

MATEMATICKO-FYZIKÁLNÍ FAKULTA Univerzita Karlova

BAKALÁŘSKÁ PRÁCE

František Jurák

Mnohorozměrné modelování volatility

Katedra pravděpodobnosti a matematické statistiky

Vedoucí bakalářské práce: RNDr. Jitka Zichová, Dr. Studijní program: Finanční matematika Studijní obor: MFMP

Praha 2023

Prohlašuji, že jsem tuto bakalářskou práci vypracoval(a) samostatně a výhradně s použitím citovaných pramenů, literatury a dalších odborných zdrojů. Tato práce nebyla využita k získání jiného nebo stejného titulu.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost, že Univerzita Karlova má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle §60 odst. 1 autorského zákona.

V dne

Podpis autora

Rád bych poděkoval mé vedoucí RNDr. Jitce Zichové, Dr. za vstřícnost, trpělivost a každou pomoc při psaní mé bakalářské práce. Bylo mi ctí a potěšením s Vámi spolupracovat.

Název práce: Mnohorozměrné modelování volatility

Autor: František Jurák

Katedra: Katedra pravděpodobnosti a matematické statistiky

Vedoucí bakalářské práce: RNDr. Jitka Zichová, Dr., Katedra pravděpodobnosti a matematické statistiky

Abstrakt: Tato práce se zabývá formulací a odhadem mnohorozměrného modelu GARCH. Zmiňuje různé parametrizace mnohorozměrného modelu GARCH a pojednává o vztazích mezi nimi. Představeny jsou nutné a postačující podmínky kovarianční stacionarity mnohorozměrného modelu GARCH a odhad parametrů modelu metodou maximální věrohodnosti. Součástí práce je i odhad parametrů dvourozměrného modelu GARCH(1,1) pro reálné časové řady pomocí EViews.

Klíčová slova: ARCH, GARCH, kovarianční stacionarita, vech, BEKK, vec, metoda maximální věrohodnosti

Title: Multivariate Volatility Modeling

Author: František Jurák

Department: Department of Probability and Mathematical Statistics

Supervisor: RNDr. Jitka Zichová, Dr., Department of Probability and Mathematical Statistics

Abstract: This thesis deals with the formulation and estimation of the multivariate GARCH model. It mentions the various parameterizations of the multivariate GARCH model and discusses the relationships between them. The necessary and sufficient conditions for covariance stationarity of the multivariate GARCH model are presented, as is the maximum likelihood estimation of the parameters of the model. The thesis also includes estimation of the parameters of the bivariate GARCH(1,1) model for real time series using EViews.

Keywords: ARCH, GARCH, covariance stationarity, vech, BEKK, vec, maximum likelihood estimation

Obsah

Ú	vod		2
1	Jed	norozměrný model GARCH	3
-	11	Definice modelu ABCH	3
	1.2	Definice modelu GARCH	3
	1.3	Stacionarita	4
2	Mn	oborozměrný model GARCH	6
-	2.1	Reprezentace vech	6
	2.1	2.1.1 Obecný model	7
		2.1.2 Diagonální model	.7
	2.2	Reprezentace BEKK	8
	2.2	2.2.1 Obecný model	8
		2.2.2 Diagonální model	10
	2.3	Reprezentace vec	11
	$\frac{2.0}{2.4}$	Vztah mezi parametrizací BEKK a vech	13
	2.5	Kovarianční stacionarita mnohorozměrného modelu GARCH	16
		2.5.1 Parametrizace s operátorem zpětného posunutí	16
		2.5.2 Podmínky stacionarity	17
	2.6	Odhadování parametrů mnohorozměrného modelu GARCH	18
3	Anl	ikace modelu GARCH na reálná data	21
0	3.1	Softwarové možnosti	21
	3.2	Beálná data	21
	3.3	Aplikace modelu GABCH	22
	0.0	3.3.1 Boynice podmíněné střední hodnoty	23
		3.3.2 Diagonální BEKK	26
		3.3.3 Diagonální vech	30
		3.3.4 Stacionarita	30
Zá	ivěr		34
\mathbf{Se}	znan	n použité literatury	35

Úvod

Modelování volatility, jinak také kolísavosti, náhodných procesů s diskrétním časem se používá zejména v ekonometrii. Modely, které je pro tento účel možné využít, jsou autoregresní model s podmíněnou heteroskedasticitou, jinak také model ARCH, a jeho zobecněná varianta, model GARCH. Tyto modely lze aplikovat například při řízení finančních rizik, oceňování aktiv a odhadování výnosů z cenných papírů.

V této práci představujeme modelování volatility použitím mnohorozměrného modelu GARCH. Budeme se zabývat různými způsoby jak vyjádřit podmíněnou varianční matici příslušného náhodného procesu (časové řady), jak přecházet od jednoho vyjádření ke druhému a jaké podmínky pro to musí být splněny. Každé vyjádření této matice obsahuje sadu parametrů. Naším cílem bude porovnat počty parametrů příslušných vyjádření a pojednat o odhadování parametrů. Pro analýzu finančních dat aplikací modelu GARCH použijeme EViews, program pro statistické a ekonometrické analýzy.

V první kapitole uvádíme definice jednorozměrného modelu ARCH a GARCH a některé jejich základní vlastnosti, jako je stacionarita. Ve druhé kapitole rozšíříme definici modelu GARCH na mnohorozměrnou variantu, představujeme parametrizace vech, BEKK a vec a pojednáváme o vztazích mezi těmito parametrizacemi. Dále se věnujeme podmínkám kovarianční stacionarity pro jednotlivé parametrizace a v neposlední řadě také odhadu parametrů mnohorozměrného modelu GARCH metodou maximální věrohodnosti. Ve třetí kapitole se zabýváme aplikací modelu GARCH na reálná data, konkrétně odhadem parametrů dvourozměrného modelu GARCH pro časové řady logaritmických výnosových měr akcie Komerční banky a indexu PX pomocí systému EViews.

Hlavními zdroji pro tuto práci jsou články Engle a Kroner (1995) a Rossi (2004). Vetšinu značení v této práci přebíráme z článku Rossi (2004).

1. Jednorozměrný model GARCH

V této kapitole se budeme zabývat jednorozměrnou verzí modelu GARCH a některými jeho vlastnostmi. Nejprve zavedeme jednorozměrný model ARCH a následně jeho generalizovanou variantu.

1.1 Definice modelu ARCH

Autoregresní model s podmíněnou heteroskedasticitou poprvé zmiňuje ve svém článku Engle (1982) a popisuje jej jako model s nulovou střední hodnotou, nekonstantním podmíněným rozptylem, který závisí na předchozích pozorováních, a konstantním nepodmíněným rozptylem. Rossi (2004) definuje model ARCH následujícím způsobem:

Nechť y_t je náhodný proces s diskrétním celočí
selným časem t takový, že

$$\begin{aligned} y_t &= \mu_t + \epsilon_t, \\ \mu_t &= \mathsf{E}(y_t | \Phi_{t-1}), \end{aligned}$$

kde Φ_{t-1} je informace známá v čase t-1 (σ -algebra generovaná $\epsilon_{t-1}, \epsilon_{t-2}, \ldots$). Necht pro náhodné veličiny ϵ_t platí

$$\begin{aligned} \mathsf{E}(\epsilon_t | \Phi_{t-1}) &= 0, \\ \mathsf{Var}(\epsilon_t | \Phi_{t-1}) &= \sigma_t^2, \end{aligned}$$

a $\epsilon_t = \sigma_t z_t$, kde z_t je standardizovaný proces k ϵ_t . Předpokládejme, že $z_t \sim \mathcal{N}(0,1)$ nezávislé a z_t jsou nezávislé na σ_t^2 . Pak platí

$$\begin{aligned} \mathsf{E}(z_t | \Phi_{t-1}) &= 0, \\ \mathsf{Var}(z_t | \Phi_{t-1}) &= 1 \end{aligned}$$

Potom autoregresní model s podmíněnou heteroske
dasticitou řáduq,značeno $\mathrm{ARCH}(q),$ má tvar

$$\epsilon_t | \Phi_{t-1} \sim \mathcal{N}(0, \sigma_t^2),$$

$$\sigma_t^2 = \omega + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2,$$

kde $\omega > 0, \, \alpha_i \ge 0, \, i = 1, \dots, q$. Zjevně tedy platí $\sigma_t^2 > 0$. Zřejmě platí

$$\mathsf{Var}(y_t | \Phi_{t-1}) = \sigma_t^2.$$

1.2 Definice modelu GARCH

V předchozí sekci jsme uvedli jednorozměrný model ARCH. Nyní představíme zobecněnou verzi tohoto modelu, kterou popisuje ve svém článku Bollerslev (1986). Tato verze navíc používá zpožděné hodnoty podmíněného rozptylu časové řady. Zobecněný autoregresní model s podmíněnou heteroskedasticitou řádů p a q, značeno GARCH(p,q), je tvaru

$$\epsilon_t | \Phi_{t-1} \sim \mathcal{N}(0, \sigma_t^2), \tag{1.1}$$

$$\sigma_t^2 = \omega + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2,$$
(1.2)

kde $\omega > 0, \alpha_i \ge 0, i = 1, \ldots, q, \beta_j \ge 0, j = 1, \ldots, p$. Pro p = 0 se model zredukuje na ARCH(q). Dále budeme pro zjednodušení často volit parametry p = q = 1. Podmíněný rozptyl modelu GARCH(1,1) má potom tvar

$$\sigma_t^2 = \omega + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2.$$

Poznámka.Bollerslev (1986) také uvádí ekvivalentní reprezentaci $\mathrm{GARCH}(p,q),$ kterou můžeme dostat jako

$$\begin{split} \epsilon_t^2 &= \omega + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \epsilon_{t-j}^2 - \sum_{j=1}^p \beta_j v_{t-j}^2 + v_t, \\ v_t &= \epsilon_t^2 - \sigma_t^2 = (\eta_t^2 - 1)\sigma_t^2, \end{split}$$

kde $\eta_t \sim \mathcal{N}(0,1)$ nezávislé a náhodné veličiny v_t jsou nekorelované, $\mathsf{E}(v_t) = 0$. GARCH(p,q) tedy může být interpretován jako ARMA model pro ϵ_t^2 řádů $m = \max\{p,q\}$ a p.

Definujme nyní operátor zpětného posunutí L tak, že platí $L^k w_t = w_{t-k}$. Označme $h_t = \sigma_t^2$. Pak můžeme rovnost (1.2) přepsat ve tvaru

$$h_t = \omega + A(L)\epsilon_{t-i}^2 + B(L)h_{t-j}.$$
(1.3)

Pokud všechny kořeny rovnice 1-B(z)=0leží vně jednotkového kruhu, můžeme rovnici (1.3) přepsat jako

$$h_t = \omega (1 - B(1))^{-1} + A(L)(1 - B(L))^{-1} \epsilon_{t-i}^2 =$$

= $\omega (1 - \sum_{j=1}^p \beta_j)^{-1} + \sum_{i=1}^\infty \delta_i \epsilon_{t-i}^2,$ (1.4)

kde δ_i pocházejí z rozvoje výrazu $D(L) = A(L)(1 - B(L))^{-1}$. Kombinací výrazů (1.1) a (1.4) dostaneme model ARCH(∞).

1.3 Stacionarita

Jednou z vlastností časových řad je stacionarita. Cipra (2008) definuje stacionaritu časové řady y_t tak, že chování této řady je v jistém smyslu stochasticky ustálené. Rozlišujeme striktní stacionaritu a slabou stacionaritu. Striktní stacionarita znamená, že pravděpodobnostní chování příslušného stochastického procesu je invariantní vůči posunům v čase. Pro slabou stacionaritu stačí, aby příslušný proces byl invariantní vůči posunům v čase pouze v rámci momentů do druhého řádu, tedy pro každé s a t a pro libovolné h platí

$$\mathsf{E}(y_t) = \mu = konst,\tag{1.5}$$

$$Cov(y_s, y_t) = E(y_s - \mu)(y_t - \mu) = Cov(y_{s+h}, y_{t+h}),$$
(1.6)

$$\mathsf{Var}(y_t) = \sigma^2 = konst. \tag{1.7}$$

Při nulové střední hodnotě se pro slabou stacionaritu používá též název kovarianční stacionarita. Stacionaritě modelu GARCH se ve svém článku věnuje Bollerslev (1986) a jako nutnou a zároveň postačující podmínkou slabé stacionarity modelu GARCH uvádí platnost nerovnosti D(1) < 1, nebo ekvivalentně A(1) + B(1) < 1, viz následující věta.

Věta 1. (Bollerslev, 1986, Theorem 1.) Model GARCH(p,q), definovaný dle (1.1) a (1.3), splňuje podmínky kovarianční stacionarity (1.5) – (1.7) právě tehdy, když A(1) + B(1) < 1. Pak $\mathsf{E}(\epsilon_t) = 0$, $\mathsf{Var}(\epsilon_t) = \omega(1 - A(1) - B(1))^{-1}$ a $\mathsf{Cov}(\epsilon_t, \epsilon_s) = 0$, pro $t \neq s$.

Důkaz. Dokázáno ve zdrojovém článku (Bollerslev, 1986).

Poznámka. Nutnou a zároveň postačující podmínkou slabé stacionarity modelu ARCH, kterou uvádí Engle (1982), je, že všechny kořeny charakteristické rovnice procesu y_t leží vně jednotkového kruhu.

2. Mnohorozměrný model GARCH

V předchozí kapitole jsme definovali jednorozměrný model GARCH. Tuto definici nyní rozšíříme pro N-rozměrný model GARCH, jak uvádí Rossi (2004). Necht \boldsymbol{y}_t je náhodný proces s diskrétním celočíselným časem t, složený z N-rozměrných náhodných vektorů, takový, že

$$egin{aligned} oldsymbol{y}_t &= oldsymbol{\mu}_t + oldsymbol{\epsilon}_t, \ oldsymbol{\mu}_t &= \mathsf{E}(oldsymbol{y}_t | oldsymbol{\Psi}_{t-1}), \end{aligned}$$

kde Ψ_{t-1} je informace známá v čase t-1 (σ -algebra generovaná $\epsilon_{t-1}, \epsilon_{t-2}, \ldots$). Necht pro ϵ_t platí

$$\mathsf{E}(oldsymbol{\epsilon}_t | oldsymbol{\Psi}_{t-1}) = oldsymbol{0},$$

 $\mathsf{Var}(oldsymbol{\epsilon}_t | oldsymbol{\Psi}_{t-1}) = oldsymbol{H}_t$

a $\boldsymbol{\epsilon}_t = \boldsymbol{H}_t^{1/2} \boldsymbol{z}_t$, kde \boldsymbol{z}_t je N-rozměrný standardizovaný proces k $\boldsymbol{\epsilon}_t$.

Poznámka. Pozitivně definitní matice $\boldsymbol{H}_t^{1/2}$ se nazývá odmocninová matice a platí $\boldsymbol{H}_t = \boldsymbol{H}_t^{1/2} \boldsymbol{H}_t^{1/2}$. Vyjádření matice $\boldsymbol{H}_t^{1/2}$ dostaneme použitím spektrálního rozkladu. Necht $\boldsymbol{H}_t = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T$ je spektrální rozklad matice \boldsymbol{H}_t . Pak matici $\boldsymbol{H}_t^{1/2}$ můžeme vyjádřit jako $\boldsymbol{H}_t^{1/2} = \boldsymbol{Q} \boldsymbol{\Lambda}^{1/2} \boldsymbol{Q}^T$.

Předpokládejme, že $\boldsymbol{z}_t \sim \mathcal{N}_N(\boldsymbol{0}, \boldsymbol{I}_N)$ nezávislé
a \boldsymbol{z}_t jsou nezávislé na \boldsymbol{H}_t . Pak platí

$$\mathsf{E}(oldsymbol{z}_t | oldsymbol{\Psi}_{t-1}) = oldsymbol{0},$$
Var $(oldsymbol{z}_t | oldsymbol{\Psi}_{t-1}) = oldsymbol{I}_N$

Matice \boldsymbol{H}_t je pozitivně definitní řádu N a

$$Var(\boldsymbol{y}_t | \boldsymbol{\Psi}_{t-1}) = \boldsymbol{H}_t$$

Každý prvek matice \boldsymbol{H}_t závisí na prvcích q-krát zpožděné matice $\boldsymbol{\epsilon}_t \boldsymbol{\epsilon}_t^T$ a na prvcích p-krát zpožděné matice \boldsymbol{H}_t . Různé parametrizace matice \boldsymbol{H}_t a jejich vzájemné vztahy jsou předmětem zbytku této kapitoly. Pro zjednodušení budeme dále často uvažovat dvourozměrný model GARCH(1,1), tedy N = 2.

2.1 Reprezentace vech

Jednu z parametrizací matice H_t dostaneme použitím operátoru *vech*. Mějme symetrickou matici A typu $N \times N$. Operátor *vech* seřadí prvky dolního trojúhelníku matice A do sloupcového vektoru délky N(N + 1)/2. Jelikož je matice H_t symetrická, tak $vech(H_t)$ obsahuje všechny prvky H_t . Rossi (2004) uvádí dvě varianty této reprezentace.

