
MASTER THESIS

Bc. Martin Spǐsák

Sparse Approximate Inverse for
Enhanced Scalability in Recommender

Systems

Department of Software Engineering

Supervisor of the master thesis: Mgr. Ladislav Peška, Ph.D.
Study programme: Mathematics for Information

Technologies
Study branch: Mathematics for Information

Technologies

Prague 2023



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



I want to express my heartfelt appreciation to the following people who have
played a significant role in the completion of my thesis:

First and foremost, I am profoundly grateful to my thesis supervisor, Mgr.
Ladislav Peška, Ph.D., for introducing me to the fascinating field of recommender
systems and his invaluable support, which helped shape and enrich this thesis.
I extend my sincere gratitude to prof. Ing. Miroslav T̊uma, CSc., for igniting
my interest in matrix computations and for his readiness to serve as a consultant
for this thesis. I am also immensely thankful to Radek Bartyzal and Antońın
Hoskovec for allowing me to conduct this research as part of my job at GLAMI
and for their patience. Moreover, I thank GLAMI for providing the infrastructure
to conduct the experiments.

I would like to jointly thank all four for their willingness to co-author a research
paper summarizing the results of this thesis. Their expertise was invaluable in
shaping our submission, and I am forever thankful for the lessons I learned.

Lastly, I want to thank from all my heart my parents, family, and Michaela
for their unwavering support throughout my academic journey. Their love, en-
couragement, and understanding have been a constant source of motivation and
inspiration for me. I dedicate my thesis to them.

ii



Title: Sparse Approximate Inverse for Enhanced Scalability in Recommender
Systems

Author: Bc. Martin Spǐsák

Department: Department of Software Engineering

Supervisor: Mgr. Ladislav Peška, Ph.D., Department of Software Engineering

Abstract: In theory, the linear autoencoder EASE is one of the most capable
collaborative filtering recommenders for large item domains with sparse user-
item feedback. However, the model’s weights are determined by the inverse of a
matrix of dimension equal to the item set size. This inverse matrix is generally
dense, and for large item sets, the computed weight matrix might be too large to
store in memory during inference. Consequently, scaling the model beyond tens
of thousands of items quickly becomes very expensive.

We propose a modification of EASE called SANSA to alleviate the issue. SANSA
approximates the weights of EASE with prescribed density via an end-to-end
sparse training procedure. To find a method capable of computing the sparse
approximation efficiently, we investigate approaches for constructing sparse ap-
proximate inverse preconditioners. We select a method fitting for very large SPD
problems with general sparsity patterns. The training procedure is robust and
finds a good approximation of EASE even on datasets with dense item relations.
Moreover, as the number of items in datasets grows, SANSA achieves unparal-
leled efficiency, even compared to EASE’s previous state-of-the-art modification
focused on scalability. Consequently, SANSA effortlessly scales the concept of
EASE to millions of items.

Keywords: EASE sparse approximate inverse recommender systems

iii



Contents

Introduction 3

1 Personalized recommendation via collaborative filtering 5
1.1 Overview of recommender systems . . . . . . . . . . . . . . . . . . 5

1.1.1 Objectives of recommendation . . . . . . . . . . . . . . . . 6
1.1.2 Applications and challenges . . . . . . . . . . . . . . . . . 7

1.2 Collaborative filtering . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 User-item interaction data . . . . . . . . . . . . . . . . . . 8
1.2.2 Relation to graphs . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Algorithms for collaborative filtering . . . . . . . . . . . . . . . . 11
1.3.1 Neighborhood-based approaches . . . . . . . . . . . . . . . 12
1.3.2 Model-based approaches . . . . . . . . . . . . . . . . . . . 13

2 Sparse matrices 17
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Storage formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Operations with sparse matrices . . . . . . . . . . . . . . . . . . . 19

2.3.1 Efficient multiplication . . . . . . . . . . . . . . . . . . . . 20

3 Embarrassingly Shallow Autoencoder 21
3.1 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Closed-form solution . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Properties of weights . . . . . . . . . . . . . . . . . . . . . 24

3.2 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Interpretation and advantages . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Similarity through user chains . . . . . . . . . . . . . . . . 26
3.4 Expensive scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Sparse approximate inverse 33
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Frobenius norm minimization methods . . . . . . . . . . . . . . . 34

4.2.1 When sparsity pattern is known . . . . . . . . . . . . . . . 35
4.2.2 Adaptive strategies . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Factorized sparse approximate inverse . . . . . . . . . . . . . . . . 37
4.3.1 FSAI method . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Incomplete biconjugation . . . . . . . . . . . . . . . . . . . 39
4.3.3 Bordering approach . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Inverse incomplete factorization techniques . . . . . . . . . . . . . 41
4.5 Comparison of approaches . . . . . . . . . . . . . . . . . . . . . . 42

4.5.1 Frobenius norm minimization methods . . . . . . . . . . . 42
4.5.2 Factorized sparse approximate inverse . . . . . . . . . . . . 43
4.5.3 Inverse incomplete factorization techniques . . . . . . . . . 44

1



5 Enhancing scalability of Embarrassingly Shallow Autoencoder 45
5.1 Method selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Properties of the problem . . . . . . . . . . . . . . . . . . 45
5.1.2 Selected approach . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 Optimization objective . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.1 Sparse (and approximate) Cholesky factorization . . . . . 50
5.3.2 Choice of initial guess . . . . . . . . . . . . . . . . . . . . 53
5.3.3 Uniform Minimal Residual algorithm . . . . . . . . . . . . 54
5.3.4 Training procedure . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Experiments 59
6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.1 Splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4.1 Robustness on small, dense datasets . . . . . . . . . . . . . 64
6.4.2 Robustness and efficiency on medium-sized, dense dataset 66
6.4.3 Trading accuracy for shorter training . . . . . . . . . . . . 68
6.4.4 Extreme scalability . . . . . . . . . . . . . . . . . . . . . . 69

Conclusion 72
Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 74

List of Figures 82

List of Tables 83

List of Abbreviations 84

A Appendix 85
A.1 Elimination tree of sparse Cholesky factorization . . . . . . . . . . 85

A.1.1 Elimination tree . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1.2 Order of elimination and tree parallelism . . . . . . . . . . 85
A.1.3 Column replication principle . . . . . . . . . . . . . . . . . 85
A.1.4 Equivalent condition for existence of a fill-in entry . . . . . 86

A.2 Supporting arguments for the choice of initial guess . . . . . . . . 87
A.2.1 When the factor to-be-inverted is sparse . . . . . . . . . . 87
A.2.2 Column elimination matrices and elimination tree . . . . . 87

A.3 Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.3.1 File organization . . . . . . . . . . . . . . . . . . . . . . . 90
A.3.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.3.3 Reproducing the results . . . . . . . . . . . . . . . . . . . 92

2



Introduction
The information overload, exponentially magnified with the rise of the inter-
net, has prompted the need for personalized recommendations. They simplify
search, enable exploration, and offer suggestions that would otherwise go unno-
ticed. However, with their global reach and the power to decide what information
to show to whom, online recommender systems shape the views and decisions of
people worldwide. Understanding the implications, short and long-term effects,
and potential dangers of omnipresent personalized recommendation is, therefore,
one of the most critical tasks for artificial intelligence research and legislature for
the foreseeable future. For that, it is crucial to understand the inner mechanisms
of personalized recommendation.

Collaborative filtering has emerged as one of the predominant paradigms. The
underlying idea is to leverage past user feedback to gain insights into their pref-
erences by identifying similar users or items, then use the collective opinion to
predict sentiments toward other items. However, the sparsity of the observed
user-item interactions makes learning accurate models difficult in practice. The
problem with sparsity becomes arduous in domains where users are numerous and
have rich and diverse preferences, and the served items are abundant and often
niche. Here, user satisfaction requires diversity only possible by viewing the inter-
action data from a broader perspective, which led to the popularity of deep learn-
ing approaches in recent years. Especially popular became graph neural networks
(see, e.g., Wang et al. [2019], He et al. [2020], Mao et al. [2021]) and autoencoders
(e.g., Ning and Karypis [2011], Liang et al. [2018], Steck [2019a]). Unfortunately,
expanding the scope of view introduces a trade-off. Training state-of-the-art
models on extensive datasets is often expensive, and the resulting models tend to
be large and resource-intensive during inference. Consequently, high operational
costs often limit their use in industry applications, and the increased complexity
raises the entry threshold for researchers and limits the scope of experiments they
can conduct.

Despite its simplicity, the linear autoencoder easer proposed by Steck [2019a]
is one of the most capable methods for collaborative filtering on large datasets
with sparse user-item feedback, thanks to its ability to find long distance rela-
tional information about items. Another advantage of the model is its closed-form
solution, which provides some level of interpretability and allows for faster train-
ing compared to approaches based on deep neural networks. As such, easer is
highly desirable for large production scenarios and academics alike. However, the
weights of easer are determined by the inverse of a matrix of dimension equal
to the item set size. This inverse matrix is generally dense, and for large item
sets, the computed weight matrix might be too large to store in memory during
inference. Consequently, scaling the easer model beyond tens of thousands of
items quickly becomes very expensive.

This thesis aims to address these challenges and strike a balance between ac-
curacy and efficiency in collaborative filtering. In particular, we search for an
efficient and robust approach for finding an accurate sparse approximation of the
easer model. We begin by introducing recommender systems in Chapter 1, first

3



generally, and then shift our focus to collaborative filtering. Since the gathered
user feedback is often sparse in practical applications, we define sparse matrices
and discuss basic storage and manipulation techniques in Chapter 2. In Chapter
3, we describe the easer model. We derive its closed-form solution and explain
its concept and advantages, but also its limited ability to scale as the number of
items increases. Finally, we discuss prior attempts at solving this issue.

Like one other proposal, our idea is to modify the concept of easer by finding
a sparse, full-rank approximation of its weight matrix. Hence, we research possible
ways to efficiently compute an accurate sparse approximate inverse of a very large
matrix. For this, we turn to numerical mathematics, where efficient sparse ap-
proximate inverse techniques facilitate the construction of robust preconditioners
for large sparse linear systems. Motivated by numerous challenging applications,
the field of numerical mathematics has developed a comprehensive understanding
of sparse matrix computations over the past 60 years or so (the books by Duff
et al. [2017] and Scott and Tůma [2023] provide detailed summaries of contem-
porary knowledge of the topic). In Chapter 4, we discuss various approaches for
constructing sparse approximate inverses (the primary reference here is an en-
compassing survey paper by Benzi and Tůma [1999]). We discuss the specifics
of our problem in Chapter 5 and use the insights to select a method capable of
efficiently computing the desired sparse approximate inverse with minimal unnec-
essary overhead. We then use the selected method to propose a scalable modifi-
cation of easer, resulting in a smaller model and reduced inference-time memory
requirements. The proposed model, named Scalable Approximate NonSymmet-
ric Autoencoder (sansa), approximates the weights of easer with prescribed
density via an end-to-end sparse training procedure. We propose two variants
of sansa which suit different scenarios, depending on whether training memory
limitations play a decisive role.

Our experiments in Chapter 6 demonstrate that the training procedure of
sansa is robust and finds a good approximation of easer even on datasets with
dense item relations. Moreover, as datasets grow beyond tens of thousands of
items, sansa achieves unparalleled efficiency compared to any other collabo-
rative filtering model while matching or even outperforming them in accuracy.
Consequently, sansa effortlessly scales the concept of easer to millions of items.

Our paper (Spǐsák et al. [2023]), which presents a summary of the findings
documented in this thesis, has been accepted for the 17th ACM Conference on
Recommender Systems (ACM RecSys 2023).

4



1. Personalized recommendation
via collaborative filtering
We begin the thesis by introducing the domain of recommender systems. The
domain itself spans many topics and is subject to intense active research. There-
fore, we offer a concise overview of crucial aspects before narrowing our focus to
the relevant part of the field. We refer interested readers to Falk [2019] and Ricci
et al. [2022] for a detailed overview of the entire field of recommender systems.

1.1 Overview of recommender systems
Around the turn of the 21st century, recommendations became essential parts of
the internet and our lives. Their importance grew fast with the rise of e-commerce,
streaming platforms, and social media, which began to serve millions of users and
accumulate giant pools of data, products, or content. Due to the large size of
item catalogs, it may only be possible for users to find relevant products with
assistance. Essentially, recommender system (RS) (frequently referred to as the
algorithms) are designed to alleviate this problem.

While not exclusive to the internet, recommender systems are predominantly
used online due to the ease of data collection and the abundance of valuable use
cases. Hence, we formulate the basic terminology in the setting of a hypothetical
website. The website has its content organized in data sets. The individual pieces
of content are called items. A party visiting the website is called a user.

Definition 1.1 (Recommender system). A recommender system is a service that
suggests a potentially relevant selection of items to a user. The returned selections
are called recommendations.

Modern recommender systems are tailored to the specific use case and at-
tempt to maximize one or more target metrics corresponding to business goals
such as user satisfaction, customer retention, and profitability. Recommenders
utilize many forms of data, including but not limited to item features and char-
acteristics. Additionally, they often use user demographics and preferences1 to
create personalized recommendations. Note that personalization is not a neces-
sity. We can divide recommender systems into three groups based on the level of
personalization used:

1. Non-personalized: Examples of non-personalized recommendations in-
clude curated lists, most popular or newest items. Every user gets the same
recommendations.

2. Semi/Segment-personalized: Semi-personalized recommendations dif-
fer for members of different user groups or segments. The groups are
constructed using statistics about users’ demography and various patterns.
Information about the current session context may also be used for user
segmentation.

1Interpretability and accurate extraction of user preferences are fundamental topics of rec-
ommender system research.

5



3. Personalized: “Recommended for you.” The recommendations are user-
specific, based on their preference profiles or past feedback.

Personalized recommendations are better tailored to individual user needs. A
quote by Falk [2019] explains a key observation behind this:

People aren’t only interested in the popular items, but also in items
that aren’t sold the most or items that are in the long tail2.

For this reason, personalized recommendations are preferable in many real-world
applications. However, creating personalized recommendations is more expensive
in terms of computation, and it can be challenging in some situations. A typical
problem for personalized recommender systems is data sparsity, i.e., insufficient
information to create good recommendations for a user. We will elaborate on this
issue in Section 1.2 because the contribution of this thesis is closely related to the
data sparsity problem. From now on, this thesis focuses solely on personalized
recommendations.

1.1.1 Objectives of recommendation
Objectives of modern recommender systems can be complex. Historically, rec-
ommender systems primarily served to improve user experience. Their purpose
has since shifted to optimize gains for multiple stakeholders. For illustration, we
discuss different objectives of a European e-commerce platform GLAMI3.

GLAMI is a fashion aggregation platform. Online retailers of fashion prod-
ucts partner with GLAMI to display their products in GLAMI’s vast catalog
of clothing articles. The catalog is well organized, and users can easily browse,
compare products and find things they like. As a result, shoppers arriving from
GLAMI have a high conversion rate4, which is why the retailers are willing to
pay GLAMI for their services. It is apparent that GLAMI has several objectives
for which they need to optimize jointly:

1. User satisfaction, which is different for new users and returning users:

(a) New user satisfaction: Increase the quality of zero-shot, one-shot and
few-shot recommendation (i.e., recommendation with no or few inputs
from the user) to incentivize new users to return to the platform.

(b) Returning user satisfaction: Increase the recommendation quality for
users with multiple interactions (e.g., by learning their preferences) to
entice them to return to the website next time.

2. Vendor satisfaction: Increase conversion rates of users to keep retailers on
the platform and lure in new ones.

3. Shareholder satisfaction: Minimize costs, maximize revenue, etc.
2The long tail refers to the shape of item popularity/interactions distribution when the

majority of interactions belong to a small number of most popular items. The rest of the
items fall in the long tail of this distribution. Recommending items from the long tail increases
diversity but is often difficult. See Falk [2019], Section 1.1.2 for more details.

3www.glami.cz
4Conversion rate is the number of target actions (e.g., orders) per page visit.

6

www.glami.cz


Moreover, even ”increasing the quality of recommendation” can mean many
things. Traditionally, recommender systems predicted an item ordering according
to some objective, for instance, ”which item does the user like the most”. In this
context, better recommendation quality can mean, e.g., higher accuracy. How-
ever, depending on the domain and context, it may be beneficial to consider other
aspects as well, such as novelty of items, diversity, serendipity, coverage of the
catalog, or synergy between the items. Considering these aspects can significantly
improve user satisfaction and help the recommendation quality individually and
in aggregate. Further details are beyond the scope of this thesis, and we refer the
interested reader to Falk [2019].

1.1.2 Applications and challenges
Recommender systems find applications in various areas. Users of social media
platforms like Facebook, Instagram, TikTok, or Twitter will reliably find engaging
content on their feeds. News platforms recommend personalized articles for their
readers, with accurate suggestions on what to read next. Multimedia streaming
services like Netflix, Spotify, and YouTube recommend movies, music, and videos
to hundreds of millions of daily users. Large e-commerce sites like Amazon, Al-
ibaba, or GLAMI can accurately recommend diverse but complementing sets of
products from their enormous catalogs, making sure shoppers always find some-
thing to their liking. Services like these have succeeded in no small part thanks
to their high-quality recommender systems. They can effectively recommend a
diverse panel of videos for a user who does not know what to watch, create long
personalized playlists that feel varied, and even aggregate the preferences of a
group of users. These are but a few examples that demonstrate the progress
made by recommender systems in the last couple of years.

On the other hand, recommender systems face significant challenges that must
be acknowledged and addressed. Firstly, a recommender system may be biased,
disproportionately favoring certain items or excluding others. Second, ensuring
fairness in recommendations is crucial to avoid discrimination or exclusion based
on protected attributes like race, gender, or age. Bias and unfairness become dan-
gerous when the results of recommendations directly affect people, for example,
when selecting job applicants or approving mortgage candidates. Lastly, rein-
forcing users’ existing preferences and limiting exposure to diverse content leads
to filter bubbles and echo chambers. Overcoming these challenges requires ro-
bust algorithms and ethical considerations to promote unbiased, fair, and diverse
recommendations.

Consequently, production recommender systems have evolved into complex
architectures, often consisting of multiple sub-systems that integrate diverse data
and aggregate recommendations. This complexity is particularly notable in large-
scale systems that cater to numerous users and offer recommendations from exten-
sive item collections. Large-scale systems often employ a multi-stage approach
to address the challenge of generating accurate recommendations swiftly from
such vast item sets. A multi-stage recommender system organizes simpler recom-
menders into a pipeline. The initial stage, known as item retrieval or candidate
selection, is designed to identify a broader selection of potential items using a
simple, fast algorithm. The selected candidates are passed to subsequent layers,

7



where more sophisticated algorithms can repeatedly filter, score, and arrange the
items, potentially incorporating additional data. The increase in computational
complexity of layers is counterbalanced by a reduced number of items to sort at
each layer.

1.2 Collaborative filtering
The basic concept of personalized recommender systems is to select relevant item
candidates based on a model of user sentiment toward the items. There exist
many different ways to estimate user sentiment. Based on the type of data used
in the recommendation, we may divide the approaches into two main groups:

1. Content-based filtering: Content-based methods build a profile of a
user’s interests or preferences. By comparing profile information with the
attributes and metadata of items in the catalog, these methods select items
that correspond well with the user’s interests.

2. Collaborative filtering: The idea of collaborative filtering (CF) can be
summarized as follows. When users have shown similar sentiments toward
items in the past, it is reasonable to expect that they will agree on their pref-
erence for unseen items, too. Therefore, by comparing information about a
user’s sentiment with other users with similar past feedback, collaborative
filtering methods recommend items the user has yet to see based on whether
the segment of similar users liked them.

Content-based methods work best when enough information about items and,
more importantly, users’ taste profiles are available. Typically, this is the case
in domains that serve content of the same type (e.g., movies), this content has
identifiable qualities or categories to which the user can have a preference (e.g.,
genre), and the platform focuses on returning users so that the system can build
their preference profiles. However, these methods can be more expensive. On the
other hand, collaborative filtering allows us to identify users with similar tastes
without thinking about their shared preferences - they must only like similar
things. It then uses wisdom of the crowd of similar users to suggest items with
mutual agreement. Collaborative filtering may be more accurate in few-shot
scenarios and is typically cheaper to scale with a growing user base because it
does not need to compute representations of user preferences. However, to create
accurate recommendations, the systems may need a lot of user feedback, which
may be difficult to obtain.

Apart from the two main classes, there exist knowledge-based methods (see,
e.g., Jannach et al. [2010]) or hybrid methods which combine algorithms of dif-
ferent classes. The focus of this thesis is collaborative filtering.

1.2.1 User-item interaction data
In order to compute personalized recommendations, most CF-based recommender
systems work with gathered user-item interaction data, also called feedback. It is
customary to divide feedback into two main types.

8



Explicit feedback (also called rating) is direct input by a user through ratings
(for example, on a 0-5 star scale), reviews, or explicit actions like liking items.
Explicit feedback provides direct information about a preference from a user.
However, it is scarce in real-world scenarios, and its reliability and accuracy
are affected by numerous subjective factors such as the choice of rating scale or
temporal changes in users’ moods. A popular strategy for eliminating subjectivity
and increasing the amount of gathered explicit feedback is to give users few
possible actions. In recent years, many online platforms shifted from explicit
feedback on a scale to binary feedback, where users have only one possible action
for feedback - to like something.

Implicit feedback is derived from user behavior, such as click-through rates,
browsing history, and purchase activity. It infers user preferences based on actions
rather than direct input. For example, information about whether a user has seen
individual items is a case of binary implicit feedback. Implicit feedback is often
abundant and inserts less subjectivity but may lack interpretability.

Finally, hybrid approaches combine both types of feedback to reap the benefits
of both types: strong information about preference from explicit feedback and an
abundance of implicit feedback.

Interaction data is typically represented by a user-item matrix X ∈ R|U|×|I|,
where U is the set of users, I is the item set and Xi,j is the collected feedback of the
i-th user for the j-th item, see Figure 1.1. A fundamental observation is that in
practice, X is typically (very) sparse5, especially in domains with extensive item
sets. Most users interact with small portions of the item set in such situations.
The result - data sparsity - is a problem for CF-based recommender systems (and
personalized recommender systems in general), as limited or incomplete feedback
from users hampers the system’s ability to understand user preferences. Another
issue related to data sparsity is the so-called cold start when the system struggles
to provide recommendations for new users or items. While cold start can be a
temporary problem (i.e., until we gather initial data), data sparsity can limit the
recommendation quality in the long term and is a common problem, especially
for collaborative filtering methods. Luckily, recently developed state-of-the-art
methods by Steck [2019a] can extract the most out of limited available data and,
as our main contribution, we show how the inherent data sparsity can be exploited
to scale this state-of-the-art algorithm to domains with extremely large item sets.

1.2.2 Relation to graphs
The user-item matrix X represents a bipartite graph GX = (V , E), where V =
VU

⋃︁VI is the union of vertices representing the set of users (VU) and vertices rep-
resenting the set of items (VI), and the edges between users and items E ⊆ VU×VI
represent extracted user sentiment towards items; see Figure 1.2. Additionally, in
case of explicit feedback, the edges are assigned weights; we may assign all edges
weight 1 in case of implicit feedback. An important observation is that when the
user-item matrix X is sparse, the vertices of GX are sparsely connected.

One possible formulation of CF is that during inference, the algorithm receives
a list of user feedback or interactions, and its task is to predict the most relevant

5A sparse matrix has relatively few nonzero entries. We will provide a more formal definition
in the following chapter.

9



Figure 1.1: Example of a user-item rating/interaction matrix. (Falk [2019])

items (which are often required to be previously unseen). To achieve this, the
algorithm uses a model of item-item relations, which can be represented by graph
GI = (VI , EI) with weighted edges EI ⊆

(︂
VI
2

)︂
, illustrated in Figure 1.3. For

edge e = {vi1 , vi2} ∈ EI representing the relation between items i1, i2 ∈ I, its
weight w(e) is computed by aggregating information from the user-item matrix
X (equivalently graph GX). While the particular method of aggregation depends
on the model used, a common choice is to use the cosine similarity between
columns −→xi1 and −→xi2 of X,

cosine sim(−→xi1 ,−→xi2) :=
−→xi1

T−→xi2

∥−→xi1∥∥−→xi2∥
=

∑︁
u∈{1,...,|U|} Xu,i1 ·Xu,i2√︂∑︁

u∈{1,...,|U|} X2
u,i1

√︂∑︁
u∈{1,...,|U|} X2

u,i2

.

Cosine similarity measures the similarity between the two items using the angle
between the |U|-dimensional vector representations of items i1 and i2, which we
obtain from the user interaction data.

The edges of GI and their weights represent modeled relations between pairs
of items (the larger the weight, the more similar the items). Specifically, a posi-
tive weight represents a positive relationship or similarity, and a negative weight
represents dissimilarity. Moreover, when vi1 and vi2 are not connected by an edge
in GI , the model did not learn a relation between items i1 and i2. The direct
item relations in GI can be used to predict new, interesting items for a user by
computing scores for all items with a known relation to at least one of the items
with prior user interaction from this user.

To formalize this idea, consider a user u ∈ U with interacted items Iu ⊂ I.
Let f(u, ij) denote the feedback from user u for item ij ∈ Iu. Every item ij ∈ Iu

represents a vertex vij
in the graph GI from which we start the search. To

compute a score for some other item ik /∈ Iu, we verify whether it is connected
by an edge to some item ij ∈ Iu. If there exists such ij, denote ej,k = (vij

, vik
)

the edge in GI . The discussion now splits into cases that share the following idea.
Suppose the user’s sentiment towards item ij is positive (f(u, ij) > 0). In that
case, it is reasonable to assume that they will also like items similar to ij - that
is, ik s.t. vik

is connected to vij
by an edge with positive weight (w(ej,k) > 0).

10



Figure 1.2: An example bipartite graph
GX of user-item (binary) feedback.
Users Green Gabe and Magenta Mike
appear to have similar tastes since both
liked item 1 and item 6. Green Gabe
also likes item 3, which Magenta Mike
has yet to see. Hence, our CF model
recommends item 3 to Magenta Mike.

Figure 1.3: Item-item relation graph
GI obtained from GX (from Fig. 1.2)
by a specific choice of aggregation: the
count of paths of length 2. This is an
example of a neighborhood-based ap-
proach. Based on the (binary) input
interactions of Magenta Mike, Item 3
has the highest score (see Eq. 1.1).

If both f(u, ij) < 0 and w(ej,k) < 0 (i.e., the user dislikes the item ij, but the
candidate item ik is dissimilar to ij), it is also not unreasonable to assume that
the user would like the item ik. Finally, if either f(u, ij) < 0 and w(ej,k) > 0, or
f(u, ij) > 0 and w(ej,k) < 0, it makes sense to assume that the user u would not
like the item ik. A common way to define a score function that agrees with the
above reasoning is the following:

score(ik) =
∑︂

ij∈Iu

w(ej,k)f(u, ij). (1.1)

Finally, items with the highest calculated scores are recommended to the user.

1.3 Algorithms for collaborative filtering
The traditional and most common formulation of collaborative filtering assumes
we are given a (partially filled) user-item matrix and a user whose feedback is
stored in a row of this matrix (so-called known user). The system’s task is to
predict the most suitable items for this user from the set of unseen items. CF
methods internally learn to predict ratings of user-item pairs, i.e., to fill in the
empty entries of the user-item matrix. During prediction for this user, the system
typically predicts the user’s ratings for all or some of the items and recommends
the highest-rated ones.

