
BACHELOR THESIS

Kateřina Vokálová

Node-attributed community detection

Computer Science Institute of Charles University

Supervisor of the bachelor thesis: Ing. David Hartman, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor Ing. David Hartman, Ph.D. for the consul-
tations and interesting discussions about community detection. The next thanks
are written in the native language of my family. Děkuji rodině za podporu v
pr̊uběhu psańı a obecně při studiu. I also thank Borek Požár for the proofread-
ing, grammatical corrections and support during the final month before the thesis
submission. Thanks to Aneta Pokorná for the last-minute consultations of the
results. The last thanks are to my friend Andrej Farkaš for motivating me to
start writing; this work would not have been written this year without him.

ii

Title: Node-attributed community detection

Author: Kateřina Vokálová

Institute: Computer Science Institute of Charles University

Supervisor: Ing. David Hartman, Ph.D., Computer Science Institute of Charles
University

Abstract: Complex systems surround us in our everyday lives and their under-
standing can bring crucial insights into many fields. These systems consist of
components (also known as communities) tied together. This thesis focuses on
community detection in node-attributed networks, which are networks with some
extra information about nodes.

At first, we introduced the necessary terminology and provided an overview of
node-attributed benchmarks used for testing. Then we studied the setting of
the benchmark and algorithm parameters and discussed the obtained results.
The analysis was made on synthetic networks and focused on the impact of the
benchmark and algorithm parameters on the results, which we then discussed.
In particular, we have found that the algorithms are less influenced by mixing
parameter when the size of the network is bigger. We also confirmed our ex-
pectation, that results will be negatively influenced by higher mixing and noise
parameters.

Keywords: complex networks, community detection, node-attributed graphs

iii

Contents

Introduction 3

1 Community detection 4
1.1 Communities . 5
1.2 Community sizes and power-law distribution 6

1.2.1 Power-law distribution and scale-free networks 6
1.2.2 Community size distribution 7

1.3 Node-attributed graphs . 8
1.4 Fusion methods and algorithms 9

2 Comparing algorithms 11
2.1 Graphs and graph models . 11

2.1.1 Girwan-Newman benchmark 12
2.1.2 LFR benchmark . 12
2.1.3 acMark . 12
2.1.4 X-Mark . 13
2.1.5 Other benchmarks and methods 13

2.2 Result evaluation . 14
2.2.1 Adjusted Rand Index . 14
2.2.2 Normalised Mutual Information 15

2.3 Related works . 15

3 Comparison analysis 17
3.1 Benchmarks and algorithms . 17

3.1.1 Algorithms . 17
3.1.2 Evaluation metric . 19

3.2 Parameters . 19
3.2.1 X-Mark parameters . 20
3.2.2 Fusing algorithms parameters 22
3.2.3 Clustering algorithms parameters 22
3.2.4 Simultaneous fusion algorithm parameters 23

3.3 Running time of algorithms . 24
3.4 Encountered problems . 24

4 Results 27
4.1 Early fusion methods . 28

4.1.1 Node path similarity . 28
4.1.2 Node attribute similarity 32
4.1.3 Mixed similarity . 42
4.1.4 Comparison of NAS, NPS and MS 49

4.2 Simultaneous fusion methods . 57
4.3 Discussion . 57

4.3.1 Mixing parameter and noise parameter impact 57
4.3.2 Summary . 60

Conclusion 61

1

Bibliography 63

List of Figures 72

List of Tables 73

List of Abbreviations 74

A Attachments 75
A.1 First Attachment . 75

2

Introduction
Complex systems can be found all around us – relationships in society such as
families or friendships, online communities on the Internet, communications in-
frastructure, protein-protein interactions, internet pages and their interconnect-
edness, functional modules in metabolic networks or activity of neurons in our
brains ([6], [32]). The term complex systems originates from the observation that
these systems cannot be studied separately by studying the system’s components
– these systems must be considered to be one complex component and studied
accordingly ([6]). To study complex systems, we usually work with the complex
systems in the form of complex networks.

Social networks are often mentioned in connection with the complex systems.
On these networks, it can be easily seen that complex systems can consist of
some densely connected parts. In the case of social networks, the parts can be
groups of friends, families, etc. Inspired by the social groups, these parts are
called communities. If we want to understand some complex network, it can be
useful to uncover its community structure, bringing us more profound network
knowledge.

This work focuses on finding the communities in networks with some extra
information about nodes. These networks are called node-attributed networks.
Having a social network, we could have information about the places the people
like or the sports clubs they visit. In the first chapter, we will introduce com-
munity detection and present some essential terminology regarding networks in
general, communities and node-attributed networks. Afterwards, we also present
the division of algorithms into early fusion, late fusion and simultaneous fusion
methods, which is helpful for the latter comparison analysis.

As community detection began to be the focus of more scientists, numer-
ous community detection algorithms started to appear. It became necessary to
distinguish the algorithms according to their accuracy, memory requirements or
computation time. The second chapter describes the tools usually used when
comparing the algorithms, mainly the graphs and graph models used in compar-
ative studies and the metrics used for the evaluation of the algorithm results.
The last part of the second chapter presents an overview of works related to the
community detection algorithms comparison.

In the last two chapters, we carry out a comparison analysis of the algorithms
used for community detection in node-attributed graphs. The third chapter in-
troduces the benchmarks and algorithms we use, together with the values of their
parameters. We also show some problems encountered during the algorithm anal-
ysis. The fourth chapter is devoted to the presentation of the obtained results and
to the discussion of the results. We mainly discuss the influence of the benchmark
parameters on the algorithms’ results.

3

1. Community detection
The community detection problem probably developed around the 1960s from
a problem known as grouping problem or graph partitioning. The goal of the
grouping algorithms is to divide a large number of objects or persons into smaller
mutually exclusive and collectively exhaustive groups with the condition that the
members of each group are as similar as possible ([30], [87]). On the other hand,
the graph partitioning problem focuses on partitioning the nodes of a weighted
graph into some subsets of given sizes such that the weight of the edges among
the subsets is minimal. The real-world use of the solution is, for example, in
assigning the components of electronic circuits to circuit boards to minimise the
number of connections between boards ([32]). Kernighan and Lin [46] worked
on this problem with exceedingly good results – the Kernighan-Lin algorithm is
one of the simplest and most frequently used algorithms for graph partitioning.
According to Newman and Girvan [62] and Newman [61] (Section 11.4), the
Kernighan-Lin algorithm is one of the best algorithms. However, Fortunato [32]
suggests combining it with other techniques to improve its accuracy.

However, a significant difference exists between graph partitioning and com-
munity detection. The graph partitioning algorithms expect that the number
of subgraphs/partitions is being decided a priori and that their sizes (in terms
of the number of nodes) are equal. Some algorithms, such as Kernighan-Lin or
Huff algorithm ([43], based on Kernighan-Lin), provide an option to partition
into unequal-sized sets of nodes. On the contrary, community detection focuses
on discovering the native community structure of the network (in this work, we
consider graph and network synonyms, see Section 1.1). Therefore, the number
of communities is not predetermined, and the algorithm must detect the commu-
nities only from the network structure ([61], Section 11.2.1).

Wong [88] was among the first to address an important question: “How many
separate well-connected subgraphs are in the given graph?” He informally in-
troduced the clusters of nodes as densely-connected subgraphs separated from
other such subgraphs by relatively few cross-links. Using the formal definition,
which regarded high-density clusters, Wong’s algorithm can produce a graph par-
tition into clusters without the number of clusters being known a priori, and
the algorithm could be considered the predecessor of the community detection
algorithms.

This chapter will introduce the community detection process and present the
necessary terminology, starting with communities and their definitions in Section
1.1 and some information about the community sizes in Section 1.2. The following
section (1.3) presents the node-attributed graphs – a subset of graphs providing
extra information about the nodes. Moving into community detection algorithms,
as many algorithms exist and new ones appear every year, it could be helpful to
systematically divide them into some classes. The last section (Section 1.4) states
some of the most used divisions.

4

1.1 Communities
First, it is essential to introduce the graph terminology used in this work. From
now on, we will consider “network” and “graph” to be synonyms ([61], Section
6.1). The network (or graph) consists of some set of nodes V = {v1, v2, . . . , vn}
(also known as vertices) connected with edges (also called links), E = {eij}
formally G = (V, E). The overview of terminology in the community detection
field can be found in the work of Bothorel et al. [11], Table 1.

The terminology change from subgraphs, partitions or clusters to communities
occurred around 2000. Flake et al. [31] define web communities as a collection of
densely connected web pages, and Radicchi et al. [74] state a more general def-
inition of communities (distinguishing between strong and weak communities),
which coincides with the definition in [31]. In all the above definitions, commu-
nities are mutually exclusive and collectively exhaustive groups of nodes.

Definition 1 (Community in a strong and weak sense by Radicchi et al.). Let
S ⊂ G be a subgraph of an unweighted and undirected graph G. Let kin

i (S) denote
the number of edges connecting node i to other nodes belonging to S and kout

i (S)
denote the number of edges from node i towards nodes in the rest of the graph
G \ S.

S is a community in a strong sense if the following holds:

∀i ∈ S : kin
i (S) > kout

i (S).

S is a community in a weak sense if the following holds:∑︂
i∈S

kin
i (S) >

∑︂
i∈S

kout
i (S).

The idea of strong and weak communities is furtherly refined by Hu et al.
[41], but in this case, the communities are defined using less strict constraints.
However, Fortunato and Hric [33] found that the above definitions are not satis-
factory for some specific settings and proposed an improved definition based on
the probabilities of edges’ existence. Fortunately, having the exact definition of
a community is not necessary (and the canonic definition does not even exist).
Most community detection techniques do not use a precise definition (but some
algorithms do, see [74]). Nevertheless, defining the communities could be helpful
when checking the accuracy of the final results of partitioning ([33]). In sum-
mary, communities can be defined in many ways, and the exact definition does
not exist. For our purposes, we will loosely define a community according to Hu
et al. [41] as a subset of nodes more densely connected to each other than to the
rest of the graph.

Sometimes, the concept of communities as mutually exclusive subgroups is
not suitable. For example, having a social network at a college, a person can be a
member of a football and a baseball team, or a scientist can write articles in more
than one field. Palla et al. [68] point this out and introduce the idea of overlapping
communities (also described in [61], Section 14.7.1). Nonetheless, we will focus
only on the non-overlapping communities in this work. For an interested reader,
Mittal and Bhatia [58] distinguish more community types, such as dynamic, dense
or isolated communities.

5

1.2 Community sizes and power-law distribu-
tion

As we have seen in the previous section, the definitions of communities are am-
biguous. When constructing an algorithm for community detection, it is crucial
to choose some condition for which will the algorithm finishes. Thus, various
algorithms can detect communities differently, as shown in Figure 1.1.

0

1 2

3
45

6

7

8

9

10 11

12

13 14

(a) Similar sized communities

0

1 2

3
45

6

7

8

9

10 11

12

13 14

0

1 2

3
45

6

7

8

9

10 11

12

13 14

(b) Power-law distribution sized communi-
ties

Figure 1.1: Differences in community detection

However, communities of real-world networks usually look like in Figure 1.1b
– many small communities and only a few bigger communities. The distribution
of the community sizes often follows a power law (as does the distribution of
node degrees). In the following section (1.2.1), we will present some information
about the power-law distribution and the networks whose node degrees follow
the distribution (scale-free networks). Section 1.2.2 analyses the distribution of
community sizes and states some existing insights about the connection to power
law.

1.2.1 Power-law distribution and scale-free networks
The distribution

p(x) = Cx−τ

with C = ec is called a power-law distribution with exponent τ ([65], Equation
(1)). The constant C is for fixed τ determined by the normalisation requirement
([65], Section III.A), so the power-law distribution can be denoted as

p(x) ∼ x−τ

([6], Section 4.2). If we take a logarithm of both sides, it can be seen that power-
law distribution scales linearly on a log-log plot (it is a straight line). Power-law
distribution is also called a scale-free distribution because it is a distribution that
is the same regardless of the scale we look at on it ([65]). For example, having
values of node degrees, if 10 is half less common than 2, then 100 is also half less

6

common than 20. In fact, power-law distribution is the only distribution with a
scale-free property (see [65], Section III.E for the proof).

In the following paragraphs, we will use a (complementary) cumulative power-
law distribution. Generally, the cumulative distribution F (x) shows the proba-
bility that X (random variable) has a value less than or equal to x. The comple-
mentary cumulative distribution equals 1 − F (x) and shows the probability that
X has a value greater than or equal to x:

Pr(X ≥ x).

The complementary cumulative power-law distribution is denoted as (assum-
ing τ > 1):

P (x) = Pr(X ≥ x) =
∫︂ ∞

x
p(x′)dx′ = C

∫︂ ∞

x
x′−τ dx′ = C

τ − 1x−(τ−1).

The cumulative distribution function also follows a power law with an exponent
τ − 1 ([65], Section II., [61], Section 8.4.1).

A network whose node degrees follow power-law distribution is called a scale-
free network ([5], [7], [2], Section VII., [61], Section 10.4, [6], Section 4.2). Many
studies ([76], [29], [59], [69], [65], [57], [80], an overview of networks in [61],
Table 8.1 and Section 8.3) have reported real-world networks with the scale-
free property, for example, Internet at the router level, protein interactions, e-
mail network, citation network and many more ([6], Section 4.5, Figure 4.10).
Most degree distributions observed are fat-tailed, meaning there are often nodes
with very high degrees. These nodes are called hubs ([61], Section 10.3, [6],
Section 4.3). If we consider fat-tailed distribution as a subset of heavy-tailed
distribution, power-law distribution is the best-known approximation of a fat-
tailed distribution. Many graph benchmark models, such as LFR and acMark
(see Section 2.1), use the power-law node degree distribution.

1.2.2 Community size distribution
Moving on to communities, some of the graph benchmark models (Section 2.1)
use power-law community size distribution. We have searched for some articles
supporting the chosen community size distribution, and we have not found any
systematic study. However, we have found a few reports examining community
size distributions of real-world networks ([57], [92], [6], Section 9.2). The overview
of the reports, which state some value for the cumulative distribution exponent,
is shown in Table 1.1. The reports usually find a fat-tailed community size distri-
bution which can be well described by a power-law distribution with an exponent
ranging from 1 to 3 ([32], Section XVI.).

The following authors base their algorithms, benchmarks or results on the
power law distribution property of community sizes: Lancichinetti et al. [50] (cite
[40], [19], [68], [24]), Clauset et al. [19] (cite [4], [60]), Fortunato [32] (cites [74]
[19], [64], [68], [24]). In Section 2.1, we will consider graph benchmarks that sup-
port power-law degree distribution. However, a further systematic study about
community size distribution would be necessary to confirm or reject the connec-
tion with power-law distribution. Newman [63] states that several alternative

7

Network Exponent Study Notes (s stands
for community
size)

E-mails at URV1 0.482 [40], [4] 2 < s < 100

Jazz musicians 0.482 [37], [4] 200 < s < 1000

ArXiv Physics E-Print
C.M.3

≈ 1.6 or 2 [60],
[74]

Statistical Physics FisEs 1.072 [4] s < 1000

ArXiv Mathematical-
Physics

1.072 [4] s < 1000

ArXiv Other Physics
(3 networks)

0.972

0.542
[4] 1 < s < 60

60 < s < 1000

LA4 E-Print collabora-
tion

1.65 [68]

Word-association 15 [68]

Protein interaction between 1 and 1.65 [68]

ArXiv Physics E-Print 0.5 [24]
1 University at Rovira i Virgili
2 Value for cumulative community sizes – the sizes were taken over all levels

of the dendrogram. A dendrogram is a hierarchical tree which represents the
nested hierarchy of possible partitions of a network into communities (see
[62] or [19], Section II). It usually shows a process of dividing a network into
smaller and smaller parts (or a process of connecting smaller parts into bigger
ones). Many algorithms detecting communities use dendrograms (see Greedy
algorithm, Section 3.1.1).

3 Condensed Matter
4 Los Alamos
5 The sizes of overlapping communities were taken.

Table 1.1: Exponents of cumulative power-law distribution

distributions can be confused with power-law and suggests using Kolmogorov-
Smirnov or other goodness-of-fit tests for examining the power-law behaviour.
(Newman [61] also presents an Equation (8.6) which could be used for computing
the exponent τ directly from the data.)