2.1.1 Obecný model

Reprezentace vech modelu GARCH(p,q) má tvar

$$vech(\boldsymbol{H}_{t}) = \boldsymbol{W} + \sum_{i=1}^{q} \boldsymbol{A}_{i}^{*} vech(\boldsymbol{\epsilon}_{t-i}\boldsymbol{\epsilon}_{t-i}^{T}) + \sum_{j=1}^{p} \boldsymbol{B}_{j}^{*} vech(\boldsymbol{H}_{t-j}), \qquad (2.1)$$

kde ${\pmb W}$ je vektor délk
yN(N+1)/2 a ${\pmb A}_i^*$ a ${\pmb B}_j^*$ jsou matice typ
u $N(N+1)/2\times N(N+1)/2.$

 $P\check{r}iklad.$ Pro dvourozměrný model GARCH(1,1) (N=2, p=q=1)dostaneme

$$\begin{pmatrix} h_{11,t} \\ h_{21,t} \\ h_{22,t} \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} + \begin{pmatrix} a_{11}^* & a_{12}^* & a_{13}^* \\ a_{21}^* & a_{22}^* & a_{23}^* \\ a_{31}^* & a_{32}^* & a_{33}^* \end{pmatrix} \begin{pmatrix} \epsilon_{1,t-1}^2 \\ \epsilon_{1,t-1}\epsilon_{2,t-1} \\ \epsilon_{2,t-1}^2 \end{pmatrix} + \begin{pmatrix} b_{11}^* & b_{12}^* & b_{13}^* \\ b_{21}^* & b_{22}^* & b_{23}^* \\ b_{31}^* & b_{32}^* & b_{33}^* \end{pmatrix} \begin{pmatrix} h_{11,t-1} \\ h_{21,t-1} \\ h_{22,t-1} \end{pmatrix}.$$

$$(2.2)$$

Prvky matice H_t můžeme z modelu (2.2) vyjádřit jako

$$h_{11,t} = w_1 + a_{11}^* \epsilon_{1,t-1}^2 + a_{12}^* \epsilon_{1,t-1} \epsilon_{2,t-1} + a_{13}^* \epsilon_{2,t-1}^2 + b_{11}^* h_{11,t-1} + b_{12}^* h_{21,t-1} + b_{13}^* h_{22,t-1},$$

$$h_{21,t} = w_2 + a_{21}^* \epsilon_{1,t-1}^2 + a_{22}^* \epsilon_{1,t-1} \epsilon_{2,t-1} + a_{22}^* \epsilon_{2,t-1}^2 + a_{22}^* + a_{22}^* \epsilon_{2,t-1}^2 + a_{22}$$

$$a_{21,t} = w_2 + a_{21}^* \epsilon_{1,t-1}^2 + a_{22}^* \epsilon_{1,t-1} \epsilon_{2,t-1} + a_{23}^* \epsilon_{2,t-1}^2 + b_{21}^* h_{11,t-1} + b_{22}^* h_{21,t-1} + b_{23}^* h_{22,t-1},$$
(2.4)

$$h_{22,t} = w_3 + a_{31}^* \epsilon_{1,t-1}^2 + a_{32}^* \epsilon_{1,t-1} \epsilon_{2,t-1} + a_{33}^* \epsilon_{2,t-1}^2 + b_{32}^* \epsilon_{1,t-1} \epsilon_{2,t-1} + b_{33}^* \epsilon_{2,t-1}^2 + b_{33}^* + b_{33}^* \epsilon_{2,t-1}^2 + b_{33}^* + b_{33}^*$$

$$+ b_{31}h_{11,t-1} + b_{32}h_{21,t-1} + b_{33}h_{22,t-1}.$$
(2.5)

Počet parametrů reprezentace vech je roven $N(N+1)/2+(p+q)(N(N+1)/2)^2$. I pro nízké hodnoty N a p = q = 1 dostaneme velmi vysoký počet parametrů.

Ν	Počet parametrů
2	21
3	78
4	210
5	465

Tabulka 2.1: Počet parametrů reprezentace vech, p=q=1

2.1.2 Diagonální model

Problém vysokého počtu parametrů je možné vyřešit použitím diagonální reprezentace. V tomto modelu jsou A_i^* a B_i^* diagonální matice.

Diagonální reprezentace vech dvourozměrného modelu GARCH(1,1) je tvaru

$$\begin{pmatrix} h_{11,t} \\ h_{21,t} \\ h_{22,t} \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} + \begin{pmatrix} a_{11}^* & 0 & 0 \\ 0 & a_{22}^* & 0 \\ 0 & 0 & a_{33}^* \end{pmatrix} \begin{pmatrix} \epsilon_{1,t-1}^2 \\ \epsilon_{1,t-1} \epsilon_{2,t-1} \\ \epsilon_{2,t-1}^2 \end{pmatrix} + \begin{pmatrix} b_{11}^* & 0 & 0 \\ 0 & b_{22}^* & 0 \\ 0 & 0 & b_{33}^* \end{pmatrix} \begin{pmatrix} h_{11,t-1} \\ h_{21,t-1} \\ h_{22,t-1} \end{pmatrix},$$

$$(2.6)$$

(i,j)-tý prvek matice \boldsymbol{H}_t tedy závisí pouze na (i,j)-tých prvcích $\boldsymbol{\epsilon}_{t-1}\boldsymbol{\epsilon}_{t-1}^T$ a \boldsymbol{H}_{t-1} . Prvky matice \boldsymbol{H}_t můžeme opět vyjádřit jako

$$h_{11,t} = w_1 + a_{11}^* \epsilon_{1,t-1}^2 + b_{11}^* h_{11,t-1},$$

$$h_{21,t} = w_2 + a_{22}^* \epsilon_{1,t-1} \epsilon_{2,t-1} + b_{22}^* h_{21,t-1},$$

$$h_{22,t} = w_3 + a_{33}^* \epsilon_{2,t-1}^2 + b_{33}^* h_{22,t-1}.$$

Počet parametrů diagonální reprezentace vech je (N(N+1)/2)(1+p+q). Oproti obecnému modelu má diagonální model mnohem menší počet odhadovaných parametrů.

Ν	Počet parametrů
2	9
3	18
4	30
5	45

Tabulka 2.2: Počet parametrů diagonální reprezentace vech, p = q = 1

2.2 Reprezentace BEKK

Hlavními nevýhodami reprezentace vech je vysoký počet parametrů a náročnost ověření pozitivní definitnosti matice H_t , a to jak v obecném, tak v diagonálním modelu. Následující parametrizace, kterou představují Engle a Kroner (1995), se snaží tyto problémy řešit tak, aby zároveň příliš neztratila na obecnosti. Tuto parametrizaci matice H_t nazýváme reprezentace BEKK a je pojmenovaná podle svých autorů: Baba, Engle, Kraft, Kroner.

2.2.1 Obecný model

Rossi (2004) uvádí reprezentaci BEKK modelu GARCH(p,q) ve tvaru

$$\boldsymbol{H}_{t} = \boldsymbol{C}\boldsymbol{C}^{T} + \sum_{k=1}^{K} \sum_{i=1}^{q} \boldsymbol{A}_{ik} \boldsymbol{\epsilon}_{t-i} \boldsymbol{\epsilon}_{t-i}^{T} \boldsymbol{A}_{ik}^{T} + \sum_{k=1}^{K} \sum_{j=1}^{p} \boldsymbol{B}_{jk} \boldsymbol{H}_{t-j} \boldsymbol{B}_{jk}^{T}, \qquad (2.7)$$

kde C je dolní trojúhelníková matice typu $N \times N$ a A_{ik} a B_{jk} jsou matice typu $N \times N$. Často se klade K = 1. Model GARCH(p,q) má pak tvar

$$\boldsymbol{H}_{t} = \boldsymbol{C}\boldsymbol{C}^{T} + \sum_{i=1}^{q} \boldsymbol{A}_{i1}\boldsymbol{\epsilon}_{t-i}\boldsymbol{\epsilon}_{t-i}^{T}\boldsymbol{A}_{i1}^{T} + \sum_{j=1}^{p} \boldsymbol{B}_{j1}\boldsymbol{H}_{t-j}\boldsymbol{B}_{j1}^{T}.$$
 (2.8)

Příklad. Pro dvourozměrný model GARCH(1,1) (N = 2, p = q = 1) dostaneme

$$\begin{pmatrix} h_{11,t} & h_{12,t} \\ h_{21,t} & h_{22,t} \end{pmatrix} = \begin{pmatrix} c_{11}^2 & c_{11}c_{21} \\ c_{11}c_{21} & c_{21}^2 + c_{22}^2 \end{pmatrix} + \\ + \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \epsilon_{1,t-1}^2 & \epsilon_{1,t-1}\epsilon_{2,t-1} \\ \epsilon_{1,t-1}\epsilon_{2,t-1} & \epsilon_{2,t-1}^2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} + \\ + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} h_{11,t-1} & h_{12,t-1} \\ h_{21,t-1} & h_{22,t-1} \end{pmatrix} \begin{pmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{pmatrix}.$$
(2.9)

Prvky matice H_t můžeme z modelu (2.9) vyjádřit jako

$$\begin{aligned} h_{11,t} = &c_{11}^2 + a_{11}^2 \epsilon_{1,t-1}^2 + 2a_{11}a_{12}\epsilon_{1,t-1}\epsilon_{2,t-1} + a_{12}^2 \epsilon_{2,t-1}^2 + \\ &+ b_{11}^2 h_{11,t-1} + 2b_{11}b_{12}h_{21,t-1} + b_{12}^2 h_{22,t-1}, \end{aligned} \tag{2.10} \\ h_{12,t} = &c_{11}c_{21} + a_{11}a_{21}\epsilon_{1,t-1}^2 + (a_{11}a_{22} + a_{12}a_{21})\epsilon_{1,t-1}\epsilon_{2,t-1} + a_{12}a_{22}\epsilon_{2,t-1}^2 + \\ &+ b_{11}b_{21}h_{11,t-1} + (b_{11}b_{22} + b_{12}b_{21})h_{21,t-1} + b_{12}b_{22}h_{22,t-1}, \\ h_{21,t} = &c_{11}c_{21} + a_{11}a_{21}\epsilon_{1,t-1}^2 + (a_{11}a_{22} + a_{12}a_{21})\epsilon_{1,t-1}\epsilon_{2,t-1} + a_{12}a_{22}\epsilon_{2,t-1}^2 + \\ &+ b_{11}b_{21}h_{11,t-1} + (b_{11}b_{22} + b_{12}b_{21})h_{21,t-1} + b_{12}b_{22}h_{22,t-1}, \end{aligned} \tag{2.11} \\ h_{22,t} = &c_{21}^2 + c_{22}^2 + a_{21}^2\epsilon_{1,t-1}^2 + 2a_{21}a_{22}\epsilon_{1,t-1}\epsilon_{2,t-1} + a_{22}^2\epsilon_{2,t-1}^2 + \\ &+ b_{21}^2h_{11,t-1} + 2b_{21}b_{22}h_{21,t-1} + b_{22}^2h_{22,t-1}. \end{aligned} \tag{2.12}$$

Zřejmě $h_{12,t} = h_{21,t}$.

Počet parametrů reprezentace BEKK je roven $N(N + 1)/2 + (p + q)KN^2$. V porovnání s obecným modelem vech používá model BEKK mnohem méně parametrů.

Ν	Počet parametrů vech	Počet parametrů BEKK
2	21	11
3	78	24
4	210	42
5	465	65

Tabulka 2.3: Porovnání počtu parametrů vech a BEKK, p = q = 1

Parametr K určuje obecnost procesu. Reprezentace BEKK je dostatečně obecná, aby zahrnovala všechny pozitivně definitní diagonální reprezentace a skoro všechny pozitivně definitní *vech* reprezentace (Rossi, 2004).

Věta 2. (Engle a Kroner, 1995, Proposition 2.1) Mějme reprezentaci BEKK N-rozměrného modelu GARCH(p,q) (2.8), kde p = q = 1. Předpokládejme, že prvky na diagonále matice C jsou kladné a prvky a_{11} a b_{11} jsou také kladné. Pak jsou matice C, A_{11} a B_{11} touto reprezentací určeny jednoznačně.

Důkaz. Nejprve dokážeme jednoznačnost matice C. Jestliže jsou prvky na diagonále matice C kladné, pak je matice CC^T pozitivně definitní. Označme $C_0 = CC^T$. Potom je CC^T Choleského rozklad matice C_0 a z jednoznačnosti Choleského rozkladu dostaneme jednoznačnost matice C.

Následně dokážeme jednoznačnost matice A_{11} . Z (2.8) vyjádříme prvek na pozici (l, m) matice H_t následujícím způsobem:

$$h_{lm,t} = c_{lm} + \sum_{i=1}^{N} \sum_{j=1}^{N} a_{li} a_{mj} \epsilon_{i,t-1} \epsilon_{j,t-1} + \sum_{i=1}^{N} \sum_{j=1}^{N} b_{li} b_{mj} h_{ij,t-1}.$$

Položme konstantu c_{lm} a všechny $b_{li}b_{mj}$ rovny nule. Pak prvek na pozici (1,1) matice H_t je

$$h_{11,t} = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{1i} a_{1j} \epsilon_{i,t-1} \epsilon_{j,t-1}$$

Koeficient u $\epsilon_{1,t-1}^2$ je a_{11}^2 , prvek a_{11} je tedy určen jednoznačně až na znaménko. Předpokládejme, že prvek a_{11} je kladný. Pak koeficient u $\epsilon_{1,t-1}\epsilon_{j,t-1}$ je $(a_{11}a_{1j} + a_{1j}a_{11}) = 2a_{11}a_{1j}$. Jelikož je prvek a_{11} určen jednoznačně, tak jsou i všechny prvky $a_{1j}, j = 2, \ldots, N$ určeny jednoznačně. První řádek matice \mathbf{A}_{11} je tedy určen jednoznačně. Tento postup můžeme rozšířit na další řádky matice \mathbf{A}_{11} studiem prvků $h_{12,t}, \ldots, h_{1N,t}$. Všechny řádky matice \mathbf{A}_{11} jsou určeny jednoznačně, matice \mathbf{A}_{11} je tedy určena jednoznačně.

Jednoznačnost matice B_{11} dokážeme analogicky volbou konstanty c_{lm} a všech $a_{li}a_{mj}$ rovných nule.

Jedním z důvodů zavedení reprezentace BEKK bylo zjednodušení ověření pozitivní definitnosti matice H_t . Následující věta stanoví postačující podmínku pozitivní definitnosti H_t pro K = 1.

Věta 3. (Rossi, 2004, Proposition 11) Mějme reprezentaci BEKK N-rozměrného modelu GARCH(p,q) (2.8). Jestliže $\mathbf{H}_0, \mathbf{H}_{-1}, \ldots, \mathbf{H}_{-p+1}$ jsou pozitivně definitní matice, pak je pro všechny možné hodnoty $\boldsymbol{\epsilon}_t$ matice \mathbf{H}_t pozitivně definitní, pokud má matice \mathbf{C} nebo některá z matic $\mathbf{B}_{i1}, i = 1, \ldots, p$ hodnost N.

Důkaz. Dokázáno ve zdrojovém článku (Rossi, 2004).

Poznámka. Engle a Kroner (1995) uvádí i verzi pro model (2.7).

2.2.2 Diagonální model

Erten a kol. (2012) popisují diagonální reprezentaci parametrizace BEKK. V tomto modelu jsou matice A_{ik} a B_{jk} diagonální.

Diagonální reprezentace BEKK dvourozměrného modelu GARCH(1,1), $K=1,\,{\rm je}$ tvaru

$$\begin{pmatrix} h_{11,t} & h_{12,t} \\ h_{21,t} & h_{22,t} \end{pmatrix} = \begin{pmatrix} c_{11}^2 & c_{11}c_{21} \\ c_{11}c_{21} & c_{21}^2 + c_{22}^2 \end{pmatrix} + \\ + \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} \begin{pmatrix} \epsilon_{1,t-1}^2 & \epsilon_{1,t-1}\epsilon_{2,t-1} \\ \epsilon_{1,t-1}\epsilon_{2,t-1} & \epsilon_{2,t-1}^2 \end{pmatrix} \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} + \\ + \begin{pmatrix} b_{11} & 0 \\ 0 & b_{22} \end{pmatrix} \begin{pmatrix} h_{11,t-1} & h_{12,t-1} \\ h_{21,t-1} & h_{22,t-1} \end{pmatrix} \begin{pmatrix} b_{11} & 0 \\ 0 & b_{22} \end{pmatrix}.$$
(2.13)

Prvky matice H_t můžeme vyjádřit jako

$$\begin{split} h_{11,t} = & c_{11}^2 + a_{11}^2 \epsilon_{1,t-1}^2 + b_{11}^2 h_{11,t-1}, \\ h_{12,t} = & c_{11} c_{21} + a_{11} a_{22} \epsilon_{1,t-1} \epsilon_{2,t-1} + b_{11} b_{22} h_{21,t-1}, \\ h_{21,t} = & c_{11} c_{21} + a_{11} a_{22} \epsilon_{1,t-1} \epsilon_{2,t-1} + b_{11} b_{22} h_{21,t-1}, \\ h_{22,t} = & c_{21}^2 + c_{22}^2 + a_{22}^2 \epsilon_{2,t-1}^2 + b_{22}^2 h_{22,t-1}. \end{split}$$

Opět zřejmě $h_{12,t} = h_{21,t}$.

Počet parametrů diagonální reprezentace BEKK je N(N+1)/2 + (p+q)KN. Oproti obecnému modelu i diagonálnímu vech modelu je tedy počet odhadovaných parametrů diagonálního modelu opět menší.

Ν	Počet parametrů diag. vech	Počet parametrů diag. BEKK
2	9	7
3	18	12
4	30	18
5	45	25

Tabulka 2.4: Porovnání počtu parametrů diag. vech a diag. BEKK, p = q = 1

2.3 Reprezentace vec

Následující parametrizace, kterou definují Engle a Kroner (1995), využívá operátor vektorizace *vec*. Mějme matici \boldsymbol{A} typu $N \times N$. Operátor *vec* seřadí sloupce matice \boldsymbol{A} do sloupcového vektoru délky N^2 .