This formulation does not work when a new user - whose interactions are
not in the user-item matrix - visits a website and requests a recommendation.
Similarly, the method cannot recommend new items because the user-item matrix
does not have a corresponding column. Both situations are common and need to
be addressed in practice. For a new item, the only possibility is gathering some

11



interaction data by showing it to users and then retraining the model; we will
not discuss this situation further. On the other hand, being able to recommend
to a new user6 is often very important. Gathering some interaction data first
is necessary, but then there are ways to recommend to a user based only on
their interactions, i.e., agnostic to who they are. This approach is prevalent in
contemporary CF methods.

The final thing we would like to mention briefly is the user-item matrix pre-
processing. Explicit or implicit feedback may come from different scales, which
may or may not include zero. However, some (if not most) of the entries in the
user-item matrix are not filled, meaning there is an implicit zero value at that
position in the user-item matrix. Importantly, this is not the same as the user
giving the item an explicit rating of zero; it is merely a missing value. Therefore,
it is a good idea to rescale the matrix so that the implicit zeros fall somewhere in
the middle of the preference scale. There are many different ways to achieve this,
some more suitable in the given situation and for the given CF method, but this
is beyond the scope of this thesis. The important message is that CF methods
typically expect the user-item matrix to be processed with this in mind.

Based on the method used to estimate the user-item feedback, CF methods
are often split into two groups:

1.3.1 Neighborhood-based approaches
Rows of the interaction matrix X represent vectors in the |I|-dimensional space
of user preference towards items in the dataset. Similarly, columns of X repre-
sent vectors in the |U|-dimensional space of item preference from all users in the
dataset. The similarity of users or items may be computed using, for instance,
cosine similarity. The methods then select the most similar users (or items)
based on, e.g., tolerance or the absolute count, and aggregate the preferences, of-
ten using weighted averaging. This is the mechanics behind neighborhood-based
approaches - user-based and item-based.

The most common example of a neighborhood-based method is the user-
oriented k-nearest neighbors (userknn) method, first proposed by Resnick et al.
[1994]. Figure 1.4 shows how the computation of the predicted score for a user u1
and an unseen item i3 in more detail. First, the algorithm computes the similarity
of the user in question with all other users in the matrix X (or, perhaps, only
with a selected subset of users to save computation time). Note that it makes
sense to consider only a subset of columns of X - those that correspond to items
with known preference from the user u1 (in this example, columns 1,2,4,5,6). Ex-
cluding the column corresponding to the item in question is also reasonable. The
final score is computed by aggregating the known preferences toward item i3 of
users in a selected neighborhood of most similar users. Analogously, an item-
based method (e.g., itemknn proposed by Sarwar et al. [2001]; see also future
work in Deshpande and Karypis [2004]) first computes the similarity between the
column corresponding to the item i3 and other columns (here, it makes sense
only to consider columns with feedback from user u1) while excluding the row
corresponding to u1. It then selects a neighborhood of the most similar items and
aggregate the preferences from the user u1 for these items.

6More precisely, to a user whose interaction data were not used for model training.

12



Figure 1.4: User-based neighborhood-based filtering. (Falk [2019])

Both user-based and item-based neighborhood-based methods have their ad-
vantages and disadvantages. User-based collaborative filtering works well when
the user-to-item ratio is high, while item-based collaborative filtering is suitable
when the item-to-user ratio is high. Both, however, struggle when the user-item
matrix X is very sparse. In such cases, the similarity calculation may lack accu-
racy, resulting in poor recommendation quality. Moreover, if, for example, similar
users only interacted with items previously seen by the user, a user-based cannot
recommend novel items.

From a ”global” perspective, neighborhood-based methods are based on con-
structing a user-user or item-item similarity matrix. An important distinction
from other methods is that neighborhood-based approaches construct this ma-
trix without optimizing some objective function.

1.3.2 Model-based approaches
Model-based approaches are based on building a parametric function that takes as
input a user (or their feedback) and outputs the calculated user preference score
for a subset of items. The items with the highest predicted scores are returned as
recommendations. The function’s parameters are learned by optimizing a selected
objective function based on the interactions in the user-item matrix. This is an
example of machine learning. A subset of interactions in the user-item matrix is
used as the training data for the CF model. In training, the model’s parameters
are adjusted in such a way as to minimize a loss function. After training, unused
interaction data can be used to evaluate the model’s performance. The model
should learn to generalize, i.e., to create good predictions even for inputs not seen

13



during training. For more details on machine learning and various methods and
practices, refer to, e.g., the textbook by Bishop [2006].

Matrix factorization methods

Matrix factorization methods aim to learn hidden (latent) factors that influence
the observed user-item interactions. See, e.g., the article by Koren et al. [2009]
for an in-depth overview. Users and items are mapped to a shared latent space.
In the latent space, user vectors qu⃗ ∈ Rk represent the agreement of users with
individual factors (analogously for item vectors pi⃗ ∈ Rk), and the inner product of
user and item representations models the observed feedback: the rating of user u
for item i is estimated as ru,i = qu⃗

T pi⃗. Note that since q⃗T p⃗ = cos(∠(q⃗, p⃗))∥q⃗∥∥p⃗∥,
the ratings are modeled as the cosine similarity of user and item representations
multiplied by their magnitudes.

An appropriate latent space is found by approximately decomposing the origi-
nal user-item matrix into two or more low-rank matrices. A traditional approach
is to use the singular value decomposition (SVD) (SVD), a fundamental
technique from linear algebra. SVD provides a valuable instrument but suffers
from several limitations. Firstly, computing a full SVD can be very expensive.
This can be easily solved by computing a truncated singular value decomposi-
tion (TSVD) (i.e., only the part corresponding to several largest singular values)
instead. TSVD is fast, requires much less storage, acts as denoising, and mathe-
matically provides the optimal low-rank approximation of the user-item matrix.
However, SVD does not work for matrices with missing entries; missing entries
are assumed to be zeros, and this assumption is implicitly used in the approx-
imation. This is conceptually incorrect: we have no information about the
missing entries. The goal is to estimate their hidden values, not the imputed zero
values.

Recent approaches suggest optimizing the regularized squared reconstruction
loss using only the seen interactions. These methods learn representations qu⃗ and
pi⃗ of every user and item so that the loss function

L = 1
|U| · |I|

∑︂
u∈U , i∈I

ru,i is known

(ru,i − qu⃗
T pi⃗)2 + λ(∥qu⃗∥2 + ∥pi⃗∥2) (1.2)

is minimized for all known entries ru,i of the user-item interaction matrix X. The
optimization problem resulting from Equation (1.2) is not convex, and two main
approaches for its optimization were proposed. Funk-SVD (Funk [2006])7, uses
stochastic gradient descent to optimize the above problem. The Alternating
Least Squares (ALS) method (Hastie et al. [2014]) uses the fact that fixing
one set of the variables in Equation (1.2) (either user factors qu⃗ or item factors
pi⃗) results in a convex optimization problem. ALS then iteratively minimizes the
reconstruction error between the original user-item matrix and its approximation
by alternating updates to the factors, with one factor fixed while the other is
optimized.

The final well-known matrix factorization method we mention is the Non-
negative Matrix Factorization (NMF) (e.g., Cichocki and Phan [2009] or

7Funk’s successful entry to the 2006 Netflix Prize competition (Bennett and Lanning [2006]).

14



Févotte and Idier [2011]). NMF aims to find non-negative representations of
users and items by including a non-negativity constraint in the above optimization
problem. The user-item matrix is decomposed into two non-negative matrices.
The approach is practical when dealing with non-negative data such as ratings
or counts.

Deep learning

Recent years have witnessed the popularity of deep learning (see, e.g., the text-
book by Chollet [2021] for introduction to the topic) for CF tasks. One pop-
ular approach is to use graph neural networks, e.g., ultragcn (Mao et al.
[2021]), lightgcn (He et al. [2020]) or ngcf (Wang et al. [2019]), Graph neural
networks used in CF are often convolutional networks which extract information
from weighted unoriented graphs representing the user-item feedback data. An-
other very recent idea for CF is diffusion models like bspm (Choi et al. [2022]).

Autoencoders

Some of the most popular deep learning approaches for CF belong to the class of
autoencoders. An autoencoder (initially proposed by LeCun [1987]) is a model
trained to reconstruct the input and learn meaningful representations of input
data. The learned representations can then be used for various applications, such
as clustering or (more recently) generative tasks (refer to, e.g., Bank et al. [2021]
or Zhai et al. [2018]).

Formally, in the most basic setting, the goal of the training is to learn an
encoder function ˆ︁E : Rn → Rk and a decoder function ˆ︂D : Rk → Rn that satisfy

ˆ︁E,ˆ︂D = argminE,DE[∆(x⃗, D(E(x⃗)))],

where E is the expected value over the distribution of x⃗ in the training dataset and
∆ is the selected reconstruction loss function (often ∆(x⃗, y⃗) = ∥x⃗ − y⃗∥2

2). The
reconstruction loss measures the distance between the input and the decoded
output. Figure 1.5 shows a high-level illustration of autoencoder architecture.
Neural networks typically represent the encoder and decoder.

The encoder’s task is to create a representation of the n-dimensional input
in a k-dimensional latent space. This representation is then decoded back to the
original feature space of the input by the decoder. Very often, k is selected to
be (much) smaller than n. The resulting latent representation is compressed. In
some cases, subspaces of the latent space can be attributed to identifiable features
of the input data (see, e.g., the section on variational autoencoders in Chollet
[2021]). Note, however, that it is not easy to force the model to learn ”good”
latent representations, and various sophisticated modifications (using different
regularization and compression techniques) were developed for this reason.

As the most notable example, older techniques often created nonsensical pre-
dictions for data not seen during training. Instead of learning to map input
data points x⃗ ∈ Rn to individual points z⃗ ∈ Rk and back to x⃗, variational
autoencoder (VAE) (introduced by Kingma and Welling [2022]) view x⃗ and z⃗

as realizations of random variables X⃗ and Z⃗ respectively and learn probabilistic
encoders and decoders, i.e., where the points x⃗ are likely to map in the latent

15



Figure 1.5: Autoencoder architecture (Bank et al. [2021]). The input data is
encoded to a latent representation, which is then decoded.

space and vice versa, assuming that P (z⃗) is fixed and independent of x⃗. Inter-
nally, the decoder in VAE approximates the conditional probability distribution
P (x⃗|z⃗) (the probability of x⃗ being decoded from the latent representation z⃗) as a
parametric function Pθ(x⃗|z⃗). For autoencoder training, the posterior Pθ(z⃗|x⃗) (of
the encoder) is needed, too. In VAE, this is approximated by the conditional dis-
tribution Qϕ(z⃗|x⃗), which for x⃗ ∼ P (x⃗) is parametrized as a multivariate normal
distribution N (µ⃗, σ⃗2I). The encoder predicts the parameters µ⃗ and σ⃗ for a given
x⃗. The latent representation z⃗ is sampled from this distribution and subsequently
decoded by the decoder. The encoder weights ϕ and the decoder weights θ are
optimized by a combination of reconstruction loss and latent loss, which measures
the distance between the prior distribution P (z⃗) = N (0, I) (independent of x⃗)
and Qϕ(z⃗|x⃗) over all x⃗ using Kullback-Leibler divergence8.

Autoencoders provide the model architecture that fits the collaborative fil-
tering task and enables recommendations based solely on user interactions. A
(sparse) vector of user interactions (i.e., a row in the user-item matrix X) rep-
resents a point in a |I|-dimensional space of user preferences. An autoencoder
trained using the rows of X learns to represent input preference vectors in a la-
tent space, and this representation is used to generate similar preference vectors
in the original user preference space. If the predicted vector is close to the orig-
inal preference vector, items with positive feedback (or score) in the prediction
are likely good recommendations for the user. Over the past few years, mul-
tiple autoencoder models achieved state-of-the-art recommendation accuracy in
popular benchmarks. Some of the well-regarded examples include the denoising
autoencoder cdae (Wu et al. [2016]), variational autoencoders like mult-vaepr

(Liang et al. [2018]) and recvae (Shenbin et al. [2020]), and linear autoencoders
slim (Ning and Karypis [2011]), easer (Steck [2019a]) and elsa (Vančura et al.
[2022]).

8Kullback-Leibler (KL) divergence (Kullback and Leibler [1951]) is an information-based
measure of disparity among probability distributions. It is commonly used as a loss function in
machine learning due to its close relation to maximum likelihood estimation. See Joyce [2011]
for details.

16



2. Sparse matrices
In practical applications of collaborative filtering, the gathered feedback is often
sparse in the sense that a user typically interacts with only a small portion of
the item set. Motivated by this, we define a sparse matrix and explain frequently
used storage schemes for sparse vectors and matrices and basic operations with
them. The primary reference for this chapter is the textbook by Scott and Tůma
[2023].

2.1 Definitions
A sparse matrix contains many zero entries that can be exploited for com-
putation efficiency gains. Numerous practical applications require solving linear
systems Ax⃗ = b⃗, where A is large and sparse. Exploiting the sparsity of A by
avoiding operations with zero entries benefits efficiency and enables very large
systems to be solved. Many problems cannot be solved without using sparsity to
reduce memory requirements and the number of required operations.

Definition 2.1 (Sparse matrix). A matrix A ∈ Rm×n is sparse if it is advanta-
geous to exploit its zero entries (by avoiding them during computation). Other-
wise, A is dense.

Similarly, we may define a sparse vector as a vector with many zero entries
or a vector whose zero entries can be exploited. For example, when performing
a linear combination of n vectors with coefficients from a vector a⃗ ∈ Rn, if a⃗ has
many zero entries, the linear combination needs to combine fewer vectors, hence
saving floating point operations.

We refer to the entries of a sparse matrix A ∈ Rm×n using the notation

A = (Ai,j), 1 ≤ i ≤ m, 1 ≤ j ≤ n.

An entry whose value is not zero (or is treated as not being equal to zero) is called
a nonzero. As an example, let us consider the nonzeros of a diagonal matrix.
In any diagonal matrix, every entry outside the main diagonal must be zero.
Therefore, the nonzeros of a diagonal matrix are located on the main diagonal.

Definition 2.2 (Sparsity pattern). For a matrix A ∈ Rm×n, its sparsity pattern
S(A) is the set of nonzeros S(A) = {(i, j) | Ai,j ̸= 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The sparsity pattern S(v⃗) of a vector v⃗ ∈ Rn is the set of nonzero entries
S(v⃗) = {i | v⃗i ̸= 0, 1 ≤ i ≤ n}.

A square matrix A ∈ Rn×n is structurally (or symbolically) singular if A is
singular for any combination of values assigned to the entries on the positions
given by S(A). In this situation, A is singular due to its sparsity pattern (e.g.,
when ∃i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n} : (i, j) /∈ S(A)). If S(A) is symmetric, we
say that A is structurally symmetric.

We denote nnz(A) the number of nonzeros in A. Analogously, we denote
nnz(v⃗) the number of nonzeros in nnz(v⃗). Apparently, it holds that nnz(A) =
|S(A)| and nnz(v⃗) = |S(v⃗)|. The number of nonzero entries in A can be used to
define the density and sparsity of a matrix formally:

17



Definition 2.3 (Density and sparsity). The density of a matrix A is the share of
nonzero entries among all entries: density(A) = nnz(A)

m·n . We define the sparsity
of A as 1− density(A).

2.2 Storage formats
The density (or sparsity) of a matrix determines the potential compression we
can achieve by only storing nonzero entries. We describe several commonly used
formats for storing sparse matrices.

Coordinate format The most straightforward way to store a sparse matrix is
using the COOrdinate format (COO). This format represents A using triplets
(i, j, Ai,j), where i, j are the row and column indices of Ai,j. The coordinate format
is typically used only for creating sparse matrices. Operations with matrices in
the coordinate format are slow because they often need to find required entries
first. Moreover, storing a matrix A in COO format requires memory of size
3× nnz(A), which can be improved.

Compressed sparse formats Probably the most widely used sparse matrix
storage formats are the Compressed Sparse Row format (CSR) and the
Compressed Sparse Column format (CSC) proposed by Jennings [1966].

CSR is based on the idea of compressed vector storage. Let v⃗ be the vector

v⃗ = (3, 0,−2, 0, 0, 56, 0, 0, 0, 9, 0)T ∈ R11.

This vector of length 11 has only four nonzero entries. Its sparsity allows us to
save space when storing this vector in a computer. Instead of storing a single
contiguous array with 11 floating point numbers, we may represent v⃗ by two
contiguous arrays - one for the nonzero values, the other with integers representing
the positions of nonzeros in the original vector - each with nnz(v⃗) = 4 elements:

Subscripts 1 2 3 4
indices 1 3 6 10

data 3 -2 56 9

Denoting len(arr) the length of array arr, it is clear that len(indices) =
len(data) = nnz(v⃗). We see that to store a sparse vector, we only need a
memory of size 2 × nnz(v⃗). Such compression may save significant space when
the vector (or matrix) is very sparse. Next, we show how to extend this idea to
matrices.

The compressed sparse row format compresses each row vector of the matrix
using the method above to store a sparse matrix efficiently. It then concatenates
the indices arrays and the data arrays obtained from each row, forming two
long indices and data arrays. The only thing remaining is to save the starting
position of indices and data corresponding to each row (in order) in a indptr
array. Finally, we include len(indices)+1 (equivalently len(data)+1) as the
final element of indptr. This way, we know that the i-th row of the matrix is
has its indices stored in indices[indptr[i] : indptr[i + 1]] and its data stored in

18



data[indptr[i] : indptr[i + 1]]. Here, arr[a : b] are the data stored in the array
arr between positions a (including) and b (excluding), and, notably, arr[a : a] is
an empty array.⎡⎢⎢⎢⎢⎢⎢⎣

1 2 0 0
5 0 7 8
0 0 0 0
0 0 15 0
17 18 19 0

⎤⎥⎥⎥⎥⎥⎥⎦
Subscripts 1 2 3 4 5 6 7 8 9

indptr 1 3 6 6 7 10
indices 1 2 1 3 4 3 1 2 3

data 1 2 5 7 8 15 17 18 19

For illustration, in the above example, the nonzero values in the second row
of the matrix are stored in data[indptr[2] : indptr[3]] = data[3 : 6] and the
indices of nonzeros in the third row is stored in indices[indptr[3] : indptr[4]] =
indices[6 : 6], which is an empty array.

Storing a matrix in the CSR format can provide great compression. Specif-
ically, for m × n matrix A, we need to store only 2 × nnz(A) + m + 1 values.
In practice, the arrays indptr, indices, data may store different data types:
indptr and indices store (non-negative) integers, while data most commonly
store floating point numbers in a selected precision.

The compressed sparse column format is analogous to CSR, except it stores
the matrix using compressed column vectors. CSR allows fast access to rows of the
matrix (as shown above), while CSC allows fast access to the columns. Depending
on the intended use case, using one or the other may be beneficial. Also note that
the conversion CSR→ CSC and vice versa are have linear complexity, specifically
O(nnz(A) + min(m, n)) for a m × n matrix; see, e.g., the source code1 of SciPy
(Virtanen et al. [2020]).

The CSR and CSC formats are static data structures. While reading A is
straightforward, making modifications is complicated. For instance, adding a new
entry at a specified location or removing an entry is challenging because it requires
a) finding the position where the modification takes place and b) shifting parts
of indptr, indices and data, which may require memory reallocation. When
deleting an entry, the value of the entry could be, alternatively, set to zero, which
is relatively fast, but doing so many times results in many so-called explicit zeros
stored in the sparse structure designed to avoid them. This is inefficient, as the
operations on A are then performed on zeros, creating unnecessary compute and
memory overhead.

Many additional storage formats exist, which we do not discuss here. These
formats have specific use cases, such as block formats tailored to situations with
block sparse matrices or dynamic formats (often based on linked lists), which
sacrifice some compression for easy access to particular entries. We refer to a
technical report by Saad [1990] or Scott and Tůma [2023] and references therein
for a detailed discussion of possible approaches.

2.3 Operations with sparse matrices
The coordinate format provides the simplest way to insert or modify entries by
including a new input triplet. The new triplet stores the update if an entry al-

1https://github.com/scipy/scipy/blob/main/scipy/sparse/sparsetools/csr.h

19

https://github.com/scipy/scipy/blob/main/scipy/sparse/sparsetools/csr.h


ready exists at the modified position. Therefore, the COO format is preferable for
constructing new sparse matrices. However, accessing an entry at the specified
position is difficult because it requires finding all triplets with specified coordinate
positions in a list of triplets. To increase efficiency, we can sort the list of triplets
and merge consecutive updates of the same entries. This step, sometimes referred
to as pruning, is typically performed after the matrix construction has been com-
pleted. However, even after pruning, accessing entries remains slow compared to
other storage formats.

By comparison, compressed sparse formats provide fast access to not only
individual nonzero entries but entire rows (or columns, or blocks, ...), which is
particularly useful in a number of tasks. However, inserting new nonzeros is more
complicated since it requires shifting large contiguous arrays in memory, with
possible (expensive) reallocation required. Consequently, adding two compressed
sparse matrices with different sparsity patterns is not particularly efficient.

2.3.1 Efficient multiplication
Thanks to convenient access to sparsity structures of rows (or columns), com-
pressed sparse formats enable significant speedups in basic linear algebra opera-
tions like matrix-vector or matrix-matrix multiplication. To illustrate the possi-
ble speedup, let us consider the task of multiplying two square sparse matrices
A ∈ Rn×n and B ∈ Rn×n.

If A is stored in the CSR format and B is stored in the CSC format, we
can quickly access rows of A and columns of B and perform the multiplication
C = AB using the standard scheme, where Ci,j is inner the product of the row
vector of Ai,: and the column vector B:,j. Whether the result Ci,j is nonzero is
not a priori known, and hence we must perform n2 inner products. The overall
complexity is O(n3)2.

For comparison, consider the situation when both A and B are stored in
the CSC format, allowing convenient access to the sparsity structures of their
columns. Then, the matrix-matrix multiplication can be performed as n inde-
pendent linear combinations of columns of A. Specifically, to get the j-th column
of C, we compute a linear combination of columns of A with the coefficients in
B:,j. The speedup follows from the fact that if B is sparse, then nnz(B:,j) is
on average small, and we know the exact positions of the few nonzero entries in
B:,j. The linear combination can then be performed by summing nnz(B:,j) dense
vectors of length n, with complexity O(n ·nnz(B:,j)). The total complexity of the
sparse matrix-matrix multiplication is then O(n ·∑︁j nnz(B:,j)) = O(n · nnz(B)).

Analogously, the complexity of sparse matrix-matrix multiplication with both
A and B in the CSR format is O(n · nnz(A)).

2Sparse inner products are typically most efficient when performed using dense array oper-
ations: the compressed entries of a sparse vector are ”scattered” to a dense vector with many
zeros. The complexity of the dense inner product is O(n).

20



3. Embarrassingly Shallow
Autoencoder
Shallow autoencoders have recently gained significant attention in the recom-
mender system community. In this chapter, we describe one of the most highly
acclaimed shallow autoencoder models: Embarrassingly Shallow AutoEncoder
(in Reverse order: easer) proposed by Steck [2019a]. Despite its simplicity,
the model was shown to outperform deep nonlinear models on several popular
datasets, achieving new state-of-the-art performance. We explain the model’s
concept and its strong theoretical advantages, but also its fundamental limita-
tion - costly scaling to domains with large item sets. Finally, we discuss previous
attempts at solving this issue.

3.1 Model definition
The situation in which we derive the model assumes the training data are given
in the form of a user-item matrix X ∈ R|U|×|I|. The matrix is typically large,
sparse (it has relatively few nonzero entries), and overdetermined (|U| >> |I|).
Architecturally, easer is a neural network with no hidden layers and no activa-
tion, i.e., a linear model f : R|I| → R|I|. Its parameters are given by a square
matrix ˆ︁B ∈ R|I|×|I|.

During the inference, the model predicts ratings as r⃗T = u⃗T ˆ︁B, where u⃗ is the
input vector of the user’s feedback. To elaborate, easer computes the predicted
rating as a simple linear combination of rows of ˆ︁B. Moreover, when u⃗ is sparse,
this matrix-vector product combines only a few rows. This simplicity results
in quick inference, which is advantageous or even required in many practical
applications.

Formally, easer solves the constrained optimization problem

minB∥X −XB∥2
F + λ∥B∥2

F s.t. diag(B) = 0⃗, (3.1)

where X is the interaction matrix, B is the learned matrix of the model weights,
and λ is an L2 regularization hyperparameter. By minimizing the reconstruction
loss ∥X−XB∥2

F , the model adjusts its weight to operate similarly to the identity
function of the feature space of user ratings. Essentially, it learns to return a
vector similar to the input vector. The constraint on the diagonal entries was
first introduced by Ning and Karypis [2011] to prevent the convergence to the
trivial solution ˆ︁B = I, a typical problem of sparse autoencoders. Thanks to the
constraint, the self-similarity of items is prohibited, and the model is forced to
generalize when reproducing the input and learn similarities with other items.

3.1.1 Closed-form solution
Thanks to the choice of reconstruction loss ∥X − XB∥2

F and the regularization
loss ∥B∥2

F , the constrained optimization problem (3.1) is convex, which allows us
to express its solution analytically.

21



In the first step, we transform the constrained optimization problem into an
unconstrained one. All constraints in the problem (3.1) are equality constraints.
We introduce a vector of Lagrange multipliers µ⃗ ∈ R|I| and form the Lagrangian

L = ∥X −XB∥2
F + λ∥B∥2

F + 2µ⃗T diag(B). (3.2)

To satisfy the necessary condition for minimization, we require the partial
derivative of the Lagrangian L w.r.t. B to equal zero. Using the fact that
∥A∥2

F = ∑︁
i,j A2

i,j and (AB)k,j = Ak,:B:,j = ∑︁
i Ak,iBi,j, we rewrite

L =
∑︂
k,j

(︂
Xk,j − (XB)k,j

)︂2
+ λ

∑︂
i,j

B2
i,j + 2

∑︂
i

µiBi,i

=
∑︂
k,j

(︂
X2

k,j − 2Xk,j(XB)k,j + (XB)2
k,j

)︂
+ λ

∑︂
i,j

B2
i,j + 2

∑︂
i

µiBi,i

=
∑︂
k,j

(︂
X2

k,j − 2Xk,j

∑︂
i

Xk,iBi,j + (
∑︂

i

Xk,iBi,j)2
)︂

+ λ
∑︂
i,j

B2
i,j + 2

∑︂
i

µiBi,i

and express the partial derivative w.r.t. Bi,j as

∂L
∂Bi,j

=
∑︂

k

(︂
− 2Xk,jXk,i + 2Xk,i

∑︂
l

Xk,lBl,j

)︂
+ 2λBi,j + 2µi · 1i=j

1
2

∂L
∂Bi,j

=
∑︂

k

Xk,i

(︂
(XB)k,j −Xk,j

)︂
+ λBi,j + µi · 1i=j

=
∑︂

k

Xk,i

(︂
X(B − I)

)︂
k,j

+ λBi,j + µi · 1i=j

=
(︂
XT X(B − I)

)︂
i,j

+ λBi,j + µi · 1i=j

=
(︂
(XT X + λI)B

)︂
i,j
− (XT X)i,j + µi · 1i=j. (3.3)

The partial derivative of the Lagrangian L w.r.t. B is zero if and only if all partial
derivatives of L w.r.t. Bi,j are zero. Hence, by Equation (3.3), the solution ˆ︁B to
the original optimization problem (3.1) is a solution to the linear system

(XT X + λI)B = XT X − diag(µ⃗), 1 (3.4)

for some µ⃗ which we need to select so that the constraint diag( ˆ︁B) = 0⃗ holds.
The matrix XT X + λI is called the regularized data Gram matrix or the reg-

ularized Gramian of the matrix X. The matrix is symmetric. Before continuing
the derivation of the analytical solution, we need to prove the invertibility of the
regularized data Gram matrix. At the same time, we will prove several related
statements, which will be useful later in the thesis.