1.3 Node-attributed graphs
The communities can be detected in many kinds of networks. In this work, we
focus on community detection in node-attributed networks. The main difference
compared to regular networks is that these networks carry some extra information

8

about the nodes in the form of attributes. For clarification, the information
is stored in the nodes (usually as an attribute vector). Community detection
in node-attributed graphs aims to find communities with homogenous structure
(high edge density) and homogenous attributes (attribute values are similar).
Some early inspiration for using the attributes to improve the algorithm accuracy
can be found in graph mining ([11], [38]).

Bothorel et al. [11] in Section 3.1 explain two approaches to the representation
of graphs with attributes – either the nodes have attribute vectors or the graph
Gs = (Vs, Es) is augmented by a bipartite graph Ga = (Vs ∪ Va, Ea), Ea ⊆ Vs × Va

making an augmented graph G = (Vs ∪ Va, Es ∪ Ea). Both these approaches ap-
pear in articles; the first one being used recently. Some of the first descriptions of
attributed networks are from Zhou et al. [93] (attribute augmented graph), alter-
natively from Yin et al. [91] (Gong et al. [38] name it a social-attribute network).
They suggest creating so-called attribute nodes apart from the structural/person
nodes (using the second representation approach). Zhou et al. [93] further for-
mally define an attributed graph with nodes having the attribute vectors (the
first representation approach). A similar definition also appears in [20], and an
extensive definition was introduced in [89]. Newer and recently used definitions
can be found in articles by Falih et al. [27] and Chunaev [14] (also in [15] in a
slightly modified form).

Definition 2 (Node-attributed social network). Node-attributed social network
(or node-attributed graph) is a triple G = (V, E, A), where

• V = {v1, v2, . . . , vn} is the set of nodes (vertices),

• E = {eij}, i, j ∈ {1, . . . , n} is the set of edges (eij is the edge between nodes
vi and vj, for undirected networks eij = eji),

• A = {aik}, i ∈ {1, . . . , n}, k ∈ {1, . . . , d} is the set of attribute sets associ-
ated with the nodes in V , the number of attributes is equal to d.

The size of the set V is the number of nodes, |V | = n. The size of the set E is
the number of edges, |E| = m.

The pairs (V, E), (V, A) are called the structure and the attributes of a node-
attributed graph G, respectively.

Node-attributed networks are not the only ones to provide additional infor-
mation embedded in the network topology. Interdonato et al. [44] write about
feature-rich networks in which they include node-attributed networks besides het-
erogeneous information networks, multilayer networks or probabilistic networks.

1.4 Fusion methods and algorithms
There exist many algorithms for node-attributed community detection. We will
divide the algorithms into some categories or classes for better clarity. A brief
overview of existing classifications can be found in [18]; we will also present some
others. Bothorel et al. [11] propose a classification schema which includes weight-
based, walk-based, distance-based and probabilistic methods. Vieira et al. [86] use
relatively narrow descriptions of algorithms as classes (algorithms adjusting graph

9

before community detection, algorithms optimising a quality function, algorithms
using a unified distance and lastly, the hybrid approaches). Finally, Mittal and
Bhatia [58] classify the algorithms according to the technique used when detecting
a community (4 types of algorithms: modularity, information theoretic, network
algorithms and hierarchical).

All the previous classifications are similar – they present many classes which
are pretty narrow (with only a few algorithms). They are missing some higher-
level schema that would partition the algorithms into a couple of relatively broad
categories (with some subclasses). We will now state two proposals for the divi-
sion, which are done with respect to the techniques used in the algorithms but
provide an extra higher level of hierarchy.

Falih et al. [27] distinguish algorithms into three categories based on their
methodological principle:

• topological-based clustering (the attributes are used as additional structural
information and can be used in order to change the topology of the graph),

• attributed-based clustering (the structure and the attributes are merged
into a global similarity/distance and then processed by classical clustering
algorithm),

• hybrid approach (the attributes and the structure are considered separately,
clustered, and the results are merged by ensemble clustering method).

On the other hand, Chunaev [14] groups the algorithms according to a moment
when the structure and the attributes are being fused in the community detection
process:

• early fusion methods (fuse structure and attributes before the community
detection process),

• simultaneous fusion methods (fuse structure and attributes simultaneously
with the community detection process),

• late fusion methods (cluster structure and attributes separately and fuse
the partitions obtained).

We can see that the classifications partly overlap ([18]) – hybrid approach
overlaps with late fusion methods, topological-based clustering with simultaneous
fusion methods and attributed-based clustering with early fusion methods.

We will divide the community detection methods into three classes according
to Chunaev [14]. We chose this division because the survey is extensive and
presents almost every algorithm until the middle of 2019. Therefore we believe
the division is the most useful one to compare algorithms and create a tool for
automatic comparison. With these classes, it is easier to create comparative
studies. For example, having two early fusion algorithms, we can replace the
fusion part of the first with the fusion part of the second. Then (supposing the
output format of these parts is compatible), we can compare which of those fusion
parts is better relatively to our input graph. This division is also used in [53] or
[79].

10

2. Comparing algorithms
As more node-attributed community detection algorithms started to appear, the
need to compare algorithms and choose the best among them arose. At first,
it is necessary to have some networks on which we would test the algorithms.
Section 2.1 provides insight into the node-attributed networks used for detecting
communities (focusing on the synthetic networks generated by some models). The
second essential part of comparing the algorithms is evaluating the given results
– how accurate the detected communities are. The overview of such methods
used for evaluation is given in Section 2.2. The last section (Section 2.3) presents
comparison studies related to our work.

2.1 Graphs and graph models
To test the algorithms thoroughly, we need a relatively huge set of graphs with
known communities. According to Chakraborty et al. [12], these graphs are called
graphs with ground truth communities (also written as ground-truth). There
exist real-world node-attributed graphs with ground truth (the most popular are
mentioned in [14], Section 5.1), but the number of these graphs is not large
(Chunaev [14] states about 20 datasets). Moreover, Peel et al. [70] recommend
careful usage of real-world node-attributed networks for community detection.
They comprehensively analyse problems related to treating the nodes’ metadata
(attributes) as a ground truth. The main problem is that the organisation of
real-world networks and their division into communities can correlate with both
observed and unobserved data. Nevertheless, the real-world networks are not
condemned completely; Peel et al. suggest the metadata could be used to gain
insights into real-world network organising principles.

Ceasing from real-world networks, we will move on to the artificially gener-
ated ones. These synthetic networks are generated by graph models (also called
benchmarks), and their nodes are partitioned into ground truth communities (the
partition is called a planted partition according to [70]). There as well exist
some benchmarks which generate random graphs without community structure.
However, we will not consider these, although it could be interesting to test the al-
gorithms on these benchmarks to see how robust the algorithms are. This section
will focus on the benchmarks generating graphs with some community structure
(and providing the ground truth communities).

At first, we will look at a Girwan-Newman benchmark (GN, Section 2.1.1),
which is likely the first benchmark massively used in the beginnings of commu-
nity detection. Secondly, we will introduce the Lancichinetti-Fortunato-Radicchi
(LFR, Section 2.1.2) benchmark, the most famous and most used benchmark in
community detection. It produces networks with community structure, however,
without node attributes. Both these benchmarks are realisations of planted l-
partition model from Condon and Karp [22]. We do not consider other models
such as the Erdős-Rényi model, Stochastic block model or Barabási-Albert model
because they are missing community structure, power-law node degree distribu-
tion or power-law community size distribution. (More information about the
power-law distribution and its relation to node degrees and community sizes can

11

be found in Section 1.2.) In Sections 2.1.3 and 2.1.4, we introduce two benchmarks
producing node-attributed networks. Other benchmarks with node attributes are
briefly summarised in Section 2.1.5, together with other methods of obtaining a
node-attributed network.

2.1.1 Girwan-Newman benchmark
The first and the most famous benchmark graph is the Girvan-Newman (GN)
by Girvan and Newman ([36], [62]). The generated graph consists of only 128
nodes divided into four equally sized communities (32 nodes each). The edges
between nodes in the same community are generated with probability pin and the
edges between nodes belonging to different communities with probability pout. It
holds that pin > pout and pin is chosen to keep the average degree of node equal
to 16. This graph model does not generate nodes with attributes, the structure
is simple, the network size is relatively small, the expected node degrees do not
differ, and the sizes of communities are equal. This model also does not satisfy
the power-law distribution of community sizes.

2.1.2 LFR benchmark
The GN benchmark has long since been surpassed by the Lancichinetti-Fortunato-
Radicchi benchmark (LFR) introduced by Lancichinetti et al. [50] (case of undi-
rected and unweighted graphs) and by Lancichinetti and Fortunato [49] (case of
directed and weighted graphs). The size of the generated network (in terms of
the number of nodes) and the mixing parameter (which determines the fraction of
edges connecting a node to nodes in different communities) can be chosen. Some
of the parameters are the minimum and maximum node degree. It also has two
other parameters – exponents of power-law distributions. The first is for the node
degree distribution, and the second is for the community size distribution. It is
clear that the LFR benchmark surpasses the GN benchmark with the variability
of network and community sizes, but it still does not support node attributes. For
an interested reader, the comparison of several community detection algorithms
on the GN and LFR benchmarks can be found in [48].

2.1.3 acMark
acMark was introduced by Maekawa et al. [54] in 2019. It is implemented in
Python, and its source code is available on GitHub.1 It supports arbitrary distri-
butions for the node degrees, the cluster sizes and the attribute values (power-law,
uniform and normal distributions are mentioned in [54]). It also allows two kinds
of attributes – discrete or continuous – and enables one to choose the ratio of
continuous parameters following different distributions. Of course, there are pa-
rameters for the number of nodes, edges and attributes, balancing inter-edges
and intra-edges (edges from node to other communities/to its community), and
eventually, widths of uniform distribution or deviations of normal distribution if
used. Finally, the runtime of acMark scales linearly with the number of edges.
(A complete resume of parameters can be found in [54], Table 2.)

1https://github.com/seijimaekawa/acMark

12

https://github.com/seijimaekawa/acMark

2.1.4 X-Mark
The most recent model is X-Mark from 2021 by Citraro and Rossetti [18]. It is
also implemented in Python with source code on GitHub.2 It is based on the
LFR benchmark (Section 2.1.2), so the node degrees and community sizes are
taken from power-law distributions with user-specified exponents. Section 3.2.1
summarises the X-Mark benchmark parameters. There are parameters for the
mixing, the number of nodes and the average degree of nodes. X-Mark supports
creating attributes of one chosen type (categorical or continuous). If we choose
categorical attributes, we must specify the number of values in the domain of
the attributes and the noise parameter. The noise is used as a probability that
a node will have a different categorical attribute than its community. If we
choose continuous attributes, we must specify the parameter for the number of
peaks of a multimodal distribution and the parameter for the standard deviation
of a normal distribution. For each community, a community label is chosen
uniformly randomly from the peaks of the multimodal distribution. Then, the
community nodes’ labels are taken from a normal distribution with the given
standard deviation. The mean of the normal distribution is the community label.

2.1.5 Other benchmarks and methods
The acMark and X-Mark benchmarks are not the only ones able to generate
node-attributed graphs. We would like to mention the following node-attributed
benchmarks with community structure – LFR-EA by Elhadi and Agam [26]
and ANC by Largeron et al. [51]. The LFR-EA generates attributes for LFR
benchmark networks. The attributes are only categorical (discrete). All the nodes
in a community share the same attribute value except for uniformly randomly
chosen nodes which host the noise (the probability is controlled by the noise
parameter, which can be different for each attribute). The LFR-EA was used for
testing in some works, e.g. in [71], [72] and [8].

The ANC allows the choice of the network size, maximum number of edges
within a community and between communities added to a node, minimum num-
ber of edges in the network, number of communities and maximum size of a com-
munity. Considering the attributes, we can set the standard deviation for each
attribute (the attributes are continuous) and threshold for community attributes
homogeneity, which causes a node to be assigned to a random community in-
stead of a community with nodes having similar attributes. The main difference
between ANC and the benchmarks mentioned above is that ANC first creates
nodes with attributes and then creates communities according to the similarity
of nodes. Therefore, it is impossible to control the community sizes and the po-
sitioning of structure and attributes. Despite that, the ANC was used for testing
algorithms in [28] and [86].

Some authors (e.g. Chunaev et al. [16]) do not require a benchmark generating
a node-attributed network. Instead of this, they generate two weighted graphs –
the first as the structure graph (edges in this graph symbolise edges in a network)
and the second as the attribute graph (edges and weights symbolise attributive
closeness of nodes).

2https://github.com/dsalvaz/XMark

13

https://github.com/dsalvaz/XMark

2.2 Result evaluation
Once the communities of the network are detected, we have to evaluate the algo-
rithm’s accuracy – how well has the algorithm detected the communities. For fur-
ther purposes, we will suppose the ground truth communities are available. The
comparison between found communities and ground truth is usually realised using
some metrics. An exhaustive survey of metrics was carried out by Chakraborty
et al. [12]. Many validation metrics for non-overlapping communities using the
ground truth are summarised in [12], Section 3.1. An older survey of evaluation
metrics (in this case, for partitioning and clustering) can be found in [35], Chapter
17. In this section, we will briefly present metrics that are used in most compar-
ative studies – Adjusted Rand Index (ARI) and Normalised Mutual Information
(NMI).

Notation
We will use a notation (see Table 2.1) corresponding to the ones in [12] and [55],
Equation 16.1, supposing detection of communities is performed on a network
with the set of nodes V .

Notation Description

Ω = {ω1, ω2, · · · , ωK} set of detected communities

ωk set of nodes in the detected community k

C = {c1, c2, · · · , cJ} set of ground truth communities

cj set of nodes in ground-truth community j

N = |V | =
K∑︁

k=1
|ωk| =

J∑︁
j=1

|cj| number of nodes in the network

NX = |X| number of nodes in the set X ⊆ V

NXY = NY X = |X ∩ Y | number of nodes in the intersection of the
sets X, Y ⊆ V

Table 2.1: Notation used for result evaluation

2.2.1 Adjusted Rand Index
ARI was presented by Hubert and Arabie [42]. It is a “chance-corrected” version
of Rand Index (RI) from Rand [75]. The “correction of chance” is meant in the
sense of having a constant index value when an appropriate null model is used.
In this case, a null model is considered to be a random partitioning to a fixed
number of communities of fixed sizes.

14

ARI is defined as below ([12], Section 3.2, Equation 69),

ARI(Ω, C) =

∑︁
k,j

(︂
Nωkcj

2

)︂
−

∑︁
k (Nωk

2)·
∑︁

j (Ncj
2)

(N
2)

1
2

(︂∑︁
k

(︂
Nωk

2

)︂
+ ∑︁

j

(︂
Ncj

2

)︂)︂
−

∑︁
k (Nωk

2)·
∑︁

j (Ncj
2)

(N
2)

.

It is a symmetric metric (ARI(Ω, C) = ARI(C, Ω)). Its maximum value is
1, showing that partitions are the same. When a value equals 0 or less, the
partitions are as similar as two random partitions would be.

2.2.2 Normalised Mutual Information
NMI was introduced by Strehl and Ghosh [82] as [0, 1]-normalised mutual infor-
mation criterion (a normalised version of mutual information from [83], Equation
5). NMI is defined as follows ([82], Equation 1):

NMI(Ω, C) =
1
N

K∑︁
k=1

J∑︁
j=1

Nωkcj
logK·J

N ·Nωkcj

Nωk
·Ncj

1
2

,

which can be also written as ([34], Equation 2, [55], Equation 16.2, [47], Section
3.4, . . .):

NMI(Ω, C) = I(Ω, C)
(H(Ω) + H(C))/2 ,

where I is mutual information,

I(Ω, C) =
K∑︂

k=1

J∑︂
j=1

Nωkcj

N
log

N · Nωkcj

Nωk
· Ncj

,

and H is entropy,

H(Ω) = −
K∑︂

k=1

Nωk

N
log Nωk

N

and
H(C) = −

J∑︂
j=1

Ncj

N
log

Ncj

N
.

