compare the efficiency

of the generated superstrings and the computation times, seeking the most optimal solution

for k-mer set representation.

Ultimately, this thesis seeks to lay the groundwork for further research in this field,

advancing the understanding and application of efficient k-mer set representation strategies.

5

Preliminaries

In this chapter we introduce some definitions that are essential for the whole thesis.

Alphabet Σ is a finite nonempty set of symbols.

A string over Σ is a finite sequence of symbols from Σ. The length of a string is the number

of symbols in the sequence, denoted by |𝑠|, where s is a string. A contiguous sequence of

characters within a string is called substring, which shares the same alphabet Σ.

Two strings x and y have an overlap of length k if there exist strings u, v and w with |𝑣| =

 𝑘, such that 𝑥 = 𝑢𝑣 and 𝑦 = 𝑣𝑤. In other words, an overlap is a string that occurs at

the end of the first string and at the beginning of the second string, i.e. it is a suffix of one

string and a prefix of the other.

The maximum overlap between two strings is the longest overlap.

DNA (Deoxyribonucleic acid) is the carrier of genetic information. DNA consists of four

nucleotides or bases, denoted A, T, G, and C. Genome is all the generic information of an

organism and consists of DNA sequences. Both definitions are stated by Rith [2019].

6

1. K-mers

1.1. Introduction to k-mers

In the field of genomics and bioinformatics, the concept of k-mers plays a fundamental role

in understanding and analyzing DNA and protein sequences. The term k-mer refers to a

fixed-length substring that is created from a longer genomic string, like sequencing reads

or transcription. Such a subsequence employs the alphabet ["A", "C", "T", "G"], where the

characters stand for the nucleotides Adenine, Cytosine, Thymine, and Guanine,

respectively.

A k-mer set is a collection of all possible substrings each of a fixed length k, produced from

a certain genome sequence. Such sequence of size L contains 𝐿 − 𝐾 + 1 k-mers, which,

however, are not necessary to be unique. The size of a k-mer set representation refers to

the total number of characters in the representation.

As an example let us have a look at an arbitrary DNA sequence and all of its possible unique

k-mers. Let the sequence be “GCTACTA” and the table of k-mers is as follows:

Value of k k-mer Set

1 G, C, T, A

2 GC, CT, TA, AC

3 GCT, CTA, TAC, ACT

4 GCTA, CTAC, TACT, ACTA

5 GCTAC, CTACT, TACTA

6 GCTACT, CTACTA

7 GCTACTA

For a particular sequence, the sizes of sets depend on the value of k and as it increases to a

certain value the size of the sets increases as well. That certain value of k indicates the limit

of the number of unique k-mers presented in the DNA sequence.

For instance, the length of the sequence of further used genome of the bacteria s.

pneumococcus, is equal to 2061918. As it is seen from the following table the number of

the unique subsequences of such a genome is increasing exponentially for the values of k

in the range from 1 to 11. However, as the size of the k-mer set gets close to the length of

the genomic sequence, the growth significantly slows down and reaches its maximum at

certain value k, which will indicate the maximum number of unique k-mers for this genome

7

and in the observed case is equal to 57. After this value the sizes of the k-mer sets will only

decrease, as more extensive repetitions are presented.

Value of k Size of k-mer set

1-7 4𝑘

8 65101

9 241952

10 691301

11 1298893

12 1730646

13 1924270

14 1992657

15 2015184

20 2030690

30 2038948

40 2043714

50 2046162

56 2046814

57 2046816

58 2046807

100 2043877

1000 1982627

100000 145012

The examples provided illustrate the unidirectional model of k-mers. Such a model treats

each k-mer as a distinct entity without considering its reverse complement.

DNA sequence is composed of two long strands twisted together. Each stand consists of a

series of nucleotides. Reading of DNA sequence is a process of determining the sequence

of nucleotides along one of the DNA strands. When we read the DNA sequences, we start

from one end without knowing the actual direction.

In order to account for the possibility of sequencing from either direction, the bidirectional

model is used. In such a model both the k-mer and its reverse complement are considered

equivalent, compared to the unidirectional model.

The reverse complement of a DNA sequence is formed by reversal of the sequence and

replacement of each nucleotide with its complement: A with T, C with G, G with C and T

with A. For instance, for the sequence “GCTACTAGC” its reverse complement is

“GCTAGTAGC” and the k-mer “GCT” and its reverse complement “AGC” are treated as

equivalent entities.

8

The bidirectional approach provides a more complete representation of the sequence by

accounting both orientations of k-mers. By introducing reverse components, the

bidirectional model enables more exploration of the repetitions and overlaps, which appear

after reaching the certain limit value of k, as demonstrated in the bacteria’s DNA sequence

example. Bidirectional approach enables the identification of overlaps that may not be

immediately apparent when using only the unidirectional model, resulting in a more

accurate genomic analysis.

In this thesis, we primarily focus on using the unidirectional model for analyzing DNA

sequences. While we primarily utilize the unidirectional model, results obtained within this

model are expected to hold true in the bidirectional model as well due to the inherent

symmetry of DNA, where complementary pairs (A-T and C-G) exist regardless of the

reading direction.

1.2. Representations of k-mer Sets

Genomic data is vast and managing such a large amount of data can be computationally

and memory intensive. Efficient representation of k-mer sets, obtained from such a genome,

allows to store the same information using less space, making such storage cost-efficient.

The efficient representation of k-mer sets is crucial for the efficiency of many

bioinformatics algorithms as they can be processed faster.

1.2.1. de Bruijn Graph

One of the solutions for representation of genomic data is de Bruijn graphs.

The de Bruijn graph, a directed graph with the notation G = (V, E). The nodes in the graph

represent k-mers, i.e., V = set of k-mers. Each edge in the graph represents the k-1 long

overlap between the pair of the k-mers , i.e. 𝐸 = {(𝑢, 𝑣) ∈ 𝐾2 | 𝑢 →𝑘−1 𝑣}, where 𝐾2

represents the Cartesian product of the k-mers set with itself (all possible pairs of k-mers),

and 𝑢 →𝑘−1 𝑣 indicates that there is a directed edge from k-mer u to k-mer v, where u and

v overlap by k-1 characters.

9

1.2.2. Unitigs

One of the important concepts in the representation of such graphs is unitigs, which was

firstly used by Kececioglu and Mayers [1995]. A unitig is a continuous sequence of nodes

(k-mers) in the de Bruijn graph that do not contain any forks, which occur when one k-mer

has different possible extensions to other k-mers. In other words, unitig represents a unique

vertex-disjoint path through the graph that corresponds to a potential sequence in the

original DNA or protein sequence. The example of the unitigs is presented in Figure 1.1.

Starting from the initial de Bruijn graph G, the process of identifying unitigs involves

traversing the graph and examining each path. The sequence of nodes 𝑛0, 𝑛1. . . 𝑛𝑝 ∈ 𝐺 is

marked as unitig, if node 𝑛0 has only one outgoing edge, node 𝑛𝑝 has only one in-going

edge and any node 𝑛𝑖, where 𝑖 ∈ [1, 𝑝 − 1], has both in-degree and out-degree equal to

one.

Figure 1.1: Representation of k-mer sets as unitigs

10

The tool for computing unitigs from input data is BCALM 2 developed by Chikhi, Limasset

and Medvedev [2016]. This program is designed to take a FASTA file containing DNA or

protein sequences as input and efficiently constructs the corresponding de Bruijn graph.

Once such a graph is constructed, BCALM 2 employs an algorithm to extract unitigs from

the graph. The output of the program is a set of unitigs, where each element of the set

corresponds to the path in the de Bruijn graph.

1.2.3. Simplitigs

Another method of de Bruijn graph representation is called simplitigs. This method was

developed by Břinda et al. [2021] and appeared after the unitigs. It is a generalization of

unitigs and represents the spelling of vertex-disjoint paths that span the graph. While unitigs

focus on individual paths that meet the criteria of each node having in-degree and out-

degree equal to one (Figure 1.1), simplitigs aim to extend and combine these paths to form

longer sequences (Figure 1.2). This merging process allows for the representation of longer

continuous sequences.

Figure 1.2: Representation of k-mer sets as simplitigs

11

However, compared to unitigs, simplitigs do not carry the information about the de Bruijn

graphs topology, since they do not represent each path in the graph and instead represent

their concatenations. However, that does not affect the presence of all of the k-mers in the

simplitigs and they can be derived from it back.

Nevertheless, the loss of topology is justifiable as simplitigs represent longer sequences,

which when merged are shorter than the result of the unitigs concatenation. For example,

for the same de Bruijn graph (Figure 1.1 and Figure 1.2) merged unitigs output the string

with 20 characters, while simplitigs with 16. Such representation is less memory consuming

and allows to save more memory space.

The problem of finding simplitigs in the de Bruijn graph is equivalent to the problem of

finding a smallest spectrum-preserved set (SPSS) representation. Introduced by Rahman

and Medvedev [2021] algorithm UST (Unitig-STitch) works on the node-centric de Bruijn

graph (the definition of de Bruijn graph which we work with), constructed from the input

sequences. The algorithm finds the paths in such a graph, starting in each iteration with an

arbitrary node, and tracks all the nodes that were visited by the path. Whenever the

extension of the path reaches a dead-end, such a path is stored and the neighbors of the last

node in the path are checked if such exist. If any of the successor nodes is in another path,

such that it is a start of the corresponding path, then the obtained path and the path of the

successor are merged together. After that the algorithm chooses another arbitrary node and

continues the process, until all of the nodes are visited, and outputs the set of strings.

Another efficient algorithm of simplitigs computation is called ProphAsm and was

developed by Břinda et al. [2021]. Compared to the USP algorithm, this method does not

require construction of de Bruijn graphs and operates directly on the k-mer set. This

algorithm is discussed in 1.3.

Described methods do not provide optimal simplitigs as a solution. Addressing this

limitation, a polynomial-time algorithm has been developed by Schmidt and Alanko

[2022], designed to find optimal simplitigs. This algorithm is based on the concept of

Eulerian paths and cycles in the de Bruijn graph. The directed graph is called Eulerian if

all nodes have indegree equal to the outdegree. And a bigraph is Eulerian if all nodes have

imbalance (difference between indegree and outdegree) 0. The Eulerian Cycle is the cycle

that visits each edge exactly once.

12

The idea of such an approach is firstly to construct a bidirected de Bruijn graph in linear

time and then add breaking edges into this graph to make it Eulerian. This step is done to

ensure that every node in a graph has an equal number of ingoing and outgoing edges. Next

the algorithm computes the Eulerian cycle in such a graph and then breaks the obtained

cycle at the breaking edges added earlier. The output of such an algorithm is a set of strings,

spelled by the resulting walks.

1.2.3. Matchtigs

Another method for representation of the de Bruijn graph is called matchtigs, which was

introduced by Schmidt at el. [2023] and which concept is closely related to simplitigs.

While simplitigs represent vertex-disjoint paths through the graph, matchtigs can include

overlapping paths and do not follow the vertex-disjoint criteria. Due to these properties

same sequences of k-mers can be included in multiple matchtigs, leading to a potentially

more space-efficient way of representation, compared to simplitigs. It is well seen in the

example of Figure 1.3, where in Figure 1.3.b k-mers are represented without repetitions,

leading to the 7 output sequences with total number of characters being 43, while in Figure

1.3.d, where the repetition of k-mers is allowed, the number of sequences is 5 and the

number of characters is 39.