Definition 3.1. A square matrix A ∈ Rn×n is positive definite if and only if
x⃗T Ax⃗ > 0 for all x⃗ ̸= 0⃗.

Proposition 3.1. For any λ ∈ R+ and any matrix X ∈ Rm×n, the matrix
XT X + λI is positive definite.

1For a vector v⃗, diag(v⃗) denotes the square matrix with v⃗ on the main diagonal. For a matrix
A, diag(A) is the vector of the main diagonal entries.

22



Proof. The matrix XT X is positive semi-definite, since x⃗T XT Xx⃗ = ∥Xx⃗∥2 ≥ 0.
Moreover, x⃗T (λI)x⃗ = λ∥x⃗∥2 > 0 ∀x⃗ ̸= 0⃗. Summing up the two inequalities, we
obtain

x⃗T (XT X + λI)x⃗ = x⃗T (XT X)x⃗ + x⃗T (λI)x⃗ > 0 ∀x⃗ ̸= 0⃗,

which is the defining condition.

The invertibility of XT X + λI is a consequence of Proposition 3.1 and the
following simple statement from linear algebra.

Proposition 3.2. A symmetric positive definite (SPD) matrix A ∈ Rn×n is
invertible.

Proof. By the Spectral Theorem (see e.g., Pinkham [2015]), all eigenvalues of A
are positive, i.e. 0 is not an eigenvalue of A. Hence, the system Ax⃗ = 0⃗ has no
non-trivial solution, and so A is invertible.

Corollary. For any λ ∈ R+ and any matrix X ∈ Rm×n, the matrix XT X + λI is
invertible.

Proof. Follows from Proposition 3.1 and Proposition 3.2.

Lemma. Let A ∈ Rn×n be a symmetric invertible matrix. Then A−1 is symmet-
ric.

Proof. It holds that (A−1)T = (AT )−1 = A−1.

Proposition 3.3. For any λ ∈ R+ and any matrix X ∈ Rm×n, the matrix
(XT X + λI)−1 is symmetric positive definite.

Proof. By Proposition 3.1, XT X + λI is symmetric positive definite, hence in-
vertible by Corollary 3.1.1. Using the previous lemma, we get that (XT X +λI)−1

is symmetric. Moreover, it follows from the Spectral Theorem for real symmetric
matrices that XT X + λI is orthogonally diagonalizable. Hence, we may write
XT X + λI = UDUT , where U is a real orthogonal matrix (i.e., U is square and
UUT = I) and D is a square diagonal matrix. The diagonal entries of D are
the eigenvalues of XT X + λI. According to the Spectral Theorem for positive
definite matrices, all eigenvalues of XT X + λI are positive real numbers, which
specifically implies that the diagonal entries in D are nonzero. Because of this,
we may express the inverse of XT X + λI as

(XT X + λI)−1 = (UDUT )−1 = U−T D−1U−1 = UD−1UT ,

where we used U−1 = UT . This expression shows that (XT X + λI)−1 is or-
thogonally diagonalizable with positive real eigenvalues, which by the Spectral
Theorem means it is positive definite.

Corollary 3.1.1 ensures the existence of a unique solution for the linear system
3.4. By substituting ˆ︁P = (XT X + λI)−1, we can express the solution as

ˆ︁B = (XT X + λI)−1(XT X − diag(µ⃗))
= ˆ︁P ( ˆ︁P −1 − λI − diag(µ⃗))
= I − λ ˆ︁P − ˆ︁Pdiag(µ⃗)
= I − ˆ︁Pdiag(λ1⃗ + µ⃗). (3.5)

23



The vector of Lagrange multipliers µ⃗, and hence also λ1⃗ + µ⃗, is determined by
the constraint diag( ˆ︁B) = 0⃗. Combining Equation (3.5) with the constraint yields

0⃗ = diag( ˆ︁B) = diag(I)− diag
(︂ ˆ︁Pdiag(λ1⃗ + µ⃗)

)︂
= 1⃗− diag( ˆ︁P )⊙ (λ1⃗ + µ⃗), (3.6)

where ⊙ denotes the elementwise product of vectors. We used the observation
that multiplying ˆ︁P by diag(λ1⃗ + µ⃗) from the right is the same as scaling the
columns of ˆ︁P by the corresponding entries of λ1⃗ + µ⃗. Equation (3.6) allows us to
express the vector λ1⃗ + µ⃗ in terms of ˆ︁P (i.e. using only X and λ) as

λ1⃗ + µ⃗ = 1⃗⊘ diag( ˆ︁P ), (3.7)

with ⊘ denoting the elementwise vector division. This operation is well-defined
if and only if ˆ︁Pi,i ̸= 0 ∀i ∈ {1, . . . , |I|}. This is satisfied because ˆ︁P is positive
definite (Proposition 3.3). By definition, x⃗T ˆ︁Px⃗ > 0 for all x⃗ ̸= 0⃗, which for
x⃗ = ei⃗ (where ei⃗ is the i-th vector of the canonical basis) yields ei⃗

T ˆ︁Pei⃗ = ˆ︁Pi,i > 0.
Substituting the expression (3.7) into Equation (3.5) yields the desired the closed-
form solution: ˆ︁B = I − ˆ︁Pdiag(1⃗⊘ diag( ˆ︁P )) (3.8)
To avoid confusion, we emphasize that diag( ˆ︁P ) is a vector and diag(1⃗⊘ diag( ˆ︁P ))
is a square diagonal matrix. The multiplication of − ˆ︁P from the right-hand side
by the diagonal matrix diag(1⃗ ⊘ diag( ˆ︁P )) is equivalent to dividing the columns
of − ˆ︁P by the corresponding entries of the vector diag( ˆ︁P ). It follows that
diag(− ˆ︁Pdiag(1⃗⊘ diag( ˆ︁P ))) = 1⃗ and we may express the learned weights as

ˆ︁Bi,j =

⎧⎪⎨⎪⎩
0 if i = j,
− ˆ︁Pi,jˆ︁Pj,j

otherwise.
(3.9)

3.1.2 Properties of weights
Equation (3.9) shows that the off-diagonal entries are determined by the matrixˆ︁P . Note also that ˆ︁B is generally asymmetric as it is obtained from a symmetric
matrix ˆ︁P by scaling from one side only.

Residual connection Let us elaborate on the structure of ˆ︁B as a layer in a
neural network. Denoting ˆ︁Bdiag = − ˆ︁Pdiag(1⃗ ⊘ diag( ˆ︁P )) the matrix of weights
before applying the zero diagonal constraints, we may write

ˆ︁B = ˆ︁Bdiag + I.

We see from the above expression that instead of viewing easer as a linear model
with weights ˆ︁B and no bias vector, we may understand it as a linear model with
weights ˆ︁Bdiag and no bias with added residual connection from the input to the
output:

r⃗T = u⃗T ˆ︁B = u⃗T (ˆ︁Bdiag + I) = u⃗T ˆ︁Bdiag + u⃗T (3.10)

24



Full-rank component Full-rank modeling was shown to benefit recommen-
dation quality in CF tasks, especially in domains with extensive item sets and
prominent long-tail (see Steck [2019b] and Steck and Liang [2021]), where low-
dimensional latent representations bottleneck the network’s expressiveness. Pos-
itively, easer includes a full-rank component, as shown in the following.

Proposition 3.4. rank(ˆ︁Bdiag) = |I|.

Proof. We know that rank(ˆ︁Bdiag) = rank(− ˆ︁Pdiag(1⃗ ⊘ diag( ˆ︁P ))). Matrix ˆ︁P is
the inverse of the invertible matrix XT X + λI (see Corollary 3.1.1) and hence
− ˆ︁P is invertible. Matrix diag(1⃗⊘ diag( ˆ︁P )) is diagonal with nonzero entries, and
therefore it is invertible. A product of invertible matrices is invertible. Finally, an
invertible matrix has full rank by the Rank-Nullity Theorem (see, e.g., Pinkham
[2015]) because its kernel is trivial.

This observation partially explains the accuracy gains of easer over the pre-
vious state-of-the-art. We refer to Steck and Liang [2021] and references therein
for further discussion on the importance of combining full-rank and higher-order
(non-linear) modeling in collaborative filtering tasks.

3.2 Model training
The training procedure of easer follows from the closed-form solution (Equation
(3.8)) of the optimization problem (3.1) derived in the previous section. We
summarize the training procedure in Algorithm 1.

Algorithm 1 The training procedure of easer (Steck [2019a])
input user-item interaction matrix X ∈ R|U|×|I|, L2 regularization λ ∈ R+

1: A← XT X + λI ▷ the regularized data Gram matrix
2: ˆ︁P ← A−1

3: ˆ︁Bdiag ← ˆ︁Pdiag(1⃗⊘ diag( ˆ︁P )) ▷ scale columns of ˆ︁P
4: ˆ︁B ← ˆ︁Bdiag + I ▷ zero out the diagonal entries

return ˆ︁B
The time complexity of Algorithm 1 is dominated by Step 2, in which the

inverse of XT X+λI is computed. Asymptotically, the complexity of the inversion
is about O(|I|2.3755) using the Coppersmith-Winograd algorithm (Coppersmith
and Winograd [1990]). This computational complexity considerably lower than
the cost of training slim (Ning and Karypis [2011]) - the spiritual predecessor of
easer - and its variants, which solve |I| independent (parallelizable) regression
problems with total complexity O(|I|(|I|−1)2.3755). Of course, for efficient inverse
computation, the matrix must fit into memory. Otherwise, the computation will
be significantly inhibited by data transfers.

The complexity of the dominant Step 2 does not depend on the number of
users |U| or the number of user-item interactions nnz(X). This independence is
instrumental in (common) situations when the number of users in the training
dataset is much greater than the number of items, i.e., |U| >> |I|. In such
case, Step 1 - which may be performed in the pre-training phase using big data

25



workflows - aggregates and compresses the input data into a matrix of smaller
size. We will discuss the meaning of this aggregation in the upcoming section.
On the other hand, the aggregation increases the density of data, which may be
costly (in terms of storage) when |I| is too large.

Steps 3 and 4 are in-place operations, i.e., they are performed almost instantly
in any realistic scenario. Moreover, Step 4 is optional, and we may include a
residual connection connecting the input to the output, as discussed earlier.

3.3 Interpretation and advantages
Encoder meets decoder Despite its name, easer, technically, differs from
most autoencoder architectures that use separate encoder and decoder parts.
Standard autoencoders first encode the input into a vector in latent feature space.
This encoding, called the latent representation, is available during the computa-
tion. A decoder then decodes the latent vector to create a prediction. easer

has no hidden layers. Instead, the layer ˆ︁B both encodes the input into a latent
representation and decodes the latent representation to produce an output. As a
result, the latent representation of the input is not explicitly available in easer,
but it is possible to uncover it by modifying the model to use the matrix ˆ︁B in a
factorized form2.

Aggregate data from many users Because ˆ︁P = (XT X + λI)−1, we see from
Equation (3.5) that XT X provides sufficient statistics for estimating the weight
matrix ˆ︁B. This observation has two positive consequences. Firstly, if |U| >> |I|,
we may compress the training data by aggregating X → XT X before training
(perhaps in a big data pipeline) and this compression does not lose information
required for model training. Secondly, this aggregation helps battle data sparsity.
The main idea here is that the statistic (XT X)i,j is aggregated through all users
in the dataset. Increasing the number of users reduces the uncertainty of this
statistic. Therefore, for an accurate estimate of the weights ˆ︁B, sparsity of X can
be compensated sufficiently increasing the number of users (see the original paper
by Steck [2019a] for more details). In large-scale recommendation scenarios such
as e-commerce, this is invaluable.

3.3.1 Similarity through user chains
Unlike many neighborhood-based CF methods, which compute (heuristical) item-
item relations or similarity as a (potentially rescaled) data Gram matrix XT X,
Steck [2019a] shows (under certain assumptions) that the conceptually correct
similarity matrix is, in fact, the inverse of XT X. The rest of the section provides
a visual explanation of this statement.

CF methods that estimate the item-item relations as the data Gram matrix
XT X perform a specific user feedback aggregation. For a pair of items i, j whose
relation we want to estimate, a system of this kind finds all users who interacted
with both items. In other words, it identifies all paths of length exactly 2

2Different factorizations would yield representations inside different feature spaces.

26



Figure 3.1: Aggregation through chains of users. When computing the item-item
similarity using only user pairwise sentiment (how much users like or dislike both
items in question), it is easy to miss relevant information. For items i1 and i2,
pairwise sentiments of users u1 (+1 and +1 respectively) and u2 (+1,−1) cancel
out, leaving only the pairwise sentiment of user u3 (−3, +2) and modeling the
similarity of i1 and i2 as negative. This aggregation is oblivious to the strong
preference of the user u4 towards items i1 and i3 (+10, +10) and the strong
preference of the user u5 towards i3 and i2 (+10, +10). Item i3 links the two
pairwise sentiments into a chain and reveals the strongly positive relation between
items i1 and i2 in this example.

between item vertices in the weighted unoriented bipartite graph

GX = (VU
X

⋃︂
VI

X , EX), EX ⊆ VU
X × VI

X , w : EX → R

(where vertices in VU
X represent the users and vertices in VI

X represent the items)
given by the user-item matrix X:

(vi, vj) = ei,j ∈ EX ⇐⇒ Xi,j ̸= 0, and w(ei,j) = Xi,j.

For each path of length 2 between a pair of item vertices, the weights (i.e., the
observed user-item feedback) of the pair of edges are multiplied, and the results
for all paths are summed together. Conceptually, this aggregation sums some-
thing that can be viewed as a pairwise sentiment - if and ”how much” a user
likes/dislikes both items in a pair, or likes one item and dislikes the other. An
example of such aggregation is shown in Figure 3.1, where users u1, u2, u3 in-
teracted with both items i1 and i2. For example, we see that while both users
u1, u2 provide positive feedback 1 for item i1, one of them assigned item i2 a
positive feedback 1 while the other assigned it a negative feedback -1. Both like
one item of the pair while having opposite opinions about the second item - their
pairwise sentiment towards the pair i1, i2 is orthogonal and cancels out.

This method of aggregation has limited scope. Fundamentally, two main issues
result in worse recommendation quality, most noticeably decreased diversity and
subpar recommendations for users with niche interests.

27



Data sparsity A path of length 2 between items i1 and i2 exists if and only
if there exists a user who interacted with both items i1 and i2. Interactions of
these users represent a single entry in the matrix XT X (alternatively, an edge in
the weighted graph GXT X of the adjacency matrix XT X). We call these entries
(or edges) direct data about the relation between an item pair.

A practical observation is that direct data for a random item pair is unlikely
to exist on domains with vast item sets. To see why, one needs to realize that in
a dataset with |I| items, there are

(︂
|I|
2

)︂
different item pairs - this number grows

approximately quadratically in |I|. It is apparent that with the growing item
set size, gathering enough feedback is increasingly challenging. Even collecting
enough feedback for 10 000 to 100 000 items could be problematic (depending
on the number of users and the amount of feedback they give). This effect is
typically even more substantial due to non-uniform item interaction distribution,
as items from the long tail are viewed less often.

Imagine a situation when a user with niche interests visits our website. This
user has previously positively rated the long-tail item i1, and if we could read his
mind, we would know that he also very much likes the long-tail item i2. Of course,
we would want to recommend this item, but our recommender system’s view is
limited. Based on positive interaction with item i1, it can only recommend item
i2 if previously someone else liked both items i1 and i2. If our item catalog is
vast, such a user likely does not exist. In a better case, a few other users have
seen both items. Then, the relation is estimated, but only with low certainty.

Unawareness of long-distance relations Aggregation via paths of length 2
may be oblivious to important information. In the toy situation illustrated in
Figure 3.1, such aggregation estimates the relation between items i1 and i2 only
using feedback from users u1, u2 and u3, which is directly available. However,
it misses the fact that both users u4 and u5 revealed strong positive sentiment
toward item i3, while user u4 very much liked item i1 and user u5 showed
strong positive sentiment toward item i2. This is an example of a chain of user
sentiment. If two users agree in preference on an item, it is reasonable to assume
one user would like other items the second user liked, and vice versa. Chains of
user sentiment may be arbitrarily long, and they are crucial for helping with the
data sparsity problem mentioned in the previous paragraph. When direct data
is unavailable between items i1 and i2, a recommender system working with
sentiment chains might still find chains of feedback by connecting multiple users
and recommend item i2 based on them. In other situations, as in Figure 3.1,
incorporating the information from a longer chain might change the estimated
relationship between the items. Where direct data (perhaps infrequent and noisy)
may suggest a negative relation or dissimilarity, longer sentiment chains could
reveal that the relation between the two items is, in fact, positive.

In domains with extensive item sets, where both users and items may have
only a few interactions, producing accurate and diverse recommendations may
be a complicated task, especially for methods like various neighborhood-based
approaches that only consider short paths in the bipartite graph GX . Compared
with that, easer takes into account much more information in the form of arbi-
trarily long chains of user sentiment. One possible way to see this is using a known

28



relationship between the inverse matrix and the minors of the original matrix.
Using the standard notation where Mi,j is the (i, j)-th minor of a square matrix
A of dimension n (i.e., the determinant of the submatrix obtained by dropping
the i-th row and the j-th column of A) and adj(A) =

(︂
(−1)i+jMj,i

)︂
1≤i,j≤n

is the
adjugate matrix of A, the inverse of A can be expressed as

A−1 = 1
det(A)adj(A).

We see that individual entries of A−1 are proportional to their respective minors:

(A−1)i,j = ± 1
det(A)Mj,i ∝Mj,i. (3.11)

Substituting A = XT X+λI, the above relation allows us to interpret the modeled
similarity of items i and j in terms of paths in the user-item graph GX . The
minor Mj,i is a sum of terms. Every term represents a product of n− 1 entries of
XT X +λI from different rows and columns. Since the (k, l)-th entry of XT X +λI
aggregates pairwise sentiment from all users that interacted with both items k
and l, the terms in the minor are products of pairwise sentiments (paths of length
2 in GX). Moreover, a term is nonzero if and only if the entire (n − 1)-tuple of
selected entries of XT X + λI is nonzero, and hence Mj,i ignores ”zero” paths3. It
is easy to verify that every term4 in Mj,i decomposes into

• a multipath5 between i and j in GX , and

• one or more independent multicycles in GX , each composed of a subset of
the remaining items and sets of users connecting pairs of items in the cycle.
We allow a trivial multicycle composed of a single item and the set of users
who interacted with this item.

This decomposition reveals how easer models the similarity of items: every
nonzero term in Mj,i represents an aggregation of a set of sentiment chains6

weighed by the aggregate sentiment of users toward the remaining items (these
weights are later normalized by the determinant, which aggregates the ”total
sentiment” of users toward all items, see Equation (3.11)). This description makes
it clear that easer models the similarity of items i and j as the aggregation over
all chains of pairwise sentiment between i and j (i.e., all paths between i
and j in GX). Apart from its comparably lower computational complexity, this
ability to model item-item relations via long chains of users is, in our opinion,
the most significant advantage of easer.

As a possible direction for future work, we note that the Cholesky decomposi-
tion of the SPD matrix XT X+λI offers another viewpoint at the similarity model.
Denoting LLT = XT X + λI, we may express the (i, j)-th entry of (XT X + λI)−1

as (︂
(XT X + λI)−1

)︂
i,j

= eT
i (L−T L−1)ej = (L−1)T

:,i(L−1):,j.

3A ”zero” path contains a pair of consecutive items k, l with zero aggregate feedback,
i.e., (XT X + λI)k,l = 0. This occurs due to cancelation or, more commonly, missing direct
interaction data – when no user has seen both k and l.

4A term in Mj,i corresponds to a permutation of n elements with one edge removed.
5Because a pair of items is connected through a set of users.
6These chains connect the same items but through different users.

29



The above relation shows that the (i, j)-th inverse entry – i.e., the modeled sim-
ilarity of items i and j – is the inner product of columns i and j of L−1 (it is,
therefore, closely related to the cosine similarity of the two columns). It is pos-
sible to trace the nonzero entries in the factor L to their origins in the matrix
XT X + λI using the associated elimination tree (see Appendix A.1 for a defini-
tion) and also use the same tree to learn how the entries of L−1 are created from
L (we discuss how this tracing works in Appendix A.2.2).

3.4 Expensive scaling
Nowadays, it is not uncommon to have datasets with millions of items, and the
sizes will likely continue to grow. Large item sets often obstruct the adoption of
state-of-the-art (deep learning) models in production systems. The complexity of
training a deep neural network for the task may be very high, as shown, e.g., in
Steck [2019b], where the variational autoencoder mult-vaepr (Liang et al. [2018])
required more than 4 hours to train on a dataset with mere 41,140 items. For this
reason, large CF systems are often forced to fallback to much simpler methods,
such as als (Hastie et al. [2014]) or user-oriented or item-oriented neighborhood-
based approaches (e.g.,Resnick et al. [1994] and Sarwar et al. [2001], respectively).
As discussed earlier, low-rank models like als internally compress information
into a low-dimensional latent space. This compression may cause the loss of
subtle information about the long tail. Unfortunately, long-tail interactions are
fundamental for diverse personalized recommendations in domains with vast item
sets.

A solution to this problem is to use full-rank models instead, but before easer

was introduced, full-rank models like slim (Ning and Karypis [2011]) had been
costly to train. easer considerably improved the time complexity for training
over slim, but inverting a large matrix (Step 2) can still be prohibitively slow for
production use. Fortunately, algorithms for inversion are typically well paralleliz-
able, and this issue can be avoided by running the training on larger hardware.

Density of weights More importantly, the learned weight matrix may require
too much memory, even if the data-Gram item-item matrix A = XT X + λI is
very sparse. Specifically, a well-known result by Duff et al. [1988] states that
the inverse of an irreducible matrix is structurally fully dense - even when the
original matrix is sparse (see also Gilbert and Liu [1993], Scott and Tůma [2023]).

To understand why this is a problem, recall that any real matrix A represents
an adjacency matrix of a weighted oriented graph GA, and any nonsingular matrix
has an (in a sense unique) Frobenius normal form PAP T , which symmetrically
permutes the matrix A to reveal its irreducible blocks. There exists a one-
to-one correspondence between the strongly connected components (where
every vertex is reachable from every other vertex via an oriented path) of GA and
the irreducible blocks of the Frobenius normal form PAP T . The correspondence
can be composed as follows:

1. The permutation p corresponding to the permutation matrix P induces an
isomorphism of graphs GA and GP AP T .

30



2. Vertices vp(i), vp(j) of GP AP T are in the same strongly connected component
if and only if p(i), p(j) are column indices in the same irreducible block of
matrix PAP T .

In other words, the irreducibility of a matrix can be understood in terms of the
strong connectivity of its graph. A large irreducible block in PAP T exists if and
only if a large strongly connected component exists in GA. By definition, vi and vj

belong to the same strongly connected component of the item-item network GXT X

given by the adjacency matrix XT X exactly when there exist oriented paths from
vi to vj and from vj to vi in GXT X . Since XT X is symmetric, every path can
be viewed as if oriented in both directions, and the strong connectivity reduces
to connectivity. Moreover, adding diagonal entries to XT X does not affect the
existence of paths between vertices in GXT X , i.e., vertices vi to vj are connected
by an (unoriented) path in GXT X exactly when they are connected in GXT X+λI .
Finally, paths in GXT X+λI are transitive: if there exists a path connecting vi and
vj and a path connecting vj and vk, then vi and vk are connected by a path.
While a direct edge connecting an arbitrary pair vi and vk in GXT X+λI might not
exist, a path between vi and vk is more likely; it only needs some other vertex vj

to which both vi and vk connect via a path.
This is the central element driving the issue. Large connected components are

likely in the practical applications, as discussed here. Firstly, for an edge vi and
vj in GXT X+λI to exist, there must exist a user who interacted with both items,
i.e., there must exist a path of length 2 connecting the two items in the bipartite
graph GX . However, any path connecting the two items in GX yields a path
between vi and vj in GXT X+λI . In other words, it only needs a chain of pairwise
sentiments that start with item i and end with item j, not a ”direct” pairwise
sentiment for i and j. By gathering more user feedback, we are adding (possibly
new) edges to the graph GX , and the odds of two items being connected by a
path grow. Moreover, in real-world applications, the distribution of user-item
interactions is not uniform. Small sets of popular items often garner interactions
from numerous users. These popular items boost connectivity of GX by creating
many paths of length more than 2. Consequently, large connected components
will likely emerge in the item-item network GXT X+λI .

To summarize, the wide span of aggregation used by easer has a trade-off.
While considering longer paths in GX (i.e., chains of pairwise sentiment) adds
significant additional information to the model, it also results in high memory
requirements in domains with vast item sets. The difference between the size of
A and the resulting model size may be staggering. Therefore, we may expect
the model size of easer to be problematic in large collaborative filtering tasks.
If even a single sizeable irreducible component exists in A - which is very likely
in practice - the matrix A−1 will be quite dense, and the resulting model may
get very large. To put the problem with density in resource perspective, for a
dataset with 1 million items, the trained model easer could have up to 1 trillion
parameters and require up to 4 TB of memory (using float32). While this may
be tolerable for shorter training periods, deploying such a large model for long-
term production inference is unjustifiably expensive, as the entire weight matrix
must fit in memory for inference.

31



3.4.1 Improvements
We end this chapter by describing proposed modifications easer which aim to
reduce the model’s memory requirements.

Low-rank dense approximation Model elsa (Vančura et al. [2022]) is based
on a dense low-rank approximation of the matrix ˆ︁Bdiag. The training procedure
uses a gradient descent approach to optimize model weights. This modification
asymptotically improves training complexity (both time and memory) over the
basic model easer. Moreover, elsa even performs slightly better than easer on
smaller datasets, likely due to the denoising effect of the low-rank approximation7,
which serves as additional regularization. However, as discussed earlier in this
section, low-rank factorization may negatively impact the model performance
(see, e.g., Steck [2019b], Steck and Liang [2021]), especially in domains with an
extensive long tail, where even subtle dependencies may be crucial.

Full-rank sparse approximation Another possibility is to use a sparse full-
rank approximation of ˆ︁Bdiag. Steck [2019b] explained that the item-item network
G(XT X+λI)−1 can be understood as a Markov Random Field (hence the name mrf).
The author presented a novel algorithm for learning a sparse approximation of
the Markov Random Field based on recent research in sparse inverse covariance
estimation (e.g., Banerjee et al. [2008], Friedman et al. [2007]). The mrf method
estimates the inverse matrix A−1 by inverses of submatrices corresponding to
dominant item clusters in the network that are interconnected on their interfaces.
This approach can be classified as a type of overlapping domain decomposition
where the interfaces represent overlaps (see, for example, a general algorithm-
based description in a classical text by Smith et al. [1996]).

The method allows for a trade-off between model size, training time and rec-
ommendation accuracy. Crucially, the mrf method was shown to closely match
the performance of dense easer even at high compression rates (with up to 1000×
smaller model than easer on a relatively dense dataset). This efficiency demon-
strates the potential of scaling easer-like methods to domains with very large
number of items, where the corresponding item-item matrix XT X + λI is often
very sparse. Unfortunately, the training of mrf may still require significant re-
sources. The sparsity pattern in mrf is estimated from a dense item correlation
matrix, which can be very large8. Moreover, even inverting small submatrices
may yield memory inefficiency if there are many of them or if their computation
stems from the same large and dense item-item matrix. Then, the matrix must be
kept in memory throughout the entire training procedure (expensive), or loaded
by parts (slow).

