
BACHELOR THESIS

Michal Pácal

Object Usage Analyser for TypeScript

Department of Software Engineering

Supervisor of the bachelor thesis: Mgr. Ing. Robert Husák

Study programme: Computer Science

Study branch: Programming and software
development

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I want to thank my supervisor for the time spent helping and supporting me
during the work on this thesis.

iii

iv

Title: Object Usage Analyser for TypeScript

Author: Michal Pácal

Department: Department of Software Engineering

Supervisor: Mgr. Ing. Robert Husák, Department of Software Engineering

Abstract: During a programming change task, developers often need to understand
where a certain variable or object is referenced and how it is used in order to
implement the change.

For languages TypeScript and JavaScript the only available tools to find these
points of interest are tools to find variable and property references and to display
a call tree. These tools, however, start losing viability in larger codebases, where
they can return hundreds or even thousands of results sorted only by the source
file names.

In this thesis, we have developed an extension for Visual Studio Code that finds
these references and categorise them into groups based on usage. It can also
perform similar analysis on call arguments based on the position of the argument.
We evaluated our solution and showcased it in several real-world use cases.

Keywords: Static analysis, TypeScript, Visual Studio Code

v

vi

Contents

1 Introduction 5
1.1 Visual Studio Code . 5
1.2 Existing solutions . 6
1.3 The goal of this thesis . 7
1.4 The structure of this thesis . 8

2 JavaScript Ecosystem 9
2.1 Brief introduction . 9
2.2 Specification . 9
2.3 Implementations . 10
2.4 Libraries . 11
2.5 Transpilers and Packagers . 11
2.6 Flavours . 12

3 ECMAScript 13
3.1 Brief history . 13
3.2 Brief language overview . 14

3.2.1 Strict mode . 14
3.2.2 Value types . 15
3.2.3 Variables . 16
3.2.4 Functions . 17
3.2.5 The ‘this’ value . 18
3.2.6 Prototypes . 19
3.2.7 Classes . 19
3.2.8 Environment . 20
3.2.9 Modules . 20

3.3 Interpreter . 20
3.3.1 Static semantics . 20
3.3.2 Execution . 22

1

4 TypeScript 25
4.1 Introduction . 25
4.2 TypeScript in the context of the JavaScript ecosystem 26
4.3 TypeScript language . 26
4.4 TypeScript compilers . 27
4.5 TypeScript in VSCode . 28
4.6 TypeScript compiler API . 28
4.7 Inner workings of the TypeScript compiler 29

5 Design 31
5.1 Scope . 31

5.1.1 Syntax support . 31
5.1.2 Environment support . 32
5.1.3 Accuracy vs Performance 32
5.1.4 Alias resolution . 32

5.2 Problem analysis . 33
5.3 Finding the scope for the analysis 34

5.3.1 Specifying the files manually 34
5.3.2 Scanning for files . 34
5.3.3 Using compilation settings 35
5.3.4 Solutions of existing tools 36
5.3.5 Solution . 36

5.4 Parsing the source file . 36
5.4.1 Custom solution viability 36
5.4.2 Existing parsers . 37
5.4.3 Solution . 38

5.5 Semantic identifier resolution 38
5.6 Detecting operations performed on symbols 39
5.7 Detecting operations performed on call arguments 42

6 Analyser implementation 43
6.1 Architecture . 43
6.2 Project resolution . 44
6.3 Selecting files to analyse . 44
6.4 Analysing a syntax tree . 45

6.4.1 Experiment: Passing the necessary data from parrents to
descendants . 46

6.4.2 Experiment: Passing the necessary data from descendants
to parents . 47

6.4.3 The final solution . 47
6.5 Function interactions analysis 48

2

6.5.1 Arguments . 49
6.6 Syntax support . 49

6.6.1 Syntax important to our analysis 50
6.6.2 Popularly used syntax 50
6.6.3 Other supported syntax 50
6.6.4 Default analysis behaviour 50
6.6.5 Intentionally unsupported syntax 51

6.7 Testing . 51

7 User interface 53
7.1 Integrating into Visual Studio Code 53
7.2 Example code for this section . 53
7.3 Interfaces of similar tools . 53
7.4 Request interface . 55

7.4.1 Implementation of symbol selection 56
7.5 Result interface . 57

7.5.1 Lazy generation of nodes 57
7.5.2 Visible names for symbols 58
7.5.3 Displaying actions . 58

8 Evaluation 59
8.1 Requirements to use . 59
8.2 Example uses on real projects 59

8.2.1 Finding code that sets node flags in the TypeScript compiler 59
8.2.2 Overview of large function’s interactions in Webpack code 60

8.3 Experiment: Testing on popular repositories 62
8.3.1 Results of the scan . 63
8.3.2 Coverage . 64

Conclusion 65

Bibliography 67

A Using the extension 71

B Repository scanning experiment 79

C Digital attachments summary 81

3

4

Chapter 1

Introduction

During programming, developers often need to understand and navigate existing
code. When modifying existing code they also often need to find places that use
or modify a variable or how is its value passed throughout the program. This
leads to questions such as “Where is this method called or type referenced?”,
“Where are instances of this class created?”, or “What data is being modified in
this code?”. [1]

Modern development environments provide many tools and overviews to
find occurrences of a variable or a property, [1] but those tools are usually don’t
provide any context or categorisation of the occurrences. Example of this are
tools like ‘Find All References’, or a simple text search. This can reduce the
usefulness of these tools in larger projects, where they can return hundreds or
even thousands of results that the programmer needs to go through manually.

In this thesis, we will focus on this problem in the context of the programming
language TypeScript. [2] The most popular editor for this language is Visual
Studio Code. As both are created by Microsoft, the team creating it and the team
behind the TypeScript compiler closely cooperate, giving it an edge over other
editors.

1.1 Visual Studio Code
Visual Studio Code1 is a modular IDE developed by Microsoft, designed to be
easily extensible to work with many programming languages. [3] It is also the
most used integrated development environment according to respondents to the
Stack Overflow developer survey. Over 74% of respondents answered that it is
one of their preferred IDEs. [4]

1Visual Studio Code is commonly abbreviated VSCode; it is not to be confused with the older
independent project Visual Studio

5

While the Visual Studio Code contains some proprietary code, the majority of
it is open source in the Visual Studio Code – Open Source ("Code – OSS") project. [5]
The editor itself is mostly written in TypeScript using the Electron framework2.

One of the defining features of VSCode is that it isn’t tailored to be used with
a specific language; instead language support is completely provided through
extensions, some of which are built-in. [6] VSCode implements this using Lan-
guage Server Protocol (LSP for short), which defines a protocol for editors to
communicate with ‘Language Servers’, to provide language support for all editors
supporting it at the same time, instead of requiring implementation for each pair
individually. [7] This, however, limits the capabilities of the language servers to
those defined by the Language Server Protocol. While the LSP continuously adds
more features, the standardisation is slow and without a consistent release cycle.
This evident from the LSP changelog. [7]

Another important feature of VSCode is the ability to extend its functionality
using its Extension API. [6] This API provides high flexibility, allowing for the
implementation of a wide variety of features in the editor, including completely
custom views. Extension API is the approach our tool will use for interacting
with the editor.

1.2 Existing solutions
The Language Server Protocol provides API to: [7]

• Navigate to Declaration/Definition/Type Definition/Implementation; these,
however, doesn’t help with understanding how a specific variable or object
is used elsewhere.

• Find References, which is useful, but the result of this operation is only
defined as a list of locations (a pair of a document path and a text range
inside the document) – it doesn’t offer any semantic information, which
can lead to hundreds or thousands of results that a programmer would have
to go through manually, making it badly suited for larger projects. [1]

• Show call hierarchy (incoming and outgoing calls), which only works with
functions and doesn’t provide any information on the implementation of
the mentioned functions. In VSCode’s implementation, the only shown
information about incoming/outgoing calls is the name of the function and
in case of a method the name of the containing class, which makes it hard
to pinpoint the origin of said function without navigating to the code itself.

2https://github.com/electron/electron

6

https://github.com/electron/electron

It also doesn’t work for class constructors, where calls from child classes
are ignored.

• Show type hierarchy, which doesn’t work for TypeScript classes.

There are attempts to extend these features, but there is little activity on those
proposals or suggestions3.

Visual Studio Code has TypeScript support through an in-built extension, but
it doesn’t add many features above the scope of the Language Server Protocol,
with the only notable feature for our purposes being ‘Find File References’, which
lists files that import the currently opened file. [8]

There do exist tools that provide more detailed information or more powerful
search tools (one such example is the ‘FEAT’ Eclipse plugin), but those tools are
often language-specific or for other IDEs. [1] I wasn’t able to find any tool that
focuses on or at least supports TypeScript and can be used in VSCode.

Besides tools aimed at developers, there do exist tools for static analysis, one
such example being ‘CodeQL’, [9] a tool designed to discover vulnerabilities
through static analysis of data flow. Such tools usually focus more on identifying
specific problematic patterns instead of working interactively with the developer,
making them a bad fit, as they favour accuracy over analysis speed, or don’t work
well with codebases as they change, needing a long time to re-generate the model
before being able to answer more questions about the code after each change.

1.3 The goal of this thesis
The goal of this thesis is to create a VSCode extension that provides features
similar to existing ‘Find All References’ and ‘Show Call Hierarchy’ tools, but with
the added ability to categorise the results. It should also show more information
about individual results, while still focusing on only being an overview and
navigation tool for developers that is intended to be used interactively. It should
focus on being responsive, avoiding heavy computations even on large projects,
at the cost of accuracy, and preferring to show false positives where reference or
usage cannot be easily confirmed.

The tool will focus on a single language: TypeScript, allowing us to design
a tool based on facts and features specific to this language. JavaScript, being a
subset of the TypeScript language and being supported by the TypeScript compiler,
will be supported by this project too, but some features might be limited due to
the lack of types, reducing the ability to cross-reference properties on objects
throughout the analysed project.

3https://github.com/microsoft/language-server-protocol/issues?q=label%3
Areferences

7

https://github.com/microsoft/language-server-protocol/issues?q=label%3Areferences
https://github.com/microsoft/language-server-protocol/issues?q=label%3Areferences

1.4 The structure of this thesis
In Chapter 2 we will explain what JavaScript is and the ecosystem that has been
created around it; without explaining the details of the language.

The language itself will be described in Chapter 3. This chapter will describe
how JavaScript evolved over time and it will explain the basic principles of the
language and how is the language processed by engines. These descriptions will
present sometimes lesser-known details of the language that are important to
this project.

In Chapter 4 we will describe what TypeScript is and how it differs from
JavaScript. We will also describe some of its core concepts and how TypeScript
code can be transformed into JavaScript code to be used in applications. Finally,
we will describe the architecture of the TypeScript compiler, which we will be
using for parts of our analysis.

The following chapters will focus on design and implementation of our so-
lution. Chapter 5 will analyse the complexities of analysing JavaScript and will
propose an architecture of the solution. It will also analyse the feasibility of
reusing parts of existing projects to reduce the effort needed to both create and
maintain this tool. Chapter 6 will describe individual parts of our solution in
greater detail, including approaches we experimented with before the current
solution. Chapter 7 will focus on interaction with the programmer and on the
presentation of answers to the programmer’s queries.

In the last chapter (Chapter 8) we will show examples of how our solution
can be used to answer programmer’s questions compared to the existing tools.
We will also measure how much code can our tool process on popular public code
repositories.

In the Conclusion we will describe how we met our goals and possible future
work to be done on this project.

8

Chapter 2

JavaScript Ecosystem

In this chapter we describe the current state of the JavaScript ecosystem, how
JavaScript is defined, and how it is commonly used and integrated into larger
projects. The focus of this chapter is to create an image of the wider context of
how is JavaScript being used today. This chapter does not describe the language
itself – that is done in the following chapter.

2.1 Brief introduction
JavaScript is an interpreted or just-in-time compiled programming language,
depending on the engine used to run it. It is most known for its usage on the
World Wide Web as a language, using which web developers can create scripts
that run on the client. There are also non-browser environments that use it, the
most notable example being Node.js. [10]

For ten years now, JavaScript has been selected as the most commonly used
programming language by the respondents to the Stack Overflow developer
survey, with TypeScript occupying the fifth spot in the 2022 survey. [4]

2.2 Specification
The language itself is standardized in the ECMAScript Language Specification. [11]
JavaScript is a continuously evolving language, with new editions of the specifica-
tion being released yearly. At the time of writing, the latest edition was released
in June 2022 with a size of 846 pages.

The ECMAScript Language Specification defines only the core of the language:
The syntax, the rules for execution of source code, the primitives of the language
(number, string, boolean, object, etc.), and the behaviour of several built-in objects
and functions. It, however, doesn’t define any interface for interacting with

9

the environment the code is running in. There is also the ‘Official ECMAScript
Conformance Test Suite’, [12] which contains close to a hundred thousand test
cases to test the conformance of language interpreters.

This means that for JavaScript to be usable in real-world scenarios, there is a
need for additional specifications, to define the interface for interacting with the
environment. The most notable example are the WHATWG1 standards, which
include specifications for the debugging console, HTML and browser interaction,
DOM operations, and more. [13] Other notable examples are the ECMAScript
Internationalization API Specification [14] and Node.js API documentation. [15]

Most of these specifications are living/evolving standards, making it hard to
create a JavaScript analysis tool that can keep up with the changes.

2.3 Implementations
There are many JavaScript implementations/engines available2, however overall,
there are three "main" ones:

• V8, [16] developed by Google and used in Chromium3, Node.js, Deno, and
more...

• SpiderMonkey JavaScript/WebAssembly Engine, [17] developed by Mozilla
and used in Mozilla Firefox.

• JavaScriptCore4, [18] developed by Apple and used in WebKit browsers,
such as Apple Safari.

Both feature support and conformance to the specifications can vary across
the engines, even for the ECMAScript Language Specification. This can be seen
by running the official conformance test suite on various implementations. One
such public project is the ‘Test262 Report’ (last updated on 22/09/2022) which
reports, that the above three engines pass on average 85% of the tests. Many of
the failing tests are features that have not yet been implemented in the engines
(such as ‘Temporal’ and ‘ShadowRealm’ built-ins), but in some cases, it shows
that engines can diverge from the specification. [19]

1WHATWG stands for: ‘Web Hypertext Application Technology Working Group’
2A non-comprehensive list is available at: https://developer.mozilla.org/en-US/do

cs/Web/JavaScript/JavaScript_technologies_overview#javascript_implementati
ons

3Which includes Chromium-based browsers, such as Google Chrome and Microsoft Edge
4JavaScriptCore has also been marketed under the names ‘SquirrelFish’, ‘SquirrelFish Extreme’,

‘Nitro’, and ‘Nitro Extreme’

10

https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview#javascript_implementations
https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview#javascript_implementations
https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview#javascript_implementations

This problem is even more apparent when comparing conformance to addi-
tional specifications (such as WHATWG specifications), where support differs
not only based on the engine and its version but also the environment the engine
is used in. Many vendors also add proprietary extensions or APIs. An example of
these are the various browser extension APIs.

