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Introduction
Network science is a relatively new field of research that has seen a flurry of ac-
tivity over the past two decades. It is characterized by abstracting a wide array
of real-world phenomena, be it social connections (Wasserman and Faust [1994];
Zachary [1977]), road infrastructures (Reza et al. [2022]), or protein-protein in-
teractions (Jeong et al. [2001]; Stelzl et al. [2005]), into the framework of graph
theory, which enables researchers to trace universal patterns in otherwise exceed-
ingly complex systems (Barabási [2013], Braha [2018]). This approach, on its
own, is by no means new – it can be argued that Euler’s approach to the Königs-
berg bridge problem from 1741 (Euler [1741]) or Milgram’s and Travers’ work
on the small world problem1 (1977) can be granted this characteristic. Nonethe-
less, two key developments from the 1990s helped establish network science as
a distinct field independent of graph theory, mathematical sociology, or systems
engineering. First, with the rapid development of a variety of computational tech-
nologies, especially the internet, we see the production of vast amounts of data
from all walks of life that can be translated into the language of graphs. Second,
in parallel, a number of key results and techniques2 were developed, showing that
approaching real-world phenomena through the framework of networks enables
us to trace non-trivial structures in the world and even successfully grapple with
dynamic processes on these networks (Newman [2003]). Network science, thus,
appears as a promising path to engage with the data-saturated world of today.

A fundamental inquiry in the field of network science revolves around the
development of a null model, a model that generates a class of graphs corre-
sponding to real-world networks. The development of a null model is of great
relevance since it would enable us to predict network structures in cases where
the information about them is incomplete3 and identify statistically significant
properties of networks (Chen [2022]). Nevertheless, formulating a sensible model
is a rather complicated matter as we need to enable the generation of a large
enough class of graphs to capture the diversity of real-world networks, ideally
specifying subclasses through the choice of parameters while maintaining their
underlying structure and logic of formation4.

There have been a number of attempts to create a null model, some more
successful than others. These attempts range from appropriating Erdős-Rényi
random graphs (Erdős et al. [1960]; Seshadhri et al. [2012]) to the attempt by
Albert and Barabási to harness the properties of the degree distribution in real-
world networks (Barabási and Albert [1999]; Albert [2005]) and an array of highly

1Milgram showed that individuals in the USA are connected by surprisingly short paths.
Specifically, he showed that on average any two individuals in the country can be connected
to each other through a chain of no more than six acquaintances. In the language of network
science, we would say that the average path length between any two vertices in the social
network of the USA is 6.

2Here, we refer to the scale-free and small-world properties, community structure, or cas-
cading failures. For a comprehensive exposition of the results and methods of network science,
see (Newman [2003]).

3An illustrative instance from the recent past is the transmission of COVID-19 within a spe-
cific community’s social network. We do not have comprehensive information about individual
contacts, and yet we would like to simulate the spread of infection.

4For a more detailed discussion, see chapter 1
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specialized models based on the type of network under scrutiny (Haddadi et al.
[2008]; Milenković et al. [2009]). However, the questions of how to construct
a good model and what this good means remains open and a matter of active
research in the field (Chen [2022]).

In this thesis, we approach these two questions through the lens of graphlets,
small local graphs 5 initially introduced by Pržulj (2004a). The goal of this thesis
is to explore the graph-theoretical properties of graphlets and demonstrate how
they can be used in network modeling. The structure of the thesis corresponds
to this effort.

In the first chapter, we attempt to shed some light on the thinking employed
in network science and the way network modeling is approached. We present a
simplified history of the development of network science to establish the context
for our endeavor. Subsequently, we introduce the problem of network character-
ization and some of the commonly used tools and results tied to it. Eventually,
we discuss classical models used for network modeling and outline the process of
model creation in relation to the problem of network characterization.

In the second chapter, independently of the first, we turn to graphlets. We
formally define graphlets and related concepts, discuss known results, and make
a few observations about their properties. We also suggest connections with the
Weisfeiler-Lehman isomorphism test and the reconstruction conjecture.

Finally, in the third chapter, we connect the previous two chapters, and we
discuss how graphlets might be used for characterizing and comparing networks
and how they might contribute to the effort of finding a better model for complex
networks. We apply graphlet-based measures on real-world networks and, backed
by both analytical and empirical results, suggest that graphlets can serve as a
strong tool for network comparison and modeling with an abundance of untapped
potential.

Terminology
In this thesis, we use standard terminology from graph theory and the following
terminology from network science6:

• network: A graph (V, E) that is either constructed from or used for modeling
real-world phenomena. These two concepts, graph and network, reference
the same structure, a graph defined by vertices and edges; nevertheless,
when we refer to a network, we emphasize the link with real-world phenom-
ena observed through the lens of graphs. Although blurry, the distinction
provides us with a better idea of the intentions that we have when working
with these structures.

• local topology: The structure, meaning the way vertices are connected by
edges, in local regions of a graph—for example, an induced subgraph rooted
in a particular vertex. The definition is not related to the field of mathe-
matical topology.

5You can find a more technical definition in 2.1.
6It should be noted that due to the relative novelty and interdisciplinary nature of the field

of network science, the terminology is not clearly established.
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• complex local topology: We say that a region of a graph has a complex local
topology if it is locally highly connected.

• null model: A simplified model for synthetic network generation that is used
as a baseline or reference point during the analysis of real-world networks. It
aims to capture expected patterns in real-world networks as well as random
phenomena. It serves as a null hypothesis against which novel network
properties or behaviors can be evaluated.

• k-neighborhood of v: The set of vertices that are within a distance of k
edges from the vertex v. We denote the k-neighborhood of v by Nk

G(v).

Concepts relevant only to specific sections are introduced in appropriate parts of
the thesis.
All figures, unless stated otherwise, are original.
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1. Modeling of Complex
Networks
The approach taken by network science to the real world is by no means self-
evident. Why should translating real-world phenomena into the language of graph
theory be a useful tool in understanding the reality of the world? What is the
motivation for developing models of reality within network science? Neither of
these questions has an obvious answer. In this section, we try to shed some light
on the thinking within network science and, hopefully, at least partially answer
these questions. We do this in three steps. First, we discuss the context and
motivation for the development of network science. Second, we discuss classical
tools used to describe real-world networks that help us capture universal patterns
in the world. And, third, we discuss what the role that modeling plays in this,
what are the classical models and how can we compare them to establish a good
representation of reality.

Admittedly, throughout this chapter, the presentation of many things is one-
sided and narrow in scope – some of the claims that we make in a single sentence
would deserve chapter-long discussion. We acknowledge this fact and point to ap-
propriate literature whenever needed to at least partially remedy this shortcom-
ing. Nevertheless, we still find it important to provide at least a broad overview of
motivation and thinking for network science and modeling of networks to better
contextualize the usage of graphlets in the discipline.

1.1 Historical context and motivation
Throughout the second half of the 20th century, in conjunction with the rise of
positivist science in the natural sciences, there was a push toward the rational-
ization, instrumentalization, and quantification of various observed phenomena,
processes, and activities (Ritzer [1996]; Gorman [2006]). In applied mathematics,
we can observe this in the development of disciplines such as linear programming,
which aims to optimize logistics in war and post-war efforts, and game theory,
which attempts to model real-world behaviors of (mostly) rational agents. As a
result of the spread of this kind of thinking and the development of specialized
technologies, a significant amount of information about the world are captured
and described in terms of quantifiable data and measurements (Bowker and Star
[2000]). The proliferation of qualitative data and the advancement of technolo-
gies not only contributed to the progress of existing scientific disciplines from
which the data originated but also stimulated the exploration of new approaches.
These possibilities became even more relevant with the widespread use of fast
computers, which enabled the production and processing of previously unimagin-
able amounts of information, and the internet, which facilitated the decentralized
production of vast amounts of data. However, as the amount of detailed data
increased, so did the complexity of the observed phenomena, surpassing the ca-
pabilities of classical approaches and structures. This raised the question of how
we can effectively describe complexity in such intricate structures.

To respond to this challenge and possibility, researchers mobilized existing
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work in the field of graph theory, which has proven immensely useful in describ-
ing relational structures. Representing data as graphs provides us with an unified
framework that allows for comparable information about the observed relational
structure. This enables us to describe, gain insights and analyze complex phe-
nomena in a more comprehensive and integrated manner (Börner et al. [2007]).
This led to the establishment of network science.

As such, when we want to use a network science approach for analyzing reality,
there are two principal steps that we must take – we first need to translate real-
world phenomena into the framework of networks and, then, we can analyze
some of their properties. This first step is often very complicated – in some
cases, such as friendship networks on Facebook or emails between addresses, the
translation into a network is relatively simple, but in most cases, such as neural
networks, ecological food chains, and friendships in between people, the way we
define vertices and edges are blurry at best and the information with which we
work is undoubtedly incomplete. We do not intend on diving into the problems
further, but it should be noted that we should not perceive real-world networks
that we work with as a pure and accurate representation of the real world and
this consideration should be at least noted when working and thinking about
networks. In this text, we focus on the second step – working with premade
networks representing real-world data.

In the next sections, we discuss how the framework of networks can be used
to describe real-world phenomena and how we can model them.

1.2 Describing networks
The approach of network science enables us to, through large networks describe
phenomena that otherwise are far beyond what we can perceive. However, making
observations based on a large network alone and tracing universalities across a
multitude of networks still remains beyond human abilities. For this reason,
several ways to characterize networks were devised. In this section, we introduce
some of them and showcase how they can be used to identify universal patterns
across different networks:

1.2.1 Characteristics of networks
Generally speaking, there are two ways of characterizing a network – we can
approach it through local properties of a network or through global properties 1.
In this subsection, we describe some of the most commonly used global and local
characteristics, for a more complete list of network characteristics, see Zhou et
al. (2004) or Newman (2003).

We always discuss properties on a connected graph G with |V (G)| = n vertices
and |E(G)| = m edges.

1This distinction is taken from Newman (2010). There are also fundamentally different ways
of characterizing a network such as the eigenvalue of incidence matrices or Laplace matrices
but discussion of them is beyond the scope of this text. We refer to Boccaletti et al. (2006) for
more information.
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Global

Global characteristics consider the entire network all at once and calculate some
information about the global behavior of vertices. Commonly, we obtain a single
number characterizing the entire network.

• average length of a path : calculates the average shortest path between any
two vertices in network – if we denote distuv the shortest path between u
and v, we can define average length of a path as 1

n

∑︁
u,v∈V (G) distuv.

• diameter : closely related to the average length of a path, it calculated
the longest shortest path between any two vertices in a network, i.e. the
diameter of a network is maxu,v∈V (G) distuv.

• associativity : measures the tendency of vertices to connect with other
vertices that have similar degrees. It assesses the mixing patterns of high-
degree and low-degree vertices in the network. The measurement is carried
out by the assortativity coefficient, and a variation on the Pearson correla-
tion coefficient. For a thorough formal definition see Newman (2002).

• graph motifs : calculate the ”patterns of interconnections occurring in com-
plex networks at numbers that are significantly higher than those in ran-
domized networks” (Milo et al. [2002], p.1). This can be used in tracing
overrepresented and underrepresented structures in a network.

• modularity : quantifies the presence of community structure within a net-
work. It evaluates the division of vertices into distinct modules or commu-
nities based on their connectivity patterns. The measurement of modularity
is carried out by splitting the whole network into groups and subsequently
comparing how many or fewer edges are between groups compared to a null
model, commonly the Erdős-Rényi model (see section 1.3.2). For a technical
description of the process, see Brandes et al. (Brandes et al. [2007]).

• global clustering coefficient : measures the degree to which vertices in a net-
work tend to form clusters, tightly interconnected groups. It provides an
overall measure of the extent of clustering in the entire network. It is com-
monly calculated based on the number of triangles in the network compared
to the number of triangles that might occur in the network. Concretely:
C(G) = 3∗ number of triangles in the network

number of potential triangles in the networks where C(G) is the global clus-
tering coefficient.

Local

Local characteristics commonly consider individual vertices and determine their
behavior in the network. Commonly, we obtain a distribution of values for each
vertex or edge which subsequently needs to be further processed so that networks
are comparable.

• degree distribution : calculates the degree of each vertex and produces a
degree distribution of the network.
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• betweenness centrality : quantifies the extent to which a vertex lies on
the shortest paths between other vertices in the network which might be
interpreted as its potential influence in information flow. Concretely, if we
denote σst the total number of shortest path between s, t ∈ V (G), σst(v) the
number of such paths that include vertex v, we can define the betweenness
centrality of a vertex, v, as g(v) = ∑︁

v ̸=s ̸=t
σst(v)

σst
(Brandes [2001]).

• vertex clustering coefficient : measures the extent to which its neighboring
vertices are connected, indicating the level of local clustering around the
vertex. For a thorough formal definition see Newman (2002).

1.2.2 Properties of real-world networks
Based on these characteristics, network scientists were able to identify universal
patterns that occur in most real-world networks. In this section, we introduce a
few representative examples 2:

• small-world property : when we measure the average length of the shortest
path between any two vertices in a network (call it Lavg(G) where G is
a network on n vertices (Watts and Strogatz [1998])) in combination with
their clustering coefficient (call it C(G)), it turns out that for the majority of
real-world networks, the value of Lavg is proportional to the logarithm of the
number of vertices in the network, i.e. Lavg ∝ n (Barrat and Weigt [2000];
Dorogovtsev and Mendes [2003]; Barmpoutis and Murray [2010]) and the
clustering coefficient C(G) is larger than that of a random network with
the same degree on average (we usually use Erdős-Rényi model introduced
in section 1.3.2).

• scale-free property : inspired by the research of Prince (1965), the scale-free
property requires that a degree distribution of a network follows a power
law, i.e. a few vertices have a large degree while the majority of vertices
have a relatively low degree. It was shown in many networks that this dis-
tribution follows power-law distribution rather than the normal or Poisson
distribution that one might expect (Barabási and Albert [1999]; Faloutsos
et al. [1999]; Onnela et al. [2007]). Although it should be noted, researchers
claim that the fact that we commonly observe degree distribution mimick-
ing power-law is a product of the data sampling (translating data into the
framework of networks as mentioned in 1.1) (Stumpf et al. [2005]; Had-
dadi et al. [2009]; Memǐsević et al. [2010]) and some claim that scale-free
property is not as common as it has been assumed (Broido and Clauset
[2019]).

• community structure : networks are said to have community structure if the
graph can be divided into groups, communities, that are internally densely
connected whereas connections between groups, communities, are sparse 3.

2We choose those that do not require an extensive discussion since the results are of not
of central interest to this text. We provide them to give a sense of what describing real-world
networks can be used for.

