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Abstract: Automatic meeting summarization or meeting minuting is the task of
accurately capturing the important contents of a meeting in a short fluent text
or in bullet points. Recently, there has been a lot of progress in the area, largely
due to the rise of neural language models. However, fully automated approaches
have severe limitations: they misinterpret their input, they hallucinate and they
miss important information. It is therefore difficult for users to trust them. To
counteract this, we introduce Minuteman, a live minuting tool, to enable easy user
interaction with summarization models and their outputs. The tool provides a
live generated transcript and an iteratively generated summary, both in shared
editors, so users can cooperate on their correction. We then briefly describe the
developments of our own variants of summarization systems. Lastly, we provide
an analysis of multiple live tests of the tool, assessing its worthiness.

Keywords: meeting minuting, summarization, machine learning, interactivity,
automatic transcription, natural language processing

iii



Contents

Introduction 3

1 Background 5
1.1 Meeting Summarization . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Pre-neural Approaches . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Sequence-to-sequence Architecture . . . . . . . . . . . . . 6
1.1.3 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.5 Recurrent Neural Networks . . . . . . . . . . . . . . . . . 8
1.1.6 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.7 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.8 Meeting Summarization State of the Art . . . . . . . . . . 10

1.2 Summary Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Automatic Speech Recognition . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Voice Activity Detection . . . . . . . . . . . . . . . . . . . 12
1.3.2 Speech-to-text . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Previous Work 14
2.1 AutoMin 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Commercially Available Tools . . . . . . . . . . . . . . . . . . . . 15

3 Minuteman 16
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Supported Browsers and Platforms . . . . . . . . . . . . . . . . . 17

4 Implementation 19
4.1 Target Platform Choice . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Application Architecture . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Sound Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Flask API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 RabbitMQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Transcription Worker . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Etherpad Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7.1 Transcript Segment Extraction . . . . . . . . . . . . . . . 24
4.7.2 Summary Point Creation . . . . . . . . . . . . . . . . . . . 25
4.7.3 Summary Point Updates . . . . . . . . . . . . . . . . . . . 25

4.8 Summarization Worker . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Summarization Model Development 27
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Baseline System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Experiments with Iterative Approaches . . . . . . . . . . . . . . . 27

5.3.1 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 Iterative BART . . . . . . . . . . . . . . . . . . . . . . . . 28

1



5.3.3 Iterative LED . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Non-iterative Approaches . . . . . . . . . . . . . . . . . . . . . . . 30

5.4.1 LED Model . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.2 Experiments with Vicuna Quantized Models . . . . . . . . 30

5.5 Evaluation and Output Samples . . . . . . . . . . . . . . . . . . . 31
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Testing and Evaluation 33
6.1 Testing on Mocked Meetings . . . . . . . . . . . . . . . . . . . . . 33
6.2 Live Meeting Testing . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.1 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.2 Feedback from Users . . . . . . . . . . . . . . . . . . . . . 35
6.2.3 Suggested Workflow . . . . . . . . . . . . . . . . . . . . . 35
6.2.4 Limitations of Minuting from Just the Transcript . . . . . 35

7 Conclusion 37
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.2 Summarization Model Development . . . . . . . . . . . . . 38
7.1.3 New Meeting Platforms . . . . . . . . . . . . . . . . . . . 38

Conclusion 38

Bibliography 39

List of Figures 46

List of Tables 47

List of Abbreviations 48

A Attached Data Files 49
A.1 Pretrained Models . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B Development Documentation 50
B.1 Component Details . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.1.1 Audio Recording from Frontend Code . . . . . . . . . . . . 50
B.1.2 Flask API . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.1.3 Transcription Worker . . . . . . . . . . . . . . . . . . . . . 51
B.1.4 Etherpad Plugin . . . . . . . . . . . . . . . . . . . . . . . 51
B.1.5 Summarization Worker . . . . . . . . . . . . . . . . . . . . 53
B.1.6 TorchServe . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B.2 Running the Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.2.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.2.2 Production . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B.3 Adding a New Model to TorchServe . . . . . . . . . . . . . . . . . 55

2



Introduction
When holding meetings, in addition to communicating in real time, it is often
necessary to produce an accurate summary of whatever was discussed, what were
the major points for and against and what was agreed on. We call the outcome
of such a process a meeting summary or meeting minutes. Such a summary can
then go on to be used in subsequent meetings or sent to the participants who
could not attend but still need to know what happened.

Meeting summarization is notoriously cognitively difficult. This is firstly due
to the sheer amount of information the author has to process in real time to
be able to write a result of sufficient quality. Secondly, many meetings in non-
professional settings do not have a dedicated notetaker and the author has to
multitask, on one hand partaking actively in the meeting, and on the other hand
writing things down.

Since the COVID pandemic began, many meetings have moved to online plat-
forms like Google Meet, JitSi or Zoom. With state-of-the-art technology for audio
speech recognition (ASR) and text summarization, it is becoming possible to au-
tomate the task. Pre-trained Transformer[Vaswani et al., 2017] language models
show the most promise for the task, as shown for example by Zhang et al. [2022]
for summarization in general and Shinde et al. [2022] for meetings specifically.

Transformer-based language models have, as of now, a few issues. First of all,
they have a limited input size due to the quadratic complexity of the self-attention
mechanism, thus reducing the available context. Meeting transcripts are often
long and will not fit inside a single input window, requiring workarounds. Sec-
ondly, current language models are prone to hallucination and can be extremely
inaccurate at times, as explored by Ji et al. [2023]. But when summarizing meet-
ings, relevance and factuality is key, as many people rely on the output for their
work and coordination and mistakes can be costly.

To circumvent the challenges of insufficient summary factuality, coverage and
hallucination, we introduce a novel tool, Minuteman, for enabling effective coop-
eration between the language model and the participants of the meeting. The
meeting is recorded and transcribed. The transcript is provided live to the users
in an online editor and summarized in real time. Users can also automatically
summarize segments of the transcript on demand. They can edit the transcript,
which is reflected live in the summary. The tool is designed in a modular manner,
allowing for easy replacement of summarization and transcription models.

We conduct several tests of the tool on meetings and find that it is useful to
the meeting participants, while still retaining some of the negatives of current
summarization. We particularly note the differing styles of outputs between hu-
man notetakers and the tool, which we believe is a challenge that will remain in
place even with more powerful summarization models.

Thesis Overview
The contents of the thesis are divided into six chapters. In the first chapter,
we introduce the issue of summarization and automatic speech recognition. We
provide a brief history of commonly used approaches for summarization and we
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discuss the state of the art for speech recognition.
In the second chapter, we delve into the recent advances in meeting minuting

and we also give a brief overview of commercially available tools. We discuss their
weaknesses as a rationale for developing our own solution.

In the third and fourth chapter, we introduce the Minuteman tool. The third
chapter focuses on the features while the fourth chapter explains the architecture
and some parts of the implementation.

The fifth chapter contains the description of our attempts of training a sum-
marization model with an emphasis on iterative meeting summarization, so that
it takes the previously generated summary points into account. Although the ap-
proach is ultimately unsucessful, we believe it highlights the limitations of current
summarization systems well. In the sixth chapter, we then analyse the results
from several tests of Minuteman.

We conclude the thesis with a recapitulation and many suggestions for future
work.
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1. Background
This chapter introduces the key technologies needed for the implementation of
Minuteman, namely summarization models, summary evaluation and automatic
speech recognition.

1.1 Meeting Summarization
Summarization is the task of significantly shortening a piece of text while keeping
the crucial information intact [Radev et al., 2002]. It is a widely studied problem
in computational linguistics, with approaches ranging from simple heuristics to
deep neural networks. Generally, it is divided into two types: extractive and
abstractive summarization. Extractive summarization is the task of selecting
some units (either sentence clusters, sentences or words) of the input text that
capture most of the information and using them as a summary. Abstractive
summarization is the task of generating a coherent summary while possibly using
formulations that did not appear in the source. With meeting summarization
or minuting, we aim to extract most crucial information from a given meeting
transcript.

This section introduces notable summarization approaches in chronological
manner, going over their development and rationale. We start with extractive
statistical or rule-based approaches and we work towards modern Transformer
encoder-decoder models. Lastly, we look at the current challenges faced by sum-
marization models today and the attempts to solve them.

1.1.1 Pre-neural Approaches
Most early approaches towards automatic summarization were extractive.1 They
were based on simple heuristics, like term frequency or TF-IDF, which was then
maximized to select important blocks ([Radev et al., 2002]) of the source docu-
ment. More sophisticated systems were graph-based, calculating overlap or an-
other similarity metric between chunks of source text and then selecting chunks
whose relations with other chunks suggested maximum informativeness. Notable
approaches include:

• Maximal Marginal Relevance (MMR), introduced by [Carbonell and Gold-
stein, 1998], is an unsupervised statistical approach that works by selecting
sentences with high marginal relevance, which means the sentence is similar
to the rest of the input text and not similar to the other previously selected
summary sentences.

• ClusterRank by [Garg et al., 2009] is an unsupervised approach created
specifically for meeting summarization. It is based on the TextRank [Mi-
halcea and Tarau, 2004] summarization algorithm. It creates a graph with
sentence clusters as nodes. Edges represent similarity between the clusters

1due to the difficulty of generating coherent abstracts
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Figure 1.1: An illustration of the encoder-decoder architecture from Fig. 1 in
Cho et al. [2014]

.

and they are weighed according to cosine similarity between the two clus-
ters. Summary is retrived by running a PageRank [Brin and Page, 1998]
algorithm and selecting the clusters with a maximum score.

Both of these approaches can be used with a query string, allowing the user
to select which kind of information he or she wants extracted from the source.
Nowadays, such methods can still be useful when selecting important chunks of
the transcript to summarize if we are using a model with a limited input length
and need a fast way to select chunks of high importance. In the mainstream, they
have however been made obsolete by more sophisticated abstractive methods.
This is because abstractive summaries fit user preferences better and do not rely
on the cohesiveness of the source, as discussed in Kumar and Kabiri [2022].