7Low-rank approximation via the truncated singular value decomposition suppresses high-
frequency noise, see Hansen [2010].

8The size is quadratic in the number of items. E.g. for Amazon Books dataset (Ni et al.
[2019]) with 91 599 items, the matrix contains 8.4B entries (33.6GB using float32) - and item
sets can be much larger.

32



4. Sparse approximate inverse
Similarly to Steck [2019b], we aim to modify the concept of easer by finding a
sparse approximation of its weight matrix. To accomplish this nontrivial task,
we turn to numerical mathematics. This chapter reviews the use of sparse ap-
proximate inverses in numerical computations, where they serve as an important
component in efficient solvers for large linear systems. We then describe various
possible methods for computing a sparse approximate inverse. The primary ref-
erence here is A comparative study of sparse approximate inverse preconditioners
by Benzi and Tůma [1999].

4.1 Motivation
Being able to efficiently and reliably solve large linear systems Ax⃗ = b⃗ is crucial
for a great number of applications in science and engineering. Systems arising
from such domains often belong to a specific category: they are square, very large
in dimension and sparse. For such systems, the use of direct methods is often
infeasible due to high memory requirements. Instead, modern solvers typically
utilize more memory-efficient iterative methods based on Krylov subspaces (see
e.g., a textbook by Liesen and Strakoš [2012]).

The speed of convergence for Krylov subspace methods depends on the prob-
lem’s spectral properties, and in some cases, convergence to the desired solution
may be prohibitively slow. In such situations, we may employ precondition-
ing to improve the problem’s properties. The basic idea of preconditioning is to
find a suitable transformation of the original problem to a problem with better
numerical properties so that the selected iterative method converges faster. For
example, we may transform the original system to a form MAx⃗ = Mb⃗, where
the matrix M is the preconditioner ; there are more possible ways how to apply
preconditioning. Over the years, different concepts for construction of precon-
ditioners were developed, with incomplete LU (or Cholesky) factorization being
perhaps the most prominent one. We will focus on another important class, which
is based on approximate inversion.

As the name suggests, preconditioning based on approximate inversion uses
the preconditioner matrix M which approximates the inverse of the coefficient
matrix A. The core idea is that if M ≈ A−1, then applying the preconditioner
Ax⃗ = b⃗ → MAx⃗ = Mb⃗ should yield MA ≈ I. In other words, the coefficient
matrix of the transformed system should be close to the identity, and hence it
should be easy to recover the solution x⃗. Note that conceptually, M need not
approximate A−1 in the sense that ∥M − A−1∥ is small (for some choice of the
norm). Rather, we need that ∥I −MA∥ is small, i.e. the left-hand side operator
M needs to act similarly to A−1.

Unlike polynomial preconditioners which also approximate A−1 but only im-
plicitly, sparse approximate inverse techniques explicitly compute and store the
preconditioner matrix M ≈ A−1. These techniques became of interest for research
of algebraic preconditioners because of strong potential for parallel implementa-
tion. Another motivation was providing an alternative in situations when other
preconditioning methods fail. Incomplete factorization techniques can fail (e.g.,

33



on indefinite matrices) due to some form of instability, either in the incomplete
factorization phase (small pivots), or in the back substitution phase, or both;
see Chow and Saad [1997]. Approximate inverse techniques are typically less
prone to these problems, and hence provide an important complement to other
preconditioning methods.
Remark. Approximate inverse preconditioners rely on the assumption that it is
possible to find a good approximation of the inverse A−1 of the coefficient matrix
A. This is not evident since the inverse of a sparse matrix is often dense. More
precisely, the inverse of an irreducible sparse matrix A is structurally dense (see
Duff et al. [1988], Gilbert and Liu [1993], Scott and Tůma [2023]), meaning it is
always possible to assign numerical values to the sparsity pattern of an irreducible
matrix A in such a way that all entries of the inverse will be nonzero. Nevertheless,
many of the entries in A−1 are often small in magnitude, making finding the sparse
approximate inverse possible. Much of the recent research has been devoted to
the problem of selecting the ”important” entries of A−1 automatically.

The following sections summarize common approaches for finding sparse ap-
proximate inverses of a square nonsingular matrix A ∈ Rn×n. We follow the
survey by Benzi and Tůma [1999] and divide the methods into three groups:

1. methods based on Frobenius norm minimization,

2. factorized sparse approximate inversion methods, and

3. methods based on incomplete factorization and subsequent approximate
inversion of the factors.

4.2 Frobenius norm minimization methods
Methods based on Frobenius norm minimization find a sparse approximation M
of A−1 as the solution of the constrained optimization problem

minM∈S∥I − AM∥2
F , (4.1)

where S is the set of sparse matrices. This approach was first proposed by Benson
[1973]. Denoting ej⃗ the j-th vector of the canonical basis (or the j-th column of
the identity matrix I), we may write

∥I − AM∥2
F =

n∑︂
j=1
∥ej⃗ − Amj⃗ ∥2

2.

We see that the optimization problem (4.1) decomposes into n independent least
squares problems with the same coefficient matrix A, subject to sparsity con-
straints. The above approach is useful for finding a right approximate inverse,
i.e., it finds an approximation which when applied from the right acts closely to
the exact inverse. The rest of the section discusses right approximate inverses; a
left approximate inverse can be computed by optimizing minM∈S∥I −MA∥2

F =
minM∈S∥I − AT MT∥2

F instead.

34



4.2.1 When sparsity pattern is known
This approach is even more efficient if we further restrict the constraint set S to
only include matrices with a selected sparsity pattern G. Specifically, we may be
only interested in matrices M with S(M) ⊆ G ⊆ {(i, j) | 1 ≤ i, j ≤ n}. Then,
it is possible to implement efficient parallel computation. As already mentioned,
every column mj⃗ may be optimized independently and every parallel worker might
receive a copy of the coefficient matrix A before computation starts, eliminating
communication during the computation. Moreover, each worker only needs a
subset of columns of A. To find the vector minimizing ∥ej⃗−Amj⃗ ∥2

2 with prescribed
nonzero pattern, we only need to consider columns A:,i for which (i, j) ∈ G,
because the remaining columns correspond to positions where mj⃗ is prescribed
to be zero. Denote the set of these indices J = {i | (i, j) ∈ G} and A:,J the
submatrix of A with column indices in J . Furthermore, only nonzero rows of A:,J
need to be considered, and hence the original least squares problem ∥ej⃗ −Amj⃗ ∥2

2
is equivalent to

∥ ˆ︁ej⃗ − ˆ︁Aˆ︃mj
⃗ ∥2

2,

where I denotes the set of indices of nonzero rows in A:,J , ˆ︁A = AI,J ∈ R|I|×|J |

is the relevant submatrix, ˆ︃mj
⃗ ∈ R|J | includes only positions in J , and ˆ︁ej⃗ ∈ R|I|

includes only positions in I. In other words, the original least squares problem
reduces to a small least squares problem that can be solved efficiently using dense
matrix techniques, e.g., by a dense QR factorization of ˆ︁A.

A priori selection of sparsity pattern The difficult part of the above ap-
proach is properly selecting the constraint set S, which ought to enforce the
sparsity of the approximate inverse by only considering entries that vitally con-
tribute to the preconditioner’s quality. Relevant positions are known in some
cases, e.g., for problems arising from structured discretizations, but not in gen-
eral. One possible heuristic is to ignore entries in the inverse that are small in
absolute value while retaining the large ones. Unfortunately, the positions of large
inverse entries are usually unknown for general sparse matrices. Motivated by the
empirical observation that entries of A−1 located at positions in S(A) tend to be
relatively large, a common choice is to select S as the set of matrices with the
same sparsity structure as the matrix A. However, this choice need not be robust
enough for general sparse matrices: large entries A−1 may also reside in positions
outside S(A). There are other, more sophisticated strategies for a priori selection
of the sparsity pattern (refer to, e.g., Huckle [1999]), which we do not describe
here. These approaches are typically more costly yet with little guarantee that
they will result in a good preconditioner in a general setting.

4.2.2 Adaptive strategies
Instead of attempting to find and prescribe a good nonzero pattern for M , adap-
tive strategies start with a simple initial guess (e.g., a diagonal matrix) and suc-
cessively augment the pattern until a stopping criterion (e.g., ∥ej⃗−Amj⃗ ∥2

2 < ε for
a selected ε > 0) is satisfied in each column, or the maximum number of nonze-
ros is reached. The most successful of these approaches, referred to as SPAI,

35



was initially introduced by Cosgrove et al. [1992]. However, it was in the subse-
quent study by Grote and Huckle [1997] that the name SPAI was officially used.
Algorithm 2 provides a detailed description of the SPAI algorithm.

Algorithm 2 SPAI algorithm (Grote and Huckle [1997])
input A ∈ Rn×n

For every column mj⃗ :
1: Select initial sparsity pattern J
2: I ← indices corresponding to nonzero rows of A:,J
3: ˆ︁A← AI,J
4: Compute QR decomposition of ˆ︁A
5: ˆ︃mj

⃗ ← least squares solution of ˆ︁Ax⃗ = ˆ︁ej⃗

6: r⃗ ← ˆ︁ej⃗ − ˆ︁Aˆ︃mj
⃗

While ∥r⃗∥2
2 ≥ ε:

7: L ← {l | r⃗l ̸= 0}
8: J̃ ← {j | ∃l ∈ L : Al,j ̸= 0} \ J

For k ∈ J̃ :
9: ρ2

k ← ∥r⃗∥2
2 − (r⃗T Aek⃗)2/∥Aek⃗∥2

2
10: J̃ ← {k ∈ J̃ | ρk is large}
11: Ĩ ← indices corresponding to nonzero rows of A:,J̃
12: I ← I ∪ Ĩ, J ← J ∪ J̃
13: ˆ︁A← AI,J
14: Compute QR decomposition of ˆ︁A
15: ˆ︃mj

⃗ ← least squares solution of ˆ︁Ax⃗ = ˆ︁ej⃗

16: r⃗ ← ˆ︁ej⃗ − ˆ︁Aˆ︃mj
⃗

return M =
[︂
m1⃗ m2⃗ . . . mn⃗

]︂

Apart from the initial sparsity pattern, the algorithm requires several parame-
ters: 1) tolerance ε on the residuals, 2) either maximum number of new nonzeros,
or a tolerance δ to select a subset of J̃ in Step 10, and 3) the maximum number
of iterations of the While cycle.

Unfortunately, the serial cost of constructing the SPAI preconditioner may be
high, possibly with higher memory requirements, too. To address these issues,
Chow and Saad [1998] proposed to start with an initial guess for the inverse and
then use an iterative algorithm to refine it. Their approach is based on minimizing
the residuals corresponding to the columns of the approximate inverse. Since the
residual vector obtained in each step can be dense, the residual minimization must
be followed by sparsification. The simplest way to sparsify is to use tolerance-
based dropping1. The basic version, called the Minimal Residual algorithm
(MR), is shown in Algorithm 3.

At each step, MR algorithm computes the current residual rj⃗ and then per-
forms a one-dimensional minimization of the residual norm ∥ej⃗ − Amj⃗ ∥2

2 in the
direction rj⃗. This can be further improved by self-preconditioning, which results
in better quality of the preconditioner, but with added computation cost (we refer

1The authors also proposed a more effective strategy.

36



Algorithm 3 MR algorithm (Chow and Saad [1998])
input A ∈ Rn×n, initial guess M0

1: M ←M0
For every column mj⃗ of M :

For i = 1, 2, . . . , max iter:
2: rj⃗ ← ej⃗ − Amj⃗
3: αj ← rj⃗

T Arj⃗/∥Arj⃗∥2
2

4: mj⃗ ← mj⃗ + αjrj⃗

5: mj⃗ ← sparsify(mj⃗ )
return M

to the survey paper by Benzi and Tůma [1999] and the original paper by Chow
and Saad [1998] for details).

The user must select the max iter parameter (or other stopping criterion)
and specify how to sparsify the approximate solutions mj⃗ , e.g., by specifying the
number of entries that are kept. Most importantly, the user needs to specify the
initial guess M0. Typical choices include M0 = 0, M0 = αI or M0 = αAT for a
properly selected alpha.

4.3 Factorized sparse approximate inverse
Factorized sparse approximate inverse approaches are based on the following ob-
servation. If the matrix A can be factorized as

A = LDU (4.2)

where L is unit lower triangular, D is diagonal and U is unit upper triangular,
we may express its inverse as

A−1 = U−1D−1L−1 = ZD−1W T ,

where Z = U−1 and W = L−T are unit upper triangular matrices. In general, the
inverse factors Z and W may be dense. The factorization (Eq. (4.2)) generally
creates fill-in in both factors L and U (i.e., L is generally denser than the lower
triangular part of A and similarly for U). Furthermore, any square unit (lower or
upper) triangular matrix X can be written as X = I + N , where N is a triagular
matrix with zero diagonal. It is easy to verify that Nn = 0 (where n is the
dimension of N) and using the relation 1 − xn = (1 − x)(1 + x + ...xn−1) with
x = −N we obtain

I = I − (−N)n = (I + N)
(︂
I +

n−1∑︂
k=1

(−1)kNk
)︂
,

from which we obtain

X−1 = (I + N)−1 = I +
n−1∑︂
k=1

(−1)kNk (4.3)

for a nonsingular matrix X. Consequently, if A is an irreducible band matrix, Z
and W will be entirely filled above the diagonal. To obtain a factorized sparse

37



approximate inverse of A, we need to find nonsingular sparse approximationsˆ︁Z ≈ Z, ˆ︂D ≈ D, and ˆ︂W ≈ W . Then, the factorized approximate inverse is

ˆ︁Zˆ︂D−1ˆ︂W T ≈ A−1. (4.4)

Conceptually, there are two approaches to this task. The first, discussed in this
section, is to construct the factors ˆ︁Z, ˆ︂D, and ˆ︂W directly. We mention three
methods of this type. Another possibility (discussed in Section 4.4) is to construct
an incomplete factorization A ≈ ˆ︁Lˆ︂D ˆ︁U and approximately invert the (incomplete)
factors.

4.3.1 FSAI method
Kolotilina and Yeremin [1993] proposed the FSAI preconditioner, which we de-
scribe in the simplified setting when A is symmetric positive definite (SPD). This
method requires a priori selection of the sparsity pattern SL of the computed ap-
proximation of L−1 (where L is the Cholesky factor of A). SL must include the
main diagonal. Common choices for the sparsity pattern are

SL = {(i, j) | (i, j) ∈ S(Ak), i ≥ j}

for a small positive integer k, e.g., k = 1, 2, 3.
Given SL, a lower triangular matrix ˆ︁GL is computed as a solution of the matrix

equation
(A ˆ︁GL)i,j = Ii,j, (i, j) ∈ SL.

The computation decomposes into solutions of smaller SPD linear systems, one for
each column of ˆ︁GL. The individual linear systems may be solved in parallel. For
column j of ˆ︁GL, the size of its corresponding linear system is equal to the number
of nonzeros allowed in that column. All diagonal entries of ˆ︁GL are positive. Let
d⃗ = diag( ˆ︁GL), ˆ︂D = diag(d⃗)−1 and GL = ˆ︂D 1

2 ˆ︁GL. Then the preconditioned matrix
GLAGT

L is SPD, and all its diagonal entries are 1. Therefore, we may view GLAGT
L

as an approximation of the identity matrix (GLAGT
L ≈ I), and hence construct

the approximate inverse of A as

A−1 ≈ GT
LGL.

Furthermore, it can be shown that the approximate factor satisfies

GL = argminX: S(X)⊆SL
∥I −XL∥2

F ,

connecting FSAI to the Frobenius norm minimization methods of Section 4.2.
FSAI can be extended to work for nonsymmetric matrices. However, in such

cases, one must pay attention to the individual small linear systems which are no
longer SPD. Several efficiency improvements to the algorithm were proposed in
recent years, too, for instance, block and later supernodal variants with parallel
implementation (see, e.g., Janna et al. [2010, 2013], Ferronato et al. [2014], Janna
et al. [2015a], Ferronato and Pini [2018]). The advancements mentioned provide
foundations for the state-of-the-art high-performance preconditioning software
FSAIPACK (Janna et al. [2015b]).

38



4.3.2 Incomplete biconjugation
The AINV method (first proposed by Benzi [1993]; for detailed description, refer
also to Benzi et al. [1996] and Benzi and Tůma [1998]) computes the factorized
approximate inverse of A using incomplete (bi)conjugation. The appeal of this
approach is in its robustness: AINV works for general nonsingular matrices and
does not require a priori sparsity pattern selection.

Two sets of n-dimensional real vectors {zi⃗}n
i=1, {wi⃗ }n

i=1 are called A-biconjugate
if they satisfy

wi⃗ T Azj⃗ = 0 ⇐⇒ i ̸= j.

Given a pair of matrices Z, W with A-biconjugate columns, Z =
[︂
z1⃗ z2⃗ . . . zn⃗

]︂
and W =

[︂
w1⃗ w2⃗ . . . wn⃗

]︂
, it holds that

W T AZ = D =

⎡⎢⎢⎢⎢⎣
d1 0 . . . 0
0 d2 . . . 0
... ... . . . ...
0 0 . . . dn

⎤⎥⎥⎥⎥⎦ .

We can use the above relation to express the inverse of A as

A−1 = ZD−1W T , (4.5)

or using the outer product of columns of matrices Z and W as the sum of rank
one matrices

A−1 =
n∑︂

i=1

zi⃗wi⃗ T

di

. (4.6)

A pair of matrices with A-biconjugate columns Z and W can be computed using
a biconjugation process (see Algorithm 4) applied to the columns of any two
nonsingular matrices Z(0), W (0) ∈ Rn×n. There are infinitely many pairs of A-

Algorithm 4 Biconjugation process
input A ∈ Rn×n, initial sets of vectors {zi⃗

(0)}n
i=1, {wi⃗ (0)}n

i=1
For i = 1, 2, . . . , n:

For j = i, i + 1, . . . , n:
1: d

(i−1)
j ← Ai,:zj⃗

(i−1)

2: q
(i−1)
j ← AT

:,iwj⃗ (i−1)

If i = n:
3: Go to Step (6)

For j = i, i + 1, . . . , n:
4: zj⃗

(i) ← zj⃗
(i−1) − d

(i−1)
j

d
(i−1)
i

zi⃗
(i−1)

5: wj⃗ (i) ← wj⃗ (i−1) − q
(i−1)
j

q
(i−1)
i

wi⃗ (i−1)

6: Z ←
[︂
z1⃗

(i−1) z2⃗
(i−1) . . . zn⃗

(i−1)
]︂

7: W ←
[︂
w1⃗ (i−1) w2⃗ (i−1) . . . wn⃗ (i−1)

]︂
8: D ← diag(d1, d2, . . . , dn)

return Z, D, W

39



biconjugate vector sets, each stemming from a different choice of initial sets. It is
convenient to apply the biconjugation process to canonical basis vectors, i.e., to
choose Z(0) = W (0) = I. The biconjugation process can be viewed as a two-sided
generalized Gram-Schmidt orthogonalization with respect to the bilinear form
associated with A. If A is SPD, then Z = W , and we only perform the process
for Z. The algorithm then performs a conjugate Gram-Schmidt process (for the
”energy” inner product ⟨x⃗, y⃗⟩ = x⃗T Ay⃗).

For the initial guess Z(0) = W (0) = I, Algorithm 4 does not break down (due
to zero division) in exact arithmetic if and only if all the leading principal minors
of A are nonzero, which is precisely when the LU decomposition of A can be
computed without pivoting. If this is satisfied, one can verify that the factors
computed by the biconjugation algorithm satisfy Z = U−1 and W = L−T for the
factors L, U from the LDU factorization of A, and D is the same matrix in both
the LDU factorization and in the factorization resulting from Algorithm 4.

Moreover, when Z(0) = W (0) = I, vectors zj⃗
(i) and wj⃗ (i) are initially very

sparse thanks to the choice of the initialization, but they start filling in rapidly due
to steps (4) and (5). Sparsity in the inverse factor is preserved by carrying out the
biconjugation process incompletely, similar to how incomplete LU factorizations
work. In particular, we apply numerical dropping, either based on positions
(i.e., by restricting the sparsity patterns of the computed factors) or based on
drop tolerance, where entries are zeroed out if they are small in magnitude2.
The second approach is much more robust and effective, especially for problems
with unstructured sparsity patterns. Because of incompleteness, Algorithm 4
may break down unless A satisfies additional, stronger conditions (see Benzi and
Tůma [1999] and Benzi et al. [1996] for details).

4.3.3 Bordering approach
The last approach we present in this section is based on bordering. We briefly
describe the Approximate Inverse by Bordering (AIB) method, a modifi-
cation of the approach proposed by Saad [1996].

The bordering scheme[︄
W T

1:k,1:k 0⃗
W T

1:k,k+1 1

]︄ [︄
A1:k,1:k A1:k,k+1
Ak+1,1:k Ak+1,k+1

]︄ [︄
Z1:k,1:k Z1:k,k+1

0⃗T 1

]︄
=
[︄
D1:k,1:k 0⃗

0⃗T
Dk+1,k+1

]︄

uncovers an n-step process for computing the factors Z, D and W , assuming A
has an LU factorization. Start by setting Z1,1 = W1,1 = 1 and D1,1 = A1,1.
Assuming we have already computed the leading submatrices Z1:k,1:k, W1:k,1:k and
D1:k,1:k, we set D1:k,k+1 = 0⃗, Dk+1,1:k = 0⃗T and use above expression to obtain

Z1:k,k+1 = −Z1:k,1:kD−1
1:k,1:kW T

1:k,1:kA1:k,k+1

W1:k,k+1 = −W1:k,1:kD−1
1:k,1:kZT

1:k,1:kAT
k+1,1:k

and finally

Dk+1,k+1 = Ak+1,k+1 + W T
1:k,k+1A1:k,1:kZ1:k,k+1 + Ak+1,1:kZ1:k,k+1 + W T

1:k,k+1A1:k,k+1.

2Tolerance-based dropping is popular in incomplete LU (or Cholesky) factorization methods.

40



Here, the computations of the inverse factors are interconnected (compare that
with the biconjugation Algorithm 4, where the two factors are computed inde-
pendently of one another). For symmetric A, once again, Z = W , and only half
the computation is needed. Furthermore, if A is SPD, the diagonal entries of D
are all positive (if the computation is carried out in exact arithmetic), and the
AIB preconditioner is well-defined. In general, diagonal modifications may be
necessary to prevent breakdowns.

A sparse approximate factorization of A−1 is obtained when the bordering
process is carried out incompletely, e.g., by dropping small elements in the com-
puted vectors Z1:k,k+1 and W1:k,k+1. In addition to performing a matrix-sparse
vector product with Ak, each step of the bordering algorithm performs four sparse
matrix-vector products (with Z1:k,1:k, W1:k,1:k, and their transposes). These opera-
tions account for most of the work and must be computed efficiently by exploiting
the sparsity of both the matrix and the vector.

4.4 Inverse incomplete factorization techniques
Compared with approaches presented in Section 4.3, methods in this section find
an approximate inverse in the form from Equation (4.4) in two stages:

1. Compute an incomplete LU (or LDU) decomposition of A using standard
techniques for incomplete factorization to obtain factors ˆ︁L, (ˆ︂D,) and ˆ︁U .

2. Find sparse approximate inverses of ˆ︁L and ˆ︁U .

Note that different methods for incomplete factorization and approximate inver-
sion of the factors result in different preconditioners.

When the incomplete factors ˆ︁L, ˆ︁U are available, it is possible to compute their
approximate inverses by inexactly solving 2n triangular systems

ˆ︁Lxj⃗ = ej⃗, ˆ︁Uyj⃗ = ej⃗ for 1 ≤ j ≤ n, (4.7)

where n is the dimension of ˆ︁L. These linear systems are independent, so it is
possible to implement their solution in parallel. The individual systems are solved
only approximately to preserve the required sparsity in the resulting factors and
to save computation costs. Here, there are, once again, several possible ways:

1. We can prescribe sparsity patterns SL, SU for the approximate inverses ofˆ︁L and ˆ︁U , and proceed by constrained minimization of the Frobenius norms

∥I − ˆ︁LX∥2
F , ∥I − ˆ︁UY ∥2

F ,

as discussed in Section 4.2.1.

2. Alternatively, we can use adaptive strategies from Section 4.2.2 or ap-
proaches proposed by Calgaro et al. [2010], which compute sparse approxi-
mate inverse factors via incremental Frobenius norm minimization.

3. According to van Duin and Wijshoff [1996], the most accurate method to
compute the solutions of the linear systems (4.7) is forward substitution
for the lower triangular systems ˆ︁Lxj⃗ = ej⃗ and back substitution for the

41



upper triangular systems ˆ︁Uyj⃗ = ej⃗. Sparsity is enforced by dropping entries
in the solution vectors based on position or tolerance. For each system,
performing the sparsification during the substitution process rather than
after completion is more practical.

4.5 Comparison of approaches

4.5.1 Frobenius norm minimization methods
With a fixed prescribed sparsity pattern (Section 4.2.1), Frobenius norm mini-
mization is one of the fastest ways to compute sparse approximate inversion. This
is due to the method’s decomposition into many small, embarrassingly parallel
subproblems. In more complex problems, however, the positions of dominant
inverse entries are unknown, and heuristical pattern selection often results in in-
verses of poor quality; the resulting preconditioners perform below par with more
sophisticated methods in these cases.

Adaptive methods (Section 4.2.2) sacrifice some of the speed by iteratively
correcting the sparsity pattern, which generally improves the quality of the pre-
conditioner. Positively, SPAI and MR are still well-parallelizable (at least in
theory3), with the latter being typically much less computationally demanding.
While MR iterations use only simple and efficient sparse operations (sparse vector
addition, sparse dot products, and sparse matrix-vector products)4, SPAI itera-
tions compute a QR decomposition of a matrix and solve a least-squares system.
Of course, the serial cost of MR may still be relatively high, especially when using
self-preconditioning.

A serious limitation in terms of applicability is that preconditioners based on
Frobenius norm minimization cannot be used with the conjugate gradient method
to solve SPD problems since, in general, the computed preconditioner matrix M
will not be positive definite, even if A is. Although unlikely in practice, even
nonsingularity of M is not guaranteed. Moreover, preconditioners computed by
adaptive strategies need not even be symmetric.

While incomplete factorization preconditioners are sensitive to reorderings,
the SPAI and MR preconditioners are not. The advantage is that A can be
reordered and partitioned arbitrarily without affecting the resulting quality, which
is convenient, e.g., for load balancing. However, this also means that we cannot
use reordering to reduce fill-in or improve the quality of the result. If, for example,
no small entries exist in A−1, adaptive methods cannot find the dominant sparsity
pattern regardless of the used reordering, since the inverse of a permutation of
A is just a permutation of A−1. This differs for the preconditioners described in
Sections 4.3 and 4.4.

A vital advantage of the methods based on Frobenius norm minimization is
their flexibility. The adaptive methods like SPAI or MR can be restarted, with
the computed solution used as the new initial guess. They are often memory
efficient, which is especially true for MR, for which the only storage needed is
that for the factor M . Moreover, MR can work in situations A is not explicitly

3Because of the adaptive and irregular nature of the computations, exploiting the inherent
parallelism is not straightforward in practice.

4And both methods need to select the positions of the entries to-be-kept after sparsification.

42



available (e.g., A is only given as a function) since only matrix-vector products
with A are needed. Lastly, we can apply these approaches to improve a given
preconditioner.