The biggest problem of NMI is that it is not a true metric because it does not
meet the triangle inequality ([12], Section 8.2). Its maximum value is 1, showing
that the partitions are the same. The bigger NMI value is, the more similar the
partitions are.

2.3 Related works
We would like to summarise the progress made in algorithm comparison and point
out some interesting studies. This work focuses mainly on testing on artificial
networks. One of the earliest attempts in this field was made by Danon et al.
[25] who used the GN benchmark. Other algorithm comparisons followed later
(mostly using GN and LFR), for example, [73], [48], [66], [67], [90] or [12].

15

However, all these studies are focused on networks without attributed nodes.
As for node-attributed community detection, we found that new algorithms are
usually tested just on real-world networks against chosen state-of-the-art algo-
rithms ([93], [23], [26], [89], [21], [3], [1], [15]). Nevertheless, Chunaev [14] con-
cludes that it is almost impossible to determine which algorithms are state-of-
the-art.

Only some authors use synthetic networks in their studies. Combe et al.
[21] use attributes following a normal distribution with a different mean for each
group of nodes, and Akbas and Zhao [1] use node attributes following Gaussian
and uniform distribution. Pizzuti and Socievole ([71], [72]) and Berahmand et al.
[8] use LFR-EA, Meng et al. [56] use LFR with three specifically generated at-
tributes and Sánchez et al. [84] use LFR with attributes following a Gaussian
distribution. Next, we have X-Mark used by Citraro and Rossetti [18] and ANC
used by Falih et al. [28]. We found only two truly comparative studies of node-
attributed community detection algorithms on artificial networks – Falih et al.
[27] (5 algorithms) and Vieira et al. [86] (7 algorithms) – and both are using the
ANC benchmark.

16

3. Comparison analysis
In this chapter, we present a comparison analysis we have carried out. The
comparison is done entirely on synthetic networks and focuses on the impact of
different parameters of benchmarks and algorithms on the results. Section 3.1
presents the benchmarks and algorithms used for comparison, and Section 3.2
provides a view on the setting of the algorithm parameters – X-Mark benchmark
parameters in Section 3.2.1, fusion algorithms parameters in Section 3.2.2, clus-
tering algorithms parameters in Section 3.2.3 and simultaneous fusion parameters
in Section 3.2.4. To provide a complete view, Section 3.3 roughly informs which
algorithms have been faster than others and which have been slower. However,
comparing the running times of algorithms was not our focus. Finally, Section
3.4 presents some problems we faced during the comparison analysis.

3.1 Benchmarks and algorithms
This section will present the benchmarks and algorithms used in our comparison
analysis. We will also present the metrics used to evaluate the found communities
and compare them to the ground truth.

Our comparison was done on synthetic networks. We have chosen the X-Mark
benchmark because the model is as general as possible and easy to use. X-Mark
can model the situations where attributes either align or do not align with the
structure. Moreover, the X-Mark benchmark code is publicly available (see Sec-
tion 2.1.4). We have slightly rewritten the code but maintained its functionality.
The X-Mark benchmark was also chosen over the acMark benchmark because
even though it has fewer parameters than acMark, the different parameter set-
tings cover most of the interesting cases of structure and attributes relationship.
We have used our testing framework for community detection written in Python
(available on request) to automatise testing for various combinations of param-
eters. It provides methods for testing early fusion, simultaneous fusion and late
fusion methods (division according to Chunaev [14], see Section 1.4).

3.1.1 Algorithms
We have decided to focus our work on the Python implementation of the algo-
rithms. The algorithms were either already implemented (taken from NetworkX
or igraph library or available by a respective author) or written by us.

For the fusion in the early fusion approach, we have used metrics which make
a weighted graph without attributes from an unweighted attributed graph. Then,
we ran a standard clustering algorithm for weighted graphs for obtaining com-
munities. We have used the following metrics:

• Node Attribute Similarity (NAS) ([80], [81], [39] as general similarity
coefficient, [45], Section 2.9, Equation (19) and (26) as simple matching
approach, also [10], Section 4.1 only for the categorical attributes) – The
similarity s(u, v) between two nodes u, v is computed from the attributes
of the nodes. In the beginning, s(u, v) = 0, and we compute the final

17

similarity value by comparing the attributes individually and modifying
s(u, v) accordingly. Having attribute values i, j (supposing the values of
this attribute range from 1 to K) we proceed as follows:

– for categorical attributes, s(u, v) += 1 if i = j,
– for continuous attributes, s(u, v) += 1 − (1/K) · |i − j|.

Finally, the similarity is normalised to weight using the number of attributes
a:

wa(u, v) = s(u, v)
a

.

If the nodes were not connected in the former graph, the weight is set to 0
independently of the attributes.

• Node Path Similarity (NPS) ([20], Section IV.B) – In this algorithm,
the number of edges on the shortest path between all pairs of nodes u, v
(denoted as d(u, v)) is computed. The maximum value of d (the maximum
length of the shortest path between two nodes of the graph, also called
the diameter) will be further denoted as dmax. If there does not exist a
path between the nodes u, v (they are in different network components),
d(u, v) = dmax + 1. Finally, the values of d are normalised and used as edge
weights:

wd(u, v) = 1 + dmax − d(u, v)
dmax

= 1 − d(u, v) − 1
dmax

.

The bigger the weight between nodes is, the closer the nodes are for the
community detection process. If the nodes were directly connected in the
former graph, then wd(u, v) = 1. If they were not directly connected, then
1 > wd(u, v) ≥ 1/dmax, and if they were disconnected, then wd(u, v) = 0

• Mixed Similarity (MS) (suggested with specific algorithms in [23], [20],
generally in [93], [27]) – Our implementation of MS is based on NAS and
NPS with parameter α:

wm(u, v) = αwa(u, v) + (1 − α)wd(u, v).

There are many more possible metrics for attributes which could be used in
the fusion process instead of NAS, the overview of many similarity measures for
categorical data can be found in [10] and for both categorical and continuous
data in [35], Section 6. Meng et al. [56] carried out experiments with different
metrics for categorical attributes on real-world and synthetic networks. In this
experiment, the simple matching coefficient (approach) surpassed the famous
Jaccard similarity ([52]) and Cosine similarity ([13], Section 3.2). Therefore, we
have chosen the simple matching coefficient (NAS) for the attribute similarity.

We have chosen the following algorithms for clustering in the early fusion
approach. Many of these algorithms use modularity, described in Section 3.2.3.

• Greedy modularity (Greedy) ([19], taken from NetworkX library1) – The
algorithm is based on the modularity maximalisation. It starts with all

1https://networkx.org/documentation/stable/reference/algorithms/generated/
networkx.algorithms.community.modularity_max.greedy_modularity_communities.
html

18

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.modularity_max.greedy_modularity_communities.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.modularity_max.greedy_modularity_communities.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.modularity_max.greedy_modularity_communities.html

nodes in separate communities. Then, it repeatedly joins two communities
whose union produces the largest increase of modularity. It obtains one big
community after n − 1 steps (for a network of size n). The process starting
with many small communities and ending with one large community can be
represented with a tree called dendrogram, where the nodes represent com-
munities, and the edges represent the union of two communities. Finally,
the algorithm chooses the partitioning according to the tree level with the
highest modularity.

• Louvain ([9], taken from NetworkX library2) – The algorithm consists of
two phases which are repeated until an objective function (modularity) is
maximised. The algorithm starts with all nodes in separate communities.
In the first phase, all nodes are moved to a neighbouring community if
the move increases modularity. The algorithm starts the second phase if
no nodes can be moved to increase the modularity. In this phase, every
community is contracted into one node, and the edges between the new
nodes are weighted with the sum of the edges between former communities.
Then, both phases are repeated on the newly created network until no more
nodes move.

• Leiden ([85], taken from igraph library3) – The algorithm is based on
Louvain algorithm, but it adds a new phase between the original ones –
refinement of the partition. The function that the algorithm optimises is
called the Constant Potts Model.

• Infomap ([78], [77], taken from igraph library4) – The algorithm repeats
the same two phases as Louvain algorithm until its objective function is
maximised. In this case, the objective function is so-called map equation.

From the simultaneous fusion methods, we have used:

• Eva ([17], taken from the authors5) – The algorithm repeats the same two
phases as Louvain algorithm until its objective function is maximised. In
this case, the objective function is Z = λP +(1−λ)Q where Q is modularity,
P is purity, and λ is a trade-off parameter between Q and P . More about
the objective function can be found in Section 3.2.4.

3.1.2 Evaluation metric
For the evaluation, we have chosen NMI (see Section 2.2.2).

3.2 Parameters
This section presents the parameters used in benchmarks and algorithms – for
X-Mark benchmark in Section 3.2.1, for fusing algorithms in Section 3.2.2, for

2https://networkx.org/documentation/stable/reference/algorithms/generated/
networkx.algorithms.community.louvain.louvain_communities.html

3https://python.igraph.org/en/stable/api/igraph.Graph.html#community_leiden
4https://python.igraph.org/en/stable/api/igraph.Graph.html#community_infomap
5https://github.com/GiulioRossetti/eva

19

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.louvain.louvain_communities.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.louvain.louvain_communities.html
https://python.igraph.org/en/stable/api/igraph.Graph.html#community_leiden
https://python.igraph.org/en/stable/api/igraph.Graph.html#community_infomap
https://github.com/GiulioRossetti/eva

clustering algorithms in Section 3.2.3 and for simultaneous approach algorithms
in Section 3.2.4. The sections describe the parameters, their meaning for the
algorithm and the values used for testing.

3.2.1 X-Mark parameters
The names of the benchmark parameters are summarised in Table 3.1. We have
omitted the parameters which were kept on the default values: the tolerance
(default value 10−7), the maximum number of iterations (default value 500) and
seed parameters (by default using Python “random” module without seed).

Parameter Description
n number of nodes
k average node degree1

kmin minimum node degree1

kmax maximum node degree
min community minimum community size
max community maximum community size
τ1 power-law exponent for node degree distribution
τ2 power-law exponent for community size distribution
µ mixing parameter
type attr attributes type, either categorical or continuous
ℓ a list of attribute domain sizes2

σ standard deviation of continuous attributes
ε distance of peaks for continuous attributes
θ noise for categorical attributes
1 Exactly one of the average degree and minimum degree must be specified.
2 The domain size must be at least equal to two. “auto” as the domain value

means the attribute will have a domain equal to the number of generated
communities.

Table 3.1: X-Mark benchmark parameters

Basic parameters settings

We have generated 20 networks of size n = 50 and size n = 100, 15 networks
of size n = 250 and 10 networks of size n = 500. For all networks, we have
set k = n/10 and maximum community equal to 3n/5. For the networks of size
n ≤ 100, we have chosen kmax = 2n/5 and minimum community equal to n/10.
For the networks of size n ≥ 250, we have chosen kmax = 3n/8 and minimum
community equal to 7n/100. As we have set k, the parameter kmin was left unset.
The values of minimum community and kmax were explicitly chosen to be able
to generate enough graphs because we wanted to keep the maximum number of
iterations the same to keep the generating time reasonable. More information
about the parameter settings used by other authors can be found at the end of
this section.

20

Power-law exponents setting

We have used τ1 ∈ {2, 3} and τ2 ∈ {2, 3} because these power-law exponent values
also appear in real-world networks (see Section 1.2).

Mixing parameter settings

The mixing parameter is defined as

µ =
∑︁

u ku,out∑︁
u ku

,

where u ∈ V for graph G = (V, E), ku,out is the sum of weights of edges connecting
node u to nodes in different communities and ku is the sum of weights of edges
incident to node u.

We have considered µ values 0.05, 0.3 (for smaller networks divided into 0.2
and 0.35) and 0.5. Values of µ above 1/2 would violate the definition of commu-
nities in a strong sense (Definition 1) presented in Section 1.1.

Attribute parameters settings

We have decided to use only categoric attributes with domain sizes equal to the
number of communities |C|. It was not possible to test every combination of
attributes, so we have created the following labels scenarios which should serve
as a cross-section of the possible scenarios: ℓ1 = [2, 2], ℓ2 = [|C|, 2], ℓ3 = [|C|, |C|]
and ℓ4 = [|C|, |C|, |C|, |C|, |C|]. We have studied them on networks of size n = 50
and n = 100. The results were similar for ℓ1, ℓ2, and ℓ3, so we have furtherly used
labels ℓ3. Labels ℓ4 had consistently better results than ℓ3, and the differences
among algorithms or different parameter settings of one algorithm were less clearly
visible than for ℓ3.

We have generated networks of size n ≤ 250 with θ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.
For networks of size n = 500, we have used θ ∈ {0, 0.4, 0.7, 1} to save the com-
putation time.

Other network parameter settings

Because most of the X-Mark parameters are inherited from the LFR benchmark,
we have done a small survey about the LFR benchmark parameter settings used
for testing algorithms. Many authors use similar settings for k and kmax. However,
they usually use the settings for some fixed network size. Another problem is
assigning communities to nodes and generating of edges because X-Mark uses
iterative generation and randomness. In some edge cases, the network generating
can take a long time (for more information about the generation, see Section 3.4).

Nevertheless, we propose a second possible X-Mark benchmark parameters
setting which could have been used. The set has fixed k = 15. This value is
based on the average degrees of the most popular datasets given by Chunaev
[14]. The average degree of the small-sized datasets is approximately 14.5, and
the average degree of medium-sized datasets is 14 (the large-sized datasets were
not considered because the benchmark networks are small- and medium-sized).
Some authors used lower values (k = 5 in [56], k = 10 in [18]) or higher values

21

(k = 20 in [90] and [48], k = 25 in [26], [71], [72] and [8]). We have chosen
minimum community size equal to the average degree, kmax = 50 (used in [48],
maximum degree of size 40 was used in [26], [71], [72] and [8]), and maximum
community size equal to 2n/5. Some authors use the maximum community size
equal to n/10 for networks of sizes n ≥ 1000, but this value is insufficient for
smaller networks because of the maximum degree. For networks with 50 and 100
nodes, we propose k = 10, minimum community equal to 15, kmax = 30 and
maximum community equal to 40. The purpose of this parameter setting is to
maintain the average degree and minimum community and to set the maximum
degree as low as possible with respect to the average degree.

3.2.2 Fusing algorithms parameters
NAS and NPS do not have any parameters. For MS, we used α ∈ {0.3, 0.5, 0.7}.
For α values near 0, the algorithm behaves as NPS, and for values near 1, it
behaves as NAS.

3.2.3 Clustering algorithms parameters
In many algorithms (Louvain, Leiden, Greedy), there is a parameter called res-
olution. Louvain and Greedy algorithms use a value called modularity, and the
resolution γ is a parameter in the modularity computation. The modularity
takes a value between −1 and 1, and it is a difference between the number of
in-community edges according to the partition and a fraction of the expected
number of in-community edges according to configuration model ([85]).

We will use the modularity definition from Clauset et al. [19] and Blondel
et al. [9]:

Definition 3 (Modularity). Modularity is defined as

Q = 1
2m

∑︂
v,w

[︄
Avw − kvkw

2m

]︄
δ(cv, cw),

where Avw is the weight of the edge between nodes v and w, kv = ∑︁
w Avw is the

sum of the weights of edges incident with node v, cv is the community of node v,
m = 1

2
∑︁

v,w Avw is the sum of weights of all edges, the function δ(cv, cw) is called
Kronecker delta function and it is defined as 1 if cv = cw and 0 otherwise.

The resolution parameter γ is used, for example, in [85] as

Q = 1
2m

∑︂
v,w

[︄
Avw − γ · kvkw

2m

]︄
δ(cv, cw).

It is a trade-off parameter which allows the user to give an advantage to smaller
or bigger-sized communities. If the resolution is less than 1, bigger communities
are favoured in the modularity computation. Resolution greater than 1 favours
smaller communities. Louvain and Greedy were tested with res ∈ {0.5, 1, 2}.

Leiden algorithm uses resolution γ in the computation of an objective function
called the Constant Potts Model. This quality function should overcome some
limitations of modularity ([85]). The usage of γ in the Constant Potts Model is

22

slightly different compared to usage in modularity – communities should have the
density of edges at least equal to γ, and the density of edges between communities
should be lower than γ. However, as for modularity, lower resolution values sup-
port detecting bigger communities, while higher resolution values favour smaller
communities during the function computation. Leiden algorithm was tested with
γ ∈ {0.5, 0.7, 1, 2} while using NPS as fusion method, with γ ∈ {0.3, 0.5, 1, 2} for
NAS as fusion method and with γ ∈ {0.5, 1} for MS as fuaion method.