2.4 Libraries
Libraries are an integral part of the JavaScript ecosystem. The only notable
repository of public packages is the npm Registry. [20] Npm stands for ‘Node
Package Manager’, which is a tool for managing and installing dependencies.
As the name suggests, it is closely linked to Node.js, which bundles it in its
installer and recommends it. Npm also has a specification for the ‘package.json’
file, [21] which became the de facto standard for JavaScript projects to define
their dependencies and development or build-time scripts.

For example, the TypeScript compiler has (at the time of writing) 42 direct
dependencies and 367 dependencies in total (accounting for transitive dependen-
cies).

2.5 Transpilers and Packagers
While JavaScript is an interpreted language (meaning there doesn’t need to be
a compilation step between writing code and using it as an application), there
are many cases where requirements or best approaches to code differ between
the development environment and the code that is to be shipped in the final
application. Examples of those are:

• During development, we want to comment the code to make understanding
it easier; in the the shipped application, the comments are not visible to the
end user and only increase the application size and parsing time.

• During development, it is beneficial to name classes, variables, functions,
and other identifiers in a meaningful way, while in the shipped application,
identifiers don’t serve any other purpose than to uniquely identify objects.

• New language features are usually created with the intent of making de-
velopment easier; however, for the shipped application we want to avoid
using bleeding-edge features to increase compatibility with older browsers
that users are likely to be using.

11

Transpilers5 and packagers solve this issue by transpiling the source code into
a different source code by, for example, removing comments and unnecessary
whitespace, shortening identifier names, or rewriting modern syntax using older,
widely supported syntax. An example of such a transpiler is Babel. [22] Packagers
might also optimize code further by combining multiple source files and used
libraries into a single output file or removing unused code6. [23, 24]

2.6 Flavours
JavaScript flavours are programming languages that are compiled into JavaScript.
Flavours can vary from languages with syntax similar to JavaScript, such as
TypeScript and Flow, which have a grammar that is almost a superset7 of the
JavaScript grammar, [2] to languages with a completely different grammar that
are simply compiled into JavaScript, for example, ClojureScript based on the
Clojure language, which is a dialect of Lisp. [25]

The most popular flavour is currently TypeScript, with over 75% of re-
spondents of the annual developer survey of the JavaScript ecosystem ‘State of
JavaScript’ in 2020 having answered they have used it. [26]

5Transpilers are also sometimes referred to as ‘source-to-source compilers’
6This operation is often referred to as ‘Tree shaking’. The name have been popularized by

bundler Rollup. [23, 24]
7Superset in this context means, that any valid JavaScript program is also a syntactically valid

program of said flavour

12

Chapter 3

ECMAScript

This chapter describes the JavaScript language. First, it introduces brief history to
set expectations about how often the language changes over time. Following that,
it describes several core aspects of the language. Finally, it describes a few aspects
of how interpreters should work based on the specification. This information
forms the foundation for our design in the following chapters.

3.1 Brief history
“ECMAScript is based on several originating technologies, the most well-known
being JavaScript (Netscape) and JScript (Microsoft). The language was invented
by Brendan Eich at Netscape and first appeared in that company’s Navigator 2.0
browser. It has appeared in all subsequent browsers from Netscape and in all
browsers from Microsoft starting with Internet Explorer 3.0.” [11]

Arguably the most significant release was the sixth edition (dubbed ES6 or
ES2015) after almost 15 years of effort, which added many major language con-
structs used in modern JavaScript codebases. These include, for example, classes,
lexical block scoping, iterators and generators, and promises for asynchronous
programming and destructing patterns. The base library was also expanded with
additional abstractions like sets, maps, and more. [11, 22]

The sixth release was followed by yearly iterations of the specification, each
adding new features. [11] Here are a few highlights of each of the following
releases:

• 2016: Thousands of fixes and clarifications in the specification with only a
few features. New features were, for example, the array method ‘includes’
and an exponentiation operator.

• 2017: Introduction of async functions (with ‘await’), Shared Memory and

13

Atomics for multi-agent programs, and many helper functions on ‘Object’.

• 2018: Asynchronous iterators, spread and rest properties for destructing
assignments, and fair few Regexp improvements.

• 2019: Many array and string helper functions, requiring the array sort
function to be a stable sort, and allowing newlines in string literals.

• 2020: Standardised ‘globalThis’ object, asynchronous dynamic imports,
nullish coalescing and optional chaining operators.

• 2021: ‘replaceAll’ method for Strings, logical assignment operators (‘??=’,
‘&&=’, ‘||=’), weak references, and ‘FinalizationRegistry’.

• 2022: Top-level ‘await’ expressions, public and private fields for classes,
static blocks inside classes, and the ‘at’ method for strings and arrays.

• 2023: Many useful array methods, and syntax to allow shebang comments
(‘#!’) at the beginning of files.

3.2 Brief language overview
First, we will focus on a few aspects of the ECMAScript language that are impor-
tant for this project from the view of the programmer.

Everything in this section is based on the ECMAScript® 2023 Language Speci-
fication [11].

ECMAScript is an object-oriented programming language with garbage collec-
tion. All code is executed inside a single thread where all code acts as coroutines
– only operations that can happen in other threads are outside interactions (such
as asynchronous file read/writes or network requests) and operations not ob-
servable by the code (such as garbage collection). True parallelism can only be
achieved by starting multiple interpreter instances that communicate using events,
shared memory, and/or atomics. The main event loop for long-running programs
happens in the interpreter, making it primarily an event-driven programming
language.

3.2.1 Strict mode
In the fifth edition of ECMAScript, a strict variant of the language was added. The
strict mode adds several restrictions that forbid actions that can be seen as likely
errors, or at least error-prone; for example, assigning to an identifier that doesn’t
exist creates a new variable in non-strict mode, while it is an error in strict mode.

14

Strict mode is enabled by specifying a ‘"use strict";’ directive in the
prologue1 of a file or function body. Some syntaxes (e.g. classes) also enable it
implicitly for their body. If strict mode is enabled, then all nested code also uses
strict mode. It is valid to load multiple files where some are in strict mode and
some are not. As those files can freely interact, strict mode only affects code
originating from strict mode files/functions and only imposes restrictions that
have local effects.

TypeScript allows enabling this mode by default using the configuration
option ‘alwaysStrict’ (which is implied by option ‘strict’).

3.2.2 Value types
ECMAScript values have specific types, which can be categorised into two cate-
gories: primitive values and objects.

Primitive values are represented directly by the implementation and can be
considered immutable value types. There are 7 types of primitive values:

• Undefined, which can have exactly one value: ‘undefined’.

• Null, which can have exactly one value: ‘null’.

• Boolean, which is either ‘true’ or ‘false’.

• String, which is a sequence of 16-bit unsigned integers. Strings are inter-
preted in UTF-16, but individual elements of the sequence can be arbitrary
16-bit values, meaning strings can contain ill-formed sequences.

• Number, which is a 64-bit double-precision float, as defined by ‘IEEE 754-
2019’. ECMAScript makes use of positive and negative Infinity and differ-
entiates between positive and negative zero. All Not-A-Number values are
treated identically by the specification.

• BigInt, which is an arbitrary integer value, not limited to a particular bit-
width. For binary operations BigInt acts as two’s complement binary string,
with negative numbers treated as having bits set infinitely to the left.

• Symbol, which represents a unique and immutable value that can be used
as a key of an Object property. There are also several "well-known" symbols
that the specification uses.

1Prologue is the longest sequence of statements that only contain string literals at the start of
a file or function

15

The second category of values are objects. Objects are always passed by
reference and are mutable. Any object can be seen as a collection of properties,
where each property is uniquely identified by a ‘property key’ (either a String2

or a Symbol). Each property can be either a ‘data property’ – an ECMAScript
value, or an ‘accessor property’. Accessor properties are a set of ‘get’ and ‘set’
functions that are invoked when the property is read or written. All objects also
have exactly one ‘prototype’, which is either an Object or ‘null’. Prototypes will
be described more in detail later.

Objects can be further categorised into ordinary objects and exotic objects.
Ordinary objects are usually created by the object literal expression (‘’). Any object
that isn’t ordinary is called exotic. Exotic objects can define special behaviour for
when code interacts with them, for example, when getting or setting a property
or when calling the object. Examples of exotic objects defined by the ECMAScript
specification include an Array object, a Function object, or a Proxy object which
allows JavaScript code to define the behaviour of the object.

All primitive values except ‘undefined’ and ‘null’ can also be "wrapped" in
a respective exotic object, which allows calling methods on primitives. Similar
to the primitives, these objects are also immutable. This wrapping can either be
done explicitly or, in some cases, happens implicitly, which allows for syntax
such as ‘(42).toString()’. Attempting to access any property of ‘undefined’ or ‘null’
results in a runtime error.

3.2.3 Variables

Variables can be declared using three keywords: ‘var’, ‘let’, and ‘const’. ‘var’
declarations are scoped to the function, meaning that even if they are declared in
any nested block in the function, they are accessible anywhere inside the function,
including before the declaration itself.

ES6 added ‘let’ and ‘const’ declarations, which are scoped "lexically" – this usu-
ally means to the closest containing block. The difference between ‘let’ and ‘const’
is, that ‘const’ declarations must have an initialiser and cannot be reassigned.
‘let’ and ‘const’ declarations also forbid declaring multiple variables with the
same name in a single lexical context (including ‘var’ variables and function/class
declarations), resulting in a syntax error.

Code can also access any variable from the outer context. For example, a
variable declared in the root of the file can be accessed by any function in that
file.

2Integers in the range from +0 to (253 − 1) can also be used as property keys. Such numbers
are interpreted the same way as their decimal string equivalents (so ‘obj[42]’ is the same as
‘obj["42"]’)

16

Listing 1 A variable shadowing example.

1 function variableShadowingExample () {
2 let myVariable = 1;
3 myVariable ; // -> 1
4
5 if (true) {
6 // The following line would result in a runtime error
7 // myVariable ;
8
9 let myVariable = 2;
10 myVariable ; // -> 2
11
12 myVariable = 3;
13 myVariable ; // -> 3
14 }
15
16 myVariable ; // -> 1
17 }

It is legal to create a variable in a nested block or function when the outer
context already has a variable of the same name. In such cases, reads or writes
happen to the variable in the "closest" lexical context. Such an occurrence is
usually called variable shadowing3. [27] You can see an example in Listing 1.

3.2.4 Functions
ECMAScript has first-class functions. To be exact, all functions are exotic objects,
and as such, they can be freely assigned to any variable, property or passed as a
call argument.

Function declarations behave similarly to ‘var’ variable declarations, including
conflicting with lexical variable declarations and the possibility to reassign the
variable (even with a non-function value). One important difference between
function declarations and variable declarations is that function declarations are
‘hoisted’ – the function can be used even before the actual function declaration.

ECMAScript has a concept of generator functions and async functions (or
combined async generator functions), which are functions that allow suspending
the execution at certain points (using ‘yield’ and ‘await’ keywords), so other code
can run, and resuming it at a later point in time.

In ECMAScript arguments are passed as a list. During standard calls, argu-
ments are added to the list in order as they appear in the call expression. Standard

3The term ‘shadowing’ is not used in the ECMAScript specification

17

Listing 2 An IIFE pattern example.

1 // This creates a function using the function expression
syntax

2 (function () {
3 // Any code here has its own lexical environment
4 })(); // And immediately calls (invokes) it

arguments can be freely interleaved with ‘spread arguments’, which are iterated
to produce an arbitrary count of arguments that are added to the list. This makes
it difficult to track which position will the argument be in if it occurs after a
spread argument. In a function declaration there exists a similar structure called
the ‘rest parameter’. This can only occur in the last position, allowing us to easily
track preceding parameters.

Functions can also be created using a ‘function expression’ instead of a decla-
ration. This is a syntax that doesn’t implicitly create a variable but instead allows
using the function as a value in an arbitrary expression. One common pattern
that uses this is ‘IIFE’ – Immediately Invoked Function Expression. It is a pattern
where a function is created and immediately called, with the benefit that the
code inside the function has its own variable and lexical scope that is not visible
from the outside. This pattern was commonly used before the standardisation of
CommonJS and ES Modules [24] and is still used by many packagers to simulate
module scopes when bundling multiple source files into one. Example of this
pattern can be seen in Listing 2.

3.2.5 The ‘this’ value

During a function call, the function is passed a ‘this’ value that is used whenever
the function implementation accesses it.

The value of ‘this’ usually depends on the caller – when a function is called
normally, the ‘this’ is set to the global object (‘globalThis’). When a function is
called using the property access syntax (i.e. as a method), the value of ‘this’ will
be the value of the object. A function can also be called using the ‘Function.call’
and ‘Function.apply’ built-in methods, which allow specifying a custom ‘this’
value.

Two exceptions to this are ‘bound function’ exotic objects (which are created
by calling ‘Function.bind’ on any function) and arrow functions. These ignore the
passed this value and use the value they have stored during their creation instead
– for bound functions, this is the value that was passed as an argument to the bind
call; for arrow functions, it the is value of ‘this’ at the point they were created.

18

3.2.6 Prototypes

“Even though ECMAScript includes syntax for class definitions, ECMAScript
objects are not fundamentally class-based such as those in C++, Smalltalk, or
Java.” [11] Instead, all ordinary objects have a ‘prototype’ – either an Object or
‘null’. As a prototype can also be an object, and all objects have a prototype, this
creates a ‘prototype chain’. ECMAScript guarantees that for ordinary objects, this
chain is acyclic – ending with ‘null’ instead of an object at some point.

If we try to get a property that is missing on the object, we try to recursively
get it from the prototype instead, making all prototype properties shared between
all objects that share that prototype, as long as those objects don’t have their own
property of that name. When we try to set a property that doesn’t exist on the
object, the prototype chain is checked for the presence of the property, similar to
get. If one is found and it is an accessor property, then the setter of the accessor
is invoked; otherwise a new property is created on the original object (not on the
prototypes).

This creates a system that allows inheritance, however, unlike most object-
oriented languages, the class hierarchy in ECMAScript can be modified at runtime,
which is a feature likely to create confusion if used.

ECMAScript also has multiple flags that limit modifying objects, for example,
‘[[Extensible]]’ on objects, and ‘[[Configurable]]’ and ‘[[Writable]]’ on properties.
These can be used to prevent adding new properties, replacing data properties
with accessor properties and vice versa, and changing the value of data properties,
respectively. When these flags are set to ‘false’, they cannot be subsequently set
by any means. Attempts to perform actions that are forbidden by these flags will
cause a runtime error.