1.1.2 Sequence-to-sequence Architecture
Abstractive summarization is an instance of a sequence-to-sequence task. As
input, we get a sequence of words and we are tasked with generating a new
sequence – the summary. An often-used approach towards this problem is the
encoder-decoder neural network architecture, which first gained prevalence in
machine translation, as explored by [Sutskever et al., 2014]. The model is divided
into two logical parts, encoder and decoder. The encoder computes a fixed-
size vector representation of the input sequence. This representation is then
passed to the decoder which incrementally predicts the output until predicting
a special end of sequence token, usually denoted as <EOS>. This theoretical
approach has the advantage of not placing any constraints on either the input or
the output sequence size and is used ubiquitously in natural language processing.
The architecture is illustrated in Figure 1.1
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[the, fox, doesn’, ’, t, ar, ##bit, ##rar, ##ily, jump, over, the,
dog]

Figure 1.2: An example tokenization of the sentence The fox doesn’t arbitrarily
jump over the dog using the BERT uncased tokenizer

1.1.3 Tokenization
When passing a natural language sequence to a model, we need a mechanism
to split the input into meaningful smaller parts which can then be indexed and
passed as numbers to the model. We call this process tokenization and the soft-
ware conducting it a tokenizer. An intuitive approach would be to split by words;
this would however require the model to learn a huge amount of combinations of
words, since the space of all possible word forms is massive in most languages.
Tokenization into characters is generally also not used because it is difficult for the
models to learn meaningful relations between single characters. Most tokenizers
therefore split into subword units.

Some of the popular tokenizers are rule-based; examples include the Moses
tokenizer2 or spaCy.3 Trainable methods like Byte-Pair Encoding [Sennrich et al.,
2016] or Wordpiece [Song et al., 2021] use a process which first splits the training
data into words, then the words into characters, which serve as base symbols. It
then creates tokens by iteratively merging the most probable symbol pairs until
a desired number of symbols is reached. WordPiece is used for example by the
BERT model.

The SentencePiece algorithm by Kudo and Richardson [2018], on the other
hand, does not presume that the input language uses spaces as divisors between
words. It treats the input as a stream and includes spaces in the used characters
for token creation. It is used, amongst others, by the T5 language model from
Raffel et al. [2020].

Generally, each pre-trained language model uses its own tokenizer variant.
Most of the tokenizers required for input preprocessing are available from the
HuggingFace library4 along with pre-trained models. For illustration, an example
tokenization is shown in Figure 1.2.

1.1.4 Embeddings
When handling natural language sequences, we need to represent the input token
indexes as vectors to input into the network. One approach is to one-hot encode
the tokens, meaning creating a vector of zeros as long as the size of the vocabulary
and putting a one at the index of the given token. This leads to a huge input
dimensionality and does not convey meaningful relations between similar words.
A widely-used approach is to use pretrained word embeddings, fixed-size trained
vector representations introduced first by Mikolov et al. [2013] in Word2Vec. The
Word2Vec embeddings are trained by having the model predict the word from
the surrounding eight words or the surrounding eight words from the word,5

2statmt.org/moses/
3spacy.io
4huggingface.co
5the so-called Continuous Bag of Words (CBOW) and Skip-gram architectures, respectively
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therefore forcing the model to include crucial information about the given word
in the vector. The embeddings can be trained ahead of time on a huge amount
of data in an unsupervised manner, and can then be easily used for a variety of
tasks as input to other models. Modern Transformer models generally have their
own embedding layers inside them, not relying on an outside implementation.

1.1.5 Recurrent Neural Networks
Encoder-decoder architectures were first implemented using recurrent neural net-
works (RNNs). A RNN is a generalization of feed-forward networks to sequences.
It works by computing an output as well as a hidden state iteratively in a cell for
each timestep of the sequence and then passing the output and the hidden state
to the next step. Usage of the hidden state makes it practical for both the encoder
and the decoder, with the encoder output being the hidden state after reading
the input sequence, from which the decoder then iteratively generates the output
sequence. Various cell types have been used, with the most prominent ones being
Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] and the
Gated Recurrent Unit (GRU) [Cho et al., 2014].

Recurrent networks have several limitations. Firstly, they are slow, because
every step depends on the previous ones, the computation cannot be paralellized
easily. Secondly, they struggle with long dependencies across time in sequences, as
noted by Bahdanau et al. [2014], due to the difficulty of fitting the entire sequence
into a fixed-size vector. Without modifications, this makes them suboptimal for
summarization tasks, because input documents are usually long and producing a
good quality summary requires large context to be taken into account.

1.1.6 Attention
To enable the encoder-decoder model to take long-term dependencies into ac-
count, an attention mechanism was proposed by Bahdanau et al. [2014]. The
idea is similar to the human perception of attention – we allow the model to
focus on the parts of input text it deems important across the whole sequence.

Attention works by first having the encoder, a recurrent network, compute
hidden states for each position of the input sequence. These annotations encode
the tokens and their close surroundings. Then, the decoder recurrent network
predicts the output. In each timestep, it computes a weight vector from the
previous hidden state and uses it to calculate a weighed average of the input
sequence annotations. The average — called the context vector — is then used
for prediction of the next token. This mechanism allows the model to focus on
parts of the input sequence that are important for the current prediction. As a
side effect, it also helps the interpretability of the model. The tokens that are
attended to primarily can be highlighted to better understand how the model is
making decisions. The mechanism is illustrated in Figure 1.3.

Attention allows the encoder-decoder model to bypass the bottleneck of the
fixed size encoder representation. Therefore, attention-enhanced RNN models
quickly became state-of-the-art before being replaced by the Transformer archi-
tecture.
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Figure 1.3: An illustration of the attention mechanism from Bahdanau et al.
[2014]

.

1.1.7 Transformers
As mentioned before, sequence-to-sequence models based on recurrent networks
are fundamentally constrained due to their sequential computation, limiting the
possibilities for paralellization and making their training time-consuming. To
counteract these issues, the Transformer architecture was suggested by Vaswani
et al. [2017]. It abandons the recurrent processing altogether and only relies on
a modified attention mechanism stacked in multiple layers.6 This allows for fast
massively parallel training on very large datasets.

By abandoning the recurrent computation, we lose implicit information about
token positions in the sequence. This is because when the RNN computes repre-
sentations of input tokens, it does so based on the previous hidden state, therefore
taking into account the data that came before. With Transformers, we therefore
need to encode positions in a different way. Usually, this is handled by computing
a position representation vector and adding it to token embeddings at the start.

Transformers quickly became dominant in nearly all areas of natural language
processing. The architecture proved to be scalable and well-suited for pretraining,
as demonstrated first by the GPT (Generative Pre-Training) model from Radford
and Narasimhan [2018]. GPT is a decoder-only model trained in a similar manner
to pre-trained word embeddings. It is tasked with predicting the next word in a
sequence based on preceding words. Such an approach allows for using a massive
amount of data, since no expensive manual annotation is needed. It is then easy
to finetune on specific tasks, surpassing task-specific approaches.

Following the introduction of GPT, there have been several enhancements
to the pre-training approach. BERT7 introduced by Devlin et al. [2019], an
encoder-only model, extended on the GPT model by using a new training objec-
tive – filling in masked words in a sentence. This allowed for modelling bidirec-
tional relationships in sentences. BERT quickly became the new state of the art

6The paper is fittingly named Attention is All You Need
7Bidirectional Encoder Representations from Transformers

9



for many tasks and with finetuning outperformed previous baselines, including
question-answering on the SQuAD dataset [Rajpurkar et al., 2016] and language
understanding on the GLUE dataset [Wang et al., 2018].

Neither GPT nor BERT are the most capable for text generation tasks like
summarization, because they do not provide the whole encoder-decoder architec-
ture.8 For these applications, whole encoder-decoder models are suited better.

Relatively quickly after BERT, BART by Lewis et al. [2020] and T5 by Raf-
fel et al. [2020] were introduced. These are encoder-decoder models trained on
slightly modified training objectives compared to BERT and GPT to support
more efficient text generation.9 These (and similar) models became the standard
backend for summarization, either as the main model or as a building block.

For summarization, a large pre-trained encoder-decoder model is often fine-
tuned on a smaller summarization dataset. The resulting model then generates
suitable abstracts. Notable datasets for meeting summarization include:

• SAMSum [Gliwa et al., 2019], containing short conversations and their sum-
maries.

• AMI Corpus by McCowan et al. [2005], which includes meeting recordings,
transcripts and abstractive and extractive summaries.

• XSum [Narayan et al., 2018], which is composed of BBC articles and their
extremely short summaries, fitting in one sentence. It is not directly a meet-
ing minuting dataset, but it is useful in modifying the model to generate
short summaries.

• ELITR Minuting Corpus from Nedoluzhko et al. [2022] containing about a
hundred english meetings and about fifty czech meetings with transcripts
and several corresponding minutes, allowing for the analysis of differing
minuting styles.

Transformer models for summarization are currently limited in their context
size; most of them can take less than 2048 tokens of input. This is due to the
quadratic complexity of the attention mechanism.

1.1.8 Meeting Summarization State of the Art
As meeting transcripts can be quite long,10 summarization approaches need to be
able to take into account the whole context. Current state-of-the-art approaches
are therefore centered around bypassing this limitation. We list three selected
ones.

An approach by Zhang et al. [2022] called SummˆN works by summarizing
fixed length chunks, concatenating them, then summarizing the summaries and

8even though decoder-only models are certainly usable; GPT-2 was used to surpass state of
the art for Czech summarization, as shown in Hájek [2021]

9BART uses an objective where it replaces a segment of a sequence with a single masking
token and asks the model to fill it, thereby forcing it to capture both left-to-right and right-to-
left dependencies as well as efficient generation

10For example, the average amount of words in the english part of the Automin dataset is
around 7000
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so on, until the desired length of the target summary is reached. They utilize
several backend models including BART and T5 and find that BART produces
the best results in the pipeline.

Another possibility is to use a retrieve-then-summarize approach like Zhong
et al. [2021]. They propose a new task called query-based meeting summarization,
in which a model is provided a query and the source transcript and is required
to generate a corresponding summary. They utilize a Locator component to
extractively select segments of the transcript which are relevant to the query, and
the results are then passed to a summarization model.

To address the fundamental input length issue of Transformer models, Beltagy
et al. [2020] propose a modification to the attention mechanism, allowing for input
sequence lengths of up to 16 thousand tokens. The tokens are allowed to attend to
a window containing their close neighbours. The window can also be dillated with
spaces between neighbouring tokens, allowing tokens to attend to farther segments
at the cost of lower density. Specifically for summarization, the authors propose
a Longformer Encoder Decoder (LED), which initializes parameters from BART
but utilizes the Longformer attention. The authors reach interesting results on
the arXiv summarization dataset by [Cohan et al., 2018].