The algorithm for finding matchtigs is similar to the UST algorithm. However, the

matchtigs algorithm allows repeated k-mers and uses a different definition of de Bruijn

graph, which is edge-centric compacted graphs (Figure 1.3.a). The edge-centric de Bruijn

graph is a bidirected graph G = (V, E), where each edge represents k-mer, i.e. E = set of k-

mers and each vertex represents k-1 long overlap between k-mers, i.e. two edges share the

vertex if associated with them k-mers are overlapped by k-1 characters. The compacted de

Bruijn graph is a simplification of the standard de Bruijn graph and obtained by merging

the paths of nodes with indegree and outdegree of 1 into a single node.

Matchtigs greedy algorithm explores such graphs to find the different paths. In edge-centric

de Bruijn graphs, matchtigs are not necessary to be edge-disjoint, meaning that two distinct

paths can share a common edge. However, the beginning of the path must be an unvisited

edge to ensure that it covers a new k-mer matchtig. As such a path is found, all

corresponding edges are marked as visited and the traversal is continued from the next

13

unvisited edge. The process is repeated until there are no more unvisited edges and outputs

the set of matchtigs.

As this greedy approach produces only close to optimal solutions, Schmidt et al. [2023]

introduced a more involved and less efficient polynomial time algorithm for finding

optimal matchings. If we compare Figure 1.3.c and Figure 1.3.d, which are examples of

differently computed matchtigs, the greedy approximate matchtigs has 6 strings and 40

total characters, while optional matchtigs has a reduced number of 5 strings and 39

characters.

This method starts from construction of edge-centric compacted de Bruijn graph and

computation of bi-imbalance (difference between outdegree and indegree) for each of the

nodes in the graph.

After this the min-cost paths are computed: from each node with negative bi-imbalance the

algorithm finds the paths to all reachable nodes with positive bi-imbalance, such that it will

require the smallest cost to traverse. The cost of an edge is defined as the number of

characters required to join two strings from the negative to the positive node. After

obtaining all of such paths the min-cost matching is applied on them in order to decide

which bi-imbalances should be fixed by repeating k-mers. Some nodes will stay

unmatched, indicating that fixing their bi-imbalance would require breaking edges. That

step is done to make the graph balanced (for each node indegree is equal to outdegree).

Figure 1.3: Computations on a edge-centric de Bruijn graph with k = 5.

Credits: Schmidt et al. [2023]

14

The algorithm then finds a path that visits every edge in both directions (biEulerian circuit).

This path is broken down into separate paths at breaking edges, which were added by the

previous step. The output of this method will be the string spelled by the broken paths.

1.3. Simplitigs Algorithm

The greedy algorithm, which was chosen for implementation in this specific project, is

introduced by Břinda et al. [2021], who also provided its implementation as a tool

ProphAsm for computing simplitigs.

This algorithm does not construct the de Bruijn graph and collects all k-mers into the hash

table. It chooses an arbitrary k-mer as the seed of a new simplitig and extends it backwards

and forwards as much as it can while deleting previously used k-mers from the set. The

extension continues by adding one of four nucleotides at a time if the resultant k-mer is

present in the set of k-mers. Until all k-mers are covered, this process is repeated.

The ProphAsm algorithm functions by combining overlapping k-mers into a single

sequence called simplitigs, which leads to faster computation by reducing the number of

strings and total number of characters in the strings required to store k-mer sets. Such an

algorithm is very time-efficient; however, it does not find the optimal solution.

 Note, that the detailed pseudocode for this algorithm is provided in Attachments, A.2.

1.3.1. Time Complexity Analyze

The time complexity of the algorithm depends on the size of the input k-mer set K and the

k-mer length k.

Extension backwards and forwards have linear time complexity of O(k), since for each k-

mer, there are four possible nucleotides. In the worst-case scenario, this function would be

called once for both directions, i.e. once for each additional k-mer, added to the path,

implying that overall there will be k-1 iterations.

The computation of the simplitigs calls the extension for every k-mer in the input set K.

Thus the time complexity is O(Nk) where N is the number of kmers in the set.

15

2. Shortest Superstring Problem

2.1. Introduction to Shortest Superstring Problem

Given a collection of strings 𝑆 = {𝑠1 , . . . , 𝑠𝑛} over an alphabet Σ, a superstring α of S is a

string containing each 𝑠𝑖 as a substring, that is, for each i, 1 ≤ 𝑖 ≤ 𝑛, α contains a block

of |𝑠𝑖| consecutive characters that match 𝑠𝑖 exactly.

For instance, given the set S = {“abcd”, “aebc”, “cdaeb”, “ecba”, “bca”} over the alphabet

{‘a’, ‘b’, ‘c’, ‘d’, ‘e’} a particular superstring could be “ecbabcdaebca”.

Recalling the definition of overlap from the Preliminaries, overlaps are an essential concept

in the construction of a superstring since they allow merging of the substrings in the correct

order. For example, given two strings "AACT" and "CTTA", the overlap between them is

"CT", and the merge of them is "AACTTA".

As overlaps represent the common subsequences between two strings in the given set, they

indicate the potential connections between the strings. By identifying these overlaps, we

can merge the strings together to form a superstring.

Finding the shortest superstring for a given set of strings is the goal of the shortest

superstring problem (SSP). SSP is a well-known computational problem in computer

science and is known to be NP-hard (Garey and Johnson [1979]), implying that finding the

exact optimal solution in polynomial time is computationally challenging.

2.2. Greedy Algorithm for SSP

Since SSP is an NP-hard problem and it does not have an efficient algorithm that can solve

it optimally in polynomial time, approximation algorithms are used instead to find near-

optimal solutions. Approximation algorithms provide an approximate solution, whose

quality compared to the optimal solution is measured by the approximation ratio. The

approximation ratio R is calculated as follows: 𝑅 =
𝐴

𝑂𝑃𝑇
, where A is the value of the

approximate solution and OPT is the value of the optimal solution. Smaller approximation

ratio corresponds to a more accurate approximation. In the sense of the Shortest Superstring

problem the quality of the approximation algorithm is evaluated in terms of the length of

the resulting superstring.

16

A greedy approximation algorithm for SSP is one of such approaches and was introduced

by Gallant [1982]. This algorithm makes locally optimal choices at each iteration in order

to reach an approximate to optimal solution. The idea behind this greedy algorithm is to

merge the pair of strings with the maximum overlaps one by one, until all the strings are

merged into a single superstring.

For instance for the set of strings S = {“AGCT”, “CTAA”, “TAAC”, “CTTG”} the

algorithms works as follow:

1. Strings “CTAA” and “TAAC” are merged, as they have the overlap of size 3,

which is the largest among any other possible overlaps between any other two

strings. After the merge the set is updated as {“AGCT”, “CTAAC”, “CTTG”}.

2. Strings “AGCT” and “CTTAC” are merged, as they have the overlap of size 2,

which is the longest overlap among others. The updated set of strings is:

{“AGCTAAC”, “CTTG”}.

3. The last two strings are merged together and the output of the algorithm is the

superstring “AGCTAACTTG”.

Tarhio and Ukkonen [1988] stated the greedy conjecture, which says that the greedy

algorithm has approximation ratio 2. That means that the length of the resulting

approximate superstring is at most twice the length of the optimal superstring. In addition,

the best known upper bound on the approximation ratio of the Greedy algorithm was

introduced by Englert, Matsakis and Veselý [2021] and stated to be approximately 3.425.

2.3. Overlap Graph

While the greedy approximation algorithm for SSP is effective, it is important to note that

there exist alternative approximation algorithms that offer improved guarantees. These

algorithms leverage the concept of overlap graphs to achieve more accurate solutions.

A directed graph G = (V, E) is called the overlap graph for a set of strings S if there is a

one-to-one correspondence between V and S such that two vertices in V are adjacent to each

other if and only if the corresponding strings in S overlap each other. Each edge in the

overlap graph is assigned with the weight, which corresponds to the length of the overlap

between two strings associated with adjacent vertices. As the graph is directed the direction

of the edges between the vertices matters in order to assign them with the proper weight.

17

For instance, consider nodes s, which corresponds to string “ACCTG”, and t,

corresponding to “CTGCA”. The edge from s to t has a weight of 3 as the overlap between

s and t is “CTG”. However, the edge from t to s has a weight of 1, since the overlap between

t and s is “A”.

The overlap graph represents self-overlaps as well. Self-overlap occurs when the string in

S overlaps with itself, for example, string “ACCAC” has self-overlap of length 2. The

overlap graph captures such overlaps as edges connecting a vertex to itself.

To construct the overlap graph, each ordered pair of the strings in the input set are

compared. If there is an overlap between two strings, the edge between their corresponding

nodes is added and the weight, associated with the edge, corresponds to the length of the

overlap.

The overlap graph is closely connected to the Shortest Superstring Problem. As SSP aims

to find the shortest possible superstring, containing all of the input strings, the overlap graph

visualizes the relationships between the strings and identifies the potential merges between

them.

Shortest superstring could be obtained from the overlap graph by finding the largest overlap

Hamiltonian path in this graph. The Hamiltonian Path is a simple path in a graph, which

visits every vertex exactly once. With the use of algorithms, such as depth-first search

Figure 2.1: Overlap graph constructed for the set of strings

{“ACTG”, “AGCG”, “AGCA”, “CAAC”, “TGCA”}

18

(DFS), such a path can be searched in the overlap graph and be equivalent to the valid

solution of the SSP. Nevertheless, it may not be the optimal solution in terms of minimizing

the length of the resulting superstring as different Hamiltonian paths can lead to different

superstring lengths. Finding the optimal Hamiltonian path, which corresponds to the largest

overlap, is known to be an NP-complete problem.

2.4. Linear-time implementation of Greedy (Greedy AC)

Ukkonen [1990] developed a linear-time implementation of the greedy approximation

algorithm, which is based on the idea of greedy heuristics for finding a longest Hamiltonian

Path using the modified Aho-Corasick string-matching machine.

2.4.1. Aho-Corasick Automaton

A trie is a tree-like data structure that stores a set of strings by encoding the common

prefixes among them. In a trie, each node represents a prefix of one or more strings, and

each edge represents a character that extends the prefix to a new node

Developed by Aho and Corasick [1975] Aho-Corasick automaton is a trie-based data

structure that efficiently matches multiple patterns over the input string. The automaton

consists of a trie that represents the set of patterns and a set of additional functions that

enable efficient traversal of the trie. The goto function transitions (solid lines in Figure 2.2)

from a state to another state based on the next input character, while the fail function

(dashed red lines in Figure 2.2) enables backtracking to a previously matched prefix of a

pattern in case of a mismatch.

The goto function is computed using the trie data structure, where each node represents a

state and each edge represents a transition. The goto transition generally represents the way

an automaton moves and is denoted as 𝑔(𝑠, 𝑎) = 𝑡 if there is a transition between from

state s to t for character a.