3.2.7 Classes

While ECMAScript has classes, until ES2022 they were mostly syntactic sugar
on top of the prototype model, with only a few differences in behaviour from
functions with the ‘prototype’ property. One notable difference is that while
functions are hoisted and behave similarly to ‘var’ declarations, classes cannot be
used until after their declaration, behaving similarly to ‘let’ declarations (meaning
a class can still have its value reassigned). Another difference is that classes are
always parsed in strict mode.

The feature that makes them stand out since ES2022 is the possibility for
classes to have ‘private fields’, which are properties that are not accessible by any
code that was not written as part of the class declaration.

19

3.2.8 Environment
Before any script is executed, the ‘global object’ is created. All properties of
this object are available directly as if accessing a variable. The object itself is
also available as a value of ‘globalThis’. The name comes from the fact that if a
function is not called with a specified ‘this’ value (not called as a method, and
not called using ‘Function.call’/‘Function.apply’), the global object is used as the
‘this’ value.

While the specification defines some properties and their values that must
be on the object, the host (browser or any other runtime) is free to define any
additional properties and the object’s prototype. For browsers, it contains all the
browser APIs, and it is also common to set properties ‘window’ and ‘self’ to this
object.

One more detail is that ‘var’ and function declarations that are done in the
global context (in the root of a non-module file – not in any function) are added
as properties of the global object, replacing existing ones instead of shadowing
them.

3.2.9 Modules
ECMAScript programs can be divided into modules, which don’t execute in the
global environment, but each module has its own, private ‘module environment’.
Each module can then explicitly export variables that should be visible to the
outside. The module can update the exported values, and the changes propagate
to modules that imported them; these are read-only from outside of the module.
Modules can also import other modules either as a ‘namespace’, which creates an
exotic object whose properties correspond to the exports of the module, or they
can import individual exports from other modules.

3.3 Interpreter
While the ECMAScript specification leaves many implementation details to the
interprets, several key concepts must be followed by all implementations. We can
use these while performing the analysis.

3.3.1 Static semantics
The specification generally divides operations over JavaScript code into two
categories: Static semantics and Runtime semantics. Static actions are performed
on a parsed code tree and are not dependent on any runtime state, making them
usable for our analysis.

20

Listing 3 Comparison of direct and indirect eval.

1 // An example of direct eval:
2 eval("1 + 1;");
3
4 // An example of indirect eval:
5 const myEval = eval;
6 myEval ("1 + 1;");
7
8 // An example of indirect eval:
9 // The comma operator performs ‘GetValue ‘ on the operand ,

which turns the reference into a value
10 (0, eval)("1 + 1;");

One important aspect is that static semantics dictate several ‘early errors’ that
prevent any code in a problematic file from executing. This means we can safely
ignore any files that are not syntactically valid, as well as several possible errors,
without sacrificing any accuracy, as those files won’t be able to run at all.

The second static semantic we will make heavy use of is name binding. While
static semantics is not enough to resolve all identifiers statically because the
resolution defaults to the properties of the global object, it is enough to reliably
detect, for each identifier, whether it resolves to a variable local to the file or
whether it falls back to the global object. This can be also be used to detect all uses
of a local variable (where local means it is not a top-level variable in a non-module
file or it is a non-exported variable in a module file). There are however two
exceptions to this.

One exception is a ‘with’ statement, whichmakes properties of object available
in the current scope, similar to variables. This feature is however considered
legacy and its use is discouraged due to the unpredictable nature of any binding
inside it. The other exception to this is the direct use of the ‘eval’ function, which
can dynamically access the LexicalEnvironment and VariableEnvironment of the
execution context it is executed by.

ECMAScript differentiates whether the ‘eval’ function was called directly or
indirectly. If the call is literally ‘eval(...)’, and the ‘eval’ is a reference resolved to
an in-built eval function, it is a direct eval call, which runs in the context of the
caller. If the function isn’t a reference but a value, or is a reference not named
‘eval’, then even if the called function is the built-in eval function, the evaluation
happens in the global scope – unable to access local variables not normally visible
from other files. Examples of these can be seen in Listing 3.

21

3.3.2 Execution

When executing code, the compiler has a current ‘execution context’. This context
contains data necessary during execution, for example, which function is currently
being executed, which script or module this code is part of, and the current lexical,
variable, and private environments (environment records), which are used for
resolving bindings. While the current execution behaves mostly like a stack, it is
not true in every case – sometimes execution can get suspended at a particular
point to be resumed later. Examples of this are the ‘await’ expression in async
functions and the ‘yield’ expression in generator functions.

Environment records behave similarly to objects, including prototype chains
– each environment record has a ‘base’ record (except for the global environment
record, which has no base). When looking up a variable, the lookup is performed
on the current environment record and only if there is no matching variable, the
resolution continues on the base record, recursively. If there is no resolution and
no base record, the resolution fails.

Evaluation operation

The most important operation during runtime is evaluation. While interpreters
are free to implement this differently than how the specification describes it,
especially to optimize things (e.g. during just-in-time compilation), the observable
effects must match the operation as described in the specification.

Evaluation is an operation that happens over a parsed syntax, takes no argu-
ments and returns a ‘Completion Record’. Almost all syntaxes define their own
implementation of this operation, which defines actions the syntax resolves to at
runtime. Some syntactic tokens don’t have evaluation defined, but those can only
be children of syntax that never performs generic evaluation on them, instead
treating them specially.

Completion Records

Completion Records are what carries information about the result of the evalua-
tion of any node. A Completion record contains the type of completion, optionally
a value, and rarely also a ‘target’4. The most common completion type is ‘normal’,
which refers to completion that doesn’t result in any control flow changes. The
value of this completion is the value the expression evaluated to – it could be
‘empty’, ECMAScript value (primitive or object), or a reference record pointing to
a variable or property.

4Completion target is used by ‘continue’ and ‘break’ statements with label.

22

Any completion that isn’t ‘normal’ is called an ‘abrupt completion’. Possible
abrupt completions are: ‘break’, ‘continue’, ‘return’ and ‘throw’. Most evaluation
variants perform a check called ‘ReturnIfAbrupt’ on the completion of any child
statement – if the child statement resulted in an abrupt completion, then evalua-
tion of this statement is interrupted, and the abrupt completion is returned as-is;
otherwise, the value of the normal completion is unpacked and used instead. This
operation is used so often, that it has a shorthand in the specification pseudocode
– ‘? operation()’ is equivalent to ‘ReturnIfAbrupt(operation())’. Some statements,
however, react to abrupt completions – for example, loops handle ‘break’ and
‘continue’ completions and ‘try’ statements handle ‘throw’ completions specially.

23

24

Chapter 4

TypeScript

This chapter introduces TypeScript as a flavour of JavaScript. It describes how
TypeScript is related to JavaScript both in the ecosystem, as well as more techni-
cally – what does it provide that JavaScript doesn’t, and how it can be used in
the same way as JavaScript. This is followed by a brief overview of TypeScript
tooling, primarily focused on the TypeScript compiler from Microsoft.

4.1 Introduction

As said by the title page of TypeScript: “TypeScript is JavaScript with syntax for
types”. [2]

TypeScript is (almost) a superset of JavaScript, meaning (most) JavaScript
code is syntactically valid TypeScript. TypeScript aims to address the problem of
JavaScript being dynamically typed by providing ways for programmers to define
and assign types and providing tooling to check the flow of types for errors. It
also integrates well with IDEs to provide features like code completion.

It is a project developed by Microsoft that has a stable core team working on
it. The TypeScript language is primarily defined by the TypeScript Compiler, [28]
TypeScript compiler notes, [29] and the TypeScript website. [30, 2]

TypeScript currently lacks any official, up-to-date specification. A team mem-
ber cited a lack of resources to update the specification. [31] The old specification
has instead been removed, and TypeScript doesn’t have a single source of truth,
instead being described by the TypeScript handbook, [32] release notes, and
implementation of the official compiler. [31]

The last specification was released in August 2013 and described TypeScript’s
syntax as of version 0.9.1. The version this project aims to analyse is 5.0.4, making
it unusable for our purposes. The last officially released specification can be found

25

archived in the Wayback Machine1.

4.2 TypeScript in the context of the JavaScript
ecosystem

TypeScript is widely adopted in the JavaScript ecosystem. That is evident from,
for example, the fact that many packages provide TypeScript type definition files
describing their API, even if the library itself is not written in TypeScript. There
is also a project called ‘Definitely Typed’2, which at the time of writing contains
community-contributed TypeScript definitions for 8639 packages, each available
under the name ‘@types/<name of package>’.

These two cases are also recognised by the npm package registry, which shows
a badge next to the package name for packages that either provide their own
typings or have typings available as a Definitely Typed package.

4.3 TypeScript language
TypeScript as a language doesn’t have an official grammar but is defined by
what the TypeScript compiler can parse and process. The main difference versus
JavaScript is that TypeScript, as the name suggests, allows specifying types for
variables, parameters, and more.

TypeScript can be considered a best-effort checker, which is indicated, by one
of TypeScript’s goals being not to “apply a sound or "provably correct" type system.
Instead, strike a balance between correctness and productivity.” [33] TypeScript
only provides static type-checking at compile time – the emitted JavaScript code
contains no extra runtime checks and imposes no run-time overhead on the
emitted programs. [33]

An important exception to this rule is that TypeScript does add several new
syntaxes that either don’t exist in ECMAScript or are at a level of not yet fully
standardised proposals. Examples of these are namespaces3, enums, and decora-
tors.

There are types provided for all ECMAScript primitives (string, number,
boolean, null, undefined, bigint, and symbol). Types of objects are defined using
shapes – where the shape of an object describes what properties and/or methods

1https://web.archive.org/web/20131117065339/http://www.typescriptlang.o
rg/Content/TypeScript%20Language%20Specification.pdf

2https://github.com/DefinitelyTyped/DefinitelyTyped
3These used to be called ‘modules’ or ‘internal modules’ in older TypeScript versions, as they

predate ECMAScript modules

26

https://web.archive.org/web/20131117065339/http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf
https://web.archive.org/web/20131117065339/http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf
https://github.com/DefinitelyTyped/DefinitelyTyped

it has and their types. TypeScript also allows combining types in various ways,
the most common being ‘union type’, which is formed from two or more other
types and represents values that may be any of those types. [32]

While ECMAScript treats arrays as exotic objects, in TypeScript, arrays have a
special type and are treatmented specially by the compiler. There is also a ‘tuple’
type, which defines array elements based on their index. An important caveat
with array types is, that they are treated as covariant, while in reality they are not.
This is a common and problematic pattern in programming languages, including
C# and Java. [34]

There are also four special types:

• ‘void’ is a type similar to ‘undefined’ that is used to signify the absence of a
value – for example, when a function returns nothing.

• ‘any’, which can be used in any way without causing type-checking errors.

• ‘unknown’, which defines a type that is checked for errors and can be an
arbitrary type. Generally, there is a need to use type-guards before using
values of this type.

• ‘never’, which signifies that code that would use this type never executes.
Two common use cases for this are never-returning functions (that contain
an infinite loop or always throw) and exhaustive switches/branches that
handle all possible values.

TypeScript’s type system is structural and shape-based. This means any
two types that have the same shape (for example, objects that define the same
properties) are considered the same type. This makes it problematic to define
what is a usage of a type, as only referring to locations that mention the type
explicitly may miss some uses of said type, while considering all types that match
the shape of a specific type would lead to many false positives, where there are
unrelated types with the same shape.

4.4 TypeScript compilers
There are multiple existing compilers capable of transpiling TypeScript code
into JavaScript – e.g. Babel [22] or Speedy Web Compiler. [35] These compilers,
however, either don’t provide type-checking at all or only a limited subset of the
checks that the TypeScript compiler does. They also generally lag behind the
TypeScript compiler in implementing new features or don’t have an API to use
data from the compilation.

27

The TypeScript compiler from Microsoft [28] provides a good API for parsing
and processing the language and is de facto the project that defines the TypeScript
language. Using it in our solution would provide the benefit of easier and more
up-to-date support of new features that might be added to the language, which
usually happens every three months. [33]

Visual Studio Code also uses this compiler internally for providing TypeScript
and JavaScript language features inside the editor, such as IntelliSense, code
navigation, formatting, and refactoring tooling. [8]

4.5 TypeScript in VSCode
In VSCode, all extensions run in an extension host process and are isolated from
each other. They can also define an API to be used by other extensions, but only
this API is accessible from outside.

TypeScript support in VSCode is implemented using an in-built extension. [8]
This extension doesn’t have a TypeScript compiler bundled; instead, it finds a
compiler in the opened project and spawns it as a child process ‘tsserver’. It
then communicates with the compiler using the TypeScript Server Protocol. This
allows using the same version of TypeScript as the opened project does, but
also limits available features to those requests defined in the TypeScript server
API. [28, 33]

As the TypeScript language support extension doesn’t provide any API to
communicate with the TypeScript server, it cannot be reused in any way for our
solution.

4.6 TypeScript compiler API
Besides the ‘tsserver’ API, TypeScript has two more official public APIs.

One of them is the Language Service API4, which provides an API aimed
towards language servers, such as detecting errors/diagnostics in processed files,
finding rename locations, navigating to definitions or implementations, and
performing quick code actions. [28, 33]

The second exposed API is the Compiler API. This API allows starting the
compiler with any normally available settings from the commandline (and some
extra ones), running specific compiler stages, and using most of the internal
compiler data available between the stages. [33] Some cross-stage data, as well

4The TypeScript Language Service API does not implement the Language Server Protocol, but
it does contain all that is necessary to implement it

28

as data internal to each stage, is not accessible through this API. An example of
such non-accessible data is TypeScript’s flow graph. [28]

4.7 Inner workings of the TypeScript compiler
At the core of the TypeScript compiler is a ‘Program’. It can be seen as a coor-
dinator for individual stages and for handling interaction with the outside – for
example, all APIs and the file system watching during watch compilation.

A typical TypeScript compilation has the following stages: [29]

• Read config: The ‘tsconfig.json’ file (or equivalent) is read and parsed, the
Program is created, and entry files specified in the config are found.

• Pre-process Files: The included files are recursively pre-processed, following
imports to discover all files to be used during compilation. This does not
parse the whole files, only the imports.

• Tokenize and Parse: All files relevant to the compilation are first scanned
for syntax tokens, and those tokens are then converted into a syntax tree.

• Binder: Resolves all identifiers in syntax trees to symbols. It also creates
base data that will be later used for flow analysis, but this data is not exposed
through the API.

• Type Checker: Uses syntax tree and binder data to look for issues in the
code, mostly by resolving types possible and required at all expressions and
checking their compatibility. This is arguably the most complex stage of
compilation and does most of the “smart” work, such as deriving types and
tracking how they propagate through expressions. This data is, however,
not observable from the outside, as it is optimised for speed, not external
usability.

• Transform: Walks through the syntax tree and modifies it based on the com-
pilation options. This mainly means removing or transforming TypeScript-
specific syntaxes to produce valid JavaScript, and transpiling new JavaScript
features using older ones, if requested by the config.