All of these approaches show promise, but since they have slightly different
objectives, it is difficult to compare them and decide on the best one. Also, we
still do not possess a reliable metric for comparing model outputs, as we shall
discuss in Section 1.2. All the approaches are still far from reliable; they can
therefore serve as frameworks for new methods.

1.2 Summary Evaluation
Summarization is a tricky task because it is inherently difficult to evaluate. Man-
ual evaluation is slow and expensive and creating an automated metric is still
a difficult open problem. We must face the fact that even human annotators
are often not in agreement on which summary is the best; the styles of human
summaries are often very different, with every notetaker perceiving something as
important while the others do not. Ideally, the metric should capture:

• factuality, or if what the model produced is actually contained in the source
text

• coverage, or whether all the topics in the source text are sufficiently included
in the summary

• fluency, or some sort of linguistic quality of the produced output

A comprehensive overview of current approaches towards summary evaluation
can be found in a study by Fabbri et al. [2021]. We pick out several notable
approaches:

• ROUGE (Recall-Oriented Understudy for Gisting Evaluation) introduced
by Lin [2004], which measures word n-gram overlap between the source
document and the summary.
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• BERTScore introduced by Zhang et al. [2020], which computes vector rep-
resentations for each token in the summary, finding the most similar rep-
resentation in the source and calculating the cosine similarity of the two.
The result is averaged across the whole summary.

• SummaQA [Scialom et al., 2019], which generates questions from the source
text and then tries to answer them from the summary using a question
answering model.

Currently, the most prevalent and measured benchmark is the ROUGE score. It
cannot however serve as a definitive metric, as it was found that it does not neces-
sarily correlate well with human evaluations in meeting summarization settings,
as shown in Fabbri et al. [2021].

1.3 Automatic Speech Recognition
Automatic speech recognition (ASR) or Speech-to-text (STT) is the task of con-
verting audio with recorded speech into written text. It is an umbrella term for
many of the different subcomponents like voice activity detection (VAD), diariza-
tion,11 inverse text normalization and others.

Since the focus of this thesis is mostly summarization and the user interface
of it, we are only going to briefly introduce the state of the art in voice activity
detection and recognition.

1.3.1 Voice Activity Detection
In ASR systems, VAD is a subcomponent that detects when a segment of an audio
stream contains human speech. It is a necessary part of many audio processing
systems and is often used as a trigger for a larger ASR pipeline waiting behind
it. Due to this, an optimal VAD system has high accuracy as well as very low
latency to be used real time.

VAD systems generally first convert the input audio into a suitable repre-
sentation; often, they compute a short-time Fourier transform of the input, as
many features of speech are found in the frequency spectrum. Then, they run a
classifier on the computed representation.

Common VAD systems used in productions include:
• Silero VAD,12 which utilizes a Transformer network as a classifier and pro-

vides both high quality and fast inference times, as the model is quite small.

• WebRTC VAD,13 which was implemented by Google as a part of the We-
bRTC project.14

• pyannote VAD by Bredin and Laurent [2021], which is based on a RNN
architecture trained in accordance with approaches described in Gelly and
Gauvain [2018].

11Partitioning of speech into segments according to the different speakers
12github.com/snakers4/silero-vad
13chromium.googlesource.com/external/webrtc/+/branch-heads/43/webrtc/common_

audio/vad/
14webrtc.org

12

github.com/snakers4/silero-vad
chromium.googlesource.com/external/webrtc/+/branch-heads/43/webrtc/common_audio/vad/
chromium.googlesource.com/external/webrtc/+/branch-heads/43/webrtc/common_audio/vad/
webrtc.org


Overall, VAD is considered satisfactorily solved, as we posess high-quality fast
systems for the task.

1.3.2 Speech-to-text
In Section 1.1.7, we mentioned the trend of using unsupervised pretraining in
language modelling to boost performance in specific areas. Automatic speech
recognition is an area where creating labeled training data is also demanding
(similarly to summarization and other natural language processing problems).
Thus, in recent years, the automatic speech recognition research has taken a
similar direction in utilizing pretraining. In their work, Schneider et al. [2019]
introduce a pretraining approach on unlabeled speech data based on convolutional
networks. Their model outputs representations that can be used for downstream
tasks or finetuned.

The need to finetune brings with it risks; if one is not careful, the model
can overfit on dataset-specific features and be of little use in the general setting.
Therefore, Radford et al. [2022] explore so-called weakly supervised training. They
employ a massive dataset of online audio along with transcriptions that are not
closely matched, and a Transformer model, since they note that the architecture
adapted well to large amounts of training data on other tasks. Their resulting
model, Whisper,15 has surpassed previous approaches and is usable off the shelf
for ASR.

15github.com/openai/whisper
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2. Previous Work
In the previous chapter, we discussed how summarization systems evolved and
we schematically looked at the current approaches, delving into the attention
mechanism and Transformer models. In this chapter, we look specifically at
recent advances in meeting minuting. We then give an overview of the tools
available either for free or commercially for automatic meeting minuting.

2.1 AutoMin 2021
Together with publishing the previously mentioned ELITR Minuting Corpus,
Ghosal et al. [2021] organized a shared task specifically for meeting minuting,
with teams competing to generate the best automatic minutes in either Czech
or English (Task A) and in two side-tasks B and C related to judging whether a
minute belongs to a certain summary. We will only focus on Task A because it
is most relevant to the thesis. In the task description, the AutoMin organizers
argue there is a notable distinction between meeting minuting and summarization,
with minuting being focused more on the adequacy and coverage of the source
transcript rather than fluency of the output. They also deem automatic metrics
to be unsuitable to evaluate the outputs of minuting models well; therefore, the
main evaluation metric of the task is human preference. They set up evaluation
in three categories for each generated minute: adequacy, fluency and grammatical
correctness, ranking each category from 1 (worst) to 5 (best).

There were 10 actively participating teams. Their approaches usually included
combining a pre-trained Transformer summarization model with a preprocessing
step to satisfy the small input length requirement. Team Hitachi Yamaguchi
et al. [2021] and Team ABC Shinde et al. [2021] finished with the best results
in the manual evaluation, with Team Hitachi being slightly better in the ade-
quacy category and Team ABC leading in fluency and grammatical correctness.
Hitachi utilized a segmentation system that divided the transcript by topics and
then summarized using a BART model. Team ABC, on the other hand, ran
preprocessing steps that included the removal of stopwords in the source and
then segmented the transcript into equal-length chunks for summarization with
a BART model finetuned on the SAMSum dataset.

We note that nearly all of the teams did not use the data provided in the
ELITR Minuting Corpus for training. We hypothesise this is because there is no
alignment provided between parts of the minutes and segments of the transcript,
meaning limited input length models are difficult to train on it.

For the Minuteman tool, we base our backend summarization model on the
approach of Team ABC. We found their results to be quite satisfactory for a
baseline. We also find the segmentation into equal-length transcript chunks to
be useful for our usecase of building the summary incrementally; more on that in
later chapters. We attempt a further refinement of the model in Chapter 5.
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The speaker expresses their uncertainty about their ability to
stop the meeting recording and suggests that the software being

used may involve whisper and some sort of GPD.

Figure 2.1: Summary of a part of a meeting provided by the MeetGeek tool.
Originally, the speaker did not express uncertainty, but the desire to view the
transcript live. And he also did not talk about GPD, but GPT. The capitalization
error for the Whisper model is an expected minor issue.

2.2 Commercially Available Tools
Automatic meeting minuting is very commercially promising, as it can save people
huge amounts of time when implemented correctly and reliably. On the market,
we can find many tools, including MeetGeek, Sembly, Otter, Tactiq and others.
Nearly all of these provide an interface to major meeting platforms like Zoom,
Google Meet and Microsoft Teams, and they supply their user with meeting notes
and a transcript shortly after the meeting ends. The resulting meeting notes
are then often divided into several categories like facts, insights and concerns.
MeetGeek even generates highlights of the original audio to allow the user to
listen to a condensed representation of the information.

To the best of our knowledge, none of the available meeting minuting tools
provide an interactive interface for the user to take part in the process and be able
to edit the transcript and the summary. We find this to be a weakness because
it does not allow the users to correct outputs while they have the context of the
meeting still in memory, and the summary models are still not good enough to
be trusted to work correctly on their own. To illustrate our point, we conducted
a test meeting with just one participant in the MeetGeek tool.

As seen in Figure 2.1, the tool made several mistakes in summarizing and
failed to transcribe a named entity (GPT). This is to be expected, models are
not yet perfect; however, if the meeting was long and the mistakes were subtle,
they could get lost, perhaps with bigger consequences. Had the user been able to
correct the mistakes in the process, they would not get propagated further. We
find this to be a large motivation for development of interactive tools for meeting
minuting and the Minuteman tool.
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3. Minuteman
The Minuteman tool helps users with meeting minuting. The goals are to produce
high-quality meeting minutes almost automatically or and significantly reduce the
cognitive load on a human meeting scribe. It is an online browser application;
the final version is available at minuteman.kmjec.cz. The tool is targeted at
meetings held in English, as meeting summarization models of sufficient quality
are not yet available for the Czech language. However, the application is prepared
for incorporating new summarization models and expanding to new languages.

3.1 Overview
The user is first taken to a landing page where he or she can create a minuting
session. Once the minuting session is created, the user is redirected to the main
user interface of the tool.

The interface consists of a top control bar for the tool and two side-by-side
shared editors, the left one containing the live generated transcript and the right
one showing the generated summary, as shown in Figure 3.1. The user types
in a Jitsi room name and a mock meeting participant representing the tool logs
onto the meeting. A transcript is then generated from the conversation of the
meeting participants and summarized as simultaneously as possible. The link
to the session can be shared with other users and they can collaborate on the
meeting minutes.

The summary creation works automatically in an iterative manner; when
enough new utterances have been appended, a new summary point is created to
represent them. The user can control the density of the summary by selecting the
maximum chunk length in words in the top menu. A more detailed description
of the summary creation process is provided in Chapter 4.

A user can also select a segment he or she wants summarized, and press a
shortcut to create a new summary point. The selected segment is summarized
and the summary is appended to the end of the summary document, as seen in
Figure 3.1.