The fail function of the Aho-Corasick automaton maps each state to the longest proper

suffix of a pattern that matches a prefix of an input string. The failure transition is a so-

called e-move which does not consume any symbol from the string scanned and is denoted

as 𝑓(𝑠) = 𝑡 if there is a failure transition from state s to state t.

19

2.4.2. Greedy_AC Algorithm

Let S be a finite set of strings over the alphabet Σ. The idea of the greedy algorithm is to

find and remove two strings in S that have the longest overlap among all possible pairs of

strings in S. Then form the overlapped string from the removed two strings and replace it

back in S. Repeat until there is only one string in S or no two strings have a nonempty

overlap.

The implementation of the algorithm consists of two functions: the first one is a

preprocessing phase that augments the usual AC machine with the necessary information

and the second one implements the greedy heuristics.

The function preprocessing takes a set of k-mers S and Aho-Corasick machine with

constructed goto and fail functions for S. As the result function outputs several structures:

1. list_L – specific dictionary where each key is assigned with a list of values. The

key is the state and the list of values are the indices of the words from the input

Figure 2.2: Aho-Corasick automaton constructed from the set of words {“AGTG”,

“TGCA”, “CAAC”, “AGAG”, “TCAC”} over alphabet {‘A’, ‘C’, ‘T’, ‘G’}

20

set S that have the state as prefix. List_L allows to keep track of the supporters

for each state, i.e. it records index for each word passing through each state.

2. state_F – dictionary with keys representing the indexes of words in S, where the

corresponding value is the final state for such a word, i.e. state where this word

ends. In other words this dictionary represents the strings of set S.

a. inverse_E – dictionary, such that if state_F(i) = s then inverse_E(s) = i.

3. Reverse breadth-first ordering of the states.

a. link_b – dictionary, where key is the state and its value is successor of

the state (backlink of state), i.e. contains the reverse breadth-first search.

b. pointer_B – integer, which represents the first state in such linked list

By the theorem, proposed and proved by Ukonnen [1990], the AC machine of S over a

small enough alphabet Σ can be constructed and preprocessed with the preprocessing

algorithm in time O(n), where n denotes the total length of the strings in S.

After the preprocessing function the next step is the greedy selection of the overlaps. The

selected overlaps will form a Hamiltonian path H in the overlap graph.

The algorithm of function Hamiltonian traverses the states of the AC machine in the

reversed breadth-first order, following the link_b dictionary. During this traversal, the

algorithm maintains a dictionary, denoted as list_P, where for each state s there is a list of

all indices i such that:

1. For each index i in list_P(s) the state s is encountered while following the failure

path starting from state_F(i) state. In other words, the i-th string has the state s

as a suffix.

2. The Hamiltonian path H does not contain an overlap(𝑥𝑖 , 𝑥𝑗) for any j.

The algorithm then checks for overlaps (𝑥𝑖 , 𝑥𝑗) that satisfy two conditions:

1. H does not contain an overlap starting at 𝑥𝑖 and ending at 𝑥𝑗

2. Adding (𝑥𝑖 , 𝑥𝑗) to H, along with the existing overlaps, does not create a cycle

For each j in list_L(s) which satisfies the first condition (this is checked by dictionary

forbidden), the algorithm traverse list_P(s) until the first index i such that the overlap

(𝑥𝑖 , 𝑥𝑗) satisfies the second condition.

To efficiently check the second condition in constant time the algorithm maintains

dictionaries first and last. First(i) table keeps track of the first occurrence of i in the

21

Hamiltonian path, i.e. it represents the first node in the path where i appears. Last(i) stores

the last occurrence of the i, i.e. indicates the last node in the path.

Initially set as first(i) = last(i) = i for all patterns, the dictionaries are updated at any moment

when H contains a path from 𝑥𝑖 to 𝑥𝑗 and no arc in H ends at 𝑥𝑖 or starts at 𝑥𝑗. In such

cases fist(j) = i and last(i) = j.

After processing all of the overlaps at state s, the algorithm concatenates list_P(s) with

list_P(fail(s)), where fail(s) is the failure state of s. This allows the algorithm to continue

processing the failure paths that pass through state s when the traversal reaches fail(s).

Once finished with the state s the algorithm moves on to list_b(s) and the backlink directs

the algorithm to the next state to be processed.

After the Hamiltonian path H is found, a helper function findSingle is called to find all

nodes of an AC machine with in-degree 0 or with large self-overlaps. Such strings are not

in the Hamiltonian path, but must be taken into the account. After obtaining such a list, all

the strings from the initial set S are merged together following the Hamiltonian path.

By another theorem of Ukkonen [1990], the Hamiltonian algorithm runs in O(n). By

combining both of the theorems the conclusion is derived: the time complexity of the

Greedy_AC algorithm is linear and O(n).

The detailed pseudocode for this algorithm is provided in Attachments, A.2.

2.5. TGreedy

As described in Greedy AC, the Greedy algorithm finds the shortest common superstring

for the set of words S by repeatedly merging two strings with the maximum overlap until a

single string remains. Such algorithm sorts edges by overlap following two conditions:

1. Hamiltonian Path H does not contain an overlap starting at 𝑥𝑖 and ending at 𝑥𝑗

2. Adding (𝑥𝑖 , 𝑥𝑗) to H, along with the existing overlaps, does not create a cycle

Such a Greedy algorithm has two variants which ignore the second condition and introduce

cycle covers.

22

2.5.1. Cycle Cover

A cycle cover in a complete directed weighted graph G with self-loops is a set of directed

cycles such that the inner degree and the outer degree of each node of G are both unit, i.e.

each node has exactly one incoming and one outgoing edge. A cycle cover ensures that

each node in G is included in some cycle. The example of the cycle cover, compared to the

Hamiltonian path, is presented in Figure 2.3 as green and red lines respectively.

The concept of cycle cover is quite useful in the context of the shortest common superstring

problem. By the construction of cycles, we ensure that each string is included in the

superstring while minimizing the overall length of the resulting string.

2.5.2. MGREEDY

One of such Greedy versions is called MGreedy introduced by Blum et al [1994]. The goal

of this algorithm is to compute an optimal cycle cover by sorting edges from the overlap

graph based on their overlap lengths. While iterating over the sorted list of edges, the edge

(s,t) is added to the cycle cover if no edge (s, t’) or (s’, t) has been chosen before (s,t).

Figure 2.3: Maximum Hamiltonian Path (red lines) and maximum Cycle cover (green

lines) on the overlap graph constructed for the set of strings {“ACGT”, “CGTA”,

“GTAC”, “CGTC”, “TACG”}

23

The resulting cycle cover obtained from the MGreedy algorithm contains a set of directed

cycles that collectively cover all the nodes in the overlap graph. Each cycle represents a

sequence of strings with maximum overlaps. In order to get the representative string of the

cycle, it must be broken at the smallest overlap edge and the strings merged among the

obtained after edge-removal path. The resulting superstring is a concatenation of all

representative strings in some arbitrary order.

By Blum’s [1994] theorems and observations MGreedy algorithm is of length at most

4⋅ OPT. However, a better upper bound of the approximation ration is introduced by Englert

et al. [2021] and is equivalent to approximately 3.425.

2.5.3. TGREEDY Algorithm

The second version introduced by Blum et al [1994], named TGreedy algorithm, is an

improvement over the MGreedy algorithm and is used to further optimize the cycle cover.

The algorithm operates on the set of representative strings M obtained from MGreedy and

instead of concatenating them in the arbitrary order, it applies Greedy on the set M in order

to merge them by overlaps.

The implementation of TGreedy is an improved version of the Greedy_AC algorithm,

specifically the Hamiltonian function. Such an algorithm is the first linear-time

implementation of TGreedy and the detailed pseudocode for this approach can be found in

Attachments, A.2.

HamiltonianT function takes as input the preprocessed data structures, obtained by

preprocessing function, which is the same as for Greedy_AC.

The function’s initialization and first loop, which iterates over each k-mer and adds it to

the list_P dictionary, described in 2.4.2.

Set the initial state to the value of pointer_B. Then the function enters the while loop that

is executed until the state will be 0, which will signify the completion of the optimal cycle

cover, instead of the Hamiltonian path as in Greedy_AC. That is why this part of the

original algorithm is extended by introducing a cycle cover construction step.

In order to find such a cycle cover, the code checks a specific case where the word index

first[i] is the same as the word index j.

24

1. The condition first[i] == j checks if the last element in the current merging

chain, represented by first[i], is the same as the element j.

2. If first[i] == j, it means that the current element j is already part of the merging

chain, creating a cycle. In other words, j is a predecessor of itself in the merging

chain.

3. To prevent this cycle, the code removes i from the dictionary list_P, excluding

it from further consideration in the merging process.

4. Additionally, it sets forbidden[j] to True to mark the word j as forbidden,

indicating that it cannot be merged with any other word anymore.

5. Since the condition has been satisfied the loop breaks and moves to the next

word in list_j corresponding to list_L

By the theorem proposed and proved by Blum et al. [1994], algorithm TGreedy produces

a superstring of length at most 3⋅ OPT. However, by Englert et al. the better upper bound

for the approximation ration was proven to be approximately 2.7125.

The proof of the linear time complexity by Ukkonen still applies to this variant of the

Greedy algorithm as the change in the Hamiltonian function does not affect the time

complexity.

25

3. Connection between k-mers and SSP

3.1. Linking k-mers representation problem and SSP

The goal of approaches, described in Chapter 1, such as unitigs, simplitigs or matchtigs, is

to represent the k-mer set as a compact set of sequences, which covers all of the k-mers.

Such representation is quite useful for further applications due to its fast calculation, but

does not provide the storage of the k-mers with the optimal size of representation. That is

a result of the limitation of such approaches by the usage of de Bruijn graphs. The de Bruijn

graph prevents the usage of overlaps shorter than k-1 since in such a graph the edge between

two nodes is presented only if there is an overlap of size k-1 between them.

When considering traditional k-mer set representation algorithms, we derive the

observation that when output sequences obtained by these algorithms are merged together,

they construct a superstring of k-mers. According to the observation, SSP algorithms offer

an alternative for obtaining an efficient representation of k-mer sets. By taking a set of

strings as input, these algorithms can effectively handle the set of k-mers, which consists

of fixed-size strings over a specific four-character alphabet.

Unlike in traditional approaches, k-mers are represented by the overlap graph, which

provides information about all possible overlaps between k-mers, implying that overlaps of

size shorter than k-1 can be analyzed. Instead of starting with an arbitrary k-mer and

attempting to extend it as much as possible, SSP algorithms begin with the largest identified

overlap and merge the strings accordingly. This leads to the discovery of a shorter and more

memory-efficient representation of the strings.

3.1.1. Mask

However, it is important to note that representing a k-mer set as a superstring alone is not

sufficient. While it serves the purpose of storing the k-mer set efficiently, it does not

provide the necessary information for proper extraction and identification of the original k-

mers. This happens due to the appearances of false positives in the superstring. For instance,

given set of k-mers {“ACG”, “ACC”, “GAC”, “CTA”}, the obtained superstring

“ACGACCTA” introduces false k-mers such as “CGA” and “CCT”, which are not present

in the original set.

26

In order to identify such false positives, an identification mask must be applied to the

resulting superstring, allowing for the accurate retrieval and identification of individual k-

mers. Identification mask is a binary string, which may be represented in various ways and

can be possibly compressed.