• Emit: Uses the resulting syntax tree from the transform stage to produce
the final output files – either JavaScript (‘.js’) or type declaration (‘.d.ts’)
files.

29

Listing 4 An example of a transient symbol occurrence.

1 const randomBoolean = Math. random () < 0.5;
2 (randomBoolean ? 42 : "fish"). toString ();

Each stage is designed to do a single pass over each source file (some can also
skip parts of a file). Each operation of the stage is instead performed recursively
on the source files (or the syntax trees from previous stages). [29, 28]

Symbols are the base building block of TypeScript’s semantic system – they
are used to uniquely identify any named declaration based on its role. For example,
a unique symbol is assigned to each variable, class, type, and property. Symbols
are mostly created in the binding phase, but some symbols can also be created in
the type-check phase – those symbols usually represent a union of possibilities.
Symbols created during type-checking are called ‘Transient Symbols’. [29, 28]

In Listing 4 we can see example of transient symbol occurrence. This happens
because ‘randomBoolean’ can be either true or false in this case, the ternary
expression resolves to type ‘number | string’5. Each of those types is then checked
for presence of the ‘toString’ property, which is defined on both types, so it isn’t
an error. Each ‘toString’ declaration, however, has a unique symbol, so here a
Transient Symbol is created that represents the possibility of either case. This
symbol is then used when validating that the expression is callable and when
validating the call signature.

5Modern TypeScript would actually resolve it to type ‘42 | "fish"’ thanks to the support for
number and string literals

30

Chapter 5

Design

In previous chapters, we have analysed the current state of the JavaScript ecosys-
tem, some important aspects of the JavaScript language, and existing tools for
working with the language. We also talked about what TypeScript is, how it
fits into the wider ecosystem, and important details of the TypeScript compiler
implementation.

In this chapter, we define the scope our goals more closely, in order to match
a scope of a bachelor thesis. We also start designing our solution and choose
technologies to use so that we can meet these goals.

5.1 Scope

5.1.1 Syntax support
Due to the complexity of JavaScript and the lack of specification for TypeScript, as
well as their evolving nature, it is not feasible to support all language constructs
they provide. Therefore we need a way to select a subset of the languages
we will be targeting, which can be solved in two ways. Either we can limit the
solution to older versions with fewer features, or we can support features we deem
‘important’, providing fallback behaviour that can handle arbitrary unsupported
features with at least some degree of accuracy and usefulness.

Because the nature of the project is to aid developers working with modern
code that is still being developed, the approach to limit the language version
would also heavily limit the usefulness of the tool. Therefore we have chosen the
second approach of supporting a subset of the language based on how important
specific grammar is for our analysis and how often it is used.

The analyser should, however, still provide limited results even if it encounters
syntax it doesn’t recognise. The analyser should provide some results even if

31

parts of the codebase fail to be analysed altogether for any reason and warn about
such problems.

5.1.2 Environment support
Another important decision is which execution environments we want to support
– such as web browsers in general, a specific web browser, Node.js, or others. Here
the decision we made is to create a generic tool that can be used independently of
the execution environment; therefore, the analysis should only use facts defined
by the ECMAScript specification, or by the TypeScript behaviour.

5.1.3 Accuracy vs Performance
As our tool is meant to provide an interactive interface during development even
as the code changes, our solution needs to focus on performance and interactivity
at the cost of accuracy. Where there is doubt about including a specific reference
in the result, the reference should be included with the available information, so
the developer can inspect it manually.

The analyser should also cache computationally heavy calculations to allow
faster consecutive queries on the same project and detect changes made to the
code by the developer and invalidate cached data, redoing the necessary analysis
on the next query.

5.1.4 Alias resolution
The nature of JavaScript makes it difficult to reliably resolve many operations.
One such example is calls that can happen to methods or global functions – these
can be replaced during runtime. As we cannot know the full state of an application
at runtime we need to limit our analysis to the cases where we are certain of the
outcome.

There are also many code patterns where hiding the point in code where
a variable is aliased might omit critical information, leading to confusion. An
example of this can be seen in Listing 5. There the ‘savedState’ variable definitely
has the value of the ‘globalState’ variable. Treating the variables as a single one
would, however, omit the fact, that ‘savedState’ saves the value while ‘globalState’
changes.

This means that we will focus more on analysing the direct usage of variables,
leaving it up to the programmer to understand how they are related. In some
cases we can, however, reliably detect that variable or a function has only a single
source of value. In that case, we will provide a way to continue inspecting the
chain following such action. The analyser will also provide support for analysing

32

Listing 5 An example of a problematic pattern for alias resolution.

1 let globalState = ...;
2
3 function DoActionWithDifferentState (differentState) {
4 const savedState = globalState ;
5 globalState = differentState ;
6
7 // Do a complex action potentially spanning hundreds of

lines
8
9 globalState = savedState ;
10 }

arguments passed to functions in a similar way, based on the position of the
argument. This may in some cases allow following a value through many layers
of functions.

5.2 Problem analysis
Both queries we are implementing (finding references and showing information
about a function) solve the same problem but present it from different directions.
In both cases, we need to search the codebase for references to variables and
detect what action is being performed using them. The difference between the
two queries comes from how these actions are filtered. In the case of finding
references, we want to find all actions that target a specific symbol, while in the
case of showing information about a function, we want to find those actions that
happen in a specific area of code – the implementation of the function in question.

For both queries, we need to scan the program for actions that can be relevant
to the query. This need can be split into the following parts:

• Finding the scope for the analysis – which source files might be relevant to
the query.

• Parsing the source files into a form we can perform analysis on – for
example, a syntax tree.

• Resolving identifiers semantically – we need to resolve which variables
individual identifiers refer to in order to be able to detect references.

• Detecting operations that are performed on those symbols – such as reads,
writes, and calls.

We will analyse each of these parts in more detail.

33

5.3 Finding the scope for the analysis
In order to find references, we need to detect what code can access this symbol.
That is not a problem in the case of the symbol being a variable local to a function
or a file, but due to the nature of the JavaScript environment allowing import of
arbitrary files, even to the global environment in some cases that were discussed
in sections 3.2.8 and 3.2.9, we have no reliable way to detect where the file might
be included from. This is complicated even more by features such as adding
scripts as HTML tags, the ability to import files dynamically in JavaScript, and the
fact, that the current project might be intended as a library to be used by other
projects. For these reasons, we need to use information from outside the code
itself to detect the scope.

One source of information we can use is the editor itself, but as Visual Studio
Code is primarily a text editor that works with folders instead of projects (unlike,
for example, Visual Studio), we only have limited information from the editor
itself – the currently opened file that the user invokes the query from and a folder
that is open as the root folder in the editor. Instead of a single folder there might
also be multiple open folders, in case of a multi-root workspace.

5.3.1 Specifying the files manually
A simple solution is to let the developer select the scope of the analysis, but while
this is a simple and working solution, it makes the tool much harder and annoying
to use, as it requires specifying all files or at least folders to scan. This, to a large
degree, reduces the benefits the tool brings by requiring much more effort to use
it.

Therefore we wanted a way to detect the relevant files automatically.

5.3.2 Scanning for files
One of the solutions we tried was detecting all JavaScript and TypeScript files
recursively from the root of the open workspace. However, even detecting what
is a JavaScript or a TypeScript file effectively proved challenging, as they can
have a variety of extensions – the base extensions are ‘.js’ and ‘.ts’. There is also
the optional suffix ‘x’ (so ‘.jsx’ and ‘.tsx’) for files that also contain React syntax.
The filenames might also be prefixed with either ‘c’ or ‘m’ to explicitly annotate
that it is a CommonJS module or an ES6 module, respectively.

After solving this issue, the second issue came from the fact that such a
scan resulted in a large number of files to analyse. This was caused by multiple
factors. One such reason is dependencies, which are usually installed in the
‘node_modules’ folder. We tried solving this by ignoring this specific folder

34

during crawling. This has, however, met similar problems as extensions – some
package managers (namely modern Yarn) might install or store dependencies in
other folders, such as ‘.pnp.*’ and ‘.yarn’, making it hard to predict the project
structure users of our tool might have.

Another considered option was ignoring files ignored by git. This solution,
however, had both false positives and false negatives. For example, some tools
might generate source files that are later used, but the generated files are com-
monly not checked into source control. False negatives, on other hand, were
caused by the project using zero-install dependencies1 or not using Git versioning
at all.

This approach wasn’t perfect even in projects that were using only common
tools such as ‘npm’ without any code-generating frameworks. The reason for this
was that multiple projects might be part of a single repository. Such repositories
are referred to as ‘monorepos’. For those the analysis again attempted to scan too
many files, resulting in a loss of performance.

5.3.3 Using compilation settings

One stage where all relevant files are definitely used is during compilation. Normal
use of the TypeScript compiler is done by invoking the ‘tsc’ command supplied by
the TypeScript package. The compiler is passed either a list of files and options
or a link to a ‘tsconfig.json’2 file, which contains compilation settings, most
importantly for us, the list of files to include as compilation entrypoints.

This approach again proved challenging due to the non-uniformity of the
ecosystem, where many projects use TypeScript but don’t use the official compiler,
instead opting to use alternative transpilers such as Babel [22] or SWC. [35] Even
for projects that use the TypeScript compiler, this is not feasible because there
is no standardised way of invoking it. While the most common way is to run
it from a script defined inside the ‘package.json’ file, the name of the script is
not standardised, and it can also perform other things besides only running the
compiler, making it hard to get compiler arguments. The compiler might also be
invoked from other tools that orchestrate the build process of larger codebases. For
example, this is the case in the TypeScript compiler project, which uses ‘hereby’3.

1Sometimes also called ‘vendored’ dependencies; it is a strategy where dependencies are
included in the codebase of an application for greater reliability (for example, in cases where
a dependency might get unpublished by the author) and control over the exact version of the
dependency.

2The file can have an arbitrary name; it only needs to be a valid JSON file matching the
expected schema

3https://github.com/jakebailey/hereby

35

https://github.com/jakebailey/hereby

Other common tools that share this pattern are Rollup.js4 and Webpack5.

5.3.4 Solutions of existing tools
Following these failures, we decided to investigate how existing solutions ap-
proach this problem, which required studying the code of the TypeScript lan-
guage features extension in VSCode. [8] As a second solution to analyse, we
chose typescript-eslint – a tool that allows using the popular linter ESLint with
TypeScript. [36]

The TypeScript language extension offloads this task to the TypeScript com-
piler using the Language Service API. The compiler implements this by looking
for ‘tsconfig.json’ and ‘jsconfig.json’ files by going up the directory tree from the
currently open file.

The typescript-eslint tool solves this by requiring the user to specify a list of
TS config files to try in the ESLint configuration. It then tries these files in order
and checks whether the config file includes the file it is expected to lint, using the
first one that matches. If none do, then an error is produced.

5.3.5 Solution
As the final solution, we chose a combination of these approaches: First, we try
to resolve the config file using TypeScript, and if that fails, then we try the ESLint
approach. If neither results in a valid config, we fail with an error message. The
reasoning behind preferring the TypeScript solution is, that many projects have a
more generic TS config for ESLint that doesn’t reflect how the code is used when
not being linted.

5.4 Parsing the source file
In order to do any analysis on a file, we need to first parse it into a syntax tree
(either concrete or abstract).

5.4.1 Custom solution viability
We immediately discarded the possibility of creating a custom parser. Earlier
in this chapter, we already established that it is out of the scope of this project
to support all possible syntaxes, and parsing a file without supporting the full
syntax would be error-prone at best. Having a custom parser also conflicts with

4https://rollupjs.org/
5https://webpack.js.org/

36

https://rollupjs.org/
https://webpack.js.org/

the goal of the project being easily maintainable, as any changes to TypeScript
syntax would require the work to be replicated in our parser.

5.4.2 Existing parsers
Without the possibility of a custom parser, we need to look at existing TypeScript
parsers and select one to use for our project. Because of our syntax support goals,
we have certain requirements for the parser to be a good fit for our project:

• It must be possible to use the parser from a VSCode extension.

• The parser must support reasonably recent TypeScript and JavaScript syn-
tax.

• The parser must be maintained (had a release within the last year).

• There must be a way to create a "default" analysis for any syntax node
we don’t support (e.g. the syntax tree must be walkable with the visitor
pattern).

With those facts in mind, we considered the following popular projects that
work with TypeScript and inspected them closer:

• The TypeScript compiler from Microsoft: [2, 28] The TypeScript compiler
is already being used in similar use-cases as we need, it obviously supports
its own syntax, and it is actively maintained by a stable team. The compiler
provides a stable, well-defined API, making it easy to keep it up-to-date
without breaking our application, and each parsed node has a ‘forEachChild’
method that walks through its semantic children, skipping syntactic tokens.
This makes it a prime candidate for use in our project.

• SWC: [35] Speedy Web Compiler is written in Rust and requires being
compiled into a binary. This makes it a bad fit for intergrating it with our
extension, as we would need to ship a binary for all platforms we want to
support. While it does provide a clear API for parsing a file into AST, there
are no helper methods for navigating the tree without having custom code
for each syntax type.

• typescript-eslint: [36] The implementation of typescript-eslint internally
uses the TypeScript compiler and converts the TypeScript syntax tree into
an ESTree-compatible AST that can be used by ESLint for linting, taking
the position of an adapter. Using it would, therefore, only add a level of
indirection over using the TypeScript compiler directly.

37

• Babel: [22] Babel is implemented in TypeScript, so it would be usable within
an extension. It is also actively maintained and supports parsing modern
TypeScript. Its primary use-case is transpiling source code by replacing
new syntax with equivalent older, more widely supported syntax. While it
does support TypeScript syntax, it doesn’t support any type checking and
is focused more on the use-case of transpiling, making it a worse fit for our
purposes than TypeScript.

5.4.3 Solution

For parsing source files into a tree that we can analyse further, the TypeScript
compiler from Microsoft is the best choice. This also has more benefits outside of
only parsing – such as using the same compiler VSCode uses internally makes it
almost assured that we will be able to process files in the same way as VSCode
already does, increasing consistency for the end user.

5.5 Semantic identifier resolution

In order to detect references, we need to be able to resolve identifiers to variables
or declarations (if they originate from an environment or a library). There are
two ways in which we need to resolve identifiers. The most apparent one is
when identifier syntax occurs in the code – for that, we need to resolve what
the identifier binds to in its lexical context. The second request we need is for
imports – when a module imports an exported variable from another module, it
creates a binding in this module which identifiers resolve to. The resolution we
need here is to resolve the import to the original, exported variable, so we can
add the use as a reference to the original variable instead of the import.

Implementing this ourselves could be problematic with our goal of reliably
supporting a subset of the language syntax because many syntaxes replace the cur-
rent LexicalEnvironment, which is used for identifier resolution, as was described
in sections 3.3.1 and 3.3.2.