As the models producing the transcript and the summary are not perfect and
can produce errors, we wanted the meeting participants to be able to counteract
it. Both the transcript and the generated summaries are editable, with changes in
transcript leading to the recomputation of the relevant summary points. However,
if a user edits a generated summary point, it is then frozen and never updated
by the tool again.

3.2 Model Selection
For a better flexibility, we introduce an option to select between summary models.
When the user selects the model, all new summarization will be done using that
model; that includes resummarizing transcript chunks that have been edited.
The currently available models are BART finetuned on the XSum and SAMSum
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Figure 3.1: A screenshot of the full Minuteman online application in action. The
left editor contains the transcript, the right contains the generated summaries.
It is running in debug mode; notice the information prepended to each line. The
user has just requested a summary of a selected segment.

datasets1 and a FLAN-T5 base model from Chung et al. [2022] finetuned on
SAMSum.2 Note that we added the option to select models after our user tests
due to time constraints, therefore this option is not reflected in our user testing,
which only used the BART model.

As a side effect, this feature can be helpful for comparing outputs of different
summarization models. The user can select one model, request a summary of a
segment, then select another model and request a summary of the same segment
and quickly inspect the result.

3.3 Debug Mode
To make the workings of the user interface clear, we provide a debug mode to the
user, which prepends lines in both the transcript and the summary with debug-
ging information. Transcript lines are prepended with their sequence number.
Summary lines are prepended with their sequence identifier and also the posi-
tions where the transcript chunk they were produced from starts and ends. For
summarization, the symbols are stripped from the transcript.

3.4 Supported Browsers and Platforms
The tool is tested in Firefox 114 and Chromium 114. We expect it to work well
on other Webkit and Gecko based browsers. We did not prepare the application

1huggingface.co/lidiya/bart-large-xsum-samsum
2huggingface.co/philschmid/flan-t5-base-samsum
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for mobile use as we believe the user needs to see the two transcripts side by side
on a large screen to be able to effectively use it.
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4. Implementation
The implementation of the tool began as a semester project under the supervision
of Ondřej Bojar. There were multiple evolutions in design, owing to the various
decisions made in the process. In this chapter, we first discuss the rationale for
choosing the Jitsi Meet platform as our target, and then we delve into the tool
implementation.

4.1 Target Platform Choice
At first, the project was intended as a plugin for Google Docs1 and one of the ma-
jor browsers like Chrome or Firefox. The users would log in to Google Meet, turn
on captioning and caption recording for the meeting and then they would interact
with the transcript in a shared Google document, correcting the hallucinations
and/or inaccuracies.

The advantages of such an approach include the large user base of Google
tools, allowing us to rely on a reasonably large pool of testers. Google Meet
also offers transcripts and captions from meetings. The official transcript is not
provided in real time, but there are browser plugins2 that allow the user to extract
live captions for this purpose. Therefore, it would be possible to only focus on
summarizing the provided transcript without the need to implement or deploy
our own models for transcription.

Disadvantages of relying on Google tools include our inability to control how
captioning is done, meaning it can change unpredictably and interfere with sub-
sequent processing. Recording the captions is also not an officially supported
way of obtaining the transcript and can be made more difficult by changes to the
user interface, meaning our software could be made obsolete at moment’s notice.
Lastly, we intended to embed a transcript document together with a summary
document in the same page and we believe this is easier if we use an open-source
solution.

In the end, we rejected the use of Google tools for the project mainly because
of the uncertain interface for transcription. Instead, we decided on targeting
the JitSi Meet platform because it offers a reasonably feature-complete library
in lib-jitsi-meet and allows us to record every audio track from the meeting
separately. Notably, this solves the need for diarization because we can produce
the transcript for each track on its own and then only merge the produced streams.
For the shared editor, we decided on using Etherpad,3 as it is open-source and
supports user-created plugins.

1docs.google.com
2chrome.google.com/webstore/detail/google-meet-transcripts-b/

kmjmlilenakedodldceipdnmmnfkahni
3etherpad.org

19

docs.google.com
chrome.google.com/webstore/detail/google-meet-transcripts-b/kmjmlilenakedodldceipdnmmnfkahni
chrome.google.com/webstore/detail/google-meet-transcripts-b/kmjmlilenakedodldceipdnmmnfkahni
etherpad.org


4.2 Application Architecture
The project source code is hosted on Github,4 with each folder in the root of
the repository roughly corresponding to one core component. We first briefly
describe the high-level architecture of the application, and then we go into the
important implementation ideas of each component. A complete development
documentation including the build instructions is provided in Appendix B.

Our intention was to build the application in accordance with the microser-
vices principles5 to enable independent evolution of components and to be able
to accommodate newer models or enable new use cases, which we suggest in Sec-
tion 7.1. The project is split into seven parts. We list them here for clarity, along
with their respective positions in the project Git repository.

• Sound recording frontend located in flask/static.

• A Flask API for the application located in flask.

• A transcription ASR worker located in transcription_worker.

• An Etherpad plugin located in etherpad-lite/ep_minuteman. It has a
frontend and a backend component.

• A summarization worker located in summarization_worker.

• A TorchServe backend for summarization models, specified in the Dockerfile
in torchserve.

• A RabbitMQ messaging system, deployed as a Docker container specified
in docker-compose.yml.

• A PostgreSQL database for long-term storage to prevent double-creation of
sessions, also specified as a Docker container in docker-compose.yml.

The data flow across these application components is shown in Figure 4.1. The
tool is dockerized6 for reproducible builds. The application build configuration is
specified in two docker compose files, one for development and one for produc-
tion.

When the user creates a new session, a random 20-character long session
identifier session_id is created. Two pads (the Etherpad term for editor) are
then created in Etherpad: one with a [session id].trsc identifier for transcript
storage and one with a [session id].summ for created summary points. We store
the session id in the database to prevent a double use of one identifier. When
the setup step is complete, the user is redirected to the application page and can
connect to a meeting.

Once the app connects to a meeting, audio data is recorded and sent to the
Flask API, which processes the request and forwards the audio to RabbitMQ. It is
then handled by the transcription worker, which transcribes the audio and sends
the produced utterances to the Etherpad editor plugin backend. The backend

4github.com/fkmjec/minuteman
5microservices.io/
6docker.com
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Figure 4.1: A schema of the application architecture. Red components are run-
ning in the client’s browser.

saves the utterances to the pad, marking them with their sequence number. Every
time enough new utterances accumulate in the pad, the plugin backend sends a
request to the summarization worker with the section of the transcript which
it wants summarized. The summarization worker requests the summary from
a model in TorchServe and sends it back to the Etherpad plugin backend via
RabbitMQ. The summary point is then appended to the summary pad.

4.3 Sound Recording
Sound recording is handled from the Javascript frontend code in flask/static
part of the project. Dependencies are managed through npm and the code with
dependencies is packed using webpack. A single exception to the dependency
management is the lib-jitsi-meet library that is not up to date in the node
package index and is distributed through a link.

The recording is based on the modern Javascript Web Audio API.7 Upon
connecting to a meeting, an AudioContext object is created which handles all
sound processing for the page. The recording itself is done in AudioWorklets,8
so that the recording threads can run without slowing down the user interface
processing. One worklet is created for each connected participant.

Audio data is collected at the default sample rate set by Jitsi and is then
decimated using the @alexanderolsen/libsamplerate-js9 library to 16000Hz.
Recorded one-second long chunks are sent over a HTTP API to the Flask fron-

7developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
8developer.mozilla.org/en-US/docs/Web/API/AudioWorklet
9github.com/aolsenjazz/libsamplerate-js
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tend. They are accompanied by a recorder id, which uniquely identifies audio
tracks in a meeting, and session id, which identifies the session.

When implementing the recording, we ran into compatibility issues across
Firefox and Chrome browsers, with the AudioWorklet only recording zeros in
Chrome-based browsers. We found out that Web Audio API in Chrome requires
the track to be connected to a HTML audio element for data to flow from the
audio tracks into the recorders. This does not happen in Firefox, where the audio
is streamed through the Web Audio API processing graph even upon not playing
on the page. We work around this by creating muted audio elements in the page
when a new audio track is added.

4.4 Flask API
To serve the static pages and to be a main API for the application, we use a
Python application based on the Flask framework. It has four main responsibili-
ties:

• Initial session creation and the creation of Etherpad documents correspond-
ing to a session.

• Serving of static content once the session has been created, which applies to
the landing page and mainly the sound recording Javascript code described
in Section 4.3.

• Forwarding of audio chunks to the transcription worker over RabbitMQ.

• Forwarding setting changes from the frontend to the Etherpad plugin back-
end.

The API is run using the Gunicorn server10 for performance. A description of
the endpoints is provided in the technical documentation in Appendix B. The
dependencies are managed through pip.

4.5 RabbitMQ
Requests in Flask are dispatched asynchronously in multiple worker threads. If we
wanted to transcribe audio directly in the Flask code, we would have to somehow
synchronize between the threads, which would be difficult to do. Therefore, we
needed a mechanism for queing requests containing the recorded audio chunks. A
message queue is a natural approach towards this. We chose RabbitMQ because
it is mature enough and there are high quality libraries for interfacing with it in
every major language.

Audio chunks get serialized by Python’s pickle at the Flask API and then
are sent to the audio chunk queue. From the queue, they get picked up by a
transcription worker that creates the transcript. The created utterances are sent
over a queue to be picked up by the Etherpad plugin backend and appended to
the transcript editor.

10gunicorn.org
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This architecture has notable benefits. Firstly, we gain a single source of
truth when it comes to ordering of events; the queue order is all that matters.
Secondly, because the data format sent over RabbitMQ is well defined, we can
develop each component independently. If the need arises, the web frontend or
the transcription worker can be swapped completely, for example with a module
connecting a microphone in a conference room for holding in-person meetings.
And lastly, it allows for easier debugging, because we can mock the transcription
worker with a script that streams already created transcripts to the editor. This
greatly improves the development feedback loop, as it is not needed to record
a new meeting when we want to test the editor component of the tool. Our
employment of this technique is described in detail in Chapter 6.

4.6 Transcription Worker
The transcription worker is implemented in Python and its dependencies are
managed through pip. It is divided into two threads; one worker thread and
one listener thread. The listener thread listens on RabbitMQ for incoming audio
chunks. The worker thread handles the transcription. It maintains a buffer of
audio chunks for each recorder id in each session. Each of the buffers maintains
three invariants:

• The buffer is always shorter than a certain maximum length, in our case 15
seconds.