3Thorough formal definition is rather complicated as we need to define what a community
can be, how dense/sparse connections can occur and whether communities can overlap. For a
thorough treatment of this topic see Girvan and Newman (2002)
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Communities are quite common in networks from real-world data (Porter
et al. [2009]; Fortunato [2010]; Bedi and Sharma [2016]).

These characteristics occur in many seemingly unrelated networks which gives
us empirical support for their soundness and the meaningfulness of network sci-
ence more broadly.

1.3 Modeling a network
Beyond description, abstracting the world into the language of networks enables
us to attempt to model reality that we can observe. Modeling reality can help
us better understand complex network data (Memǐsević et al. [2010]) and poten-
tially predict a variety of structures and analyze their functionality 4. Researchers
are actively trying to find a sensible well-fitting model provided by a number of
vertices, n, and some parameter is capable of producing a graph with a structure
similar to that of real networks – this effort, nonetheless, is no easy undertak-
ing since we do not exactly know what is the structure that is supposed to be
modeled and even the data themselves are sometimes of uncertain corresponding
value to reality. The main challenge is to find a way to generate class of graphs
that includes exactly real-world networks – large enough to include all possible
variations (this is usually done by making the models random in core – in this
way, they are theoretically able to generate any possible graph) but small enough
to avoid generating networks that cannot be real-world networks (the idea behind
this can be seen on the figure 1.1).

1.3.1 Heuristics
When we are trying to create a model, we have to establish what a good model is
based on the real-world networks that we have. To do that, we have to somehow
show which networks are ”closer” to each other – to use the framing visualized in
figure 1.1, we have to create a ”metric” to show that the two sets truly overlap.
How is it possible to compare such complex relational structures as graphs? To
do that, it is common to use a set of heuristics that enable us to approximate the
similarity of different networks and subsequently compare them. If the heuristics
are good at characterizing real-world networks they can become the basis for
a new model. In this section, we present models of real-world networks and
highlight how heuristics are used for the evaluation of their quality.

Noted that, in the field of network science, heuristics used for network com-
parison are based on what we described as characteristics in section 1.2 used
for a network description. Since the intention when using these methods differ
when they are descriptors, we try to trace universal properties, and when they
are heuristic, we are capturing the network as a whole, and we keep the linguistic
distinction.

4This can help us better predict spreading phenomena, such as propagation of contagious
diseases (Hiram Guzzi et al. [2022]), and analyze structure, for example when trying to find
a new possible chemical (Hu et al. [2011]) or identify functional parts of the brain (Telesford
et al. [2011]).
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Figure 1.1: Problem of modeling networks. A is the set of all graphs on n
vertices, B is the set of all real-world networks (dots inside symbolize networks
about which we have data) and C is the set of graphs produced by a given model
(note that most of the models are probabilistic so a better representation would
be a heatmap). The goal of modeling is to make the set C match the set B.

1.3.2 Models of networks
In this subsection, we define some of the most commonly used models in network
science and discuss their strengths and weaknesses. We do not discuss in depth
their properties and function since that is beyond the scope of this text (we point
to appropriate literature) and we do not judge which model is better than the
other. Rather, by providing a coarse overview of the models we try to offer a
window into the thinking and practices related to model-making.

Erdős-Rényi model

The simplest model in use is Erdős-Rényi random model (ER for short) (Erdős
et al. [1960]), initially a mathematical experiment joining graph theory and prob-
ability theory. There are two ways how we can introduce ER model. First,
denoted by ER(n, m), we can consider two parameters n, m ∈ N+ corresponding
to the number of vertices n and m edges that we connecte between randomly
selected 2m vertices. Second, denoted by ER(n, p), we can define the model by
n ∈ N+ and p ∈ [0, 1] – than the model is created by considering all possible edges
on n vertices and placing them in the final graph with probability p5. Clearly,
ER(n, m) ≈ ER(n, p) if p = 2m

n(n−1) (m divided by the number of all possible
edges on n vertices).

The Erdős-Rényi model has been extensively studied by graph theorists and
lies at the core of the discipline of random graphs which led to a cornucopia of
fascinating results (see Bollobas (1998)). From the perspective of network science,
the model is characterized by relatively short average path lengths but limited

5This model is sometimes called Erdős-Rényi-Gilbert model Fienberg [2012] after Edgar
Gilbert (1959) who proposed it at the same time as Erdős and Rényi.
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community structure, small value of global clustering coefficient, and absence of
scale-free property, its degree distribution does not follow power law.

It should be noted that a variant of the Erdős-Rényi (ER) model is the 2-
configuration model (which we encounter in section 2.3.2).

Geometric model

Another model, the Geometric model (GEO for short) (Waxman [1988]), gener-
ates a graph by placing n vertices into a metric space and adding an edge between
two vertices if and only if two vertices are closer to each other than some thresh-
old r. The classical definition, using the notation established by Penrose (2003),
is the following:

Given the number of vertices, n, and a parameter r ∈ (0, 1), let us have a
metric space [0, 1)d with Euclidean distance. We sample the values of n points in
the space from a uniform distribution from the space (0, 1]d and connect any two
points if and only if the distance between the two points, excluding loops, is less
than r. This gives us a graph.

There are many modifications of the GEO model that for example also make
the connection of edges probabilistic rather than making it determined by the
threshold.

Geometric models prove to be a relatively good model based on most afore-
mentioned heuristics – they exhibit a high clustering coefficient due to how they
are constructed (vertices that have edges between each other need to be spatially
close to each other which increases the probability that there will be an edge
also between its neighbors). Furthermore, they can, but do not have to, exhibit
scale-free property (Memǐsević et al. [2010]).

They exhibit a small world and scale-free properties whilst the exhibition
wanted community structure. Some even heralded it as the most fitting model
(Memǐsević et al. [2010]).

Albert-Barabási model

A slightly different approach was taken by Albert and Barabási (1999) who,
focusing on the scale-free property, proposed the Albert-Barabási model (AB
model for short) that produces networks with scale-free degree distribution. The
main principle used in the generation of AB models is preferential attachment –
when iteratively building a network model, we preferentially attach a new vertex
to a vertex with a high degree. More exactly the algorithm is as follows:

Algorithm 1 Albert-Barabási model
Input: number of vertices n, number of edges m
Output: graph on n vertices and m edges

1: start with a graph, G, of one vertex
2: while there are less than n vertices in the graph do
3: take a new vertex v and consider the existing graph G
4: connect v to existing vertices in the graph with probability puv where

puv = degG(u)∑︁
w∈V (G)degG(w)

5: end while
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The scale-free model is based on the degree distribution characteristic of real-
world networks and, thus, replicates this property well – generates networks whose
degree distribution follows the power law (Albert and Barabási [2002]) which has
been perceived as one of the most important aspects of real-networks (Fienberg
[2012]). Furthermore, the AB model exhibits small-world property. Nevertheless,
AB model, in most cases, fails to display community structure (Börner et al.
[2007]) and, in recent years, the importance of scale-free property has been ques-
tioned – some argue that the strict scale-free property might be a side effect of
data sampling (Memǐsević et al. [2010]; Haddadi et al. [2009]) whilst others claim
that scale-free networks are not too common among real-world networks (Broido
and Clauset [2019]) (it should be noted that both of these claims are a matter of
active debate, see (Voitalov et al. [2019])).

There are many other models, such as GLP (Bu and Towsley [2002]), NLPA
(Kunegis et al. [2013]), or Watts-Strogatz model (Watts and Strogatz [1998]) to
name a few, discussion of which is beyond the scope of this text. Nonetheless,
practically all of them are a modification of the three aforementioned models and,
thus, they should provide a reasonable idea about how modeling is approached.

We can see that different models are good according to different heuristics
and, thus, when we are trying to create a reasonable network model of real-
world networks, it is essential to select a sensible heuristic to identify appropriate
models. The question of which heuristic is the most appropriate one is opened in
the next section.

1.3.3 Choice of a heuristic
There exist many heuristics characterizing networks from various perspectives.
But, it is far from clear which ones we should prioritize. Ideally, we would like
to satisfy all characteristics, but that is often impossible in practice. Those that
are rooted in empirical observation should be taken more seriously, but they are
insufficient to characterize networks on their own (Tanaka et al. [2005]). Be-
yond that, the opinions about which heuristics are appropriate for characterizing
networks differ.

Some prioritize local heuristics over global ones, for example, Pržulj argues
that ”although global properties of large networks are easy to compute, they
are inappropriate for use on incomplete networks because they can at best de-
scribe the structure produced by the [...] sampling techniques used to obtain
the partial networks” (Pržulj [2007], p. e178). In a similar vein, Haddadi ar-
gues that global characteristics disregard the complexity of local structures that
might be crucial to understand the behavior of networks (Haddadi et al. [2008])
and Memisević argues that ”local properties [...] impose a larger number of con-
straints, thus reducing degrees of freedom in which networks being compared can
differ” (Memǐsević et al. [2010], p. 3).

But for example, Tanaka et al. criticize the usage of degree distribution as
the principal heuristic since ”networks of vastly different structures could have
the same degree distributions” (Tanaka et al. [2005], p. 5142).

Further, some researchers, for example, Menisevic et al., argue that ”it might
be difficult to assess the reliability of the fit of any particular network model to
the data with respect to a single network property since different models might
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be identified as optimal with respect to different properties” (Memǐsević et al.
[2010]) and for that reason propose a mixture of different heuristics which might
better capture what is happening in the network (Memǐsević et al. [2010]).

All in all, there is no clear consensus on which heuristic exactly might be best
fitted for network comparison. It seems that, in the ideal case, we would like a
metric that is capable of capturing the local topology of networks whilst being
capable of distinguishing different networks that differ in global characteristics
and that includes, at least implicitly, multiple different characteristics at once.
In the next chapter, we introduce graphlets that appear to have exactly those
characteristics.
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2. Graphlets
Comparing two large-scale networks quickly becomes computationally untenable1.
For this reason, researchers devised tools for characterizing properties of a net-
work that can be viewed as heuristics in the process of comparing two networks
Boccaletti et al. [2006] (as described in section 1.3). Generally, these heuristics
focus on either global properties – such as the diameter of a network, clustering,
or average path length – or local properties. The earliest notable local heuristic
harnessing network motifs was proposed by Milo et al. (2002).2 They focus on
”patterns of interconnections occurring in complex networks at numbers that are
significantly higher than those in randomized networks” (2002, p.1). Without go-
ing into the technical details, network motifs can only be partial subgraphs and
are dependent on the random model used for motif detection in networks, which,
in real networks, may be misleading Artzy-Randrup et al. [2004]. Inspired by net-
work motifs but aware of their shortcomings, Pržulj (2004b) proposed graphlets
that focus only on induced subgraphs and are independent of a null model, mak-
ing them easier to work with and more flexible.

Alternatively, instead of approaching graphlets through network motifs in the
whole network – as mentioned above – we can perceive them as a generaliza-
tion of degree distribution (see definition 4), thus motivating their study as an
exploration of the neighborhood of vertices, from a different perspective.

Thanks to this, graphlets are commonly used to describe the local topology
of networks Espejo et al. [2020], Milenković et al. [2009], Hulovatyy et al. [2015].

In this chapter, we provide a formal definition of graphlets and related con-
cepts, review existing literature on the properties of graphlets, and present new
observations.

2.1 What are graphlets
Graphlets were first introduced by Pržulj as ”a connected network with a small
number of nodes3” (Pržulj et al. [2004b]). We failed to find a formal definition
of graphlet in literature. In this section, we lay out one a possible definition of
graphlets.

Here, we use the following definition – graphlet is an ordered pair (G, b(G))
where G is a graph and b is a function that assigns to each G certain index (for
small values this is determined by Figure 2.1) and the index of any graph on n
vertices is less than the index of any graph on n′ vertices if n < n′. Concretely:

Definition 1. (Graphlet Gn
i ) Let Gn be set of all connected non-isomorphic graphs

on n ≥ 2 vertices. Let G = ⋃︁
n∈N Gn be the union of all these sets. Let us consider

1Although we have a quasipolynomial algorithm for isomorphism testing (Babai [2016]), in
the case of large graphs, that are common in networks science, remains too computationally
expensive.

2The reason why we explicitly mention network motifs, besides historical context and mo-
tivation, is that graphlets and motifs are occasionally used interchangeably, and we want to
make a clear distinction between the two concepts.

3Nodes is a term commonly used in network science for the concept of vertices in graph
theory
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a bijection b : G ↦→ N, such that 1) for n ≤ 5, b↾Gn is defined as in Figure 2.1
below and 2) ∀1<m<m′;m,m′∈N∀G ∈ Gm∀G′ ∈ Gm′ : b(G) < b(G′).

Graphlet is a pair (G, b(G)) where G ∈ G is a connected graph and b(G) is its
index (natural number) assigned by the mapping b above. We denote this pair by
Gn

i in the case when n is the number of vertices of the the graph G and i = b(G).

We occasionally simplify our notation. When referring to a specific graphlet,
Gn

i , we can omit the upper index indicating the number of vertices on which it
is defined, as this number is uniquely determined by the index (because b is a
bijection). Similarly, when referring to a general graphlet on n vertices, we use
Gn without specifying its lower index.

By part 1) of definition 1, whenever we mention Gi with i ≤ 29 or gi with
i ≤ 72, we are using the convention from Figure 2.1. If referring to specific larger
graphlets, the ordering should be explicitly specified.

The bijection b defines a total ordering of the set G. For each n ≥ 2, we will
denote by Gn the restriction of this total order to Gn.

Further, for each graphlet, we can consider automorphism orbits. The infor-
mation about the neighborhood of a vertex then becomes much richer – we not
only know in which graphlets a vertex participates, but also what is its position
in the graphlet. This extension was introduced by Pržulj (2007). We use the
following definition where graphlet orbits are defined using just the undelying
graph structure of the graphlet, while their ordering refines the total ordering
induced by the bijection b:

Definition 2. (Graphlet orbit gk) Let us fix a graphlet Gi = (Vi, Ei) and its
automorphism group Aut(Gi). Orbit of a vertex v ∈ Vi is Orb(v) = {u ∈
Vi|u = g(v) for some g ∈ Aut(Gi)}. The equivalence classes of =Orb(v) are called
graphlet orbits, their set is denoted by Orb(Gi). We fix a one-to-one maping
di : Orb(Gi) ↦→ N. For o ∈ Orb(Gi), we denote by oi,j the pair (i, di(o)).