Dále potřebujeme zavést Kroneckerův součin matic. Mějme matici A typu $m \times n$ a matici B typu $p \times q$. Pak Kroneckerův součin matic A a B je

$$oldsymbol{A}\otimesoldsymbol{B}=egin{pmatrix} a_{11}oldsymbol{B}&\ldots&a_{1n}oldsymbol{B}\dots&dots&dots\ a_{m1}oldsymbol{B}&\ldots&a_{mn}oldsymbol{B}\end{pmatrix},$$

kde výsledná matice $\mathbf{A} \otimes \mathbf{B}$ je typu $mp \times nq$ (Rao, 1978).

Poznámka. Rao (1978) uvádí, že Kroneckerův součin má následující vlastnosti:

- $\mathbf{0}\otimes \mathbf{A} = \mathbf{A}\otimes \mathbf{0} = \mathbf{0},$
- $(\boldsymbol{A}_1 + \boldsymbol{A}_2) \otimes \boldsymbol{B} = \boldsymbol{A}_1 \otimes \boldsymbol{B} + \boldsymbol{A}_2 \otimes \boldsymbol{B},$
- $\boldsymbol{A} \otimes (\boldsymbol{B}_1 + \boldsymbol{B}_2) = \boldsymbol{A} \otimes \boldsymbol{B}_1 + \boldsymbol{A} \otimes \boldsymbol{B}_2,$
- $a\mathbf{A}\otimes b\mathbf{B}=ab\mathbf{A}\otimes \mathbf{B},$
- $A_1A_2 \otimes B_1B_2 = (A_1 \otimes B_1)(A_2 \otimes B_2),$
- pro $\boldsymbol{A}, \, \boldsymbol{B}$ regulární: $(\boldsymbol{A} \otimes \boldsymbol{B})^{-1} = \boldsymbol{A}^{-1} \otimes \boldsymbol{B}^{-1},$
- $(\mathbf{A} \otimes \mathbf{B})^- = \mathbf{A}^- \otimes \mathbf{B}^-$ při jakékoli volbě pseudoinverze,
- $(\boldsymbol{A} \otimes \boldsymbol{B})^T = \boldsymbol{A}^T \otimes \boldsymbol{B}^T,$
- $(\boldsymbol{A} \otimes \boldsymbol{B})(\boldsymbol{A}^{-1} \otimes \boldsymbol{B}^{-1}) = \boldsymbol{I}_{mp \times nq}$.

Rovněž dokážeme následující pomocné tvrzení:

Tvrzení 1. Mějme matice A, B, C typu 2×2 . Pak platí

$$vec(ABC) = (C^T \otimes A)vec(B).$$

Důkaz. Roznásobením obou stran rovnice ukážeme, že oba vektory jsou shodné.

$$vec(\boldsymbol{ABC}) = \begin{pmatrix} a_{11}b_{11}c_{11} + a_{11}b_{12}c_{21} + a_{12}b_{21}c_{11} + a_{12}b_{22}c_{21} \\ a_{21}b_{11}c_{11} + a_{21}b_{12}c_{21} + a_{22}b_{21}c_{11} + a_{22}b_{22}c_{21} \\ a_{11}b_{11}c_{12} + a_{11}b_{12}c_{22} + a_{12}b_{21}c_{12} + a_{12}b_{22}c_{22} \\ a_{21}b_{11}c_{12} + a_{21}b_{12}c_{22} + a_{22}b_{21}c_{12} + a_{22}b_{22}c_{22} \end{pmatrix},$$

$$(\mathbf{C}^{T} \otimes \mathbf{A}) \operatorname{vec}(\mathbf{B}) = \begin{pmatrix} c_{11}\mathbf{A} & c_{21}\mathbf{A} \\ c_{12}\mathbf{A} & c_{22}\mathbf{A} \end{pmatrix} \begin{pmatrix} b_{11} \\ b_{21} \\ b_{12} \\ b_{22} \end{pmatrix} = \\ = \begin{pmatrix} a_{11}c_{11} & a_{12}c_{11} & a_{11}c_{21} & a_{12}c_{21} \\ a_{21}c_{11} & a_{22}c_{11} & a_{21}c_{21} & a_{22}c_{21} \\ a_{11}c_{12} & a_{12}c_{12} & a_{11}c_{22} & a_{12}c_{22} \\ a_{21}c_{12} & a_{22}c_{12} & a_{21}c_{22} & a_{22}c_{22} \end{pmatrix} \begin{pmatrix} b_{11} \\ b_{21} \\ b_{12} \\ b_{22} \end{pmatrix} = \\ = \begin{pmatrix} a_{11}b_{11}c_{11} + a_{12}b_{21}c_{11} + a_{11}b_{12}c_{21} + a_{12}b_{22}c_{21} \\ a_{21}b_{11}c_{11} + a_{22}b_{21}c_{11} + a_{21}b_{12}c_{21} + a_{22}b_{22}c_{21} \\ a_{11}b_{11}c_{12} + a_{12}b_{21}c_{12} + a_{11}b_{12}c_{22} + a_{12}b_{22}c_{22} \\ a_{21}b_{11}c_{12} + a_{22}b_{21}c_{12} + a_{21}b_{12}c_{22} + a_{22}b_{22}c_{22} \end{pmatrix},$$

platí tedy $vec(ABC) = (C^T \otimes A)vec(B).$

Poznámka. Tvrzení 1 platí i pro čtvercové matice rozměru většího než 2.

Reprezentace vec modelu GARCH(p,q) má tvar

$$vec(\boldsymbol{H}_t) = \boldsymbol{C}_0 + \sum_{i=1}^q \boldsymbol{A}_i vec(\boldsymbol{\epsilon}_{t-i}\boldsymbol{\epsilon}_{t-i}^T) + \sum_{j=1}^p \boldsymbol{B}_j vec(\boldsymbol{H}_{t-j}), \quad (2.14)$$

kde C_0 je vektor délky N^2 a A_i a B_j jsou matice typu $N^2 \times N^2$. Mezi parametrizacemi BEKK a vec existuje vztah, který je popsán následující větou.

Věta 4. (Engle a Kroner, 1995, Proposition 2.4) Reprezentace BEKK (2.7) a reprezentace vec (2.14) jsou ekvivalentní právě tehdy, když

$$\boldsymbol{C}_0 = (\boldsymbol{C} \otimes \boldsymbol{C}) vec(\boldsymbol{I}_N), \qquad (2.15)$$

$$\boldsymbol{A}_{i} = \sum_{k=1}^{K} \boldsymbol{A}_{ik} \otimes \boldsymbol{A}_{ik}, \qquad (2.16)$$

$$\boldsymbol{B}_{j} = \sum_{k=1}^{K} \boldsymbol{B}_{jk} \otimes \boldsymbol{B}_{jk}.$$
(2.17)

Důkaz. Pro jednoduchost nechť p = q = 1.

Když reprezentaci BEKK (2.7) vyjádříme ve tvaru vec, dostaneme

$$vec(\boldsymbol{H}_{t}) = vec(\boldsymbol{C}\boldsymbol{C}^{T}) + \sum_{k=1}^{K} vec(\boldsymbol{A}_{1k}\boldsymbol{\epsilon}_{t-1}\boldsymbol{\epsilon}_{t-1}^{T}\boldsymbol{A}_{1k}^{T}) + \sum_{k=1}^{K} vec(\boldsymbol{B}_{1k}\boldsymbol{H}_{t-1}\boldsymbol{B}_{1k}^{T}).$$

To dle tvrzení 1 můžeme upravit na

$$vec(\boldsymbol{H}_{t}) = (\boldsymbol{C} \otimes \boldsymbol{C})vec(\boldsymbol{I}_{N}) + \sum_{k=1}^{K} (\boldsymbol{A}_{1k} \otimes \boldsymbol{A}_{1k})vec(\boldsymbol{\epsilon}_{t-1}\boldsymbol{\epsilon}_{t-1}^{T}) + \sum_{k=1}^{K} (\boldsymbol{B}_{1k} \otimes \boldsymbol{B}_{1k})vec(\boldsymbol{H}_{t-1}).$$

Odtud dostaneme všechny tři požadované rovnosti. Analogicky lze postupovat pro p > 1 nebo q > 1.

Zároveň lze ukázat, že všechny pozitivně definitní diagonální reprezentace vec je možné přepsat ve tvaru BEKK. V takovém případě je parametrizace BEKK stejně obecná jako parametrizace vec.

Věta 5. (Engle a Kroner, 1995, Proposition 2.6) Mějme reprezentaci vec N-rozměrného modelu GARCH(p,q). Předpokládejme, že konstantní část matice \mathbf{H}_t je pozitivně definitní, tedy $\mathbf{C}_0 = vec(\mathbf{\Omega})$, kde $\mathbf{\Omega}$ je pozitivně definitní. Dále předpokládejme, že \mathbf{A}_i a \mathbf{B}_j jsou diagonální pro všechna $i = 1, \ldots, q$ $a \ j = 1, \ldots, p$. Pak jestliže \mathbf{H}_t je pozitivně definitní pro všechny možné hodnoty $\boldsymbol{\epsilon}_t$, tak existuje dolní trojúhelníková matice \mathbf{C} a diagonální matice \mathbf{A}_{ik} a \mathbf{B}_{jk} , $k = 1, \ldots, K$ takové, že platí (2.15) – (2.17).

Důkaz. Dokázáno ve zdrojovém článku (Engle a Kroner, 1995).

2.4 Vztah mezi parametrizací BEKK a vech

Nyní se budeme věnovat vztahu mezi reprezentacemi BEKK a vech. K tomu použijeme reprezentaci vec jako prostředníka. Rossi (2004) uvádí, že mezi operátory vec a vech existuje následující vztah. Mějme symetrickou matici \boldsymbol{A} typu $N \times N$. Pak

$$vec(\boldsymbol{A}) = \boldsymbol{D}_N vech(\boldsymbol{A}),$$
 (2.18)

kde ${\pmb D}_N$ je tzv. duplikační matice typu $N^2\times N(N+1)/2.$ Pro symetrickou matici ${\pmb H}$ rozměrů 2 × 2 dostaneme

$$\begin{pmatrix} h_{11} \\ h_{21} \\ h_{21} \\ h_{22} \end{pmatrix} = \boldsymbol{D}_2 \begin{pmatrix} h_{11} \\ h_{21} \\ h_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h_{11} \\ h_{21} \\ h_{22} \end{pmatrix}.$$

Pro znázornění vztahu mezi parametrizacemi využijeme postup, který popisuje Rossi (2004). Vezmeme reprezentaci BEKK *N*-rozměrného modelu GARCH(p,q) (2.8) a vyjádříme ji ve tvaru vec:

$$vec(\boldsymbol{H}_{t}) = vec(\boldsymbol{C}\boldsymbol{C}^{T}) + \sum_{i=1}^{q} vec(\boldsymbol{A}_{i1}\boldsymbol{\epsilon}_{t-i}\boldsymbol{\epsilon}_{t-i}^{T}\boldsymbol{A}_{i1}^{T}) + \sum_{j=1}^{p} vec(\boldsymbol{B}_{j1}\boldsymbol{H}_{t-j}\boldsymbol{B}_{j1}^{T}). \quad (2.19)$$

Podle tvrzení 1 můžeme tento vzorec přepsat ve tvaru

$$vec(\boldsymbol{H}_{t}) = vec(\boldsymbol{C}\boldsymbol{C}^{T}) + \sum_{i=1}^{q} (\boldsymbol{A}_{i1} \otimes \boldsymbol{A}_{i1}) vec(\boldsymbol{\epsilon}_{t-i}\boldsymbol{\epsilon}_{t-i}^{T}) + \sum_{j=1}^{p} (\boldsymbol{B}_{j1} \otimes \boldsymbol{B}_{j1}) vec(\boldsymbol{H}_{t-j}),$$
(2.20)

a ze vztahu (2.18) dostaneme

$$vec(\boldsymbol{H}_{t}) = \boldsymbol{D}_{N}vech(\boldsymbol{H}_{t}) = \boldsymbol{D}_{N}vech(\boldsymbol{C}\boldsymbol{C}^{T}) + \sum_{i=1}^{q} (\boldsymbol{A}_{i1} \otimes \boldsymbol{A}_{i1})\boldsymbol{D}_{N}vech(\boldsymbol{\epsilon}_{t-i}\boldsymbol{\epsilon}_{t-i}^{T}) + \sum_{j=1}^{p} (\boldsymbol{B}_{j1} \otimes \boldsymbol{B}_{j1})\boldsymbol{D}_{N}vech(\boldsymbol{H}_{t-j}).$$

$$(2.21)$$

Má-li \boldsymbol{D}_N plnou sloup
covou hodnost, označmě

$$\boldsymbol{D}_N^+ = (\boldsymbol{D}_N^T \boldsymbol{D}_N)^{-1} \boldsymbol{D}_N^T.$$

Zřejmě $D_N^+ D_N = I_{N^2 \times N(N+1)/2}$. Vynásobíme-li výraz (2.21) maticí D_N^+ zprava, dostaneme

$$vech(\boldsymbol{H}_{t}) = vech(\boldsymbol{C}\boldsymbol{C}^{T}) + \boldsymbol{D}_{N}^{+} (\sum_{i=1}^{q} (\boldsymbol{A}_{i1} \otimes \boldsymbol{A}_{i1})) \boldsymbol{D}_{N} vech(\boldsymbol{\epsilon}_{t-i} \boldsymbol{\epsilon}_{t-i}^{T}) + \\ + \boldsymbol{D}_{N}^{+} (\sum_{j=1}^{p} (\boldsymbol{B}_{j1} \otimes \boldsymbol{B}_{j1})) \boldsymbol{D}_{N} vech(\boldsymbol{H}_{t-j}).$$

$$(2.22)$$

Dále se zaměříme na dvourozměrný model.

 $P\check{r}iklad.$ Pro dvourozměrný model GARCH(1,1)
 (N=2,p=q=1)máme po roznásobení (2.22)

$$\begin{pmatrix} h_{11,t} \\ h_{21,t} \\ h_{22,t} \end{pmatrix} = \begin{pmatrix} c_{11}^2 \\ c_{11}c_{21} \\ c_{21}^2 + c_{22}^2 \end{pmatrix} + \\ + \begin{pmatrix} a_{11}^2 e_{1,t-1}^2 + 2a_{11}a_{12}e_{1,t-1}e_{2,t-1} + a_{12}^2 e_{2,t-1}^2 \\ a_{11}a_{21}e_{1,t-1}^2 + (a_{11}a_{22} + a_{12}a_{21})e_{1,t-1}e_{2,t-1} + a_{12}a_{22}e_{2,t-1}^2 \end{pmatrix} + \\ & a_{21}^2 e_{1,t-1}^2 + 2a_{21}a_{22}e_{1,t-1}e_{2,t-1} + a_{22}^2 e_{2,t-1}^2 \end{pmatrix} + \\ & + \begin{pmatrix} b_{11}^2 h_{11,t-1} + 2b_{11}b_{12}h_{21,t-1} + b_{12}^2 h_{22,t-1} \\ b_{11}b_{21}h_{11,t-1} + (b_{11}b_{22} + b_{12}b_{21})h_{21,t-1} + b_{12}b_{22}h_{22,t-1} \\ b_{21}^2 h_{11,t-1}^2 + 2b_{21}b_{22}h_{21,t-1} + b_{22}^2 h_{22,t-1} \end{pmatrix},$$

kde prvky matice H_t můžeme vyjádřit jako (2.10) – (2.12).