• The chunks all come right after the other, meaning they form a contiguous
audio segment that can be sent to a transcription model.

• All the audio chunks were found to have speech in them using a voice
activity detector.

When a new audio chunk is received over RabbitMQ, we first run the Silero
VAD on it. If speech is detected, it is added to the corresponding buffer in
transcripts. If the chunk does not contain speech or the buffer is longer than
the specified maximum length, we extract the buffer contents and transcribe
them using a Whisper model. We specifically utilize the faster-whisper11 library
because of the increased inference speed. We first used the small.en model
before switching to medium.en. Running the transcription as soon as possible
means that we implicitly order the utterances by their ending time, which can
sometimes be confusing. We chose this approach due to simplicity, as ordering of
utterances of simultaniously talking speakers is a difficult problem.

The transcribed text is then sent over a RabbitMQ connection to a transcript
queue with where it can be received by the Etherpad plugin and inserted into a
transcript editor.

11github.com/guillaumekln/faster-whisper
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4.7 Etherpad Plugin
When choosing a collaborative editor for the project, we elected to use Etherpad,
because it offers a comprehensive12 plugin API and can be sufficiently modified
to suit our needs. We implement the desired functionality in the ep minuteman
plugin.

Etherpad plugins are composed of a frontend component and a backend com-
ponent, with the frontend running in the client browser and the backend running
on the server. Our frontend component contains only a minor part of the func-
tionality related to the user requesting a summary of a selected chunk. In this
section, we therefore focus on the backend component, because it holds the con-
figuration and state for the entire Minuteman application.

For every session id, the backend maintains a transcript pad and a summary
pad. In each of these, we consider line of text is the smallest working unit for our
processing. We call a line in the transcription document an utterance and a line
in the summary pad a summary point.

The backend then has three tasks. Firstly, it receives utterances over Rab-
bitMQ and must store them in the transcript pad. It also requests summaries
when newly appended utterances form a suitably large chunk or when the user
specifies he wants a certain section summarized. When the response comes, the
summary point must be inserted into the summary pad.

Secondly, the backend needs to keep track of where the summarized transcript
chunks start and end and how they correspond to the different summary points in
the summary pad. On updates to the transcript pad, it must update the relevant
pieces of the summary to reflect the information in the transcript.

Thirdly, the backend keeps the configuration state for each of the sessions.
The state consists of the currently selected summarization model and the current
transcript chunk length. It exposes an API to either get or set these settings
individually.

Here we should note a significant limitation of the plugin backend; it does not
provide persistence across restarts because all state is kept in memory. Due to
time constrains, we were not able to implement persistence in the PostgreSQL
database. Because of this, old sessions will be available upon restarts, but it will
be impossible to create new summary points and record other meetings in them.

4.7.1 Transcript Segment Extraction
To be able to refer to transcript chunks even with the possibility of user edits,
we employ Etherpad attributes. Upon each edit to a pad, Etherpad generates a
changeset, which is a string representation of the operation the user conducted.
The changesets are used to enable shared editing by multiple users, because they
can easily merged when resolving conflicts in edits.13 Attributes are key-value
pairs assigned to each changeset. Each time we append a transcript utterance,
we add a trsc seq attribute to its changeset together with a sequence number.
This allows us to refer to the contents of each summarized segment as a range

12although not very well documented
13A more detailed description of changesets can be found here: github.com/ether/

etherpad-lite/wiki/Changeset-Library.
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between two transcript sequence numbers.
When we need to extract contents of a transcript segment from starting trsc -

seq a to ending trsc seq b, we read all of the transcript document line by line.
We start collecting the utterances for the segment when we reach a line that has a
sequence number greater or equal to a and we stop collecting when we reach a line
that has a sequence number greater or equal to b. This means that the extraction
mechanism works predictably even when one of the boundary transcript lines is
deleted.

4.7.2 Summary Point Creation
Summary points are created on two occasions. The first one is when the transcript
grows too large and there is a new summary point needed to cover newly appended
utterances. The second one is when user manually selects a piece of transcript to
summarize.

For each session id, the plugin maintains a buffer of last inserted utterances.
When the cumulative length of new utterances in words reaches a user-selected
threshold, we create a new summary point.

On summary point creation, we first create a Summary object. This object
contains the starting and ending sequence number for transcript utterances that
identify the segment to summarize. Then, an impromptu summary point is in-
serted into the summary pad. To the summary point, we add a summary seq
attribute together with a sequence number to uniquely identify it. Lastly, a
summarization request is sent to a summary request queue over RabbitMQ. The
request contains the summary seq identifier, and also the user-chosen model for
the summarization.

The summarization worker then asynchronously processes the request and
sends the generated summary back to the plugin through a summary result queue.
The result is taken and inserted into the summary pad onto the line that is
identified by summary seq.

4.7.3 Summary Point Updates
Etherpad provides hooks that are called every time an editor is updated. In tran-
script pads, we employ these hooks to update the generated summary points when
transcript changes due to user interaction. On update, we list through all the
stored summaries and their respective transcript segments and we check whether
a segment has been changed. If it has been changed, we send a summarization
request over RabbitMQ to update the summary with the new contents.

In summary pads, upon updating, we check whether a summary point has
been edited. If it has, we freeze the it, so that it is not updated when the
corresponding transcript changes. We do so in order to not override user work.

4.8 Summarization Worker
The summarization worker is designed in a similar manner to the transcription
worker. It runs in two threads; one for listening for summarization requests on
RabbitMQ and a processing thread for the summary.
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When the worker is handed the summarization request, it cleans the transcript
using preprocessing steps from Shinde et al. [2022].14 Then, it makes a request
over HTTP to the TorchServe model serving backend to a selected model. Once it
receives a response with the generated summary, it sends it back over the message
queue to the Etherpad plugin backend. By default, we summarize using a BART
model trained on the XSum and SAMSum datasets. The development of other
models and the rationale for staying with BART is described in Chapter 5. We
also provide the option to use a FLAN-T5 base model finetuned on SAMSum.
For model serving, we utilize TorchServe because it allows us to painlessly add
new summarization models. The procedure for adding a new model is described
in Appendix B.

It should be noted that with our implementation of model inference in Torch-
Serve, we drop all the input tokens that are beyond maximum model input size.
This limitation can be easily bypassed by just using lower transcript chunk length
parameters in the user settings.

14The source is taken over from github.com/ELITR/minuting-pipeline.
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5. Summarization Model
Development
For Minuteman, we wanted to develop our own models that would be specifically
suitable for the task of interactive minuting. We submitted the best of these
approaches to the AutoMin 2023 shared task A, organized by Ghosal et al. [2023].1
This chapter is an adaptation of the system report we submitted for Task A,
discussing the rationale and results of our experiments.

5.1 Introduction
We base our work on the best submissions to the first shared minuting task at
AutoMin 2021. We try to circumvent the problem of Transformer limited input
length. As a baseline, we utilize a solution from Shinde et al. [2021] which was
successful at AutoMin 2021 [Ghosal et al., 2021]. In our approach, we explore
possible solutions to the issue, namely iterative summarization and the Long-
former model. Finally, we experiment with Llama models introduced by Touvron
et al. [2023], exploring their prompting for summarization.

5.2 Baseline System
For a baseline, we use a pipeline with a BART model finetuned on the XSum and
SAMSum datasets with a simple rule-based preprocessing system. The transcript
is first cleaned of filler words and less common characters are removed to make
the summary more fluent. We do the cleaning using the preprocessing code of
Shinde et al. [2022]. To satisfy the input length limitation of the BART model,
the pipeline then splits the transcript into chunks of roughly 512 tokens. Each of
those chunks is summarized into a separate bullet point. The resulting minutes
are a concatenation of individual chunk summaries.

5.3 Experiments with Iterative Approaches
For humans, a natural approach to creating meeting minutes is an incremental
one. A notetaker listens to the conversation taking place and writes down the
agreed-upon points, all the while keeping in mind what he has already noted.
In the iterative approach, our intention is to imitate such a process. The sum-
marization model is fed a chunk of a transcript together with several previously
generated minute points to both satisfy the input length constraint of the Trans-
former models while providing more context from the past minutes.

1ufal.github.io/automin-2023/
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dataset n. samples transcript prepended minutes target minutes
train 6014 189.21 ± 123.67 19.05 ± 15.47 9.95 ± 9.74

Table 5.1: Iterative dataset statistics. The transcript, prepended minutes and
target minutes columns give the average amount of words in the respective cate-
gories and the standard deviation.

5.3.1 Training Data
To the best of our knowledge, there are no datasets publicly available for iter-
ative summarization or transcript summarization where there would be known
alignment between a minute bullet point and a transcript chunk. Therefore, we
need to create our own training dataset with alignment from available data. The
code for dataset creation is available in the attached data files, as described in
Appendix A.

We preprocess and use data from the English part of the ELITR Minuting
Corpus provided as a part of the shared task at AutoMin 2023. We clean the
transcripts of fillers and stopwords using the same pre-processing approach as with
the baseline model. We then divide each transcript into 512 token chunks with
256 token overlap between neighbouring chunks, dividing the chunks in between
utterances so as to preserve fluency. We also split the corresponding minutes into
sequences of three consecutive bullet points.

We then align the minute chunks to the transcript chunks. We experiment
with two alignment approaches, one using document similarity metric from the
Spacy library by Honnibal et al. and the other one using ROUGE-1 precision
scores. In both cases, for every minute chunk we calculated the metric between
it and every transcript chunk and selected the piece of transcript that maximized
the metric. By manual inspection of a sample of aligned chunks, we found the
ROUGE-1 alignment to be more reliable.

The resulting dataset has the last bullet point of the minute chunk as the
target and the concatenation of the previous bullet points and the transcript as
the input. In Table 5.2, an example dataset entry is shown. We utilized the
natural splitting of the ELITR Minuting Corpus, converting the train set to our
training set and the dev set into our development set. We list the statistics with
average word counts for the train set in Table 5.1.

5.3.2 Iterative BART
For training, we utilize the same BART model weights as in the baseline. We
train on the created dataset with learning rate α = 2 ·10−5 and with weight decay
of 0.01 for one epoch.