One approach involves using masks in the context of the de Bruijn graph. In this approach,

sequences of unitigs or simplitigs are separated by the comma delimiters. As each of such

sequences represent k-mers merged with each other with k-1 overlap, original k-mers are

easily derived from such sequences and the comma between them prevents the generation

of the false k-mers. The example of such a mask is presented in Figures 1.1 and 1.2.

Alternative type of mask is case sensitive mask, which converts specific characters in the

superstring to lowercase letters in order to highlight the location of the original k-mers.

For example, consider set S = {“ACG”, “CGT”, “TAC”} and superstring “ACGTAC”.

Applying the case-sensitive mask would yield the modified superstring “ACgTac”, where

the upper letters indicate the positions of the original k-mers.

Another type of mask tracks the position of the original k-mers in the superstring by

providing a list of indices. For the same set S and superstring, the position mask would be

the list {0, 1, 3}, with each integer representing the index of the start of an original k-mer

in the superstring.

A binary mask is another type of mask that offers a more compact and machine-readable

representation of the superstring. In this approach, each character is encoded as a binary

digit: 1 indicates the presence of a k-mer, while 0 indicates its absence. The binary mask

provides a concise representation of the superstring.

Continuing with the set S = {“ACG”, “CGT”, “TAC”} and superstring “ACGTAC” the

encoding will be “110100”.

3.2. Utilizing SSP Algorithms for K-mers

In order to efficiently represent k-mer sets, we will utilize the algorithms for SSP with the

modification. Given a set of strings of fixed size k, the greedy algorithms would perform

as usual with minor changes. The small size of the alphabet, which consists of only four

27

symbols, makes it easier for the implemented greedy algorithms to navigate through the

automaton during the construction of reverse breadth-first ordering of the states.

The mask plays a crucial role in marking k-mers in the output superstring of the greedy

algorithms. In this project, we provide two options for the mask: case-sensitive and binary

mask. The former is applied on the superstring by default and the latter could be called with

the flag –b.

Both implemented mask-applying functions work in a similar manner. They take as input

superstring, k-mer set and value of k, and iterate over each character (except for the last k-

1) of the superstring, check whether or not the k-long substring in the superstring is in the

k-mer set. This comparison allows for the identification of the existence of original k-mers

and false positives.

Several observations can be made from the implementation of these mask functions. Firstly,

the length of the mask is always equal to the length of the superstring. This holds since the

case-sensitive mask only modifies the case of characters, and the binary mask produces a

sequence where each 1 or 0 correspond to a specific character in the superstring.

Secondly, the mask functions do not need to iterate over the last k-1 characters of the

superstring as the length of the k-mers is fixed, and no k-mer can have a length less than k.

Therefore, the last k-1 characters in the mask are always lowercase or 0, depending on the

chosen option.

Finally, as all k-mers are merged into the superstring, it is trivial that the number of

positions of k-mers in the masked superstring cannot be smaller than the size of the k-mer

set. However, it is not necessary to be exactly equal to the number of original k-mers.

During the construction of the superstring, overlaps between different k-mers may result in

the creation of other k-mers that are not false positive, but are repetitions of other original

k-mers. In such cases, the mask functions mark each occurrence of any original k-mer in

the superstring.

28

4. Experiments

The source code of implemented algorithms and program for testing are in the git

repository: https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets

4.1. Objective

The primary goal of this research revolves around the comparison of three implemented

algorithms - Simplitigs, Greedy_AC and TGreedy - in terms of their efficiency and

performance in representing k-mer sets.

The main aim is to conduct comparison of these different approaches across two main

dimensions. First, the length of the resulting superstrings, which is a key measurement for

the ability of each algorithm to create efficient representation of k-mer sets. Second, the

computational efficiency of each approach, such as CPU time and peak memory usage,

provides a better understanding of each algorithm’s performance under actual computation.

In addition to evaluating each algorithm individually, we will compare them in pairs as

well. The performance of the utilized for representing k-mers SSP greedy algorithms

(Greedy_AC and TGreedy) will be contrasted against the Simplitigs method. Furthermore,

Greedy_AC and TGreedy will be compared in order to highlight the practical difference

between implementation of Hamiltonian Path and Cycle cover computations.

The results of this comparison will offer valuable insights into the advantages and

limitations of each algorithm, guiding future efforts in optimizing k-mer set representation

in bioinformatics research and applications.

4.2. Setup

4.2.1. Programming Environment and the Computational Resources

All of the algorithms, along with the overall program, are written in Python, utilizing the

BioPython package. Python, known for its simplicity and versatility, was the choice for

developing the prototype of this program. Python is not adept in dealing with large-scale

bioinformatics data due to its memory usage characteristics. When working with large data

sets, Python’s memory management significantly affects the performance. For the future

iterations of the project, it would be advantageous to rewrite and retest it with usage of a

https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets

29

more performance-focused language like C++, which would allow more optimal memory

usage.

The computational environment for this experiment was a server equipped with 3.3 GHz

AMD EPYC 7302 processor and 251 GiB of RAM. Such a setup offers significant

computing resources necessary for processing all algorithms.

4.2.2. Input Values

Data for the experiment was stored in FASTA files. FASTA is a text-based file format

widely utilized in bioinformatics for representing nucleotide sequences. A FASTA

formatted file begins with a single-line description, followed by lines of sequence data. The

description line is distinguished from the sequence data by a greater-than (">") symbol. For

instance:

>sequence_0

GTGTCGGAGGCTCCATCGACATGGAACGAGCGGTGGCAAGAAGTTACTAATGAGCTGCTGTCA
CAGTCTCAGGACCCGGAAAGTGGTATTTCCATTACGCGACAGCAAAGCGCCTACCTG

>sequence_1

CAATACGGAGCAACTTCAGCCAATGCTGACTTCCAGAATCAACAAAGCACGATATA

For our experiments we use two input files:

1. spneu.fa (2.02 MB): This file contains the assembled genome of one S. pneumoniae

individual. S. pneumoniae is often considered a standard model species for

experimental evaluation of k-mer-based methods.

2. spneumo_pangenome_k32.fa (14 MB): This file represents the pangenome of S.

pneumoniae, incorporating 616 assemblies found during a vaccination study of

children in Massachusetts, USA, described by Croucher et al. [2009]. Pangenomes

provide a broader genetic context, capturing the genetic diversity of a species.

The selected range for the value of k was chosen to be from 8 to 20 for the spneu.fa file and

from 8 to 16 for the spneumo_pangenome_k32.fa file. The primary reason for this limited

range stems from the prototype nature of the approach. Given this current limitations, the

implemented greedy algorithms (Greedy_AC and TGreedy) cannot efficiently handle

computations involving large datasets, often leading to memory usage failures. These

30

constraints lead to a more conservative choice in the k-value range to ensure viable and

meaningful analysis.

Moreover, the selected range of 8 to 16 or 20 is particularly relevant for the pneumococcus.

For values of k less than or equal to 8, the de Bruijn graph is almost complete, meaning

nearly all possible k-mers are present, amounting to almost 4𝑘. On the other hand, as k

increases beyond this range, the de Bruijn graph quite simplifies and Simplitigs generate

near-optimal results.

4.2.3. Data Collection

A Python function outputStats is implemented to collect and store the important

information about efficiency and performance of the used algorithms. The function is

designed to capture the essential data required to evaluate the performance of three

algorithms under different k values.

The outputStats stores several parameters into the CSV file, which allows easy

manipulation and analysis of the obtained data.

The list of stored data:

1. name of the input fasta file

2. name of the output file (if was not selected, than stdout)

3. type of the applied mask

4. name of the applied algorithm

5. value of k

6. size of k-mers set

7. length of the resulting superstring

8. the CPU time consumed by the algorithm

9. the actual elapsed time (wall-clock time) taken by algorithm

10. the maximum (peak) memory used by the algorithm during its execution

The collection of this statistical data is called with the flag –S or – stats. The detailed

pseudocode for this algorithm is provided in Attachments, A.2.

To streamline the process of gathering data for various values of k and different algorithms,

an efficient bash script (run_python.sh) was implemented. This script automates the

31

execution of the Python program for different k-mer sizes and algorithms, capturing and

saving the outputs and statistics in an organized manner.

4.3. User Manual

This subchapter provides a user guide for executing the Python script main.py, enabling

independent replication of all experiments.

In order to run the code user required to have:

1. Python3 installed in their device

2. Installed BioPython package (https://biopython.org/) , which is required for

manipulations with fasta files.

BioPython can be installed on Linux via command lines:

‘conda install -c conda-forge biopython’ or ‘pip install biopython’

Step 1: Download the script main.py and all of its dependencies into one directory.

List of dependencies: Load_fasta.py; mask.py; Statistics.py; testStr.py; tgreedy.py;

Greedy_AC.py and simplitig.py

Step 2: Open the Command Line Interface on Linux system and run the script as follows:

python3 main.py –i <input_file>

or python3 main.py --input <input file>

Replace <input_file> with FASTA formatted input file.

Step 3: Choose one of the algorithms, which will run on the k-mers set, obtained from

<input_file>

List of algorithm flags:

-s/ --simplitig – call for simplitigs algorithm

 -a/ --aho-corasick – call for Greedy_AC algorithm

 -t/ --tgreedy – call for TGreedy algorithm

https://biopython.org/

32

Step 4: Add additional flags into command line in order to change and/or check the output

List of additional flags:

 -k K/ --kmer K – the length of each kmer. Not required. Default K is 31

-b/ --bitstring_mask – mask will be saved in the form of 1-0. Not required.

Default mask is case_sensetive

-o <output_file>/ --output <output_file> - the output will be saved into

<output_file>. Not required. Default output is standard output

-T/--test - runs tests on the output superstring and provides the results as

standard output. Not required.

-S <stats_file>/ --stats <stats_file> - stores statistics to the given <stats_file>.

Not required

Step 5: Check the Output. The output will be either printed into stdout or written to a file,

depending on whether the -o flag was used in the command.

4.4. Results

The results are presented as charts for the visual comparison between different approaches. More

detailed statistics can be found in Table 1 and Table 2 in Attachments, A.1.

33

4.4.1. Comparison of Superstrings’ Lengths

Figure 4.2: Length of the superstring depending on the value of k (range 8 - 16) for

input file: spneumo_pangenome_k32.fa

Figure 4.1: Length of the superstring depending on the value of k (range 8 - 20) for input

file: spneu.fa

34

The first observation which can be derived from this comparative analysis of superstring

lengths is the similarity in length of superstrings’ produced by the Greedy_AC and

TGreedy. Lengths of superstrings produced by Greedy_AC are usually shorter with ratio

10:3 for input file spneu.fa, where TGreedy resulted better superstring for k = {10,11,19},

and 8:1 for input file spneumo_pangenome_k32.fa, where TGreedy’s superstring was

shorter only for k = 11.

For the first experiment (input file: spneu.fa) the average difference in superstring lengths

for these two algorithms is 313 characters. If we trim the smallest (a difference of 1

character at k = 7) and largest (a difference of 2685 characters at k = 11) differences, the

average drops to 107 characters. The reason for such similarity in the lengths is a greedy

approach used by both algorithms, which prioritizes merging the pairs with the longest

overlaps first and leads to the similar superstrings.