As we have already decided to use the TypeScript compiler for parsing source
files, it is only natural to also use it for binding resolution. In the TypeScript
compiler, all variables and declarations have a unique symbol we can use to
resolve what the identifier is accessing. Using the TypeScript compiler also gives
us the benefit of being able to resolve symbols of properties. While tracking
properties is outside of our goals, resolving their symbols on a ‘best-effort’ basis
allows us to better replace the ‘Find All References’ tool, which does work for
properties.

38

5.6 Detecting operations performed on symbols
Detecting a meaning of an operation performed on a symbol becomes harder as it
crosses from simple syntax and binding analysis to semantics. In the TypeScript
compiler, all semantic logic happens within the ‘Type Checker’ phase, and the
amount of data visible from the outside is extremely limited compared to data
the compiler uses internally. This means that the only two things we can reuse
from the Type Check phase of the TypeScript compiler are type resolutions and
Transient Symbols (see Section 4.7). The flow analysis performed during this
phase is also not exposed by the compiler. This means that this part of the analysis
we will have to implement fully ourselves.

First, we need to define what kinds of operations we want to track. Similar
tools often categorise operations into Reads, Writes, and Calls. These tools are
meant to answer developer questions like “Where is this method called or type
referenced?”, “Where are instances of this class created?”, or “What data is being
modified in this code?”. [1]

As the aim of our tool is to categorise references, we will want to provide more
detailed categories of how variables are used. For example, if we considered only
the Reads, Writes, and Calls categories, then the object in the code in Listing 6
would only be considered to be read, negating the benefits of our tool versus the
existing ‘Find All References tool’.

Here is a more detailed explanation about why has the code in the Listing 6
been categorised the way it has.

• 1) The variable ‘myVar’ is assigned a new instance – this is clearly a write
to the variable.

• 2) The object in ‘myVar’ is retrieved and then converted to a string. The
string is then passed to a function as an argument.

• 3) The object in ‘myVar’ is retrieved, and then property ‘valid’ is read from
it. The only important part here is that the value of the variable is read; the
property read is not considered.

• 4) The object in ‘myVar’ is retrieved and then modified by setting a property
on it. As we are only analysing the variable itself.

• 5) The object in ‘myVar’ is retrieved and passed to functionwith a potentially
unknown implementation. As objects are always passed by reference, this
might do arbitrary operations that will be observable on ’myVar’ too.

• 6) The object in ‘myVar’ is retrieved, then the property ‘destroy’ is read, and
the value of this property is called. As the called expression is a property

39

Listing 6 An example of a reference categorisation to Read/Write/Call.

1 // The query is finding all references of ’myVar ’ variable
2 const myVar = new ClassA (); // 1: Write
3
4 console .log(‘${myVar }‘) // 2: Read
5 if (myVar .valid) { // 3: Read
6 myVar . config = 42; // 4: Read
7 doSomething (myVar); // 5: Read
8 myVar . destroy (); // 6: Read
9 }
10
11 const myVarReference = myVar ; // 7: Read
12 myVarReference . config ++; // 8: Not a ’myVar ’ reference

reference, the object in ‘myVar’ is also used as ‘this’ during the call (see
Section 3.2.5).

• 7) The object in ‘myVar’ is retrieved and stored in the ‘myVarReference’
variable, which can be used by other code arbitrarily.

• 8) This isn’t a ‘myVar’ reference, as we track the usage of symbols, not
instances. Tracking instances might be possible in this simple case, but
when variables are not constant, it would require reliable flow analysis.

As seen from this example, this level of granularity doesn’t help much except
for skipping any potential references in types, which don’t have an impact on
code execution (in TypeScript, one can write type containing ‘typeof <variable
name>’, which resolves to the type of the variable).

Therefore we propose the following categorisation of actions performed on
symbols. These are based on a combination of Asking and Answering Questions
During a Programming Change Task thesis, [1] operations as they are defined by
the ECMAScript specification, personal experience, and intuition.

• Set: This is equivalent to the ‘Write’ operation shown earlier. The object in
the variable is not modified, but instead, the value of the variable itself is
replaced by a different one.

• Modify: This marks situations where the object in a variable is modified.
The most common way of modification is setting a property to a different
value or deleting a property using the ‘delete’ operator.

• Use: For situations where the object in a variable is read, and then the value
of the object is immediately used in some way. For example, it might be

40

converted to a primitive value, compared against another value, iterated
in a loop, or a property of the object might be read. An important aspect
of this use case is that after the action is performed, the object itself is not
accessible by other code.

• Reference: This marks code where the object in the variable is passed by ref-
erence either to another variable or function argument or is returned/yielded
from a function. This operation is important because it marks places where
the track of the object is lost by the analyser, as potentially unknown code
might perform operations on it.

• Call: The value in the variable is used as a function and called.

• Call method: This is a common combination of ‘Use’ and ‘Reference’ –
Object in a variable is read and a property is read from it. The property is
then called, and the object itself is used as ‘this’ during the call.

• Construct: The value in the variable is called using the ‘new’ operator.
While this might appear similar to the Call use-case, and in many aspects
it is, the ECMAScript specification differentiates between these actions in
several important ways. One important difference is that if the callee is a
property reference, then, during the call, the base object is used as ‘this’,
while during construction it isn’t. There are also several built-in objects
that allow both to be called as a function and used as a constructor but
behave differently in either case. An example of this is the ‘Date’ object,
where construction returns a new Date object, while a call returns a string.

• Unknown: This is a fallback action category used when a reference to the
variable is detected inside an unknown or unsupported syntax.

These are the categories shown as a summary in grouped views. When viewing
the list of actual actions, some categories might show more details.

With these categories, we re-analysed the same code as in Listing 6. The result
of this can be seen in Listing 7. The text in parenthesis is the detail shown for
each action when viewing individual actions in the reference list.

A single expression can result in multiple actions, even of different categories.
Examples of this are unary update expressions (‘a++’, ‘++a’), which read the value,
convert it to a number (use), and then set a new value (set).

41

Listing 7 An example of a reference categorisation using more granular categories.

1 // The query is finding all references of ’myVar ’ variable
2 const myVar = new ClassA (); // 1: Set
3
4 console .log(‘${myVar }‘); // 2: Use (Use as string)
5 if (myVar .valid) { // 3: Use (Get property ’valid ’)
6 myVar . config = 42; // 4: Modify (Set property ’config ’)
7 doSomething (myVar); // 5: Reference (Used as argument)
8 myVar . destroy (); // 6: Call method (’ destroy ’)
9 }
10
11 const myVarReference = myVar ; // 7: Reference
12 myVarReference . config ++; // 8: Not a ’myVar ’ reference

5.7 Detecting operations performed on call argu-
ments

Similar to variables, we can use this detection for detecting actions on call ar-
guments. We will analyse the use of each argument independently, identifying
arguments by position or by being a ‘rest’ argument. There are, however, several
key differences in how we treat arguments. One such difference is performing a
‘Set’ on an argument – it doesn’t affect the object that was passed as an argument
but replaces the value with a different one, which complicates tracking which
references of the variable used as an argument contain the original value and
which don’t. In cases when we cannot confirm if the argument contains the
original value, we will display them as an assignment to the argument variable
but won’t continue analysing the variable itself as that might lead to confusing
results in cases where the argument actually cannot reach the call.

We will also extend similar logic to when a tracked object is assigned to a
constant variable – we will allow expanding such assignment to continue tracking
the value through the indirection.

42

Chapter 6

Analyser implementation

In this chapter, we design an implementation architecture for our solution. This
builds primarily on the aspects we discussed in the previous chapter. We also
describe some parts of our solution in greater detail, including a few attempted
approaches that didn’t work and why.

6.1 Architecture
Because we are creating a Visual Studio Code extension, some of the architecture
is dictated by the extension API. [6] For example, we shouldn’t execute any code
when our files are loaded; instead, we need to export an activation function, which
is called when our extension is activated. All setup and even registration must
happen as a result of this function being called.

The primary way for users to interact with our extension is by running
commands (those can be executed directly, or buttons in the UI can be configured
to execute them, this will be discussed in Chapter 7). Commands are statically
defined in the extension manifest, but our activation function is responsible for
registering handlers for those commands. The handler is simply a function, but
we chose to instead create an interface and make all commands a class. This
allows us to encapsulate some behaviour common to all commands, like the ability
to indicate the progress of long-running commands. It also standardises the way
of adding command handlers in our project. All commands also hold references
to global instances they will need for execution.

At the core of analysing a TypeScript project is an ‘AnalysisProject’ class.
This class is responsible for the TypeScript equivalent – ‘Program’ class, and for
containing analysis results and updating them when necessary by clearing old
analyses and re-running the analyser on the project.

There can be multiple projects loaded at the same time – all loaded projects

43

are contained in a ‘ProjectResolver’ class. This class is responsible for managing
active projects, disposing of them when necessary, and making sure there are no
duplicate projects – only one project per config file. It also caches the results of
resolving files to projects to increase responsiveness.

6.2 Project resolution
As was discussed in Section 5.3, before we can start analysing the program, we
need to define the scope for the analysis. This means detecting source files that
should be considered part of the current project and will later be checked for
using identifiers exposed by the file user is asking information about.

This is implemented by having a generator of possible project configurations.
At the core of this algorithm, we take the next possible config file, load it, and
verify whether the requested file is included in the project. If it is, then we found
our project and we can return it; otherwise, we dispose of the loaded project to
free up resources and continue with the next possible project file. If none remain,
then we failed to find a project for this file and an show error message to the user.

The generator of possible project configurations attempts to first use Type-
Script’s in-built resolution, which works by walking up the directory tree and
looking for a file with the specified name in the directory. At first, we attempt
this with the standard ‘tsconfig.json’ config name. If that fails, we try with the
‘jsconfig.json’ filename, which is a name commonly used for projects written in
pure JavaScript that use TypeScript for checking only, not for compilation.

If the above strategy fails, then we attempt the same strategy ESLint uses –
first, we resolve the ESLint configuration for the current file. As this is non-trivial
and involves configuration inheritance and possibly conditional configuration,
we offload this task to the eslint library. Then we parse the resolved configuration
for a list of TSConfig projects that are required for the ‘typescript-eslint’ library
to function.

The use of a generator is important, as resolving the configuration and testing
individual configuration files is slow. Thanks to using a generator and stopping
as soon as we find a valid match, we usually only use the fast path of finding
‘tsconfig.json’, only rarely needing to use the slow resolution using ESLint.

6.3 Selecting files to analyse
When the TypeScript compiler loads a project configuration, it also parses all
loaded files, performing the first three stages as described in Section 4.7. All other
compilation stages are only performed when necessary. However, while the Type

44

Check stage is also lazy, only analysing code as necessary, running any query on
the Type Checker requires creating it first, which performs Binding on all source
files. [29, 28]

This means that for our analysis, there is little benefit in only selecting a
subset of files to analyse, as doing so won’t improve our asymptotic complexity in
relation to the source file count. Therefore we perform a full walk of the project
before answering any queries about references or providing information about
functions. This part of the analysis is not dependent on the query and can be
freely reused by any following queries, increasing their performance significantly
and allowing for a smoother and more interactive experience at the cost of a
slightly longer startup time.

We do, however, skip declaration files as these do not contain any executable
code and therefore cannot contain runtime references to the analysed symbols.
We also skip library files (where we can detect them by detecting the presence of
the ‘node_modules’ folder in the path to those files), as any library files (if they
are not declaration files, which are already skipped) are likely to be compiled code,
while this tool is designed to work with source code containing type information.
Libraries also cannot reference the application code directly, and analysing the
exact implementation of library functions can be problematic, as it might change
across library versions without notice.

Therefore we will treat any object passed to a library as simply being ‘Refer-
enced’.

6.4 Analysing a syntax tree
As one of our primary design goals is performance, we need to design the analysis
such that it is performant on large and complex codebases. For this, we adopted
a similar strategy as is used in the TypeScript compiler: The analysis that is
performed on all source files doesn’t contain any loops (with the exception of
symbol resolution) – it performs a single walk over the the syntax tree of all
analysed files, saving the rules in a way that they can be easily used later by more
specific analysis without having to process any part of syntax tree again.

This is implemented using a visitor pattern, where there is a function defined
for processing each supported syntax kind and one fallback function that performs
analysis of unsupported syntax, which is done by analysing child nodes and
marking their results as “used in an unknown way”. As JavaScript doesn’t have
any function overloading capabilities, there is a need to implement jumping to
the correct analysis code ourselves. This has been implemented by having a
map of syntax kinds1 to functions and a central function that finds a specific

1In the TypeScript compiler, syntax kinds are represented using a numeric enum. The version

45

Listing 8 An example of an update statement and the matching syntax tree.

1 variable . property . anotherProperty *= 42;
2
3 ExpressionStatement
4 \--- BinaryExpression
5 +--- PropertyAccessExpression
6 | +--- PropertyAccessExpression
7 | | +--- Identifier (" variable ")
8 | | \--- Identifier (" property ")
9 | \--- Identifier (" anotherProperty ")
10 +--- PlusEqualsToken
11 \--- NumericLiteral (42)

function based on the kind of the node and calls it, otherwise performing the
default analysis.

During this analysis, we need some way of passing data between nodes
because each action that happens in the code is a combination of the actual action
and the symbol it is performed on.

6.4.1 Experiment: Passing the necessary data from parrents
to descendants

In the first implementation of this, we attempted to consider an ‘analysis context’,
which contained what action is being performed on the code. Any syntax could
then create a modified variant of this context (for example, adding a mark that
this node is being written to) and process its child nodes using this context.

Problem: Nodes that perform multiple operations on a single node

In Listing 8, there is an example of a binary expression with the ‘*=’ operator.
The behaviour of this expression is to read the value on the left side, convert
it to a number, then read the value on the right side, convert it to a number,
multiply the numbers, and write the result to the reference provided by the
left side. When using the concept of passing the context top-down, this can be
problematic, as it would either require visiting the left side twice (which would
produce inaccurate results, as both ‘variable’ and ‘variable.property’ are only read
once during runtime) or making the state that is passed down more complex.
Making the state more complex became problematic, as then all statements had to
consider all possibilities of how they are used and how it affects their descendants.

used in this project recognises 362 different syntax kinds

46

6.4.2 Experiment: Passing the necessary data from descen-
dants to parents

The second approach we tried was that analysing a node produces a result which
describes possible normal completions similar to it being interpreted (as described
in Section 3.3.2). This allows us to only visit each node exactly once while main-
taining a fairly simple state that is being passed – either a value or a symbol
reference. The only complex case here is a “union” of completions, which con-
tains multiple possible completions and performs any action on each of them
individually.

Problem: Evaluation of some nodes is context-sensitive

With this approach we encountered the problem that some syntax kinds have
different meanings based on their location. The most notable ones are object
and array literals, which in the TypeScript tree represent both actual literals
used to create objects and arrays, but also can be present on the left side of the
assignment operator and in function parameter declarations, where they behave
as a binding pattern (also called destructive assignment). This case is evaluated
by getting the value that is assigned and matching its properties to the binding
pattern properties, assigning the property values to the same-named variables.
There is also a separate syntax with a similar meaning when the variables are
being created during a destructing assignment.