We define a total ordering of the set of all orbits O = ⋃︁
i∈N Orb(Gi) using the

lexicographic ordering as follows: o < o′ whenever o ∈ Orb(Gi), o′ ∈ Orb(Gi′),
and either i < i′ or i = i′ and di(o) < di′(o′). The set of all graphlet orbits with
this total lexicographic ordering is isomorphic, via an order isomorphism δ, to N
with its natural ordering. We will moreover require the ordering of graphlet orbits
to be compatible with Figure 2.1 below.

A graphlet orbital is a pair (o, δ(o)) where o ∈ Orb(Gi) and δ(o) = k is its
index assigned by the isomorphism δ above. We denote this pair by gk.

The ordering of graphlets and their orbits are based on a convention described
in Figure 2.1 for graphlets on less than 6 vertices. For up to 5 vertices, there are
exactly 30 graphlets with 73 different orbits.

When we refer to the position of v in a graphlet, we say that it touches a
certain graphlet at a certain position. More concretely:

Definition 3. (touches gj(G)ṽ) Let us have a graph G = (V, E) and an induced
subgraph H = (V ′, E ′) such that H is isomorphic to the underlying graph of a
graphlet Gi by an isomorphism f . If v ∈ V ′ is such that f(v) ∈ gk for some orbit
gk of Gi, we say that v touches Gi at orbit gk. Since Gi is uniquely determined
by gk, we can denote the relation of touching without Gi as gj(G)ṽ.
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Figure 2.1: All possible graphlets for n ∈ {2, 3, 4, 5}. The ordering of graphlets is
determined by Gi (below each graph). Graphlet orbitals are indicated by numbers
by individual vertices in graphlets (for each graphlet, each orbital has its color).
Orbit k than corresponds to gk (from definition 2). For example, in G1, we have
orbitals g1 (ending of a path) and g2 (middle vertex). source of the image: Pržulj
[2007]

Figure 2.2: An example of vertex a touching G1 (in bold) at g1.

For example, consider the graph, G, in Figure 2.2 where vertex a touches G1
at g1, g1(G)ṽ:

If we consider a graph G and fix a vertex v, we can consider all graphlets up
to a certain size in the neighborhood of v that v touches. We can summarise the
information into a graphlet degree vector.

Definition 4. (Graphlet degree vector {p, . . . , q}-gddG(v)) Let us have a graph
G on n vertices, the set of all graphlets induced on 2 ≤ p ≤ q < n vertices
G{p,...,q} = {Gi|i ∈ {p, . . . , q}} and the set of orbits in these graphlets Orb =
{gk|∃Gj ∈ G{p,...,q}∃v : v touches Gj at gk}, ordered as in definition 2.

Let us denote by ni(Gj)v the number of times that gi(G)ṽ occurs, that is, the
number of induced subgraphs H of G such that v ∈ H and H is isomorphic to
the underlying graph of the graphlet Gj whose orbit is gk by an isomorphism f
such that f(v) ∈ gk.Graphlet degree vector is a vector whose values correspond
to ni(Gj)v for all possible orbitals in graphlets of sizes {p, . . . , q}. Formally,
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{p, . . . , q}-gddG(v) = (ni(G)v|gi ∈ Orb).

For example for {2, 3, 4, 5}-gddG(v) = (n0(G)v, n1(G)v, . . . n72(G)v).
For ilustration consider the graph G in Figure 2.2 and the vertex a. The graphlet
degree vector is

{2, 3}-gddG(a) = (3, 2, 2, 1) (2.1)
if we present it in a table with comments about graphlet orbits for improved
readability, we get

g0 g1 g2 g3

{2, 3}-gddG(a) 3 2 2 1

We get this because: There are three graphlets on {2, 3} vertices (G0, G1 and
G2) and four different orbitals that yield Orb = (g0, g1, g2, g3). Vertex a touches
G0 as g0 in G (g0(G)ã) three times which implies that n0(G)a = 3. Similarly, a
touches G1 twice as g1 (graphs a and b in Figure 2.3) and twice as g2 (graphs c
and d in Figure 2.3) yielding n1(G)a = 2 = n2(G)a. Finally, a touches G3 as g3
in G (g3(G)ã, graph e in Figure 2.3) once which implies that n3(G)a = 1. This
gives us:

{2, 3}-gddG(a) = (n0(G)a, n1(G)a, n2(G)a, n3(G)a) = (3, 2, 2, 1) (2.2)

(a) (b) (c) (d) (e)

Figure 2.3: All 3-graphlets that vertex a touches in G

From this, it should become clear why the graphlet degree vector is sometimes
considered a generalization of the vertex degree. We investigate the neighborhood
of a vertex v up to a certain size and observe the topology described by the induced
subgraphs that v touches. Furthermore, as a matter of fact, the vertex degree
corresponds to {2}-gddG(v). This is also why our notation for the graphlet degree
distribution is inspired by the degree distribution, degG(v).

Finally, if we consider graphlet degree vectors for all vertices in V from G, we
get graphlet degree distribution.

Definition 5. (Graphlet degree distribution ({p, . . . , q}-gddG)) Graphlet degree
distribution is {p, . . . , q}-gddG = ({p, . . . , q}-gddG(v)|v ∈ V )

Graphlet degree distribution is usually presented in the form of a matrix,
which is a convention that we uphold in this text. Furthermore, if we consider the
entire graphlet degree distribution of graphlets on p, . . . , q vertices for a specific
graph G, we use the notation {p, . . . , q}-gdd(G). When the graph in question is

17



Figure 2.4: Graph on which we count graphlets for all vertices.

clear from context, we resort to simplified notation {p, . . . , q}-gdd. For the graph
G (shown in Figure 2.4), we obtain the following graphlet degree distribution:

{2, 3}-gddG =

⎛⎜⎜⎜⎜⎜⎜⎝
3 2 2 1
2 3 1 0
2 3 1 0
3 2 2 1
2 2 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (2.3)

and in the form of table for better readability

g0 g1 g2 g3

{2, 3}-gddG(a) 3 2 2 1
{2, 3}-gddG(b) 2 3 1 0
{2, 3}-gddG(c) 2 3 1 0
{2, 3}-gddG(d) 3 2 2 1
{2, 3}-gddG(e) 2 2 0 1

There are two things to mention:
Remark. The initial definition of graphlets by Pržulj (Pržulj et al. [2004b]) did not
consider orbitals but only entire graphlets that v touches. Therefore, the entire
graphlet degree distribution also consisted only of counts of different graphlets
that v touched. This definition is occasionally used interchangeably with our
definition of graphlets and is at the heart of much misunderstanding in discussions
about graphlets (compare Aziz et al. [2020], Zhang et al. [2013] and Pržulj [2007]).
When we refer to it later on in the text, we use the notation {p, . . . , q}-gdd◦.
Remark. The concept of graphlets was extended beyond the aforementioned def-
inition – from vertices to edges (Solava et al. [2012]), directed graphs (Sarajlić
et al. [2016]), and temporal graphs (Yoon et al. [2023]). However, these extensions
are beyond the scope of this text.

2.2 Existing results
Despite their widespread usage, we found little theoretical treatment of the prop-
erties of graphlets. Furthermore, most of the existing results and observations
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do not stem from an interest in graphlets on their own but rather from their ap-
plications, which in turn shed some light on their theoretical properties. In this
section, we summarize a selection of approaches and results from existing litera-
ture that utilize graphlets to uncover their properties beyond mere application.
By doing so, we simultaneously examine the existing literature for theoretical
results and further motivate the study of graphlets based on their application.

2.2.1 Linear dependence between graphlets
Some graphlet orbits are linearly interdependent.

Calculating {p, . . . , q}-gddG by brute force is computationally extremely de-
manding, even for small values of q. If we fix a vertex v, we have to find all the
graphlets spanned by neighbors up to a distance of q, establish their isomorphic
classes, and determine the orbit of v in these graphlets. In the search for a more
efficient graphlet counting algorithm, researchers started noticing interdependen-
cies between the counted graphlets.

For example, if we denote c(u, v) as the number of vertices that are connected
to both u and v, denote nj(G)v as the number of times that gj(G)ṽ, number
of times v touches a graphlet as gj and consider a graph G, we can deduce the
following about G1, a 3-path, and G2, a 3-cycle:

2n2(G)v =
∑︂

u∈NG(v)
c(v, u) (2.4)

n1(G)v =
∑︂

u∈NG(v)
deg(u) − 1 − c(v, u) =

∑︂
u∈NG(v)

n0(G)u − 1 − c(v, u) (2.5)

This follows from the observation that if we fix an edge vu between a vertex
v and its neighbor, the number of triangles (3-cycles), denoted as G2, that the
edge vu touches depends on the number of neighbors of u that are also neighbors
of v, which, by definition, corresponds to c(v, u). Therefore, if we calculate this
for every neighbor of v, we obtain 2n2(G)v because we count the same triangle
twice for the two neighbors of v that participate in it. By the same logic, the
number of 3-paths, denoted as G1, that v touches, denoted as g1, depends on the
number of vertices that are connected to u, a neighbor of u, but not to v. This
corresponds to deg(u) − 1 − c(v, u), as we need to subtract one for the edge vu.

Likewise, if we focus on the graphlets g9 and g12, we can analyze their occur-
rence, as noted by Hocevar and Demesar (2014), using Figure 2.5. Nodes on x,
y, and z induce G1, and we will be adding a fourth vertex, z. The number of
vertices connected to both y and z is, by definition, c(y, z) (represented by w1,
w2, and w3 in the figure). If this fourth vertex, w, is connected to x, it touches
G7 in g12 (as with w3). If it is not connected to x, x touches G6 in g9 (as with w1
and w2).

Since all c(y, z) are either in G6 or in G7, it must hold that for every specific
trio of x, y, z, the orbits of x give us n9(G)x + n12(G)x = c(y, z). Therefore,
if we sum over all possible trios that form G1, where x is at g1, and take into
consideration the repeated selection of concrete trios (every trio will be selected
twice in our counting), we obtain the following for a specific vertex x:
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Figure 2.5: Relation between orbits g9 and g12. Filled edges are in the G3 being
extended. Dashed edges exist by definition and are optional – their presence
makes the resulting G4 isomprphic to G6 or G7. source of the image and the
example: Hočevar and Demšar [2014]

2n9(G)x + 2n12(G)x =
∑︂

y,z:x,z∈NG(y)
G(x,y,z)∼=G1

c(y, z) (2.6)

Hocevar and Demesar (2014) sucesfully constructed sets of 57 equations re-
lating 58 orbits of graphlets on 5 vertices and the counts of neighboring pairs,
triples and quadruplets under certain conditions of isomorphism.

These approaches that interrelate graphlet orbits together make the basis for
most effective algorithms for precise enumeration of graphles and their orbits. For
a thorough discussion of this approach and its usage, see Ribero et al. (2021).

2.2.2 Redundant graphlets and graphlet dependencies
Interdependence of graphlets can be exploited in the effort to uncover
organizational principles of networks.

In a similar vein of thinking, Yaveroğlu et al. (2014) identify direct interde-
pendence between graphlet counts and subsequently exploit them for the analysis
of networks. First, they identify redundant graphlet orbits, which are graphlets
that can be linearly determined by the remaining graphlets. For example, if we fix
a vertex v and consider its g0(G)v, we can observe that every pair of its neighbors
is either in G1 or G2, which v touches as either g2 or g3. From this observation, we
can deduce the relationship

(︂
n0(G)v

2

)︂
= n2(G)v + n3(G)v, which means that if we

know either two, we can calculate the third. Yaveroğlu et al. follow through with
this logic and identify 11 non-redundant graphlet orbits among the 15 possible
ones in graphlets on 4 vertices. Let us call the set of these non-redundant 11
orbits R11.

This enables Yaveroğlu et al. to develop a system for tracing structural be-
havior of concrete networks. To achieve this, they take the only the 11 orbits,
selected 11 columns by the conventional ordering, of R11 from {2, 3, 4}-gdd, ma-
trix of n rows and 11 columns, and compute Spearman’s Correlation coefficients
between all pairs of columns in this (n x 11) matrix and present them in an (11
x 11) symmetric matrix that they call the Graphlet Correlation Matrix (GCM).
By minimizing structural dependencies between graphlets through the removal
of redundant orbits, they are able to determine dependencies between graphlets
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Figure 2.6: Graphlet Correlation Matrix calculated for two models of networks
(mentioned in section 1.3.2): a) a scale-free Barabasi-Albert network with 500
nodes and 1% edge-density; b) a geometric random network of the same size and
density; and two real-world networks: c) the world trade network of 2010; d) the
human metabolic network. source of the image: Yaveroğlu et al. [2014]

that occur in the data and shed a novel light on the organizational principles of
networks.

They apply this matrix to data about trading relations between a group of
countries in 2010, analyze them using the GCM, and determine the function of
certain groups of countries in the trading relations. The application of the GCM
on real-world data, as well as classical models in network science 4, can be seen in
Figure 2.6. For a thorough discussion of the technique and analysis, see Yaveroğlu
et al. (2014).

2.2.3 Graph isomorphism and graphlet kernel
Graphlets are used for isomorphism testing and are tied to the recon-
struction conjecture.

Graph isomorphism is an important and widely studied open problem in graph
theory (Kobler et al. [2012]) – given two graphs, G and H, can we determine if
they are isomorphic, i.e., G ∼= H? It has important practical ramifications in
diverse fields of research, and as such, several approaches have been suggested for
at least partial solutions. One well-received approach, proposed by Shervashidze
et al. (2009), is the computationally efficient and well-performing graphlet kernel
method. In this method, we first compute the number of graphlets on 2, 3, 4, 5
vertices subinduced in the compared graphs 5, normalize their count by the total
number of encountered graphlets, and calculate the transpose product between

4We will discuss models further in Chapter 2.
5It should be noted that, in contrast to our definition in this text, graphlets in the work by

Shervashidze et al. refer to the frequency of occurrence of non-isomorphic connected graphs on
2, 3, 4, 5 vertices throughout the whole graph, which results in a frequency vector.
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the graphlet counts of the two compared graphs. This method is both well-
performing and computationally efficient, successfully balancing out both aspects
of isomorphism testing (Shervashidze et al. [2009]).