Infomap has a parameter called “trials” which is the number of attempts to
partition the network. The default trials value is 10. We have tested Infomap for
trials ∈ {1, 2, 4, 10, 15}.

The algorithms were run three times on each network of size n ≤ 250. On
networks of size n ≥ 500, the algorithms were run twice on each network.

3.2.4 Simultaneous fusion algorithm parameters
Eva also has a resolution parameter inherited from the Louvain algorithm (men-
tioned in 3.2.3). We have tested the algorithm for res ∈ {0.5, 1, 2}. The second
Eva parameter is λ (called α in the original text, but we have renamed it due to a
naming conflict) – a trade-off parameter in the optimised score Z = λP +(1−λ)Q
where Q is modularity, and P is purity. It is clear that for λ = 0, the Eva algo-
rithm behaves the same way as the Louvain algorithm.

Purity is the average of the purities of the communities in the partitioning
and takes a value between 0 and 1. The purity of a community is the product of
the frequencies of the most frequent labels (attributes) carried by nodes in the
community. The following definition of purity and purity of a community comes
from Citraro and Rossetti [17]. We use notation according to Definition 2.

Definition 4 (Purity). Given a graph G = (V, E, A) and a partitioning of nodes
into communities C, ⋃︁

c∈C c = V , the purity of community c ⊆ V is defined as

Pc =
d∏︂

k=1

maxa∈Ak
(∑︁

v∈V a(v))
|c|

,

where Ak is the domain of attribute k for k ∈ {1, . . . , d}, a(v) is an indicator
function defined for a ∈ Ak, k ∈ {1, . . . , d} as

a(v) =
⎧⎨⎩1, if avk = a

0, otherwise

The purity P is defined as
P = 1

|C|
∑︂
c∈C

Pc,

where C is the set of communities in given partition and Pc is the purity of
community c.

The purity of a community is maximised if all the nodes in the community
have the same attribute values. Purity is maximised if all community purities
are maximised. We have tested the Eva algorithm for the default λ value (λ =
0.5) because the algorithm had a very long running time. We had chosen to

23

prioritise the testing on many networks and their parameters than focusing on
the λ parameter. However, it could be interesting to analyse the impact of the λ
parameter on the results. We refer an interested reader to an analysis by Citraro
and Rossetti [17], which focuses on the impact of λ values on the detected number
of communities.

On all network sizes, Eva was run two times on each network.

3.3 Running time of algorithms
For interested readers, we present some rough comparison of the running times
of the algorithms.

Considering the fusion parts of algorithms, the MS was slower than separate
NPS and NAS. As NAS only computes similarity and compares numbers and
NPS must compute shortest paths, NAS was faster than NPS (even when the
shortest paths were computed using the Floyd-Warshall algorithm).

If we move on to clustering parts of algorithms, the Greedy algorithm was
the slowest, followed by Louvain and Infomap, and the Leiden algorithm was the
fastest.

The running time of the Eva algorithm was similar to the running time of the
Greedy algorithm.

3.4 Encountered problems
This section will introduce some problems we have encountered while analysing
the algorithms.

X-Mark parameters setting
The first problem (already slightly mentioned in Section 3.2.1) was setting the X-
Mark benchmark parameters. The problematic parameters were inherited from
the LFR benchmark. LFR uses randomness in many steps of network creation –
the most problematic part is assigning the communities to nodes. In the begin-
ning, the expected node degrees and the community sizes are generated (randomly
chosen from power-law degree distribution). The nodes are assigned an expected
degree which is divided into in-community and out-community parts according to
µ. The nodes are then assigned such community that the in-community degree is
less than or equal to the community size. The community assignment is done in
a few iterations because if we do not have an enough-sized community for a node,
we randomly remove a node from the chosen enough-sized community, and we
add our node. The last operation done is the creation of the edges between nodes.
The edges are assigned with respect to the expected in- and out-community node
degrees. The following problem can appear (especially for higher µ values): a
node has some out-community degree, and there are not enough nodes outside
the community to attach the edges.

The described problems, solved by the LFR algorithm via iterative generation,
can be solved completely by solving an integer quadratic program. We will have
the following constants:

24

• n for the number of nodes,

• s for the number of communities,

• k1, . . . , kn for the expected node degrees,

• k′
1, . . . , k′

n for the expected in-community node degrees,

• n1, . . . , ns for the community sizes.

We want to find the values of the following variables:

• euv = evu for u, v ∈ {1, . . . , n}

euv =
⎧⎨⎩1, if there is an edge in the graph between nodes u and v

0, otherwise

• cuj for u ∈ {1, . . . , n} and j ∈ {1, . . . , s}

cuj =
⎧⎨⎩1, if node u is in the j-th community

0, otherwise

• c′
uv for u, v ∈ {1, . . . , n}

c′
uv =

⎧⎨⎩1, if nodes u, v are in the same community
0, otherwise

The constructed quadratic program is

max 1

∀j ∈ {1, . . . , s} :
n∑︂

u=1
cuj = nj

∀u ∈ {1, . . . , n} :
s∑︂

j=1
cuj = 1

∀u, v ∈ {1, . . . , n}, ∀j ∈ {1, . . . , s} : cuj · cvj = c′
uv

∀u ∈ {1, . . . , n} :
n∑︂

v=1
euv · c′

uv = k′
u

∀u ∈ {1, . . . , n} :
n∑︂

v=1
euv · (1 − c′

uv) = ku − k′
u

However, we have not solved this integer quadratic program because finding
an optimal solution for integer programs in general is hard. Nevertheless, even
having the approximate solution of this program could be helpful because we
could at least shorten the iterative generation used by the LFR benchmark. If we
had known the exact solution, we could have generated all the possible networks
for the given set of parameters and thoroughly tested the algorithms.

25

RAM size
Another problem we faced was the RAM size of the computer. All computing
was done in WSL (Windows Subsystem for Linux) on Windows 10 with processor
Intel Core i7-8565U and RAM size 16 GB. During the testing on graphs of size
n ≥ 500, the partitioning of a graph had to be saved into a file immediately after
computation.

26

4. Results
This chapter introduces the results of the comparative analysis. The results for
early fusion algorithms are presented in Section 4.1. We have divided the results
according to the fusion method used. Each fusion method was run with Louvain,
Leiden, Greedy and Infomap algorithms. Section 4.1.1 presents the results of NPS
fusion, Section 4.1.2 contains the results of NAS fusion, and Section 4.1.3 shows
the results of MS fusion. The last section regarding the early fusion approach,
Section 4.1.4, compares the results for each clustering algorithm focusing on the
performance of chosen fusion method.

The results for the simultaneous fusion approach are presented in Section 4.2.
This section contains only one algorithm – Eva.

Before moving on to the results, we would like to recall the most important
parameters of the X-Mark benchmark:

• n is the number of nodes,

• µ is the mixing parameter, lower µ values cause the communities to be
almost disconnected, higher µ values cause the communities to be more
interconnected,

• θ is the noise parameter, lower θ values cause the node attributes within
a community to be more homogenous, higher θ values cause the node at-
tributes within a community to differ,

• τ1 is the power-law exponent for node degree distribution,

• τ2 is the power-law exponent for community size distribution,

and the most important parameters of the algorithms:

• the resolution parameter of Louvain, Greedy, Leiden and Eva algorithms,
lower res values mean the algorithm favours bigger communities, higher res
values mean the algorithm favours smaller communities,

• α is the parameter of the MS algorithm, lower α values mean the algorithm
uses the NPS weights more than the NAS weights, higher α values mean
the algorithm uses the NAS weights more than the NPS weights,

• trials is the number of attempts to partition the network for the Infomap
algorithm.

We will abbreviate “resolution” to “res”. We show only results for power-law
distribution exponents τ1 = 2 and τ2 = 2. The results of algorithms for other τ1
and τ2 values were similar.

We expected the results would get worse with higher µ values because the
communities are more interconnected and thus more difficult to detect. We also
expected (only for algorithms considering node attributes) that the results would
worsen with higher θ values because the attributes in communities are less ho-
mogenous. The discussion of obtained results and the influence of the parameters
can be found in Section 4.3.

27

4.1 Early fusion methods

4.1.1 Node path similarity
NPS does not consider node attributes, so we show the merged results for all θ
values (θ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} for n ≤ 250 and θ ∈ {0, 0.4, 0.7, 1} for n = 500).
To save running time, we have tested the NPS + Greedy algorithm for n ≤ 250
only for networks with θ = 0.

NPS + Louvain

NPS + Louvain with res = 0.5 detected only one large community consisting of
all nodes, and NPS + Louvain with res = 2 assigned almost every node to its
own community. Thus, we will show only results for res = 1.

For networks of size n ≤ 100 (Figure 4.1), results for res = 1 are negatively
influenced by higher µ values, the decrease of results is very high. However, the
results for networks of size n = 100 are less influenced by µ than the results for
networks of size n = 50.

For networks of size n ≥ 250 (Figure 4.1), the results for res = 1 are decreasing
with higher µ values which aligns with our expectations. The results for bigger
networks are much better than those for smaller networks. The results have a
relatively large variance, especially for µ = 0.5.

NPS + Leiden

NPS + Leiden with res = 0.5 could not detect any communities – it detected one
large community consisting of all nodes. NPS + Leiden with res ≥ 1 assigned
every node to its own community. Therefore, we have used res = 0.7 to test the
algorithm.

For all network sizes (Figure 4.2), the results are negatively influenced by
higher µ values. However, the results for bigger networks are less influenced by
µ than the results for smaller networks. Also, the results for µ ≥ 0.3 have a large
variance.

NPS + Greedy

NPS + Greedy with res = 0.5 detected only one large community consisting of
all nodes, and NPS + Greedy with res = 2 assigned almost every node to its own
community. Thus, we will show only results for res = 1.

For networks of size n ≤ 100 (Figure 4.2), results for res = 1 are negatively
influenced by higher µ values.

For networks of size n ≥ 250 (Figure 4.2), the results for res = 1 are decreasing
with higher µ values which aligns with our expectations. In this case, we have
tested networks of this size only for θ = 0 because θ does not affect the NPS
results, and it also saved some running time. Moreover, we supposed that for
lower µ values, the Greedy algorithm will have better results. However, the best
results the res = 1 achieves are for µ = 0.3.

Overall, the results for bigger networks are much better than the results for
smaller networks. As we observe, the results have a relatively large variance,
especially for µ = 0.5.

28

µ = 0.05 µ = 0.35 µ = 0.5
0

0.2

0.4

0.6

0.8

1.0
N
M
I

n = 50

µ = 0.05 µ = 0.3 µ = 0.5
0

0.2

0.4

0.6

0.8

1.0

N
M
I

n = 100

NPS + Louvain algorithm res = 1

µ = 0.05 µ = 0.3 µ = 0.5
0

0.2

0.4

0.6

0.8

1.0
n = 250

Figure 4.1: NPS + Louvain algorithm results for power-law distribution expo-
nents τ1 = 2 and τ2 = 2

µ = 0.05 µ = 0.35 µ = 0.5
0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 0.7

NPS + Leiden algorithm n = 50

µ = 0.05 µ = 0.3 µ = 0.5
0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 0.7

NPS + Leiden algorithm n = 250

Figure 4.2: NPS + Leiden algorithm results for power-law distribution exponents
τ1 = 2 and τ2 = 2

29

µ = 0.05 µ = 0.3 µ = 0.5
0

0.2

0.4

0.6

0.8

1.0
N
M
I

n = 100

µ = 0.05 µ = 0.3 µ = 0.5
0

0.2

0.4

0.6

0.8

1.0

N
M
I

n = 250

NPS + Greedy algorithm res = 1

µ = 0.05 µ = 0.3 µ = 0.5
0

0.2

0.4

0.6

0.8

1.0
n = 500

Figure 4.3: NPS + Greedy algorithm results for power-law distribution exponents
τ1 = 2 and τ2 = 2

NPS + Infomap

Infomap could not detect any communities independently of the µ values – it
detected one large community consisting of all nodes.

NPS algorithms comparison

We will show results for NPS + Louvain and NPS + Greedy algorithms with
res = 1 and NPS + Leiden algorithm with res = 0.7.

For networks of size n ≤ 100 (Figure 4.4), the results for NPS + Leiden
algorithm are very similar to the results for NPS + Louvain algorithm. NPS +
Greedy algorithm has slightly worse results than NPS + Louvain.

For networks of size n ≥ 250 (Figure 4.5), results for NPS + Greedy algorithm
are always worse than results for NPS + Louvain. Overall, NPS + Louvain,
despite its significant variance for µ = 0.5, clearly outperforms Greedy and Leiden

30

for all µ values. It can also be seen that the results for NPS + Greedy algorithm
are better than the results for NPS + Leiden algorithm for µ = 0.5.

Louvain
res = 1

Greedy
res = 1

Leiden
res = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.05

Louvain
res = 1

Greedy
res = 1

Leiden
res = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.35

NPS algorithms comparison n = 50

Louvain
res = 1

Greedy
res = 1

Leiden
res = 0.7

0

0.2

0.4

0.6

0.8

1.0
µ = 0.5

Figure 4.4: NPS + Louvain, Greedy and Leiden algorithms results for power-law
distribution exponents τ1 = 2 and τ2 = 2

31

Louvain
res = 1

Greedy
res = 1

Leiden
res = 0.7

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.05

Louvain
res = 1

Greedy
res = 1

Leiden
res = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.3

NPS algorithms comparison n = 500

Louvain
res = 1

Greedy
res = 1

Leiden
res = 0.7

0

0.2

0.4

0.6

0.8

1.0
µ = 0.5

Figure 4.5: NPS + Louvain, Greedy and Leiden algorithms results for power-law
distribution exponents τ1 = 2 and τ2 = 2

4.1.2 Node attribute similarity
We have tested the algorithms on networks with θ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} for
n ≤ 250 and θ ∈ {0, 0.4, 0.7, 1} for n = 500. However, we usually show only the
most interesting results.

NAS + Louvain

Results for res = 1 are always placed between values for res = 0.5 and res = 2.
For all networks, res = 0.5 is the best for µ ≤ 0.05 and also for the combination of
µ = 0.3 and θ ≤ 0.4. However, this resolution is the one which is most influenced
by higher µ and higher θ values, so the results for µ = 0.5 are the worst.

For networks of size n ≤ 100 (Figure 4.6), results for µ = 0.05 are very
similar for all values of θ; they are only slightly decreasing. For µ ≥ 0.3, the best
resolution results shift from res = 0.5 for θ ≤ 0.4 to res = 2 otherwise.

For networks of size n ≥ 250 (Figure 4.7), results for µ = 0.05 and a specific
resolution are very similar for all θ values. The results are even the same for

32

res = 0.5. For other resolutions, the results are only slightly decreasing. For
µ = 0.3, the results are similar for all resolutions. However, the variance of
results for res = 0.5 increases with increasing θ values. For µ = 0.5, the results
for all resolutions are close for small θ ≤ 0.4. The choice of res = 2 has the best
results for θ ≥ 0.4 as it is the least influenced by the θ increase.

The results for bigger networks are better than those for smaller networks,
except for high values of µ and θ (for example, µ = 0.5 and θ = 1). Over-
all, all results are decreasing for higher µ and θ values, which aligns with our
expectations.

NAS + Leiden

NAS + Leiden algorithm with res ≥ 1 assigned every node to its own community.
Therefore, we have added testing NAS + Leiden algorithm with res = 0.3.

For networks of size n ≤ 100 (Figure 4.8), the results for res = 0.3 are better
than results res = 0.5, except for the case µ = 0.5 and θ ≥ 0.8. The variance of
results for specific µ decreases with higher θ values.

For networks of size n ≥ 250 (Figure 4.9), results for θ ≥ 0.4 and a specific
resolution are very similar for all µ values. The results for res = 0.3 are better
than the results for res = 0.5 (they are similar only in case µ = 0.5 and θ ≥ 0.8).
The variance of results for specific µ decreases with higher θ values.

The results for smaller networks are better than those for bigger networks.
Overall, all results are decreasing for higher µ and θ values, which aligns with our
expectations.