Při porovnání prvků \boldsymbol{H}_t v parametrizaci vech (2.3) – (2.5) a v parametrizaci BEKK (2.10) – (2.12) dostaneme

$$\begin{split} h_{11,t} : & w_1 + a_{11}^* \epsilon_{1,t-1}^2 + a_{12}^* \epsilon_{1,t-1} \epsilon_{2,t-1} + a_{13}^* \epsilon_{2,t-1}^2 + \\ & + b_{11}^* h_{11,t-1} + b_{12}^* h_{21,t-1} + b_{13}^* h_{22,t-1} = \\ & = c_{11}^2 + a_{11}^2 \epsilon_{1,t-1}^2 + 2a_{11}a_{12} \epsilon_{1,t-1} \epsilon_{2,t-1} + a_{12}^2 \epsilon_{2,t-1}^2 + \\ & + b_{11}^2 h_{11,t-1} + 2b_{11} b_{12} h_{21,t-1} + b_{12}^2 h_{22,t-1}, \\ h_{21,t} : & w_2 + a_{21}^* \epsilon_{1,t-1}^2 + a_{22}^* \epsilon_{1,t-1} \epsilon_{2,t-1} + a_{23}^* \epsilon_{2,t-1}^2 + \\ & + b_{21}^* h_{11,t-1} + b_{22}^* h_{21,t-1} + b_{23}^* h_{22,t-1} = \\ & = c_{11}c_{21} + a_{11}a_{21} \epsilon_{1,t-1}^2 + (a_{11}a_{22} + a_{12}a_{21}) \epsilon_{1,t-1} \epsilon_{2,t-1} + a_{12}a_{22} \epsilon_{2,t-1}^2 + \\ & + b_{11}b_{21}h_{11,t-1} + (b_{11}b_{22} + b_{12}b_{21})h_{21,t-1} + b_{12}b_{22}h_{22,t-1}, \\ h_{22,t} : & w_3 + a_{31}^* \epsilon_{1,t-1}^2 + a_{32}^* \epsilon_{1,t-1} \epsilon_{2,t-1} + a_{33}^* \epsilon_{2,t-1}^2 + \\ & + b_{31}^* h_{11,t-1} + b_{32}^* h_{21,t-1} + b_{33}^* h_{22,t-1} = \\ & = c_{21}^2 + c_{22}^2 + a_{21}^2 \epsilon_{1,t-1}^2 + 2a_{21}a_{22} \epsilon_{1,t-1} \epsilon_{2,t-1} + a_{22}^2 \epsilon_{2,t-1}^2 + \\ & + b_{31}^2 h_{11,t-1} + b_{32}^* h_{21,t-1} + b_{33}^* h_{22,t-1} = \\ & = c_{21}^2 + c_{22}^2 + a_{21}^2 \epsilon_{1,t-1}^2 + 2a_{21}a_{22} \epsilon_{1,t-1} \epsilon_{2,t-1} + a_{22}^2 \epsilon_{2,t-1}^2 + \\ & + b_{21}^2 h_{11,t-1}^2 + 2b_{21}b_{22}h_{21,t-1} + b_{22}h_{22,t-1}. \end{split}$$

Parametry reprezentace vech (prvky vektoru W a matic A_1^* a B_1^* z (2.1) pro p = q = 1) tedy můžeme pomocí parametrů reprezentace BEKK (prvků matic C, A_{11} a B_{11} z (2.8) pro p = q = 1) vyjádřit následujícím způsobem:

$$\boldsymbol{W} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} c_{11}^2 \\ c_{11}c_{21} \\ c_{21}^2 + c_{22}^2 \end{pmatrix},$$
$$\boldsymbol{A}_1^* = \begin{pmatrix} a_{11}^* & a_{12}^* & a_{13}^* \\ a_{21}^* & a_{22}^* & a_{23}^* \\ a_{31}^* & a_{32}^* & a_{33}^* \end{pmatrix} = \begin{pmatrix} a_{11}^2 & 2a_{11}a_{12} & a_{12}^2 \\ a_{11}a_{21} & (a_{11}a_{22} + a_{12}a_{21}) & a_{12}a_{22} \\ a_{21}^2 & 2a_{21}a_{22} & a_{22}^2 \end{pmatrix},$$
$$\boldsymbol{B}_1^* = \begin{pmatrix} b_{11}^* & b_{12}^* & b_{13}^* \\ b_{21}^* & b_{22}^* & b_{23}^* \\ b_{31}^* & b_{32}^* & b_{33}^* \end{pmatrix} = \begin{pmatrix} b_{11}^2 & 2b_{11}b_{12} & b_{12}^2 \\ b_{11}b_{21} & (b_{11}b_{22} + b_{12}b_{21}) & b_{12}b_{22} \\ b_{21}^2 & 2b_{21}b_{22} & b_{22}^2 \end{pmatrix}.$$

Poznámka. Reperezentace vech (2.22), kterou dostaneme vyjádřejím z reprezentace BEKK (2.19), je určena jednoznačně. Obrácená implikace obecně neplatí, nebot např. $\mathbf{A}_{i1} \otimes \mathbf{A}_{i1} = (-\mathbf{A}_{i1}) \otimes (-\mathbf{A}_{i1})$ odtud nelze jednoznačně určit \mathbf{A}_{i1} (Rossi, 2004).

K tomu se váže následující tvrzení:

Tvrzení 2. Nechť \mathbf{A} je diagonální matice typu 2×2 a \mathbf{D}_2 je duplikační matice taková, že platí (2.18). Pak pro $\mathbf{D}_2^+ = (\mathbf{D}_2^T \mathbf{D}_2)^{-1} \mathbf{D}_2^T$ je matice $\mathbf{D}_2^+ (\mathbf{A} \otimes \mathbf{A}) \mathbf{D}_2$ také diagonální s prvky $a_{ii}a_{jj}, 1 \leq i \leq j \leq 2$ na diagonále.

Důkaz. Máme matice

$$\boldsymbol{A} = \begin{pmatrix} a_{11} & 0\\ 0 & a_{22} \end{pmatrix}, \quad \boldsymbol{D}_2 = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Matici \boldsymbol{D}_2^+ dostaneme výpočtem

$$\begin{split} \boldsymbol{D}_2^+ &= (\boldsymbol{D}_2^T \boldsymbol{D}_2)^{-1} \boldsymbol{D}_2^T = \left(\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right)^{-1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \end{split}$$

Dále máme

$$\begin{split} \boldsymbol{D}_{2}^{+}(\boldsymbol{A}\otimes\boldsymbol{A})\boldsymbol{D}_{2} &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11}^{2} & 0 & 0 & 0 \\ 0 & a_{11}a_{22} & 0 & 0 \\ 0 & 0 & 0 & a_{22}^{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \\ &= \begin{pmatrix} a_{11}^{2} & 0 & 0 \\ 0 & a_{11}a_{22} & 0 \\ 0 & 0 & a_{22}^{2} \end{pmatrix}. \end{split}$$

Matice $D_2^+(A \otimes A)D_2$ je tedy diagonální s prvky $a_{ii}a_{jj}, 1 \leq i \leq j \leq 2$ na diagonále.

Poznámka. Tvrzení 2 platí i pro čtvercové matice rozměru většího než 2.

Důsledek. Každou pozitivně definitní diagonální reprezentaci vech lze jednoznačně vyjádřit ve tvaru BEKK.

2.5 Kovarianční stacionarita mnohorozměrného modelu GARCH

Tuto kapitolu zakončíme pojednáním o nutných a postačujících podmínkách kovarianční stacionarity mnohorozměrného modelu GARCH. Budeme se věnovat stacionaritě všech tří výše zmíněných parametrizací, tedy vech, BEKK a vec.

2.5.1 Parametrizace s operátorem zpětného posunutí

Engle a Kroner (1995) uvádí další způsob parametrizace matice \boldsymbol{H}_t . Využívají při něm operátor zpětného posunutí L, který jsme definovali v první kapitole. Mějme posloupnost $\{\boldsymbol{\epsilon}_t\}_{t=-\infty}^{\infty}$ a označme $\boldsymbol{\eta}_t = vec(\boldsymbol{\epsilon}_t \boldsymbol{\epsilon}_t^T)$ a $\boldsymbol{h}_t = vec(\boldsymbol{H}_t)$. Pak můžeme mnohorozměrný model GARCH zapsat ve tvaru

$$\boldsymbol{h}_t = \sum_{i=1}^{\infty} \boldsymbol{B}(L)^{i-1} (\boldsymbol{C}_0 + \boldsymbol{A}(L)\boldsymbol{\eta}_t).$$
(2.23)

Tato parametrizace zahrnuje modely ve tvaru BEKK i modely ve tvaru vec. Tento fakt ukážeme tak, že (2.23) upravíme do tvaru

$$h_t = C_0 + A(L)\eta_t + \sum_{i=2}^{\infty} B(L)^{i-1}(C_0 + A(L)\eta_t) =$$

= $C_0 + A(L)\eta_t + B(L)\sum_{i=1}^{\infty} B(L)^{i-1}(C_0 + A(L)\eta_t) =$
= $C_0 + A(L)\eta_t + B(L)h_t.$

Když položíme

$$\boldsymbol{A}(L) = \boldsymbol{A}_1 L + \boldsymbol{A}_2 L^2 + \dots + \boldsymbol{A}_q L^q,$$

$$\boldsymbol{B}(L) = \boldsymbol{B}_1 L + \boldsymbol{B}_2 L^2 + \dots + \boldsymbol{B}_p L^p,$$

dostaneme model ve tvaru vec (2.14). Když položíme $C_0 = vec(CC^T)$ a

$$\boldsymbol{A}(L) = \sum_{k=1}^{K} (\boldsymbol{A}_{1k} \otimes \boldsymbol{A}_{1k})L + \dots + \sum_{k=1}^{K} (\boldsymbol{A}_{qk} \otimes \boldsymbol{A}_{qk})L^{q},$$
$$\boldsymbol{B}(L) = \sum_{k=1}^{K} (\boldsymbol{B}_{1k} \otimes \boldsymbol{B}_{1k})L + \dots + \sum_{k=1}^{K} (\boldsymbol{B}_{pk} \otimes \boldsymbol{B}_{pk})L^{p},$$

dostaneme model BEKK, zapsaný ve tvaru vec (2.19) pro $k = 1, \ldots, K$.

2.5.2 Podmínky stacionarity

Pro určení podmínek kovarianční stacionarity mnohorozměrného modelu GARCH využijeme parametrizaci s operátorem zpětného posunutí. Nejprve zformulujeme následující větu.

Věta 6. (Engle a Kroner, 1995, Proposition 2.7) Mějme $\{\boldsymbol{\epsilon}_t\}_{t=-\infty}^{\infty}$ a mnohorozměrný model GARCH(p,q) s parametrizací (2.23). Pak je proces $\boldsymbol{\epsilon}_t$ kovariančně stacionární právě tehdy, když pro každé vlastní číslo λ matice $\boldsymbol{A}(1) + \boldsymbol{B}(1)$ platí $|\lambda| < 1$.

Důkaz. Dokázáno ve zdrojovém článku (Engle a Kroner, 1995).

Odtud dostaneme podmínky kovarianční stacionarity pro parametrizace vec a BEKK. Z věty 6 vyplývá, že proces $\boldsymbol{\epsilon}_t$ s parametrizací vec je kovariančně stacionární právě tehdy, když jsou absolutní hodnoty vlastních čísel matice $\sum_{i=1}^{q} \boldsymbol{A}_i + \sum_{j=1}^{p} \boldsymbol{B}_j$ menší než jedna. Dále z ní vyplývá, že proces $\boldsymbol{\epsilon}_t$ s parametrizací BEKK je kovariančně stacionární právě tehdy, když jsou absolutní hodnoty vlastních čísel matice $\sum_{k=1}^{K} \sum_{i=1}^{q} (\boldsymbol{A}_{ik} \otimes \boldsymbol{A}_{ik}) + \sum_{k=1}^{K} \sum_{j=1}^{p} (\boldsymbol{B}_{jk} \otimes \boldsymbol{B}_{jk})$ menší než jedna (Engle a Kroner, 1995). Nepodmíněná kovarianční matice, pokud existuje, je určena výrazem

$$E(\boldsymbol{\eta}_t) = (\boldsymbol{I} - \boldsymbol{A}(1) - \boldsymbol{B}(1))^{-1} \boldsymbol{C}_0.$$

Uvažuj
me nyní model GARCH(1,1). Pak nepodmíněná kovarianční matice pro parametrizaci vec je

$$E(\boldsymbol{\eta}_t) = (\boldsymbol{I} - \boldsymbol{A}_1 - \boldsymbol{B}_1)^{-1} \boldsymbol{C}_0.$$

Položme navícK=1. Pak nepodmíněná kovarianční matice pro parametrizaci BEKK je

$$E(\boldsymbol{\eta}_t) = (\boldsymbol{I} - (\boldsymbol{A}_{11} \otimes \boldsymbol{A}_{11}) - (\boldsymbol{B}_{11} \otimes \boldsymbol{B}_{11}))^{-1} vec(\boldsymbol{C}\boldsymbol{C}^T).$$

Důsledek. Diagonální model GARCH ve tvaru vec je stacionární právě tehdy, když platí $a_{ii} + b_{ii} < 1$ pro všechna *i*. Diagonální GARCH model ve tvaru BEKK je stacionární právě tehdy, když platí $\sum_{k=1}^{K} (a_{ii,k}^2 + b_{ii,k}^2) < 1$ pro všechna *i* (Engle a Kroner, 1995).

Poznámka. Nediagonální model GARCH ve tvaru BEKK může být stacionární, i když má jeden nebo více prvků na diagonále větších než jedna (Engle a Kroner, 1995).

Rossi (2004) uvádí podmínky stacionarity pro parametrizaci vech. Mějme mnohorozměrný model GARCH s parametrizací vech ve tvaru

$$vech(\boldsymbol{H}_t) = \boldsymbol{W} + \boldsymbol{A}^*(L)vech(\boldsymbol{\epsilon}_t \boldsymbol{\epsilon}_t^T) + \boldsymbol{B}^*(L)vech(\boldsymbol{H}_t).$$

Zřejmě

$$A^{*}(L) = A_{1}^{*}L + A_{2}^{*}L^{2} + \dots + A_{q}^{*}L^{q},$$

$$B^{*}(L) = B_{1}^{*}L + B_{2}^{*}L^{2} + \dots + B_{n}^{*}L^{p}.$$

Proces $\boldsymbol{\epsilon}_t$ s parametrizací vech je kovariančně stacionární právě tehdy, když jsou absolutní hodnoty vlastních čísel matice $\boldsymbol{A}^*(1) + \boldsymbol{B}^*(1)$ menší než jedna.

Pro model GARCH(p,q) s parametrizací vech je nepodmíněná kovarianční matice, pokud existuje, určena výrazem

$$E(vech(\boldsymbol{\epsilon}_t \boldsymbol{\epsilon}_t^T)) = (\boldsymbol{I}_{N^*} - \boldsymbol{A}^*(1) - \boldsymbol{B}^*(1))^{-1} \boldsymbol{W},$$

kde $N^* = N(N+1)/2$.

Důsledek. Diagonální model GARCH ve tvaru vech je stacionární právě tehdy, když platí $a_{ii}^* + b_{ii}^* < 1$ pro všechna *i* (Rossi, 2004).

Příklad. Mějme dvourozměrný model GARCH(1,1) (N = 2, p = q = 1). Pak je proces ϵ_t s parametrizací vech (2.1) kovariančně stacionární právě tehdy, když jsou absolutní hodnoty vlastních čísel matice

$$\boldsymbol{A}_{1}^{*} + \boldsymbol{B}_{1}^{*} = \begin{pmatrix} a_{11}^{*} & a_{12}^{*} & a_{13}^{*} \\ a_{21}^{*} & a_{22}^{*} & a_{23}^{*} \\ a_{31}^{*} & a_{32}^{*} & a_{33}^{*} \end{pmatrix} + \begin{pmatrix} b_{11}^{*} & b_{12}^{*} & b_{13}^{*} \\ b_{21}^{*} & b_{22}^{*} & b_{23}^{*} \\ b_{31}^{*} & b_{32}^{*} & b_{33}^{*} \end{pmatrix}$$

menší než jedna.

Příklad. Mějme dvourozměrný model GARCH(1,1) (N = 2, p = q = 1). Pak je proces ϵ_t s parametrizací BEKK (2.8) kovariančně stacionární právě tehdy, když jsou absolutní hodnoty vlastních čísel matice

$$\begin{aligned} \boldsymbol{A}_{11} \otimes \boldsymbol{A}_{11} + \boldsymbol{B}_{11} \otimes \boldsymbol{B}_{11} = \\ &= \begin{pmatrix} a_{11}^2 & a_{11}a_{12} & a_{11}a_{12} & a_{12}^2 \\ a_{11}a_{21} & a_{11}a_{22} & a_{12}a_{21} & a_{12}a_{22} \\ a_{11}a_{21} & a_{12}a_{21} & a_{11}a_{22} & a_{12}a_{22} \\ a_{21}^2 & a_{21}a_{22} & a_{21}a_{22} & a_{22}^2 \end{pmatrix} + \begin{pmatrix} b_{11}^2 & b_{11}b_{12} & b_{12}^2 \\ b_{11}b_{21} & b_{11}b_{22} & b_{12}b_{21} & b_{12}b_{22} \\ b_{11}b_{21} & b_{12}b_{21} & b_{11}b_{22} & b_{12}b_{22} \\ b_{21}^2 & b_{21}b_{22} & b_{21}b_{22} & b_{22}^2 \end{pmatrix} \end{aligned}$$

menší než jedna. a_{ij} a b_{ij} v parametrizaci BEKK označují prvky matic A_{11} a B_{11} . *Příklad.* Mějme dvourozměrný model GARCH(1,1) (N = 2, p = q = 1). Pak je proces ϵ_t s parametrizací vec (2.14) kovariančně stacionární právě tehdy, když jsou absolutní hodnoty vlastních čísel matice

$$oldsymbol{A}_1 + oldsymbol{B}_1 = egin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \ a_{21} & a_{22} & a_{23} & a_{24} \ a_{31} & a_{32} & a_{33} & a_{34} \ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} + egin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \ b_{21} & b_{22} & b_{23} & b_{24} \ b_{31} & b_{32} & b_{33} & b_{34} \ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix}$$

menší než jedna. a_{ij} a b_{ij} v parametrizaci vec označují prvky matic A_1 a B_1 .

2.6 Odhadování parametrů mnohorozměrného modelu GARCH

V předešlém textu jsme se věnovali definici mnohorozměrného modelu GARCH a jeho různým parametrizacím. Nyní se budeme zabývat odhadováním parametrů v jednotlivých reprezentacích. Pro odhady parametrů všech tří zkoumaných parametrizací se používá metoda maximální věrohodnosti.

Engle a Kroner (1995) ji používají pro reprezentace BEKK a vec, Rossi (2004) ji používá pro reprezentace vech a BEKK.