A key question in this approach is the chance of correctly identifying the
isomorphism between two graphs. First, the authors resort to analytical results
and draw connections between subgraph enumeration and the reconstruction con-
jecture, which states that every graph is uniquely determined by its subgraphs.
Concretely,
Theorem 1. (Reconstruction conjecture (Kelly [1957])) Let G = (V, E) and
G′ = (V ′, E ′) be two graphs of size n > 2, ∀v ∈ V , let Gv be a node deleted
subgraph of G and ∀v′ ∈ V ′ let G′

v′ be a node deteled subgraph of G. Let g : V ↦→ V ′

be an isomorphism function such that Gv is isomorphic to G′
g(v) ∀v ∈ V . Then

G is isomorphic to G′.
They proceed to link reconstruction conjecture with their proposed kernel and

to the computational and probabilistic aspects of these considerations, description
of which is beyond the scope of this thesis. The link itself is nevertheless important
and is further discussed in subsection 2.3.2

Besides the aforementioned three results, graphlets have been used in the field
of Graph Neural Networks (GNN for short) as a way to capture and understand
structural characteristics of nodes and their neighborhood on graph-structured
data (Morris et al. [2019]). In this way, GNNs can learn representations that
encode the local graph topology, enabling them to capture fine-grained structural
information which is otherwise hard to trace (Guo et al. [2019]). Nevertheless,
within the field of GNN, the definition and approach to graphlets substantially
differ from how we treat them in this text – their definition puts emphasis on
the concept of substructures and, thus, results are often hard to translate to our
research (notable exception is harnessed in Section 2.3.2). For this reason, we do
not explore this topic further. For more information, see Bronstein et al. (2017).

2.3 Exploring characteristic of graphlet distri-
bution

Based on the previous section, one can argue that graphlets, as well as subgraph
counting more generally, are encountered from different perspectives in a variety
of research fields. Nonetheless, interest in their theoretical properties is often
peripheral, and existing results are scattered across disciplines. In this section,
we aim to address this by constructing an admittedly simplistic framework for
studying graphlets and exploring their expressive power. Results in this section
are original unless explicitly stated otherwise.

The key questions we seek to answer are: What can knowledge about the
presence of graphlets in a graph tell us about the graph itself? In other words,
what is the expressive power of {p, . . . , q}-gdd? Additionally, what can we deduce
about the graphlets in a graph given certain information about the graph, such
as its class?

These questions, along with the inquiries posed by researchers in Section
2.2, all revolve around the relationship between a graph and its graphlet de-
gree distribution. We can think of this relationship as a mapping between the
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set of non-isomorphic connected graphs on n vertices and the set of all possible
{2, . . . , γ}-gdd, where γ ≤ n.

Before we do that, we have to establish what are the possible values of a
{2, . . . , γ}-gdd from a graph on n vertices. Let us denote the largest value of
{2, . . . , γ}-gddG for a graph G on n vertices as {2, . . . , γ}-gdd(G), concretely:

{2, . . . , γ}-gdd(G) = max
i,j

{2, . . . , γ} − gdd(G)i,j (2.7)

The maximal possible value of {2, . . . , γ}-gdd(G) is reached in the complete
graph.

Lemma 2. Let Gn be the set of all non-isomorphic connected graphs on n vertices.
Then maxG∈Gn{2, . . . , γ}-gdd(G) is

(︂
n
γ

)︂
, if γ ≤ n

2 , and
(︂

n
⌊ n

2 ⌋

)︂
, if γ > n

2 , and it
occurs when the graph is complete, Cn.

Proof. Let us have a graph G and fixed vertex v. When we look into the neigh-
borhood of v intending to maximalize one value in {2, . . . , γ}-gddG(v), we would
like this vertex v to participate as many times as possible in one concrete graphlet
and we want v to touch this graphlet at one specific orbit. This is exactly the
case for a complete graph – µ-neighborhood of v for µ ≤ γ always contains all
vertices and selection of any µ vertices neighboring v gives us a complete graph
on these vertices which means that we have

(︂
n
µ

)︂
different graphlets. Now we only

need to select µ such that the number of graphlets is maximalized. This happens
at µ = ⌊n

2 ⌋ since that is where the function
(︂

n
µ

)︂
for fixed n attains its maximum

value on N and the function is monotonically increasing until that point. This
gives us the statement.

The minimal maximum value of {2, . . . , γ}-gdd(G) is

Lemma 3. Let Gn be the set of all non-isomorphic connected graphs on n vertices.
The minimal maximal possible value in {2, . . . , γ}-gdd(G), i.e.
minG∈Gn{2, . . . , γ}-gdd(G), for any graph on n ≥ 3 vertices is 2 and it occurs
when the graph is a path or a cycle.

Proof. Every induced subgraph of a path or a cycle is a path. If we fix a vertex v,
the only graphlets in a path that have nonzero entries will be paths shorter than
γ. In a given path, the number of mutually automorphic vertices is, at most, 2
since the position of a vertex is determined by its distance from both ends of the
path. For this reason, the number of times v touches any orbit is at most 2 in a
path. This value is necessarily minimal, it cannot be smaller, since we consider
only connected graphs.

Now we show that minG∈Gn{2, . . . , γ}-gdd(G) = 2 happens exactly when G is
a path or a cycle. This follows from the fact that if the given graph G included any
branching (shown in Figure 2.7), the vertex v in the middle of the branching would
touch graphs G1 at orbit g2 three times (in the paths u′vu′′, u′′vu′′′ and u′vu′′′)
which would lead to higher {2, . . . , γ}-gdd(G) than in a path or a cycle. The only
graphs that do not include branching are paths and cycles which concluded the
proof
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Figure 2.7: example of a branching

Now, we can return to the idea of mapping between graphs and possible
graphlet distributions and define the following:
Definition 6. (graphlet mapping (Gn

γ )) Let 2 < n ∈ N and γ < n. Let Gn be
a set of non-isomorphic labeled connected graphs on n vertices. Let GDDn

γ be
a set of all matrices of dimensions (nx k) where k is the number of orbits in
all graphlets on {2, . . . , γ} vertices. The values of, (GDDn

γ )i,j, are bounded by
0 ≤ (GDDn

γ )i,j <
(︂

n
⌊ n

2 ⌋

)︂
and the rows correspond to vertices in lexicographical

order. Graphlet mapping, Gn
γ : Gn ↦→ GDDn

γ , is a function that maps a given
graph on its graphlet distribution.

We show that the definition is correct and make some observations about the
mapping
Claim 4. The mapping Gn

γ described in definition 6 is well-defined, in general,
non-surjective and non-injective for any choice of γ ≤ n.
Proof. The number of possible graphs on n vertices is 2n and the number of
connected and mutually non-isomorphic graphs is smaller since we only add con-
straints. Therefore, the set of connected non-isomorphic graphs on n vertices is
finite and the domain is well-defined. From lemma 2 and lemma 3, we get the
bounds 2 ≤ {2, . . . , γ}-gdd(G) ≤

(︂
n

⌊ n
2 ⌋

)︂
. Therefore, the range of the mapping

is finite and well-defined. Further, since we use the labels to mark vertices and
their corresponding counterparts in rows of GDDn

γ , there is a unique projection
for each G Gn

γ . Therefore, the mapping is well-defined.
We can see that the mapping is not surjective by constructing a matrix that,

although bounded and fitting criteria of the definition, contradicts internal depen-
dencies of graphlets discussed in 2.2.2, e.g. we can fix a vertex v and the values of
n2(G)v and n3(G)v, but choose n0(G)v so that

(︂
g0(G)v

2

)︂
̸= g2(G)v + g3(G)v (using

the result discussed in section 2.2.1).
The non-injectivity can be proved by the following counterexample: consider

graph G and graph H on Figure 2.8. Since they both have the same degree
distribution (1 − 2 − 2 − 2 − 3), {2}-gddG = {2}-gdd(H).

2.3.1 Graph to graphlet degree distribution
We can continue our exploration by tracing how Gn

γ behaves on certain types of
graphs. This part of our exploration of the properties of graphlets should give us
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(a) graph G (b) graph H

Figure 2.8: counter example to injectivity of Gv

a better sense of what they capture and, as it turns out, establish some of their
limitations. Some of the results below might seem inappropriately placed, but
this section intends to get our hands on graphlets, play around with them, and,
along the way, establish facts about graphlets that will be useful later on.

Lemma 5. Let v and u be two vertices in G such that there exists an auto-
morphism that maps v on u, i.e. they are contained in the same orbit. Then
∀γ ≤ n : {2, . . . , γ}-gddG(v) = {2, . . . , γ}-gddG(u).

Proof. By contradiction, let i be the index of the graphlet for which ni(G)v ̸=
ni(G)u (if there is no such index, we are done). Consider all the subsets of the
neighborhood of u and v that induce a graphlet such that u and v are touching it
at orbital gi. Since the number of such graphlets differs for u and v, there must be
an edge in the neighborhood of u (wlog) that is not present in the neighborhood
of v. But than, there cannot exist an automorphism that maps u on v. This gives
us the contradiction.

Theorem 6. Consider a connected graph, G, on n vertices and its graphlet degree
distribution of graphlets up to the size of n−1, {2, . . . , n−1}-gdd. If G is 2-vertex-
connected, then we can uniquely determine {2, . . . , n − 2}-gdd from {n − 1}-gdd.

Proof. Let us have a graph G and fix a vertex v. If we know {n − 1}-gddG(v)
and want to correctly determine {2, . . . , n − 2}-gddG(v), we have to ensure two
things : 1. which graphlets on l ∈ {2, . . . n − 2} vertices does v touch and 2. that
the number of times that we take these graphlets into account truly corresponds
the to number of times v touches them.

To approach the first, we can make a small observation – every graphlet on
l ∈ {2, . . . n − 2} vertices that v touches must be induced in a graphlet on n − 1
vertices that v touches. If it was not the case and we had a graphlet on l vertices
that v touches, call it Gl, but is not induced in any graphlet on l + 1 vertices
that touch v, we could find a vertex u connected to Gl and, thus, a graphlet on
l+1 vertices that induce Gl. From this, it follows that in order to establish which
graphlets on l ≤ n − 1 vertices v touch, it is sufficient to investigate induced
graphlets in every graphlet on n − 1 vertices that v touches. From this it follows
that from {n−1}-gddG(v), we can find out which values in {2, . . . , n−2}-gddG(v)
are nonzero, i.e. which graphlets on l ∈ {2, . . . , n − 2} vertices can we expect,
and where does v touch them.
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To approach the second, we must find out how many times each of these
graphlets that v touches occur in the graph since certain graphlets can be present
in some of the larger graphlets but not in others and we want to include each
exactly once. Illustration of the problem can be seen in the following Figure 2.9:

(a) graph G (b) graph H

Figure 2.9: The graphs G and H demonstrate a problematic case when induced
graphlet (in these cases of P3, path on 3 vertices, rooted in v) can be counted
once (as in the case of H where paths from v to x′, x′′ and x′′′ all induce the same
specimen) or three times (as in the case of G where paths from v to x′, x′′ and x′′′

induce different specimens of P3). We show the case on smaller graphlets than
n − 1 for illustration.

To resolve this, let us consider a graphlet Gi on k < n − 1 vertices that
v touches at orbit gj. From 2-vertex-connectedness, we know that v touches
exactly n − 1 graphlets on n − 1 vertices – we can remove any vertex but v from
the G and get a graphlet on n − 1 vertices that v touches. If the graph was not
2-vertex-connected, upon removing a certain vertex x, the graph would split into
two disconnected components, v would be in one of them and, thus, there would
have to be less than n − 1 graphlets on n − 1 vertices.

Therefore, if we have a graphlet Gi on k vertices touching v, there are exactly
n−k graphlets on n−1 vertices that v touches and that include Gi as an induced
subgraph. Based on this observation we can establish the number of times a
graphlet on k vertices that touch v at gj occurs by summing all the occurrences
in all graphlets on n − 1 vertices that v touches – from 2-vertex-connectedness,
there is exactly n − 1 of them – and dividing the number by n − k as each of
these graphlets is accounted for in exactly n − k graphlets on n − 1 vertices (we
can remove any vertex but those in the graphlet on k vertices, one of which is v,
and there is n − k of those).

From this it follows that for a 2-vertex connected graph, the information
included in {2, . . . , n − 1}-gddG is the same as the information included in {n −
1}-gddG. It should be noted that the process of calucating the rest of graphlet
counts can be as difficult as computing the entire graphlet degree distribution
since we need to take into account isomorphisms of all subinduced graphlets.
Nevertheless, the result might be interesting from the perspective of expressivity
of GNN.
Remark. The case when G is only 1-connected is more difficult. Even though we
can establish the types of graphlets that are subinduced in the known graphlets
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Figure 2.10: Example for graph G for computing nested degrees.

(e.g. those on n − 1 vertices), by the same argument as given in the proof of
Theorem 6, it is difficult to establish how many times is a graphlet induced.
The reason for that is that we do not have n − 1 graphlets on n − 1 vertices –
since the graph is not 2-vertex connected, there is at least one vertex that, upon
removing, will split the graph into two disconnected components. Therefore, not
all graphlets on less than n − 1 vertices participate in exactly n − 1 graphlets
on n − 1 vertices which makes counting difficult. An example of the problem
can be seen in Figure 2.9. From this, it follows that in order to establish the
number of times a graphlet is induced, we would have to aggregate information
from multiple vertices at once, which, if possible, would require an exploration of
a number of nontrivial combinatorial possibilities.

Now, we can focus on specific classes of graphs and see how graphlet behaves
on those.

Let Nµ
deg(v) be the nested degrees of a vertex v to the depth of µ – by this,

we mean nested listing of all degrees of a vertex and all of its neighbors up the
distance of µ. For example in the graph in Figure 2.10, we get the nested degrees
N2

deg(v) = (3 : (4 : ((4)(2)(1)))(4 : (2)(1)(3))(2 : (4))) – this stems from the fact
that vertex v has three neighbors: 1) first has degree 4 and three children with
degrees 4,2 and 1; 2) second has degree 4 and three children with degrees 2,1 and
3; 3) third has degree 2 and one child with degree 4. Nµ

deg(v) stops working in
graphs where there are cycles – since it does not account for which vertices we
visited, it can continue in cycles. Nevertheless, it is sufficient for the following
claim:

Lemma 7. Let us have a graph G. If G is a tree, than for each v its
{2, . . . , µ}-gddG(v) is determined by its Nµ

deg(v).

Proof. Let us fix a vertex v and consider its Nµ
deg(v). Since the all subgraphs of

a tree are trees, there are no cycles in the graph, we can reconstruct the whole
neighborhood of v based on this sequence. Therefore, we have more than enough
information for calculating {2, . . . , µ}-gddG(v) since, by definition, all graphlets
on µ vertices are in a distance of less than µ.

Theorem 8. Every two regular graphs on n vertices, G and H, with grith, the
length of the smallest induced cycle, of µ ≤ n − 1 or smaller, have the same
{2, . . . , µ}-gdd.

Proof. Since there is no cycle of length µ or smaller, the only graphlets that can
occur are acyclic and connected – trees. We can determine {2, . . . , µ}-gdd(G) and
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{2, . . . , µ}-gdd(G). Since all vertices have the same degree, {2, . . . , µ}-gdd(G) is
equal to {2, . . . , µ}-gdd(G) by lemma 7.