SPAI and MR preconditioners were demonstrated to solve very hard problems
for which more standard techniques, like incomplete LU, fail (see, e.g., Saad
[1995]). In this sense, they offer a valuable addition to other well-established
methods. Finally, the substantial parallelism potential of these methods makes
them applicable for solving very large problems, including in distributed memory
environments.

4.5.2 Factorized sparse approximate inverse
Factorized sparse approximate inverses (discussed in Section 4.3) implicitly im-
pose structural requirements on the computed approximate inverse. As a result,
they avoid certain problems that limit the applicability of SPAI or MR precon-
ditioners. Primarily, the methods listed in Section 4.3 can be used as precon-
ditioning for the conjugate gradient method. It is clear that if A is SPD, then
Z = W and the approximate inverse matrix M = ZD−1ZT is SPD as long as all
diagonal entries of D are positive. Moreover, if M was successfully constructed,
the diagonal entries of D must all be nonzero, and since Z has full rank because
it is unit upper triangular, M is nonsingular.

Furthermore, factorized approaches exhibit two characteristics that favorably
impact the compression-accuracy trade-off. First, they are sensitive to reorderings
of the coefficient matrix A. This attribute can be leveraged to reduce fill-in within
the inverse factors and enhance the effectiveness of the resulting preconditioner, as
discussed in, e.g., Benzi and Tůma [1998]. Secondly, factorized approaches yield
factors that collectively represent a denser approximate inverse matrix compared
to non-factorized methods while utilizing the same amount of storage. Hence,
assuming they can provide better approximations of A−1 is reasonable. This
observation was argued by Chow [1997] and experimentally validated by Benzi
and Tůma [1999]. In addition, factorized forms can be less expensive to compute
(at least for symmetric A) and typically require fewer user-selected parameters,
making them easier to use.

Nevertheless, factorized approaches face challenges of their own. As incom-
plete (inverse) factorization methods, they are prone to breakdowns, similar to
incomplete LU. Although strategies exist to mitigate such issues (for instance,
using diagonal shifts), the required shifts (perhaps large or numerous) may nega-
tively affect the resulting preconditioner. Additionally, when applying factorized
preconditioners, we must perform two consecutive matrix-vector multiplications
with the factors, adding sequentiality.

Regarding the specific methods, the FSAI preconditioner can be efficiently
implemented in parallel and is suitable for high-performance computing (Janna
et al. [2015b]). It has been successfully employed to solve challenging, structured
problems, e.g., in Kolotilina and Yeremin [1995]. The method’s main drawback
lies in the requirement of predefining the sparsity pattern of the approximate
inverse factors, which makes it difficult to use for problems with general sparsity
patterns. Moreover, while the method can be extended to handle nonsymmetric
matrices A, solving local linear systems in such cases becomes more challenging.

43



On the other hand, the AINV method is more robust, applicable to general
nonsingular matrices, and does not necessitate a priori selection of sparsity pat-
terns. However, the biconjugation process in AINV is highly sequential, limiting
possible parallelization. Lastly, implementing AINV on distributed memory ma-
chines is very difficult in the presented formulation.

4.5.3 Inverse incomplete factorization techniques
Approaches based on inverting incomplete factorizations (discussed in Section 4.4
share some of the advantages of the factorized approximate inverse methods of
Section 4.3, namely the implications on the structure of the resulting approximate
inverse (e.g., symmetric positive definiteness). However, they are subject to other
limitations that the preconditioners of other classes do not have.

One disadvantage follows from the requirement that an incomplete factoriza-
tion does not break down; we cannot use the methods of this category when
an incomplete factorization does not exist or when it is unstable5. The parallel
efficiency of these techniques is also reduced when A is not SPD, since in that
case, the construction phase of the preconditioner includes a highly sequential
incomplete LU factorization6.

The second disadvantage is the involvement of two levels of approximation or
incompleteness, instead of just one like in methods described in Sections 4.2 and
4.3. This can lead to significant quality degradation of the resulting approximate
inverse or the preconditioner.

Lastly, using the inverse incomplete factorization methods in practice is not
straightforward due to the large number of parameters typically needed to be
selected by the user.

5These situations can occur for highly nonsymmetric, indefinite problems, see, e.g., Chow
and Saad [1997] and Elman [1986].

6The sequentiality is less of an issue when A is SPD; sparse (incomplete) Cholesky decom-
position provides more room for parallelization.

44



5. Enhancing scalability of
Embarrassingly Shallow
Autoencoder
As discussed in Section 3.4, the applicability of the recommender system easer

in domains with large item sets may be prohibited by the model’s high memory
requirements. The main objective of this thesis is to alleviate this issue. Our
proposed solution is a method for computing a sparse approximation of the full-
rank component ˆ︁Bdiag of the weight matrix ˆ︁B of easer, which we describe in this
Chapter. We also published a more concise explanation of the approach in our
recently accepted paper (Spǐsák et al. [2023]).

5.1 Method selection
Since computing, storing, and using the inverse of a large matrix may be too ex-
pensive for large CF applications, we aim to find its sparse approximation. This
approach agrees with Steck [2019b], who builds their mrf model as a sparse ap-
proximation of easer. The mrf model is based on methods developed for sparse
covariance approximation. We opted for a different approach, which employs
numerical methods for sparse approximate inversion reviewed in Chapter 4.

Methods for sparse approximate inversion presented in Chapter 4 differ in
their intended use cases. Some methods work for general sparse matrices, while
others are better-suited matrices with specific properties. Some approaches as-
sume the knowledge of, for example, the dominant sparsity pattern, which can
be known least partially in particular applications (e.g., sparse systems arising
from discretizations of structured problems). Analyzing the specific properties
of our problem will allow us to select an appropriate method tailored to our
requirements with minimal unnecessary overhead.

5.1.1 Properties of the problem
Optimization objective Our main goal is to find an accurate sparse approxi-
mation of (XT X + λI)−1, where X ∈ R|U|×|I| is a sparse input user-item interac-
tion matrix and λ > 0 is the L2 regularization hyperparameter. Let us elaborate
on the meaning of ”accuracy” in this task.

The weight matrix ˆ︁B of easer is obtained by rescaling the columns of the
matrix (XT X +λI)−1 and adding the identity matrix, and acts as an autoencoder
when applied from the right on a row vector of user feedback (see Section 3.1).
Therefore, we are not looking for an approximate inverse M which minimizes
∥M − (XT X + λI)−1∥ (in some norm). Instead, we aim to find M which operates
(when applied from the right) as closely to A−1 as possible. Formally, we want
to minimize

∥I − (XT X + λI)M∥F .

The choice of Frobenius norm agrees with the optimization problem (3.1).

45



Large size We assume that the item set size |I| is very large, with potentially
millions of items. Moreover, we also assume that |U| is large (possibly |U| > |I|).
Hence, the selected method must be fast (for instance, by allowing a good amount
of parallelization). At the same time, we are looking for a method that does
not require significant memory to perform its computation or one where we can
control memory usage.

Furthermore, due to the potentially extensive problem size, obtaining a highly
accurate approximation may be computationally expensive. In such cases, even
less accurate approximation may suffice. For this reason, we prefer iterative
approaches, which may yield useful approximation after a few iterations but can
be further refined with additional iterations if we so choose.

Unknown sparsity pattern Unlike in certain structured problems, the col-
laborative filtering task does not pose restrictions on the sparsity structure of the
item-item matrix ˆ︁P = (XT X + λI)−1. More precisely, in easer, the only infor-
mation available is that ˆ︁P is symmetric and has a nonzero diagonal. Neither the
sparsity pattern of ˆ︁P nor the positions of its dominant entries are known a priori.
Therefore, we need the chosen method to automatically identify the dominant
sparsity pattern.

Symmetric positive definiteness By Propositions 3.1 and 3.3, both matrices
XT X+λI and (XT X+λI)−1 are symmetric positive definite. Therefore, it makes
sense to primarily consider methods tailored to matrices with this property and
perhaps focus on methods that incorporate factorization.

Symmetry helps avoid some sequentiality (e.g., back substitutions) in al-
gorithms and positively affects computation time by reducing the number of
floating-point operations needed.

Factorization can provide an additional layer of compression: compared with
a sparse square matrix A with a set number of nonzeros nnz(A), a product of two
matrices B, C with the same dimensions as A and nnz(B) + nnz(C) = nnz(A)
often represents a denser operator (nnz(BC) > nnz(A)). In other words, a fac-
torized approximation may be more accurate for the same amount of storage.

Full rank Related to the previous point, we require the selected method to
preserve an important property of easer: full rank of ˆ︁Bdiag (see Section 3.1.2).
For this reason, the constructed approximate inverse needs to be nonsingular.

Data Gram matrix is denser The Gram matrix XT X is often considerably
denser than X, even when X is sparse (see the densities for datasets used in our
experiments in Table 6.1). Crucially, XT X must fit in memory for the duration
of training; otherwise, data transfers would substantially hinder the computation
of the approximate inverse. Even though we do not expect the size of XT X to
cause issues in practice1, the ability to compute the inverse without explicitly
calculating XT X would be an added benefit.

1Since it is not very likely that XT X is very large and simultaneously contains a huge
number of nonzero entries.

46



Ability to prescribe model size Lastly, we require the ability to a priori se-
lect the density of the computed approximate inverse arbitrarily, based on avail-
able resources.

5.1.2 Selected approach
From the outset, we do not consider methods working with fixed sparsity patterns,
as our application does not provide knowledge about the positions of dominant
inverse entries. Instead, we focus on methods that find the dominant entries
automatically. Moreover, instead of prescribing the total number of entries in
absolute terms, we construct the method to work with a user-specified parameter
target density, which determines the density of the resulting approximate ma-
trix (or factors). Ideally, with a higher allowed density, we aim to obtain better
approximations of the inverse matrix. However, sometimes we must use a very
sparse approximation due to memory limitations (e.g., during inference).

We have decided to use an approach based on factorization (see Sections 4.3
and 4.4) for the following reasons:

1. Since the approximated inverse matrix ˆ︁P = (XT X + λI)−1 is symmetric
positive definite, it is sensible to prioritize an approximation that preserves
this property. Factorization-based methods are capable of this.

2. We require the approximation to have full rank, i.e., to be nonsingular,
which factorization-based methods can guarantee.

3. Having the inverse available only in factorized form does not severely limit
inference speed. Performing two sparse matrix-vector products during in-
ference instead of one is acceptable.

4. Rather, the approximate inverse stored in a factorized way improves model
compression, as the sparse factors together represent a much denser matrix.
The approach may provide a more accurate approximation of weights at
equal storage costs.

5. Finally, symmetric factorization should improve the total training complex-
ity by reducing the number of floating-point operations.

The selected approach must facilitate the training of models for large-scale
problems involving potentially millions of items. Because of this, we are looking
for a fast method with a substantial degree of parallelism, which was the decisive
factor why we opted not to use the AINV method or the bordering approach.
In our preliminary experiments, the sequential nature of the AINV method ren-
dered it too slow. Hence, we base our method on the concept from Section 4.4:
incomplete factorization with subsequent approximate inversion of the
factors.

Because the matrix A = XT X+λI is SPD, we use an incomplete Cholesky fac-
torization method for the factorization part. Incomplete Cholesky factorization
methods offer superior performance compared to incomplete LU factorization,
which is more limited in terms of parallelization due to the possible need for
pivoting. Furthermore, reorderings (which correspond to item permutations) can

47



be exploited to significantly reduce fill-in during the computation of the factors,
thereby minimizing information lost in the incomplete factor. As a bonus, (in-
complete) Cholesky factorization of a regularized Gram matrix XT X +λI can be
computed without prior construction of XT X + λI (as first discussed by Björck
[1996] in the context of solving least squares). We discuss possible approaches for
approximate Cholesky factorization in Section 5.3.1.

To compute the approximate inverse factor, we came up with a modification
of the MR algorithm. The MR algorithm iteratively adjusts the approximation,
exhibits the least sequential nature among the available methods, and offers good
potential for single instruction multiple data (SIMD) parallelism. The MR iter-
ations also enable trading accuracy for training time. Our modification of MR
(discussed in detail in Section 5.3.3) enhances the method’s ability to identify
general sparsity patterns, allows for controllable memory utilization, and results
in a more uniform quality of approximation of individual columns (hence the
name Uniform Minimal Residual algorithm (UMR)). Additionally, we identified
an effective initial guess heuristic for our situation, allowing the method to con-
verge to an accurate approximate inverse factor quickly. We further discuss the
choice of initial guess in Section 5.3.2.

5.2 Model definition

5.2.1 Optimization objective
The model we propose solves the same optimization objective as easer, namely

minB∥X −XB∥2
F + λ∥B∥2

F s.t. diag(B) = 0⃗.

However, instead of using the closed-form solution derived in Section 3.1.1, we
use its sparse approximation in a factorized form (as explained in Section 5.1).
To expand upon, we use the decomposition of the weight matrix ˆ︁B of easer into
a full-rank component ˆ︁Bdiag and a residual connection, i.e., ˆ︁B = ˆ︁Bdiag + I; see
Section 3.1.2. Since ˆ︁Bdiag is a rescaled version of (XT X + λI)−1, we will compute
a factorized sparse approximation of ˆ︁Bdiag by applying the same scaling to the
factorized approximate inverse of XT X + λI.

Approximation method

The factorized sparse approximate inverse is found via incomplete Cholesky fac-
torization of XT X + λI with subsequent approximate inversion of the factors
(the framework from Section 4.4). Specifically, the problem of finding a sparse
approximation of (XT X + λI)−1 decomposes into two simpler problems:

1. Sparse approximate square-root-free Cholesky decomposition of XT X + λI:

XT X + λI ≈ ˆ︁Lˆ︂D ˆ︁LT .

2. Finding a sparse approximate inverse K of the matrix ˆ︁L.

48



Figure 5.1: sansa is a sparse nonsymmetric encoder-decoder model. Addition-
ally, an input-output residual connection is added to prevent the self-similarity
of input items. However, in situations where we disallow recommending input
items, masking the prediction vector is sufficient. (Spǐsák et al. [2023])

In the first step we compute a sparse approximate decomposition ˆ︁Lˆ︂D ˆ︁LT with
small ∥L − ˆ︁L∥F and ∥D − ˆ︂D∥F . Then, we find a sparse K ≈ ˆ︁L−1 such that
∥I − ˆ︁LK∥F is small. This way,

∥I −Dˆ︂D−1∥F is small and ∥I − LK∥F should be small.

Note that there are two levels of approximation involved for L: ˆ︁L ≈ L and
K ≈ ˆ︁L−1. The diagonal factor D, on the other hand, is inverted with higher
precision. Extracting the diagonal in step one (by computing an (incomplete)
square-root-free Cholesky decomposition) should, therefore, benefit approxima-
tion quality. The final product KTˆ︂D−1K should create a good sparse approxi-
mation of (XT X + λI)−1, since

∥I − (XT X + λI)(KTˆ︂D−1K)∥F = ∥I − LDLT KTˆ︂D−1K∥F

should be relatively small. While this approach may not be optimal, it is clear
that the computed approximations converge to (XT X + λI)−1 as we increase the
allowed density (and perform a sufficient number of iterations for finding K). To
summarize, the two-step process results in an approximate inverse in the form

(XT X + λI)−1 ≈M = KTˆ︂D−1K,

where M operates (when applied from the right) similarly to (XT X + λI)−1, i.e.,
M approximately minimizes ∥I − (XT X + λI)M∥F . This is the main objective
set in Section 5.1.

5.2.2 Architecture
We use the resulting factorized approximation KTˆ︂D−1K to build the encoder
layer W T and the decoder layer Z of our model titled Scalable Approximate
NonSymmetric Autoencoder (sansa). Formally, sansa approximates the
encoder-decoder matrix ˆ︁B of easer using a two-layer linear model (with identity
activation functions) and added residual connection between input and output:ˆ︁B ≈ W T Z + I. The proposed architecture is illustrated in Figure 5.1.

49



Inference

The inference is analogous to the original model easer. For a vector of user’s
feedback u⃗, the ratings are obtained by two sparse matrix-vector multiplications
and adding the input: r⃗T = (u⃗T W T )Z + u⃗T . Note that the illustration in Figure
5.1 does not show the residual connection, which forces the diagonal of ˆ︁B to
zero to prevent the self-similarity of input items. Predicting input items is often
forbidden in many practical applications. In these cases, the residual connection
can be omitted and replaced by simply masking the predicted rating vector r⃗ on
the positions i where u⃗i ̸= 0.

Storage compression

Motivated by memory-critical problems, we design the architecture so that the
maximum density of weights W T and Z can be selected by a parameter. The
compound weights W T Z+I converges to the weights ˆ︁B = ˆ︁Bdiag+I of easer as the
allowed density increases. However, implicitly representing ˆ︁Bdiag as W T Z yields
a much denser operator than an unfactorized approximation (like mrf) at equal
storage cost would. Apart from the possibility of obtaining better approximation
at equal compression (of the dense, uncompressed ˆ︁Bdiag), factorization provides
one more advantage for recommender system applications. Compared to sparse
single-layer models such as mrf, a sparse linear model with two layers and the
same number of parameters will generate denser prediction vectors from sparse
input interactions. In other words, a two-layer model can recommend more items
based on sparse input, which could be helpful in practice.

5.3 Model training
Even though sansa uses different encoder and decoder layers, only encoder train-
ing is compute-intensive. The decoder is simply a rescaled copy of the encoder (as
discussed at the end of this section). We use the methodology selected in Section
5.1 to train the encoder layer. We discuss details about the selected methods
for sparse approximate Cholesky decomposition in Section 5.3.1 and propose a
convenient choice of the initial guess for the inverse factor in Section 5.3.2. Sec-
tion 5.3.3 describes our modification of the MR algorithm. The final training
procedure of the model is then described in detail in Section 5.3.4. Section 5.4
delves into implementation details.

5.3.1 Sparse (and approximate) Cholesky factorization
The efficiency of sparse factorization methods stems from their ability to ignore
everything but the nonzero data. However, the elimination process inside the
sparse Cholesky factorization generates new nonzero entries - fill-in - in the result-
ing factor L. 2 Large amounts of generated fill-in can cause practical problems:
the complexity of the most critical steps in the factorization is highly dependent
on the amount of fill-in, and the computed factor L might require significantly

2This is a consequence of Parter’s rule; see Chapter 3 of the book by Scott and Tůma
[2023].

50



Figure 5.2: Change of elimination tree with symmetric permutation. The fac-
torization of the first matrix is sequential, and the resulting Cholesky factor is
completely filled below the main diagonal (f denotes the positions of new fill-in
entries in S(L + LT )). The factorization of the symmetrically permuted matrix
is well parallelizable and produces a sparse Cholesky factor.

more memory than the original matrix A. Fortunately, we can determine the
number of created fill-in entries and their precise positions by examining the spar-
sity pattern S(A) before the numerical factorization begins. This is done during
the factorization’s initial stage, known as the symbolic phase, when the sparsity
pattern S(L) is found by constructing and examining the elimination tree of the
matrix A (see Appendix A.1 and references therein). Apart from information
on fill-in entries, the elimination tree also reveals constraints on the elimination
order of columns and hence the parallelization potential of the factorization.

Improving efficiency using reorderings

In general, the elimination trees of a matrix A and its symmetric permutation
PAP T are not only different but need not even be isomorphic (as demonstrated
in Figure 5.2). This property can be exploited to

• reduce the amount of fill-in in the factorization, and

• increase the factorization’s parallelism.

Therefore, modern sparse Cholesky factorization starts by finding a permu-
tation that reduces fill-in and enhances parallelizability. Depending on the used

51



algorithm, the permutation balances the amount of created fill-in and paralleliz-
ability by finding a better initial elimination graph3. Besides lowering memory
requirements for storing the computed factor, minimizing fill-in reduces informa-
tion loss when the factorization is computed incompletely.

Since the problem of finding a permutation to minimize fill-in is NP-complete,
fill-in reduction is based on heuristics. The algorithms frequently use the sparsity
pattern S(A) alone; numerical properties must also be considered for non-definite
matrices to make the matrix factorizable. For brevity, we only note that our
implementation uses a variant of the widely used approximate minimum degree
(AMD) algorithm, which is often relatively less expensive than other methods.
More details on fill-in-reducing reorderings can be found in Chapter 8 in Scott
and Tůma [2023].

When reordering is not enough

The computed factor L may be too large even after applying fill-in reducing per-
mutation. For instance, when the input matrix A is dense, no reordering can
prevent L from being dense. This is common in CF tasks; see Table 6.1. In
such cases, memory limitations force us to compute the sparse Cholesky factor-
ization only approximately – incompletely. Approximation may be applied at
three points: before, during, and after the factorization.

1. Sparsification before factorization is suboptimal since it loses information
before the elimination process even begins. This may lead to significant
quality deterioration, as clearly shown, e.g., in a structural mechanics prob-
lem (Benzi et al. [2001]). On the other hand, it may help decrease the time
and memory requirements if a large matrix strongly fills.

2. A better way is to create approximate factors ˆ︁L,ˆ︂D by sparsifying the com-
plete factor L by dropping entries smallest in magnitude. This approxima-
tion approach is optimal in the following sense. Let A ∈ Rm×n be a sparse
matrix with nnz(A) nonzero entries, k ≤ nnz(A) and let A(k) be the matrix
obtained by keeping only the k entries of A largest in absolute value and
zeroing out the rest. Then

A(k) = argminB∈Rm×n

nnz(B)=k

∥A−B∥F

Moreover, preserving more entries results in a more accurate approximation.
Both statements follow immediately from the definition of the Frobenius
norm, which measures the element-wise distance between matrices.
Unfortunately, the amount of generated fill-in (that needs to be stored) may
limit the applicability of this variant for denser inputs.

3. Finally, it is possible to sparsify during factorization through incomplete
Cholesky factorization (ICF). We use our implementation of the sophisti-
cated column-oriented algorithm proposed by Lin and Moré [1999]. Concep-
tually, this algorithm builds on the Crout version of Cholesky factorization,

3Mind the difference: the elimination graph and the elimination tree are different structures.
See Scott and Tůma [2023], Section 3.2.

52



used in the Yale Sparse Matrix Package (Eisenstat et al. [1981]) and later for
efficient incomplete Cholesky factorization by Jones and Plassmann [1995].
Compared with the original algorithm, our implementation uses a heuristic
approach for selecting the nonzero entry count for the computed column
based on the density of the already computed part. The maximum number
of allowed nonzeros in the j-th column (max j nnz) is computed as

max j nnz = max nnz− nnz so far
n− (j − 1) ,

where max nnz is the maximum number of nonzeros in the computed factor
(prescribed as a parameter) and nnz so far is the number of nonzeros in
columns 1 through j − 1. This way, storage saved by very sparse initial
columns is provided to the subsequent columns, staying consistent with the
assumption that the columns later in the factorization of a fill-in reduced
matrix should be more crucial for the resulting quality.
Crucially for practice, ICF can operate with prescribed, almost arbitrarily
small memory overhead, but with some trade-offs. Incomplete Cholesky
factorization may break down, and to prevent this, a more robust regular-
ization of A or preprocessing may be necessary. Additionally, compared
to the a posteriori sparsified complete factorization, higher allowed density
need not result in better approximation.

Implemented variants

Users of sansa can select from two sparse (approximate) Cholesky factoriza-
tion variants. When training memory is not severely limiting, the preferable
method is sansa (cholmod), which uses the numerically exact block column
code CHOLMOD (Chen et al. [2008]), which is then sparsified to the target den-
sity. When training memory is restrictive (as in domains with large item sets), we
can use sansa (icf), which constructs ˆ︁L by sparsification on the fly using ICF
(Lin and Moré [1999]). For sansa (icf), users may select to compute denser ˆ︁L to
help stabilize the factorization. The factor is sparsified to the target density af-
terward. Unsurprisingly, when ICF is used for a denser A, we should expect a less
accurate approximation due to the loss of information during factorization. This
decrease in quality manifested in lower recommendation quality in the experiment
in Section 6.4.2. Finally, while CHOLMOD does not require initial construction
of the Gram matrix XT X to compute the decomposition, our implementation of
ICF does not support this.4.

5.3.2 Choice of initial guess
An approximate inverse of a nonsingular matrix A can be found using Schultz
iterative process (Schulz [1933]), which computes the next approximation X(k+1)

as
X(k+1) = X(k)(2I − AX(k)).

4However, modifying the algorithm to use XT X implicitly from X is straightforward.

53



Observe that when starting from initial guess X(0) = I, the first iteration step
simplifies to

X(1) = X(0)(2I − AX(0)) = 2I − A. (5.1)
This step is essentially free because it only requires inverting the signs of entries
of A and diagonal modification, which are easily performed in place.

The choice of initial guess X(1) suits the inverse incomplete factorization ap-
proach from Section 4.4. We identified two supporting arguments, which we
thoroughly explain in Appendix A.2. The two observations hint that under cer-
tain assumptions (high sparsity of ˆ︁L and wide and shallow elimination tree cor-
responding to ˆ︁L), the initial guess 2I − ˆ︁L for Minimal Residual-type methods
should be very close to ˆ︁L−1, needing only minor refinement. This claim is further
supported by the experiments in Sections 6.4.3 and 6.4.4.

5.3.3 Uniform Minimal Residual algorithm
To compute the resulting sparse approximate factor K ≈ ˆ︁L−1, we use a modifica-
tion of the MR algorithm (Algorithm 3) with the mentioned choice of initial guess
K(0) = 2I − ˆ︁L. The modification aims to find more general sparsity patterns and
create an approximate inverse where the quality of approximation of individual
columns is uniform - hence the name UMR. We achieve this uniformity by per-
forming two types of iterations - UMR scans and UMR finetune steps, with the
main idea being that after a certain number of updates, some of the columns
might no longer need further refinement.

UMR scans and finetune steps UMR first performs the specified number of
UMR scans. A single UMR scan performs one residual minimization on the entire
matrix. Instead of updating each column separately as in Algorithm 3, we run
the updates on batches of columns to vectorize the computation. As in Algorithm
3, column updates are followed by sparsification. The sparsification keeps only
the inverse entries largest in magnitude to preserve the specified target density
of the factor. However, contrary to Algorithm 3, we employ global sparsification
instead of the standard column-by-column (or block-by-block) one. Considering
entries throughout the entire matrix allows us to find non-homogeneous sparsity
patterns. We briefly experimented with different approaches but observed a con-
siderable improvement in the resulting approximation quality when using global
sparsification versus local sparsification strategies.

After the specified number of UMR scans, the algorithm switches to UMR
finetune steps. Instead of performing the residual update on the entire matrix
(like in a UMR scan), the UMR finetune step selects a batch of the least accu-
rately approximated columns and updates only them. As in UMR scans, global
sparsification is used after the updates.

Residual matrix and training loss At the start of each UMR scan and each
UMR finetune step, the residual matrix R(i) = I− ˆ︁LK(i) (where K(i) is the current
approximation of ˆ︁L−1) is computed. The residual matrix expresses a training loss
to indicate the current approximation quality. Note that the loss is meaningful
in our context since the mean of squared column norms of R(i) is the relative

54



residual norm squared:

1
|I|

|I|∑︂
j=1
∥R(i)

:,j ∥2 = 1
|I|
∥R(i)∥2

F =
(︂∥R(i)∥F

∥I∥F

)︂2
.

A threshold on the training loss is used as a stopping criterion for the iterative
process. The norms of columns of R(i) are also used to select columns for mod-
ification. Columns with residual norms below a specified threshold5 (e.g., single
precision machine epsilon) are assumed to be inverted correctly and ignored in
UMR scans. UMR finetune steps select columns with highest residual norm6.