Předpokládejme, že náhodný vektor $\boldsymbol{\epsilon}_1$ a náhodné vektory $\boldsymbol{\epsilon}_t$ podmíněné informací $\Psi_{t-1}, t = 2, \ldots, T$ mají *N*-rozměrné normální rozdělení $\mathcal{N}_N(\mathbf{0}, \mathbf{H}_t),$ $t = 1, \ldots, T$. Mějme náhodný výběr $\boldsymbol{\epsilon}_1, \ldots, \boldsymbol{\epsilon}_T$. Pak pro sdruženou hustotu platí

$$f(\boldsymbol{\epsilon}_1,\ldots,\boldsymbol{\epsilon}_T)=f(\boldsymbol{\epsilon}_1)f(\boldsymbol{\epsilon}_2|\boldsymbol{\epsilon}_1)f(\boldsymbol{\epsilon}_3|\boldsymbol{\epsilon}_1,\boldsymbol{\epsilon}_2)\ldots f(\boldsymbol{\epsilon}_T|\boldsymbol{\epsilon}_1,\ldots,\boldsymbol{\epsilon}_{T-1}).$$

Zřejmě je

$$f(\boldsymbol{\epsilon}_{1}) = \frac{1}{(2\pi)^{N/2}\sqrt{\det \boldsymbol{H}_{1}}} \exp\left\{-\frac{1}{2}\boldsymbol{\epsilon}_{1}^{T}\boldsymbol{H}_{1}^{-1}\boldsymbol{\epsilon}_{1}\right\},$$

$$f(\boldsymbol{\epsilon}_{t}|\boldsymbol{\Psi}_{t-1}) = \frac{1}{(2\pi)^{N/2}\sqrt{\det \boldsymbol{H}_{t}}} \exp\left\{-\frac{1}{2}\boldsymbol{\epsilon}_{t}^{T}\boldsymbol{H}_{t}^{-1}\boldsymbol{\epsilon}_{t}\right\}, \quad t = 2, \dots, T,$$

$$f(\boldsymbol{\epsilon}_{1}, \dots, \boldsymbol{\epsilon}_{T}) = (2\pi)^{-TN/2} \prod_{t=1}^{T} \frac{1}{\sqrt{\det \boldsymbol{H}_{t}}} \exp\left\{-\frac{1}{2}\boldsymbol{\epsilon}_{t}^{T}\boldsymbol{H}_{t}^{-1}\boldsymbol{\epsilon}_{t}\right\}. \quad (2.24)$$

Nechť $\boldsymbol{\theta}$ je vektor parametrů sdružené hustoty $f(\boldsymbol{\epsilon}_1, \ldots, \boldsymbol{\epsilon}_T)$. Pak (2.24) je vyjádření věrohodnostní funkce $L_T(\boldsymbol{\theta})$, ze kterého jednoduše dostaneme logaritmickou věrohodnost $l_T(\boldsymbol{\theta})$. Využijeme při tom vztahů

$$l_1(\boldsymbol{\theta}) = \ln f(\boldsymbol{\epsilon}_1), \quad l_t(\boldsymbol{\theta}) = \ln f(\boldsymbol{\epsilon}_t | \boldsymbol{\Psi}_{t-1}), \quad t = 2, \dots, T,$$
$$l_T(\boldsymbol{\theta}) = \sum_{t=1}^T l_t(\boldsymbol{\theta}).$$

Logaritmická věrohodnostní funkce pak je

$$l_t(\boldsymbol{\theta}) = -\frac{1}{2} \left[N \ln(2\pi) + \ln(\det \boldsymbol{H}_t) + \boldsymbol{\epsilon}_t^T \boldsymbol{H}_t^{-1} \boldsymbol{\epsilon}_t \right], \quad t = 1, \dots, T,$$

$$l_T(\boldsymbol{\theta}) = -\frac{1}{2} \left[T N \ln(2\pi) + \sum_{t=1}^T \left(\ln(\det \boldsymbol{H}_t) + \boldsymbol{\epsilon}_t^T \boldsymbol{H}_t^{-1} \boldsymbol{\epsilon}_t \right) \right]. \quad (2.25)$$

Maximálně věrohodným odhadem vektoru parametrů $\boldsymbol{\theta}$ je

$$\widehat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} L_T(\boldsymbol{\theta}).$$

Poznámka. Logaritmus je ryze rostoucí funkce, takže funkce $L_T(\boldsymbol{\theta})$ a $l_T(\boldsymbol{\theta})$ nabývají maxima v tomtéž bodě.

Poznámka.Vektor parametrů $\boldsymbol{\theta}$ můžeme vyjádřit jako

$$oldsymbol{ heta} oldsymbol{ heta} = egin{pmatrix} oldsymbol{W} \\ vec(oldsymbol{A}_1^*) \\ dots \\ vec(oldsymbol{A}_q^*) \\ vec(oldsymbol{B}_1^*) \\ dots \\ vec(oldsymbol{B}_p^*) \end{pmatrix}$$

pro reprezentaci vech (2.1), jako

$$oldsymbol{ heta} oldsymbol{ heta} = egin{pmatrix} vec(oldsymbol{R}_{11}) \ dots \ vec(oldsymbol{A}_{q1}) \ dots \ vec(oldsymbol{B}_{11}) \ dots \ vec(oldsymbol{B}_{11}) \ dots \ vec(oldsymbol{B}_{p1}) \end{pmatrix}$$

pro reprezentaci BEKK (2.8), a jako

$$oldsymbol{ heta} oldsymbol{ heta} = egin{pmatrix} oldsymbol{C}_0 \ vec(oldsymbol{A}_1) \ dots \ vec(oldsymbol{A}_q) \ vec(oldsymbol{B}_1) \ dots \ vec(oldsymbol{B}_1) \ dots \ vec(oldsymbol{B}_p) \end{pmatrix}$$

pro reprezentaci vec (2.14).

Výše zmíněné vektory $\boldsymbol{\theta}$ obsahují parametry rovnice podmíněného rozptylu $\mathsf{Var}(\boldsymbol{\epsilon}_t | \boldsymbol{\Psi}_{t-1}) = \boldsymbol{H}_t$. Pozorujeme časovou řadu $\boldsymbol{y}_t = \boldsymbol{\mu}_t + \boldsymbol{\epsilon}_t$, takže do logaritmické věrohodnostní funkce (2.25) dosazujeme $\boldsymbol{\epsilon}_t = \boldsymbol{y}_t - \boldsymbol{\mu}_t$ a pro nenulový vektor $\boldsymbol{\mu}_t$ přistupují do vektoru $\boldsymbol{\theta}$ parametry rovnice podmíněné střední hodnoty $\boldsymbol{\mu}_t = \mathsf{E}(\boldsymbol{y}_t | \boldsymbol{\Psi}_{t-1}).$

Řada y_t může být modelována například mnohorozměrným autoregresním procesem řádu r. Ten je definován rovnicí

$$oldsymbol{y}_t = oldsymbol{arphi}_0 + oldsymbol{arphi}_1 oldsymbol{y}_{t-1} + \dots + oldsymbol{arphi}_r oldsymbol{y}_{t-r} + oldsymbol{\epsilon}_t$$

kde φ_0 je vektor délky N a $\varphi_1, \ldots, \varphi_r$ jsou matice typu $N \times N$ (Cipra, 2008). Tedy

$$oldsymbol{\mu}_t = oldsymbol{arphi}_0 + \sum_{i=1}^r oldsymbol{arphi}_i oldsymbol{y}_{t-i}.$$

Případně lze použít externí regresory. Konkrétní specifikace rovnice podmíněné střední hodnoty je ukázána v následující kapitole.

3. Aplikace modelu GARCH na reálná data

Doposud jsme se zabývali teorií mnohorozměrného modelu GARCH. Nyní ukážeme, jak je možné tuto teorii uvést do praxe.

3.1 Softwarové možnosti

Nejprve bylo třeba prozkoumat softwarové implementace mnohorozměrného modelu GARCH. Například systém WOLFRAM MATHEMATICA má implementovaný pouze jednorozměrný model GARCH, což pro účely této práce není dostatečné.

Rozhodli jsme se použít systém EViews, který má spolu s jednorozměrným modelem GARCH implementovaný i mnohorozměrný model GARCH. EViews umožňuje odhadovat parametry diagonálního modelu GARCH s parametrizací BEKK a diagonálního modelu GARCH s parametrizací vech. V této kapitole ukážeme odhad obou parametrizací. Bwire (2019) uvádí způsob, jak odhadovat volatilitu dvourozměrného modelu GARCH(1,1) s diagonální parametrizací BEKK. Při odhadování volatility dvourozměrného modelu GARCH(1,1) s diagonální parametrizací vech budeme postupovat podobně.

3.2 Reálná data

Následně bylo nutné najít vhodná data pro aplikaci mnohorozměrného modelu GARCH. Zvolili jsme vývoj ceny akcie Komerční banky a indexu PX, obojí dostupné na stránkách KB (Komerční banka, 2023). Index PX je oficiálním ce-

Obrázek 3.1: Vývoj ceny akcie KB a idexu PX

novým indexem Burzy cenných papírů Praha. Součástí indexu jsou akcie deseti společností, jednou z nich je i Komerční banka, která má v indexu zastoupení 20,47% (Burza cenných papírů Praha, 2023). Mezi těmito časovými řadami tedy existuje závislost. K tomuto faktu se vrátíme později.

Máme k dispozici údaje o ceně akcie KB a indexu PX z období od 1. 6. 2016 do 31. 3. 2023 a to za každý pracovní den (bez státních svátků). Celkem tedy máme 1 716 pozorování v každé časové řadě. Vývoj těchto řad je znázorněn na obrázku 3.1. Byla analyzována i měsíční data, ta se ale kvůli malému počtu pozorování ukázala horší než denní data.

V našem modelu budeme namísto cen používat logaritmické výnosové míry. Když označíme P_t cenu aktiva v čase t, tak logaritmickou výnosovou míru r_t dostaneme jako

$$r_t = \ln P_t - \ln P_{t-1}, \quad t = 2, \dots$$

Transformací cen na logaritmické výnosy dosáhneme stacionárního průběhu pozorovaných časových řad. Původní řady cen stacionární nejsou, jak lze vidět z obrázku 3.1. Časové řady logaritmických výnosových měr akcie KB a indexu PX označme postupně *DLKB* a *DLPX*. Nakonec máme tedy k dispozici 1 715 pozorování v každé časové řadě. Vývoj logaritmických výnosových měr akcie KB je znázorněn na obrázku 3.2 a vývoj logaritmických výnosových měr indexu PX je znázorněn na obrázku 3.3.

Obrázek 3.2: Vývoj logaritmických výnosových měr akcie KB

3.3 Aplikace modelu GARCH

Nyní, když máme připravena data, můžeme přistoupit k samotnému odhadování parametrů dvourozměrného modelu GARCH pro časové řady DLKBa DLPX. Budeme následovat postup, který uvádí Bwire (2019).

Obrázek 3.3: Vývoj logaritmických výnosových měr idexu PX

3.3.1 Rovnice podmíněné střední hodnoty

Prvním krokem je volba rovnice podmíněné střední hodnoty. Specifikujeme ji tak, že hodnota každé z časových řad v čase t závisí na konstantě a na zpožděných hodnotách obou časových řad DLKB a DLPX. Jelikož víme, že mezi časovými řadami existuje závislost, tak tato specifikace má smysl.

Bwire (2019) používá zpoždění do hodnoty t - 4, pracuje tedy s čtyřmi autoregresními parametry pro každou časovou řadu. V takovém případě řada DLKBzávisí na konstantě a na zpožděných hodnotách DLKB(-1 až -4) a DLPX(-1 až -4). To samé platí pro DLPX. Rovnici podmíněné střední hodnoty lze po složkách symbolicky zapsat ve tvaru

$$\mu_{1,t} = C_1 + \sum_{i=1}^{4} C_1(i) DLKB(-i) + \sum_{i=5}^{8} C_1(i) DLPX(-i)$$

$$\mu_{2,t} = C_2 + \sum_{i=1}^{4} C_2(i) DLKB(-i) + \sum_{i=5}^{8} C_2(i) DLPX(-i).$$

Dále

$$y_{1,t} = DLKB(0) = \mu_{1,t} + \epsilon_{1,t}$$

$$y_{2,t} = DLPX(0) = \mu_{2,t} + \epsilon_{2,t}.$$

Odhad parametrů provádíme v EViews a výstupem je tabulka 3.1. Z výsledků vidíme, že koeficienty u zpožděných hodnot DLKB(-3), DLPX(-1), DLPX(-2) a DLPX(-3) jsou na hladině 5% statisticky významné (nenulové). To platí, jelikož jsou jejich p-hodnoty (sloupec Prob.) menší než 0,05. Z rovnice vynecháme všechny koeficienty, jejichž p-hodnoty jsou větší než 0,05, tedy konstantu C_1 a zpožděné hodnoty DLKB(-1), DLKB(-2), DLKB(-4) a DLPX(-4). Důležitou částí výstupu je Durbinova-Watsonova statistika, která odhalí případnou korelovanost sousedních reziduí. Hodnoty Durbinovy-Watsonovy (D-W) statistiky blízké 2 značí nekorelovanost reziduí (Cipra, 2008). V našem případě nic

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C_1	-0.000316	0.000377	-0.839664	0.4012	
DLKB(-1)	-0.030106	0.035545	-0.846981	0.3971	
DLKB(-2)	-0.030523	0.035521	-0.859290	0.3903	
DLKB(-3)	-0.081194	0.035474	-2.288808	0.0222	
DLKB(-4)	0.032052	0.035434	0.904555	0.3658	
DLPX(-1)	0.181057	0.056800	3.187620	0.0015	
DLPX(-2)	0.150060	0.056939	2.635451	0.0085	
DLPX(-3)	0.165036	0.056846	2.903213	0.0037	
DLPX(-4)	0.008629	0.056990	0.151418	0.8797	
Durbin-Watson stat 1.997514					

Tabulka 3.1: Odhad rovnice podmíněné střední hodnoty 1 (řada DLKB)

nenasvědčuje tomu, že by sousední rezidua rovnice podmíněné střední hodnoty byla korelovaná.

Dostaneme novou specifikaci rovnice podmíněné střední hodnoty, a sice že řada DLKB závisí na DLKB(-3) a DLPX(-1 až -3). Výstupem této specifikace je tabulka 3.2. Vidíme, že p-hodnoty všech koeficientů jsou menší než

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLKB(-3)	-0.075698	0.035295	-2.144719	0.0321
DLPX(-1)	0.145744	0.038580	3.777684	0.0002
DLPX(-2)	0.116230	0.038446	3.023188	0.0025
DLPX(-3)	0.157554	0.056660	2.780721	0.0055
	Durbin-Wats	son stat $ 2.0$	26144	

Tabulka 3.2: Odhad rovnice podmíněné střední hodnoty 2 (řada DLKB)

0,05, všechny koeficienty jsou tedy statisticky významné. Navíc D-W statistika je blízká 2, což značí nekorelovanost sousedních reziduí. Zdá se tedy, že by tato specifikace mohla být vhodným odhadem rovnice podmíněné střední hodnoty.

Bohužel, při použití této specifikace EViews hlásí problém s kovariancí koeficientů. Tento problém lze vyřešit snížením počtu koeficientů. Vytvoříme novou specifikaci tak, že z předchozí vypustíme nejméně významný koeficient, tedy DLKB(-3). V této specifikaci řada DLKB závisí na DLPX(-1 až -3). Výstupem je tabulka 3.3. P-hodnoty koeficientů DLPX(-1) a DLPX(-2) jsou

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
DLPX(-1)	0.145175	0.038620	3.759085	0.0002	
DLPX(-2)	0.117764	0.038480	3.060417	0.0022	
DLPX(-3)	0.068635	0.038659	1.775383	0.0760	
Durbin-Watson stat 2.025902					

Tabulka 3.3: Odhad rovnice podmíněné střední hodnoty 3 (řada DLKB)

menší než 0,05, tyto koeficienty jsou statisticky významné na hladině 5%. Koeficient DLPX(-3) má p-hodnotu větší než 0,05, ale menší než 0,1. Tento koeficient

je statisticky významný na hladině 10%, v rovnici jej tedy ponecháme. Hodnota D-W statistiky opět nasvědčuje nekorelovanosti reziduí. Odhadem rovnice podmíněné střední hodnoty pro řadu DLKB je tedy

$$C_1(1)DLPX(-1) + C_1(2)DLPX(-2) + C_1(3)DLPX(-3).$$
(3.1)

Stejným způsobem specifikujeme rovnici pro DLPX. V konečné specifikaci dostaneme, že řada DLPX závisí na DLPX(-1 až -3). Výstupem je tabulka 3.4. Z p-hodnot vidíme, že koeficienty u DLPX(-1) a DLPX(-2) jsou statisticky

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
DLPX(-1)	0.061251	0.024041	2.547721	0.0109	
DLPX(-2)	0.105781	0.024051	4.398130	0.0000	
DLPX(-3)	0.026018	0.024195	1.075333	0.2824	
Durbin-Watson stat 2.001714					

Tabulka 3.4: Odhad rovnice podmíněné střední hodnoty 4 (řada *DLPX*)

významné na hladině 5%. Koeficient DLPX(-3) má p-hodnotu větší než 0,05. Tento koeficient je statisticky významný na hladině 30%. D-W statistika značí nekorelovanost reziduí rovnice. Odhadem rovnice podmíněné střední hodnoty pro řadu DLPX je

$$C_2(1)DLPX(-1) + C_2(2)DLPX(-2) + C_2(3)DLPX(-3).$$
(3.2)

Bwire (2019) ve svém článku pracuje s měsíčními daty. Jelikož používáme denní data, tak by zpoždění do hodnoty t - 4 nemuselo být dostatečné. Proto jsme se rozhodli zopakovat celý postup pro zpoždění až do hodnoty t - 20. Tímto postupem dostaneme následující specifikace rovnice podmíněné střední hodnoty. Řada DLKB závisí na DLPX(-1), DLPX(-2) a DLPX(-16) a řada DLPX závisí na DLKB(-7), DLPX(-2) a DLPX(-15). Výstupem těchto specifikací je tabulka 3.5 a tabulka 3.6.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLPX(-1)	0.151961	0.038727	3.923877	0.0001
DLPX(-2)	0.118109	0.038633	3.057201	0.0023
DLPX(-16)	-0.117294	0.038645	-3.035144	0.0024
Durbin-Watson stat 2.037995				