The second observation derived from the comparative analysis concerns the output

superstring length of the Simplitigs algorithm in comparison to the Greedy algorithms

(Greedy_AC and TGreedy). Across all tested values of k in the experimental range,

Simplitigs consistently produced a larger superstring. However, the gap between the length

of the Simplitigs superstring and the Greedy superstrings decreases as k increases, since the

number of simplitigs decreases. This reduction in their number subsequently leads to a

shorter superstring when they are merged together.

35

Figure 4.4: Length of the superstrings produced by Simplitigs and TGreedy compared to

the size of k-mer set for the value of k (range 8 - 16) for input file:

spneumo_pangenome_k32.fa

Figure 4.3: Length of the superstrings produced by Simplitigs and TGreedy compared to

the size of k-mer set for the value of k (range 8 - 20) for input file: spneu.fa

36

To compare superstring lengths with the size of the k-mer set, we focused only on the

outputs from the Simplitigs and TGreedy algorithms. This was based on our earlier

observation that the Greedy_AC and TGreedy algorithms produced superstrings of nearly

identical lengths.

Unfortunately, the data depicted in Figure 4.4 did not offer enough information for

conclusive insights due to the limited range of k, a constraint imposed by intense memory

requirements. Nevertheless, Figure 4.3 provides a valuable illustration of the relationship

between increasing values of k (within the given range) and superstring length. From this,

we can draw our third observation: as k increases the output superstrings’ lengths become

nearly the same for all of the algorithms, reaching its lower bound, which is the size of the

k-mer set. The reason behind this lies in the de Bruijn graph, which for large k does not

contain many branches and becomes similar to a path.

4.4.2. Comparison of Computational Efficiency

Given the large values and wide range obtained for peak memory usage, calculated in bytes,

we utilized a logarithmic scale to effectively represent the data on the charts. Let Y represent

the original set of values on the y-axis, we create Y’ as the set of new y-values such that

𝑌′ = {𝑦′|𝑙𝑜𝑔(𝑦) = 𝑦′・106, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑌 }.

Figure 4.5: Comparison of the peak memory usage of algorithms Simplitigs, Greedy_AC

and TGreedy for the value of k (range 8 - 20) and input file: spneu.fa

37

Note, that for k = 8, Simplitigs exhibited such low memory usage that the bar is virtually

indistinguishable from the x-axis, even after logarithmic scaling.

We make two observations about the results in Figures 5 and 6. Firstly, Greedy_AC and

TGreedy exhibit similar levels of high memory consumption, due to their similar data

structures used.

Secondly, Simplitigs considerably reduces memory usage compared to the Greedy

approaches. The reason for this is that Simplitigs does not construct or store Aho-Corasick

automaton with additional data structures, unlike Greedy_AC and TGreedy. Simplitigs

only maintains a hash table of k-mers and removes k-mers from the set as they are used in

building the simplitigs, further reducing the memory consumption. Conversely, Greedy

algorithms must maintain overlap information, causing an increase in memory usage as the

value of k increases.

Figure 4.6: Comparison of the peak memory usage of algorithms Simplitigs, Greedy_AC

and TGreedy for the value of k (range 8 - 16) and input file: spneumo_pangenome_k32.fa

38

For the representation of CPU times, counted in seconds, we use the logarithmic scale as

well with the set 𝑌′ = {𝑦′|𝑙𝑜𝑔(𝑦) = 𝑦′, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑌 }.

Figure 4.8: Comparison of the CPU times of the algorithms Simplitigs, Greedy_AC and

TGreedy for the value of k (range 8 - 16) and input file: spneumo_pangenome_k32.fa

Figure 4.7: Comparison of the CPU times of the algorithms Simplitigs, Greedy_AC and

TGreedy for the value of k (range 8 - 20) and input file: spneu.fa

39

Greedy_AC and TGreedy display almost identical CPU times, though TGreedy, on

average, takes slightly longer. This is due to the Greedy approach being applied twice in

TGreedy: initially to acquire the MGreedy set, which is the optimal cycle cover, and

subsequently on a set of representative strings for the cycle.

Simplitigs proves to be significantly faster, which can be attributed to its primary operation

- extending simplitigs at both ends and checking for the presence of extended k-mers in the

hash table. This operation executes in constant time and scales well, not requiring more

resources with an increase in k.

In contrast, Greedy_AC and TGreedy consume substantial amounts of memory. For

example, with the input file spneumo_pangenome_k32.fa and k = 13, Greedy_AC requires

more than 22 GB of memory, while Simplitigs uses only 1.7 GB. Greedy algorithms operate

based on overlaps between k-mers. As k increases the possibility of overlaps between k-

mers increase, leading to an increased number of operations and thus longer CPU time.

The results of CPU time and peak memory usage comparisons could be significantly

improved in the future through the use of a more computationally capable language than

Python. Despite these potential enhancements, the presented prototype effectively

illustrates the crucial comparison information between the three implemented algorithms.

40

Conclusion

In this thesis, a variety of methods for representing k-mer sets have been investigated, with

special attention given to three specific algorithms: Simplitigs, Greedy_AC, and TGreedy.

These algorithms have been explored and tested against a fixed range of values of k and

two different input files to provide a comprehensive understanding of their advantages and

limitations.

Among the tested methods, Simplitigs emerged as the fastest and most memory-efficient

approach, being particularly efficient for larger values of k. Its relatively low memory

consumption and fast computation make it an efficient method for managing large genomic

data.

On the other hand, Greedy_AC and TGreedy, which produces similar-length superstrings,

demonstrated significantly greater demands in terms of memory consumption and

computational time. While their greedy strategy can yield effective results in terms of

shorter superstrings, it also requires more extensive computational resources.

The advantage of Greedy_AC and TGreedy, which lies in producing shorter superstrings,

compared to Simplitigs, becomes less visible within an increase in the value of k. As k

grows, the length of superstrings outputted by Simplitigs moves closer to the size of the k-

mer sets, reducing the gap between Simplitig's and Greedys' superstring lengths.

Studies in this thesis set the stage for further research into the problem of efficient

representation of k-mer sets and improvements of the algorithms, utilized for this task.

Presented as a prototype written in Python, implementation can be rewritten to more

computationally efficient languages, enabling testing with larger k-values and larger

FASTA files.

Potential avenues for future work could include a comparison of the implemented Greedy

algorithms with matchtigs and eulertigs (optimal simplitigs), enhancing the understanding

of the efficiency of various approaches.

Additionally, the bidirectional model that accounts for both orientations of k-mer could be

considered for the further implementations, providing additional explorations on the k-mer

41

set representation problem. Such improvements would allow for more precise and efficient

management of k-mer data, paving the way for future advancements in this field.

42

Bibliography

Karel Břinda, Michael Baym, Gregory Kucherov. Simplitigs as an efficient and scalable

representation of de Bruijn graphs. Genome Biology 22, 96 (2021). URL:

https://doi.org/10.1186/s13059-021-02297-z

Esko Ukkonen. Linear-Time Algorithm for Finding Approximate Shortest Common

Superstrings. Algorithmica 5, 313–323 (1990). URL: https://doi.org/10.1007/BF01840391

Avrim Blum, Tao Jiang, Ming Li, John Tromp, Mihalis Yannakakis. Linear Approximation

of Shortest Superstrings. Journal of the Association for Computing Machinery 41(4), 630-

647 (1994). URL: https://doi.org/10.1145/179812.179818

Stephanie C. Roth. What is genomic medicine? Journal of the Medical Library Association

107(3), 442-448 (2019). URL: https://doi.org/10.5195/jmla.2019.604

Philip Compeau and Pavel Pevzner. Bioinformatics Algorithms: An Active Learning

Approach. Active Learning Publishers 3rd ed., 5-8 (2018)

John D. Kececioglu and E.Mayers. Combinatorial algorithms for DNA sequence assembly.

Algorithmica 13, 7-51 (1995). URL: https://doi.org/10.1007/BF01188580

Rayan Chikhi, Antoine Limasset and Paul Medvedev. Compacting de Bruijn graphs from

sequencing data quickly and in low memory. Bioinformatics 32(14), i201-i208 (2016).

URL: https://doi.org/10.1093/bioinformatics/btw279

Amatur Rahman and Paul Medvedev. Representation of k-Mer Sets Using Spectrum-

Preserving String Sets. Journal of Computational Biology 28(4), 381-394 (2021). URL:

https://doi.org/10.1089/cmb.2020.0431

Sebastian Schmidt and Jarno N. Alanko. Eulerigs: Minimum Plain Text Representation of

k-mer Sets Without Repetitions in Linear Time. Algorithms for Molecular Biology 18, 5

(2022). URL: https://doi.org/10.1186/s13015-023-00227-1

Sebastian Schmidt, Shahbaz Khan, Jarno N. Alanko, Giulio E. Pibiri and Alexandru I.

Tomescu. Matchtigs: minimum plain text representation of k-mer sets. Genome Biology

24, 136 (2023). URL: https://doi.org/10.1186/s13059-023-02968-z

https://doi.org/10.1145/179812.179818
https://doi.org/10.5195/jmla.2019.604
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1089/cmb.2020.0431

43

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-completeness. W. H. Freeman and Company, San Francisco (1979) URL:

https://doi.org/10.2307/2273574

John K. Gallant. String Compression Algorithms. Princeton University ProQuest

Dissertations Publishing (1982)

Jorma Tarhio and Esko Ukkonen. A greedy approximation algorithm for constructing

shortest common superstrings. Theoretical Computer Science 57(1), 131-145 (1988). URL:

https://doi.org/10.1016/0304-3975(88)90167-3

Matthias Englert, Nicolaos Matsakis and Pavel Veselý. Improved Approximation

Guarantees for Shortest Superstrings using Cycle Classification by Overlap to Length

Ratios. STOC 2022: Proceeding of the 54th Annual ACM SIGACT Symposium on Theory

of Computing, 313-330 (2022) URL: https://dl.acm.org/doi/10.1145/3519935.3520001

Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibliographic

search. Communications of the ACM 18(6), 333-340 (1975). URL:

https://doi.org/10.1145/360825.360855

Nicholas J. Croucher, Jonathan A. Finkelstein, Stephen I. Peloton, Julian Parkhill, Stephen

D. Bentley, Marc Lipsitch, William P. Hanage. Continued impact of pneumococcal

conjugate vaccine on carriage in young children. Scientific Data 2, 150058 (2009). URL:

https://doi.org/10.1542/peds.2008-3099

https://doi.org/10.2307/2273574
https://doi.org/10.1016/0304-3975(88)90167-3
https://dl.acm.org/doi/10.1145/3519935.3520001
https://doi.org/10.1145/360825.360855
https://doi.org/10.1542/peds.2008-3099

44

List of Figures

Figure 1.1: Representation of k-mer sets as unitigs

Figure 1.2: Representation of k-mer sets as simplitigs

Figure 1.3: Computations on a edge-centric de Bruijn graph with k = 5. Credits: Schmidt

et al. [2023]