Implementation notes In our implementation, UMR scans and finetune steps
are performed using batches of columns of dynamically computed size. This allows
us to limit the memory cost of computation to a small multiple of the prescribed
model size. On the other hand, the computation of the residual matrix R(i) and
the training loss is not performed in small batches. This choice is deliberate
because being able to compute the product of two sparse matrices is a reasonable
assumption. Unless the matrices are huge, single-step computation of the residual
matrix adds only a modest memory overhead but saves a small amount of time.
If, however, memory is the limiting factor, we can eliminate most of the memory
overhead in the current implementation

• by computing the residual matrix R(i) in batches, and

• by extracting columns of XT X from X during the incomplete factorization
(as mentioned Section 5.3.1)

The above changes will make our already memory-efficient implementation (see
Section 6.4.4) even cheaper.

5.3.4 Training procedure
Training the encoder The first step of the training procedure is the computa-
tion of a sparse approximate LDLT decomposition of the matrix A = XT X +λI.
As explained in Section 5.3.1, we need first to find a fill-in reducing permutation
of matrix A (represented by matrix P ). In our implementation, we use the CO-
LAMD algorithm (Davis et al. [2004]) for this objective. Then, we compute a
sparse approximate Cholesky decomposition of a symmetrically permuted matrix
PAP T . The training algorithm provides two possible methods:

1. exact Cholesky decomposition using the CHOLMOD algorithm (Chen et al.
[2008]) with subsequent sparsification of the computed factor, or

2. an incomplete Cholesky factorization via the ICF algorithm (Lin and Moré
[1999]).

5The threshold starts large (only the worst columns are fixed) and decreases in later itera-
tions.

6More precisely: since the inverted matrix is lower triangular, we select columns with large
length-normalized residuals. During experimentation, this approach appeared to improve the
convergence speed.

55



Denoting L0 the computed factor, this step yields a decomposition in the form
L0L

T
0 ≈ PAP T . Next, we extract the diagonal vector d0⃗ of L0 and rescale the

columns of L0 by dividing the j-th column by the j-th entry of d0⃗. Note that all
entries of d0⃗ are nonzero; otherwise, the factorization would have failed. Denote ˆ︁L
the rescaled version of L0 and ˆ︂D = diag(d0⃗

2
) (where the second power is applied

element-wise). At this point, we have computed a permutation vector defining
matrix P , a dense vector of the diagonal of ˆ︂D and a lower triangular matrix ˆ︁L
with unit diagonal such that

ˆ︁Lˆ︂D ˆ︁LT ≈ PAP T .

In the second step, we compute the diagonal of ˆ︂D−1 by simply inverting the
elements of ˆ︂D.

The third step computes the initial guess K(0) = 2I − ˆ︁L for the approximate
inverse of ˆ︁L. Algorithmically, the initial guess K(0) is obtained from ˆ︁L by simply
inverting the signs of the subdiagonal entries, an essentially free step. As discussed
in Section 5.3.2, this is equivalent to using a step of the Schultz iterative method
(Schulz [1933]) applied on the initial guess I.

If K(0) is not an accurate enough approximation of ˆ︁L−1, the fourth step of
the encoder training refines it using the iterative algorithm UMR described in
Section 5.3.3. UMR first performs the specified number of UMR scans updating
the entire matrix and then performs the specified number of UMR finetune steps,
which target the least accurately approximated columns. Note that at the start of
each UMR scan, and each UMR finetune step, the residual matrix R(i) = I− ˆ︁LK(i)

(where K(i) is the current approximation of ˆ︁L−1) is computed.
After the iterative process stops, we have a sparse K ≈ ˆ︁L−1, a dense vector

representing ˆ︂D−1, and a vector representing P such that

P T KTˆ︂D−1KP ≈ P T ˆ︁L−Tˆ︂D−1 ˆ︁L−1P ≈ A−1.

Finally, the encoder layer of sansa, the matrix W T , is obtained by transposing
the column-permuted approximate inverse K:

W T = (KP )T

Note that W T is a full-rank sparse matrix but no longer lower triangular. Sum-
marizing, the factorized approximation of A−1 is expressed using the encoder W T

and the diagonal matrix ˆ︂D−1 as W Tˆ︂D−1W ≈ A−1.

Building the decoder We use the above factorization to obtain an approx-
imation of the matrix ˆ︁Bdiag from easer (the matrix of weights with extracted
residual connection, see Section 3.1.2). We need to apply column scaling to our
factorized matrix. In easer, the j-th column of ˆ︁Bdiag is obtained by scaling
the the j-th column of A−1 by −A−1

jj . Using the diagonal vector q⃗ of matrix
W Tˆ︂D−1W , we express the approximation of ˆ︁Bdiag as

ˆ︁Bdiag ≈ −W Tˆ︂D−1Wdiag(q⃗)−1.

Using the associativity of matrix multiplication, we may rewrite the above ex-
pression as

ˆ︁Bdiag ≈ W T Z,

56



where
Z = −(ˆ︂D−1W )diag(q⃗)−1.

This expression shows that the scaling can be applied non-symmetrically - only
to the decoder part. Hence, sansa is a nonsymmetric autoencoder with encoder
layer W T and decoder layer Z and ˆ︁Bdiag ≈ W T Z.

We end this section by showing how the diagonal vector q⃗ of matrix W Tˆ︂D−1W
can be computed simultaneously with the matrix decoder layer. First, the rows
of W are scaled by the corresponding diagonal entries of ˆ︂D−1, all of which are
nonzero. The resulting matrix Z0 = ˆ︂D−1W has the same sparsity pattern as W ,
and hence we can cheaply compute the diagonal of matrix W T Z0 via the following
procedure:

1. Create a copy of matrix W .

2. Multiply the values of W by the values of Z0.

3. Reduce-sum along the columns to obtain the vector q⃗.

Remark. While Step 1 is cheap in general and Step 3 is cheap when the matrix
is stored using a column-oriented storage format (e.g., CSC), the second step is
efficient only when both matrices have the same sparsity pattern, which, luckily,
is the case here.
Finally, we scale the columns of Z0 by −q⃗ to obtain the decoder matrix Z. We
summarize the training procedure in Algorithm 5.3.4.

Algorithm 5 sansa (Spǐsák et al. [2023])
input user-item interaction matrix X, L2 regularization λ

1: Compute LDLT ≈ P (XT X + λI)P T (for some permutation matrix P )
2: Compute K ≈ L−1

3: W ← KP
4: Z0 ← D−1W
5: q⃗ ← diag(W T Z0)
6: Z ← scale the columns of Z0 by −q⃗

return W T , Z

5.4 Implementation
We implemented sansa in Python 3.10 using common libraries NumPy7, SciPy8

(in particular its sparse module), Numba9, pandas10 and scikit-learn11. More-
over, as mentioned, sansa (cholmod) computes Cholesky decomposition using
CHOLMOD Chen et al. [2008], and sansa (icf) uses COLAMD Davis et al.
[2004] to compute the fill-reducing permutation. CHOLMOD and COLAMD

7https://numpy.org
8https://scipy.org
9https://numba.pydata.org

10https://pandas.pydata.org
11https://scikit-learn.org

57

https://numpy.org
https://scipy.org
https://numba.pydata.org
https://pandas.pydata.org
https://scikit-learn.org


are available as parts of SuiteSparse12. The Python interface for SuiteSparse
is provided by scikit-sparse13. Additionally, we implemented two models as
baselines for comparison:

1. the original model easer, and

2. mrf, the other sparse approximate variant of easer (see Section 3.4.1).

For mrf, we used the code available at https://github.com/hasteck/MRF_
NeurIPS_2019 with minor (primarily organizational) modifications.

The repository is available at https://github.com/matospiso/sansa (see
Appendix A.3 for more information).

12https://people.engr.tamu.edu/davis/suitesparse.html
13https://github.com/scikit-sparse/scikit-sparse

58

https://github.com/hasteck/MRF_NeurIPS_2019
https://github.com/hasteck/MRF_NeurIPS_2019
https://github.com/matospiso/sansa
https://people.engr.tamu.edu/davis/suitesparse.html
https://github.com/scikit-sparse/scikit-sparse


6. Experiments
In the previous chapter, we proposed two methods for constructing sparse ap-
proximations of easer to facilitate the construction of creating a smaller model
in order to reduce inference-time memory requirements. The two methods suit
different RS scenarios, depending on whether training memory limitations play
a decisive role. In our experiments, we address both scenarios and, for logical
coherence, validate the robustness of the more accurate but also more demand-
ing sansa (cholmod) approach in Section 6.4.2. Later, in Section 6.4.4, we
demonstrate our main contribution – the unparalleled scalability of sansa (icf)
to domains with large item sets.

We published the experiments from this section in our short paper (Spǐsák
et al. [2023]). All experiment codes along with the instructions on how to repli-
cate the experiments, the results, and experiment logs are available at https:
//github.com/matospiso/sansa (see also Appendix A.3).

6.1 Datasets
The evaluation was conducted on five popular datasets from various media do-
mains, which were preprocessed and filtered for certain activity levels of users
and items:

• MovieLens 20M (ML-20M) (Harper and Konstan [2015]) is a dataset
of user-movie ratings collected from a movie recommendation service. For
preprocessing, we follow the method of Liang et al. [2018]. Explicit feedback
entries are binarized by keeping ratings of four or higher and interpreted as
implicit feedback. Users with fewer than five rated movies are filtered out.
The resulting preprocessed dataset contains 136 677 users, 20 720 movies,
and circa 10 million interactions.

• Netflix Prize (Netflix) (Bennett and Lanning [2006]) is a dataset of user-
movie rating data from the famous Netflix Prize. We follow the preprocess-
ing method of Liang et al. [2018], which is the same as for the ML-20M
dataset: convert the ratings to implicit feedback by keeping ratings of four
or higher and filter out users with fewer than five rated movies. The final
preprocessed dataset contains 463 435 users, 17 769 items, and about 57
million interactions.

• Million Song Dataset (MSD) (Bertin-Mahieux et al. [2011]) contains
user-song play counts. We again follow the preprocessing as described by
Liang et al. [2018]. The play counts are binarized and interpreted as implicit
feedback. We only keep songs that are listened to by at least 200 users and
then filter out users with fewer than 20 songs in their listening history1.
The preprocessed dataset contains 571 355 users, 41 140 items, and about
34 million interactions.

1The order of filtering operations is missing in the original preprocessing description.

59

https://github.com/matospiso/sansa
https://github.com/matospiso/sansa


• Goodbooks-10k (Zajac [2017]) is a dataset of user-book ratings. We pre-
process the data according to Vančura et al. [2022], who used the same
preprocessing as Liang et al. [2018] for ML-20M and Netflix datasets (see
above points). The resulting dataset contains 53 366 users, 10 000 items,
and about 4 million interactions.

• Amazon Books dataset is a part of the Amazon review data (Ni et al.
[2019]), a widely used dataset for product recommendation. To corre-
spond with a popular recommendation benchmark BarsMatch (Commu-
nity [2023]), we use the version of Amazon Books preprocessed according
to Wang et al. [2019], which filters out users and items with less than ten
interactions. The interactions are treated as implicit feedback. The exact
version of the dataset is publicly available and contains 52 643 users, 91 599
items, and about 3 million interactions.

6.1.1 Splits
To remain consistent with well-known benchmarks (i.e., with the many papers
referencing Liang et al. [2018] and with BarsMatch, which uses the evaluation
protocol of Wang et al. [2019]), we use the evaluation setup as described in the
original papers. The papers differ in their choice of data-splitting procedure.
Figure 6.1 illustrates two possible approaches. Strong generalization means
horizontal splitting – the training, validation, and test sets are disjoint in terms
of users. The other possibility is weak generalization (vertical splitting), where
the training sets are disjoint in user-item interactions but not in terms of users.
Strong generalization is relatively more difficult than weak generalization, where
the user’s click history also appears during the training. Liang et al. [2018]
consider it more realistic and robust, but it has a caveat: strong generalization
requires feedback from many unique users. Otherwise, removing a part of the
users for training will negatively affect the resulting model.

• To agree with Vančura et al. [2022] and Liang et al. [2018], the evaluation
for Goodbooks-10k, ML-20M, Netflix, and MSD was conducted in terms of
strong generalization. For every user in validation and test splits, 20% of
interactions were filtered and used as prediction targets. For future work,
it is worth considering that randomly selecting target interactions does not
accurately reflect the real-world task of recommending items based on pre-
vious interactions. A more realistic approach would involve selecting a
percentage of the newest interactions as targets.

• To agree with BarsMatch (Community [2023]) and Wang et al. [2019], we
use weak generalization for Amazon Books, where 80% of interactions of
each user are selected for the training set and the remaining 20% form the
test set. We use the exact training and test splits by Wang et al. [2019],
which are publicly available. Moreover, we randomly select 10% of the
training interactions for each user for the validation set. Test set entries
serve as targets for test predictions, which use feedback in the training and
validation sets as input (see Figure 6.1).

60



Figure 6.1: Comparison of data splitting approaches. Horizontal splitting (also
called strong generalization) creates training, validation, and test sets with dis-
joint user sets. The other possible way is to use vertical splitting (weak general-
ization). The figure visualizes only the ”directions” of splitting and the resulting
proportions; target items vary for different users.

For reproducibility, we implemented an experiment pipeline that selects the cor-
rect preprocessing and splitting procedure for each of the five datasets. Moreover,
the README file in our repository also includes instructions on how to obtain the
correct dataset files for the pipeline input.

Based on the sizes of item sets and densities of the item relation graphs corre-
sponding to the training splits, we divide the datasets into three categories:

• Goodbooks-10k, ML-20M, Netflix are small and dense datasets. They
contain 10 000 to 20 720 items, which are densely connected, since even
though the interaction densities in the training set are between 0.35% and
0.77%, the corresponding item-item matrices A used in training have den-
sities in the range of 21.25% to 70.76%.

• MSD is larger than the previous three datasets with 41 140 items, and hence
we say it is a medium-sized, dense dataset: its training item-item matrix
A has a density of 41.54%.

• With 91 599 items, the training set interaction density 0.062%, and item-
item matrix density 3.94%, Amazon Books is the closest dataset to an
archetypal real-world use case for sansa – large e-commerce scenarios,
where interaction (and consequently also item-item) matrices are enormous
and sparse. Therefore, Amazon Books is a large and sparse dataset.

61



dataset Goodb.-10k ML-20M MSD Netflix Amazon B.
# of users 48 366 116 677 471 355 383 435 52 643
# of items 10 000 20 720 41 140 17 769 91 599
# of inter. 3 735 397 8 516 174 27 765 348 47 098 414 2 380 730
density (%) 0.7723 0.3523 0.1432 0.6913 0.0619
item-item
density (%) 39.5522 21.2540 41.5369 70.7583 3.9371

Table 6.1: Attributes of training splits. The item-item matrices are significantly
denser (X → XT X + λI increases density, from around 50× for Goodbooks-10k
to around 300× for MSD). As a result, the item-item matrices, their Cholesky
factors, and the inverse item-item matrices and their factors are dense. However,
on even larger domains, datasets, and the matrices and factors can be much
sparser, as hinted by Amazon Books, which is the only dataset with a relatively
sparse item-item network (this is a consequence of its highly sparse input data).

Table 6.1 summarizes the training set sizes and densities. Note even though the
evaluated datasets (i.e., the corresponding training matrices X) are sparse, their
item-item matrices XT X + λI are significantly denser. However, the densities of
XT X + λI will decrease if we increase the item set size and preserve the amount
of feedback per user.

6.2 Metrics
We evaluate the model performance using two ranking-based metrics: recall and
the normalized discounted cumulative gain (nDCG) at the top k positions. Both
metrics compare the predicted rank of target items (determined by sorting ac-
cording to the predicted scores) with their actual rank for each user.

Mathematically, for a user u, let p(u) denote the array that contains all items
from I sorted by the predicted item scores for this user (i.e., p(u)i is the item
with the i-th highest score for the user u), and let Iu ⊂ I denote the set of target
items for the user u. Furthermore, for a set S, denote IS(·) its indicator function,
that is, IS(x) = 1 if x ∈ S else IS(x) = 0.

Definition 6.1 (recall@k). For a user u, we define

recall@k(u) =
∑︁k

i=1 IIu(p(u)i)
min(k, |Iu|)

.

Remark. The evaluation protocol of Liang et al. [2018] uses the above definition
of recall (and hence we also use it for evaluation on Goodbooks-10k, ML-20M,
Netflix, and MSD). In this definition, the expression in the denominator is trun-
cated to at most |Iu|, which normalizes the metric to obtain a maximum value
of 1 when all items recommended within the top k positions are among the tar-
get items. There exists another possible definition that does not truncate the
denominator:

recall@k(u) =
∑︁k

i=1 IIu(p(u)i)
|Iu|

.

62



We use this expression to evaluate Amazon Books to remain consistent with the
BarsMatch benchmark (Community [2023]) and Wang et al. [2019].

Personally, I dislike the second definition of recall because the resulting metric
is not interpretable when the number of target items for a user is unknown: if
k < |Iu|, then recall@k(u) ≤ k

|Iu| < 1. In other words, we do not know the
maximum attainable value in this situation. When evaluating the performance
as the average recall@k over many users (that typically have different numbers
of target items), the value loses its upper reference point and interpretability.

While recall@k treats all items within the top k predicted items equally im-
portant, nDCG@k incorporates a monotonically increasing discount factor to
emphasize the significance of higher ranks over lower ones. This metric, there-
fore, penalizes incorrect order of recommendations – the best match for a user
should be the first recommended item, and so on.

Definition 6.2 (nDCG@k). For a user u, let 0 ≤ reli ≤ 1 denote the relevance
of the i-th predicted item2. The discounted cumulative gain (DCG) @ k is defined
as

DCG@k(u) =
k∑︂

i=1

2reli − 1
log2(i + 1) .

The ideal discounted cumulative gain (IDCG) @ k is defined as

IDCG@k(u) =
bestk(u)∑︂

i=1

2reli − 1
log2(i + 1) ,

where bestk(u) is the k-prefix of the sorted array of relevance values of all items
in I (i.e., for i ≤ k, bestk(u)i is the relevance of the i-th most relevant item).
IDCG@k(u) represents the maximum attainable value of DCG@k for the user u.
Finally, the nDCG @ k is defined as

nDCG@k(u) = DCG@k(u)
IDCG@k(u) .

For a user u, similarly to the first definition of recall, the above definition of
nDCG@k satisfies 0 ≤ nDCG@k(u) ≤ 1 for all choices of positive integers k and
all users u.

Our experiments on Goodbooks-10k, ML-20M, MSD, and Netflix evaluated
model accuracy using the same metrics as Liang et al. [2018], i.e., recall@20,
recall@50, and nDCG@100. We evaluate models on Amazon Books using the
same metrics as the BarsMatch benchmark (Community [2023]) and Wang et al.
[2019], i.e., recall@20 (the second kind!) and nDCG@20. Finally, we used the
perf counter function from Python’s standard module time to measure function
execution time and the memory-profiler module to measure memory utilization
during the program execution.

2In case of implicit feedback, we consider all target items (equally) relevant with rel = 1
and hence we may use 2reli − 1 = IIu

(p(u)i).

63



6.3 Baselines
We briefly discuss the two primary baselines used in the experiments.

We trained easer for all datasets except Amazon Books, where we merely
report the results of easer from Community [2023] due to extreme computational
requirements needed for training. easer uses only a single hyperparameter – L2
regularization – which we keep consistent with the value of L2 regularization
used by sansa (cholmod). Compared with that, sansa (icf) uses different
regularization due to additional scaling applied to the matrix XT X + λI used to
prevent breakdowns in the incomplete factorization (see Lin and Moré [1999]).
Apart from L2 regularization, both variants of sansa use only a parameter for
prescribing weight density and parameters for setting the number of iterations,
which can be selected by observing training loss.

Additionally, we compare sansa with the scalable modification of easer pro-
posed by the same author – mrf (Steck [2019b]; see our overview in Section 3.4.1).
The mrf method, as the only other full-rank sparse modification of easer, is
the current state-of-the-art. The hyperparameter selection for mrf is complex;
hence, we often reuse the parameters from the code accompanying the original
paper. Unlike easer and sansa (cholmod), and similarly to sansa (icf),
mrf normalizes its item-item matrix XT X +λI and a different L2 regularization
is needed compared to easer. On each dataset, we trained mrf with different
choices of r (typically r ∈ {0, 0.1, 0.5}). Furthermore, we used α = 0.75 and kept
the maxInColumn at 1000. For direct comparison, we selected threshold on all
datasets by trial and error so that the densities of models correspond to the ones
selected for sansa.

Model configurations used in each experiment are available in the repository3.

6.4 Results

6.4.1 Robustness on small, dense datasets
For the first experiment, we compare the recommendation accuracy of sansa
(cholmod) against easer and mrf on Goodbooks-10k, MovieLens 20M and
Netflix. The purpose of this experiment is to verify the robustness of sansa
(cholmod) in situations where the item set size is not large but where the
corresponding item-item network is densely connected (see the density of item-
item network in Table 6.1). These scenarios challenge the sparse approximation
approach. Since XT X +λI is dense, it could happen that no good sparse approx-
imation of (XT X + λI)−1 exists. Moreover, the Cholesky factors of XT X + λI
will also be dense. Luckily, in real-world recommender system applications and
with enough user feedback sampled, XT X + λI will be close to diagonally dom-
inant; typically, only a few nondiagonal entries will be comparable or larger in
magnitude than the diagonal entries. Then, the computed Cholesky factor should
have relatively few large subdiagonal entries, and we should be able to find good
sparse approximations of the factor and its inverse.

The experiment results in Table 6.2 reveal that easer (a cutting-edge CF
model, see, e.g., Vančura et al. [2022]) can be accurately approximated by 50

3https://github.com/matospiso/sansa

64

https://github.com/matospiso/sansa


Goodbooks-10k

density model recall@20 recall@50 nDCG@100
mrf (r = 0) 0.364 0.497 0.507

0.5% mrf (r = 0.5) 0.350 0.488 0.490
sansa (cholmod) 0.355 0.493 0.499
mrf (r = 0) 0.363 0.501 0.508

1.0% mrf (r = 0.5) 0.352 0.492 0.493
sansa (cholmod) 0.356 0.494 0.500
mrf (r = 0) 0.363 0.501 0.507

2.0% mrf (r = 0.5) 0.354 0.493 0.495
sansa (cholmod) 0.357 0.498 0.501
easer 0.357 0.494 0.499

MovieLens 20M

density model recall@20 recall@50 nDCG@100
mrf (r = 0) 0.390 0.515 0.420

0.5% mrf (r = 0.5) 0.380 0.508 0.412
sansa (cholmod) 0.383 0.512 0.413
mrf (r = 0) 0.390 0.516 0.420

1.0% mrf (r = 0.5) 0.385 0.513 0.416
sansa (cholmod) 0.386 0.516 0.417
mrf (r = 0) 0.390 0.516 0.420

2.0% mrf (r = 0.5) 0.386 0.515 0.418
sansa (cholmod) 0.388 0.518 0.420
easer 0.392 0.521 0.422

Netflix Prize

density model recall@20 recall@50 nDCG@100
mrf (r = 0) 0.360 0.441 0.391

0.5% mrf (r = 0.5) 0.352 0.435 0.385
sansa (cholmod) 0.354 0.433 0.383
mrf (r = 0) 0.362 0.442 0.392

1.0% mrf (r = 0.5) 0.357 0.439 0.389
sansa (cholmod) 0.354 0.435 0.384
mrf (r = 0) 0.362 0.443 0.392

2.0% mrf (r = 0.5) 0.359 0.442 0.391
sansa (cholmod) 0.356 0.438 0.386
easer 0.362 0.444 0.393

Table 6.2: Recommendation accuracy on small, dense datasets. mrf and sansa
(cholmod) match performance of easer even at very high compression levels.
The standard errors in the experiments are about 0.004, 0.003, and 0.001 in the
Goodbooks-10k, ML-20M, and Netflix experiments, respectively.

65



to 200 times sparser full-rank models even on these densely connected domains.
This provides the first empirical evidence for the robustness of our approach.

There is an interesting practical implication: on domains of this type, it is
feasible to create very small models4 that provide sufficiently accurate recommen-
dations even standalone or add these mini models to ensemble RS at little to no
extra cost.

6.4.2 Robustness and efficiency on medium-sized, dense
dataset

For the second experiment, we evaluate the accuracy and training time of the a
posteriori sparsified sansa (cholmod) variant in a more computationally de-
manding setting. We selected MSD for this test since it is among the largest
benchmarks for CF with 41 140 items, yet it is still small enough to allow the
complete sparse factorization on a moderately sized m6i.4xlarge instance with
64 GB RAM. Additionally, the dense connectedness of MSD challenges the ro-
bustness and efficiency of sparse approaches. Although the interaction density is
only 0.14%, the item-item matrix XT X + λI is 41.54% dense (see Table 6.1).

The results in Table 6.3 show the robustness of sansa: if we allow sufficient
weight density and train long enough, sansa (cholmod) will achieve the same
accuracy as dense easer. Table 6.3 and Figure 6.2 also illustrate that the quality
of approximation of easer improves as we allow higher weight density of sansa
(cholmod). Furthermore, we see that even very sparse models can approximate
easer with high accuracy. Despite the high density of the item-item network,
even 50 – 1 000 times sparser full-rank models perform on par with easer.

In terms of accuracy, sansa (cholmod) performs in between mrf (r = 0)
and pruned mrf (r = 0.5) on all tested density levels, see Figure 6.2. 5 At 0.1%
density, imposing the computed sparsity pattern is inexpensive, and mrf trains
three to four times faster than sansa (cholmod). However, masking operations
on sparse matrices (essential for mrf training) do not scale well as the number of
nonzeros increases. Consequently, training mrf becomes expensive as the total
number of nonzero elements in the approximation increases since r-pruning does
not help with this problem. Compared with that, sansa performs its training
using efficient sparse matrix operations6 and at 2% density, sansa (cholmod)
trains almost as fast as the pruned mrf (r = 0.5). For completeness, sansa
(icf) performed about 6-17% worse than sansa (cholmod) on MSD, but this
is anticipated: incomplete factorization of a dense matrix loses information during
computation and requires more robust regularization to prevent breakdowns.

Finally, vectors predicted by a two-layer sansa are significantly denser than
the vectors produced by a single-layer sparse model mrf with equal density.
Therefore, sansa can recommend more items from sparse inputs than mrf, which
may be desirable in practice.

4sansa and mrf with weight density 0.5% on MovieLens 20M have only around 2 million
parameters.

5A more accurate comparison is difficult, as mrf uses additional data normalization to tackle
popularity bias, see Steck [2019b] and Section 3.4.1.

6Cholesky factorization, sparse matrix-matrix multiplications, sparsifications and element-
wise operations working on contiguous memory, and (block) column manipulations.

66



Million Song Dataset

density model recall@20 recall@50 nDCG@100 training time
mrf (r = 0) 0.330 0.421 0.385 64 s

0.1% mrf (r = 0.5) 0.326 0.417 0.380 55 s
sansa (ch.) 0.328 0.422 0.383 200 s
sansa (icf) 0.288 0.385 0.346 190 s
mrf (r = 0) 0.333 0.427 0.389 183 s

0.5% mrf (r = 0.5) 0.329 0.424 0.384 90 s
sansa (ch.) 0.331 0.426 0.387 253 s
sansa (icf) 0.276 0.370 0.337 632 s
mrf (r = 0) 0.333 0.428 0.390 1031 s

2.0% mrf (r = 0.5) 0.329 0.426 0.385 457 s
sansa (ch.) 0.332 0.427 0.388 502 s
sansa (icf) 0.298 0.399 0.359 528 s
easer 0.332 0.428 0.388 312 s

results from Shenbin et al. [2020] and Liang et al. [2018]
recvae 0.276 0.374 0.326 ——
wmf 0.257 0.312 0.257 ——
mult-vaepr 0.266 0.364 0.316 ——

Table 6.3: Highly compressed sansa (cholmod) and mrf models achieve ac-
curacy comparable to easer even on dense datasets. As the number of nonzeros
in the approximation increases, imposing sparsity via masking becomes a per-
formance bottleneck for mrf; sansa uses efficient sparse operations and scales
better. At 0.5% density, incomplete factorization suffered breakdowns and re-
quired restarts with diagonal shifts. The diagonal shifts introduced additional
regularization, resulting in decreased recommendation accuracy. The standard
error is about 0.001.