After training and testing the model on some development transcripts, we
found out that we are unable to prevent the model from indefinitely repeating
the past output minutes, effectively being stuck in a loop. We attribute this to two
factors. Firstly, there was not much training data. Secondly, the training data
quality was not very good and probably unsuitable for the limited context length
of the BART model input. Many of the bullet points contained information
that cannot be obtained from a short chunk of the transcript, like the list of
participants, purpose of the whole meeting or a purpose of a large section of a
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input target minute
<minutes>
Introduction
First review of Romanian subtitles
</minutes>
(PERSON5): Yeah, no, Russian
looks more like Czech or Slovak I
think ok, there are thing they are like
Polish is Romanian. So I think they
are just, the UI is just ma it should
be unintelligible. laugh
(PERSON1): Yeah, o ok. So th that
is slight bug backward that means.
So I I will fix it...

What feedback is needed

Table 5.2: Iterative dataset example

meeting. For better results, such general bullet points would have to be filtered
out. We did not conduct such filtering because it would decrease the already
limited size of the dataset. The minutes also had quite varied forms and there
was no clear correct way of filtering. We therefore turned our attention to the
LED model.

5.3.3 Iterative LED
To counteract the input length limits of the BART model for iterative summa-
rization, we experimented with the LED model. As stated in Section 1.1.8, LED
stands for Longformer Encoder Decoder and it is a modification of the BART
model. It utilizes the Longformer attention mechanism as a drop-in replacement
of the classic self-attention mechanism, allowing it to take input up to 16384 to-
kens in length, which is in most cases longer than the transcript provided as part
of ELITR Minuting Corpus.

We utilized the LED-large model pretrained on Arxiv long document dataset2

introduced by Cohan et al. [2018]. We then finetuned on the SAMSum dataset
for 1000 steps with learning rate 5 · 10−5 with the Adam optimizer.

For further training, we modified the iterative dataset, utilizing the entire
transcript instead of chunks as input. We then trained following the same pro-
cedure as for the BART model. However, while testing the model, we found it
did not provide the improvement we hoped for, as the LED was still looping and
generating the same minutes all over again, rendering the approach unusable for
practical applications. Overall, we found the iterative solutions to be infeasible,
especially because of the lack of suitable training data and the tendency of models
to repeat their outputs.

2huggingface.co/allenai/led-large-16384-arxiv
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5.4 Non-iterative Approaches

5.4.1 LED Model
When we did not manage to pass the baseline or get to a functional solution with
our iterative approaches, we turned towards using the SAMSum-finetuned LED
model in a manner similar to the BART baseline. We then generated the minute
points by first feeding the model the first whole transcript, then the transcript
without first 512 tokens, then without 1024 tokens, and so on. We cut off the
beginnings to distinguish between the different inputs and to force the model to
generate new output focusing on a section, but with more context.

The results were promising, with roughly comparable ROUGE and BERT
scores to the ones posed by the baseline. However, the system consistently pro-
duced a summary whose individual summary points were a lot less compact.
We assume this is due to the fact that the LED model was not pretrained on
the XSum dataset, therefore it did not learn to shorten the input as well as the
BART model. Also, because the model gets more context, it is possibly trying to
capture all of the contained information instead of a single topic and therefore the
individual points are longer. LED also generates summaries that are less fluent
than those given by BART. We give a more complete analysis in Section 5.5.

5.4.2 Experiments with Vicuna Quantized Models
In early 2023, Llama models were proposed by Touvron et al. [2023]. Their
weights were made public and soon after, many open-source chatbot modifications
were available. Recently, with the help of the GPT4All library [Anand et al.,
2023], it has become possible to generate outputs easily without many hardware
requirements. We experimented with prompting the 4-bit quantized3 13 billion
parameter Vicuna model by Chiang et al. [2023] for summarization. Vicuna is
a Llama model finetuned to fulfill user demands, functioning as a chatbot. It
is trained on conversations from ShareGPT.4 The model has a limited context
length, therefore, the same preprocessing and splitting to chunks as with the
baseline model was needed.

We used the prompt of “Please summarize the following transcript with 2 bul-
let points starting with *. Write just the bullet points, nothing more.” The input
chunk length chosen was 768 tokens at maximum. The results were promising,
with most minutes being more relevant and fluent than the ones generated by the
baseline. The chatbot model however sometimes failed to listen to the prompt,
instead generating a response similar to “I am sorry, but I cannot write a response
to this prompt as it is incomplete and I am not sure what the prompt is asking
for. Please provide a complete and clear prompt, so I can assist you.”, but in the
majority of responses, the task is fulfilled correctly.

3Meaning the model weights were loaded in lowered 4-bit precision.
4sharegpt.com
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Model BERT R-1p R-1r
Baseline 0.785 0.225 0.368

LED 0.778 0.220 0.334
Llama Vicuna 0.766 0.187 0.389

Table 5.3: Comparison of the output metrics on ELITR development set

5.5 Evaluation and Output Samples
Common approaches for automatic evaluation include ROUGE and BERTscore,
but these often fail to represent the real quality of a meeting minute. Because
there are not as many examples in the development set of the data provided in
the ELITR Minuting Corpus, we fall back to a combination of manual evaluation
(coarsely assessing the relevance, coverage and fluency of a few generated samples)
and the automatic metrics of ROUGE and BERTScore. We place most emphasis
on manual evaluation.

We found the baseline model to perform better than LED in all the automatic
metrics we computed, as shown in Table 5.3. By manual evaluation on the dev set,
it also provided the more fluent and relevant summaries. We therefore submitted
the baseline as our task solution.

We also evaluated the outputs of the pipeline with the Vicuna model prompted
for meeting summarization. We found out it was similar to the the other mod-
els in BERTScore but performed worse on ROUGE-1 precision and a bit better
on ROUGE-1 recall. However, sometimes the outcome of the model was not
summarization at all; sometimes it ignored the transcript completely and gener-
ated a generic response, failing to fulfill the task. This could be automatically
filtered or, better, fixed with finetuning on proper summarization datasets or
better prompting.

It should be noted that all the generated minutes differ in essence to the
target minutes provided as a part of the dev set, because they often focus more
on what is happening at the current time in the transcript instead of mentioning
the outcomes and agreed upon points. We find this to be a major disparity that
we believe will only be fixed with much increased context length. We discuss
this issue further in the evaluation of Minuteman. A comparison of samples of
successfully generated bullet points for the same transcript chunks can be found
below.

Baseline: This week PERSON11 is working on the collection is business for
English. He has downloaded 1970 to 1980 pdf files which is extracted from the
OTHER3 thing of the office. 15000 sentences is crawled automatic using auto-
matic clover for English, OTHER3. He needs to clean all the data

LED: PERSON11 is trying to record the call to see if they are able to summa-
rize it automatically. They are trying to make it sound like they are discussing
the issue of censorship. They need to apply the same type of adaptation for the
NLP, PROJECT2 on the 12th and the 17th of February. They also need to adapt
the vocabulary of the PERSON7 talkage. They want to use English as English
models. They will use it for the first dry of a workshop on the Monday seminar.
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Vicuna PERSON11 is working on a business project for OTHER3, which
involves cleaning and organizing a large amount of data in text format.
PERSON14 is collaborating with PERSON6 on a language model for the project,
and they are discussing how to use the model for organizing the data.

5.6 Discussion
Although we were unable to pass the baseline with our approaches, we have
several interesting findings.

• We found that although iterative summarization is a possibly promising
approach, the needed training data is not yet available. Training on ELITR
datasets proved difficult, mostly due to the non-incremental character of the
available minutes.

• We successfully finetuned the LED model on conversation summarization
and obtained comparable results to the baseline. However, we were unable
to see the benefits of the larger context length it offers. We believe this is
due to the character of available conversation summarization datasets like
SAMSum which rarely have inputs longer than a thousand tokens.

• We have shown that Vicuna chatbot models can be successfully prompted
to perform summarization of transcripts, even though the results can be
unreliable. We found that the results are often more fluent and relevant
than outputs of the smaller BART model, even though the model has not
been specifically finetuned on the summarization task.

Due to the unsatisfactory results of our experiments, Minuteman defaults to
the baseline finetuned BART as the summarization model of choice. We list
examples of possible enhancements to summarization models in Section 7.1.
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6. Testing and Evaluation
To assess the use cases and viability of the tool, we conducted several tests of
the tool on live meetings. Most of the meetings were between the thesis author
and the supervisor, but we managed to record a meeting of a group of local high
school network administrators as well to capture the more probable use case with
more users. We describe the results in this chapter. We note that we submitted a
system demonstration paper to the IJCNLP-AACL 2023 describing Minuteman;
this chapter is an adaptation of the evaluation section of that paper.

6.1 Testing on Mocked Meetings
As there was a relatively limited number of meetings we were able to use for test-
ing, we needed an impromptu way to test and evaluate our system and especially
the summarization model before recording with live users. Thanks to the usage
of a message queue in the application, we were able to mock the transcription
mechanism and stream utterances from a finished transcript straight to the edi-
tor. We utilized transcripts from the ELITR Minuting Corpus. We calculated the
waiting times between utterances to correspond with with their length, utilizing a
fixed rate of about 200 words per minute. This gave us time to follow the output
and be able to evaluate the generated summary points. Using this approach, we
were able to develop the mechanisms for transcript extraction from the shared
documents more quickly, as we bypassed the need to create a new meeting and
audio content every time. A script for streaming the transcript is available in the
git repository in the directory debug_workers.

6.2 Live Meeting Testing
We conducted several tests of the tool between the author and the supervisor and
also and together with a group of network administrators from a local high school,
using their work meeting as a testing ground for meetings with multiple active
participants. We exploited the fact that their meetings contain a lot of named
entities and technical wording, allowing us to test the ASR model to the limit.
Based on the results, we formed a qualitative assessment of the tool usability
and possible workflows. All the participants of our experiments were briefed and
consented to their recordings being used in the evaluation.

6.2.1 Error Analysis
We found that most errors were committed by the ASR model when transcrib-
ing named entities. This was expected; many of the topics discussed in the test
meetings required sufficient domain knowledge or were in different languages.
Examples of transcription errors are listed in Table 6.1. These could probably
be largely counteracted by using a more powerful version of the Whisper model;
while testing, we resorted to the small.en variant due to speed and hardware
constraints. Also, many of the errors originate in the non-native English of the
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Example Error explanation
Vojta: a different DHCP server
named care so we can try it, I’ve
never used it.