Tabulka 3.5: Odhad rovnice podmíněné střední hodnoty 5 (řada DLKB)

Všechny p-hodnoty a D-W statistiky u obou specifikací odpovídají požadavkům. Odhady rovnic podmíněné střední hodnoty jsou

$$DLKB: \quad C_1(1)DLPX(-1) + C_1(2)DLPX(-2) + C_1(3)DLPX(-16), \quad (3.3)$$

$$DLPX: \quad C_2(1)DLKB(-7) + C_2(2)DLPX(-2) + C_2(3)DLPX(-15). \quad (3.4)$$

Bwire (2019) používá v obou složkách podmíněné střední hodnoty stejné regresory. Pro aplikaci modelu GARCH budeme volit 3 dvojice rovnic podmíněné

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
DLKB(-7)	0.049027	0.014949	3.279602	0.0011	
DLPX(-2)	0.110940	0.024035	4.615750	0.0000	
DLPX(-15)	0.072645	0.024003	3.026515	0.0025	
Durbin-Watson stat 1.873372					

Tabulka 3.6: Odhad rovnice podmíněné střední hodnoty 6 (řada DLPX)

střední hodnoty se stejnými regresory pro DLKB a DLPX. Na základě (3.1) a (3.2) použijeme DLPX(-1), DLPX(-2) a DLPX(-3), na základě (3.3) použijeme DLPX(-1), DLPX(-2) a DLPX(-16) a na základě (3.4) použijeme DLKB(-7), DLPX(-2) a DLPX(-15). Koeficienty značíme v souladu se zobrazenými výstupy z EViews. Dostaneme vyjádření

$$DLPX = C(1)DLPX(-1) + C(2)DLPX(-2) + C(3)DLPX(-3),$$

$$DLKB = C(4)DLPX(-1) + C(5)DLPX(-2) + C(6)DLPX(-3),$$
 (3.5)

$$DLPX = C(1)DLPX(-1) + C(2)DLPX(-2) + C(3)DLPX(-16),$$

$$DLKB = C(4)DLPX(-1) + C(5)DLPX(-2) + C(6)DLPX(-16),$$
 (3.6)

$$DLPX = C(1)DLKB(-7) + C(2)DLPX(-2) + C(3)DLPX(-15),$$

$$DLKB = C(4)DLKB(-7) + C(5)DLPX(-2) + C(6)DLPX(-15).$$
 (3.7)

V následujícím úseku rozhodneme, který z odhadů vede k nejlepšímu modelu.

3.3.2 Diagonální BEKK

Dalším krokem je pro každý z těchto odhadů implementovat dvourozměrný model GARCH(1,1) s diagonální parametrizací BEKK. Následně rozhodneme, který z modelů je nejlepší. K tomu použijeme Akaikeho informační kritérium. Vybereme model s nejnižší hodnotou Akaikeho informačního kritéria (AIC). Pro implementaci používáme EViews a výstupy jsou k dispozici na následujících stránkách. Výsledné modely označíme postupně BEKK_01, BEKK_02 a BEKK_03.

Při porovnání výsledných modelů zjistíme, že nejnižší hodnotu AIC má model BEKK_02, tedy model s odhadem rovnic podmíněných středních hodnot (3.6). Vidíme, že C(2), C(4), C(5) a C(6) mají p-hodnoty menší než 0,05, tyto koeficienty jsou tedy statisticky významné na hladině 5%. C(1) a C(3) mají p-hodnotu větší než 0,05, tyto koeficienty tedy mohou být na hladině 5% považovány za nulové. Na hladině větší než 10% bychom jejich nulovost zamítali. Hodnoty obou D-W statistik jsou blízké 2, což značí nekorelovanost sousedních reziduí rovnic podmíněných středních hodnot. Pro koeficienty C(7) - C(13) rovnice podmíněného rozptylu (2.13) jsou všechny p-hodnoty menší než 0,05, takže všechny koeficienty jsou statisticky významné na hladině 5%. Rovnice podmíněného rozptylu má tvar

$$\begin{aligned} \boldsymbol{H}_{t} &= 10^{-6} \begin{pmatrix} 3,33 & 2,78\\ 2,78 & 5,63 \end{pmatrix} + \begin{pmatrix} 0,32 & 0\\ 0 & 0,26 \end{pmatrix} \boldsymbol{\epsilon}_{t-1} \boldsymbol{\epsilon}_{t-1}^{T} \begin{pmatrix} 0,32 & 0\\ 0 & 0,26 \end{pmatrix} + \\ &+ \begin{pmatrix} 0,92 & 0\\ 0 & 0,95 \end{pmatrix} \boldsymbol{H}_{t-1} \begin{pmatrix} 0,92 & 0\\ 0 & 0,95 \end{pmatrix}. \end{aligned}$$

System: BEKK_01 Estimation Method: ARCH Maximum Likelihood (BFGS / Marquardt						
Covariance specification: Diagonal BEKK Date: 07/07/23 Time: 16:38						
Sample: 4 1715						
Total system (balanced)	observations 34	24				
Presample covariance: b	ackcast (param	eter =0.7)				
Convergence achieved a	after 32 iteration	S				
Coefficient covariance co	Coefficient covariance computed using outer product of gradients					
	Coefficient	Std. Error	z-Statistic	Prob.		
C(1)	0.044117	0.023557	1.872729	0.0611		
C(2)	0.058272	0.020897	2.788525	0.0053		
C(3)	0.019428	0.020973	0.926352	0.3543		
C(4)	0.130846	0.033469	3.909453	0.0001		
C(5)	0.074274	0.029934	2.481258	0.0131		
C(6)	0.093428	0.029654	3.150642	0.0016		
	Variance Equati	on Coefficients				
C(7)	2 355-06	3 45 - 07	6 705571	0 0000		
C(8)	2.00E-00 2.07E-06	3 13E-07	6 620597	0.0000		
C(9)	4 77E-06	5.89E-07	8 100130	0.0000		
C(10)	0 293895	0.014448	20 34093	0.0000		
C(11)	0.253409	0.010345	24,49560	0.0000		
C(12)	0.936372	0.005460	171.5124	0.0000		
C(13)	0.955267	0.003461	276.0049	0.0000		
l og likelihood	11310 15	Schwarz crite	rion	-13 16677		
Ava log likelihood	3 305827	Hannan-Ouini	non n criter	-13 19282		
Akaike info criterion	-13 20812	nannan-Quin	ronter.	-10.10202		
Equation: DLPX = C(1)*[DLPX(-1) + C(2)	*DLPX(-2) + C(3)*DLPX(-3)			
R-squared	0.013446	Mean depende	ent var	0.000243		
Adjusted R-squared	0.012292	S.D. depender	nt var	0.009780		
S.E. of regression	0.009720	Sum squared	resid	0.161464		
Durbin-Watson stat	1.967166					
Equation: DLKB = C(4)*I	DLPX(-1) + C(5)	*DLPX(-2) + C(6)*DLPX(-3)			
R-squared	0.016555	Mean depende	ent var	-0.000177		
Adjusted R-squared	0.015404	S.D. depender	nt var	0.015639		
S.E. of regression	0.015519	Sum squared	resid	0.411569		
Durbin-Watson stat	2.013774					
Covariance specification: Diagonal BEKK GARCH = M + A1*RESID(-1)*RESID(-1)*A1 + B1*GARCH(-1)*B1 M is an indefinite matrix A1 is a diagonal matrix B1 is a diagonal matrix						
	Transformed Va	ariance Coefficie	nts			
	Coefficient	Std. Error	z-Statistic	Prob.		
M(1,1)	2.35E-06	3.45E-07	6.795571	0.0000		
M(1,2)	2.07E-06	3.13E-07	6.620597	0.0000		
M(2,2)	4.77E-06	5.89E-07	8.100130	0.0000		
A1(1,1)	0.293895	0.014448	20.34093	0.0000		
A1(2,2)	0.253409	0.010345	24.49560	0.0000		
B1(1,1)	0.936372	0.005460	171.5124	0.0000		
□ □ 1/2 2\	0.955267	0.003461	276.0049	0.0000		

Obrázek 3.4: Model BEKK_01

System: BEKK_02 Estimation Method: ARC	System: BEKK_02 Estimation Method: ARCH Maximum Likelihood (BFGS / Marquardt					
steps) Covariance specification: Diagonal BEKK Date: 07/07/23 Time: 16:39						
Sample: 17 1715	600					
Total system (balanced)	o99 observations 33	98				
Presample covariance: b	ackcast (param	eter =0.7)				
Convergence achieved a	fter 33 iteration	S				
Coefficient covariance computed using outer product of gradients						
	Coefficient	Std. Error	z-Statistic	Prob.		
C(1)	0.045465	0.024558	1.851337	0.0641		
C(2)	0.062280	0.021291	2.925237	0.0034		
C(3)	-0.033977	0.021256	-1.598488	0.1099		
C(4)	0.144605	0.032512	4.447801	0.0000		
C(6)	-0.080019	0.037565	-2.130174	0.0004		
	Variance Equati	ion Coefficients				
C(7)	3.33E-06	4.53E-07	7.343778	0.0000		
C(8)	2.78E-06	3.95E-07	7.025044	0.0000		
C(9)	5.63E-06	6.64E-07	8.472375	0.0000		
C(10)	0.319284	0.015181	21.03197	0.0000		
C(12)	0.200707	0.006492	141 5783	0.0000		
C(13)	0.950673	0.003685	257.9791	0.0000		
l og likelihood	11248 62	1248.62 Schwarz criterion				
Avg. log likelihood	3.310365	Hannan-Quini	-13.21075			
Akaike info criterion	-13.22616					
Equation: DLPX = C(1)*E	DLPX(-1) + C(2)	*DLPX(-2) + C(3	3)*DLPX(-16)			
R-squared	0.014357	Mean dependent var		0.000270		
Adjusted R-squared	0.013194	S.D. dependent var		0.009719		
Durbin-Watson stat	1 967041	Sum squared resid		0.150001		
Equation: $DLKB = C(4)*E$	DV(4) + C(5)					
R-squared	0.018609	$\frac{3}{2} \text{ Mean dependent var } -0.00016$				
Adjusted R-squared	0.017452	S.D. dependent var 0.015		0.015585		
S.E. of regression	0.015448	Sum squared resid 0.4047		0.404758		
Durbin-Watson stat	2.029583					
M is an indefinite matrix						
A1 is a diagonal matrix						
B1 is a diagonal matrix						
Transformed Variance Coefficients						
	Coefficient	Std. Error	z-Statistic	Prob.		
M(1.1)	3.33E-06	4.53E-07	7.343778	0.0000		
M(1,2)	2.78E-06	3.95E-07	7.025044	0.0000		
M(2,2)	5.63E-06	6.64E-07	8.472375	0.0000		
A1(1,1)	0.319284	0.015181	21.03197	0.0000		
A1(2,2)	0.260767	0.010331	25.24078	0.0000		
B1(1,1) B1(2,2)	0.919131	0.006492	257 0701	0.0000		
	0.900073	0.003003	251.9191	0.0000		

Obrázek 3.5: Model ${\rm BEKK_02}$

steps) Covariance specification: Diagonal BEKK Date: 07/07/23 Time: 16:40 Sample: 16 1715 Included observations: 1700 Total system (balanced) observations 3400 Presample covariance: backcast (parameter =0.7) Convergence achieved after 38 iterations Coefficient covariance computed using outer product of gradients	
Sample: 16 1715 Included observations: 1700 Total system (balanced) observations 3400 Presample covariance: backcast (parameter =0.7) Convergence achieved after 38 iterations Coefficient covariance computed using outer product of gradients	
Total system (balanced) observations 3400 Presample covariance: backcast (parameter =0.7) Convergence achieved after 38 iterations Coefficient covariance computed using outer product of gradients	
Presample covariance: backcast (parameter =0.7) Convergence achieved after 38 iterations Coefficient covariance computed using outer product of gradients	
Convergence achieved after 38 iterations Coefficient covariance computed using outer product of gradients	
Coefficient covariance computed using outer product of gradients	
Coefficient Std. Error z-Statistic	Prob.
C(1) 0.009278 0.012906 0.718920	0.4722
C(2) 0.059532 0.021060 2.826786	0.0047
C(3) 0.028029 0.022859 1.226148	0.2201
C(4) -0.002915 0.023394 -0.124594 C(5) 0.005878 0.027200 3.524860	0.9008
C(6) 0.05803 0.035630 0.162878	0.8706
Variance Equation Coefficients	
C(7) 2.92E-06 4.45E-07 6.556895	0.0000
C(8) 2.49E-06 3.78E-07 6.585615	0.0000
C(9) 5.38E-06 6.54E-07 8.231026	0.0000
C(10) 0.309814 0.015133 20.47239	0.0000
C(12) 0.259611 0.010256 25.55519 C(12) 0.926067 0.006679 138.6508	0.0000
C(13) 0.951962 0.003646 261.1119	0.0000
Log likelihood 11248.86 Schwarz criterion 12	3 17707
Avg. log likelihood 3.308488 Hannan-Quinn criter13	3.20326
Akaike info criterion -13.21866	
Equation: DLPX = C(1)*DLKB(-7) + C(2)*DLPX(-2) + C(3)*DLPX(-15)	
R-squared 0.013638 Mean dependent var 0.	000272
Adjusted R-squared 0.012476 S.D. dependent var 0.	009716
S.E. of regression 0.009655 Sum squared resid 0.	158208
Durbin-watson stat 1.882426	
Equation: $DLKB = C(4)*DLKB(-7) + C(5)*DLPX(-2) + C(6)*DLPX(-15)$	
R-squared 0.005677 Mean dependent var -0.	000164
Adjusted R-squared 0.004505 S.D. dependent var 0.	410130
S.E. of regression 0.015546 Sum squared resid 0.	
S.E. of regression 0.015546 Sum squared resid 0. Durbin-Watson stat 1.895513	10100
S.É. of regression 0.015546 Sum squared resid 0. Durbin-Watson stat 1.895513	
S.É. of regression 0.015546 Sum squared resid 0. Durbin-Watson stat 1.895513 Covariance specification: Diagonal BEKK	
S.É. of regression 0.015546 Sum squared resid 0. Durbin-Watson stat 1.895513 0. Covariance specification: Diagonal BEKK GARCH = M + A1*RESID(-1)*RESID(-1)*A1 + B1*GARCH(-1)*B1	
S.É. of regression 0.015546 Sum squared resid 0. Durbin-Watson stat 1.895513 Covariance specification: Diagonal BEKK GARCH = M + A1*RESID(-1)*RESID(-1)*A1 + B1*GARCH(-1)*B1 M is an indefinite matrix	
S.É. of regression 0.015546 Sum squared resid 0. Durbin-Watson stat 1.895513 Covariance specification: Diagonal BEKK GARCH = M + A1*RESID(-1)*RESID(-1)*A1 + B1*GARCH(-1)*B1 M is an indefinite matrix A1 is a diagonal matrix B1 is a diagonal matrix	
S.É. of regression 0.015546 Sum squared resid 0. Durbin-Watson stat 1.895513 0. Covariance specification: Diagonal BEKK GARCH = M + A1*RESID(-1)*RESID(-1)*A1 + B1*GARCH(-1)*B1 M is an indefinite matrix A1 is a diagonal matrix B1 is a diagonal matrix 0.	
S.É. of regression 0.015546 Sum squared resid 0. Durbin-Watson stat 1.895513 0. Covariance specification: Diagonal BEKK GARCH = M + A1*RESID(-1)*RESID(-1)*A1 + B1*GARCH(-1)*B1 M is an indefinite matrix A1 is a diagonal matrix B1 is a diagonal matrix Transformed Variance Coefficients	
S.É. of regression 0.015546 Sum squared resid 0.010000000000000000000000000000000000	Prob.
S.É. of regression 0.015546 Sum squared resid 0.1 Durbin-Watson stat 1.895513 0.1 Covariance specification: Diagonal BEKK GARCH = M + A1*RESID(-1)*RESID(-1)*A1 + B1*GARCH(-1)*B1 M is an indefinite matrix A1 is a diagonal matrix B1 is a diagonal matrix B1 is a diagonal matrix Transformed Variance Coefficients Coefficient Std. Error M(1,1) 2.92E-06 4.45E-07 6.556895	Prob. 0.0000
S.É. of regression 0.015546 Sum squared resid 0.1 Durbin-Watson stat 1.895513 0.1 Covariance specification: Diagonal BEKK GARCH = M + A1*RESID(-1)*RESID(-1)*A1 + B1*GARCH(-1)*B1 M is an indefinite matrix A1 is a diagonal matrix B1 is a diagonal matrix B1 is a diagonal matrix Transformed Variance Coefficients M(1,1) 2.92E-06 4.45E-07 6.556895 M(1,2) 2.49E-06 3.78E-07	Prob. 0.0000 0.0000
S.É. of regression 0.015546 Sum squared resid 0.1 Durbin-Watson stat 1.895513 0.1 Covariance specification: Diagonal BEKK GARCH = M + A1*RESID(-1)*RESID(-1)*A1 + B1*GARCH(-1)*B1 M is an indefinite matrix A1 is a diagonal matrix B1 is a diagonal matrix B1 is a diagonal matrix Transformed Variance Coefficients M(1,1) 2.92E-06 4.45E-07 6.556895 M(1,2) 2.49E-06 3.78E-07 6.585615 M(2,2) 5.38E-06 6.54E-07 8.231026	Prob. 0.0000 0.0000
S.É. of regression 0.015546 Sum squared resid 0.0 Durbin-Watson stat 1.895513 0 Covariance specification: Diagonal BEKK GARCH = M + A1*RESID(-1)*RESID(-1)*A1 + B1*GARCH(-1)*B1 M is an indefinite matrix A1 is a diagonal matrix B1 is a diagonal matrix B1 is a diagonal matrix Coefficient M(1,1) 2.92E-06 M(1,2) 2.49E-06 M(1,2) 2.49E-06 M(2,2) 5.38E-06 A1(2,2) 0.309814 0.015133 20.47239 A1(2,2) 0.250814 0.015133 20.47239	Prob. 0.0000 0.0000 0.0000 0.0000
S.É. of regression 0.015546 Sum squared resid 0.010000000000000000000000000000000000	Prob. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Obrázek 3.6: Model BEKK_03

3.3.3 Diagonální vech

Při implementaci dvourozměrného modelu GARCH(1,1) s diagonální parametrizací vech budeme postupovat stejně jako u diagonálního modelu BEKK. Výstupy jsou k dispozici na následujících stránkách a výsledné modely označíme postupně vech_01, vech_02 a vech_03.