67



Figure 6.2: Accuracy of sansa (cholmod) on MSD after various numbers of
training scans s and finetune steps f . The initial guess for UMR provides an
approximation of easer with recommendation accuracy comparable to that of
other low-rank models; see also Table 6.3. Even very few short UMR iterations
can push the performance close to that of easer. (Spǐsák et al. [2023])

6.4.3 Trading accuracy for shorter training
In larger domains, trading recommendation accuracy for shorter training may be
desirable. For example, mrf uses parameter r to prune dependencies between
item clusters. sansa provides a similar (although less interpretable) possibil-
ity: applying fewer UMR iterations yields a coarser approximation of the weight
matrix of easer. To analyze the trade-off, we compared checkpoints of sansa
(cholmod) trained for different numbers of UMR scans s and finetune steps
f against two baselines: easer to measure the distance from the uncompressed
model (i.e., the qualitative decrease compared to no compression), and a deep
variational autoencoder recvae Shenbin et al. [2020], ranked second on MSD
according to Shenbin et al. [2020]. For perspective, we include the reported per-
formance of recvae in Table 6.3 along with two more relevant baselines7: a
linear low-rank factorization model wmf (Hu et al. [2008]) and a multinomial
variational autoencoder mult-vaepr (Liang et al. [2018]).

7As reported by Liang et al. [2018].

68



The results in Figure 6.2 show that even short training can produce a close
approximation of the dense easer. Notably, we can train very sparse models for
but a few short UMR iterations and obtain performance close to state-of-the-art.
Various early checkpoints of sansa (cholmod) (Figure 6.2) and even the icf
variant outperform other competing models on MSD (see Table 6.3). To conclude,
very sparse or coarse approximations of easer can be competitive yet very cheap
and practical (e.g., for ensemble models).

6.4.4 Extreme scalability
In the final experiment, we demonstrate the main contribution of this thesis and
our paper: the ability of sansa (icf) to scale to extremely large datasets. We
select Amazon Books for this experiment because it is the largest and sparsest
popular benchmark dataset with 91 599 items, interaction density 0.062%, and
item-item matrix density 3.94%. Due to its proportions, Amazon Books proves
very challenging even for state-of-the-art recommender systems and, at the same
time, is the nearest benchmark to the intended production use cases of sansa.
We empirically demonstrate our method’s scalability and efficiency by measur-
ing training time and memory requirements using tools mentioned at the end of
Section 6.2. As for the recommendation accuracy, we follow the evaluation pro-
tocol of the BarsMatch benchmark (Community [2023]) and measure recall@208

and nDCG@20 for reproducibility. We compare sansa (icf) with mrf and the
results of other state-of-the-art models from Community [2023].

In domains with very large item sets, we can exploit the inevitable sparsity
of dominant information in the item-item network (i.e., the sparsity of XT X;
see the properties of Amazon Books in Table 6.1) to avoid restrictive memory
requirements (otherwise inevitable on such large item sets) and create a strongly
compressed model without losing important information. To elaborate, when
XT X+λI is sparse, we will likely find a good fill-reducing permutation so that the
resulting Cholesky factor L is likely sparse, too, and the sparse incomplete factor
L̂ computed by ICF should be close to L (see Section 5.3.1). Moreover, when the
elimination tree associated with L̂ is wide, the free initial guess 2I−L̂ is very close
to the exact L̂

−1, needing little to no refinement (see Section 5.3.2 and references
therein). As a result, our method essentially reduces the sparse approximate
inversion to a cheaply obtained incomplete factorization. This shortcut drastically
reduces training time and memory requirements.

Therefore, it is by no surprise that on Amazon Books, sansa (icf) with
about 0.84 million parameters (i.e., 10 000 times compressed compared to the
dense easer) trains orders of magnitude faster than any other non-sparse state-
of-the-art method (dense autoencoders, nearest neighbors approaches or graph
neural networks), as shown in Table 6.4. Furthermore, sansa (icf) trains more
than three times faster than mrf with equally sparse weights – partially due
to the discussed performance bottleneck caused by masking but also due to the
large number of leading clusters requiring inversion. Moreover, this speedup was
achieved on a single-core r6i.large instance (2 vCPUs, 16 GB RAM), which is
much smaller compared to r6i.4xlarge with 8 cores (16 vCPUs, 128 GB RAM)

8According to the second definition, see Section 6.2.

69



Amazon Books
results from Community [2023]:

sansa mrf mrf easer slim item- ultra-
(icf) (r = 0) (r = 0.5) cf gcn

recall@20 0.077 0.071 0.069 0.071 0.075 0.074 0.068
nDCG@20 0.064 0.058 0.055 0.057 0.060 0.061 0.056

training resources
vCPU 2 16 16 28 28 28 20*
memory usage (GB):
peak 9.18 96.45 96.58 —— not measured; costly ——
average 3.87 49.12 49.75 —— not measured; costly ——
time 49 s 172 s 167 s 222 m 316 m 57 m 45 m

*and RTX 2080 GPU

Table 6.4: Thanks to end-to-end sparse training procedure, sansa (icf) trains
three times faster using 2 vCPUs than mrf on 16 vCPUs, and orders of magnitude
faster than any leading-edge model with dense weights, in particular easer and
slim. The training of sansa requires minuscule memory, unparalleled even with
mrf. As a bonus, it also achieves new state-of-the-art accuracy. The standard
error in the accuracy measurements is about 0.0005. (Spǐsák et al. [2023])

Figure 6.3: Comparison of time and memory usage of sansa (icf) versus mrf on
Amazon Books. The final ”flatline” on each graph corresponds to the evaluation
phase in the pipeline. (Spǐsák et al. [2023])

70



needed for mrf9. As such, training sansa (icf) is much more cost-effective com-
pared to other models, e.g., in terms of total floating-point operations (FLOPs).
In addition, thanks to efficient sparse operations, the training procedure of sansa
(icf) requires ten times less memory (see Table 6.4 and Figure 6.3) than the
training of mrf, and this edge can be improved further: our code keeps up to 2
copies of XT X in memory (which amounts to roughly 8 GB for Amazon Books).
This overhead can be eliminated by implicitly constructing XT X during ICF (see
Section 5.3.1). For perspective, sansa (icf) for Amazon Books could then be
trained on a Raspberry Pi or a smartphone.

Finally, while beating easer in terms of accuracy was never our goal, we
surpassed its reported performance on Amazon Books by a non-trivial margin
and, with it, the current state-of-the-art. Since mrf does not outperform easer

in our experiment, we do not think the accuracy improvement is due to ”reducing
the number of trust-busters in the sense of eliminating generally popular items
that are unrelated to the user’s interests,” as proposed by Steck [2019c]. However,
sansa (icf) differs from easer (and sansa (cholmod) and mrf) in scaling
(and, hence, also in the used L2 regularization). We include the scaling in our
code to help stabilize the incomplete factorization (refer to the original paper by
Lin and Moré [1999]). Considering time constraints, we were unable to examine
the impact of the scaling on recommendations or explore its interpretation; we
leave this for future research.

9mrf cannot be tested on a smaller instance due to training memory requirements approach-
ing 100 GB. Instances used in Community [2023] are even larger, with up to 28 vCPUs and
more than 500 GB of RAM, or 20 vCPUs and a GPU.

71



Conclusion
This thesis proposes a solution to the challenge of scaling state-of-the-art collab-
orative filtering models to domains with large item catalogs. The solution we
propose is based on the linear model easer by Steck [2019a]. Compared with
other approaches, easer is able to use long-distance information in the bipartite
network of user feedback. This information is crucial for accurate and diverse CF
modeling but expensive to extract and store on vast domains.

Our main contribution is a robust and efficient method to compute a sparse ap-
proximation of the potentially extensive model easer using contemporary numer-
ical methods for sparse approximate inversion. The robustness of the approach
stems from the ability of modern approximate inversion techniques to reliably
find dominant inverse entries (and, hence, also dominant weights of easer). The
method offers strong compression, further improved by factorization. In terms of
efficiency, our end-to-end sparse method is better suited for the task than previ-
ous approaches that attempt to overpower the problem using operations tailored
to dense structures. Consequently, the resulting model, sansa, trains faster and
with minuscule memory requirements.

To summarize, sansa provides a robust yet attainable baseline capable of
scaling to millions of items for researchers and industry applications.

Future work
The experiments carried out in this thesis provide evidence for the viability of em-
ploying the sansa approach in building accurate sparse autoencoders, as well as in
generating sparse approximate inverses of large-dimensional sparse SPD matrices.
We intend to conduct further, more specific experiments to deepen our under-
standing of the method’s behavior. Moreover, even though the proposed method
considerably improves the scalability of state-of-the-art collaborative filtering, we
see room for improvement in several aspects of the approach. Additionally, we
see a few applications for the method outside the recommender system domain.

Experiments The next step is to evaluate sansa in experiments on even larger
and sparser datasets, in an online setting, and against other baselines. Examining
metrics beyond accuracy (such as diversity) is also important. We want to assess
the method’s behavior (and, for example, the effect of sparsification) on various
user segments and compare observations with other state-of-the-art benchmarks.
Additionally, it would be interesting to test how a full-rank, sparse approximation
of easer (sansa) performs in an online experiment with an extensive set of items
for recommendation (i.e., hundreds of thousands or millions of items) compared
to a low-rank, dense approximation like elsa. Such an experiment could reveal
whether the use of a full-rank component in sansa provides a decisive advantage
over low-rank models as theorized and if this advantage is a consequence of high
catalog entropy, as argued by Steck and Liang [2021].

In order to further test the scalability of sansa, we conducted an additional
test on a much larger scale, surpassing the experiments in this thesis (which all
involved fewer than a hundred thousand items). The test involved approximately

72



2 million items and around 50 million interactions. Remarkably, under these
conditions, we were able to train sansa (icf) in less than an hour, with training
memory requirements in lower tens of gigabytes.

Method improvements Our long-term goal is to enhance the method by in-
troducing parallel reorderings and incomplete factorization. One approach we
plan to explore is tree parallelism for ICF based on a nested dissection technique
(see, e.g., the papers by Lipton et al. [1979] and Karypis and Kumar [1998]).
This technique involves splitting the computation into multiple independent sub-
problems, each assigned to a separate thread, then remerging them using small
separators. Doing so can achieve a notable speedup in the factorization process
with minimal additional memory requirements. Additionally, the nested dissec-
tion approach should reveal an ”arterial structure” of the item-item network.
Understanding this structure and the latent embeddings produced by sansa will
contribute to improved interpretability. However, most of the current computa-
tion time overhead can be eliminated by simply switching to a parallel algorithm
for finding a fill-in reducing permutation. We expect this strategy to enable the
sansa method to handle even larger collaborative filtering tasks.

We also suggest combining sansa with a nonlinear component, e.g., for the
subset of most popular items. The added part would allow the model to learn
nonlinear dependencies for at least part of the items to fix the residual error of
the linear model.

Other use cases Finally, based on the results of the thesis, we recognize three
possible applications for our approach beyond recommender systems:

1. Since the original idea of the method comes from preconditioners, it will
be interesting to see how the method used to train sansa performs in
preconditioning tasks on very large, SPD problems with general sparsity
patterns.

2. Furthermore, our approach could offer superior efficiency compared to ex-
isting methods, such as the one used by Steck [2019b], for estimating large
inverse covariance matrices in statistical problems.

3. Finally, we believe scalable sparse autoencoders will prove helpful in natural
language applications.

73



Bibliography
Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model

selection through sparse maximum likelihood estimation for multivariate gaus-
sian or binary data. J. Mach. Learn. Res., 9:485–516, 2008. URL http:
//dblp.uni-trier.de/db/journals/jmlr/jmlr9.html#BanerjeeGd08.

Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders, 2021.

James Bennett and Stanley Lanning. The netflix prize. Proceedings of KDD Cup
and Workshop, Vol. 2007, 11 2006.

M. W. Benson. Iterative solution of large scale iterative systems, 1973. Master
thesis.

M. Benzi and M. Tůma. A comparative study of sparse approximate inverse
preconditioners. ANM, 30(2-3):305–340, 1999.

M. Benzi, R. Kouhia, and M. Tůma. Stabilized and block approximate inverse
preconditioners for problems in solid and structural mechanics. Comput. Meth-
ods Appl. Mech. Engrg., 190(49-50):6533–6554, 2001.

Michele Benzi. A direct row-projection method for sparse linear systems. Ph. D.
Thesis, North Carolina State University, 1993.

Michele Benzi and Miroslav Tůma. A sparse approximate inverse preconditioner
for nonsymmetric linear systems. SIAM Journal on Scientific Computing, 19
(3):968–994, 1998. doi: 10.1137/S1064827595294691. URL https://doi.org/
10.1137/S1064827595294691.

Michele Benzi, Carl D. Meyer, and Miroslav Tůma. A sparse approximate inverse
preconditioner for the conjugate gradient method. SIAM J Sci Comput, 17:
1135–1149, 07 1996. doi: 10.1137/S1064827594271421.

Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere.
The million song dataset. In Anssi Klapuri and Colby Leider, editors, Proceed-
ings of the 12th International Society for Music Information Retrieval Con-
ference, ISMIR 2011, Miami, Florida, USA, October 24-28, 2011, pages 591–
596. University of Miami, 2011. URL http://ismir2011.ismir.net/papers/
OS6-1.pdf.

Christopher Bishop. Pattern Recognition and Machine Learning. Springer,
January 2006. URL https://www.microsoft.com/en-us/research/
publication/pattern-recognition-machine-learning/.

Å. Björck. Numerical methods for Least Squares Problems. SIAM, Philadelphia,
1996.

Caterina Calgaro, Jean-Paul Chehab, and Yousef Saad. Incremental incomplete
LU factorizations with applications. Numer. Linear Algebra Appl., 17(5):811–
837, 2010. ISSN 1070-5325,1099-1506. doi: 10.1002/nla.756. URL https:
//doi.org/10.1002/nla.756.

74

http://dblp.uni-trier.de/db/journals/jmlr/jmlr9.html#BanerjeeGd08
http://dblp.uni-trier.de/db/journals/jmlr/jmlr9.html#BanerjeeGd08
https://doi.org/10.1137/S1064827595294691
https://doi.org/10.1137/S1064827595294691
http://ismir2011.ismir.net/papers/OS6-1.pdf
http://ismir2011.ismir.net/papers/OS6-1.pdf
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://doi.org/10.1002/nla.756
https://doi.org/10.1002/nla.756


Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Raja-
manickam. Algorithm 887: Cholmod, supernodal sparse cholesky factorization
and update/downdate. ACM Trans. Math. Softw., 35(3), oct 2008. ISSN
0098-3500. doi: 10.1145/1391989.1391995. URL https://doi.org/10.1145/
1391989.1391995.

Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho.
Perturbation-recovery method for recommendation, 2022.

F. Chollet. Deep Learning with Python, Second Edition. Manning,
2021. ISBN 9781617296864. URL https://www.manning.com/books/
deep-learning-with-python-second-edition.

Edmond Chow. Robust preconditioning for sparse linear systems. PhD thesis,
Department of Computer Science, University of Minnesota, Minneapolis, MN,
USA, 1997.

Edmond Chow and Yousef Saad. Experimental study of ilu preconditioners for
indefinite matrices. J. Comput. Appl. Math., 86(2):387–414, dec 1997. ISSN
0377-0427. doi: 10.1016/S0377-0427(97)00171-4. URL https://doi.org/10.
1016/S0377-0427(97)00171-4.

Edmond Chow and Yousef Saad. Approximate inverse preconditioners via sparse-
sparse iterations. SIAM J. Sci. Comput., 19(3):995–1023, may 1998. ISSN 1064-
8275. doi: 10.1137/S1064827594270415. URL https://doi.org/10.1137/
S1064827594270415.

Andrzej Cichocki and Anh-Huy Phan. Fast local algorithms for large scale non-
negative matrix and tensor factorizations. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences, E92.A(3):708–
721, 2009. doi: 10.1587/transfun.E92.A.708.

The BARS Community. Barsmatch: A benchmark for candidate item match-
ing, 2023. URL https://openbenchmark.github.io/BARS/candidate_
matching/.

Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251–280, 1990. ISSN 0747-
7171. doi: https://doi.org/10.1016/S0747-7171(08)80013-2. URL https://
www.sciencedirect.com/science/article/pii/S0747717108800132. Com-
putational algebraic complexity editorial.

J. D. F. Cosgrove, Dı́az, and A. Griewank. Approximate inverse preconditioning
for sparse linear systems. Int. J. Comput. Math., 44:91–110, 1992.

Timothy A. Davis, John R. Gilbert, Stefan I. Larimore, and Esmond G. Ng.
A column approximate minimum degree ordering algorithm. ACM Trans.
Math. Softw., 30(3):353–376, sep 2004. ISSN 0098-3500. doi: 10.1145/1024074.
1024079. URL https://doi.org/10.1145/1024074.1024079.

Mukund Deshpande and George Karypis. Item-based top-n recommendation al-
gorithms. ACM Trans. Inf. Syst., 22(1):143–177, jan 2004. ISSN 1046-8188. doi:
10.1145/963770.963776. URL https://doi.org/10.1145/963770.963776.

75

https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1391989.1391995
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
https://doi.org/10.1016/S0377-0427(97)00171-4
https://doi.org/10.1016/S0377-0427(97)00171-4
https://doi.org/10.1137/S1064827594270415
https://doi.org/10.1137/S1064827594270415
https://openbenchmark.github.io/BARS/candidate_matching/
https://openbenchmark.github.io/BARS/candidate_matching/
https://www.sciencedirect.com/science/article/pii/S0747717108800132
https://www.sciencedirect.com/science/article/pii/S0747717108800132
https://doi.org/10.1145/1024074.1024079
https://doi.org/10.1145/963770.963776


I. S. Duff, A. M. Erisman, C. W. Gear, and J. K. Reid. Sparsity structure and
Gaussian elimination. ACM SIGNUM Newsletter, 23(2):2–8, 1988.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, 01 2017. ISBN 9780198508380. doi: 10.1093/acprof:
oso/9780198508380.001.0001. URL https://doi.org/10.1093/acprof:oso/
9780198508380.001.0001.

Stanley C. Eisenstat, Martin H. Schultz, and Andrew H. Sherman. Algorithms
and data structures for sparse symmetric gaussian elimination. Siam Journal
on Scientific and Statistical Computing, 2:225–237, 1981.

Howard C. Elman. A stability analysis of incomplete lu factorizations. Mathemat-
ics of Computation, 47(175):191–217, 1986. ISSN 00255718, 10886842. URL
http://www.jstor.org/stable/2008089.

K. Falk. Practical Recommender Systems. Manning, 2019. ISBN 9781617292705.
URL https://www.manning.com/books/practical-recommender-systems.

Massimiliano Ferronato and Giorgio Pini. A supernodal block factorized sparse
approximate inverse for non-symmetric linear systems. Numerical Algorithms,
78(1):333–354, 2018. ISSN 1017-1398. doi: 10.1007/s11075-017-0378-x. URL
https://doi.org/10.1007/s11075-017-0378-x.

Massimiliano Ferronato, Carlo Janna, and Giorgio Pini. A generalized Block FSAI
preconditioner for nonsymmetric linear systems. Journal of Computational and
Applied Mathematics, 256:230–241, 2014. ISSN 0377-0427. doi: 10.1016/j.cam.
2013.07.049. URL https://doi.org/10.1016/j.cam.2013.07.049.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse co-
variance estimation with the graphical lasso. Biostatistics, 9(3):432–441, 12
2007. ISSN 1465-4644. doi: 10.1093/biostatistics/kxm045. URL https:
//doi.org/10.1093/biostatistics/kxm045.

Simon Funk. Netflix update: Try this at home, 2006. URL https://sifter.
org/˜simon/journal/20061211.html.

Cédric Févotte and Jérôme Idier. Algorithms for Nonnegative Matrix Factoriza-
tion with the β-Divergence. Neural Computation, 23(9):2421–2456, 09 2011.
ISSN 0899-7667. doi: 10.1162/NECO a 00168. URL https://doi.org/10.
1162/NECO_a_00168.

John R. Gilbert and Joseph W. H. Liu. Elimination structures for unsymmetric
sparse $lu$ factors. SIAM Journal on Matrix Analysis and Applications, 14
(2):334–352, 1993. doi: 10.1137/0614024. URL https://doi.org/10.1137/
0614024.

G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore and London, fourth edition, 1996.

Marcus J. Grote and Thomas Huckle. Parallel preconditioning with sparse ap-
proximate inverses. SIAM J. Sci. Comput., 18(3):838–853, may 1997. ISSN

76

https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
https://doi.org/10.1093/acprof:oso/9780198508380.001.0001
http://www.jstor.org/stable/2008089
https://www.manning.com/books/practical-recommender-systems
https://doi.org/10.1007/s11075-017-0378-x
https://doi.org/10.1016/j.cam.2013.07.049
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxm045
https://sifter.org/~simon/journal/20061211.html
https://sifter.org/~simon/journal/20061211.html
https://doi.org/10.1162/NECO_a_00168
https://doi.org/10.1162/NECO_a_00168
https://doi.org/10.1137/0614024
https://doi.org/10.1137/0614024


1064-8275. doi: 10.1137/S1064827594276552. URL https://doi.org/10.
1137/S1064827594276552.

Per Christian Hansen. Discrete Inverse Problems. Society for Industrial and
Applied Mathematics, 2010. doi: 10.1137/1.9780898718836. URL https://
epubs.siam.org/doi/abs/10.1137/1.9780898718836.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4), dec 2015. ISSN 2160-6455.
doi: 10.1145/2827872. URL https://doi.org/10.1145/2827872.

Trevor J. Hastie, Rahul Mazumder, J. Lee, and Reza Bosagh Zadeh. Matrix
completion and low-rank svd via fast alternating least squares. Journal of
machine learning research : JMLR, 16:3367–3402, 2014.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. Lightgcn: Simplifying and powering graph convolution network for
recommendation, 2020.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for im-
plicit feedback datasets. In Proceedings of the 2008 Eighth IEEE Interna-
tional Conference on Data Mining, ICDM ’08, page 263–272, USA, 2008. IEEE
Computer Society. ISBN 9780769535029. doi: 10.1109/ICDM.2008.22. URL
https://doi.org/10.1109/ICDM.2008.22.

T. Huckle. Approximate sparsity patterns for the inverse of a matrix and pre-
conditioning. Applied Numerical Mathematics. An IMACS Journal, 30(2-3):
291–303, 1999.

Carlo Janna, Massimilano Ferronato, and Giuseppe Gambolati. A block FSAI-
ILU parallel preconditioner for symmetric positive definite linear systems.
SIAM Journal on Scientific Computing, 32(5):2468–2484, 2010. ISSN 1064-
8275. doi: 10.1137/090779760. URL https://doi.org/10.1137/090779760.

Carlo Janna, Massimilano Ferronato, and Giuseppe Gambolati. Enhanced block
FSAI preconditioning using domain decomposition techniques. SIAM Journal
on Scientific Computing, 35(5):S229–S249, 2013. ISSN 1064-8275. doi: 10.
1137/120880860. URL https://doi.org/10.1137/120880860.

Carlo Janna, Massimiliano Ferronato, and Giuseppe Gambolati. The use of su-
pernodes in factored sparse approximate inverse preconditioning. SIAM Jour-
nal on Scientific Computing, 37(1):C72–C94, 2015a. ISSN 1064-8275. doi:
10.1137/140956026. URL https://doi.org/10.1137/140956026.

Carlo Janna, Massimiliano Ferronato, Flavio Sartoretto, and Giuseppe Gam-
bolati. FSAIPACK: a software package for high-performance factored sparse
approximate inverse preconditioning. Association for Computing Machinery.
Transactions on Mathematical Software, 41(2):Art. 10, 1–26, 2015b. ISSN 0098-
3500. doi: 10.1145/2629475. URL https://doi.org/10.1145/2629475.

Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich.
Knowledge-based recommendation, page 81–123. Cambridge University Press,
2010. doi: 10.1017/CBO9780511763113.006.

77

https://doi.org/10.1137/S1064827594276552
https://doi.org/10.1137/S1064827594276552
https://epubs.siam.org/doi/abs/10.1137/1.9780898718836
https://epubs.siam.org/doi/abs/10.1137/1.9780898718836
https://doi.org/10.1145/2827872
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1137/090779760
https://doi.org/10.1137/120880860
https://doi.org/10.1137/140956026
https://doi.org/10.1145/2629475


A. Jennings. A compact storage scheme for the solution of symmetric linear
simultaneous equations. Computing J., 9:281–285, 1966.

M. T. Jones and P. E. Plassmann. An improved incomplete Cholesky factoriza-
tion. ACM Transactions on Mathematical Software, 21(1):5–17, 1995.

James M. Joyce. Kullback-Leibler Divergence, pages 720–722. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-04898-2.
doi: 10.1007/978-3-642-04898-2 327. URL https://doi.org/10.1007/
978-3-642-04898-2_327.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):
359–392, 1998. doi: 10.1137/S1064827595287997. URL https://doi.org/10.
1137/S1064827595287997.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse
preconditionings i. theory. SIAM Journal on Matrix Analysis and Applications,
14(1):45–58, 1993. doi: 10.1137/0614004. URL https://doi.org/10.1137/
0614004.

L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate in-
verse preconditioning ii: Solution of 3d fe systems on massively parallel
computers. International Journal of High Speed Computing, 07(02):191–215,
1995. doi: 10.1142/S0129053395000117. URL https://doi.org/10.1142/
S0129053395000117.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8):30–37, aug 2009. ISSN 0018-9162.
doi: 10.1109/MC.2009.263. URL https://doi.org/10.1109/MC.2009.263.

Solomon Kullback and R. A. Leibler. On information and sufficiency. Annals of
Mathematical Statistics, 22:79–86, 1951.

Yann LeCun. Modeles connexionnistes de l’apprentissage (connectionist learning
models). PhD thesis, Universite P. et M. Curie (Paris 6), 1987.

Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. Vari-
ational autoencoders for collaborative filtering. In Proceedings of the 2018
World Wide Web Conference, WWW ’18, page 689–698, Republic and Can-
ton of Geneva, CHE, 2018. International World Wide Web Conferences Steer-
ing Committee. ISBN 9781450356398. doi: 10.1145/3178876.3186150. URL
https://doi.org/10.1145/3178876.3186150.

J. Liesen and Z. Strakoš. Krylov Subspace Methods: Principles and Analysis.
Numerical Mathematics and Scientific Computation. OUP Oxford, 2012. ISBN
9780191630323.

Chih-Jen Lin and Jorge J. Moré. Incomplete cholesky factorizations with limited
memory. SIAM J. Sci. Comput., 21:24–45, 1999.

78

https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/0614004
https://doi.org/10.1137/0614004
https://doi.org/10.1142/S0129053395000117
https://doi.org/10.1142/S0129053395000117
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/3178876.3186150


Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized nested
dissection. SIAM Journal on Numerical Analysis, 16(2):346–358, 1979. doi:
10.1137/0716027. URL https://doi.org/10.1137/0716027.