From this, it follows, that graphlets are not particularly useful on graphs that
have a local topology similar to trees, especially to those with uniform degree
distribution.

Finally, consider the following two graphs:

(a) graph G : cycle on n vertices
with additional edge (x, y)

(b) graph H : cycle on n vertices
with additional edge (x, z)

Figure 2.11: Two graphs exposing limitations of graphlets

Lemma 9. Graph G and H in Figure 2.11, have equal {2, . . . (n
2 − 1)} − GDD.

Proof. The two graphs are nonisomorphic – the smallest induced cycle in G is on
n
2 + 1 vertices, whereas in H, it is on n

2 .

Which further strengthens the claim about the non-injectivity of Gn
γ in claim

4 for any γ ≤ n
2 − 1, instead of just the simple case of degree distribution.

To conclude, in this subsection, we have shown that larger graphlets can
uniquely determine smaller ones under certain circumstances, contributing to the
existing work on the interdependence of graphlets (see subsection 2.2.1). Fur-
thermore, we have demonstrated that the amount of information that graphlets
can provide about graphs with tree-like local topology is limited, especially when
the degree distribution of the graph in question is relatively uniform.

Connection to Weisfeiler-Lehman isomorphism test

To demonstrate the potential strength of graphlets, we can contrast them with
a well-explored area of research in theoretical computer science – the Weisfeiler-
Lehman isomorphism test (WL for short). First, we describe what this test entails
and its variants 6. Then, we establish a link between the k-dim WL and graphlets.
Finally, we harness some of the literature around the test to explore the strength
of graphlets.

In the search for a fast test for isomorphism, Weisfeiler and Lehman (1968)
proposed an algorithm that colors all vertices according to their degrees and then

6The notation and exposition of WL are based on Cai et al. (1992)
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iteratively updates the coloring of all vertices. In each iteration, the label of every
vertex is extended by the multiset of colors of its neighbors. Afterward, any two
vertices have the same color if and only if their multiset is equal. The iteration
stops when the labels stabilize, i.e. there is no difference in coloring between
iterations. We refer to this test as the 1-dim Weisfeiler-Lehman test (1-dim WL
for short), as it operates on sets of size 1, namely vertices and their degrees.

Although seemingly simple and despite some obvious drawbacks, such as the
fact that 1-dim WL is clearly useless for regular graphs, it turns out that even
1-dim WL is surprisingly effective in identifying non-isomorphic graphs. Babai
et al. (1980) proved that the probability that 1-dim WL produces a normal form
of the graph, i.e., a coloring of the graph according to the orbits in the graph,
for random graphs on n vertices is 1 − n−1/7. Additionally, Babai and Kučera
(1979) showed that just two iterations of 1-dim WL result in a canonical form of
a random graph with probability 1 − exp(−cn), where c is a constant and n is
the number of vertices in the graph in question.

As it turns out, graphlets behave differently than 1-dim WL. Consider the
graphs in Figure 2.12:

(a) graph G (b) graph H

Figure 2.12: Two graphlets distinguishable by 2 iterations of 1-dim WL but by
a {2, 3, 4}-gdd(v). The numbers to the right of the graphs indicate the sum of
degrees of vertices in the given layer of the graphs.

The two graphs are distinguishable by 1-dim WL already after 2 iterations –
the vertices in the distance 2 from v have different degrees, (2 − 1 − 1 − 1 − 1) vs
(2−1−2−1) – whereas {2, 3, 4}-gddG(v) = (4, 6, 4, 0, 6, 18, 6, 4, 0, 0, 0, 0, 0, 0, 0, 0)
= {2, 3, 4}-gddH(v).
Remark. The example above suggests that distinguishing two graphs based on
graphlet degree vector of individual vectors is not easy – although graphlets pro-
vide us with information about all the graphlets in a neighborhood of a given
vertex, they overlap and, thus, two different graphs can provide equal graphlet
distribution despite being different from the perspective of isomorphisms. Still, it
is worthwhile to explore the links between WL and graphlet distributions since, if
we managed to show that graphlets are at least as strong as 2 iterations of 1-dim
WL, we could make use of the theorem of Babai and Kučera (1979) and show
that graphlet degree distribution can be used to produce the canonical form of
a random graph with probability 1 − exp(−cn), where c is a constant and n is
the number of vertices in the graph in question. Such a result would anchor the
power of graphlets to distinguish non-isomorphic graphs.

The example in Figure 2.12 further suggests that in order to make such a link,
we would have to consider the graphlet degree distribution as a whole rather than
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focusing on individual vertices.
Although from the above, it might appear that graphlets are not as powerful

in isomorphism testing, in some cases, graphlets perform better in distinguishing
different graphs. Take for example the following classical counterexample for 1-
dim WL two C3 and C6

7 that are not distinguishable by 1-dim WL after any
number of iterations whereas graphlets can easily tell them apart (it is sufficient
to consider the total number of g3, triangles, in {2, 3}-gdd(G) and {2, 3}-gdd(H)).

(a) graph G (b) graph H

Figure 2.13: Classical example of graphs indistinguishable by 1-dim WL but
distinguishable by {2, 3}-gdd

Similarly, if we consider the Shrikhande graph (Figure 2.14a) and the 4x4
rooks graph (Figure 2.14b) – they are both strongly regular graphs and are not
distinguishable by 1-dim WL (Arvind et al. [2020]) 8. Nevertheless, both of them
can be distinguished by {2, 3, 4}-gdd

(a) Shrikhande graph, source of the
image: Wikipedia [2023]

(b) 4x4 graph, source of the image:
Abreu et al. [2021]

Figure 2.14: Shrikhande and 4x4 rooks graphs are not distinguishable by 1-dim
WL but are distinguishable by {2, 3, 4}-gdd

Remark. All this makes it tempting to assert that graphlets might not be the
best for isomorphism testing – especially when we try to distinguish two graphs

7To correctly utilize it in our framework where we consider graphlets only on connected
graphs, we add additional vertex (gray edges in the image) that ensure connectedness but do
not make graphs distinguishable by 1-dim WL – this was tested by hand but we omit the test
for brevity.

8As a matter of fact, they are not distinguishable by 3-dim WL (Arvind et al. [2020]), but
we have not yet defined this concept.
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whose topology might be different but for every type of graphlet tested that
might indicate the difference, there is another slight difference that balances out
the change in graphlet counting 9 – what they are good for, on the other hand,
is distinguishing the local topology of each vertex which might be stating the
obvious when we know the definition of graphlets, but now we can contract this
capacity with 1-dim WL. Despite the temptation, we should be wary of jumping
to such rushed conclusions as they do not stand on much more than a gut feeling
and a few, although illustrative, examples.

Following up on the exploration of the relation between graphlets and WL,
there are further connections to be drawn. Nonetheless, that requires us to move
from 1-dim WL to k-dim WL.

An extension of 1-dim WL is k-dim WL, introduced by Babai and Mathon
(1980). This algorithm considers k-tuples of vertices instead of just the degrees
of vertices. In this algorithm, we first assign a color to each vertex based on its
isomorphism class 10. The refinement step is then carried out as follows: given a
color of (u1, . . . , uk), the refinement by the vertex v is the multiset of k-tuples of
colors previously assigned to (v, u2, . . . , uk), (u1, v, . . . , uk), . . . , (u1, . . . , uk−1, v).
Remark. When using this definition of k-dim WL, 1-dim WL is not the same as
k-dim WL for k = 1. In fact, 1-dim WL is equivalent to k-dim WL where k = 2.
We continue using 1-dim WL since that is the convention.

Higher dimensional WL is substantially more powerful than lower dimensional
WL. For every k > 2, there exists a pair of graphs that cannot be distinguished
by k-dim WL but can be distinguished by k+1-dim WL and vice versa (Cai
et al. [1992]). However, as shown by Cai, Immerman, and Furer, who translated
the problem into the language of first-order logic with counting (1992), and by
Evdokimov and Ponomarenko, who approached it from the perspective of cellular
algebras (Evdokimov and Ponomarenko [1999])11, we need at least k-dim WL,
where k ∈ Ω(n), in order to distinguish non-isomorphic graphs on n vertices.

What is the connection between k-dim WL and {2, . . . , k}-gdd? It turns out
that these concepts are related, as shown by Chen et al. (2020). This relation
is especially clear in the case of {2, . . . , k}-gdd◦, a simpler version of graphlet
degree distribution where we do not consider orbitals and focus only on the entire
graphlet that each vertex touches (see remark 2.1). The proof is inspired by
Theorem 3.7 in the paper by Chen et al. (2020, p. 22) where they focused on
counting patterns of k or less vertices by k-WL in the context of Graph Neural
Networks.

Claim 10. Let G be a graph. Given labels of k-tuples of vertices of graph G, we
can reconstruct the entire {k}-gdd◦ of the graph G.

Proof. Suppose that we have all possible k-tuples with information about the
graph to which they are isomorphic – this corresponds to the initialization of

9Exactly this can be illustrated on the graphs in Figure 2.12 – when considering for example
g1(v), we get 4 + 2 + 2 = 6 = 3 + 3, a difference in topology on the neighboring vertex with
degree 5 is balanced out by difference in topology by remaining neighbors.

10There is a number of different ways of initializing k-dim WL. For more examples see Cai
et al. (1992)

11Both of these theories and proofs are nontrivial and go beyond the scope of this thesis. For
more information, refer to the original papers.
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k-dim WL (although with a slight shift in emphasis). We can consider all those
k-tuples that correspond to graphs on k vertices. Since we have information
about which ones of these graphlets are isomorphic, we can find corresponding
graphlets. Finally, for each vertex in the graph, we can identify the graphlets that
the vertex touches by the corresponding k-tuple including the vertex. In this way,
we can establish all graphlets on k vertices in which each vertex participates –
if this was not the case and there was an unaccounted-for graphlet, we could
construct a k-tuple of its vertices and show a contradiction with the fact that we
suppose all possible k-tuples.

Clearly, this simple link works only during the initialisatin of k-dim WL since
after that we lose information about concrete k-tuples accounted for in the process
due to the recoloring after every iteration. Further, the link is not applicable for
{k}-gdd k-dim WL does not take into account orbits.

The Theorem 10 remains useful since we can use the counterexamples con-
structed by Cai, Immerman, and Furer (1992) and Evdokimov and Ponomarenko
(Evdokimov and Ponomarenko [1999]) and claim we need at least {k}-gdd◦ where
k ∈ Ω(n) to distinguish such two graphs – probably, we need much larger
graphlets since the counterexamples apply for unlimited iterations of k-dim WL
whereas our statement works only with the initialization.

2.3.2 Graphlet degree distribution to graphs
Having coarsely explored what graphlet degree distributions can we expect from
certain graphs, it is time to turn the question around and ask what graphs can
we expect from a concrete graphlet distribution. This question is dependent on
how large graphlets we take into consideration – if we consider Gn

n mapping, we
have complete information about the graph encoded in the {2, . . . n}-gdd, and
the mapping is bijective and, thus, invertible. Whereas, when we consider Gn

2 ,
we can expect all graphs that fulfill the given degree distribution, i.e. have the
same {2}-gdd – an example of which can be seen in the proof of claim 4. In this
section, we want to explore the question of what graphs can be reconstructed
from a given {2, . . . , γ}-gdd. We first explore the question from below, for values
of γ = 2, 3, and suggest algorithms that for a given graphlet degree distribution
produce a correct graph if it exists. Later, we explore the question from above,
for γ = n − 1, and link the question of reconstruction from graphlet degree
distribution with reconstruction conjecture.

Reconstruction from below

When we are attempting to construct a graph from a graphlet degree distri-
bution where only small graphlets are considered, there are two main things
that we must ensure – each vertex v in the resulting graph G12 must have cor-
rect {2, . . . γ}-gddG(v) and the produced graph must be feasible – vertices must
be connectable so that the final graph had desired graphlet degree distribution.
These conditions turn out to be exceedingly difficult to keep for larger γ.

12We can focus on a concrete vertex v thanks to the fact that the mapping being explored,
Gn

γ , is defined on labeled graphs into labeled graphlet degree distributions.
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In the following section, we suggest two algorithms for graph reconstruction
from graphlet degree distribution for γ = 2, 3, which produce a correct graph if
reconstruction is possible and announce when it is not.

If we have a {2}-gdd and want to construct a graph with predetermined degree
distribution, we can use the configuration model (Newman [2010]) which we call
2-configuration model as it deals only with graphlets of size 2. The algorithm is
presented as algorithm 2:

Algorithm 2 2-configuration model
Input: matrix GDD ∈ Nn x 1

Output: graph G with {2}-gdd(G) = GDD

1: start with a set of n vertices where n is the number of rows in GDD. For
each vertex, create stubs for the degree it is supposed to have.

2: order all vertices with studs lexicographically in a line
3: while there is a vertex v with the smallest ordering number in the line with

unconnected studs do
4: for all unconnected stud s at vertex v do
5: find another vertex u with unconnected stud s′ s.t. u ̸= v and there is

not yet an edge between the two vertices
6: if such vertex exist then
7: connect studs s and s′

8: else
9: algorithm failed

10: end if
11: end for
12: end while
13: return connected vertices

In the initial ordering of vertices with studs, the sequence of connecting and
resulting graph can be seen in Figure 2.15

(a) Initial ordering of vertices with studs
(b) Resulting graph – numbers indicate
the connecting process

Figure 2.15: Process of 2-configuration model on degree distribution (3-1-2-1-1)

Theorem 11. Given a graphlet distribution {2}-gdd the 2-configuration model,
if possible, outputs a graph with correct degree distribution, if it is not, it declares
failure.

Proof. Full proof can be found in Newman [2010]. Here, we present only a sketch
of the proof. Clearly, in each iteration, the number total number of studs among
all vertices is either reduced by 2, when two connectable studs are found in step
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7., or the algorithm declares failure. From this, it follows that the number of
studs must be even. Furthermore, if a graph is returned, it contains no self-
loops or multi-edges – this is secured by the check-in step 5. Finally, since in
each iteration, all unconnected studs are to the right in the line of the processed
stud, we ensure that if a graph with desired degree distribution exists, it will be
found.

Drawing inspiration from from the 2-configuration model, we suggest a 3-
configuration model, which, if possible, constructs a graph from a given {2, 3}-gdd.
Our approach, however, does not lead to as clean algorithm as does the algorithm
for 2-configuration model since we must ensure many more conditions than just
that there are not self-loops and multi-edges. As such, we have doubts of its
applicability beyond theoretical discussion 13. Hence, we refrain from providing
an in-depth discussion of the algorithm but instead highlight the challenges that
arise in the process of constructing a suitable graph and suggest possible ways
to resolve them. Gradually, throughout the process, we assemble all the nec-
essary components for the algorithm. In this manner, rather than achieving a
provably well-behaving algorithm, we offer insight into the complexities of graph
construction for a given graphlet degree distribution, which we consider more
valuable.