Při porovnání výsledných modelů zjistíme, že nejnižší hodnotu AIC má model vech_02, tedy opět model s odhadem rovnic podmíněných středních hodnot (3.6). Nyní C(2), C(4) a C(6) mají p-hodnoty menší než 0,05, tyto koeficienty jsou tedy významně nenulové. C(1), C(3) a C(5) mají p-hodnotu větší než 0,05. Na hladině větší než 11% bychom jejich nulovost zamítali. Stejně jako u diagonálního modelu BEKK jsou hodnoty obou D-W statistik blízké 2, což značí nekorelovanost sousedních reziduí rovnic podmíněných středních hodnot. Pro koeficienty C(7) - C(15) rovnice podmíněného rozptylu (2.6) jsou všechny p-hodnoty menší než 0,05, takže všechny koeficienty jsou statisticky významné na hladině 5%. Rovnice podmíněného rozptylu diagonálního modelu vech má tedy tvar

$$vech(\boldsymbol{H}_{t}) = 10^{-6} \begin{pmatrix} 3,18\\3,45\\7,23 \end{pmatrix} + \begin{pmatrix} 0,097 & 0 & 0\\0 & 0,081 & 0\\0 & 0 & 0,079 \end{pmatrix} vech(\boldsymbol{\epsilon}_{t-1}\boldsymbol{\epsilon}_{t-1}^{T}) + \\ + \begin{pmatrix} 0,85 & 0 & 0\\0 & 0,86 & 0\\0 & 0 & 0,88 \end{pmatrix} vech(\boldsymbol{H}_{t-1}) + \\ \end{pmatrix}$$

3.3.4 Stacionarita

Dříve v textu jsme uvedli, že diagonální GARCH model ve tvaru BEKK je stacionární právě tehdy, když platí $\sum_{k=1}^{K} (a_{ii,k}^2 + b_{ii,k}^2) < 1$ pro všechna *i* a že diagonální model GARCH ve tvaru vech je stacionární právě tehdy, když platí $a_{ii}^* + b_{ii}^* < 1$ pro všechna *i*. Pro naše modely platí

$$BEKK: \quad 0,319284^2 + 0,919131^2 = 0,946744 \\ 0,260767^2 + 0,950673^2 = 0.971779 \\ vech: \quad 0,097168 + 0,850088 = 0,947256 \\ 0,080529 + 0,864123 = 0,944652 \\ 0.079105 + 0.881875 = 0.96098. \end{cases}$$

Oba modely tedy splňují podmínky kovarianční stacionarity.