An example of a more complex binding pattern situation is shown in Listing 9.
There object ‘globalThis.Math’ is read and passed to the destructing pattern. The
value of property ‘PI’ is assigned to the variable ‘PI’, and the value of property
‘acos’ is assigned to the variable ‘invCos’.

6.4.3 The final solution

The final solution is a combination of the above methods. Most of the nodes
pass evaluation data from descendants to parents, but some nodes also perform
analysis on their children in all or some cases instead of processing them using
the corresponding visitor functions. Examples of this are the above-mentioned as-
signment operator and parameters, object literals that also process their property
assignments, and class declarations that aggregate and reorder their properties
based on being a function, a field, a static field, or a static block before analysing
them to match execution order during runtime.

47

Listing 9 An example of a binding pattern and the matching syntax tree.

1 let PI , invCos ;
2 // Syntax tree of only the following statement is shown
3 ({
4 PI ,
5 acos: invCos
6 } = globalThis .Math);
7
8 ExpressionStatement
9 \--- ParenthesizedExpression
10 \--- BinaryExpression
11 +--- ObjectLiteralExpression
12 | +--- ShorthandPropertyAssignment
13 | | \--- Identifier ("PI")
14 | \--- PropertyAssignment
15 | +--- Identifier ("acos")
16 | \--- Identifier (" invCos ")
17 +--- EqualsToken
18 \--- PropertyAccessExpression
19 +--- Identifier (" globalThis ")
20 \--- Identifier ("Math")

6.5 Function interactions analysis

In order to answer a query about how a function interacts with outside parts of
the program, we need to detect which function each action belongs to and which
symbols are “outside” of the function.

This is implemented by the analysis context containing the current “flow
container”, which represents an area of code which can be executed by any code
that has a reference to it. Examples of these are the source file itself, any variant
of a function declaration, class methods, and a class constructor. Any action that
is performed as a result of a specific container being executed is added to the
container.

While flow containers generally match a subtree of a syntax tree without
subtrees of nested flow containers, there are exceptions to this. The most im-
portant exception is a class declaration. Classes can define both static members
and instance fields – static members are initialised during declaration and so
belong to the flow container that contains the class, but instance field initialisers
are executed during the construction of the class instance, so they belong to the
constructor flow container.

A flow container doesn’t even have to be a specific node in the syntax tree.
An example of this is (again) classes, which can have implicit constructors that

48

only call the constructor of a base class (if any) and run field initialisers.

6.5.1 Arguments
We also need to resolve what happens to the individual arguments passed to the
function. As we resolve arguments by index, we need to resolve each possible
index independently and then what happens to the ‘rest arguments’. This is only
evaluated lazily when the query requires doing so and can have several results:

• If the function contains a reference to the ‘arguments’ object then we
mention every usage of the ‘arguments’ object as a possible use, as we
cannot track access to elements of an array.

• When the position of the argument being analysed matches a destructing
pattern, it is processed the same as a destructive assignment.

• When the position of the argument being analysed matches an identifier,
and the identifier is never ‘Set’ and only accessed from this functions flow
container (not from a nested function), then the uses of the argument are
the uses of the identifier.

• When the position of the argument being analysed matches an identifier,
but the identifier is either set or referenced in another flow container, then
we treat the usage of the argument as an assignment to this identifier.

When we are displaying the usage of an argument or a variable, its usage a
as call argument can be resolved further if we can be sure about the function
implementation. This is checked by the call resolving to a single symbol (ignoring
aliased symbols) and checking that we know all the locations of possible writes to
the symbol – it must be either a ‘const’ variable or a local variable (either defined
in a function or in an ES module) for which we know about exactly one ‘Set’ use
and no ‘Unknown’ use.

6.6 Syntax support
As TypeScript recognises 362 different syntax kinds, some of which have multiple
meanings, it is not realistic to support all of themwithin the scope of the project, as
that would mean having to catch up to the 9 years of TypeScript development. [28]
Instead, we chose three approaches for selecting the syntax kinds we want to
support the most.

49

6.6.1 Syntax important to our analysis
The first are syntaxes that are most important to our primary goal of finding
references of identifiers and functions they belong to, that is, syntaxes that access
or manipulate the current VariableEnvironment or LexicalEnvironment, or are a
flow container. For ES2023, this means primarily the ‘this’ expression and syntaxes
that call the internal method ‘ResolveBinding’. For flow containers, this means
any syntax that creates an object with either ‘[[Call]]’ or ‘[[Construct]]’ internal
method, which consists primarily of all kinds of function and method declarations,
and class declarations. This also includes any syntax that is necessary to properly
support these, such as ‘source file’, ‘statement list’, and ‘block’ for detecting bodies
and variable and parameter declarations.

6.6.2 Popularly used syntax
As the second factor for prioritisation, we chose to use empirical data based
on public GitHub repositories. We scanned the 100 most popular (most starred)
public repositories on GitHub, scanning each file and counting encountered syntax
tokens using the ‘forEachChild’ visitor pattern and accumulating the total seen
count. This data was used to choose more syntax kinds to support.

6.6.3 Other supported syntax
The third reason for implementing particular syntax was some relation to other
supported syntax, such as completeness of possible children of some syntax or
experimentation convenience. Examples of this is implementing all the possible
class children and unary and binary operators, even if some are rarely used.
Finally, some syntax support was implemented simply because it was part of
some of the experiments we performed.

6.6.4 Default analysis behaviour
For syntax nodes which we don’t support, there is a default behaviour. This
is to visit all children and try to analyse those recursively. Completion values
returned from the children are then marked as used in an ‘Unknown’ way, and a
special ‘Unsupported completion’ is returned. This completion causes a warning
in any node that uses it as a value (for example, property assignments and calls).
Furthermore, the flow container in which this occurs is marked as containing
unsupported syntax, which prevents doing a more detailed analysis of its interac-
tions, instead keeping the unfiltered results in accordance with our goal to display
actions when there is a doubt about whether they are used.

50

6.6.5 Intentionally unsupported syntax
Some syntax is intentionally unsupported due to its unpredictable behaviour or
due to it being a legacy syntax that is no longer recommended to use. Examples
of legacy, unsupported syntaxes are the ‘caller’ property, and the ‘with’ state-
ment. Examples of syntax unsupported due to unpredictable behaviour are the
‘arguments’ object, direct ‘eval’ calls and JSX syntax that depends on the JSX
interpreter.

6.7 Testing
Besides manual testing, we also use automated unit and integration testing. It is
implemented using the Mocha framework. The testing downloads and start a full
VSCode instance to also be able to test usage of VSCode API.

While the tests are not comprehensive, they do provide an automated way
of testing for regressions when dependencies are updated. This helps with our
goal to make the extension easily maintainable and allows us to easily update the
version of the TypeScript compiler we are using.

51

52

Chapter 7

User interface

In this chapter, we discuss how our tool integrates into the Visual Studio Code
from the user’s point of view. We also design an interface for requesting data
from our tool and for displaying results.

7.1 Integrating into Visual Studio Code
As our application is an extension, any user interface we create has to be integrated
into Visual Studio Code using its API. The API provided by VSCode is powerful,
allowing us to even create fully custom HTML-based views. It also provides many
APIs for existing UI elements, such as creating buttons, trees, panels, notifications,
and more. [6]

Running commands exposed by our extension can happen in three ways: As
a result of interacting with a UI element we provide, by running a command
from the command palette (which can always be accessed by pressing ‘F1’), or by
having a keybinding assigned to our command.

7.2 Example code for this section
Throughout this section, we will display various aspects of the interface on the
code shown in Listing 10.

7.3 Interfaces of similar tools
Despite the ability of computers to generate visualisations containing condensed
information, such as graphs, diagrams, and plots, the more complex solutions
tend to fail to gain traction and developers continue showing a preference for

53

Listing 10 An example code for analysis.

1 export class ClassA {
2 public valid: boolean = true;
3 public config : number = 0;
4
5 public destroy (): void {
6 this.valid = false;
7 }
8 }
9
10 export function doSomething (aInstance : ClassA): void {
11 aInstance .config --;
12 }
13
14 export function ReferenceResolutionExample (): void {
15 const myVar = new ClassA ();
16
17 if (myVar .valid) {
18 myVar . config = 42;
19 doSomething (myVar);
20 myVar . destroy ();
21 }
22 }

54

Figure 7.1 Result of a ‘Find All References’ query on the variable ‘myVar’ from List-
ing 10.

more simple visualisations, such as tree browsers. There are cases of successful
graphical visualisation tools, such as UML, but those tools are relatively rare and
specialised for their purposes. [37]

Because of that and because one of our goals is replacing the existing ‘Find
All References’ and ‘Show Call Hierarchy’ tools, it might be a good idea to follow
a similar design as these successful tools do. In Visual Studio Code, they are
implemented using a tree view, which is one of the UI primitives provided by the
API. [5, 6]

An example result of performing the ‘Find All References’ query can be seen
in Figure 7.1.

7.4 Request interface
In order to make a query to our analyser, the user must first select a symbol they
are interested in and then run a command to show the requested visualisation.
Here we again chose a similar way as the existing tools – for the user to position
the cursor in the editor on a position containing the symbol they are interested
in, followed by invoking a command from the command palette to find usages.

An example of running a command from our extension can be seen in Fig-
ure 7.2. The editor cursor is positioned on the ‘myVar’ text on line 4 as indicated
by the mouse cursor (the cursor disappears when the command palette is opened).

Unlike built-in tools, we chose not to provide default keyboard shortcuts
for our commands due to the high potential to conflict with existing tools or
extensions. Instead, users can use the shortcut editor to assign a shortcut to our
commands, potentially reassigning the shortcuts for finding references if they
choose to do so.

A description of all the commands the tool provides can be found in Ap-
pendix A.

55

Figure 7.2 Flow of running a command from our extension.

7.4.1 Implementation of symbol selection

Deducing a symbol from the position of the cursor has several difficulties. One
difficulty is that finding a corresponding syntax node is non-trivial, as multiple
nodes can overlap with the cursor’s position. Namely, for any nodes that overlap,
any parent node also overlaps. We can solve this by selecting the lowest node,
which has a high chance of corresponding to the expected symbol. Another
problem is that cursor is always positioned between two characters, which might
be the edge between two nodes. The third problem is that in the TypeScript
syntax tree, there might be zero-length nodes inserted by the parser.

In TypeScript language tools, this is solved by having a rather complex ad-
justment mechanism that adjusts the selected position based on complex rules
and types of nodes. This implementation is, however, not exposed in the API, and
makes use of many other internal compiler APIs, making it hard to extract it.

Therefore we chose to use only a simple variant of the algorithm TypeScript
language tool uses, which searches for the first lowest node in the syntax tree that
touches the cursor, skipping specific kinds of nodes and finding a ‘best match’
for the position. While this is a worse solution than TypeScript offers and places
greater requirements on cursor positioning when invoking commands of our
extension, we have not yet encountered a case when this prevents selecting the
desired target for the command.

56

Figure 7.3 Result of a ‘Analyse usage of symbol at cursor’ query on the variable ‘myVar’
from Listing 10.

7.5 Result interface

Our extension provides several views, depending on the command used. Some
commands have multiple variants that group the results differently to make it
easier to find relevant results. All these views are implemented using the tree
browsing API provided by VSCode. Clicking on a result focuses on the relevant
code that created this entry.

An example result of an ‘Analyse usage of symbol at cursor’ query can be
seen in Figure 7.3. It can be seen that this result is similar to the result of ‘Find
All References’, but also includes extra details, like the function that performs
these cations and what actions are performed.

7.5.1 Lazy generation of nodes

One of the features the tree browsing API provides is that children of nodes are
only requested when the node is displayed and expanded (nodes define if they
are not expandable at all or if they are collapsed or expanded by default). This
allows displaying more details that can be displayed by expanding specific nodes,
including details that require extra calculations, without a performance penalty if
these details are not requested.

An example of this can be seen in Figure 7.4. There the highlighted line
represents passing a value to a function that has been successfully resolved. Users
can expand such node to show how the function uses the argument – in this
case, it is assigned to a variable named ‘aInstance’, followed by reading a property
‘config’ and modifying the passed object by updating the same property.

The benefit of lazy generation here is, that the usage of the argument is only
analysed when the user expands the node, increasing the performance of the first
query.

57

Figure 7.4 Result of expanding an argument usage node from Figure 7.3.

7.5.2 Visible names for symbols
One of the drawbacks of the existing ‘Show Call Hierarchy’ tool is that functions
are displayed only as a function name. In case of methods the name of the
parent class is shown too. This can be problematic in cases where proper naming
conventions are not used or when function names make sense only depending
on their context, such as the file they are in.

We solve this by providing a mechanism that shows the full path to the
referenced function, including their originating file.

7.5.3 Displaying actions
On the lowest level, we display the actions. We don’t attempt to name individual
actions; instead, we display a preview of the code responsible for the action,
including a few characters in front of the relevant code and the rest of the line
behind the code while highlighting the relevant part. The code is prefixed by
a short description of the action type (such as ‘Call’, ‘Use as string’, or ‘Get
property’). In some cases, we also show extra information, such as the name
of the property being accessed or modified. This is a behaviour similar to the
search tool or the find references tool. We hope for this to allow quicker use of
the results, using some results without having to focus on them in the editor.

58

Chapter 8

Evaluation

In this final chapter we analyse the tool we created, the use cases it supports
and the benefits and drawbacks of using it over other tools. We also perform an
experiment measuring the frequency of syntax usage in popular repositories and
use it to measure the syntax support of our tool.

8.1 Requirements to use
Our solution makes certain assumptions about the project it is being used on.
These assumptions require a project that can be compiled using a standard,
unpatched TypeScript compiler from Microsoft and that the project is configured
using either a ‘tsconfig.json’ file, ‘jsconfig.json’ file, or has a working ‘typescript-
eslint’ setup with support for type-based rules.

We also don’t support projects requiring a newer TypeScript compiler version
than the version packed with our extension.

8.2 Example uses on real projects
In this section we will show a few examples of how our tool helps on existing
projects.

8.2.1 Finding code that sets node flags in the TypeScript
compiler

The TypeScript compiler defines a ‘Node’ interface. One of the properties this
interface define is a ‘flags’ property containing information about the type of the
node. During the development of this tool, we wanted to know which stages of
compilation modify these flags in order to understand if we can reliably use them.

59

Figure 8.1 Results from the ‘Find All References’ tool when analysing ‘flags’ property
of the ‘Node’ interface in the TypeScript compiler.

As the compilation stages of the TypeScript compiler are split into files we only
needed to find files that set these flags.