Joseph W. Liu. A compact row storage scheme for cholesky factors using elimina-
tion trees. ACM Trans. Math. Softw., 12(2):127–148, jun 1986. ISSN 0098-3500.
doi: 10.1145/6497.6499. URL https://doi.org/10.1145/6497.6499.

Joseph W. H. Liu. Reordering sparse matrices for parallel elimination. Par-
allel Computing, 11(1):73–91, 1989. ISSN 0167-8191. doi: https://doi.
org/10.1016/0167-8191(89)90064-1. URL https://www.sciencedirect.com/
science/article/pii/0167819189900641.

Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.
Ultragcn: Ultra simplification of graph convolutional networks for recommen-
dation. In Proceedings of the 30th ACM International Conference on Infor-
mation & Knowledge Management, CIKM ’21, page 1253–1262, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384469.
doi: 10.1145/3459637.3482291. URL https://doi.org/10.1145/3459637.
3482291.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations
using distantly-labeled reviews and fine-grained aspects. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 188–197, Hong Kong, China, November 2019. As-
sociation for Computational Linguistics. doi: 10.18653/v1/D19-1018. URL
https://aclanthology.org/D19-1018.

Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recom-
mender systems. In Proceedings of the 2011 IEEE 11th International Con-
ference on Data Mining, ICDM ’11, page 497–506, USA, 2011. IEEE Com-
puter Society. ISBN 9780769544083. doi: 10.1109/ICDM.2011.134. URL
https://doi.org/10.1109/ICDM.2011.134.

H. C. Pinkham. Linear Algebra. Springer, 2015. URL https://www.math.
columbia.edu/˜pinkham/HCP_LinearAlgebra.pdf.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: an open architecture for collaborative filtering of netnews.
In Conference on Computer Supported Cooperative Work, 1994.

F. Ricci, L. Rokach, and B. Shapira. Recommender Systems Handbook. Springer
US, 2022. ISBN 9781071621974. URL https://link.springer.com/book/
10.1007/978-1-0716-2197-4.

Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical
Report 90–20, Research Institute for Advanced Computer Science, NASA Ames
Research Center, Moffet Field, CA, 1990.

79

https://doi.org/10.1137/0716027
https://doi.org/10.1145/6497.6499
https://www.sciencedirect.com/science/article/pii/0167819189900641
https://www.sciencedirect.com/science/article/pii/0167819189900641
https://doi.org/10.1145/3459637.3482291
https://doi.org/10.1145/3459637.3482291
https://aclanthology.org/D19-1018
https://doi.org/10.1109/ICDM.2011.134
https://www.math.columbia.edu/~pinkham/HCP_LinearAlgebra.pdf
https://www.math.columbia.edu/~pinkham/HCP_LinearAlgebra.pdf
https://link.springer.com/book/10.1007/978-1-0716-2197-4
https://link.springer.com/book/10.1007/978-1-0716-2197-4


Y. Saad. Preconditioned Krylov subspace methods for CFD applications. In
W. G. Habashi, editor, Solution Techniques for large-scale CFD Problems,
pages 141–157. J. Wiley and sons, 1995.

Y. Saad. Iterative Methods for Sparse Linear Systems. Computer Science Series.
PWS Publishing Company, 1996. ISBN 9780534947767.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
International Conference on World Wide Web, WWW ’01, page 285–295,
New York, NY, USA, 2001. Association for Computing Machinery. ISBN
1581133480. doi: 10.1145/371920.372071. URL https://doi.org/10.1145/
371920.372071.

G. Schulz. Iterative Berechnung der reziproken Matrix. ZAMM, 13:57–59, 1933.

Jennifer Scott and Miroslav Tůma. Algorithms for Sparse Linear Systems.
Springer, first edition, 2023. URL https://link.springer.com/book/10.
1007/978-3-031-25820-6.

Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I.
Nikolenko. Recvae: A new variational autoencoder for top-n recommendations
with implicit feedback. In Proceedings of the 13th International Conference on
Web Search and Data Mining, WSDM ’20, page 528–536, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450368223. doi: 10.
1145/3336191.3371831. URL https://doi.org/10.1145/3336191.3371831.

Barry F. Smith, Petter E. Bjorstad, and William D. Gropp. Domain decomposi-
tion. Cambridge University Press, Cambridge, UK, 1996. ISBN 0-521-49589-X.
Parallel multilevel methods for elliptic partial differential equations.

Martin Spǐsák, Radek Bartyzal, Antońın Hoskovec, Ladislav Peška, and Miroslav
Tůma. Scalable approximate nonsymmetric autoencoder for collaborative fil-
tering. In Proceedings of the 17th ACM Conference on Recommender Systems,
RecSys ’23, New York, NY, USA, 2023. Association for Computing Machinery.
To appear.

Harald Steck. Embarrassingly shallow autoencoders for sparse data. In The World
Wide Web Conference, WWW ’19, page 3251–3257, New York, NY, USA,
2019a. Association for Computing Machinery. ISBN 9781450366748. doi: 10.
1145/3308558.3313710. URL https://doi.org/10.1145/3308558.3313710.

Harald Steck. Markov random fields for collaborative filtering. In Proceedings of
the 33rd International Conference on Neural Information Processing Systems,
Red Hook, NY, USA, 2019b. Curran Associates Inc.

Harald Steck. Collaborative filtering via high-dimensional regression, 2019c.

Harald Steck and Dawen Liang. Negative interactions for improved collaborative
filtering: Don’t go deeper, go higher. In Proceedings of the 15th ACM Confer-
ence on Recommender Systems, RecSys ’21, page 34–43, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450384582. doi: 10.
1145/3460231.3474273. URL https://doi.org/10.1145/3460231.3474273.

80

https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
https://link.springer.com/book/10.1007/978-3-031-25820-6
https://link.springer.com/book/10.1007/978-3-031-25820-6
https://doi.org/10.1145/3336191.3371831
https://doi.org/10.1145/3308558.3313710
https://doi.org/10.1145/3460231.3474273


A.C.N. van Duin and H. Wijshoff. Scalable parallel preconditioning with the
sparse approximate inverse of triangular systems. Preprint, 1996.

Vojtěch Vančura, Rodrigo Alves, Petr Kasalický, and Pavel Kord́ık. Scalable
linear shallow autoencoder for collaborative filtering. In Proceedings of the
16th ACM Conference on Recommender Systems, RecSys ’22, page 604–609,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392785. doi: 10.1145/3523227.3551482. URL https://doi.org/10.
1145/3523227.3551482.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henrik-
sen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural
graph collaborative filtering. In Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR’19, page 165–174, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450361729. doi: 10.1145/3331184.3331267. URL
https://doi.org/10.1145/3331184.3331267.

Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. Collaborative
denoising auto-encoders for top-n recommender systems. In Proceedings of the
Ninth ACM International Conference on Web Search and Data Mining, WSDM
’16, page 153–162, New York, NY, USA, 2016. Association for Computing
Machinery. ISBN 9781450337168. doi: 10.1145/2835776.2835837. URL https:
//doi.org/10.1145/2835776.2835837.

Zygmunt Zajac. Goodbooks-10k: a new dataset for book recommendations.
http://fastml.com/goodbooks-10k, 2017.

Junhai Zhai, Sufang Zhang, Junfen Chen, and Qiang He. Autoencoder and its
various variants. In 2018 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pages 415–419, 2018. doi: 10.1109/SMC.2018.00080.

81

https://doi.org/10.1145/3523227.3551482
https://doi.org/10.1145/3523227.3551482
https://doi.org/10.1145/3331184.3331267
https://doi.org/10.1145/2835776.2835837
https://doi.org/10.1145/2835776.2835837
http://fastml.com/goodbooks-10k


List of Figures

1.1 Example of a user-item rating/interaction matrix. (Falk [2019]) . 10
1.2 An example bipartite graph GX of user-item feedback. . . . . . . . 11
1.3 Item-item relation graph GI obtained from GX . . . . . . . . . . . . 11
1.4 User-based neighborhood-based filtering. (Falk [2019]) . . . . . . 13
1.5 Autoencoder architecture. (Bank et al. [2021]) . . . . . . . . . . . 16

3.1 Aggregation through chains of users. . . . . . . . . . . . . . . . . 27

5.1 Architecture of sansa. (Spǐsák et al. [2023]) . . . . . . . . . . . . 49
5.2 Change of elimination tree with symmetric permutation. . . . . . 51

6.1 Comparison of data splitting approaches. . . . . . . . . . . . . . . 61
6.2 Accuracy of sansa (cholmod) on MSD after various numbers of

training scans s and finetune steps f . (Spǐsák et al. [2023]) . . . . 68
6.3 Comparison of time and memory usage of sansa (icf) versus mrf

on Amazon Books. (Spǐsák et al. [2023]) . . . . . . . . . . . . . . 70

A.1 An illustration of a sparse matrix A with a symmetric sparsity
pattern and its elimination tree T . (Scott and Tůma [2023]) . . . 86

82



List of Tables

6.1 Attributes of training splits. . . . . . . . . . . . . . . . . . . . . . 62
6.2 Recommendation accuracy on small, dense datasets. . . . . . . . . 65
6.3 Performance comparison on medium-sized, dense MSD dataset. . 67
6.4 State-of-the-art accuracy and scalability of sansa (icf). (Spǐsák

et al. [2023]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

83



List of Abbreviations
RS recommender system

CF collaborative filtering

SVD singular value decomposition

TSVD truncated singular value decomposition

ALS Alternating Least Squares

NMF Non-negative Matrix Factorization

VAE variational autoencoder

COO COOrdinate format

CSR Compressed Sparse Row format

CSC Compressed Sparse Column format

SPD symmetric positive definite

ICF incomplete Cholesky factorization

MR Minimal Residual algorithm

AIB Approximate Inverse by Bordering

UMR Uniform Minimal Residual algorithm

FLOPs floating-point operations

SIMD single instruction multiple data

DCG discounted cumulative gain

IDCG ideal discounted cumulative gain

nDCG normalized discounted cumulative gain

ML-20M MovieLens 20M

MSD Million Song Dataset

84



A. Appendix

A.1 Elimination tree of sparse Cholesky factor-
ization

A fundamental difference between dense and sparse Cholesky factorizations is
that, in the latter, each column of the Cholesky factor L depends on only a
subset of the previous columns. By uncovering these dependencies, the symbolic
phase of the sparse Cholesky factorization is Thoroughout the section, A ∈ Rn×n

is an SPD matrix and L is its Cholesky factor.

A.1.1 Elimination tree
Let parent(j) denote the row index of the first subdiagonal nonzero entry in the
j-th column of L, i.e.,

parent(j) = min{i | i > j and Li,j ̸= 0}.

Denoting I the set of column indices of A, the function parent can be used to
define a directed acyclic graph

T = (I, {(i, parent(i)) | i ∈ I}) .

The graph T is called the elimination tree of A. Despite the terminology, the
elimination tree need not be connected and generally is a forest. Let us assume
that T is connected. Then, the last column of the factorized matrix does not have
a parent and is the root of the elimination tree. Columns with no descendants
(i.e., i ∈ I such that ∄j ∈ I : i = parent(j)) are the leafs of the elimination tree.
An example of a matrix and its elimination tree is shown in Figure A.1. In the
usual manner, directional arrows are omitted from the tree plot.

For details on the efficient construction of the elimination tree and its uses
and implications, see Chapter 4 in the book by Scott and Tůma [2023].

A.1.2 Order of elimination and tree parallelism
The elimination tree captures the sparse elimination dependencies in the Cholesky
factorization of A and, most crucially, determines the order in which the factor-
ization must proceed. The i-th column can be processed only when all its de-
scendants have been processed. On the other hand, disjoint column sequences
- prefixes of paths from leaves of the elimination tree to the root with disjoint
vertex sets - can be computed separately during the factorization process.

In this way, the elimination tree of A determines the possibilities for tree
parallelism during factorization. The elimination tree should ideally be as ”wide”
as possible.

A.1.3 Column replication principle
The column replication principle states that if Li,j ̸= 0 for i > j, then the
subdiagonal part of the i-th column of L has nonzero entries in the positions of

85



Figure A.1: An illustration of a sparse matrix A with a symmetric sparsity pattern
and its elimination tree T . The root vertex is 8. The filled entries in S(L + LT )
are denoted by f . (Scott and Tůma [2023])

nonzero entries in the j-th column of L (and possibly some other positions, too):

S(Li:n,j) ⊆ S(Li:n,i).

A.1.4 Equivalent condition for existence of a fill-in entry
Together with the column replication principle, the elimination tree reveals how
fill-in propagates into the constructed factor. For a new fill-in entry to appear at
a given position in the factor L, there needs to exist a nonzero entry in the same
row of L in some previous column. Moreover, since parent(j) denotes the first
column of L to which the nonzero pattern of L:,j is replicated, column replication
follows the paths from leaf vertices to the root in the elimination tree. Finally,
it holds for leaf vertices i that S(L:,i) = S(A:,i). We have briefly summarized
observations leading to the following theorem.

Theorem A.1 (Equivalent condition for existence of a fill-in entry (Liu [1986])).
Let A ∈ Rn×n be SPD, and let L be its Cholesky factor. If Ai,j = 0 for some
1 ≤ j < i ≤ n, then a filled entry Li,j ̸= 0 exist if and only if there exist k < j
and t ≥ 1 such that Ai,k ̸= 0 and j = parentt(k).1

Proof. See Liu [1986], Theorem 2.4.

Therefore, any new fill-in entry in L:,j originates in some descendant of vertex
j in the elimination tree. More precisely, the possible fill-in in Li,j originates in
the leaf descendants of the i-th row subtree and is propagated toward the root
until it reaches vertex j (see, e.g., Scott and Tůma [2023], Section 4.2). At that
point, the entry Li,j is filled, and the fill-in propagates to further ascendants.

Observations stated here can be generalized for sparse LU factorization, al-
though the non-symmetric case is more complicated. Refer to the book by Scott
and Tůma [2023] and classical texts by Duff et al. [1988] and Gilbert and Liu
[1993] for detailed explanation of the symbolic phase of sparse Cholesky (and
LU) factorization and its relation to directed acyclic graphs.

1parentt denotes the composition of t parent mappings.

86



A.2 Supporting arguments for the choice of ini-
tial guess

A.2.1 When the factor to-be-inverted is sparse
The iteration step

X(1) = 2I − A.

(see also Formula (5.1)) exactly inverts matrices A = I +N , where N is a strictly
(lower, or upper) triangular matrix satisfying N2 = 0, since

(I + N)(I −N) = I −N2 = I

by the assumption. When ˆ︁L is sparse, few subdiagonal entries of ˆ︁L exist and
are mostly small in magnitude. Hence, the subdiagonal part of ˆ︁L (denoted N)
satisfies N2 ≈ 0.

A.2.2 Column elimination matrices and elimination tree
The initial guess is also closely linked to column elimination matrices and their in-
verses. The process of Gaussian elimination of a matrix A = LU can be expressed
using the column elimination matrices E1, E2 . . . , En

2 as

EnEn−1 · · ·E1A = U,

see, e.g., Golub and Van Loan [1996]. The elimination process is captured in the
columns of the lower triangular factor L, which at the same time satisfies

L = E−1
1 E−1

2 · · ·E−1
n .

All elimination matrices Ek are unit lower triangular. Furthermore, all non-
diagonal nonzeros reside in the subdiagonal part of the k-th column. It follows
that (Ek − I)2 = 0 and the iteration step (5.1) computes the exact inverse for
A = Ek (take N = Ek − I in A.2.1).

Let us express the j-th column of L−1 using the elimination matrices:

(L−1):,j = (EnEn−1 · · ·E1):,j

= (EnEn−1 · · ·E2)(E1):,j

= (EnEn−1 · · ·E2)I:,j

= (EnEn−1 · · ·E2):,j
...

= (EnEn−1 · · ·Ej):,j

= (EnEn−1 · · ·Ej+1)(Ej):,j (A.1)

Examining the above expression, we see that

(L−1):,n = (En):,n = I:,n = (2I − L):,n

2We set En = I since no elimination is needed for the final column of A.

87



(since En = I), and

(L−1):,n−1 = (EnEn−1):,n−1 = (En−1):,n−1 = (2I − E−1
n−1):,n−1 = (2I − L):,n−1,

where we used the fact that L:,j = (E−1
j ):,j for all j ∈ {1, . . . , n}. In other words,

the iteration step (5.1) correctly computes the final two columns of L−1. As
explained below, if A is sparse, even more columns can be inverted correctly.

The expression (A.1) reveals that values in the j-th column of L−1 are based
on the values in the j-th column of the elimination matrix Ej. However, later po-
sitions in the j-th column recursively depend on prior positions since, for instance,
the l-th row of Ej+1Ej is the linear combination of rows of Ej with coefficients in
the l-th row of Ej+1. This linear combination always contains the l-th row of Ej

with coefficient 1, and if l > j + 1 and (Ej+1)l,j+1 ̸= 0, then the linear combina-
tion also includes the (j + 1)-st row of Ej with a nonzero coefficient (Ej+1)l,j+1.
In other words, the multiplication by Ej+1 modifies the positions j + 2, . . . n in
(Ej):,j by adding a (Ej)j+1,j-multiple of (Ej+1)j+2:,j+1, written formally,

(Ej+1Ej):,j = (Ej):,j + (Ej)j+1,j ·
(︂
(Ej+1):,j+1 − I:,j+1

)︂
. (A.2)

The multiplication by Ej+2 modifies the positions j + 3, . . . n in (Ej+1Ej):,j and
so on.

When (Ej)j+1,j = 0, Equation (A.2) yields

(Ej+1Ej):,j = (Ej):,j. (A.3)

Moreover, similarly to (A.2) we may express

(Ej+2(Ej+1Ej)):,j = (Ej+1Ej):,j + (Ej+1Ej)j+2,j ·
(︂
(Ej+2):,j+2 − I:,j+2

)︂
,

and if (Ej)j+1,j = 0, Equation (A.3) gives us

(Ej+2Ej):,j = (Ej+2(Ej+1Ej)):,j = (Ej):,j + (Ej)j+2,j ·
(︂
(Ej+2):,j+2 − I:,j+2

)︂
.

By induction, it, therefore, follows that

if (Ej)i,j = 0 for all i = {j + 1, . . . , k}, j ≤ k < n and (Ej)k+1,j ̸= 0, (A.4)

then
(Ek+1Ek · · ·Ej+1Ej):,j = (Ek+1Ej):,j. (A.5)

Consequently, if A is sparse, its elimination matrices do not affect all subse-
quent columns. In the simple case when A is SPD, the condition (A.4) means
that k + 1 is the parent of j in the elimination tree (parent(j) = k + 1; see
Appendix A.1). If k > j is not an ancestor of j, sparsity patterns of (Ek)k:,k and
(Ej)k,j do not overlap, therefore hence

(EkEj):,j = (Ej):,j.
3 (A.6)

3The equality can be proven analogously to (A.2)

88



Finally, denoting parent(j), parent2(j),. . . parentt(j) all ancestors of j, the tele-
scopic property (A.5) together with (A.6) gives us

(L−1):,j = (EnEn−1 · · ·E1):,j

= (EnEn−1 · · ·Ej):,j

= (Eparentt(j)Eparentt−1(j) · · ·Eparent(j)Ej):,j, (A.7)

In particular, it follows from (A.7) that if parent(j) = n, then

(L−1):,j = (EnEj):,j = (Ej):,j = (2I − E−1
j ):,j = (2I − L):,j, (A.8)

i.e., every direct descendant of the root column is inverted correctly by the iteration
step (5.1). Indirect descendants j of the root column are only affected by their
ancestors. The affected positions of (Ej):,j are exactly the union of subdiagonal
nonzero entries of the ancestors, which can be expressed as

t⋃︂
i=1

(︄
{parenti(j) + 1, . . . n} ∪ S

(︂
(Eparenti(j)):,parenti(j)

)︂)︄
.

To conclude, if the elimination tree of A is wide and shallow, many of the columns
of L−1 are inverted correctly or with only a few incorrect positions. This assump-
tion on the structure of the elimination tree is likely satisfied when the factor
L is very sparse. Additionally, a suitable choice of reordering should help; some
reordering algorithms aim at constructing the elimination tree as wide as possible
(refer to, e.g., the article by Liu [1989]).

89



A.3 Repository
The repository is available at https://github.com/matospiso/sansa. It con-
tains all model codes, codes of the experiment pipeline (dataset preprocessing,
splitting, running model training, and evaluation), and experiment scripts. It
also includes all experimental results and complete logs for each experiment. The
README file also includes instructions on how to run the experiments to replicate
our results.

A.3.1 File organization
The root directory contains five folders:

1. datasets: Contains Python modules for loading and preprocessing individ-
ual datasets (amazonbook.py, goodbooks10.py, movielens20.py, msd.py,
netflix.py), the abstract base class for all datasets (dataset.py), and a
module for creating dataset splits (split.py). Additionally, dataset files
should be stored inside datasets/data; see Section A.3.2.

2. evaluation: Includes logging (logs.py), metrics definitions (metrics.py),
and evaluation functions (evaluate.py). The experiment pipeline is de-
fined in pipeline.py, with pipeline steps (used in logging) defined in
steps.py.

3. experiments: Contains subfolders for three experiments: accuracy – test
recommendation accuracy (and measure training time), memory – test mem-
ory requirements, and shorter training – test accuracy of various early
checkpoints of sansa, and one mock experiment: sandbox.
Each experiment folder contains subfolders for all datasets on which we ran
the experiment, and inside each dataset’s subfolder are experiment scripts
named run experiment{ optional specifiers}.py. Moreover, the sub-
folders contain information about the AWS instance used to conduct the
experiment, complete console logs, and experiment results stored as json
in the results subfolder. Lastly, the datasets’ subfolders contain Jupyter
notebooks for result inspection.

4. models: Includes the abstract base class for all models (model.py) and im-
plementations of easer (ease.py), mrf (mrf.py), and sansa (sansa.py).

5. sparseinv: The implementations of mathematical computations used for
training. The LDLT decomposition of P (XT X + λI)P T using ICF and
CHOLMOD (Chen et al. [2008]) is defined ldlt.py, a separate implementa-
tion of ICF is in icf.py. The implementation of UMR and the approximate
inversion function is in ainv.py. This folder also includes utility functions
necessary for efficient implementation (in utils.py) and a hotfix enabling
multi-threaded sparse matrix multiplication (unsupported in vanilla SciPy)
in matmat.py.

90

https://github.com/matospiso/sansa


A.3.2 Setup
The setup steps necessary to reproduce the experiment results are 1. downloading
the datasets and 2. setting up a virtual environment with necessary packages.

Datasets

Five datasets are available for experiments:

1. goodbooks10: Goodbooks-10k dataset4.

2. movielens20: MovieLens 20M dataset 5.

3. msd: Million Song Dataset 6.

4. netflix: Netflix Prize dataset 7.

5. amazonbook: Amazon Books dataset 8.

The dataset files should be located inside datasets/data/{dataset name}.

Setting up a virtual environment using Conda

Below we provide instructions on how to install necessary packages inside a virtual
environment using Conda9. Updating the Conda installation before installation
is recommended:

conda update -n base -c conda-forge conda

There are two possible ways to set up the virtual environment:

1. Recommended Intel optimized (but also works on AMD).

conda create -n sansa python==3.10.9
conda activate sansa

conda install -c intel numpy==1.22.3 scipy==1.7.3
conda install -c conda-forge suitesparse==5.10.1 \

scikit-sparse==0.4.8

pip install sparse-dot-mkl==0.8.3 black==23.3.0 numba==0.57.0 \
memory-profiler==0.61.0 pandas==2.0.1 scikit-learn==1.2.2 \
fastparquet==2023.4.0 matplotlib==3.7.1 jupyter==1.0.0

4https://github.com/zygmuntz/goodbooks-10k
5https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset
6https://www.kaggle.com/competitions/msdchallenge/data
7https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
8https://github.com/kuandeng/LightGCN/tree/master/Data/amazon-book
9https://docs.conda.io/en/latest/

91

https://github.com/zygmuntz/goodbooks-10k
https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset
https://www.kaggle.com/competitions/msdchallenge/data
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
https://github.com/kuandeng/LightGCN/tree/master/Data/amazon-book
https://docs.conda.io/en/latest/


2. Compatibility mode Works on Apple Silicon. Works when MKL10 is not
available.

conda create -n sansa-nomkl python==3.10.9
conda activate sansa-nomkl

conda install -c conda-forge suitesparse==5.10.1 \
scikit-sparse==0.4.8

pip install numpy==1.22.3 scipy==1.7.3 black==23.3.0 \
numba==0.57.0 memory-profiler==0.61.0 pandas==2.0.1 \
scikit-learn==1.2.2 fastparquet==2023.4.0 matplotlib==3.7.1 \
jupyter==1.0.0

A.3.3 Reproducing the results
1. Download the datasets and store them in the datasets/data folder.

2. Set up a virtual environment using the instructions above.

3. Inside the virtual environment, run experiments from the root directory:

python experiments/{experiment_name}/{dataset_name}/\
run_experiment{_optional_specifiers}.py

The experiment results are stored in json files inside

experiments/{experiment_name}/{dataset_name}/results

Each results file also contains information about the dataset and model config
used in the experiment. The results can be inspected in Jupyter notebooks:

experiments/{experiment_name}/{dataset_name}/results_summary.ipynb

10https://www.intel.com/content/www/us/en/docs/onemkl/get-started-guide/
2023-0/overview.html

92

https://www.intel.com/content/www/us/en/docs/onemkl/get-started-guide/2023-0/overview.html
https://www.intel.com/content/www/us/en/docs/onemkl/get-started-guide/2023-0/overview.html

	Introduction
	Personalized recommendation via collaborative filtering
	Overview of recommender systems
	Objectives of recommendation
	Applications and challenges

	Collaborative filtering
	User-item interaction data
	Relation to graphs

	Algorithms for collaborative filtering
	Neighborhood-based approaches
	Model-based approaches


	Sparse matrices
	Definitions
	Storage formats
	Operations with sparse matrices
	Efficient multiplication


	Embarrassingly Shallow Autoencoder
	Model definition
	Closed-form solution
	Properties of weights

	Model training
	Interpretation and advantages
	Similarity through user chains

	Expensive scaling
	Improvements


	Sparse approximate inverse
	Motivation
	Frobenius norm minimization methods
	When sparsity pattern is known
	Adaptive strategies

	Factorized sparse approximate inverse
	FSAI method
	Incomplete biconjugation
	Bordering approach

	Inverse incomplete factorization techniques
	Comparison of approaches
	Frobenius norm minimization methods
	Factorized sparse approximate inverse
	Inverse incomplete factorization techniques


	Enhancing scalability of Embarrassingly Shallow Autoencoder
	Method selection
	Properties of the problem
	Selected approach

	Model definition
	Optimization objective
	Architecture

	Model training
	Sparse (and approximate) Cholesky factorization
	Choice of initial guess
	Uniform Minimal Residual algorithm
	Training procedure

	Implementation

	Experiments
	Datasets
	Splits

	Metrics
	Baselines
	Results
	Robustness on small, dense datasets
	Robustness and efficiency on medium-sized, dense dataset
	Trading accuracy for shorter training
	Extreme scalability


	Conclusion
	Future work

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Appendix
	Elimination tree of sparse Cholesky factorization
	Elimination tree
	Order of elimination and tree parallelism
	Column replication principle
	Equivalent condition for existence of a fill-in entry

	Supporting arguments for the choice of initial guess
	When the factor to-be-inverted is sparse
	Column elimination matrices and elimination tree

	Repository
	File organization
	Setup
	Reproducing the results