The only graphlets on 3 vertices are a path on 3 vertices, G1, and a triangle,
G2 see Figure 2.1 for a reminder of the convention. A straightforward approach,
arising from the 2-configuration model, that comes to mind would be to take
the studs determined by the degree of a given vertex, g0, and categorize them
into those studs that participate in a triangle and those that do not. The issue,
nevertheless, is that we do not know in how many triangles studs of a given vertex
participate – take for example the two graphs G and H illustrated in Figure 2.16.
The vertex v has graphlet degree distribution (n0, n1, n2, g3) = (4, , 4, 2) in both
G and H. Note that we omit n1 since it depends on the local structure and, thus,
cannot be determined based on the 2-neighborhood of v alone – it is a problem to
which we return shortly. For now we restrain our considerations to n0(v), n2(v)
and n3(v).

(a) graph G (b) graph H

Figure 2.16: Vertex v has graphlet degree distribution (g0, g1, g2, g3) = (4, , 4, 2)
in both G and H.

From this, we learn two things. First, information about participation in
graphlets of size 3 gives us limited information as it does not allow us to distin-

132-configuration model is commonly used for testing community structrue of graphs, mod-
eling of random networks or calculating modularity (see chapter 1 for better contextualization)
thanks to its mathematically convenient properties. None of which we find in our 3-configuration
model.
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guish between these two cases in Figure 2.16. Second, when producing a graph,
we have to allow for both of these cases.

To address this, we introduce the triangleness of a stud, the number of tri-
angles in which it participates. Further we introduce i-triangleness of a vertex
v, denoted as ∆i(v) that indicated how many studs participate in i triangles.
For example in G above, we have ∆1(v) = 4 and ∀k ̸=1∆j(v) = 0, since all studs
participate in exactly one triangle, whereas in H, we have ∆0(v) = 1, ∆1(v) = 2,
∆2(v) = 1 and ∀k /∈{0,1,2}∆j(v) = 0. Since every triangle in which v participates
consists of two studs and the total number of triangles must correspond to trian-
gleness over all studs of v, we can see that:

g3(v) =
(n−1)(n−2)∑︂

i=0

i(∆i(v))
2 (2.8)

Here n is the total number of vertices that are supposed to be in the final
graph, we need to account for up to (n − 1)(n − 2) triangleness of a stud since
that is in how many triangles a stud participates in the complete graph which
gives us the largest graphlet count according to lemma 2.

In the case of graph G and H, we can see that this holds true since (1∗4)/2 =
2 = g3(v) = 2 = (0∗1)/2+(1∗2)/2+(2∗1)/2. From this, we can further see that
the number of possible stud trinaglenesses is tied to the number of decomposition
of g3(v) by the formula 2.8.

Also, from the definition of ∆i(v), we get the following

n0(v) =
(n−1)(n−2)∑︂

i=0
∆i(v) (2.9)

Furthermore, if a stud participates in i triangles, there are exactly n0 − i − 1
G1s which v touches at g2 (if we fix a stud, there is exactly n0(v) − i − 1 studs
that form a path together with v and the fixed stud). From this, we get:

n2(v) =
(n−1)(n−2)∑︂

i=0
∆i(v)(n0(v) − i − 1) (2.10)

From this, we obtain constraints on the possible values of ∆i(v), ∀v, i which
lead to feasible values of n0(v), n2(v) and n3(v). Although these conditions are
sufficient to ensure that any possible values of ∆i(v), ∀v, i satisfying them lead to
correct values of n0(v), n2(v) and n3(v), they do not yet secure that such a graph
is constructible. To make that happen, consider the procedure 3. If we have
two studs, we can connect them by edge. Each edge has its ”used-triangleness”
which indicates in how many triangles it participates and that is bounded by the
triangleness of the two studs that where connected for its formation.

The ilustration of the procedure is presented in Figure 2.17.
We do not claim that this procedure necessarily return all possible feasible

graphs. Rather, we present it as a good starting point for further elaborations.
Finally, we turn to the question of g1. We cannot ensure that we obtain the

correct value of n1 when considering individual vertices the value of n1 depends
on the degrees of neighboring vertices for a given vertex (minus the number
of common triangles). Thus, n1 is the key property that determines that the
connectedness of the graph truly corresponds to the fixed {2, 3}-gdd. We did not
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Algorithm 3 Test of ∆s
Input: triangleness of every stud of each vertex (based on ∆s)
Output: Graph G with correct n0, n2 and n3

1: while there is a vertex with unconnected stud do
2: select a vertex v with the stud s of largest triangleness (larger than 0)

that is so far not connected
3: find a vertex u, so far not connected with v, with an unconnected stud of

the same triangleness as s and with at least one other stud whose triangleness
is not used, call it s′

4: find a third vertex w that 1) has at least one stud with triangleness equal
to s′ that is either connected to s′ or is not connected at all 2) has at least
one other stud s′′′ whose triangleness is not used and that has a counterpart
in a stud of vertex v

5: if such studs exist then
6: make a triangle of these three vertices uvw, connect their studs if

needed and increase the used-triangleness of all studs and edges that partic-
ipate in it by 1

7: else
8: algorithm failed
9: end if

10: end while
11: return connected vertices

manage to find a direct analytical approach that ensures the correct value of n1 –
for this reason, we suggest using either BFS with heuristics based on the results
discussed in section 2.2.1, or we can formulate it as a linear program where we
must ensure the following properties:

• Every two edges are connected at most once.

• Triangles are well connected: All i triangle studs are connected with i
triangle struts.

• g1 is well connected: For every vertex v, the sum of the degrees of all
neighboring vertices minus the number of triangles in which vertex v par-
ticipates with each neighbor must be equal to g1, i.e., ∑︁

u∈N(v) g0(u) −
triangleness of edge uv = g0(v).

This rather daunting sequence of steps leads us to an algorithm that yields a
correctly connected graph from a given {2, 3}-gdd. We do not lay out the entire
algorithm in full since do not perceive it to be of substantial practical significance.
Rather we state it to illustrate the thinking and types of challenges that graph
reconstruction from small graphlet degree distribution entails – we have to ensure
that the resulting graph has correct graphlet degree distribution (see illustration
of the challenge in Figure 2.16) and that the graph is feasible (see illustration of
the challenge in algorithm 3).

As the exploration above suggests, approaching graph reconstruction based
on a graphlet distribution from the perspective of the configuration model be-
comes increasingly difficult as we need to address the complications arising from
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Figure 2.17: Steps of the algorithm. Iteration indicator is on the left, distribution
of studs is in the center and gradually connected vertices forming graph are on the
right. Starting with studs – color indicates triangleness (red:3; green:2; blue:1) –
we gradually connect triangles that fulfill criteria.

overlapping graphlets and ensure correct connections between vertices across the
entire graph. For this reason, we do not attempt to propose a 4-configuration
model. Nevertheless, it should be noted that several other approaches might
be worth exploring, such as constructing the largest rooted graphlets first and
subsequently overlapping them or more extensively exploiting the properties of
graphlet orbital interdependence discussed in Subsection 2.2.1.

Reconstruction from above

Turning our attention to reconstruction from above, we focus on {2, . . . , n −
1}-gdd, the graphlet degree distribution consisting of counts of all graphlets
and their orbitals up to the size of n − 1. Notably, there is a link between
graphlet reconstruction and the reconstruction conjecture, as made explicit by
Shervashidze et al. (2009). The reconstruction conjecture is a fundamental prob-
lem in graph theory that deals with the uniqueness of reconstructing a graph from
its subgraph collection. In this subsection, we establish a connection between the
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{2, . . . , n−1}-gdd and the reconstruction conjecture, demonstrating under which
conditions we are able to reconstruct a graph from its {2, . . . , n − 1}-gdd and
discuss the implications this has for our framework for studying graphlets, the
mapping Gn

γ .
First, we restate graph reconstruction conjecture as proposed by Kelly (1957):

Theorem 12. (reconstruction conjecture) Let G be a graph on n vertices. Let
us denote Gv a subgraph of G formed by deleting vertex v from G. Let D(G) =
{Gv|v ∈ V (G)} be a multiset of all vertex-deleted subgraphs of G, called deck.
Then any two graphs with n > 2, G, and H, such that their multisets D(G) and
D(H) are equal, are isomorphic.

This implies that given a deck, we are capable of reconstructing a uniquely
determined graph (except for isomorphism). A positive answer to the conjecture
has been given for a handful of graph classes – importantly for trees (Kelly [1957]);
regular graphs (Harary [2006]); and disconnected graphs (Harary [2006]) – and,
by computer-assisted enumeration of cases, for all graphs on 2 < n ≤ 6 vertices
by Kelly (1957) which was later improved to graphs on 2 < n ≤ 11 vertices by
McKay (1997). The general case, though, remains a conjecture.

When thinking about the reconstruction conjecture in the context of graphlets,
we can notice that given a deck D(G), we cannot securely determine appropriate
{2, . . . , n − 1}-gdd since it requires the knowledge about orbitals for each vertex
and its label in each Gv which would directly lead to the solution of the graph
reconstruction conjecture.

Second, we can notice that

Theorem 13. If we have a {2, . . . , n − 1}-gdd where every vertex participates in
n − 1 graphlet on n − 1 vertices, it is possible the graph reconstruction deck of the
graph.

Proof. Since every vertex participates in n − 1 graphlets on n − 1 vertices, this
means that the graph from which given {2, . . . , n − 1}-gdd originates is 2-vertex-
connected. If this was not the case, there would exist a vertex x that, if deleted,
would split the graphlet into two components and, thus, every vertex, except for
x, could not have n − 1 graphlets on n − 1 vertices since deleting x does not
lead to a graphlet on n − 1 vertices. From this and theorem 6, it follows that
{2, . . . , n − 1}-gdd is fully characterised by {n − 1}-gdd. Further, if for every
vertex we calculate all the graphlet on n − 1 vertices that it touches, ignoring
information about orbitals, sum this information over all vertices and divide it by
n−1, we get all Gv graphs and thus full characterization of the deck. This follows
from the fact that each graphlet is constituted by n − 1 vertices and therefore
when we sum the occurrence of each type of graphlet over all vertices, we get the
total number for each graphlet n − 1 times.

Remark. Trying to determine a deck from a graphlet distribution without all val-
ues of n−1 graphlets is difficult since we encounter disconnected graphs where we
have to determine individual components. We have discussed the same problem
from different perspectives in remark 2.3.1.

It appears that it is diametrally easier to reconstruct a graph from a graphlet
degree distribution than from a deck of vertex-deleted graphs. This is indeed the
case as we can see in the following theorem:
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Theorem 14. Given a {2, . . . , n − 1}-gdd of a 2-vertex-connected graph where
there is a vertex a that has a unique degree and a vertex b whose degree is different
from all other degrees by at least two, we can uniquely reconstruct a graph with
the given {2, . . . , n − 1}-gdd.

Before we proceed with the proof, we show two small lemmas:

Lemma 15. Given a {2, . . . , n − 1}-gdd and a graphlet Gi on n − 1 vertices that
v touches at gj, we can uniquely determine the degree of vertex not included in
Gi.

Proof. First, we sum all g0(v) over all v in the graphlet distribution. This gives
us double the number of edges in the whole graph since each edge is constituted
by two vertices and, thus, contributes to the sum twice. Subsequently, we count
the number of edges in the graphlet Gi and subtract this from the total number
of edges in the whole graph. This gives us the number of edges not included in
the graph which corresponds to the number of edges that the vertex not included
in Gi touches, its degree.

Lemma 16. Given a {2, . . . , n−1}-gdd of a 2-vertex-connected graph where there
is a vertex a that has a unique degree, we can determine a graph vertex deleted
graph Ga and establish how many edges are between a and some vertices in a
certain automorphism orbit of Ga.

Proof. From the 2-vertex-connectedness of the underlying graph, there are all
n − 1 graphlets on n − 1 vertices. Therefore, we are assured that for each vertex
v, there is a graphlet Ga where a vertex a is missing. Since a has a unique degree,
this graphlet is unique by lemma 15. Furthemore, we can establish where each
of the vertices v ̸= a are touching Ga from the {2, . . . , n − 1}-gdd and compare
the degree of each vertex v in Ga with its {2}-gdd(v). If the two values differ,
it means that the vertex is connected with the missing vertex a. Therefore, how
many vertices of orbit gi of Ga are connected with a by an edge? An illustration
of the result can be seen in Figure 2.18.

Proof. (of theorem 14) The proof has two steps. First, from Lemma 16 we can
identify a specific graphlet Ga where we know the position of all vertices except
for a and its connection with the rest. We can consider the vertex b which has
a unique degree even in Ga – thanks to the fact that it is different by at least
two from all other vertex degrees, it maintains its uniqueness independently of
whether it is connected to a. Thanks to this, we can uniquely identify b in Ga

and for each vertex note whether there is an edge between it and b. We keep this
information.

Second, thanks to the unique degree of b, we can get complete information
for Gb through a process described in 16, and based on the information from the
first step, we can determine which vertices are connected to b. This completes
the reconstruction of G from {2, . . . , n − 1}-gdd.

Remark. It should be noted that if we did not insist on the guarantee of a unique
solution, we could stop at the result from lemma 16 and proceed by assigning
possible connections between orbitals and vertex a and testing whether graphlets
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Figure 2.18: The remaining vertices can be placed into orbits of a-vertex deleted
graphletGa (colored vertices in the image) and we can find out how many edges
are between vertices of certain orbit and vertex a (colored dashed lines with a
number indicating number of edges).

of the size n−1 correspond until we found a feasible solution. This process would
ensure that, if there is a solution, it will be found and after at most

(︂
n

⌊ n
2 ⌋

)︂
tries.

14

If we turn back to our framework for thinking about the strength of graphlets,
the mapping Gn

γ . We can conclude that, if reconstruction conjecture holds, Gn
n−1

is bijective for 2-vertex-connected graphs as was shown in theorem 13. Further,
independently of reconstruction conjecture, we have shown that Gn

n−1 gives us
sufficient information if the class of graphs is 2-vertex-connected and has at least
two sufficiently special vertices as was proved in theorem 14.

2.4 Summary and further work
To conclude, graphlets are an interesting tool for exploring graphs and their
topology, offering a unique perspective different from commonly used approaches
such as the Weisfeiler-Lehman isomorphism test or reconstruction from vertex-
deleted graphs. They are also related enough to draw from the extensive literature
in these explored areas. The main result of this chapter is to demonstrate the
potential that graphlets can offer. However, the results and connections discussed
above only scratch the surface of the possibilities. In this section, we outline
possible directions for future research based on what has been shown.