Using the in-built ‘Find All References’ tool, however, returned 255 results
across 35 files which we would have to go through manually. By using our tool
(to be exact the ‘Analyse usage of symbol at cursor (Group by file)’ command) we
received a concise summary of which files perform which operations. This can
be seen in Figures 8.1 and 8.2.

Following that we wanted to find functions that modify these flags. To do so
we used the ‘Analyse usage of symbol at cursor (Group by usage)’ command from
our tool. The results of this can be seen in Figure 8.3. Expanding the node named
‘(Set)’ displays 33 functions that manipulate the ‘flags’ property.

8.2.2 Overview of large function’s interactions in Webpack
code

Webpack code contains many large functions generating emitted code. One
such function we were interested in is ‘renderBootstrap’. We were interested
in what data or functions this function uses besides the passed arguments and
‘this’. Running the ‘Show information about function’ query while focused on the

60

Figure 8.2 Results from our tool when analysing ‘flags’ property of the ‘Node’ interface
in the TypeScript compiler and grouping by file.

Figure 8.3 Results from our tool when analysing ‘flags’ property of the ‘Node’ interface
in the TypeScript compiler and grouping by use.

61

Figure 8.4 Results from our tool when running the ‘Show information about function’
query on the ‘JavascriptModulesPlugin.renderBootstrap’ method in the Web-
pack code.

function produced an overview shown in Figure 8.4. Opening the ‘Arguments’
folder in the results would show the usage of arguments.

Two notes about the output: The (Use) "/path/..." entry represents a
module imported as a namespace. The ‘undefined’ entry represents the undefined
primitive value, but in ECMAScript, it is defined as a global variable, not a
keyword.

The in-built tool to find references doesn’t help with this task at all. The tool
to ‘Show Call Hierarchy’ allows seeing outgoing calls, but those calls are not
sorted at all and don’t show where in the function the call happens – only that it
does.

8.3 Experiment: Testing on popular repositories
In order to test our choice of syntax support prioritisation we have performed
an experiment in which we scanned the 100 most starred public repositories
on GitHub, which GitHub recognises as written in TypeScript and another 100
repositories identified as written in JavaScript. We have done this experiment
multiple times during the development of our tool, using it to refine our choice of
supported syntax further. The results described below represent the last run we
performed on 16/07/2023.

62

Identifier

32.3%

PropertyAccessExpression

6.9%StringLiteral
5.9%CallExpression
5.4%

ExpressionStatement
4.1%

[Other]

45.4%

Figure 8.5 This chart shows the 5 most popular syntax tokens and the frequency of
their occurrence in TypeScript repositories.

The experiment is not reproducible because the list of the 100 most popular
repositories can change and because the repositories themselves are likely to
change. More details about how this experiment has been performed can be found
in the Appendix B, including instructions on how to run it again.

8.3.1 Results of the scan

The scan indicated how often is specific syntax used in TypeScript and JavaScript
code. In the case of TypeScript repositories, a total of 82, 124, 196 syntax nodes
have been scanned. For JavaScript repositories a total of 100, 649, 046 nodes.

In both cases, the most used syntax is ‘Identifier’, amounting to 32.3% and
31.1% of all syntax nodes in TypeScript and JavaScript repositories, respectively.
The 5 most popular syntax nodes of TypeScript repositories scan are shown in
Figure 8.5. For TypeScript repositories we also counted in how many repositories
each syntax occurred in. The complete results are available in the attached data,
as described by Appendix C. A summary is that 98 syntax kinds occurred in at
least 95% of scanned repositories.

63

Fully supported

89.6%

Partially supported
7.2% Not supported
3.2%

Figure 8.6 This chart shows syntax coverage of our tool on TypeScript repositories,
proportional to total number of occurrences of a syntax kind.

Fully supported

64.6%

Partially supported

22.1% Not supported
13.3%

Figure 8.7 This chart shows syntax coverage of our tool on TypeScript repositories,
proportional to the count of repositories the syntax occurs in.

8.3.2 Coverage
With this data, we calculated the coverage our tool has for the syntax used. We
divided support for each syntax kind into three categories:

• Fully supported: Our tool supports analysing this syntax.

• Partially supported: Our tool supports analysing this syntax if the parent
node is supported; this includes, for example, mathematical operators,
which are only supported as part of unary and binary expressions.

• Not supported: Our tool doesn’t recognise this syntax, analysing it using
the fallback behaviour for unknown syntax.

Percentages of these categories have been calculated based on both total
occurrences of each syntax kind, as well as the number of repositories the syntax
kind occurs in. Results of this can be seen in figures 8.6 and 8.7.

64

Conclusion

Goals
We have met the goals of this thesis. The description of how we completed
individual goals follows.

• We have analysed and implemented a Visual Studio Code extension for
statically analysing TypeScript codebases.

• JavaScript is also supported by our solution to the same degree as it is
supported by the TypeScript compiler.

• Our solution can analyse the uses of a value being passed to a function,
even transitively, in cases where we can be sure which function is being
called. The dynamics of the JavaScript language, allowing the replacement
of declared functions or methods, heavily restrict which cases we can treat
as reliable. There are also several cases where we chose to intentionally not
provide transitive resolutions as they might lead to confusion.

• Our solution can be invoked using commands from within Visual Studio
Code, and we display results using a tree-like view, which is also used by
similar built-in tools. We have several different views that display results
based on the query the user requested.

• We treat any usage potentially relevant to the query conservatively. In
cases where we cannot be sure whether a certain action happens or about
the specifics of the action, we treat is as potentially performing arbitrary
action and show so to the user.

• Our solution is designed with performance in mind, caching project-wide
analyses and deferring more specific ones until they are necessary for
displaying results.

65

Future work
JavaScript and TypeScript are complex languages that are continuously evolving.
Furthermore, code development is a complex subject, and there are many different
approaches and project setups that we encountered during the development of
this tool, which we don’t fully support.

Increase syntax support
The syntax we currently support is not based on any standard or TypeScript
compiler version. There is also no summary of what syntax is supported and
which is not. It would be beneficial for the end user to have a summary of what
syntax support to expect. This could be created by, for example, categorising all
syntax kinds the TypeScript compiler recognises and documenting our support
for these categories.

We also don’t support JSX/TSX syntax at all because the implementation of
the syntax is specific to the environment it is used in. Despite this, it is an often
used syntax that is commonly used with a specific environment: React. It would
be beneficial to support this specific use-case to increase our coverage.

Improve the accuracy of the analysis
At the moment, flow analysis when analysing an object passed as a function
argument is quite limited and several cases prevent performing it altogether. This
could be improved by using more sophisticated flow analysis to support cases
like the argument variable being reassigned. There could also be improvements
made for narrowing down possible paths based on known facts about the value
passed to the function, based on the caller.

More testing
Our current testing setup only tests a subset of supported syntaxes and even fewer
interactions between syntaxes. It would be beneficial to have more test cases by
adopting existing tests from other projects, such as TypeScript or Test262, as well
as more testing from the user base for various use cases we didn’t consider while
implementing this tool.

66

Bibliography

[1] Jonathan Sillito. “Asking and Answering Questions During a Programming
Change Task.” PhD thesis. The University Of British Columbia, 2006.

[2] Microsoft. TypeScript Homepage. https://www.typescriptlang.org/.
[Online; accessed 8-July-2023].

[3] Microsoft. Visual Studio Code Homepage. https://code.visualstudio.
com/. [Online; accessed 8-July-2023].

[4] Stack Overflow Developer Survey. https://survey.stackoverflow.co/
2022. [Online; accessed 8-July-2023]. 2022.

[5] Microsoft. Visual Studio Code - Open Source Repository. https://github.
com/microsoft/vscode. [Online; accessed 8-July-2023].

[6] Microsoft. Visual Studio Code API Documentation. https://code.visual
studio.com/api. [Online; accessed 8-July-2023].

[7] Microsoft. Language Server Protocol Specification - 3.17. https://micros
oft.github.io/language-server-protocol/specifications/lsp/
3.17/specification/. [Online; accessed 8-July-2023].

[8] Code - OSS: Language Features for TypeScript and JavaScript files extension
source. https://github.com/microsoft/vscode/tree/main/extens
ions/typescript-language-features. [Online; accessed 8-July-2023].

[9] CodeQL Homepage. https://codeql.github.com/. [Online; accessed
8-July-2023].

[10] Node.js Homepage. https://nodejs.org/en/about. [Online; accessed
8-July-2023].

[11] ECMAScript® 2023 Language Specification. ECMA-262. 13th edition. Ecma
International. June 2022.

[12] Ecma International. Official ECMAScript Conformance Test Suite Repository.
https://github.com/tc39/test262. [Online; accessed 8-July-2023].

[13] WHATWG. WHATWG Standards list. https : / / spec . whatwg . org/.
[Online; accessed 8-July-2023].

67

https://www.typescriptlang.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://survey.stackoverflow.co/2022
https://survey.stackoverflow.co/2022
https://github.com/microsoft/vscode
https://github.com/microsoft/vscode
https://code.visualstudio.com/api
https://code.visualstudio.com/api
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://github.com/microsoft/vscode/tree/main/extensions/typescript-language-features
https://github.com/microsoft/vscode/tree/main/extensions/typescript-language-features
https://codeql.github.com/
https://nodejs.org/en/about
https://github.com/tc39/test262
https://spec.whatwg.org/

[14] ECMAScript® 2021 Internationalization API Specification. ECMA-402. 8th
edition. Ecma International. June 2021.

[15] Node.js API documentation. https://nodejs.org/api/. [Online; accessed
8-July-2023].

[16] V8 JavaScript engine Homepage. https://v8.dev/. [Online; accessed
8-July-2023].

[17] SpiderMonkey JavaScript/WebAssembly Engine Homepage. https://spide
rmonkey.dev/. [Online; accessed 8-July-2023].

[18] JavaScriptCore WebKit wiki page. https://trac.webkit.org/wiki/
JavaScriptCore. [Online; accessed 8-July-2023].

[19] Test262 Report Project. https://test262.report/. [Online; accessed
8-July-2023].

[20] Node Package Manager Homepage. https://www.npmjs.com/. [Online;
accessed 8-July-2023].

[21] NPM package.json documentation. https://docs.npmjs.com/cli/v9/
configuring-npm/package-json. [Online; accessed 8-July-2023].

[22] Babel Documentation. https://babeljs.io/docs/. [Online; accessed
8-July-2023].

[23] Webpack documentation - Tree Shaking. https://webpack.js.org/
guides/tree-shaking/. [Online; accessed 8-July-2023].

[24] TylerMcGinnis. JavaScript Modules: From IIFEs to CommonJS to ES6Modules.
https://ui.dev/javascript-modules-iifes-commonjs-esmodule
s. [Online; accessed 8-July-2023]. 2019.

[25] ClojureScript Homepage. https://clojurescript.org/. [Online; ac-
cessed 8-July-2023].

[26] State of JavaScript. https://2022.stateofjs.com/en-US/. [Online;
accessed 8-July-2023]. 2022.

[27] ESLint documentation of a ’no-shadow’ rule. https://eslint.org/docs/
latest/rules/no-shadow. [Online; accessed 8-July-2023].

[28] TypeScript GitHub repository. https://github.com/microsoft/TypeSc
ript. [Online; accessed 8-July-2023].

[29] TypeScript Compiler Notes GitHub repository. https : / / github . com /
microsoft / TypeScript - Compiler - Notes. [Online; accessed 8-July-
2023].

[30] TypeScript Website GitHub repository. https://github.com/microsoft/
TypeScript-Website. [Online; accessed 8-July-2023].

68

https://nodejs.org/api/
https://v8.dev/
https://spidermonkey.dev/
https://spidermonkey.dev/
https://trac.webkit.org/wiki/JavaScriptCore
https://trac.webkit.org/wiki/JavaScriptCore
https://test262.report/
https://www.npmjs.com/
https://docs.npmjs.com/cli/v9/configuring-npm/package-json
https://docs.npmjs.com/cli/v9/configuring-npm/package-json
https://babeljs.io/docs/
https://webpack.js.org/guides/tree-shaking/
https://webpack.js.org/guides/tree-shaking/
https://ui.dev/javascript-modules-iifes-commonjs-esmodules
https://ui.dev/javascript-modules-iifes-commonjs-esmodules
https://clojurescript.org/
https://2022.stateofjs.com/en-US/
https://eslint.org/docs/latest/rules/no-shadow
https://eslint.org/docs/latest/rules/no-shadow
https://github.com/microsoft/TypeScript
https://github.com/microsoft/TypeScript
https://github.com/microsoft/TypeScript-Compiler-Notes
https://github.com/microsoft/TypeScript-Compiler-Notes
https://github.com/microsoft/TypeScript-Website
https://github.com/microsoft/TypeScript-Website

[31] TypeScript GitHub Issue: Typescript Specifications version. https://github.
com/microsoft/TypeScript/issues/15711. [Online; accessed 8-July-
2023].

[32] Microsoft. TypeScript Handbook. https://www.typescriptlang.org/
docs/handbook/intro.html. [Online; accessed 8-July-2023].

[33] TypeScript GitHub Wiki. https://github.com/Microsoft/TypeScript
/wiki. [Online; accessed 8-July-2023].

[34] Joshua Bloch. Effective Java programming language guide. Addison Wesley,
2001.

[35] SWC Homepage. https://swc.rs/. [Online; accessed 8-July-2023].

[36] typescript-eslint project homepage. https://typescript-eslint.io/.
[Online; accessed 8-July-2023].

[37] Steven P Reiss. “The paradox of software visualization”. In: 3rd IEEE Inter-
national Workshop on Visualizing Software for Understanding and Analysis.
IEEE. 2005, pp. 1–5.

69

https://github.com/microsoft/TypeScript/issues/15711
https://github.com/microsoft/TypeScript/issues/15711
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.typescriptlang.org/docs/handbook/intro.html
https://github.com/Microsoft/TypeScript/wiki
https://github.com/Microsoft/TypeScript/wiki
https://swc.rs/
https://typescript-eslint.io/

70

Appendix A

Using the extension

The extension has been tested on Manjaro Linux and a clean Windows 10 (22H2)
installation. The tested hardware had a x86_64 architecture and 8GB of RAM.
Visual Studio Code versions 1.79.2 and 1.80.1 were tested.

Installation

The included digital attachments include a prebuilt version of the extension –
‘ts-usage-analyser.vsix’. More details about other included attachments can be
found in Appendix C.

If one doesn’t want to use the prebuilt version, the instructions to build the
extension are included in the programmer documentation in the source folder.
Another alternative is to use a version built by a GitLab CI script:

https://gitlab.mff.cuni.cz/pacalm/ts-usage-analyser/builds/a
rtifacts/master/browse/ts-usage-analyser?job=extension-build

To install the extension an installation of Visual Studio Code is necessary first.
Visual Studio Code can be downloaded from:

https://code.visualstudio.com/download
After installing and opening Visual Studio Code, the extension can be installed

by going to the ‘Extensions’ tab, clicking on the three dots button in the top right
of the extensions panel and selecting ‘Install from VSIX...’. This will open a
dialogue that allows selecting the ‘ts-usage-analyser.vsix’ file in order to install it.
This button can be seen in Figure A.1.