Figure 2.1: Overlap graph constructed for the set of strings {“ACTG”, “AGCG”,

“AGCA”, “CAAC”, “TGCA”}

Figure 2.2: Aho-Corasick automaton constructed from the set of words {“AGTG”,

“TGCA”, “CAAC”, “AGAG”, “TCAC”} over alphabet {‘A’, ‘C’, ‘T’, ‘G’}

Figure 2.3: Maximum Hamiltonian Path and maximum Cycle cover on the overlap graph

constructed for the set of strings {“ACGT”, “CGTA”, “GTAC”, “CGTC”, “TACG”}

Figure 4.1: Length of the superstring depending on the value of k (range 8 - 20) for input

file: spneu.fa

Figure 4.2: Length of the superstring depending on the value of k (range 8 - 16) for input

file: spneumo_pangenome_k32.fa

Figure 4.3: Length of the superstrings produced by Simplitigs and TGreedy compared to

the size of k-mer set for the value of k (range 8 - 20) for input file: spneu.fa

Figure 4.4: Length of the superstrings produced by Simplitigs and TGreedy compared to

the size of k-mer set for the value of k (range 8 - 16) for input file:

spneumo_pangenome_k32.fa

Figure 4.5: Comparison of the peak memory usage of algorithms Simplitigs, Greedy_AC

and TGreedy for the value of k (range 8 - 20) and input file: spneu.fa

Figure 4.6: Comparison of the peak memory usage of algorithms Simplitigs, Greedy_AC

and TGreedy for the value of k (range 8 - 16) and input file: spneumo_pangenome_k32.fa

Figure 4.7: Comparison of the CPU times of the algorithms Simplitigs, Greedy_AC and

TGreedy for the value of k (range 8 - 20) and input file: spneu.fa

45

Figure 4.8: Comparison of the CPU times of the algorithms Simplitigs, Greedy_AC and

TGreedy for the value of k (range 8 - 16) and input file: spneumo_pangenome_k32.fa

46

Attachments

A.1. Tables

Table 1: Statistics with input file spneu.fa

Algorithm Value of

k

Size of k-mer

set

Length of

the

superstring

CPU time

(seconds)

Peak memory

Usage (bytes)

Greedy_AC 8 65 101 65 492 8.2687 625 738 179

TGreedy 8 65 101 65 540 9.1629 564 868 966

Simplitigs 8 65 101 67 047 4.9956 13 420 043

Greedy_AC 9 241 952 254 697 28.1152 370 194 312

TGreedy 9 241 952 254 735 31.2585 473 048 502

Simplitigs 9 241 952 294 672 6.1267 52 792 741

Greedy_AC 10 691 301 792 253 156.9808 830 039 225

TGreedy 10 691 301 788 604 166.3084 1 177 349 334

Simplitigs 10 691 301 1 163 036 8.4621 188 531 969

Greedy_AC 11 1 298 893 1 531 147 633.8519 2 953 198 228

TGreedy 11 1 298 893 1 523 832 637.1674 3 710 211 500

Simplitigs 11 1 298 893 2 489 283 10.9716 371 386 044

Greedy_AC 12 1 730 646 1 936 476 1533.3619 9 805 288 809

TGreedy 12 1 730 646 1 936 531 1604.7838 10 268 914 465

Simplitigs 12 1 730 646 2 893 027 11.7894 419 297 494

Greedy_AC 13 1 924 270 2 022 377 3240.7212 41 215 285 520

TGreedy 13 1 924 270 2 022 399 2851.7912 35 034 952 672

Simplitigs 13 1 924 270 2 561 158 12.1327 420 272 070

Greedy_AC 14 1 992 657 2 031 124 4563.3255 211 667 754 256

TGreedy 14 1 992 657 2 031 216 6524.4649 130 836 837 056

Simplitigs 14 1 992 657 2 257 428 11.6134 416 730 651

Greedy_AC 15 2 015 184 2 033 199 6510.0183 172 978 902 720

TGreedy 15 2 015 184 2 033 252 8643.1956 106 415 807 488

Simplitigs 15 2 015 184 2 118 546 11.6958 416 180 612

Greedy_AC 16 2 022 978 2 035 007 9230.1749 110 185 613 671

TGreedy 16 2 022 978 2 035 136 9501.2766 93 932 449 637

Simplitigs 16 2 022 978 2 069 898 11.43 417 414 781

Greedy_AC 17 2 026 270 2 036 704 14351.0917 56 454 825 859

TGreedy 17 2 026 270 2 036 705 11631.8929 50 971 406 905

Simplitigs 17 2 026 270 2 054 638 11.9504 419 305 768

Greedy_AC 18 2 028 150 2 038 007 12000.3824 91 927 318 049

TGreedy 18 2 028 150 2 038 064 12953.3803 84 909 974 737

Simplitigs 18 2 028 150 2 050 012 11.6892 421 393 180

Greedy_AC 19 2 029 518 2 039 346 13386.5356 110 559 276 774

TGreedy 19 2 029 518 2 039 300 17102.1678 89 722 050 795

Simplitigs 19 2 029 518 2 049 372 12.1888 423 547 454

Greedy_AC 20 2 030 690 2 040 482 17735.5472 107 958 105 268

47

TGreedy 20 2 030 690 2 040 530 21469.5592 80 972 807 392

Simplitigs 20 2 030 690 2 050 051 12.0138 425 724 904

Table 2: Statistics with input file spneumo_pangenome_k32.fa

Algorithm Value of

k

Size of k-mer

set

Length of

the

superstring

CPU time

(seconds)

Peak memory

Usage (bytes)

Greedy_AC 8 65 524 65 555 35.1701 2 167 100 065

TGreedy 8 65 524 65 616 36.3618 713 810 177

Simplitigs 8 65 524 65 755 32.4817 13 355 369

Greedy_AC 9 259 766 261 818 59.7714 1 955 334 281

TGreedy 9 259 766 261 875 61.1041 2 696 458 055

Simplitigs 9 259 766 269 982 33.2014 52 346 187

Greedy_AC 10 951 599 1 007 618 282.6751 1 695 916 916

TGreedy 10 951 599 1 007 692 297.6461 2 070 124 457

Simplitigs 10 951 599 1 213 103 37.0353 211 362 029

Greedy_AC 11 2 676 289 3 080 939 3755.7631 3 792 562 395

TGreedy 11 2 676 289 3 080 973 3312.6641 5 274 811 139

Simplitigs 11 2 676 289 4 747 579 44.7824 752 321 723

Greedy_AC 12 5 071 523 6 052 626 37802.0556 10 649 279 459

TGreedy 12 5 071 523 6 051 860 31889.2313 14 122 529 140

Simplitigs 12 5 071 523 10 388 417 55.8926 1 497 772 976

Greedy_AC 13 6 920 055 8 094 843 110664.8328 22 249 560 675

TGreedy 13 6 920 055 8 094 959 113081.1121 26 217 431 620

Simplitigs 13 6 920 055 13 118 439 62.1614 1 744 354 666

Greedy_AC 14 7 887 260 8 942 835 142573.3565 45 797 478 998

TGreedy 14 7 887 260 8 943 181 141629.6616 48 873 120 053

Simplitigs 14 7 887 260 12 691 644 67.6975 1 791 469 801

Greedy_AC 15 8 333 095 9 329 011 207276.1448 63 506 119 825

TGreedy 15 8 333 095 9 329 553 288553.7533 71 812 237 757

Simplitigs 15 8 333 095 11 807 727 62.7245 1 799 140 192

Greedy_AC 16 8 564 842 9 627 117 264684.5564 80 049 312 702

TGreedy 16 8 564 842 9 627 848 371183.2081 87 872 452 062

Simplitigs 16 8 564 842 11 595 907 61.7706 2 088 194 999

48

A.2. Technical Documentation

A.2.1. MAIN Modules

main.py1

This module executes different algorithms based on the command-line arguments provided.

Input: input Fasta file and arguments.

Output: superstring and its mask.

Algorithm:

1. Check if there is any algorithm chosen. If no algorithm then message Error and

exit code 0.

2. Load the Fasta file into the set of kmers arr using load function.

3. Run the chosen algorithm on the set arr.

a. If simplitigs (argument -s / --simplitig) then get the superSet using

compute_simplitig function and then merge the strings from the set into

the superstring superStr.

b. If Greedy_Aho-Corasick (argument -a / --aho-corasick) then get the

superSet using FindSuperSet function and then merge the strings from

the set into the superstring superStr.

c. If Tgreedy (argument -t / --tgreedy) then get the superSet using

FindSuperSetTgreedy function and then merge the strings from the set

into the superstring superStr.

4. Check if the binary mask is chosen (argument -b / --bitstring_mask). Apply the

mask accordingly.

5. Check if the output file is chosen (argument -o OUTPUT / --output OUTPUT).

Store the output superStr and its mask accordingly.

6. Check if testing is chosen (argument -T / --test). Run testAll if test is required.

7. Check if a statistic is chosen (argument -S STATS / --stats STATS). Run

outputStats if statistics is required.

Load_fasta.py2

This module is used for loading data from a FASTA file format.

Contains one function def load (k, fileName):

1 https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/main.py

2 https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/Load_fasta.py

https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/main.py
https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/Load_fasta.py

49

Input: parsed integer k; fileName – input fasta file.

Output: a set of kmers.

Purpose: read sequences from a FASTA file and extract all unique substrings of a specified

length from those sequences.

Algorithm:

1. Parse the file specified by the fileName parameter using SeqIO.parse method

provided by the Biopython package library.

2. Loop over each record of sequence obtained from the file and over each kmer

in the record.

a. Add kmer into the set arr.

3. Resulting set is returned, containing all the unique kmers present in the records

read from the file.

mask.py3

This module is responsible for generating a mask, which describes each nucleotide’s

location within the output superstring. The masks generated are useful for determining the

location of the original kmers in the superstring.

Contains of two functions with the same input:

● Kset – set of strings (kmers obtained by Load_fasta.py)

● str1 – superstring

I. def findMask(Kset, str1, k)

Output: string str1, where all occurrences of kmers are found and uppercase.

Purpose: replace all occurrences of substrings in Kset that have length k with

uppercase letters in str1.

Algorithm:

1. Convert the input string str1 into a list named l1 in order to each

character of the string to be accessed and transformed later.

2. Loop over characters in the l1 (iterates through a range starting at 0 and

ending at the (len(l1) – k +1) to ensure that the loop considers every

substring of length k in the string.)

3 https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/mask.py

https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/mask.py

50

a. Select a substring of length k from l1 starting at index i.

b. If substring is in set Kset, then replaces the character at index i

in l1 with its lowercase version.

3. Once all the required characters have been transformed in the l1 list, this

list is mapped back into a string StrMask, where uppercase characters

have been replaced by lowercase characters if they occurred in any of

the substrings present in the set Kset.

4. Create a new copy of the string where all the cases are swapped. This

new string is returned as the output of the function.

 II. def findMaskBinary (Kset, str1, k)

Output: string str1, where all occurrences of kmers are found and stored in binary

mask.

Purpose: construct a binary mask from the input string str1, where each digit of the

mask represents the presence or absence of a substring of length k from str1 in the

set Kset.

Algorithm:

1. Initialize variables l1 as an empty list to hold the generated binary mask.

2. Loop over each character in the string str1.

a. Substring of length k is created by slicing the original string str1

and storing it in the variable substr.

b. If the substring substr is found in the set Kset, then the

corresponding value in the l1 list at position i is set as '1',

otherwise '0'.