1. In lemmas 2 and 3, we have provided constraints on the possible values of
{p, . . . , q}-gdd. Is it possible to establish a better range of {p, . . . , q}-gdd
for specific classes of graphs? Is it possible to establish the set of matrices
for a given class of graphs so that the projection of graphs onto this set is
surjective?

14This would occur when all vertices in Ga were touching the graphlet at the same orbit and
there were n

2 edges to connect with a.
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(a) What are the potential ranges of values in {p, . . . , q}-gdd given a fixed
number of vertices n and edges m in the graph, as well as fixed values
of p and q? What if we consider only the sum of all values from the
graphlet degree distribution?

2. How do graphlets behave on various classes of graphs? We have shown that
graphlets are of limited use on tree-like graphs and particularly on regular
graphs without small cycles, as stated in lemma 7 and theorem 8.

3. What is the distinguishing power of k-dim WL compared to {2, . . . , γ}-gdd
for certain γ ≥ 2? In Figure 2.12 we showed some potentially complicated
settings and in Figure 2.13 and 2.14 we presented some promising cases.

(a) What is the smallest γ for which there are no two graphs with different
labelings after 2 iterations of 1-dim WL, but with equal {2, . . . , γ}-gdd?
Solving this problem would strenghten the distinguishing power of
graphlets by connecting it with the work of Babai and Kučera (1979)
as discussed in remark 2.3.1.

(b) What is the smallest γ such that, if the labeling of any two graphs
after stabilization of 1-dim WL is different, implies that also their
{2, . . . , γ}-gdd are different?

(c) Is there a γ that makes {2, . . . , γ}-gdd capable of distinguishing non-
isomorphic graphs more effectively than k-dim WL? Theorem 14 sug-
gests this for γ = n − 1 for certain classes of graphs.

4. Theorems 10 and 14 suggest that {2, . . . , k}-gdd◦ have different expressive
power than {2, . . . , k}-gdd. Is this truly the case? In which settings do
these two definitions of graphlet degree distribution coincide, and when do
they behave differently?

5. How large does γ need to be for Gγn to be bijective, meaning that given
{2, . . . , γ}-gdd, we can uniquely reconstruct a graph? Theorem 14 provides
a partial positive answer for γ = n − 1, while the graphs in Figure 2.11
provide a counterexample for γ = n

2 − 1.

Furthermore, we can make the following observations, which may not be as
rigorously grounded in analysis but can provide useful, albeit potentially mislead-
ing, intuition for working with graphlets. These observations can be particularly
helpful when interpreting empirical results in the subsequent chapters.

• Graphlets are interrelated (as shown by in subsection 2.2.1 and 2.2.2). This
suggests that complete graphlet degree distribution entails a large amount
of redundant information.

• Graphlets perform poorly in characterizing graphs that locally behave tree-
like. In such graphs, we observe only simple graphlets, paths, and small
trees.

• Graphlets, nonetheless, prove to behave well in graphs with complex local
structure (as suggested in figures 2.14 and 2.12) and they can outperform
methods directed at identifying graph isomorphisms.
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3. Graphlets in Complex
Networks
Graphlets are capable of capturing the local topology of a network. For this
reason, it is reasonable to explore how they can be used as a heuristic when com-
paring different network models. In this chapter, we focus on this inquiry. First,
we summarise experimentally shown characteristics of graphlets in the context
of network science1 and, harnessing our theoretical results from chapter 2, make
the case that graphlets are very well suited for network characterization. Sec-
ond, we explore how graphlets can be used for network comparison – computing
graphlet degree distribution yields a matrix that is not directly comparable with
other matrices, thus, we carry out a discussion of possible approaches to net-
work comparison. Finally, we use graphlets to compare the three classical models
of networks (ER, GEO, and AB described in section 1.3.2) and suggest future
directions for research.

Throughout this section, when we refer to graphlets, we consider graphlets
on up to 5 vertices, {2, 3, 4, 5}-gdd, since 1) those are the largest graphlets that
we can efficiently compute (Ribeiro et al. [2021]) and 2) it is the most commonly
used size of graphlets considered and, thus, there is the most literature about
them in which we can base our considerations.

3.1 Existing results
Graphlets, as described in chapter 2, were first introduced by Pržulj with the
intention to capture the local topology of networks. In this section, we argue
that graphlets are well-equipped for exactly this undertaking. The structure
of this section is the following: we make three claims about the properties of
graphlets and, subsequently, we support it with both literature and theoretical
results. It should be noted that most of the empirical results in the literature on
graphlets originate from the study of biological networks. This reason for that is
simple – Pržulj is closely affiliated with bioinformatics and the concept has been
studied mostly in reaction to her findings within the sphere of biological networks,
although there is no basis for not harnessing its power in different subfields.

Graphlets are good at capturing local topology.

In our discussion of the expressive properties of graphlets in subsection 2.3.1,
we suggested that graphlets, even if we consider only small graphlets, might be
quite effective in distinguishing different graphs, especially when it comes to dis-
tinguishing local topology rather than pure isomorphism. This has been suggested
in empirical research. Milenković and Pržulj (2008) compared nodes based on
graphlets and demonstrated that clusters of nodes in protein-protein interaction
networks, obtained with their graphlet-based distance measure, share common

1We did not include the results presented in this chapter in section 2.2 since, although related
to graphlet, are mostly experimental and are, in the majority of cases, applicable only within
network science (applied on networks) rather than to the properties of graphlets themselves.
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protein properties. They showed how to use this approach to predict the func-
tions of proteins and their memberships in protein complexes, subcellular com-
partments, and tissue expressions. The results were subsequently compared with
laboratory experiments and over 80% percent of them proved correct (Hočevar
and Demšar [2014]). Similar experiments were carried out by Milenković (2009).
Furthermore, several methods for characterizing functions and local topology of
vertices have been developed based on graphlets – such as GREAT (Crawford and
Milenković [2015]), GR-align (Malod-Dognin and Pržulj [2014]), or L-GRAAL
(Malod-Dognin and Pržulj [2015]) – all of which proved highly successful, com-
monly outperforming other approaches based on different attempts to describe
local topology.

Graphlets are especially good descriptors of graphs with higher edge
density.

The usage of graphlet-based approaches for network description and compari-
son has been criticized by Rito et al. (2010) based on the observation that values
of graphlet degree distribution are unstable in regions of a network of low edge
density. This observation can be linked with our observation (see Lemma 7) about
the behavior of graphlet degree distribution in tree-line structures (which is the
class of graphs that occurs most commonly in regions with low density since the
presence of cycles would increase density) where we concluded that graphlets are
not too strong in describing graphs with tree-like structure. Nevertheless, the
work of Hayes et al. (2013) shows that although it is the case that graphlets are
unstable and ill-fitted to describe regions of low density in real-world networks,
the regions with low density tend to be unstable, hard to predict themselves and
susceptible to minor errors in measurements (translation of data into networks,
see section 1.3). Furthermore, no serious challenge to the capacity of graphlets to
capture local topology in dense regions was put forward and, on the contrary, a
number of studies reaffirmed graphlets as a good measure in this sense (Milenković
and Pržulj [2008]; Hayes et al. [2013]).

Graphlets implicitly include multiple heuristics.

Some researchers called for combining different heuristics in the attempt to
characterize networks (see section 1.3.3) and when using machine learning tech-
niques for model testing, created vectors that consisted of multiple simpler heuris-
tics (Filkov et al. [2009]). Nevertheless, if we consider a graphlet vector
{2, 3, 4, 5}-gddG(v), it turns out that a nontrivial number of local heuristics are
included. For example, of those mentioned in section 1.3.1 2, we can directly
determine degree distribution (by g2) and node clustering (by g3), and we can
approximate other such as local betweenness centrality can be estimated based
on the number of times v touches central graphlet orbits (e.g. g5, g7, g11, g17,
g23...) rather than peripheral graphlet orbits (e.g. g4, g6, g9, g10, g15, g18...).
The only heuristics of those discussed in section 1.2 that are virtually impossible
to establish from graphlet degree distribution, unless a very strong version of

2Besides those mentioned in section 1.3.1, we can determine the following characteristics
that were not mentioned since they are principally similar : rich club connectivity, average
triangle coefficient, maximum triangle coefficient or average quadrangle coefficient.
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graphlet reconstruction is proved, are global heuristics, however, those are often
perceived as inferior in characterization to local heuristics (see 1.3.3).

It should be noted that Janssen et al. (2012) harnessed the strength of
graphlets to caputre multiple characteristic in their effort to find the best network
model using unsupervised machine learning methods.

3.2 Graphlets as a metric
Graphlets seem as a positive perspective in the efforts to characterize and com-
pare networks. Nevertheless, if we want to use graphlets for the comparison of
networks, we face the problem that graphlets are presented as a matrix of val-
ues (in the case of graphlets up to the size of 5, {2, 3, 4, 5}-gdd ∈ Nn x 73). We
have to establish how to transform {2, 3, 4, 5}-gdd into a single comparable value
that could tell us which networks are more similar. This section deals with this
problem and offers an array of different approaches with justification for their
use.

If we want to compare two graphlet degree distributions, {2, 3, 4, 5}-gdd(G)
and {2, 3, 4, 5}-gdd(H), we either aggregate the data from a matrix in a way that
is vertex permutation independent or somehow pair, align, vertices from graph
G and H (if we used a permutation dependent approach without reasonable
alignment, we could get completely different results based on which labeling was
arbitrary chosen which is not desirable). We first discuss vertex-permutation
independent approaches used in graphlet degree distribution comparison and then
discuss how alignment can be carried out and the approaches that it enables.

There are many possible approaches to matrix comparison, we select a subset
of those that were traditionally used in the comparison of networks using graphlets
(graphlet degree distribution agreement, sum of differences) or those that we con-
sider sensible (mutual information, distance correlation). We acknowledge that
the selection is limited and a more thorough discussion is in place, nevertheless,
we consider it sufficient to coarsely demonstrate what graphlets can tell us about
various models.

3.2.1 Permutation independent approaches
The simplest possible approach to matrix comparison lies sum of difference (SD
for short), summing over all the values in each of the graphlet degree distributions
and subsequently computing the difference between the two sums. Although this
approach is computationally efficient, simple, and permutation invariant, it erases
most of the valuable information in the graphlet degree distribution – we are
not able to distinguish if two networks are locally densely connected or sparsely
connected if it leads to the total number of graphlets in the networks.

Another approach, called Graphlet degree distribution agreement (GDDA for
short), initially proposed by Pržulj (2007) suggests the following, more elaborate
approach – we appropriate the notation from the paper.

Let dj
G(k) be the sample distribution of the number of nodes in G touching the

appropriate graphlet (for automorphism orbit j) k times. We scale dj
G(k) by k to

decrease the contribution of larger degrees in a graphlet degree distribution and
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call the new variable Sj
G(k) = dj

G(k)
k

and subsequently normalize the distribution
by the total which leads to the following:

N j
G(k) = Sj

G(k)
T j

G

(3.1)

where T j
G is:

T j
G =

∞∑︂
k=1

(3.2)

and when we want to compare two networks, we compute the following:

Dj(G, H) = (
∞∑︂

k=1
[N j

G(k) − N j
H(k)]2)1/2 (3.3)

this gives us the degree distribution disagreement, the difference between the
two networks, which we can inverse (subtracting it from 1) and sum over all
possible graphlets to obtain graphlet degree distribution agreement

Aarith(G, H) = 1
73

7∑︂
j=0

2(1 − Dj(G, H)) (3.4)

Note that the infinite sum when calculating T j
G and Dj(G, H) are in practice

finite due to the bounded sample. We keep the infinite sum introduced by Pržulj
(2007) although we could use our bound from lemma 2.

The graphlet degree distribution agreement is a feasible way to capture the
representation of certain graphlets throughout the entire distribution. Never-
theless, although nuanced and sensibly normalized, the approach is unable to
account for 1) specific regions with different topologies since it does not consider
individual nodes, only the distribution of graphlet orbitals over the entire distri-
bution and 2) a lot of information is again lost when summing over the entire
distribution (although in a sensible way) as we are unable to account for local
differences.

3.2.2 Permutation dependent approaches
Before we can start entertaining the idea of using permutation-dependent ap-
proaches for graphlet degree distribution comparison, we have to align the ver-
tices of the two networks. We want to pair vertices that behave most alike – have
similar topology around themselves and are connected into vertices that are also
mutually paired. Doing this perfectly is extremely difficult and, for this reason,
we resort to the usage of sensible approximate approaches.

Alignment of vertices

A simple approach would be to take degrees of vertices and pair them according
to their degree and pair those with equal degrees randomly. This might be a
computationally effective approach but might easily end up comparing vertices
that are topologically completely different and, thus, completely obscure any
results.
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This simple procedure might be further improved – for example, we might
take an iterative approach where we start pairing vertices into groups by degree
and then continue splitting these groups by values of increasingly complicated
graphlet orbitals (here we can utilize the ordering of graphlets). This approach
might be a slight improvement in the approach above, least of all it would be
deterministic, but it fails to harness the data about graphlets that we have and
it is dependent on the convention that we use for ordering graphlets.

Based on this we suggest a graphlet alignment method that pairs vertices with
the most similar graphlet degree vector ({2, 3, 4, 5}-gddG(v)) – as it turned out
during our investigation of literature a very similar approach was suggested by
Milenković et al. (2010). We suggest using the Hungarian algorithm to establish a
perfect matching between sets of vertices of each network where the cost function
is given by a specified metric on 73-dimensional metric space in which we can
embed graphlet degree vectors of individual vertices. This approach enables us
to find the best possible matching for vertices based on the similarity of their
local topologies. It is unable to establish that individual vertices are paired in
such a manner that for each of two neighboring vertices, their pairs are also
neighbors, but we consider this shortcoming as an acceptable limitation in return
for the polynomial computational complexity that the Hungarian algorithm offers
(Edmonds and Karp [1972]). Milenković et al. (2010) test this alignment method
empirically and show that the ”method detects topologically similar regions in
large networks that are statistically significant” substantiating the functionality
of the approach by empirical data.

Throughout the rest of this text and in analyzing data, we use the just-
described approach to matrix comparison.

Permutation dependent approaches

If we have paired vertices, we can transform the matrix into a vector, flatten it,
where the ordering of individual nodes depends on the pairing found – let us call
them XG and YH for the two networks G and H being compared. This, in turn,
enables us to use many powerful statistical tools for measuring correspondence
between the two vectors. We want to avoid tools that are capable of measuring
only linear dependence such as the Pearson correlation coefficient since graphlets
do not behave in that way and we want to evaluate similar behavior of similar
nodes, not linearity of this behavior. For this reason, we propose to use mutual
information and distance correlation.