Alternative to this menu is by dragging the extension file and dropping it over
the list of extensions.

71

https://gitlab.mff.cuni.cz/pacalm/ts-usage-analyser/builds/artifacts/master/browse/ts-usage-analyser?job=extension-build
https://gitlab.mff.cuni.cz/pacalm/ts-usage-analyser/builds/artifacts/master/browse/ts-usage-analyser?job=extension-build
https://code.visualstudio.com/download

Figure A.1 Location of the button to manually install an extension.

Examples

The included digital attachments include example code that has been used to
develop and test the extension. The code is present in the ‘examples’ folder. This
code is also used for automated testing.

To open the example project open Visual Studio Code, select ‘File’->‘Open
folder...’ and select the ‘examples’ folder using the file picker. The extension will
activate automatically when any JavaScript or TypeScript file is opened (the file
must be detected as such by VSCode; this is indicated in the bottom right when
any file is opened).

The example project contains several folders, each of these containing a
README file describing what part of our analysis is showcased in the files in
said folder.

Note, that while the extension includes all its dependencies in the vsix bundle,
the example project cannot make use of these. Our tool should be able to analyse
the project even without installing the project’s dependencies, but in some cases
there might some limitations – for example it might not be possible to open dec-
larations of in-built methods. The example project’s readme contains instructions
about its dependencies.

Basic usage

The extension activates as soon as you open a TypeScript or JavaScript file. To run
any usage query, position the cursor on top of the symbol you want to analyse
and run one of the provided commands using command pallete.

72

Requirements
This extension depends on the TypeScript compiler for providing project-wide
links. To perform any analysis at all, this extension needs a TypeScript configura-
tion.

This means that this extension requires a presence of a ‘tsconfig.json’ or
‘jsconfig.json’ file in a directory of the source file being analysed or any of its
parents. Alternative to this requirement is having an ESLint setup with ‘typescript-
eslint‘ and support for rules requiring type information. In this case it is required
to open the same folder that contains ESLint config in VSCode.

Output
Most commands provided by the extension open a ‘TypeScript Analyser’ view on
the left side when run. This view is used to display the result of each command
and its contents always show the result of the last successful command that uses
it.

Available commands
All commands provided by the extension are prefixedwith a ‘TypeScript Analyser:’
prefix. This can be used to browse the available commands by pressing F1 followed
by typing this prefix.

Here is a list of the provided commands and their functionality:

Analyse usage of symbol at cursor

This command displays usage of symbol the editor cursor is pointing at. The
results are shown in a tree view, each entry representing usage of this symbol.

The entries are, by default, grouped by the function that performs the action.
There are variants of this command to also group them by file, usage category,
or both usage category and file. Each group shows a summary of categories of
actions inside it in parenthesis before the name of the group.

Some entries might be expandable - this is the case when the analyser detects,
that the target variable can only have value originating from this action. The
entries under such expandable nodes represent actions performed on the other
variable - not on the original target.

Show information about function at cursor

This command displays an overview of how the function a cursor is currently
positioned in interacts with outside – how does it use arguments and variables

73

declared outside of it.
The output is a tree containing the following folders:

• Analysis problems: This folder contains a list of problems encountered
while analysing this function. If no problems were encountered this folder
isn’t shown.

• Nested functions: If the function contains any function declarations, ex-
pressions, or arrow functions inside, then this folder will show their list

• All actions: This folder contains a list of all symbols the function interacts
with. The symbols are not sorted in any way.

• Outside interactions: This folder contains a subset of "All actions" that can
be considered interactingwith the environment outside of the function. This
includes reading and writing variables and calling functions. This folder
doesn’t include properties and method calls, as can be seen by expanding
the other interactions.

• Arguments: This folder contains arguments that are used by the function
(identified by their order during the call)

Reload all projects

While the analyser tries to automatically detect changes in the analysed project,
this detection might sometimes fail. This is a problem originating from the
TypeScript compiler and usually happens when creating, deleting, or renaming
files.

This command was created to handle this case - running it clears all cached
data, forcing it to be reload when next query is requested.

Analyse current project

This command is more a debugging tool than intended to answer queries - it
performs full scan of the current project and shows all files considered as part
of the project. For each file or function it shows gathered information about it,
including local and outside interactions and nested functions it contains.

Recognised actions on analysed symbols
This is a list of actions performed by code that are recognised by our analyser,
grouped by the categories used to display summaries.

74

Set actions
This marks an action where the object in the variable is not modified, but instead,
the value of the variable itself is replaced by a different one. Sources of this action
include:

• Binary assignment operator (=); this includes both normal assignments to a
variable and destructing assignments

• The ‘delete’ operator is treated the same as assigning ‘undefined’ to the
variable

• Binary update operators (+=, -=, *=, &&=, ??=, ...)

• Unary update opertors (a++, ++a, ...)

• Variable declaration

• Function argument (we treat values passed to a function as being assigned
to the implementation’s arguments)

• Catch clause varible (similar treatment to function argument, except we
don’t track error propagation)

• Object literal is treated as assigning values to the object’s properties

• Class field initializers

• Function and class declarations

Use actions
This is arguably the most common category of actions. It is used in situations
where the object in a variable is read, and then the value of the object is immedi-
ately used in some way. For example, it might be converted to a primitive value,
compared against another value, iterated in a loop, or a property of the object
might be read.

An important aspect of this use case is that after the action is performed, the
object itself is not accessible by other code. Note, that we ignore special cases
such as property getters and the ‘Proxy’ object - these might still cause side effects
not detected by this tool.

Due to how common this action is we provide several descriptions of how
exactly is the variable itself used. These are shown only as description of the line
referring to the action itself - the category shown on a function performing this
shows simply as ‘Use’.

75

• Get property: A property of the object is read

• Use as string or number: This is specific to binary operators + and += and
comparision operators (<, >=, ...), as these convert the object to one of these
primitives and perform different operation based on if it is a number or a
string

• Use as string: The value is converted to string and used further. This
happens for example for template expressions (`${myVar}`).

• Use as number: The value is converted to a number and used further.
Examples of this are all arithmetic operators (except +), binary and shift
operators, unary +, and unary udpate operators

• Use as property key: The value is converted to a property key (string,
‘Symbol’, or numeric index) and used to address a property. This primarily
happens in property access expressions (a[myVar]) but can also happen in
object literals and binding patterns ({ [myVar]: 42 })

• Check truthiness: The value is converted to a boolean and used further.
This includes the following cases:

– Logical operators && and || for values on the left side. These operators
use truthiness of the left side to decide which side they should use as
a resulting value

– Negation (!)

– If, While, Do-While, and For statement conditions

– Conditional expression condition (ternary operator)

• Check type: The value’s type is used in some way. This includes the
following cases:

– Nullish coalescing operators (?? and ??=) – these check if the type is
‘null’ or ‘undefined’; they don’t check truthiness

– The ‘typeof’ operator

– The left side of the ‘instanceof’ operator

• Compare equality: The object is compared using one of the four comparison
modes JavaScript has. This happens for:

– Equality testing operators (==, !=, ===, !==)

76

– Right side of the ‘instanceof’ operator (it compares equality to indi-
vidual objects in the prototype chain)

– Switch statement variable or case value

• Enumerate properties: The names of object’s properties are enumerated or
iterated without accessing the values themselves. This happens for the for
(... in ...) statement and for the right side of the ‘in’ operator

• Iterate: The object is used as iterable and iterated in any way. This in-
cludes things ranging from for (... of ...) statement to spread syn-
tax (...myVar). This action can be expanded to show how are individual
elements used.

• Await: The object is used as a promise and awaited. This action can be
expanded to show how is the awaited result used.

Modify actions
This marks actions that modify properties of an object. It happens when a ‘Set’
is performed on a property of the object and is shown as ‘Set property’. The
most common way for this to happen is assignment or update expression, but the
‘delete’ operator triggers this too.

This operation isn’t transitive, so the example below contains two actions:

• ‘Set’ performed on ‘anotherProperty’

• ‘Modify’ performed on ‘property’

• The ‘variable’ use in here is only a ‘Use’ (‘Get property’ to be exact) – it is
not ‘Modify‘

variable.property.anotherProperty = 42

Call action
The value in the variable is used as a function and called.

Call method action
This is a subcategory of ‘Reference’ actions, but one that both has a special
meaning and happens commonly enough, that we added it as a separate category
to make navigation easier.

77

If a call is performed on a property reference, then the object the property is
read from is used as ‘this’ during the call. For our analysis this means loosing
track of how the object used, as we cannot reliably track method implementations,
so the method might perform arbitrary actions with the object passed this way.

Construct action
This action is similar to ‘Call’, but it is performed using a ‘new’ operator.

While this might appear similar to the Call use-case, and in many aspects it
is, the ECMAScript specification differentiates between these actions in several
important ways. One important difference is that if the callee is a property
reference, then, during the call, the base object is used as ‘this’, while during
construction it isn’t.

There are also several built-in objects that allow both to be called as a function
and used as a constructor but behave differently in either case. An example of
this is the ‘Date’ object, where construction returns a new Date object, while a
call returns a string.

Reference actions
This marks code where the object in the variable is passed by reference either
to another variable or function argument or is returned/yielded from a function.
This operation is important because it marks places where the track of the object
is lost by the analyser, as potentially unknown code might perform operations on
it.

Unknown actions
This is a fallback action category used when a reference to the variable is detected
inside an unknown or unsupported syntax.

78

Appendix B

Repository scanning experiment

This appendix describes details of the repository scanning experiment from Sec-
tion 8.3. The experiment is fully automated – sources for the experiment as well
as our results can be found in the ‘repo-scan’ directory in the attached data.

The scan works by performing search on GitHub for public repositories with
specified language (‘TypeScript’ or ‘JavaScript’), ordered by number of stars
in descending order. In then iterates the search until the requested count of
repositories is obtained. The main branch of each repository is then shallowly
cloned, or pulled using fast-forward if the repo has been cloned already.

Then all files with extensions described in Section 5.3.2 are parsed indepen-
dently using TypeScript compiler and the syntax tree is walked. TypeScript offers
two ways to get children of a node – ‘forEachChild’ and ‘getChildren’. ‘forE-
achChild’ walks the nodes in semantic order and only returns nodes that have a
semantic meaning to the parent. ‘getChildren’ on the other hand walks nodes in
a way closest to the source file, including modifiers, keywords and tokens (such
as commas, dots and semicolons).

As the ‘forEachChild’ approach is closer to our analysis, it is used for the
results in Section 8.3. The attachment, however, includes result of both approaches.
The ‘forEachChild’ approach has also been summarized based on number of
repositories the specific syntax occurs in.

During the scan, the TypeScript compiler successfully parsed all files except
one. This file has been excluded from the summary.

Running the experiment
To run the experiment a GitHub Personal Access Token is required, in order
to be able to run search for popular repositories. After acquiring a token, the
experiment can be run by entering the ‘repo-scan’ directory and running the

79

following commands:

yarn install
GITHUB_PAT=<your token here> yarn run scan

Doing this requires installed Node.js with corepack enabled (tested on v18.15.0)
and ‘git’ executable in the environment path.

This process can take several hours (in our case it took a bit over 3 hours on
the first run), depending on the internet connection, processor, and disk used.
The experiment requires a lot of harddisk space, even while using only shallow
cloning (in our case the required disk space was roughly 23GB).

80

Appendix C

Digital attachments summary

This appendix describes the contents of the digital attachments. All mentioned
data is also publically available in the following GitLab repository:

https://gitlab.mff.cuni.cz/pacalm/ts-usage-analyser

Extension sources
Extension sources are attached in the ‘ts-usage-analyser’ folder. This folder
also includes:

• Readme file with user documentation similar to Appendix A

• Development documentation describing both the architecture of the exten-
sion and the build process

• Automated tests

Prebuilt extension
The file ‘ts-usage-analyser.vsix’ is a prebuilt version of the extension ready
to be installed into any compatible Visual Studio Code instance.

More information about this is provided in Appendix A.

Examples
The folder ‘examples’ contains an example project with several source files to
demonstrate various capabilities of our extension. This folder is also used by the
automated tests the extension provides.

81

https://gitlab.mff.cuni.cz/pacalm/ts-usage-analyser

Repository scanning experiment
The ‘repo-scan’ and ‘repo-scan-results’ folders contain data relevant to the
repository scanning experiment described in Appendix B.

The ‘repo-scan’ folder contains the source code necessary for performing
the experiment. The ‘repo-scan-results’ folder contains the complete results
of the last run we performed.

82

	Introduction
	Visual Studio Code
	Existing solutions
	The goal of this thesis
	The structure of this thesis

	JavaScript Ecosystem
	Brief introduction
	Specification
	Implementations
	Libraries
	Transpilers and Packagers
	Flavours

	ECMAScript
	Brief history
	Brief language overview
	Strict mode
	Value types
	Variables
	Functions
	The `this' value
	Prototypes
	Classes
	Environment
	Modules

	Interpreter
	Static semantics
	Execution

	TypeScript
	Introduction
	TypeScript in the context of the JavaScript ecosystem
	TypeScript language
	TypeScript compilers
	TypeScript in VSCode
	TypeScript compiler API
	Inner workings of the TypeScript compiler

	Design
	Scope
	Syntax support
	Environment support
	Accuracy vs Performance
	Alias resolution

	Problem analysis
	Finding the scope for the analysis
	Specifying the files manually
	Scanning for files
	Using compilation settings
	Solutions of existing tools
	Solution

	Parsing the source file
	Custom solution viability
	Existing parsers
	Solution

	Semantic identifier resolution
	Detecting operations performed on symbols
	Detecting operations performed on call arguments

	Analyser implementation
	Architecture
	Project resolution
	Selecting files to analyse
	Analysing a syntax tree
	Experiment: Passing the necessary data from parrents to descendants
	Experiment: Passing the necessary data from descendants to parents
	The final solution

	Function interactions analysis
	Arguments

	Syntax support
	Syntax important to our analysis
	Popularly used syntax
	Other supported syntax
	Default analysis behaviour
	Intentionally unsupported syntax

	Testing

	User interface
	Integrating into Visual Studio Code
	Example code for this section
	Interfaces of similar tools
	Request interface
	Implementation of symbol selection

	Result interface
	Lazy generation of nodes
	Visible names for symbols
	Displaying actions

	Evaluation
	Requirements to use
	Example uses on real projects
	Finding code that sets node flags in the TypeScript compiler
	Overview of large function's interactions in Webpack code

	Experiment: Testing on popular repositories
	Results of the scan
	Coverage

	Conclusion
	Bibliography
	Using the extension
	Repository scanning experiment
	Digital attachments summary