NAS + Greedy

Results for res = 0.5 and res = 1 are similar for all network sizes. Results for
res = 2 are more stable than results for other resolutions – they are less negatively
influenced by higher µ and θ values.

For networks of size n ≤ 100 (Figure 4.10), res = 0.5 is better for smaller
µ and θ values (for example µ = 0.05 and θ arbitrary, µ = 0.5 and θ ≤ 0.2).
For µ = 0.5 and θ ≥ 0.4, res = 0.5 is surpassed by res = 1, except for the case
θ ≥ 0.8. For these θ values, the best results are obtained by res = 2.

For networks of size n ≥ 250 (Figure 4.11), res = 0.5 and res = 1 have both
very high results compared to the results of res = 2. The only case this resolutions
are surpassed by res = 2 is when µ = 0.5 and θ ≥ 0.2 (res = 2 surpasses res = 0.5)
or µ = 0.5 and θ ≥ 0.6 (res = 2 surpasses res = 1).

Overall, the results are negatively influenced by higher µ and θ values. When
µ = 0.05, the results are less influenced by θ than the results for µ = 0.5.

33

µ = 0.05
θ = 0.4

µ = 0.3
θ = 0

µ = 0.3
θ = 0.4

µ = 0.3
θ = 0.8

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0
N
M
I

res = 0.5

NAS + Louvain algorithm n = 100

µ = 0.05
θ = 0.4

µ = 0.3
θ = 0

µ = 0.3
θ = 0.4

µ = 0.3
θ = 0.8

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 1

µ = 0.05
θ = 0.4

µ = 0.3
θ = 0

µ = 0.3
θ = 0.4

µ = 0.3
θ = 0.8

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 2

Figure 4.6: NAS + Louvain algorithm results for power-law distribution expo-
nents τ1 = 2 and τ2 = 2

34

µ = 0.05
θ = 0.4

µ = 0.3
θ = 0

µ = 0.3
θ = 0.4

µ = 0.3
θ = 0.7

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.7

0

0.2

0.4

0.6

0.8

1.0
N
M
I

res = 0.5

NAS + Louvain algorithm n = 500

µ = 0.05
θ = 0.4

µ = 0.3
θ = 0

µ = 0.3
θ = 0.4

µ = 0.3
θ = 0.7

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 1

µ = 0.05
θ = 0.4

µ = 0.3
θ = 0

µ = 0.3
θ = 0.4

µ = 0.3
θ = 0.7

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 2

Figure 4.7: NAS + Louvain algorithm results for power-law distribution expo-
nents τ1 = 2 and τ2 = 2

35

µ = 0.05
θ = 0

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 0.3

NAS + Leiden algorithm n = 100

µ = 0.05
θ = 0

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 0.5

Figure 4.8: NAS + Leiden algorithm results for power-law distribution exponents
τ1 = 2 and τ2 = 2

36

µ = 0.05
θ = 0

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.7

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 0.3

NAS + Leiden algorithm n = 500

µ = 0.05
θ = 0

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.7

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 0.5

Figure 4.9: NAS + Leiden algorithm results for power-law distribution exponents
τ1 = 2 and τ2 = 2

37

µ = 0.05
θ = 0

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0
N
M
I

res = 0.5

NAS + Greedy algorithm n = 100

µ = 0.05
θ = 0

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 1

µ = 0.05
θ = 0

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 2

Figure 4.10: NAS + Greedy algorithm results for power-law distribution expo-
nents τ1 = 2 and τ2 = 2

38

µ = 0.05
θ = 0

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0
N
M
I

res = 0.5

NAS + Greedy algorithm n = 250

µ = 0.05
θ = 0

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 1

µ = 0.05
θ = 0

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.5
θ = 0

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 2

Figure 4.11: NAS + Greedy algorithm results for power-law distribution expo-
nents τ1 = 2 and τ2 = 2

39

NAS + Infomap

Results for different trial parameter values are similar, so we will show only results
for trials equal to 10.

For networks of size n ≤ 100 (Figure 4.12), results decrease with higher µ and
θ values. When µ = 0.05, the differences between the results for different θ values
are less significant than for µ = 0.5.

For networks of size n ≥ 250 (Figure 4.13), results for µ = 0.05 are very
similar. The higher the µ value is, the more the results are negatively influenced
by higher θ values.

Overall, having µ ≤ 0.3, the results for bigger networks are better than those
for smaller networks. In case µ = 0.5, results for n ≥ 250 are better only for
low θ values (θ ≤ 0.6). As we expected, the results are negatively influenced by
higher µ and θ values.

θ = 0 θ = 0.4 θ = 0.8
0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.05

θ = 0 θ = 0.4 θ = 0.8
0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.35

NAS + Infomap algorithm n = 50

θ = 0 θ = 0.4 θ = 0.8
0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5

Figure 4.12: NAS + Infomap algorithm results for power-law distribution expo-
nents τ1 = 2 and τ2 = 2

40

θ = 0 θ = 0.4 θ = 0.8
0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.05

θ = 0 θ = 0.4 θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.3

NAS + Infomap algorithm n = 250

θ = 0 θ = 0.4 θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5

Figure 4.13: NAS + Infomap algorithm results for power-law distribution expo-
nents τ1 = 2 and τ2 = 2

NAS algorithms comparison

NAS + Louvain and NAS + Greedy algorithms had similar results for both res-
olutions res = 1 and res = 2 (Greedy had slightly worse results for all parameter
values), so we will show only results for NAS + Louvain algorithm. We also show
results for NAS + Leiden algorithm only with res = 0.3.

For networks of size n ≤ 100 (Figure 4.14), Infomap and Louvain algorithms
have better results for θ ≤ 0.4 than the Leiden algorithm. Leiden algorithm
outperforms Infomap and Louvain in case µ ≥ 0.35 and θ > 0.4.

For networks of size n ≥ 250 (Figure 4.15), the Leiden algorithm outperforms
Louvain and Greedy only in case µ = 0.5 and θ ≥ 0.6.

Overall, the Infomap algorithm has similar results as Louvain res = 1, except
for higher θ values. In that case, it has slightly better results, similar to the
results of Louvain with res = 2. As shown in Figures 4.8 and 4.9, the Leiden
algorithm is less sensitive to the increase of µ and θ values than the Infomap and
Louvain algorithms. However, the results of the Leiden algorithm are lower for

41

larger networks compared to the results for smaller networks. On the contrary,
Infomap and Louvain algorithms have better results for bigger networks (except
for high µ and θ values). Therefore, for networks of size n ≥ 250, the Leiden
algorithm outperforms Infomap and Louvain algorithm only in the case µ = 0.5
and θ ≥ 0.6.

4.1.3 Mixed similarity
MS + Louvain

Results for α = 0.5 are always between results for α = 0.3 and α = 0.7, so we
will not show results for α = 0.5.

For networks of size n ≤ 100 (Figure 4.16), α = 0.7 has the best results for
θ ≤ 0.8. The results for θ ≥ 0.8 are similar for all α values.

For networks of size n ≥ 250 (Figure 4.17), results for all α values are similar
in case µ ≤ 0.3. For µ = 0.5, α = 0.3 outperforms α = 0.5 and α = 0.7.

Overall, the results for n ≥ 250 are always better than those for n ≤ 100.
Higher α values are preferable for n ≤ 100. On the other hand, lower α values
are better for n ≥ 250.

MS + Leiden

MS + Leiden with res ≥ 1 assigned every node its own community. Thus, we
will show only results for MS + Leiden with res = 0.5. Results for α = 0.5 were
always between results for α = 0.3 and α = 0.7, so we will not show results for
α = 0.5.

For networks of size n ≤ 100 (Figure 4.18), α = 0.3 has the best results
for µ = 0.05. The choice of α = 0.7 is better for higher µ values, which we
expected because α = 0.3 uses more NPS weights. Thus, its results are more
negatively influenced by higher µ values than the results for α = 0.7. All results
are negatively influenced by higher µ and θ values.

For networks of size n ≥ 250 (Figure 4.19), results for α = 0.3 are near one
for µ ≤ 0.3. For µ = 0.5, the results for α = 0.3 are still better than those for
α = 0.7 despite the high variance for θ ≥ 0.4.

Overall, the results for n ≥ 250 are always better than those for n ≤ 100.
Higher α values are preferable for n ≤ 100. On the other hand, lower α values
are better for n ≥ 250.

MS + Greedy

We have not tested MS + Greedy algorithm because NAS + Greedy algorithm
had results similar to NAS + Louvain algorithm. NPS + Greedy algorithm had
slightly worse results than NPS + Louvain algorithm. Thus, we suppose the
results for the MS + Greedy algorithm would be slightly worse than those for
the MS + Greedy algorithm. In conclusion, MS + Greedy algorithm was not as
interesting as other possible combinations of fusion and clustering algorithms.

42

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.05, θ = 0.4

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.05, θ = 0.8

NAS algorithms comparison n = 50

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.35, θ = 0.4

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.35, θ = 0.8

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5, θ = 0.4

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5, θ = 0.8

Figure 4.14: NAS + Louvain, Leiden and Infomap algorithms results for power-
law distribution exponents τ1 = 2 and τ2 = 2

43

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.05, θ = 0.4

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.05, θ = 0.8

NAS algorithms comparison n = 250

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.3, θ = 0.4

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.3, θ = 0.8

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5, θ = 0.4

Infomap Louvain
res = 1

Louvain
res = 2

Leiden
res = 0.3

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5, θ = 0.8

Figure 4.15: NAS + Louvain, Leiden and Infomap algorithms results for power-
law distribution exponents τ1 = 2 and τ2 = 2

44

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.05

MS + Louvain algorithm n = 50

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.35

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5

Figure 4.16: MS + Louvain algorithm results for res = 1 and power-law distribu-
tion exponents τ1 = 2 and τ2 = 2

45

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.05

MS + Louvain algorithm n = 250

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.3

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5

Figure 4.17: MS + Louvain algorithm results for res = 1 and power-law distribu-
tion exponents τ1 = 2 and τ2 = 2

46

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.05

MS + Leiden algorithm n = 50

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.35

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5

Figure 4.18: MS + Leiden algorithm results for res = 0.5 and power-law distri-
bution exponents τ1 = 2 and τ2 = 2

47

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.05

MS + Leiden algorithm n = 250

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.3

α = 0.3
θ = 0

α = 0.3
θ = 0.4

α = 0.3
θ = 0.8

α = 0.7
θ = 0

α = 0.7
θ = 0.4

α = 0.7
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5

Figure 4.19: MS + Leiden algorithm results for res = 0.5 and power-law distri-
bution exponents τ1 = 2 and τ2 = 2

48

MS + Infomap

Results for MS + Infomap are equal to zero (only one large detected community)
because of the usage of NPS + Infomap (see Section 4.1.1).

MS algorithms comparison

As we have not tested MS + Greedy algorithm and the results for MS + In-
fomap algorithm are near zero, we will discuss only the results for MS + Louvain
algorithm and MS + Leiden algorithm.

For networks of size n ≤ 100, MS + Leiden algorithm with α = 0.3 outper-
forms MS + Louvain algorithm with α = 0.3 in cases θ ≥ 0.4. However, MS
+ Louvain algorithm with α = 0.7 is better than MS + Leiden algorithm with
alpha = 0.7, except for cases when µ =≥ 0.35 and θ ≥ 0.8.

For networks of size n ≥ 250, MS + Louvain algorithm outperforms MS +
Leiden algorithm for all µ and θ values. The results for α = 0.3 and µ ≤ 0.3 are
similar for both algorithms. However, the results differ for α = 0.7. In this case,
the results for MS + Louvain algorithm are better than those for MS + Leiden
algorithm, and the difference between the algorithms is the most markable for
µ = 0.5 and θ ≥ 0.8.

Overall, MS + Louvain algorithm outperforms MS + Leiden algorithm for
bigger networks and all α values. For smaller networks, MS + Louvain algorithm
is better than MS + Leiden algorithm with the same α values for θ ≤ 0.4 (and
for θ ≤ 0.8 in case α = 0.7).

4.1.4 Comparison of NAS, NPS and MS
Louvain algorithm

For networks of size n ≤ 100 (Figures 4.20 and 4.21), MS + Louvain has the
best results for small µ = 0.05. NAS + Louvain with all resolution values slowly
surpasses MS + Louvain for higher µ values because NPS + Louvain with res = 1
negatively influences MS + Louvain. Results of other algorithms for θ ≥ 0.8 and
higher µ are relatively similar.

For networks of size n ≥ 250 (Figures 4.22 and 4.23), MS + Louvain out-
performs NAS + Louvain and NPS + Louvain for all α values, especially MS +
Louvain with α ≤ 0.5 has exceedingly good results. Only NAS + Louvain with
res ∈ {0.5, 1} can compete with MS + Louvain for µ = 0.05, and NPS + Louvain
with res = 1 can compete with the average MS + Louvain results, other algo-
rithms drop behind. The difference between algorithms is particularly markable
for µ = 0.5 and θ ≥ 0.8, where only NPS + Louvain with res = 1 can cope with
MS + Louvain. However, NPS + Louvain has a wide variance, so MS + Louvain
with α ≤ 0.5 surpasses it.

Overall, MS + Louvain outperforms both NAS + Louvain and NPS + Lou-
vain, especially for µ = 0.5 and θ ≥ 0.8.

49

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.05

NAS, NPS, MS + Louvain algorithm n = 50, θ = 0.4

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.35

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5

Figure 4.20: NAS, NPS, MS + Louvain algorithm results for power-law distribu-
tion exponents τ1 = 2 and τ2 = 2

50

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.05

NAS, NPS, MS + Louvain algorithm n = 50, θ = 0.8

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.35

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5

Figure 4.21: NAS, NPS, MS + Louvain algorithm results for power-law distribu-
tion exponents τ1 = 2 and τ2 = 2

51

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.05

NAS, NPS, MS + Louvain algorithm n = 250, θ = 0.4

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.3

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5

Figure 4.22: NAS, NPS, MS + Louvain algorithm results for power-law distribu-
tion exponents τ1 = 2 and τ2 = 2

52

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0
N
M
I

µ = 0.05

NAS, NPS, MS + Louvain algorithm n = 250, θ = 0.8

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.3

NAS
res = 0.5

NPS
res = 1

MS
α = 0.3

MS
α = 0.7

NAS
res = 1

NAS
res = 2

0

0.2

0.4

0.6

0.8

1.0

N
M
I

µ = 0.5

Figure 4.23: NAS, NPS, MS + Louvain algorithm results for power-law distribu-
tion exponents τ1 = 2 and τ2 = 2

53

Leiden algorithm

Results for MS + Leiden algorithm with α = 0.7 and NAS + Leiden algorithm
with res = 0.3 were very similar, so we will only show results for MS + Leiden
with α = 0.7. Results for MS + Leiden with α = 0.3 were always better than
results for NPS + Leiden with res = 0.7.

For networks of size n ≤ 100 (Figure 4.24), MS + Leiden with α = 0.3 has
the best results for small µ = 0.05. For µ = 0.35, NAS + Leiden with res = 0.3,
MS + Leiden with α = 0.7 and MS + Leiden with α = 0.3 have similar results.
However, MS + Leiden with α = 0.3 has a large variance in results. MS + Leiden
with α = 0.3 is surpassed by MS + Leiden with α = 0.7 and NAS + Leiden with
res = 0.3 for µ = 0.5.

For networks of size n ≥ 250 (Figure 4.25), MS + Leiden with α = 0.3
outperforms MS + Leiden with α = 0.7 and NAS + Leiden with res = 0.3 for
every µ value (even though it has a large variance for µ = 0.5). NPS + Leiden
with res = 0.7 is the only algorithm that can compete with MS + Leiden with
α = 0.3; its results are slightly lower and have larger variance.

For bigger networks, MS + Leiden with α = 0.3 outperforms NAS, NPS and
MS with α = 0.7, especially for µ = 0.5 and θ ≥ 0.8. For smaller networks, the
results of MS + Leiden with α = 0.3 are better for lower µ values, and the results
of MS + Leiden with α = 0.7 are better for higher µ values.

Greedy algorithm

The results for the Greedy algorithm were similar to the results for the Louvain
algorithm.