Once all the iterations are completed, the elements of the l1 list is joined together as a string

and stored in the variable StrMask, which is the output of the function.

testStr.py4

This module is responsible for testing the correctness of the generated superstring with

respect to the given kmer set.

Contains four functions with the similar input.

Input:

4 https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/testStr.py

51

● st – a string, generated superstring

● lst – a list of kmers

● k – an integer representing the length of kmers

● bn – a string representing the binary mask (an unpacking operator in the function

testAll)

I. def allKmers (st, lst)

Purpose: check if all the kmers in a list are in a given string.

Algorithm:

1. Create an empty dictionary, lst_dict.

2. Initialize each kmer from the lst with value False in the lst_dict

dictionary.

3. Loop over each kmer in the input string.

a. Check if it exists as a key in the lst_dict. If it does, it sets the

value of the corresponding key as True.

4. Check if all the values of keys in the dictionary lst_dict are True using

all() method.

5. If all the kmers from lst were found in the st then the test is passed.

Otherwise, print missing kmers from lst that were not found in st.

II. def noDifferentStr (st, lst, k)

Purpose: check if there are no false kmers in the superstring.

Algorithm:

1. Convert all items in lst to a set for efficiency.

2. Initialize a boolean variable checker to True.

3. Loop over each character in the input string st.

a. If the current index plus k doesn't go beyond the end of the string

and if the current character is uppercase: creates a substring

consisting of the characters starting from the current index of

length k.

i. If this kmer is not found in the set formed by lst: print a

message indicating that there's a false k-mer at the

current index and change the value of checker to False.

4. If all kmers are present in lst, print a message indicating that there are

no false kmers.

52

III. def applyMask (st, bn)

Purpose: apply binary mask on the superstring and return the superstring with

Case_Sensitive mask.

Algorithm:

1. Create an empty string variable named new_st to store the modified

string.

2. Loop over each character in the original string.

a. Check if the corresponding binary digit for the character is 0 or

1.

b. If the binary digit is 0, then the corresponding character in the

original string needs to be changed to lowercase. Add to the

new_st.

c. If the binary digit is 1, the corresponding character in the original

string should be left untouched. Add to the new_st.

3. After looping through all characters, return the modified string variable

new_st.

IV. def testAll (st, lst, k, *bn)

Idea: combine all other test functions together.

Algorithm:

1. Check if parameter bn (binary mask) is present. If present then call for

applyMask(st, bn[0]).

2. Call two other functions allKMers and noDifferentStr.

Statistics.py5

This module is responsible for creation of the csv file with written statistics.

Contains one function.

def outputStats (file_name, input_name, output_name, mask, algo, k, kmers_len,

superStr_len, tm, memory)

Input:

5 https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/Statistics.py

53

● file_name – a string containing the name of the file to be created

● input_name – a string containing the name of the input file

● output_name – a string containing the name of the output file (or stdout if no

file name)

● mask – a string representing the type of the mask used (Case_Sensitive or

Binary)

● algo – a string representing the algorithm used

● k – an integer representing the length of kmers used

● kmers_len – an integer representing the length of the kmer set

● superStr_len – an integer representing the length of the superstring

● tm – a float representing the CPU time taken for execution

● tm1 – a float representing the wall-clock time taken for execution

● memory – a the maximum (peak) memory used by the algorithm during its

execution

Output: csv file.

Purpose: store statistics into the csv file.

Algorithm:

1. Create headers for columns in the csv file.

2. Create a list of data to write in the corresponding column.

3. Open file_name file in write mode with “UTF8” encoding.

4. Create csv.writer() object and write header and data into the 1st and 2nd rows

respectively.

A.2.2. HELPER Modules

Automaton_Class.py6

This module contains the implementation of the Aho-Corasick automaton for efficient

search for multiple patterns in a string.

The class is used to construct the Aho-Corasick automaton (trie).

Constructor takes as input kmers – list of strings (kmers), patterns to be searched. Then it

initializes two dictionaries goto and fail, where goto stores the edges of the trie and fail

stores the fail links.

6 https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/Automaton_Class.py

54

I. def isLeaf (self, state)

Input: state – an integer

Output: Boolean variable

Purpose: Helper function to check if a state is a leaf in a trie

Algorithm:

1. Check if there are any outgoing edges from the state.

2. Return the result.

II. def goto_function (self)

Output: Constructed automaton.

Purpose: Build Aho-Corasick automaton and create transitions between states based

on the input kmers.

Algorithm:

1. Initialize a variable new_state equal to 0.

2. Loop through each kmer in self. kmers.

a. Initialize variable state to 0.

b. Loop over each character in kmer.

i. Check if the current state (state) has an outgoing transition for

the current character char. If no such transition then break the

loop.

ii. If there is such a transition (key (state, char) exists in goto), then

update the state to the obtained value.

c. Loop over characters on the kmer (This loop is in case if only some

characters (or none) were transitioned through until the exit of the loop

b.)

i. Create new_state indexes by new_state + 1.

ii. Make a transition between state and new_state.

iii. Set state to be new_state.

III. def fail_function (self)

Output: Constructed fail links.

55

Purpose: Compute fail transitions between states based on goto transitions.

Algorithm:

1. Initialize empty list queue.

2. Loop over each character in the list ["A", "C", "T", "G].

a. Add to queue all states that have ongoing edges with char and have root

(state 0) as parent.

b. Add such states to the fail dictionary with corresponding fail value set

to zero.

3. Enter while loop until the queue list is empty.

a. Remove the first element of the queue and store in a variable

queue_state.

b. Loop over each character in the list ["A", "C", "T", "G].

i. Obtain value corresponding to the key (queue_state, char) in the

goto. Move to the next character if the result is -1 (does not

exist).

ii. Add value to the end of the queue.

iii. Construct the fail transition from queue_state to current state.

iv. Enter while loop.

1. Obtain value corresponding to the key (state, char) in the

goto. If the result res is not equal to -1 (value exists) then

break the loop.

2. Add self-fail for the current state.

v. Set the fail value of the destination state to the value, which

represents the longest proper suffix of the input that ends at this

state.

string_functions.py7

This module contains overlap functions required by the Helper_Function_AC.py.

Contains two functions with the same input: two strings str1 and str2.

I. def overlap (str1, str2)

Usage: Helper_Function_AC.addtoSet(); betterOverlap()

Output: overlap of two strings.

Purpose: Store overlap as tuple (prefix of str1, overlap segment, suffix of str2, length

of overlap).

7 https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/string_functions.py

https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/string_functions.py

56

Algorithm:

1. Initialize the maxOverlap to a very small negative number.

2. Calculate length len1 and len 2 for the str1 and str 2 respectively.

3. Initializes fix_i to 0, which stores the value of i when the maximum overlap

occurs.

4. Loop over all possible values in range from minimum of two length +1 down to

1. Starting from the end in order to find the longest common suffix and prefix

between str1 and str2.

a. Extract substring subStr1, which represents the last i characters of str1.

b. Extract substring subStr2, which represents the first i characters of str2.

c. If subStr1 and subStr2 are the same strings and i is greater than

maxOverlap then:

i. Update maxOverlap with i (new overlap is found).

ii. Assign overlapStr with subStr1.

iii. Assign fix_i with value i.

5. Based on the fixing point fix_i, the function returns three parts of the strings str1

and str2: the part of str1 that is not overlapping with str2, the overlapping string,

and the part of str2 that is not overlapping with str1. The returned value also

includes the value of the maximum overlap. If no overlap is found, the function

returns an empty string for the first and third elements of the returned list, str1

concatenated with str2 as the second element of the list and a zero for the fourth

element of the list.

II. def betterOverlap (str1, str2)

Output: overlap of two strings.

Purpose: Return the result of comparing between two overlaps.

Algorithm:

1. Call overlap (str1, str2) and store the result to resStr1.

2. Call overlap (str2, str1) and store the result to resStr2.

3. Compare the fourth element (size of the overlap) of resStr1 and resStr2

and return the larger result.

57

Helper_Functions_AC.py8

This module contains helper functions required by the Greedy_AC algorithm and Tgreedy

algorithm implementations.

Consists of five functions.

I. def addMultipleValues (dict, key, value)

Usage: Greedy_AC.preprocessing(); Greedy_AC.Hamiltonian();

tgreedy.HamiltonianT()

Input: Dictionary dict, key and value.

Output: Dictionary dict with value added to the list associated with the given key.

Purpose: store multiple values with one key in the dictionary.

Algorithm:

1. Check if the given key exists in dict. If it does not exist, then an empty list is

associated with the given key.

2. Check if the given value is a list. If it is then append each value into the list

associated with the given key.

3. Else append the single value into the list with the given key.

4. Return the dictionary with the changes.

II. def findSingle (H, n)

Usage: Greedy_AC.FindSuperSet(); tgreedy.FindSuperSetTgreedy()

Input:

● H – a dictionary representing Hamiltonian Path (state: state)

● n – an integer representing number of states (kmers)

Output: list of states.

Purpose: Get list of states that have only one (indegree 0) or none (self-overlap)

neighboring state.

Algorithm:

8 https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/Helper_Functions_AC.py

https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/Helper_Functions_AC.py

58

1. Create a list of all states (keys).

2. Create a set of values from dictionary H.

3. Iterate through keys and add into the output list those states for which we have

not found in values.

4. Return the output list.

III. def initializeForbidden (dict, n)

Usage: Greedy_AC.Hamiltonian(); tgreedy.HamiltonianT()

Input:

● dict – a dictionary

● n – an integer representing number of keys

Output: dict with False as value for each key.

Purpose: Initialize dictionary with boolean value False for all n keys.

Algorithm:

1. Loop in range n and for each iteration assign a key with value False to the

dictionary.

2. Return dictionary.

IV. def removeFromDict (dict, state, i)

Usage: tgreedy.HamiltonianT()

Input:

● dict – a dictionary

● state – an integer representing key

● i – an integer representing value

Output: dict without value i in state list.

Idea: Remove a value from the list associated with the key.

Algorithm:

1. Get the value helper_list in dict associated with the key.

2. Remove value i from the helper_list.

59

3. Store updated helper_list as value for state in dict.

4. Return dictionary dict.

V. def addtoSet (kmer_lst, single_lst, H, outputSet)

Usage: Greedy_AC.FindSuperSet (); tgreedy.FindSuperSetTgreedy()

Input:

● kmer_lst – a list of strings (kmers)

● single_lst – a list of integers representing indices from the kmer_lst (obtained

by (II))

● H – a dictionary representing Hamiltonian Path (state: state)

● outputSet – an empty set that will be used to store output

Output: outputSet with unique sequences.

Purpose: Find all unique strings that can be formed by overlapping input kmers.

Algorithm:

1. Loop over indices x in single_lst.

a. Assign x to be key.

b. Initialize variable sStr with the corresponding kmer in kmer_lst.

c. Enter while loop.

i. If H contains a value for the current key, then

1. Get value for a current key.

2. Compute overlap between two kmers under indices key

and value using overlap function.

3. Update the string sStr to be the concatenation of the

prefix of the first kmer, the overlapping segment, and the

suffix of the second kmer.