First, we can compute mutual information (MI for short), bits of information
obtained about one vector by observing the other. This tool is commonly used
in statistics and machine learning to capture the statistical dependence between
two random variables. The approach evaluates the difference between the joint
distribution of the pair (XG, YH) in comparison to the product of marginal distri-
butions of XG and YH . More technically, the mutual information (in this case for
discrete distribution which is the case of graphlet counts) is calculated as follows:

I(XG, YH) =
∑︂

y∈YH

∑︂
x∈XG

P(XG,YH)(x, y)log( P(XG,YH)(x, y)
PXG

(g)PYH
(y)) (3.5)

where XGand YH are the underlying spaces on which elements of XG and YH
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are defined. For a more detailed discussion of the properties of mutual information
measure and information theory from which it originates, see Bishop (2006).

Second, distance correlation (dCor for short) is a statistical measure, intro-
duced by Székely et al. in 2007, that captures dependence between two variables
by evaluating the similarity of their pairwise distances. Unlike traditional corre-
lation measures that focus on linear relationships, distance correlation is a non-
parametric approach that can detect and quantify nonlinear associations between
variables. It accomplishes this by considering all possible pairwise distances and
evaluating the relationships among these distances in the input space. By consid-
ering all pairwise distances, distance correlation offers a comprehensive measure
of association that is not influenced by the scales of the variables. More techni-
cally, the distance correlation (notation is appropriated from Székely and Rizzo
[2009]) is computed as follows:

We compute all pairwise distances.

(aj,) = ||Xj − Xk||, for j, k = a, . . . , n

(bj,) = ||Yj − Yk||, for j, k = a, . . . , n
(3.6)

Then we compute the doubly centered distance

Aj,k = aj,k − aj,· − a·,k + a·,·

Bj,k = bj,k − bj,· − b·,k + b·,·
(3.7)

where aj,· is the average of jth row, a·,k is the average of kth column and a·,· the
average over the whole distribution. Similarly for bj,·, b·,k and b·,·.
We can use this to calculate the distance covariance

dCov2
n(X, Y ) = 1

2
∑︂
j=1

n
∑︂
k=1

nAj,kBj,k (3.8)

From which, we can compute the distance correlation, denoted as dCor2(X, Y ):

dCor2(X, Y ) = dCov2
n(X, Y )√︂

dV ar2(X)dV ar2(Y )
(3.9)

where dV ar2(X) = dCov2
n(X, X) alike classical variance.

Discussion of the benefits and downsides of this approach is beyond the scope
of this text, we refer to the text by Hastie et al. (2015) for a more thorough
exposition. For the most part, we use it as a tool to provide us with some
quantifiable information about the graphlet distribution.

Finally, it should be pointed out that visualization is also an important ap-
proach to graphlet matrix analysis as it can give us a sense, although not quan-
tifiable in clear numbers, of what is going on in the distribution. This approach
is also highly dependent on alignment since visualization based on that might
look very different – consider for example ordering of degrees of vertices in a
network which was the basis for the development of the AB model, if we ordered
the degree distribution differently, we might not be able to see the underlying
pattern. Visualization is an important tool during analysis but we should take
the conclusions drawn from it with caution.
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3.3 Application on real-world data
Having discussed how graphlets can be used for the comparison of different mod-
els, we carry out experiments on real-world data and study how well classical
models capture the behavior of graphlets. Concretely, in this section, we first
discuss what data we used and how they were created, second, we summarize
how we process the data and come up with the results that we have and, finally,
we discuss the results.

Similar experiments were carried out by Pržulj (2007) and Milenković (2010).
Their analysis was carried out on biological networks, more precisely protein-
protein interaction networks, and the main approach for comparing networks was
based on graphlet degree distribution agreement measure – their study concluded
that GEO models are the best suited for PPI modeling. In this section, we
experiment with a wider array of networks and employ a series of comparison
methods (described in the previous section). These approaches and results are
(except for GDDA), to our admittedly limited knowledge, novel.

3.3.1 Data used
We considered 31 networks saved in Network Repository (Rossi and Ahmed
[2015]). We selected four different types of networks : relation between genes
(9 networks), interaction between neurons in the brain (8 networks), networks of
ecosystems (7 networks), and infrastructure networks (7 networks). The crite-
rion for selecting a network was 1) size (our computational capacity was limited),
2) completeness (we wanted to avoid networks with incomplete data), and 3)
reasonable density (some networks were too dense or too sparse which is not
representative and introduces a large amount of noise in the graphlet counting).

3.3.2 Data processing
Given a network, we process the data in the following fashion:

1. first computed degree distribution for the original network (using Orca de-
veloped by Hocevar and Demsar (2014));

2. generated ER, GEO, and AB models (described in 1.3.2) that have an equal
number of vertices and a similar number of edges as the original network
(since all of these models are probabilistic, it is difficult to ensure that a
model has the same number of edges, we accepted 2.5% deviation in the
number of edges compared to the original network);

3. paired vertices according to the process described in section 3.2.2

4. compute the metrics for network comparison described in section 3.2

• sum of differences
• graphlet degree distribution agreements
• mutual information
• distance correlation

5. visualize the data into a 3-dimensional histogram
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3.3.3 Results and discussion of experiments
To present the results, we have decided to select 4 representative networks from
the 31 considered, one from each type of network. Individual networks differ
in many parameters (especially prominent differences between different types of
networks – brain vs. infrastructure), but the patterns described below were ob-
served in over 85% of the networks considered. Since we do not dwell on details of
individual networks and follow general patterns, we consider these observations
representative.

We first present representative networks, visualize the results (larger images
are in appendix A.1) and present results of comparison methods, subsequently,
we analyze and discuss the results.

Note that all the graphlet degree distributions presented below are vertex-
aligned using the mechanism described in section 3.2.2 against the original net-
work.
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Results

The following data are based on the neural network of C. elegans (Chen et al.
[2006]) on 297 vertices and 1720 edges.

(a) Original network (b) Albert-Barabási model

(c) Geometric model (d) Erdős-Rényi model

Figure 3.1: Graphlet degree distribution of the neural network of C. elegans and
models of it (AB, GEO, ER)

Table 3.1: Results of different comparison methods – all values are calculated
compared to the original network, lighter color indicates better standing

Name Original network AB model GEO model ER model
SD 0 40830 76033 77783

dCor 1.0 0.942 0.236 0.360
MI 6.40 4.49 3.19 3.34

GDDA 0.0 0.329 0.255 0.337
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The following is based on a network of interaction between genes in an un-
named plant (Rossi and Ahmed [2015]) on 1717 vertices and 3098 edges:

(a) Original network (b) Albert-Barabási model

(c) Geometric model (d) Erdős-Rényi model

Figure 3.2: Graphlet degree distribution of the interaction between genes in an
unnamed plant and models of it (AB, GEO, ER)

Table 3.2: Results of different comparison methods – all values are calculated
compared to the original network, lighter color indicated better standing

Name Original network AB model GEO model ER model
SD 0 170293 151820 166468

dCor 1.0 0.636 0.067 0.102
MI 2.28 0.868 0.398 0.459

GDDA 0.0 0.121 0.109 0.07
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The following is based on a network of food web in tropical ecosystems of
Florida (Ulanowicz and DeAngelis [1998]) on 87 vertices and 1446 edges:

(a) Original network (b) Albert-Barabási model

(c) Geometric model (d) Erdős-Rényi model

Figure 3.3: Graphlet degree distribution of the food web in tropical ecosystems
of Florida and models of it (AB, GEO, ER)

Table 3.3: Results of different comparison methods – all values are calculated
compared to the original network, lighter color indicated better standing

Name Original network AB model GEO model ER model
SD 0 8775 18846 11782

dCor 1.0 0.629 0.417 0.403
MI 8.46 8.03 7.54 8.164

GDDA 0.0 0.423 0.426 0.41
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The following is based on data about email communication on an unnamed
US university (Rossi and Ahmed [2015]) on 1133 vertices and 5451 edges:

(a) Original network (b) Albert-Barabási model

(c) Geometric model (d) Erdős-Rényi model

Figure 3.4: Graphlet degree distribution of the email communication network and
models of it (AB, GEO, ER)

Table 3.4: Results of different comparison methods – all values are calculated
compared to the original network, lighter color indicated better standing

Name Original network AB model GEO model ER model
SD 0 161399 235012 272087

dCor 1.0 0.648 0.391 0.467
MI 5.77 3.168 2.231 2.08

GDDA 0.0 0.21 0.244 0.165
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Observation and analysis

The results above are only representatively chosen samples. The following obser-
vations are made on all the data produced:

• The best performing model seems to be the Albert-Barabási model – both
from the perspective of visual analysis, graphlet degree distribution has a
similar shape and structure as original networks, and from the perspective
of comparison methods based on graphlets. Metrics for comparison suggest
that this holds even in denser networks where visual analysis becomes in-
creasingly difficult (see figure 3.3) Nevertheless, the correspondence between
the AB model and the original network is not without flaws – upon closer
inspection, we can see that there are often a few nodes that appear to par-
ticipate in complex graphlets (this can be seen well in figures 3.1, 3.2 or 3.4).
This observation further corresponds to the result of Haddadi et al. (2009)
who claim that the AB model fails to capture small well-connected regions
in sparser real networks due to its excessive focus on scale-free property.

• Erdős-Rényi models produce networks with too little complex local topology
(orbitals from the most tree-like graphlets from each graphlet size (g4-g11
and g15-g23)) – this stops to apply as much in dense networks (such as
the one represented on figure 3.3) where less complicated graphlets are still
overrepresented but the difference appears smaller. This can be linked with
the properties of the ER model (see section 1.3.2) – there is little clustering
in sparse networks but the average paths are relatively short, which leads
to a large number of relatively simple graphlets which is exactly what we
observe.

• The tool for comparison of two networks, graphlet degree distribution agree-
ment, is the only metric through which the Geometric model appears best-
suited for modeling real-world networks. We theorize that this might be
caused by the fact that more frequent graphlets are normalized during
GDDA calculation which prioritized either very well-fitting models or mod-
els that have an overall lower and homogeneous distribution of graphlets
which is exactly the case of the Geometric model.

• Geometric models produce networks with very complex local topology (or-
bitals from highly connected graphlets are highly represented even in rel-
atively sparse networks see figures 3.1, 3.2 or 3.4). This can be linked to
their tendency to create clusters that participate in more complex graphlets
(see section 1.3.2). This result disputes the results of Pržulj (2007) and
Milenković (2010) who proclaimed Geometric network as the best model
for real-world networks under the graphlet degree distribution agreement
measure – although GEO model appears as a good fit from the perspective
of GDDA, other measures do not support this view (see previous observa-
tion).

• In general, we can observe that: 1) when networks are sparse, we can observe
the presence of slightly more complicated graphlets than pure paths and
trees with a few outliers that participate in more complex graphlets; 2)
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when the network gets denser, we observe increase in local complexity but
rather than observing a small number of dense clusters, the complexity of
local topology increases overall.

3.4 Summary and further work
In this section, we have shown that there is a number of possible usages of
graphlets in network description and comparison. Further, we utilized these and
applied them to real-world networks. We suggest, based on the application of
graphlet-based network comparison methods, that the AB model is best suited
for real-world network modeling, successfully mimicking the graphlet degree dis-
tribution.

Furthermore, besides the results shown above, we have left behind many loose
ends that invite promising future research. Concretely:

• All the approaches for aggregating information from graphlet degree dis-
tribution described in section 3.2 are formed on an ad hoc basis – there
is a need for a rigorous framework assessing different approaches carefully
tested on real-world data as well as synthetic networks. Different graphlet-
based approaches should be thoroughly tested to establish which captures
which property of networks. Ideally, this framework should be rooted in
well-studied theoretical properties of graphlets.

• Graphlet-based analysis should be carried out on a larger number of large
networks and compared to more models used for modeling networks. In
this way, the presented results could undergo thorough scientific scrutiny.

• Based on our analysis of chapter 2 and the experimental results discussed
in section 3.1, graphlets appear to be a potentially very good heuristic for
network comparison based on its structure. In this light, graphlet might
be a good basis for a new model for real-world networks. Nevertheless,
much research into the theoretical and experimental properties of graphlets
is needed before this step is attempted.

55



Conclusion
In this thesis, we defined and discussed graphlets in the context of network science.
The discussion was carried out in three separate chapters.

In the first chapter, we discussed the context of network science. We presented
a brief overview of the historical development of the field and offered insights into
the prevailing methodologies. Furthermore, we distinguished two key, albeit over-
lapping, aspects within the field: network description based on characterization
methods and network modeling and comparison. We presented commonly used
tools and models in the field.

In the second chapter, we delved into the topic of graphlets themselves. We
provided a comprehensive definition of graphlets and surveyed the existing litera-
ture related to their theoretical properties. Subsequently, we developed a frame-
work for studying the relationship between graphs and graphlets. Within this
framework, we explored several theoretical properties of graphlets, including the
relation between large graphlets and smaller ones, their behavior on simple classes
of graphs, and graphs that lead to the same graphlet degree distribution. We also
proposed a way of extending the configuration model to the 3-configuration model
that enables the generation of graphs with a prescribed graphlet degree distri-
bution for graphlets of size up to 3. Additionally, we established preliminary
connections between graphlets and the Weisfeiler-Lehman isomorphism test and
the reconstruction conjecture, demonstrating the reconstructability of a graph
from its graphlet degree distribution under certain conditions (see theorem 14 for
more details). Finally, we proposed avenues for further research that graphlets
offer.

In the third and final chapter, we bridged the previous two chapters and
explored how graphlets can be employed in network science for network char-
acterization and comparison. Building upon existing experimental literature on
graphlets, we argued for their efficacy as a tool for network characterization. Sub-
sequently, we discussed sensible approaches for utilizing graphlets in network com-
parison, including established methods and alternative strategies. Furthermore,
we applied graphlet-based comparison methods to a series of real-world networks,
demonstrating that, contrary to existing research, the Albert-Barabási model ap-
peared to be the best fit for real-world networks according to our graphlet-based
metrics. Finally, we proposed possible extensions of our empirical findings and
encouraged further exploration of graphlet-based comparison methods.

Overall, graphlets show great promise for future research, both theoretically
and empirically, with the potential to yield far-reaching consequences in the field
of network science and establish intriguing connections to graph theory. This
thesis only scratches the surface of the possibilities that graphlets offer, leaving
ample room for further exploration and application of this powerful tool.
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