For networks of size n ≤ 100 (Figures 4.3 and 4.10), the results for NAS +
Greedy with any resolution are better than the results for NPS + Greedy with
res = 1.

For networks of size n ≥ 250 (Figures 4.3 and 4.11), the results for NAS +
Greedy with any resolution are better than the results for NPS + Greedy with
res = 11, except for the case µ ≥ 0.3 and θ ≥ 0.8.

Overall, NAS + Greedy with any resolution outperforms NPS + Greedy with
res = 1 in most cases. The difference is most markable for bigger networks and
lower µ values.

Infomap algorithm

The only relevant results for Infomap are for NAS + Infomap because NPS +
Infomap and MS + Infomap detected only one large community containing all
nodes (and so the results are near zero for this fusion method).

54

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0
N
M
I

θ = 0.4

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

θ = 0.8

NAS, NPS, MS + Leiden algorithm n = 50, µ = 0.05

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

θ = 0.4

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0
N
M
I

θ = 0.8

NAS, NPS, MS + Leiden algorithm n = 50, µ = 0.35

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

θ = 0.4

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

θ = 0.8

NAS, NPS, MS + Leiden algorithm n = 50, µ = 0.5

Figure 4.24: NAS, NPS, MS + Leiden algorithm results for power-law distribution
exponents τ1 = 2 and τ2 = 2

55

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0
N
M
I

θ = 0.4

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

θ = 0.8

NAS, NPS, MS + Leiden algorithm n = 250, µ = 0.05

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

θ = 0.4

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

θ = 0.8

NAS, NPS, MS + Leiden algorithm n = 250, µ = 0.35

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

θ = 0.4

NPS
res = 0.7

MS
α = 0.3

MS
α = 0.7

0

0.2

0.4

0.6

0.8

1.0

N
M
I

θ = 0.8

NAS, NPS, MS + Leiden algorithm n = 250, µ = 0.5

Figure 4.25: NAS, NPS, MS + Leiden algorithm results for power-law distribution
exponents τ1 = 2 and τ2 = 2

56

4.2 Simultaneous fusion methods

Eva
The results for res = 2 are relevant only for n ≤ 100. For bigger networks, they
dropped rapidly to zero. Since the results for res = 2 were consistently lower
than or equal to the results for res = 1, we show only results for res = 1.

For networks of size n ≤ 100 (Figure 4.26), res = 1 outperforms res = 0.5 for
µ ≤ 0.35. In the case µ = 0.5, the results for res = 0.5 are slightly better than
for res = 1. All results are decreasing with higher µ and θ values.

For networks of size n ≥ 250 (Figure 4.27), results for res = 1 are clearly
better than the results for res = 0.5. The results for res = 0.5 are only slightly
decreasing for higher µ and θ values. The choice of res = 1 is negatively influenced
by µ and θ only in case µ = 0.5.

Overall, the results for bigger networks are better than those for smaller net-
works. The difference between results is most markable for res = 1 and µ ≥ 0.3.
All results are decreasing with higher µ and θ values, however, for networks of
size n ≥ 250 and res = 1, the results are around 1 even for µ = 0.3 and θ = 0.8.
res = 1 clearly surpasses res = 0.5 for bigger networks, having exceedingly good
results.

4.3 Discussion
This section presents a discussion of the impact of parameters on the algorithm’s
results.

4.3.1 Mixing parameter and noise parameter impact
Algorithms using NPS

For NPS, in general, the θ parameter had no impact on the results, as the NPS
does not use the attributes. For NPS + Louvain, NPS + Leiden and NPS +
Greedy algorithms with the choice res = 2, the results were not influenced by
higher µ values. This resolution favours smaller communities. Thus the algorithm
usually finds many small communities with only a few nodes. Such communities
are unaffected by higher µ because of their small size – for higher µ values, the
algorithm detects almost the same small communities.

NPS + Louvain and NPS + Greedy with the choice res = 1 were negatively
influenced by higher µ values because the resolution parameter favours neither
small nor large communities. With higher µ values, the communities are more
interconnected, making community detection harder. For bigger networks and
µ = 0.5, the results for both algorithms had a large variance.

Also, NPS + Leiden with the choice res = 0.7 was negatively influenced by
higher µ values, and its results had a large variance for µ ≥ 0.3. Considering the
results for NPS + Louvain algorithm with res = 1 and NPS + Leiden algorithm
with res = 0.7, for networks of size n ≥ 250, the results were less influenced by µ
than the results for networks of size n ≤ 100.

It can be observed (Figure 4.3) that NPS + Greedy algorithm with the choice
res = 1 achieved the best results for bigger networks for the µ settings µ = 0.3. It

57

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.35
θ = 0.4

µ = 0.35
θ = 0.8

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 0.5

Eva algorithm n = 50

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.35
θ = 0.4

µ = 0.35
θ = 0.8

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 1

Figure 4.26: Eva algorithm results for power-law distribution exponents τ1 = 2
and τ2 = 2

can be caused by the greediness of the algorithm but further experiments would
be necessary to confirm it.

Algorithms using NAS

The results for NAS + Louvain, NAS + Greedy and NAS + Infomap were influ-
enced by µ and θ in the same way, so we will describe only results for NAS +
Louvain.

The results for NAS + Louvain with res = 0.5 were more negatively in-
fluenced by higher µ and θ values than results for higher resolutions because
res = 0.5 favours bigger communities (see Figure 4.7). Higher µ values cause the
communities to be more interconnected, and the algorithm had problems with
their separation – the mixing of bigger communities causes a larger NMI decrease
than the mixing of smaller communities. On the other hand, the results for NAS
+ Louvain with res = 2 were less negatively influenced by higher µ and θ values
than results with lower resolutions because res = 2 favours smaller communities.

58

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.3
θ = 0.4

µ = 0.3
θ = 0.8

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 0.5

Eva algorithm n = 250

µ = 0.05
θ = 0.4

µ = 0.05
θ = 0.8

µ = 0.3
θ = 0.4

µ = 0.3
θ = 0.8

µ = 0.5
θ = 0.4

µ = 0.5
θ = 0.8

0

0.2

0.4

0.6

0.8

1.0

N
M
I

res = 1

Figure 4.27: Eva algorithm results for power-law distribution exponents τ1 = 2
and τ2 = 2

Results for NAS + Louvain with res = 1 were negatively influenced by higher µ
and θ values, too, and placed between results for res = 0.5 and res = 2.

For µ = 0.05, results for NAS + Louvain with any resolution were less influ-
enced by θ than the results for µ = 0.5. This is caused by the fact that NAS
uses attributes and adds weights only between nodes which were connected in
the former graph. For µ = 0.05, higher θ values caused fewer edges remained in
the weighted graph (as the output of a fusion algorithm). If there was an edge
with nonzero weight, it usually connected nodes in the same community because
of the low µ value. On the other hand, having µ = 0.5, the edges with nonzero
weights often connected nodes in different communities and thus, the results got
worse with higher θ values. Overall, all results were decreasing for higher µ and
θ values, which aligns with our expectations.

NAS + Leiden algorithm with res = 0.3 was also more negatively influenced
by higher µ and θ values than NAS + Leiden algorithm with res = 0.5 because
res = 0.3 favours bigger communities (Figure 4.8). For networks of size n ≥ 250
(Figure 4.9), results for θ ≥ 0.4 and a specific resolution are very similar for all

59

µ values. The variance of results for specific µ decreases with higher θ values.
Overall, all results are decreasing for higher µ and θ values, which aligns with our
expectations.

Algorithms using MS

For smaller networks, results for both MS + Louvain and MS + Leiden were
negatively influenced by higher µ and θ values, which coincides with our expecta-
tions. For both algorithms, the choice of α = 0.7 was better for higher µ values,
which we expected because α = 0.3 uses more NPS weights and thus, its results
are more negatively influenced by higher µ values than the results for α = 0.7.
The results for MS + Louvain with any α value were similar for θ ≥ 0.8.

For bigger networks, the results for MS + Louvain with α = 0.3 and MS +
Leiden with α = 0.3 were not influenced by higher µ and θ values (they were
influenced only a little for µ = 0.5). Also, α = 0.3 outperformed α = 0.7 for both
algorithms and all µ values.

Simultaneous fusion algorithms

Results for Eva with any resolution were negatively influenced by higher µ and θ
values. However, the results were not as influenced by higher θ values as results
for NAS + Louvain. The results for Eva with res = 0.5 were less influenced by
higher µ values than Eva with res = 1. However, for networks of size n ≥ 250
and Eva with res = 1, the results are around 1 even for µ = 0.3 and θ = 0.8. This
is caused by the bigger size of the network.

4.3.2 Summary
In conclusion, we have confirmed that higher µ values negatively influence all
algorithms and that higher θ values negatively influence algorithms using NAS.
The algorithms (mainly Leiden algorithm) are less influenced by µ when the size
of the network is bigger. We observed, that the algorithms with NPS had larger
variance of results for higher µ values. We conclude, that the combination of MS
with Louvain algorithm can reach very good results and almost cope with Eva.
Both these algorithms were resistant to the higher µ values, but only for larger
networks.

60

Conclusion
Community detection is a helpful tool for deepening our knowledge of complex
systems. The accuracy of community detection on complex networks can be
improved by using networks with node attributes. In this work, we have compared
several node-attributed community detection algorithms and the impact of the
parameters of the results of the algorithms.

The theoretical part of this work introduced the terminology regarding com-
munities and node-attributed graphs. We have found that the canonic definition
of a community does not exist. However, the definition is usually not essential
for community detection. Afterwards, we showed some interesting properties of
real-world networks, such as the power-law node degree distribution. Furtherly,
we have done a small survey about the community sizes and their connection with
power law. We have not found any systematic study supporting the power-law
distribution of community sizes; only a few articles observed this distribution on
real-world networks. Notwithstanding, many authors use the power-law commu-
nity size distribution in their works as a fact.

Moving onto the comparison of algorithms, we also presented some graph
benchmarks – GN, LFR, acMark, X-Mark, LFR-EA, ANC – and evaluation met-
rics – Adjusted Rand Index, Normalised Mutual Information – which can be used
to test the algorithms. We provided an overview of works related to comparing
the algorithms and found only two truly comparative studies of node-attributed
community detection algorithms carried out on synthetic networks.

In the practical part of this work, we carried out a comparative analysis of the
node-attributed community detection algorithm. This comparison was made en-
tirely on synthetic networks generated with the X-Mark benchmark, and we have
used Normalised Mutual Information to evaluate the results. For simplification,
we have divided the algorithms into three classes according to a moment when
the structure and the attributes of the network are being fused in the community
detection process – early fusion methods, simultaneous fusion methods and late
fusion methods. We have tested one simultaneous fusion method (Eva algorithm)
and several early fusion methods. The early fusion methods consist of a fusion
and a clustering algorithm. We have used Node Attribute Similarity, Node Path
Similarity and Mixed Similarity for the fusion and Louvain, Greedy modularity,
Leiden and Infomap algorithms for the clustering.

We have also studied the setting of the benchmark and algorithms parame-
ters, which was an essential part of the analysis. Finally, we have discussed the
obtained results and how the benchmark and the algorithm parameters influence
them. We confirmed that higher values of the mixing parameter negatively influ-
ence all algorithms and that higher noise parameter values negatively influence
algorithms considering attributes. We have also observed that the algorithms are
less influenced by the mixing parameters when the network size is bigger. The
algorithms that used Node Path Similarity had a larger variance of results for
higher mixing parameter values. The algorithms that used Mixed Similarity were
resistant to higher values of mixing and noise parameters, but only for larger
networks. Finally, we obtained very high Normalised Mutual Information values
using Mixed Similarity and the Louvain algorithm. The Eva algorithm is the

61

only algorithm that outperforms Mixed Similarity with the Louvain algorithm.
However, the Eva algorithm is slower than Mixed Similarity with Louvain.

During our work, we have found many topics for possible further studies.
The first one is the analysis of the community size distributions of real-world
networks. A thorough study is needed to support or confute the claim that
community sizes follow power-law distribution (Section 1.2.2). As noted in the
Related works section (Section 2.3), there are only a few truly comparative stud-
ies of node-attributed community detection algorithms. Although many small
studies are carried out by the authors when introducing a new community de-
tection algorithm, the studies are insufficient because they are not systematic,
use genuinely different methodological approaches, and are usually done on a few
networks. Further studies can also concern other node-attributed benchmarks,
such as acMark and ANC. It could be interesting to examine their parameters
and the impact on the accuracy of the algorithm.

62

Bibliography
[1] Esra Akbas and Peixiang Zhao. Graph Clustering Based on Attribute-Aware

Graph Embedding, pages 109–131. 04 2019. ISBN 978-3-030-02058-3. doi:
10.1007/978-3-030-11286-8 5.

[2] Réka Albert and Albert-László Barabási. Statistical mechanics of complex
networks. Rev. Mod. Phys., 74:47–97, Jan 2002. doi: 10.1103/RevModPhys.
74.47. URL https://link.aps.org/doi/10.1103/RevModPhys.74.47.

[3] Esmaeil Alinezhad, Babak Teimourpour, Mohammad Mehdi Sepehri, and
Mehrdad Kargari. Community detection in attributed networks considering
both structural and attribute similarities: two mathematical programming
approaches. Neural Computing and Applications, 32, 04 2020. doi: 10.1007/
s00521-019-04064-5.

[4] A. Arenas, L. Danon, A. Dı́az-Guilera, P. M. Gleiser, and R. Guimerà.
Community analysis in social networks. European Physical Journal B:
Condensed Matter, 38(2):373–380, March 2004. ISSN 1434-6028. doi:
10.1140/epjb/e2004-00130-1.

[5] Albert-László Barabási and Réka Albert. Emergence of scaling in ran-
dom networks. Science, 286(5439):509–512, 1999. doi: 10.1126/science.286.
5439.509. URL https://www.science.org/doi/abs/10.1126/science.
286.5439.509.

[6] Albert-László Barabási and Márton Pósfai. Network Science. Cambridge
University Press, 2016. ISBN 9781107076266. URL https://books.
google.cz/books?id=iLtGDQAAQBAJ.

[7] Albert-László Barabási, Réka Albert, and Hawoong Jeong. Mean-field theory
for scale-free random networks. Physica A: Statistical Mechanics and its
Applications, 272(1):173–187, 1999. ISSN 0378-4371. doi: https://doi.org/
10.1016/S0378-4371(99)00291-5. URL https://www.sciencedirect.com/
science/article/pii/S0378437199002915.

[8] Kamal Berahmand, Sogol Haghani, Mehrdad Rostami, and Yuefeng Li. A
new attributed graph clustering by using label propagation in complex net-
works. J. King Saud Univ. Comput. Inf. Sci., 34:1869–1883, 2020.

[9] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Eti-
enne Lefebvre. Fast unfolding of communities in large networks. Jour-
nal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, oct
2008. doi: 10.1088/1742-5468/2008/10/p10008. URL https://doi.org/
10.1088%2F1742-5468%2F2008%2F10%2Fp10008.

[10] Shyam Boriah, Varun Chandola, and Vipin Kumar. Similarity Measures for
Categorical Data: A Comparative Evaluation, pages 243–254. doi: 10.1137/
1.9781611972788.22. URL https://epubs.siam.org/doi/abs/10.1137/1.
9781611972788.22.

63

https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://books.google.cz/books?id=iLtGDQAAQBAJ
https://books.google.cz/books?id=iLtGDQAAQBAJ
https://www.sciencedirect.com/science/article/pii/S0378437199002915
https://www.sciencedirect.com/science/article/pii/S0378437199002915
https://doi.org/10.1088%2F1742-5468%2F2008%2F10%2Fp10008
https://doi.org/10.1088%2F1742-5468%2F2008%2F10%2Fp10008
https://epubs.siam.org/doi/abs/10.1137/1.9781611972788.22
https://epubs.siam.org/doi/abs/10.1137/1.9781611972788.22

[11] Cecile Bothorel, Juan David Cruz, Matteo Magnani, and Barbora Mi-
cenkovã. Clustering attributed graphs: Models, measures and methods. Net-
work Science, 3(3):408–444, September 2015. URL https://ideas.repec.
org/a/cup/netsci/v3y2015i03p408-444_00.html.