The discussed DHCP server is
called Kea, not ‘care’.

Fanda: like, adapt this towards
check summarization, like, you
just, like, one thing is swapping
for check whisper, that’s easy,
and one thing is just, like, up-
loading a new model to. . .

The Whisper model misinter-
preted bad pronunciation and
did not recognize the word
‘Czech’ in context.

Table 6.1: Examples of errors committed by the ASR model

meeting participants with imperfect pronunciation and in bad quality of the par-
ticipants’ microphones. Upon inspecting the transcript, we updated the model
to medium.en, increasing the transcript quality without sacrificing much speed.

As for summarization model errors, from our experiments, we conclude that
the quality of the generated output is highly dependent on the quality and coher-
ence of the provided transcript. We divide the committed errors into three main
categories. Examples are provided in the list below:

• Overgeneralization: “PARTICIPANT1 and PARTICIPANT2 discuss the
implementation of a text editor.” is a true statement for our test meeting,
but it does not convey any important information that would be worth
writing down, since the entirety of it was devoted to improving the editor.

• Swapping or misinterpreting the actors of an action: “PARTICI-
PANT1 wants PARTICIPANT2 to finish the machinery before the end of
this month so that if she switches the cables, she can just note it down and
some scripts will fix it for him.” IN the summary it is noted that PAR-
TICIPANT1 wants PARTICIPANT2 to do something, but this is never
mentioned in the transcript.

• Errors due to lacking context: “PARTICIPANT1 needs to refer to some
parts of the transcript for the minutes to get summarized. PARTICIPANT2
will double check the deadline for the bachelor thesis.” In the transcript, the
checked date was supposed to be the deadline of paper submissions, not for
the thesis, but it was discussed in the same context as the bachelor thesis.
From a longer context window, the correct reference could be deduced by
the model and the error could be avoided.

Overall, it can be stated that the generated summary is good at capturing the
main topic of a transcript segment, but it very often fails in determining who is
the subject of an action and what is the object; much manual fixing is needed
in that regard. The generated summary also does not necessarily correspond to
a predetermined meeting agenda; it can therefore be difficult for the users to
manipulate the model to focus on the content that is important to them. This is
however natural, as the model cannot know the agenda in advance.

We also observed that summary quality was lower in the meeting captured
with the administrator group. This could be due to a number of causes including
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lower microphone quality, different non-native accents, less well-arranged tran-
script due to more participants or the fact that the summary model was finetuned
on short non-technical conversations.

6.2.2 Feedback from Users
The testers reported that they appreciated the possibility of catching up with the
meeting even on getting a quick pause. They did not yet feel comfortable trust-
ing the tool for summarizing the whole meeting, noting the differing styles of a
normal summary that mostly focuses on agreed-upon conclusions stemming from
a previous agenda and the generated summary. They said they would appreciate
the possibility of voice commands, which is something that we have not thought
about when implementing the tool.

Users also reported that sometimes, the ordering of the utterances in tran-
script was behaving unintuitively. This is due to the fact that the utterances are
sorted by their end times. This means that when a user has a longer monologue
with others nodding and reacting to the partial information stated, the reactions
appear in the transcript earlier than the transcribed monologue.

6.2.3 Suggested Workflow
We believe an efficient workflow is reliant on having multiple available participants
in the meeting to supervise the transcript and summary points. We found it
difficult to keep track of what was happening in the transcript and in the summary
in only two people, as constant activity is required of both of the participants.
However, the summary was of high quality, capturing the contents of the meeting
well, and if the group of two users needs to produce a summary anyway, the
tool definitely helps. In a larger group of users, only several of them are usually
vocally active and the rest can contribute to correcting the transcript and the
generated summary. When testing with the network administrators, we found
this to be practical.

6.2.4 Limitations of Minuting from Just the Transcript
From the testing, it became apparent that the meeting minuting task can be
seen as two distinct subtasks. One is the process of minuting itself; generating a
comprehensive summary of what happened, what conclusions were reached, what
are the tasks handed out to participants and so on. The second one is the process
of comprehensively capturing what happened exactly in the meeting; who said
what, what were the proper opinions and so on. We call that process meeting
timelining and it is basically a compressed transcript.

We believe the current minuting approaches tend more towards timelining.
We think this is partly due to the limited context the models are provided for
generating summary bullet points, but it does not explain the entire phenomenon.
From our point of view, the transcript is not sufficient to create a comprehensive
meeting minute on its own. Meetings themselves do not occur in a vacuum,
they are usually a regular ritual of a team at work which has some history, and
participants already have some perspective on the issue being discussed from
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before. Therefore, there is nearly always context in play that influences what the
optimal minute should be, and it is often not mentioned by the participants. To
illustrate our point, imagine a human annotator who has no history with a team
conducting a meeting, but he or she is just asked to produce a summary. The
quality of the output would be significantly lower in comparison to someone who
is well aware of the context, and the resulting minutes would be substantially less
useful.

From this, we conclude that minuting systems should ideally have access to the
whole history of meetings once that becomes possible, and possibly the meeting
outline written before a meeting is recorded. This way, the model can formulate
the minutes from the same information an informed human scribe would have.
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7. Conclusion
In the thesis, we explored the topic of user-assisted meeting minuting. We shortly
introduced the necessary technologies of summarization and ASR along with their
evolution. We then introduced our tool, Minuteman, to demonstrate possible
interaction of users and summarization models.

We discussed the architecture of the tool, highlighting the possibility of ex-
tension to new summarization models or other usecases. We then described our
attempts at our own summarization model finetuning. Although we were ulti-
mately unsuccessful in surpassing the baseline, we identified some of the pitfalls
that need to be avoided next time and highlighted the need for more elaborate
datasets. For Minuteman, we therefore ended up falling back to the baseline
model.

In the last chapter, we report on our experiments with the tool during live
meetings. We identified that while the tool is useful, the output is not yet trust-
worthy to be acceptable right away; the users found the summaries not to be
accurate enough yet. The interactive aspects however worked well and the ex-
pected workflow for correction of errors was successful. The users also positively
evaluated the possibility of catching up with the discussion after a short lapse of
focus or absence.

After examining the outputs, we concluded that there is still a large distinc-
tion between the outputs of a trained and context-aware human scribe and of
the summary model. We believe this is both due to the limited context length of
models and inherently missing information about the real-world context and pre-
vious participant experiences in the transcript. We suggest a solution as future
work.

7.1 Future Work
Because our tool was intended as a proof of concept, there are many avenues
for enhancement. We therefore divide them into three subsections, one focusing
on possible improvements to the user interface, one focusing on summarization
model development and the last one targeted at new meeting platforms.

7.1.1 User Interface
We believe that the user experience could be improved by visualizing relations
between summary bullet points and transcript segments similar to the way it
is done in the ALIGNMEET tool by Polák et al. [2022]. We think this would
improve the users’ understanding of the capabilities of the model and enable
better cooperation.

We also believe query-based summarization could be of use, in a similar man-
ner as was suggested by Zhong et al. [2021]. The users could write queries corre-
sponding to the meeting outline and then have the corresponding summaries filled
in on the same line. We hope this could help bridge the gap between meeting
timelining and meeting minuting, as described in Section 6.2.4, as user intentions
could be more clearly expressed.
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Lastly, we think that better structuring of generated minutes could help with
the output quality; training a model that would predict shorter bullet points and
increasing the output density would help in that respect.

7.1.2 Summarization Model Development
We believe the Llama models show promise for summarization and minuting;
therefore, we think finetuning them on the SAMSum and XSum datasets could
improve the summary results by a large margin. Bigger models could be finetuned
using low-rank adaptation training as proposed by Hu et al. [2021], shown in
practice on the StackLLama model by Beeching et al. [2023].

Expanding to other languages would also be helpful; there, ChatGPT API1

could be useful for summarizing, or a finetuned mBART Liu et al. [2020] model
could be used.

7.1.3 New Meeting Platforms
As Jitsi Meet is not the most popular meeting platform, expanding to Google
Meet, Teams and Zoom could bring more possible users to the tool for testing.
Expanding to in-person meetings would also be possible; due to the message queue
in the architecture, it would be possible to just replace the Javascript frontend
with a microphone and a diarization tool, for example pyannote2 by Bredin and
Laurent [2021], to distinguish when different people are speaking.

1openai.com/blog/chatgpt
2github.com/pyannote/pyannote-audio
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Ondřej Bojar. ELITR Minuting Corpus: A Novel Dataset for Automatic
Minuting from Multi-Party Meetings in English and Czech. In Proceedings
of the Thirteenth Language Resources and Evaluation Conference, pages 3174–
3182, Marseille, France, June 2022. European Language Resources Association.
URL https://aclanthology.org/2022.lrec-1.340.

Peter Polák, Muskaan Singh, Anna Nedoluzhko, and Ondřej Bojar. ALIGN-
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A. Attached Data Files
The attachments are divided into two folders. The minuteman folder includes
a snapshot of the git repository with the Minuteman application at commit
hash ea23564. The structure of the minuteman repository is listed in Chap-
ter 4. It is also available at github.com/fkmjec/minuteman. The iterative_
summarization folder includes the dataset creation code for iterative summariza-
tion described in Chapter 5.

A.1 Pretrained Models
We do not include the pretrained summary models in the attachments due to
their large size. Instead, they are downloadable using the minuteman/torch_
model_dir/download_models.sh script from vps.kmjec.cz/minuteman/. We
provide lidiya-bart.mar for the BART model and flan-t5-base-samsum.mar
for the FLAN-T5 model, as well as the silero_vad.onnx model.
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B. Development Documentation
In this appendix, we give a more detailed technical description of the system
components as well as the important interfaces. We provide a guide for deploying
the tool and also for including new summarization models.

B.1 Component Details

B.1.1 Audio Recording from Frontend Code
The source is split into six files located in flask/static/src. The dependencies
are managed through npm and the Javascript code is bundled together for the
browser using webpack. The individual files are:

• index.js: contains the entry point of the application. It creates a Meet-
ingRecorder object and sets up the relevant callbacks so that the recorder
connects when the user types in a JitSi room name.

• ApiInterface.js: contains the code for interfacing with the Flask API.

• MeetingRecorder.js: contains the MeetingRecorder class. The class is
responsible for handling the meeting recording including the initial connec-
tion and reacting to participants joining or leaving. Upon connecting to a
meeting, it creates an AudioContext object which is used for audio pro-
cessing. It also holds an array of TrackRecorder objects which record the
individual meeting participants.