4. Replace the kmer at the value index in kmer_lst with sStr.

5. Reassign key to the value.

ii. Else (If H does not contain a value for the current key):

1. Add sStr string to the outputSet.

2. Exit the loop.

2. Return outputSet.

60

A.2.3. ALGORITHM Modules

simplitig.py9

This module implements the Simplitigs algorithm and provides an efficient way for

optimizing complexity in the analysis of genome sequence data.

Consists of four functions with similar input:

● K - set of k-mers

● simpling - a string representing a simple path in a directed de Bruijn graph

● k - an integer representing the length of k-mers

I. def extend_simplitig_forwards (K, simpling, k)

Output: Updated set K and extended string simpling.

Purpose: extend the given simpling forwards until it reaches an end or can no longer

be extended.

Algorithm:

1. Extend while can:

a. Take the last k-1 characters of simpling and append each A, C, G, T

character to it to create a new kmer.

b. If new kmer is in set K, then extend simpling to include character and

remove kmer from the set K (to ensure that all unique k-mers are used

before a repeat cycle starts).

c. Break while loop when can not find any more k-mers that match the

criteria.

2. Return two values set K and simpling.

II. def extend_simplitig_backwards (K, simpling, k)

Output: Updated set K and extended string simpling.

Purpose: extend the given simpling backwards until it reaches an end or can no longer

be extended.

Algorithm:

1. Extend while can:

9 https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/simplitig.py

https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/simplitig.py

61

a. Take the first k-1 characters of simpling and append each A, C, G, T

character to its beginning to create a new kmer.

b. If new kmer is in set K, then extend simpling to include character and

remove kmer from the set K (to ensure that all unique kmers are used

before a repeat cycle starts).

c. Break while loop when can not find any more kmers that match the

criteria.

2. Return two values set K and simpling.

III. def compute_maximum_simplitig_from_kmer (K, seeding_kmer, k)

 Input: seeding_kmer - a string, representing initial starting kmers

Output: Updated set K and extended string simpling.

Purpose: store multiple values with one key in the dictionary.

Algorithm:

1. Set simpling to be seeding_kmer.

2. Apply extend_simplitig_forwards and extend_simplitig_backwards methods to

generate maximum string simpling that covers the entire sequence in set K.

3. Return two values set K and simpling.

IV. def compute_simplitig (K, k)

Output: List containing all the maximum simplitigs.

Purpose: identify all the longest contiguous segments of the de Bruijn graph for a given

k and K.

Algorithm:

1. Initialize an empty list maximal_simplings.

2. Enter while loop until the length of the set K is greater than 0.

a. Assign element from the top of the set to seeding_kmer. Remove

elements from the set K.

b. Call compute_maximum_simplitig_from_kmer with input parameters:

K, seeding_kmer, k.

c. Append the result to the maximal_simplings list.

3. Return the maximal_simplings list.

62

Greedy_AC.py10

This module is used for construction of superstrings by using the Greedy algorithm with

an Aho-Corasick automaton.

Consists of four functions:

I. def preprocessing (kmers, automaton)

 Input:

● kmers - set of strings (kmers)

● automaton - AC machine

Output:

● list_L - a dictionary where the keys are the states of the AC machine and the

values are lists of indices of the kmers that pass through that state.

● link_B - a dictionary where the keys are the states of the AC machine and the

values are the states of the suffix link of the state.

● pointer_B - the state of the AC machine corresponding to the root of the suffix

tree.

● state_F - a dictionary where the keys are the indices of the kmers and the values

are the states of AC machine where kmer ends.

● depth - a dictionary where the keys are the states of the AC machine and the

values are the depths of those states in the suffix tree.

Purpose:Preprocess the set of kmers in other data structures that will ne used in

Hamiltonian path algorithm.

Algorithm:

1. Initialize empty dictionaries: lisl_L (to store multiple values with one key),

state_F (to store a finite state for each word), inverse_E (to create an inverse list

of state_F), depth(distance from starting state to the current state) and link_B

(for father generation of Hamiltonian path).

2. Loop over each kmer in the set kmers.

a. Set the current state to zero.

b. Transite to the next state using the goto automaton function.

c. Add obtained value to the list_L corresponding to the new state

containing the index of the current kmer.

10 https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/Greedy_AC.py

https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/Greedy_AC.py

63

d. If the current character is the last character of the current kmer, its finite

state is updated to the current state,. and the corresponding inverse value

of the finite state is also updated with the current kmer.

i. If the current state is not a leaf, then update its finite state to zero

(there will be no suffix string from this state).

3. Apply BFS (Breadth-first search) on the AC machine. Traverse all the states,

adding the depth and linked list B.

4. Return the preprocessed data structures such as list_L, link_B, pointer_B, and

state_F.

II. def Hamiltonian (list_L, link_B, pointer_B, state_F, automaton, n)

 Input:

● Data structures obtained by the preprocessing function

● automaton - AC machine

● n - an integer, representing number of kmers

Output: Dictionary H, representing constructed Hamiltonian path.

Purpose: Find Hamiltonian cycles in a directed graph using Aho-Corasick automaton.

Algorithm:

1. Initialize a dictionaries list_P (to store where each failed state of the nodes AC

machine corresponds to a list of indexes of failed words this state represents),

dictionary forbidden (to store where each index of the word in the input set

corresponds to a boolean value representing whether the word is a subword of

some other word), dictionary first (to store each prefix string corresponds to a

state in the AC machine), dictionary last (to store each suffix string), dictionary

H (will be used for merge operations).

2. Set all values of forbidden dictionary to be False using initializeForbidden.

3. Loop over each kmer in the set and add it to the list_P and change the forbidden

value for the word according to their fail state (forbidden set to True if the kmer

is the substring and therefore its fail is not to state 0).

4. Set the current state as pointer_B.

5. Enter while loop until current state is not 0 (root).

a. If the current state has a non-empty value in list_P. If it does then:

i. Go through all of the values until find the one element from

which the cycle could start (kmer is not a subword and has value

False in forbidden).

1. Add such element to H.

2. Set forbidden for such element to be True.

64

3. Remove element from list_P.

4. Update dictionaries first and last to reflect the new set of

kmers.

5. If list_P does not contain any elements then break the

loop.

ii. Adds multiple values to the list_P dictionary, assigning the

second argument of that function call to the key located at

automaton.fail[state].

b. Update state to value in link_B corresponding to the key state.

6. Return H, which contains a Hamiltonian path in the graph.

III. def initialization (a)

 Input: a - a list, representing set of kmers

Output: dictionary H, containing Hamiltonian path.

Purpose: Creates automaton A and constructs the Hamiltonian path.

Algorithm:

1. Create AC machine A.

2. Call preprocessing function with parameters a (list of kmers) and A (AC

machine) to obtain parameters.

3. Return the result of Hamiltonian function with obtained parameters.

IV. def FindSuperSet (kmer_set)

 Input: kmer_set - a set of kmers

Output: set of superstrings.

Purpose: find the set of superstrings with zero overlap between each other.

Algorithm:

1. Convert the kmer_set into the list lst.

2. Initialize empty set outputSet.

3. Run initialization with input lst to obtain dictionary H of the Hamiltonian path.

4. Call findSingle to obtain single_list - list of states with indegree 0.

5. Call addtoSet with input lst, single_list, H and outputSet.

6. Return the outputSet.

65

tgreedy.py11

This module is used for construction of superstring by using the Tgreedy algorithm with

an Aho-Corasick automaton.

Consists of three functions:

I. def HamiltonianT (list_L, link_B, pointer_B, state_F, automaton, n)

 Input:

● list_L - a dictionary where the keys are the states of the AC machine and the

values are lists of indices of the kmers that pass through that state

● link_B - a dictionary where the keys are the states of the AC machine and the

values are the states of the suffix link of the state

● pointer_B - the state of the AC machine corresponding to the root of the suffix

tree

● state_F - a dictionary where the keys are the indices of the kmers and the values

are the states of AC machine where kmer ends

● depth - a dictionary where the keys are the states of the AC machine and the

values are the depths of those states in the suffix tree

● automaton - AC machine

● n - an integer, representing number of kmers

Output: Dictionary H, representing constructed Hamiltonian path.

Purpose: Find Hamiltonian cycles in a directed graph using Aho-Corasick automaton.

Algorithm:

1. Initialize a dictionaries list_P (to store where each failed state of the nodes AC

machine corresponds to a list of indexes of failed words this state represents),

dictionary forbidden (to store where each index of the word in the input set

corresponds to a boolean value representing whether the word is a subword of

some other word), dictionary first (to store each prefix string corresponds to a

state in the AC machine), dictionary last (to store each suffix string), dictionary

H (will be used for merge operations).

2. Set all values of the forbidden dictionary to be False using initializeForbidden.

3. Loop over each kmer in the set and add it to the list_P and change the forbidden

value for the word according to their fail state (forbidden set to True if the kmer

is the substring and therefore its fail is not to state 0).

4. Set the current state as pointer_B.

5. Enter while loop until current state is not 0 (root).

11 https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/tgreedy.py

https://github.com/Ekatmil/Efficient-representation-of-k-mers-sets/blob/8f2d5ce215194bf419bfbcf7bb770758e5c4db0d/tgreedy.py

66

a. If the current state has a non-empty value in list_P. If it does then:

i. Retrieve the list of words associated with the current state from

listy_L dictionary.

ii. Iterate over the list of words and perform the following checks:

1. Verify if the word j is not forbidden (i.e., it is not a

subword).

2. If the word j is not forbidden, continue with the following

steps:

a. Check if the first[i], where i is first element in the

list_P[state], is equal to j. If they are equal,

remove i from list_P and mark j as forbidden.

This step avoids adding unnecessary overlaps to

the superstring.

b. If the first[i] is not equal to j, add the pair (i, j) to

the H dictionary, indicating an overlap between

the words.

c. Update the forbidden status of word j to True,

signifying that it is now forbidden.

d. Update the first and last dictionaries to reflect the

new positions of the words.

e. Remove the word i from list_P[state].

iii. Update the list_P dictionary by adding the current list_P[state]

to the fail state of the current state.

b. Update state to value in link_B corresponding to the key state.

6. Return H, which contains a Hamiltonian path in the graph.

II. def initialization (a)

 Input: a - a list, representing set of kmers

Output: dictionary H, containing Hamiltonian path

Purpose: Creates automaton A and construct the Hamiltonian path

Algorithm:

1. Create AC machine A.

2. Call preprocessing function (import from Greedy_AC) with parameters a (list

of kmers) and A (AC machine) to obtain parameters.

3. Return the result of HamiltonianT function with obtained parameters.

67

III. def FindSuperSetTgreedy (kmer_set)

 Input: kmer_set - a set of kmers

Output: set of superstrings.

Purpose: find the set of superstrings with zero overlap between each other.

Algorithm:

1. Convert the kmer_set into the list lst.

2. Initialize empty set outputSet.

3. Run initialization with input lst to obtain dictionary H of the Hamiltonian path.

4. Call findSingle to obtain single_list - list of states with indegree 0.

5. Call addtoSet with input lst, single_list, H and outputSet.

6. Run function FindSuperSet of Greedy_AC on outputSet to produce

outputSet_final

7. Return outputSet_final.