[12] Tanmoy Chakraborty, Ayushi Dalmia, Animesh Mukherjee, and Niloy Gan-
guly. Metrics for community analysis: A survey, 2016. URL https:
//arxiv.org/abs/1604.03512.

[13] Theerasak Chanwimalueang and Danilo Mandic. Cosine similarity entropy:
Self-correlation-based complexity analysis of dynamical systems. Entropy,
19(12):652, Nov 2017. ISSN 1099-4300. doi: 10.3390/e19120652. URL
http://dx.doi.org/10.3390/e19120652.

[14] Petr Chunaev. Community detection in node-attributed social networks:
A survey. Computer Science Review, 37:100286, 2020. ISSN 1574-0137.
doi: https://doi.org/10.1016/j.cosrev.2020.100286. URL https://www.
sciencedirect.com/science/article/pii/S1574013720303865.

[15] Petr Chunaev, Timofey Gradov, and Klavdiya Bochenina. Community de-
tection in node-attributed social networks: How structure-attributes cor-
relation affects clustering quality. Procedia Computer Science, 178:355–
364, 2020. ISSN 1877-0509. doi: https://doi.org/10.1016/j.procs.2020.
11.037. URL https://www.sciencedirect.com/science/article/pii/
S1877050920324169. 9th International Young Scientists Conference in Com-
putational Science, YSC2020, 05-12 September 2020.

[16] Petr Chunaev, Timofey Gradov, and Klavdiya Bochenina. The machinery of
the weight-based fusion model for community detection in node-attributed
social networks. Social Network Analysis and Mining, 11, 12 2021. doi:
10.1007/s13278-021-00811-6.

[17] Salvatore Citraro and Giulio Rossetti. Eva: Attribute-aware network seg-
mentation. CoRR, abs/1910.06599, 2019. URL http://arxiv.org/abs/
1910.06599.

[18] Salvatore Citraro and Giulio Rossetti. X-mark: a benchmark for node-
attributed community discovery algorithms. Social Network Analysis and
Mining, 11, 12 2021. doi: 10.1007/s13278-021-00823-2.

[19] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding commu-
nity structure in very large networks. Phys. Rev. E, 70:066111, Dec 2004.
doi: 10.1103/PhysRevE.70.066111. URL https://link.aps.org/doi/10.
1103/PhysRevE.70.066111.

[20] David Combe, Christine Largeron, Elöd Egyed-Zsigmond, and Mathias Géry.
Getting clusters from structure data and attribute data. 2012 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Min-
ing, pages 710–712, 2012. doi: 10.1109/ASONAM.2012.123.

64

https://ideas.repec.org/a/cup/netsci/v3y2015i03p408-444_00.html
https://ideas.repec.org/a/cup/netsci/v3y2015i03p408-444_00.html
https://arxiv.org/abs/1604.03512
https://arxiv.org/abs/1604.03512
http://dx.doi.org/10.3390/e19120652
https://www.sciencedirect.com/science/article/pii/S1574013720303865
https://www.sciencedirect.com/science/article/pii/S1574013720303865
https://www.sciencedirect.com/science/article/pii/S1877050920324169
https://www.sciencedirect.com/science/article/pii/S1877050920324169
http://arxiv.org/abs/1910.06599
http://arxiv.org/abs/1910.06599
https://link.aps.org/doi/10.1103/PhysRevE.70.066111
https://link.aps.org/doi/10.1103/PhysRevE.70.066111

[21] David Combe, Christine Largeron, Mathias Géry, and Elod Egyed-Zsigmond.
I-louvain: An attributed graph clustering method. 10 2015. ISBN 978-3-319-
24464-8. doi: 10.1007/978-3-319-24465-5 16.

[22] Anne Condon and Richard M. Karp. Algorithms for graph partitioning on
the planted partition model. Random Struct. Algorithms, 18(2):116–140, mar
2001. ISSN 1042-9832.

[23] Anh Dang and Emmanuel Viennet. Community detection based on struc-
tural and attribute similarities. In International Conference on the Digital
Society, 2012.

[24] Leon Danon, Jordi Duch, Alex Arenas, and Albert Dı́az-Guilera.
Community Structure Identification, pages 93–114. doi: 10.1142/
9789812771681 0006. URL https://www.worldscientific.com/doi/abs/
10.1142/9789812771681_0006.

[25] Leon Danon, Albert Dı́az-Guilera, Jordi Duch, and Alex Arenas. Comparing
community structure identification. Journal of Statistical Mechanics: The-
ory and Experiment, 2005(09):P09008, sep 2005. doi: 10.1088/1742-5468/
2005/09/P09008. URL https://dx.doi.org/10.1088/1742-5468/2005/
09/P09008.

[26] Haithum Elhadi and Gady Agam. Structure and attributes community de-
tection: Comparative analysis of composite, ensemble and selection meth-
ods. In Proceedings of the 7th Workshop on Social Network Mining and
Analysis, SNAKDD ’13. Association for Computing Machinery, 2013. ISBN
9781450323307. doi: 10.1145/2501025.2501034. URL https://doi.org/
10.1145/2501025.2501034.

[27] Issam Falih, Nistor Grozavu, Rushed Kanawati, and Younès Bennani. Com-
munity detection in attributed network. In Companion Proceedings of the
The Web Conference 2018, pages 1299–1306. International World Wide Web
Conferences Steering Committee, 2018. ISBN 9781450356404. doi: 10.1145/
3184558.3191570. URL https://doi.org/10.1145/3184558.3191570.

[28] Issam Falih, Nistor Grozavu, Rushed Kanawati, and Younès Bennani. Anca :
Attributed network clustering algorithm. In Chantal Cherifi, Hocine Cherifi,
Márton Karsai, and Mirco Musolesi, editors, Complex Networks & Their Ap-
plications VI, pages 241–252. Springer International Publishing, 2018. ISBN
978-3-319-72150-7.

[29] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-
law relationships of the internet topology. In Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’99, pages 251–262, New York, NY, USA, 1999.
Association for Computing Machinery. ISBN 1581131356. doi: 10.1145/
316188.316229. URL https://doi.org/10.1145/316188.316229.

[30] Walter D. Fisher. On grouping for maximum homogeneity. Journal of
the American Statistical Association, 53(284):789–798, 1958. doi: 10.1080/

65

https://www.worldscientific.com/doi/abs/10.1142/9789812771681_0006
https://www.worldscientific.com/doi/abs/10.1142/9789812771681_0006
https://dx.doi.org/10.1088/1742-5468/2005/09/P09008
https://dx.doi.org/10.1088/1742-5468/2005/09/P09008
https://doi.org/10.1145/2501025.2501034
https://doi.org/10.1145/2501025.2501034
https://doi.org/10.1145/3184558.3191570
https://doi.org/10.1145/316188.316229

01621459.1958.10501479. URL https://www.tandfonline.com/doi/abs/
10.1080/01621459.1958.10501479.

[31] Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans M. Coetzee.
Self-organization and identification of web communities. Computer, 35(3):
66–71, mar 2002. ISSN 0018-9162. doi: 10.1109/2.989932. URL https:
//doi.org/10.1109/2.989932.

[32] Santo Fortunato. Community detection in graphs. Physics Reports, 486
(3-5):75–174, feb 2010. doi: 10.1016/j.physrep.2009.11.002. URL https:
//doi.org/10.1016%2Fj.physrep.2009.11.002.

[33] Santo Fortunato and Darko Hric. Community detection in networks: A user
guide. Physics Reports, 659:1–44, nov 2016. doi: 10.1016/j.physrep.2016.09.
002. URL https://doi.org/10.1016%2Fj.physrep.2016.09.002.

[34] Ana L. N. Fred and Anil K. Jain. Robust data clustering. In 2003 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
2003. Proceedings., volume 2, pages II–II, 2003. doi: 10.1109/CVPR.2003.
1211462.

[35] Guojun Gan, Chaoqun Ma, and Jianhong Wu. Data Clustering: Theory, Al-
gorithms, and Applications. Society for Industrial and Applied Mathematics,
2007. doi: 10.1137/1.9780898718348. URL https://epubs.siam.org/doi/
abs/10.1137/1.9780898718348.

[36] M. Girvan and M. E. J. Newman. Community structure in social and bi-
ological networks. Proceedings of the National Academy of Sciences, 99
(12):7821–7826, jun 2002. doi: 10.1073/pnas.122653799. URL https:
//doi.org/10.1073%2Fpnas.122653799.

[37] Pablo M. Gleiser and Leon Danon. Community structure in jazz. Advances in
Complex Systems, 06(04):565–573, 2003. doi: 10.1142/S0219525903001067.
URL https://doi.org/10.1142/S0219525903001067.

[38] Neil Zhenqiang Gong, Ameet Talwalkar, Lester Mackey, Ling Huang, Eui
Chul Richard Shin, Emil Stefanov, Elaine, Shi, and Dawn Song. Jointly pre-
dicting links and inferring attributes using a social-attribute network (san),
2012.

[39] J. C. Gower. A general coefficient of similarity and some of its properties.
Biometrics, 27(4):857–871, 1971. ISSN 0006341X, 15410420. URL http:
//www.jstor.org/stable/2528823.

[40] R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt, and A. Arenas. Self-
similar community structure in a network of human interactions. Phys. Rev.
E, 68:065103, Dec 2003. doi: 10.1103/PhysRevE.68.065103. URL https:
//link.aps.org/doi/10.1103/PhysRevE.68.065103.

[41] Yanqing Hu, Hongbin Chen, Peng Zhang, Menghui Li, Zengru Di, and Ying
Fan. Comparative definition of community and corresponding identifying
algorithm. Phys. Rev. E, 78:026121, aug 2008. doi: 10.1103/PhysRevE.78.
026121. URL https://link.aps.org/doi/10.1103/PhysRevE.78.026121.

66

https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501479
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501479
https://doi.org/10.1109/2.989932
https://doi.org/10.1109/2.989932
https://doi.org/10.1016%2Fj.physrep.2009.11.002
https://doi.org/10.1016%2Fj.physrep.2009.11.002
https://doi.org/10.1016%2Fj.physrep.2016.09.002
https://epubs.siam.org/doi/abs/10.1137/1.9780898718348
https://epubs.siam.org/doi/abs/10.1137/1.9780898718348
https://doi.org/10.1073%2Fpnas.122653799
https://doi.org/10.1073%2Fpnas.122653799
https://doi.org/10.1142/S0219525903001067
http://www.jstor.org/stable/2528823
http://www.jstor.org/stable/2528823
https://link.aps.org/doi/10.1103/PhysRevE.68.065103
https://link.aps.org/doi/10.1103/PhysRevE.68.065103
https://link.aps.org/doi/10.1103/PhysRevE.78.026121

[42] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of
Classification, 2(1):193–218, 1985. URL https://EconPapers.repec.org/
RePEc:spr:jclass:v:2:y:1985:i:1:p:193-218.

[43] Sid L. Huff. Decomposition of Weighted Graphs Using the Interchange Par-
titioning Technique. Technical report, 1979. URL https://apps.dtic.mil/
sti/citations/ADA069549.

[44] Roberto Interdonato, Martin Atzmueller, Sabrina Gaito, Rushed Kanawati,
Christine Largeron, and Alessandra Sala. Feature-rich networks: going be-
yond complex network topologies. Applied Network Science, 4, 01 2019. doi:
10.1007/s41109-019-0111-x.

[45] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction
to Cluster Analysis. Wiley Series in Probability and Statistics. Wiley, 2005.
ISBN 9780471735786.

[46] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partition-
ing Graphs. The Bell System Technical Journal, 49(2):291–307, feb 1970.
ISSN 8756-2324. doi: 10.1002/j.1538-7305.1970.tb01770.x.

[47] L.I. Kuncheva and S.T. Hadjitodorov. Using diversity in cluster ensembles.
In 2004 IEEE International Conference on Systems, Man and Cybernetics
(IEEE Cat. No.04CH37583), volume 2, pages 1214–1219 vol.2, 2004. doi:
10.1109/ICSMC.2004.1399790.

[48] Andrea Lancichinetti and Santo Fortunato. Community detection algo-
rithms: A comparative analysis. Physical Review E, 80(5), nov 2009. doi: 10.
1103/physreve.80.056117. URL https://doi.org/10.1103%2Fphysreve.
80.056117.

[49] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing commu-
nity detection algorithms on directed and weighted graphs with overlapping
communities. Physical Review E, 80(1), jul 2009. doi: 10.1103/physreve.80.
016118. URL https://doi.org/10.1103%2Fphysreve.80.016118.

[50] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark
graphs for testing community detection algorithms. Physical Review E, 78
(4), oct 2008. doi: 10.1103/physreve.78.046110. URL https://doi.org/
10.1103%2Fphysreve.78.046110.

[51] Christine Largeron, Pierre-Nicolas Mougel, Reihaneh Rabbany, and Os-
mar R. Zäıane. Generating attributed networks with communities. PLOS
ONE, 10(4):1–21, 04 2015. doi: 10.1371/journal.pone.0122777. URL https:
//doi.org/10.1371/journal.pone.0122777.

[52] Soojung Lee. Improving jaccard index for measuring similarity in collab-
orative filtering. pages 799–806, 03 2017. ISBN 978-981-10-4153-2. doi:
10.1007/978-981-10-4154-9 93.

67

https://EconPapers.repec.org/RePEc:spr:jclass:v:2:y:1985:i:1:p:193-218
https://EconPapers.repec.org/RePEc:spr:jclass:v:2:y:1985:i:1:p:193-218
https://apps.dtic.mil/sti/citations/ADA069549
https://apps.dtic.mil/sti/citations/ADA069549
https://doi.org/10.1103%2Fphysreve.80.056117
https://doi.org/10.1103%2Fphysreve.80.056117
https://doi.org/10.1103%2Fphysreve.80.016118
https://doi.org/10.1103%2Fphysreve.78.046110
https://doi.org/10.1103%2Fphysreve.78.046110
https://doi.org/10.1371/journal.pone.0122777
https://doi.org/10.1371/journal.pone.0122777

[53] Chang Liu, Christine Largeron, Osmar R. Zäıane, and Shiva Zamani
Gharaghooshi. A late-fusion approach to community detection in attributed
networks. In Advances in Intelligent Data Analysis XVIII: 18th Inter-
national Symposium on Intelligent Data Analysis, IDA 2020, Konstanz,
Germany, April 27-29, 2020, Proceedings, pages 300–312. Springer-Verlag,
2020. ISBN 978-3-030-44583-6. doi: 10.1007/978-3-030-44584-3 24. URL
https://doi.org/10.1007/978-3-030-44584-3_24.

[54] Seiji Maekawa, Jianpeng Zhang, George Fletcher, and Makoto Onizuka.
General Generator for Attributed Graphs with Community Structure. 09
2019.

[55] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cambridge University Press, 2008. doi:
10.1017/CBO9780511809071.

[56] Fanrong Meng, Xiaobin Rui, Zhixiao Wang, Yan Xing, and Longbing Cao.
Coupled node similarity learning for community detection in attributed net-
works. Entropy, 20(6), 2018. ISSN 1099-4300. doi: 10.3390/e20060471. URL
https://www.mdpi.com/1099-4300/20/6/471.

[57] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel,
and Bobby Bhattacharjee. Measurement and analysis of online social net-
works. In Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, IMC ’07, pages 29–42, New York, NY, USA, 2007. Associa-
tion for Computing Machinery. ISBN 9781595939081. doi: 10.1145/1298306.
1298311. URL https://doi.org/10.1145/1298306.1298311.

[58] Ruchi Mittal and M. P. S. Bhatia. Classification and comparative evaluation
of community detection algorithms. Archives of Computational Methods in
Engineering, 28:1417 – 1428, 2020.

[59] M. E. J. Newman. Scientific collaboration networks. i. network con-
struction and fundamental results. Phys. Rev. E, 64:016131, Jun 2001.
doi: 10.1103/PhysRevE.64.016131. URL https://link.aps.org/doi/10.
1103/PhysRevE.64.016131.

[60] M. E. J. Newman. Fast algorithm for detecting community structure in
networks. Phys. Rev. E, 69:066133, Jun 2004. doi: 10.1103/PhysRevE.69.
066133. URL https://link.aps.org/doi/10.1103/PhysRevE.69.066133.