• TrackRecorder.js: holds the TrackRecorder class, which handles record-
ing of a single audio track. It manages the updating of participant names
and the periodic sending of 1s chunks to the Flask API.

• VoiceRecorder.js: contains VoiceRecorder, an AudioWorklet handling
the recording and decimation of audio. We record in 32-bit floats and
decimate to 16000Hz.

• ConfigUtils.js: contains functions for updating config options in the in-
terface when they are changed by another client.

The dependencies are specified in package.json. Webpack configuration is lo-
cated in webpack.config.json.

B.1.2 Flask API
As stated in Chapter 4, the Flask API is the main entry point to the application
for requests from the client. We decided to add it on top of the Express API in
the Etherpad plugin because we believed we needed to work with Python machine
learning libraries like transformers.

The API endpoints largely reflect the ones found in the Express API in the
Etherpad plugin, as they forward requests. They are defined in main.py.
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• POST /new_minuting/: creates a new session by generating a session -
id, creating two editors in Etherpad and requesting session object creation
from the Etherpad plugin. Redirects to the new session’s page.

• POST /minuting/<session_id>/transcribe: handles requests to tran-
scribe individual 1s chunks. The parameters are author and recorder id
strings and chunk, which is the array of floats to transcribe.

• GET /minuting/<session_id>/get_state: returns the current state of
configuration for the session by requesting it from the Etherpad plugin.

• POST /minuting/<session_id>/set_summ_model: sets session model by
forwarding the request to the Etherpad plugin. The only parameter is
summ model. First checks whether the model is available in TorchServe; if
it is not, it returns a response with a 400 status code.

• POST /minuting/<session_id>/set_chunk_len: sets session summary
chunk length by forwarding the request to the Etherpad plugin. The only
parameter is chunk len.

B.1.3 Transcription Worker
The transcription worker uses the pika library to interface with RabbitMQ, from
which it receives audio chunks to transcribe and to which it also sends transcribed
utterances. The worker listens to incoming audio chunks on a queue with identifier
audio chunk queue. Each message from that queue must be a Python dictionary
serialized by pickle with the following fields:

• session id: what session the audio chunk belongs to.

• recorder id: what user the chunk belongs to.

• chunk: a numpy array of 32-bit floats.

• author: the name of the user in the Jitsi meeting.

• timestamp: the timestamp of the start of the chunk.

The worker keeps the audio chunks in a Transcripts object which maintains
the invariants mentioned in Section 4.6. The Silero VAD model used for speech
recognition is run using onnxruntime.1

B.1.4 Etherpad Plugin
The Etherpad plugin has the most complex structure of all the components, as
it keeps nearly all of the application state and handles the logic with respect to
the editors. The code is located in etherpad-lite/ep_minuteman.

Etherpad plugins work by registering to hooks that the editor exposes and then
reacting to those hooks when they are called. The hooks are divided into frontend
and backend ones. The mapping between hooks and Javascript functions is kept in

1github.com/microsoft/onnxruntime
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ep.json. All of the functions that are registered to backend hooks are located in
index.js, which serves as the main entry point of the application. Dependencies
are managed through npm, with the requirements specified in package.json.

The other most important files of the plugin are:

• SummaryStore.js: contains the classes necessary to hold the state for every
session. The most important ones are TranscriptChunker, which handles
the continuously appended transcript, and SummarySession, which keeps
the state for the session.

• ApiUtils.js: contains utility functions for working with the Express API
that Etherpad exposes. Mostly taken over from the ep comments page
plugin.

• ChangesetUtils.js: includes functions for creating changesets for the
Etherpad editors, allowing us to replace text in the middle of an editor
based on specific identifiers.

• TranscriptUtils.js: exposes functions used for transcript chunk extrac-
tion from the transcript editor.

• static/index.js: contains functions registered to frontend hooks, mostly
centered around handling the on-demand summarization.

Upon startup, the plugin conducts several steps. First, it creates a SummaryStore
object for keeping records of created transcripts and summaries. Then, it connects
to RabbitMQ and starts listening on a queue with name transcript queue for
incoming transcript chunks, expecting JSON data in the following format:

{
"utterance": string,
"session_id": string,
"timestamp": timestamp,
"seq": integer

}

When a transcript chunk needs to be summarized, the plugin sends a summary
creation request to summary input queue. The request is in JSON and has the
following form:

{
"model": string,
"session_id": string,
"summary_seq": integer,
"text": string,
"user_edit": bool

}

Model is the identifier of the summarization model we want the response from.
The summary seq field is used for identifying the summary point in the editor.
We need it because we are computing the summary points asynchronously, so
we need a way to recognize the response when it comes back. The user edit
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field specifies if the request is due to a user editing the transcript and is mostly
a remnant of past development.

The plugin then expects a response in JSON in the following format:

{
"session_id": string,
"summary_seq": integer,
"summary_text": string

}

The response summary text then replaces the correct summary point in the sum-
mary editor.

The plugin also exposes an API for interfacing with it. The API definition is
in index.js in function expressCreateServer. The plugin endpoints are:

• POST /api/createSessionObject: creates a new session object to hold
state. Called when a new session is created.

• POST /api/createSumm: used by the frontend for creating a summary
from a selected segment on demand.

• POST /api/setChunkLen: serves for setting the maximum chunk length
for the transcript chunks that are sent for summarization.

• POST /api/setSummModel: serves for setting the current summarization
model.

• POST /api/setChunkLen: sets the maximum transcript chunk length for
summarization.

• GET /api/sessionConfig: returns the current session configuration, in-
cluding whether the session is in debug mode, what model is selected and
what is the current chunk length. Periodically polled by clients to synchro-
nize between themselves.

B.1.5 Summarization Worker
The summarization worker is very similar in design to the transcription worker.
It handles preprocessing of the transcript chunks before they are sent to Torch-
Serve for summarizing, and the forwarding of completed summary points back
to the Etherpad plugin. The preprocessing includes the deletion of stopwords
and various remnants of imperfect transcription. It also serializes the requests
to TorchServe. This means that we lose some benefits of paralellization that
TorchServe provides. The API for interfacing with the summarization worker is
already specified in Appendix B.1.4, therefore we only list the source files and
their various responsibilities:

• summarization_worker.py: contains the entrypoint and the main logic of
the application along with the RabbitMQ interfacing.

• api_interface.py: contains the functions for requesting summaries from
TorchServe.
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• transcript.py: provides the Transcript class which is used for loading
actors and their utterances from transcripts.

• preprocessing_utils.py: provides the preprocessing functions for filter-
ing of stopwords. Used from the Transcript class.

B.1.6 TorchServe
TorchServe is run as a docker container. In torchserve/Dockerfile, we in-
stall the required transformers dependency to be able to run the HuggingFace
models. The model directory for the container is torch_model_dir.

B.2 Running the Tool
For running Minuteman, we provide two docker compose files. The configu-
ration provided in docker-compose-dev.yml is targeted at running the tool
locally without a GPU and the models in TorchServe. The configuration in
docker-compose.yml is meant for running in a production environment, includ-
ing the summarization models, and thus requires the GPU. In the compose files,
the configuration for the application components is specified using environment
variables. Each optionally configurable variable is highlighted with a comment
beginning with an OPTION comment, while the variables that are necessary to set
before running are highlighted with the TODO comment.

The build process was tested using Docker version 24.0.2 and docker compose
version 2.19.1.

We first need to generate the Etherpad API key and download the VAD model
by running init_app_files.sh. Then, we fill out the required TODO fields in the
respective compose file; specifically, it means setting the FLASK SECRET KEY in
the Flask container and ADMIN PASSWORD in the Etherpad container.

B.2.1 Development
For development, the only thing we need to do now is run the following commands:

docker compose -f docker-compose-dev.yml build
docker compose -f docker-compose-dev.yml up

And after downloading the necessary containers and building the dependencies,
we can open localhost:7777 for the Minuteman title page. Note that on startup,
starting RabbitMQ and Etherpad usually takes a while, so there will be error
messages from the containers periodically trying to connect to the queue before
RabbitMQ has had enough time to start. After the queue comes online, it will
work normally.

B.2.2 Production
For running in production, we need to download the summarization models. To
do that, we run download_summ_models.sh in the torch_model_dir directory.
We also need to set an additional option, ETHERPAD URL, to the domain we have
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pointed to our Etherpad editors for iframing. After that, the commands to run
are the same as for the development version, except with a different compose file.

docker compose -f docker-compose.yml build
docker compose -f docker-compose.yml up

We need to note here that some modern browsers disable audio processing for non-
localhost domains if the connection is not over HTTPS. Therefore, it is needed
to request a certificate for your domain, perhaps from the LetsEncrypt project.2
Otherwise, the app will not work correctly.

B.3 Adding a New Model to TorchServe
When adding a new summarization model to Minuteman, it is necessary to create
a model .mar archive for TorchServe to accept. The most common way of doing
this is to download a model from HuggingFace and then creating the archive
using torch-model-archiver.

To be able to create the archive, it is needed to install torch-model-archiver.
It is available from PyPi3. Then, it is necessary to create a handler file similar to
the example handler in torchserve/bart_model_serve.py. It is generally only
needed to alter the constant with the model name, as this downloads the correct
tokenizer on startup.

After that, the selected model can be downloaded from HuggingFace using
the transformers library and the torchserve/model_saver.py script. This
unfortunately requires PyTorch. To bypass this, it is possible to download the
necessary files from selected the HuggingFace repository manually.

To prepare the .mar archive containing the model, we run the following com-
mand:

torch-model-archiver
--model-name [MODEL_NAME]
--version 1.0
--serialized-file [pytorch_model.bin]
--extra-files "[config.json],[generation_config.json]"
--handler "[YOUR_HANDLER_FILE].py"

We replace MODEL NAME with the desired name of the archive and the other vari-
bles with the paths of your downloaded model components. After running the
command, you will be left with a .mar archive with the model. For usage, we
need to move the created archive to torch_model_dir so that it is visible by the
TorchServe docker container. In the docker-compose.yml file, we then specify
the model and its name in the command to run torchserve like this:

torchserve
--start
--model-store torch_model_dir/
--models [NAME]=[MODEL_NAME].mar ...‘

2letsencrypt.org
3pypi.org/project/torch-model-archiver/
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