[61] M. E. J. Newman. Networks: An Introduction. Oxford University Press,
03 2010. ISBN 9780199206650. doi: 10.1093/acprof:oso/9780199206650.001.
0001. URL https://doi.org/10.1093/acprof:oso/9780199206650.001.
0001.

[62] M. E. J. Newman and M. Girvan. Finding and evaluating community struc-
ture in networks. Physical Review E, 69(2), feb 2004. doi: 10.1103/physreve.
69.026113. URL https://doi.org/10.1103%2Fphysreve.69.026113.

68

https://doi.org/10.1007/978-3-030-44584-3_24
https://www.mdpi.com/1099-4300/20/6/471
https://doi.org/10.1145/1298306.1298311
https://link.aps.org/doi/10.1103/PhysRevE.64.016131
https://link.aps.org/doi/10.1103/PhysRevE.64.016131
https://link.aps.org/doi/10.1103/PhysRevE.69.066133
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1103%2Fphysreve.69.026113

[63] Mark Newman. Power-Law Distribution. Significance, 14(4):10–11, 08 2017.
ISSN 1740-9705. doi: 10.1111/j.1740-9713.2017.01050.x. URL https://
doi.org/10.1111/j.1740-9713.2017.01050.x.

[64] Mark E. J. Newman. Detecting community structure in networks. The
European Physical Journal B, 38:321–330, 2004.

[65] MEJ Newman. Power laws, pareto distributions and zipf's law. Contem-
porary Physics, 46(5):323–351, sep 2005. doi: 10.1080/00107510500052444.
URL https://doi.org/10.1080%2F00107510500052444.

[66] Günce Keziban Orman and Vincent Labatut. A comparison of commu-
nity detection algorithms on artificial networks. In Proceedings of the
12th International Conference on Discovery Science, DS ’09, pages 242–
256, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 9783642047466.
doi: 10.1007/978-3-642-04747-3 20. URL https://doi.org/10.1007/
978-3-642-04747-3_20.

[67] Günce Keziban Orman, Vincent Labatut, and Hocine Cherifi. Qualita-
tive comparison of community detection algorithms. In Communications
in Computer and Information Science, pages 265–279. Springer Berlin Hei-
delberg, 2011. doi: 10.1007/978-3-642-22027-2 23. URL https://doi.org/
10.1007%2F978-3-642-22027-2_23.

[68] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering
the overlapping community structure of complex networks in nature and
society. Nature, 435(7043):814–818, jun 2005. doi: 10.1038/nature03607.
URL https://doi.org/10.1038%2Fnature03607.

[69] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Using pagerank
to characterize web structure. In Proceedings of the 8th Annual International
Conference on Computing and Combinatorics, COCOON ’02, pages 330–339,
Berlin, Heidelberg, 2002. Springer-Verlag. ISBN 354043996X.

[70] Leto Peel, Daniel B. Larremore, and Aaron Clauset. The ground truth about
metadata and community detection in networks. Science Advances, 3(5):
e1602548, 2017. doi: 10.1126/sciadv.1602548. URL https://www.science.
org/doi/abs/10.1126/sciadv.1602548.

[71] Clara Pizzuti and Annalisa Socievole. A genetic algorithm for community
detection in attributed graphs. In Kevin Sim and Paul Kaufmann, edi-
tors, Applications of Evolutionary Computation, pages 159–170, Cham, 2018.
Springer International Publishing. ISBN 978-3-319-77538-8.

[72] Clara Pizzuti and Annalisa Socievole. Multiobjective optimization and local
merge for clustering attributed graphs. IEEE Transactions on Cybernetics,
PP:1–13, 01 2019. doi: 10.1109/TCYB.2018.2889413.

[73] Pascal Pons and Matthieu Latapy. Computing communities in large networks
using random walks. J. Graph Algorithms Appl., 10:191–218, 01 2006. doi:
10.7155/jgaa.00124.

69

https://doi.org/10.1111/j.1740-9713.2017.01050.x
https://doi.org/10.1111/j.1740-9713.2017.01050.x
https://doi.org/10.1080%2F00107510500052444
https://doi.org/10.1007/978-3-642-04747-3_20
https://doi.org/10.1007/978-3-642-04747-3_20
https://doi.org/10.1007%2F978-3-642-22027-2_23
https://doi.org/10.1007%2F978-3-642-22027-2_23
https://doi.org/10.1038%2Fnature03607
https://www.science.org/doi/abs/10.1126/sciadv.1602548
https://www.science.org/doi/abs/10.1126/sciadv.1602548

[74] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto,
and Domenico Parisi. Defining and identifying communities in networks.
Proceedings of the National Academy of Sciences, 101(9):2658–2663, 2004.
doi: 10.1073/pnas.0400054101. URL https://www.pnas.org/doi/abs/10.
1073/pnas.0400054101.

[75] William M. Rand. Objective criteria for the evaluation of clustering meth-
ods. Journal of the American Statistical Association, 66(336):846–850, 1971.
doi: 10.1080/01621459.1971.10482356. URL https://www.tandfonline.
com/doi/abs/10.1080/01621459.1971.10482356.

[76] S. Redner. How popular is your paper? an empirical study of the citation dis-
tribution. The European Physical Journal B, 4(2):131–134, aug 1998. doi: 10.
1007/s100510050359. URL https://doi.org/10.1007%2Fs100510050359.

[77] M. Rosvall, D. Axelsson, and C. T. Bergstrom. The map equation. The
European Physical Journal Special Topics, 178(1):13–23, nov 2009. doi:
10.1140/epjst/e2010-01179-1. URL https://doi.org/10.1140%2Fepjst%
2Fe2010-01179-1.

[78] Martin Rosvall and Carl T. Bergstrom. Maps of random walks on complex
networks reveal community structure. Proceedings of the National Academy
of Sciences, 105(4):1118–1123, 2008. doi: 10.1073/pnas.0706851105. URL
https://www.pnas.org/doi/abs/10.1073/pnas.0706851105.

[79] Annalisa Socievole and Clara Pizzuti. Kernel-based Early Fusion of Struc-
ture and Attribute Information for Detecting Communities in Attributed Net-
works, pages 141–151. 04 2023. ISBN 978-3-031-31182-6. doi: 10.1007/
978-3-031-31183-3 12.

[80] Karsten Steinhaeuser and Nitesh Chawla. Community Detection in a Large
Real-World Social Network, pages 168–175. 01 2008. ISBN 978-0-387-77671-
2. doi: 10.1007/978-0-387-77672-9 19.

[81] Karsten Steinhaeuser and Nitesh V. Chawla. Identifying and evaluating
community structure in complex networks. Pattern Recognition Letters, 31
(5):413–421, 2010. ISSN 0167-8655. doi: https://doi.org/10.1016/j.patrec.
2009.11.001. URL https://www.sciencedirect.com/science/article/
pii/S0167865509003043.

[82] Alexander Strehl and Joydeep Ghosh. Cluster ensembles: A knowledge reuse
framework for combining partitionings. In Eighteenth National Conference
on Artificial Intelligence, pages 93–98, USA, 2002. American Association for
Artificial Intelligence. ISBN 0262511290.

[83] Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of similar-
ity measures on web-page clustering. In Proceedings of the AAAI Workshop
on AI for Web Search (AAAI 2000), pages 58–64, Austin, TX, USA, 2000.

[84] Patricia Sánchez, Emmanuel Müller, Uwe Korn, Klemens Böhm, Andrea
Kappes, Tanja Hartmann, and Dorothea Wagner. Efficient Algorithms for

70

https://www.pnas.org/doi/abs/10.1073/pnas.0400054101
https://www.pnas.org/doi/abs/10.1073/pnas.0400054101
https://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
https://www.tandfonline.com/doi/abs/10.1080/01621459.1971.10482356
https://doi.org/10.1007%2Fs100510050359
https://doi.org/10.1140%2Fepjst%2Fe2010-01179-1
https://doi.org/10.1140%2Fepjst%2Fe2010-01179-1
https://www.pnas.org/doi/abs/10.1073/pnas.0706851105
https://www.sciencedirect.com/science/article/pii/S0167865509003043
https://www.sciencedirect.com/science/article/pii/S0167865509003043

a Robust Modularity-Driven Clustering of Attributed Graphs, pages 100–108.
06 2015. ISBN 978-1-61197-401-0. doi: 10.1137/1.9781611974010.12.

[85] V. Traag, L. Waltman, and Nees Jan van Eck. From louvain to leiden: guar-
anteeing well-connected communities. Scientific Reports, 9:5233, 03 2019.
doi: 10.1038/s41598-019-41695-z.

[86] Ana Rita Vieira, Pedro Campos, and Paula Brito. New contributions for
the comparison of community detection algorithms in attributed networks.
Journal of Complex Networks, 8(4), 12 2020. ISSN 2051-1329. doi: 10.1093/
comnet/cnaa044. URL https://doi.org/10.1093/comnet/cnaa044.

[87] Joe H. Ward. Hierarchical Grouping to Optimize an Objective Function.
Journal of the American Statistical Association, 58(301):236–244, 1963. doi:
10.1080/01621459.1963.10500845. URL https://www.tandfonline.com/
doi/abs/10.1080/01621459.1963.10500845.

[88] M. Anthony Wong. A Graph Decomposition Technique Based on a High-
Density Clustering Model on Graphs. Technical report, 1980. URL https:
//apps.dtic.mil/sti/citations/ADA090348.

[89] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. Gbagc:
A general bayesian framework for attributed graph clustering. ACM Trans.
Knowl. Discov. Data, 9(1), aug 2014. ISSN 1556-4681. doi: 10.1145/2629616.
URL https://doi.org/10.1145/2629616.

[90] Zhao Yang, René Algesheimer, and Claudio J. Tessone. A comparative
analysis of community detection algorithms on artificial networks. Sci-
entific Reports, 6(1), aug 2016. doi: 10.1038/srep30750. URL https:
//doi.org/10.1038%2Fsrep30750.

[91] Zhijun Yin, Manish Gupta, Tim Weninger, and Jiawei Han. Linkrec: A
unified framework for link recommendation with user attributes and graph
structure. In Proceedings of the 19th International Conference on World
Wide Web, pages 1211–1212. Association for Computing Machinery, 2010.
ISBN 9781605587998. doi: 10.1145/1772690.1772879. URL https://doi.
org/10.1145/1772690.1772879.

[92] Elena Zheleva, Hossam Sharara, and Lise Getoor. Co-evolution of social and
affiliation networks. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’09, pages 1007–
1016, New York, NY, USA, 2009. Association for Computing Machinery.
ISBN 9781605584959. doi: 10.1145/1557019.1557128. URL https://doi.
org/10.1145/1557019.1557128.

[93] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph clustering based on
structural/attribute similarities. Proc. VLDB Endow., 2:718–729, 2009.

71

https://doi.org/10.1093/comnet/cnaa044
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500845
https://apps.dtic.mil/sti/citations/ADA090348
https://apps.dtic.mil/sti/citations/ADA090348
https://doi.org/10.1145/2629616
https://doi.org/10.1038%2Fsrep30750
https://doi.org/10.1038%2Fsrep30750
https://doi.org/10.1145/1772690.1772879
https://doi.org/10.1145/1772690.1772879
https://doi.org/10.1145/1557019.1557128
https://doi.org/10.1145/1557019.1557128

List of Figures

1.1 Differences in community detection 6

4.1 NPS + Louvain algorithm results 29
4.2 NPS + Leiden algorithm results 29
4.3 NPS + Greedy algorithm results 30
4.4 NPS algorithms comparison, smaller networks 31
4.5 NPS algorithms comparison, bigger networks 32
4.6 NAS + Louvain algorithm results, smaller networks 34
4.7 NAS + Louvain algorithm results, bigger networks 35
4.8 NAS + Leiden algorithm results, smaller networks 36
4.9 NAS + Leiden algorithm results, bigger networks 37
4.10 NAS + Greedy algorithm results, smaller networks 38
4.11 NAS + Greedy algorithm results, bigger networks 39
4.12 NAS + Infomap algorithm results, smaller networks 40
4.13 NAS + Infomap algorithm results, bigger networks 41
4.14 NAS algorithms comparison, smaller networks 43
4.15 NAS algorithms comparison, bigger networks 44
4.16 MS + Louvain algorithm results, smaller networks 45
4.17 MS + Louvain algorithm results, bigger networks 46
4.18 MS + Leiden algorithm results, smaller networks 47
4.19 MS + Leiden algorithm results, bigger networks 48
4.20 NAS, NPS, MS + Louvain results, smaller networks, lower noise . 50
4.21 NAS, NPS, MS + Louvain results, smaller networks, higher noise 51
4.22 NAS, NPS, MS + Louvain results, bigger networks, lower noise . . 52
4.23 NAS, NPS, MS + Louvain results, bigger networks, higher noise . 53
4.24 NAS, NPS, MS + Leiden results, smaller networks 55
4.25 NAS, NPS, MS + Leiden results, bigger networks 56
4.26 Eva algorithm results, smaller networks 58
4.27 Eva algorithm results, bigger networks 59

72

List of Tables

1.1 Exponents of cumulative power-law distribution 8

2.1 Notation used for result evaluation 14

3.1 X-Mark benchmark parameters 20

73

List of Abbreviations
• LFR Lancichinetti-Fortunato-Radicchi benchmark

• NMI Normalised Mutual Information

• ARI Adjusted Rand Index

• NAS Node Attribute Similarity algorithm

• NPS Node Path Similarity algorithm

• MS Mixed Similarity algorithm

• Greedy Greedy modularity algorithm

• res resolution (for Leiden, Louvain, Greedy and Eva algorithms)

74

A. Attachments

A.1 First Attachment
We attached files with the communities the algorithms detected and the files with
the partitionings evaluated with NMI.

The files are in following folders according to the algorithms: eva, ms infomap,
ms leiden, ms louvain, nas greedy, nas infomap, nas leiden, nas louvain, nps greedy,
nps infomap, nps leiden, nps louvain.

The names of the files either start with “eval” or “2eval” (which means the
data are evaluated with NMI) or with “res” or “2res” (which means the files
contain the detected communities). The number “2” before the filename means
that the file contains other part of results or communities which was not created
during the initial analysis.

Both types of files have the same format which can be easily read by the
Python module “json”. The file contain a dictionary. The key of the dictionary is
a tuple of tuples. Each tuple corresponds to parameters of an algorithm. The first
tuple corresponds to the benchmark parameters, the second tuple to the fusing
algorithm parameters, the third tuple to the clustering algorithm parameters and
the fourth to simultaneous approach algorithm parameters – ((graph), (fusing),
(clustering), (simultaneous)). Each of the algorithm parameter tuples consists
of tuples of specific parameters. The first value in the tuple is the parameter
name, and the second value in the tuple is the parameter value. For example,
(graph) tuple can be ((“max degree”, 35), (“mu”, 0.4)) and (clustering) tuple is
for example ((“resolution”, 0.9)).

The value of the dictionary is a list of lists and the lists correspond to specific
network (for each network, there is one list, so the number of lists equal to the
number of generated networks for some benchmark parameter combination). The
network results lists consist of results (the detected communities), so the length
of such list is equal to the number of repeats of the algorithm.

The communities are stored in a list of length corresponding to number of
nodes of the network. On each index in the list, there is the community id to
which the corresponding node belongs.

75

	Introduction
	Community detection
	Communities
	Community sizes and power-law distribution
	Power-law distribution and scale-free networks
	Community size distribution

	Node-attributed graphs
	Fusion methods and algorithms

	Comparing algorithms
	Graphs and graph models
	Girwan-Newman benchmark
	LFR benchmark
	acMark
	X-Mark
	Other benchmarks and methods

	Result evaluation
	Adjusted Rand Index
	Normalised Mutual Information

	Related works

	Comparison analysis
	Benchmarks and algorithms
	Algorithms
	Evaluation metric

	Parameters
	X-Mark parameters
	Fusing algorithms parameters
	Clustering algorithms parameters
	Simultaneous fusion algorithm parameters

	Running time of algorithms
	Encountered problems

	Results
	Early fusion methods
	Node path similarity
	Node attribute similarity
	Mixed similarity
	Comparison of NAS, NPS and MS

	Simultaneous fusion methods
	Discussion
	Mixing parameter and noise parameter impact
	Summary

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	First Attachment