Steps) Covariance specification: Diagonal VECH Date: 07/07/23 Time: 18.27 Sample: 41715 Included observations: 3424 Presample covariance: cackast (parameter =0 7) Coefficient Std. Error z-Statistic Prob. Coefficient covariance: computed using outer product of gradients Coefficient Std. Error z-Statistic Prob. C(1) 0.02112 Coefficient Std. Error z-Statistic Prob. C(1) 0.02132 2.401647 0.02132 Coefficient colspan="2">Statistic Prob. C(2) 0.02132 Coefficient Statistic Prob. C(2) 0.035892 2.74087 C(2) 2.9406 0.0000 C(7) 2.385-06 3.90000 C(1) 0.071482 0.0700 C(7) 2.385-06 3.0000 C(1) 0.0717 1.84652 0.0000 <	System: VECH_01 Estimation Method: ABCH Maximum Likelibood (BEGS / Marguardt						
Covariance specification: Diagonal VECH Date: 07/07/23 Time: 18-27 Sample: 4 1715 Included observations: 1712 Total system (balanced) observations 3424 Presample covariance: backcast (parameter =0.7) Convergence achieved after 61 fiterations Coefficient covariance computed using outer product of gradients C(2) 0.053152 0.022132 2.401647 0.0163 C(3) 0.017557 0.021492 0.818318 0.4132 C(4) 0.101199 0.038892 2.743095 0.0061 C(6) 0.051155 0.032971 1.551508 0.1208 C(6) 0.051155 0.032971 1.551508 0.1208 C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(6) 2.59E-06 4.30E-07 6.231859 0.0000 C(10) 0.065129 0.009154 9.299206 0.0000 C(11) 0.065129 0.009154 9.299206 0.0000 C(12) 0.071826 0.006275 11.44652 0.0000 C(14) 0.888463 0.010657 83.36608 0.0000 C(14) 0.888463 0.010657 83.36608 0.0000 C(15) 0.896812 0.008458 106.033 0.1186 Z Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) R-squared 0.012807 Mean dependent var 0.009720 S.E. of regression 0.01553 S.Um squared resid 0.16159 Durbin-Walson stat 1.981112 Covariance specification: Diagonal VECH GARCH = M.41.*RESID(-1)*RESID(-1)* B1.*GARCH(-1) M is an indefinite matrix A1 is an indefi	steps)			quarat			
Date: 07/07/23 Time: 18:27 Sample: 4.1715 Included observations: 1712 Total system (balanced) observations 3242 Presample covariance: backcast (parameter =0.7) Convergence achieved after 61 iterations Coefficient covariance: computed using outer product of gradients Coefficient covariance: backcast (parameter =0.7) Convergence achieved after 61 iterations Coefficient covariance: computed using outer product of gradients C(1) 0.042142 0.024216 1.740295 0.0818 C(2) 0.053152 0.022192 2.401647 0.01183 C(3) 0.017587 0.021492 0.818318 0.4132 C(4) 0.101199 0.036882 2.743095 0.0061 C(6) 0.051145 0.032971 1.551038 0.1208 C(6) 0.051145 0.032971 1.551038 0.1208 C(7) 2.43E-06 3.390E-07 6.023478 0.0000 C(8) 2.59E-06 4.30E-07 6.023478 0.0000 C(10) 0.085129 0.009154 9.299206 0.00001 C(11) 0.070491 0.006637 0.062069 0.00000 C(11) 0.070491 0.006637 0.062069 0.00000 C(12) 0.071826 0.006275 11.44652 0.0000 C(13) 0.875036 0.011916 73.43661 0.0000 C(14) 0.889643 0.010657 83.36808 0.0000 C(15) 0.889641 0.0008525 11.44652 0.0000 C(14) 0.889643 0.010657 83.36808 0.0000 C(15) 0.899612 0.0091548 1.060336 0.0000 C(14) 0.889643 0.010657 83.36808 0.0000 C(15) 0.899612 0.009157 83.36808 0.0000 C(16) 0.009723 Sum squared resid 0.01655 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.962439 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(6)*DLPX(-3) R-squared 0.014662 Mean dependent var Adjusted R-squared 0.013509 S.D. dependent var Adjusted R-squared 0.013509	Covariance specification:	Diagonal VECH					
Sample: 4 1/15 Included observations: 1712 Total system (balanced) observations: 3424 Presample covariance: backast (parameter =0.7) Convergence achieved after 61 iterations Coefficient ovariance: ackast (parameter =0.7) Convergence achieved after 61 iterations Coefficient covariance: backast (parameter =0.7) Convergence achieved after 61 iterations Coefficient ovariance: backast (parameter =0.7) Convergence achieved after 61 iterations Coefficient ovariance: backast (parameter =0.7) Convergence achieved after 61 iterations C(1) 0.042142 0.024216 1.740295 0.0818 C(2) 0.053152 0.022132 2.401647 0.0163 C(3) 0.017567 0.021482 0.818318 0.4132 C(4) 0.101199 0.036892 2.743095 0.00061 C(6) 0.051155 0.032971 1.551508 0.1208 C(6) 0.051155 0.032971 1.551508 0.1208 C(7) 2.43E-06 3.390E-07 6.231859 0.0000 C(8) 2.59E-06 4.30E-07 6.023478 0.0000 C(10) 0.085129 0.009154 9.299206 0.0000 C(11) 0.070491 0.006637 10.62069 0.0000 C(12) 0.071826 0.000275 11.44652 0.0000 C(13) 0.875036 0.011916 73.43661 0.0000 C(14) 0.888463 0.010657 83.3808 0.0000 C(15) 0.896812 0.004458 106.0336 0.0000 C(15) 0.09723 Sum squared resid 0.016569 Durbin-Walson stat 1.982439 Equation: DLFX = C(1)*DLFX(-1) + C(2)*DLFX(-2) + C(6)*DLFX(-3) R-squared 0.013509 S.D. dependent var 0.003243 Adjusted R-squared 0.013509 S.D. dependent var 0.016539 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Walson stat 1.982112 Covariance specification: Diagonal VECH GARCH = M + A1:*RESID(-1)* + B1.*GARCH(-1) M is an indefinite matrix B1 is an indef	Date: 07/07/23 Time: 18	:27					
Included Observations 1712 Total system (balanced) observations 3424 Presample covariance: backcast (parameter =0.7) Convergence achieved after 61 literations Coefficient covariance computed using outer product of gradients Coefficient covariance computed using outer product of gradients C(1) 0.042142 0.022132 2.401647 0.0163 C(2) 0.053152 0.022132 2.401647 0.0163 C(3) 0.017587 0.021492 0.818318 0.4132 C(4) 0.01017587 0.0221492 0.818318 0.4132 C(4) 0.051155 0.032907 1.556033 0.1186 C(6) 0.051155 0.032907 1.556033 0.0186 C(6) 2.59E-06 4.30E-07 6.231859 0.0000 C(10) 0.085129 0.009154 0.209206 0.0000 C(11) 0.070491 0.006637 10.62069 0.0000 C(11) 0.070491 0.006637 10.46269 0.0000 C(12) 0.071426 0.006275 11.44652 0.0000 C(13) 0.875036 0.011916 73.43661 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(15) 0.896812 0.008458 106.0336 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(15) 0.896812 0.008458 106.0336 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(15) 0.896812 0.008458 106.0336 0.0000 C(16) 0.12807 Mean dependent var 0.009723 Sum squared no.012807 Mean dependent var 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.962439 Equation: DLKB = C(4)*DLPX(-1) + C(5)*DLPX(-2) + C(6)*DLPX(-3) R-squared 0.013509 S.D. dependent var 0.016539 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.981112 Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)* B1.*GARCH(-1) M is an indefinite matrix B1 is an indefi	Sample: 4 1/15	10					
Total system (Darlance) (User Variance: backcast (parameter =0.7) Convergence achieved after 61 iterations Coefficient covariance: computed using outer product of gradients Convergence achieved after 61 iterations Coefficient covariance: computed using outer product of gradients C(1) 0.042142 0.042161 1.740295 0.0816 C(2) 0.053152 0.021492 0.818318 0.4132 C(4) 0.0117587 0.021492 0.818318 0.4132 C(6) 0.051144 0.032971 1.556083 0.1186 C(6) 0.051155 0.032971 1.551508 0.0000 C(6) 0.051155 0.032971 1.551508 0.0000 C(6) 0.55129 0.009154 9.299206 0.0000 C(11) 0.074826 0.006275 11.44652 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(14) 0.888463 0.01657 83.36808 0.0000 <tr< td=""><td>Included observations: 1/</td><td>12 haanvationa 242/</td><td></td><td></td><td></td></tr<>	Included observations: 1/	12 haanvationa 242/					
Convergence achieved after 61 iterations Coefficient Std. Error z-Statistic Prob. Coefficient covariance computed using outer product of gradients Coefficient Std. Error z-Statistic Prob. C(1) 0.042142 0.022132 2.401647 0.0163 C(2) 0.053152 0.022132 2.401647 0.0163 C(3) 0.017567 0.021492 0.818318 0.4132 C(4) 0.011199 0.032692 2.743095 0.0061 C(6) 0.051155 0.032707 1.560633 0.1186 C(6) 0.051155 0.032707 1.560633 0.0000 C(6) 0.051155 0.03207 1.560633 0.0000 C(6) 2.59E-06 4.30E-07 6.231859 0.0000 C(10) 0.061515 0.030275 1.444652 0.0000 C(11) 0.07441 0.006637 1.444652 0.0000 C(13) 0.875036 0.011916 7.343661 0.0000 C(14) 0.889612 0.00	Presample covariance: ba	oservations 3424	+ ar =0.7)				
Coefficient covariance computed using outer product of gradients Coefficient Covariance computed using outer product of gradients Coefficient Covariance computed using outer product of gradients C(1) 0.042142 0.022132 2.401647 0.01818 C(2) 0.053152 0.022132 2.401647 0.01818 C(3) 0.017587 0.021492 0.818318 0.4132 C(4) 0.015155 0.032971 1.551508 0.1208 Variance Equation Coefficients Variance Equation Coefficients C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(1) 0.055129 0.009154 9.299206 0.0000 C(11) 0.7786706 0.788610 0.0000 C(11) 0.7875036 0.011916 73.34561 0.0000 C(14) 0.888463 0.00675	Convergence achieved af	ter 61 iterations	er =0.7)				
Coefficient Std. Error z-Statistic Prob. C(1) 0.042142 0.024216 1.740295 0.0818 C(2) 0.053152 0.022132 2.401647 0.0163 C(3) 0.017587 0.021492 0.818318 0.4132 C(4) 0.101199 0.036892 2.743095 0.0061 C(5) 0.051155 0.032971 1.551508 0.1208 Variance Equation Coefficients C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(8) 2.59E-06 4.30E-07 7.84109 0.0000 C(10) 0.085129 0.009154 9.299206 0.0000 C(11) 0.071492 0.00657 83.8680 0.0000 C(13) 0.875036 0.011916 7.849109 0.00000 C(14) 0.88463 0.01057 83.8680 0.0000 C(15) 0.896812 0.004458 106.0336 0.0007 Log likelihood 1.337.27 Schwarz criterion	Coefficient covariance cor	nputed using out	er product of grad	lients			
Coefficient Std. Error z-Statistic Prob. C(1) 0.042142 0.022132 2.401647 0.0163 C(2) 0.053152 0.022132 2.401647 0.0163 C(3) 0.017587 0.021492 0.81818 0.41242 C(4) 0.101199 0.036892 2.743095 0.0061 C(5) 0.051155 0.032971 1.551508 0.1126 Variance Equation Coefficients C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(8) 2.59E-06 4.30E-07 6.023478 0.0000 C(10) 0.085129 0.009154 9.29206 0.0000 C(11) 0.071926 0.006637 116.62069 0.0000 C(11) 0.071926 0.006637 116.6336 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(14) 0.889612 0.008458 106.0336 0.0000 C(15) 0.896812 0.008458 106.0336							
C(1) 0.042142 0.024216 1.740295 0.0818 C(2) 0.033152 0.02132 2.401647 0.0163 C(3) 0.017587 0.02142 0.818318 0.4133 C(4) 0.101199 0.036892 2.743095 0.0061 C(6) 0.051144 0.032271 1.551508 0.1186 C(6) 0.051155 0.032271 1.551508 0.0000 C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(8) 2.59E-06 4.30E-07 6.023478 0.0000 C(10) 0.085129 0.09154 9.29206 0.00000 C(11) 0.070491 0.006637 10.62069 0.0000 C(11) 0.071826 0.008458 106.0336 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(15) 0.896812 0.008458 106.0336 0.00000 C(14) 0.889612 0.008458 106.0336 0.00000 C(14)		Coefficient	Std. Error	z-Statistic	Prob.		
C(2) 0.053152 0.022132 2.401847 0.0163 C(3) 0.017587 0.021492 0.818318 0.4132 C(4) 0.051155 0.036892 2.743095 0.0061 C(6) 0.051155 0.032971 1.551068 0.1208 Variance Equation Coefficients C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(8) 2.59E-06 4.30E-07 7.894109 0.0000 C(10) 0.085129 0.009154 9.299206 0.0000 C(11) 0.071826 0.006275 11.44652 0.0000 C(13) 0.875036 0.011657 83.8680 0.0000 C(14) 0.88463 0.010677 83.8680 0.0000 C(15) 0.896812 0.008458 106.0336 0.0000 C(15) 0.896812 0.008458 106.0336 0.0007 Log likelihood 11337.27 Schwarz criterion -13.17924 Ava, Log likelihood 3.311118 Hannan-Quin	C(1)	0.042142	0.024216	1.740295	0.0818		
C(3) 0.017587 0.021492 0.818318 0.4132 C(4) 0.101199 0.036892 2.743095 0.0061 C(5) 0.051155 0.032707 1.550633 0.1186 C(6) 0.051155 0.032971 1.551508 0.1208 Variance Equation Coefficients C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(8) 2.59E-06 4.30E-07 6.023478 0.0000 C(10) 0.085129 0.009154 9.29206 0.0000 C(11) 0.070491 0.006637 10.62069 0.0000 C(11) 0.071826 0.006475 11.44652 0.0000 C(13) 0.875036 0.011916 73.43661 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(14) 0.896812 0.008458 106.0336 0.0000 C(14) 0.896812 0.008458 106.0336 0.00002 Auglusted R-squared 0.012607 Mea	C(2)	0.053152	0.022132	2.401647	0.0163		
C(4) 0.101199 0.036892 2.743095 0.0061 C(6) 0.051155 0.032707 1.560633 0.1186 C(6) 0.051155 0.032971 1.551508 0.1208 Variance Equation Coefficients C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(8) 2.59E-06 4.30E-07 6.023478 0.0000 C(10) 0.085129 0.009154 9.299206 0.0000 C(11) 0.070491 0.006637 10.62069 0.0000 C(12) 0.071826 0.006275 11.44652 0.0000 C(14) 0.886463 0.010657 83.36808 0.0000 C(14) 0.886463 0.010657 83.36808 0.0000 C(14) 0.886463 0.010657 83.36808 0.0000 Log likelihood 11337.27 Schwarz criterion -13.17924 Avg.iog likelihood 3.31118 Hanan-Quinn criter. -13.20299 Akaike info criterion -13.22695 <t< td=""><td>C(3)</td><td>0.017587</td><td>0.021492</td><td>0.818318</td><td>0.4132</td></t<>	C(3)	0.017587	0.021492	0.818318	0.4132		
C(5) 0.051165 0.032707 1.561508 0.1208 Variance Equation Coefficients C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(8) 2.59E-06 7.48E-07 7.894109 0.0000 C(9) 5.91E-06 7.44E-07 7.894109 0.0000 C(10) 0.065129 0.006275 11.44652 0.0000 C(11) 0.070491 0.006537 10.62069 0.0000 C(12) 0.071826 0.006275 11.44652 0.0000 C(13) 0.875036 0.011916 73.43661 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(14) 0.888463 0.008458 10.0336 0.00023 Availabed R-squared 0.012807 Mean dependent var 0.000243 Adjusted R-squared 0.012807 Mean dependent var 0.000773 Ausike info criterion -13.20929 Ausike Rec(1)*DLPX(-1) + C(2)*DLPX(-2) + C(6)*DLPX(-3) <t< td=""><td>C(4)</td><td>0.101199</td><td>0.036892</td><td>2.743095</td><td>0.0061</td></t<>	C(4)	0.101199	0.036892	2.743095	0.0061		
C(6) 0.051155 0.0329/1 1.551508 0.1208 Variance Equation Coefficients C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(8) 2.59E-06 4.30E-07 6.023478 0.0000 C(9) 5.91E-06 7.48E-07 7.894109 0.0000 C(10) 0.085129 0.009154 9.299206 0.0000 C(11) 0.070491 0.066375 11.44652 0.0000 C(12) 0.071826 0.008458 106.0336 0.0000 C(14) 0.886463 0.010657 83.36808 0.0000 C(14) 0.886463 0.010657 83.36808 0.0000 Log likelihood 11337.27 Schwarz criterion -13.17924 Avg. log likelihood 3.31118 Hanan-Quinn criter. -13.20292 Akaike info criterion -13.22695 0.000243 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) R-squared 0.012607 Mean dependent var 0.00017673	C(5)	0.051044	0.032707	1.560633	0.1186		
Variance Equation Coefficients C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(8) 2.59E-06 4.30E-07 6.023478 0.0000 C(9) 5.91E-06 7.48E-07 7.894109 0.0000 C(10) 0.085129 0.009154 9.299206 0.0000 C(11) 0.070491 0.066637 10.62069 0.0000 C(12) 0.071826 0.010657 81.34662 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(14) 0.886412 0.008458 106.0336 0.0000 Log likelihood 11337.27 Schwarz criterion -13.17924 Avg. log likelihood 3.31118 Hannan-Quinn criter. -13.20292 Akaike info criterion -13.22695 0.000243 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) R-squared 0.012807 Mean dependent var 0.0000730 S.E. of regression 0.009730 S.D dependent var <	C(6)	0.051155	0.032971	1.551508	0.1208		
C(7) 2.43E-06 3.90E-07 6.231859 0.0000 C(8) 2.59E-06 4.30E-07 6.023478 0.0000 C(9) 5.91E-06 7.48E-07 7.894109 0.0000 C(10) 0.085129 0.09154 9.299206 0.0000 C(11) 0.07491 0.066275 11.44652 0.0000 C(12) 0.071826 0.008458 106.0336 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(15) 0.896812 0.008458 106.0336 0.0000 C(15) 0.896812 0.008458 106.0336 0.0000243 Avg. log likelihood 3.31118 Hannan-Quinn criter. -13.20929 Akaike info criterion -13.22695 -13.20929 -13.20929 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) -13.17924 -13.20929 Adjusted R-squared 0.012807 Mean dependent var 0.009780 S.E. of regression 0.012807 Mean dependent var 0.015639 S.E.		Variance Equation	on Coefficients				
C(8) 2.59E-06 4.30E-07 6.023478 0.0000 C(9) 5.91E-06 7.48E-07 7.894109 0.0000 C(10) 0.085129 0.009154 9.299206 0.0000 C(11) 0.07491 0.006637 10.62069 0.0000 C(12) 0.071826 0.006275 11.44652 0.0000 C(13) 0.875036 0.011916 73.43661 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 Log likelihood 11337.27 Schwarz criterion -13.17924 Avg. log likelihood 3.31118 Hannan-Quinn criter. -13.20929 Akaike info criterion -13.22695 -13.22695 -13.22695 Equation: DLX= C(1)*DLX(-1) + C(2)*DLX(-2) + C(3)*DLPX(-3) - - R-squared 0.012807 Mean dependent var 0.00077 Adjusted R-squared 0.01	C(7)	2.43E-06	3.90E-07	6.231859	0.0000		
C(9) 5.91E-06 7.48E-07 7.894109 0.0000 C(10) 0.085129 0.009154 9.299206 0.0000 C(11) 0.070491 0.006637 10.62069 0.0000 C(12) 0.071826 0.006275 11.44652 0.0000 C(13) 0.875036 0.011916 73.43661 0.0000 C(14) 0.88463 0.010657 83.36808 0.0000 Log likelihood 11337.27 Schwarz criterion -13.17924 Avg. log likelihood 3.31118 Hannan-Quinn criter. -13.2029 Akaike info criterion -13.22695 -13.2029 -13.2029 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) -13.17924 Adjusted R-squared 0.017652 S.D. dependent var 0.009780 S.E. of regression 0.009723 Sum squared resid 0.1161569 Durbin-Watson stat 1.962439 Equation: DLKB = C(4)*DLPX(-1) + C(5)*DLPX(-2) + C(6)*DLPX(-3)	C(8)	2.59E-06	4.30E-07	6.023478	0.0000		
C(10) 0.085129 0.009154 9.299206 0.0000 C(11) 0.070491 0.006637 10.62069 0.0000 C(12) 0.071826 0.006275 11.44652 0.0000 C(13) 0.875036 0.011916 73.43661 0.0000 C(14) 0.88463 0.010657 83.36608 0.0000 C(15) 0.896812 0.008458 106.0336 0.0000 Log likelihood 11337.27 Schwarz criterion -13.17924 Avg. log likelihood 3.31118 Hannan-Quinn criter. -13.20929 Akaike info criterion -13.22695 -13.20929 -13.20929 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) -13.20929 -13.20929 Adjusted R-squared 0.012807 Mean dependent var 0.000243 Adjusted R-squared 0.01652 S.D. dependent var 0.000177 Adjusted R-squared 0.014662 Mean dependent var 0.0105639 S.E. of regression 0.015533 Sum squared resid 0.412361 Durbin-Watso	C(9)	5.91E-06	7.48E-07	7.894109	0.0000		
C(11) 0.070491 0.006637 10.62069 0.0000 C(12) 0.071826 0.006275 11.44652 0.0000 C(13) 0.875036 0.011916 73.43661 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 C(15) 0.896812 0.008458 106.0336 0.0000 Log likelihood 11337.27 Schwarz criterion -13.17924 Avg. log likelihood 3.311118 Hannan-Quinn criter. -13.20929 Akaike info criterion -13.22695 -13.20929 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) - R-squared 0.012807 Mean dependent var 0.000243 Adjusted R-squared 0.011652 S.D. dependent var 0.000733 Equation: DLKB = C(4)*DLPX(-1) + C(5)*DLPX(-2) + C(6)*DLPX(-3) - - R-squared 0.014662 Mean dependent var 0.001673 Adjusted R-squared 0.014553 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 - - <	C(10)	0.085129	0.009154	9.299206	0.0000		
C(12) 0.071826 0.002275 11.44652 0.0000 C(13) 0.875036 0.011916 73.43661 0.0000 C(14) 0.888463 0.010657 83.38608 0.0000 C(15) 0.896812 0.008458 106.0336 0.0000 Log likelihood 11337.27 Schwarz criterion -13.17924 Avg. log likelihood 3.311118 Hannan-Quinn criter. -13.20929 Akaike info criterion -13.22695 -13.20929 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) -0.000780 R-squared 0.011862 S.D. dependent var 0.009780 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.962439 -0.00177 Adjusted R-squared 0.014662 Mean dependent var 0.000177 Adjusted R-squared 0.014662 Mean dependent var 0.010177 Adjusted R-squared 0.0145639 S.D. dependent var 0.010177 Adjusted R-squared 0.013509 S.D. dependent var 0.001639 S.D. Ga	C(11)	0.070491	0.006637	10.62069	0.0000		
C(13) 0.875036 0.010657 83.36808 0.0000 C(14) 0.888463 0.010657 83.36808 0.0000 Log likelihood 11337.27 Schwarz criterion -13.17924 Avg. log likelihood 3.311118 Hannan-Quinn criter. -13.20929 Akaike info criterion -13.22695 -13.20929 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) -13.20929 R-squared 0.012807 Mean dependent var 0.000243 Adjusted R-squared 0.011852 S.D. dependent var 0.000780 S.E. of regression 0.009723 Sum squared resid 0.161669 Durbin-Watson stat 1.962439 -0.00177 Adjusted R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.013509 S.D. dependent var 0.016539 S.D. dependent var 0.0101673 Durbin-Watson stat 1.981112 -0.000177 Adjusted R-squared 0.014553 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 -0.000177 Adjusted R-squared <t< td=""><td>C(12)</td><td>0.071826</td><td>0.006275</td><td>11.44652</td><td>0.0000</td></t<>	C(12)	0.071826	0.006275	11.44652	0.0000		
C(14) 0.8896812 0.008458 106.0336 0.0000 C(15) 0.896812 0.008458 106.0336 0.0000 Log likelihood 11337.27 Schwarz criterion -13.17924 Avg. log likelihood 3.311118 Hannan-Quinn criter. -13.20929 Akaike info criterion -13.22695 -13.22695 -13.20929 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) -13.20929 -13.20929 R-squared 0.012807 Mean dependent var 0.000243 Adjusted R-squared 0.011652 S.D. dependent var 0.009780 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.962439 -0.000177 Adjusted R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.014662 Mean dependent var 0.0000177 Adjusted R-squared 0.014662 Mean dependent var 0.1015639 S.E. of regression 0.014652 S.D. dependent var 0.000177 Adjusted R-squared 0.412361 Durbin-Watson stat	C(13)	0.875036	0.011916	73.43661	0.0000		
C(15) 0.896812 0.000438 106.0356 0.0000 Log likelihood 11337.27 Schwarz criterion -13.17924 Avg. log likelihood 3.311118 Hannan-Quinn criter. -13.20929 Akaike info criterion -13.22695 -13.22695 -13.20929 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) -13.20929 -13.20929 R-squared 0.012807 Mean dependent var 0.000243 Adjusted R-squared 0.011652 S.D. dependent var 0.000780 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.962439 -0.000177 Equation: DLKB = C(4)*DLPX(-1) + C(5)*DLPX(-2) + C(6)*DLPX(-3) -0.000177 Adjusted R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.015533 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 -0.000177 Adjusted R-squared no.015539 0.0000 Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)* + B1.*GARCH(-1) M is an indefinite matrix B1 is an indef	C(14)	0.888463	0.010657	83.36808	0.0000		
Log likelihood 11337.27 Schwarz criterion -13.17924 Avg. log likelihood 3.311118 Hannan-Quinn criter. -13.20929 Akaike info criterion -13.22695 -13.22695 -13.20929 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) -13.20929 -13.20929 R-squared 0.012807 Mean dependent var 0.000243 Adjusted R-squared 0.011652 S.D. dependent var 0.000780 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.962439 -0.000177 Adjusted R-squared 0.013509 S.D. dependent var 0.000177 Adjusted R-squared 0.013509 S.D. dependent var 0.010173 Adjusted R-squared 0.015633 S.E. of regression 0.015533 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 - - Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)* H 1.*GARCH(-1) M is an indefinite matrix - A1 is an indefinite matrix - - - -	C(15)	0.696612	0.008458	106.0336	0.0000		
Avg. log likelihood 3.311118 Hannan-Quinn criter. -13.20929 Akaike info criterion -13.22695 -13.22695 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) 0.000243 R-squared 0.012807 Mean dependent var 0.0009780 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.962439 -0.000177 R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.013509 S.D. dependent var 0.015639 S.E. of regression 0.015533 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 - - Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1) M is an indefinite matrix A1 is an indefinite matrix - Std. Error z-Statistic Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.23478 0.0000 M(1,2) 0.97482 0.006637 10.62069 0.0000 A1(1,2) 0.070491	Log likelihood	11337.27	Schwarz criterion		-13.17924		
Akaike into criterion -13.22695 Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) R-squared 0.012807 Adjusted R-squared 0.011652 S.E. of regression 0.009723 Durbin-Watson stat 1.962439 Equation: DLKB = C(4)*DLPX(-1) + C(5)*DLPX(-2) + C(6)*DLPX(-3) R-squared 0.014662 Mean dependent var 0.000177 Adjusted R-squared 0.014662 Mean dependent var 0.000177 Adjusted R-squared 0.014662 Mean dependent var 0.000177 Adjusted R-squared 0.015533 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)* + B1.*GARCH(-1) M is an indefinite matrix X1 is an indefinite matrix B1 is an indefinite matrix X1 M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(1,1) 0.085129 0.006637 10.62	Avg. log likelihood	3.311118	Hannan-Quinn	criter.	-13.20929		
Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) R-squared 0.012807 Mean dependent var 0.000243 Adjusted R-squared 0.01652 S.D. dependent var 0.0009780 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.962439 Equation: DLKB = C(4)*DLPX(-1) + C(5)*DLPX(-2) + C(6)*DLPX(-3) R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.015639 S.D. dependent var -0.000177 Adjusted R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.015533 Sum squared resid 0.412361 Durb		-10.22000					
Equation: DLPX = C(1)*DLPX(-1) + C(2)*DLPX(-2) + C(3)*DLPX(-3) R-squared 0.012807 Mean dependent var 0.000780 Adjusted R-squared 0.011652 S.D. dependent var 0.009780 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.962439 -0.000177 R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.015509 S.D. dependent var 0.016639 S.E. of regression 0.015533 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 0.412361 Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)* + B1.*GARCH(-1) M is an indefinite matrix Transformed Variance Coefficients M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(1,2) 0.591E-06 7.48E-07 7.894109 0.0000 <td></td> <td></td> <td></td> <td></td> <td></td>							
R-squared 0.012807 Mean dependent var 0.000243 Adjusted R-squared 0.011652 S.D. dependent var 0.009780 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.962439	Equation: $DLPX = C(1)*D$	<u>LPX(-1) + C(2)*D</u>	LPX(-2) + C(3)*D	LPX(-3)			
Adjusted R-squared 0.011652 S.D. dependent var 0.009780 S.E. of regression 0.009723 Sum squared resid 0.161569 Durbin-Watson stat 1.962439 Equation: DLKB = C(4)*DLPX(-1) + C(5)*DLPX(-2) + C(6)*DLPX(-3) R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.013509 S.D. dependent var 0.015639 S.E. of regression 0.015533 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 0.412361 Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)* + B1.*GARCH(-1) M is an indefinite matrix B1 is an indefinite matrix B1 is an indefinite matrix* From transformed Variance Coefficients Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(1,2) 2.59E-06 7.48E-07 7.894109 0.0000 M(1,2) 0.07491 0.006637 10.62069 0.0000 A1(1,2) 0.07482 0.006275 11.44652 0.0000 A1(1,2) 0.888463 0.010657 <td>R-squared</td> <td>0.012807</td> <td>Mean depender</td> <td>nt var</td> <td>0.000243</td>	R-squared	0.012807	Mean depender	nt var	0.000243		
Durbin-Watson stat 1.962439 0.101309 0.101309 Equation: DLKB = C(4)*DLPX(-1) + C(5)*DLPX(-2) + C(6)*DLPX(-3) -0.000177 Adjusted R-squared 0.013509 S.D. dependent var 0.015639 S.E. of regression 0.015533 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 0.412361 Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)* + B1.*GARCH(-1) M is an indefinite matrix A1 is an indefinite matrix B1 is an indefinite matrix B1 is an indefinite matrix Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.231859 0.0000 M(1,2) 2.59E-06 7.48E-07 7.894109 0.0000 M(1,2) 0.591E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.07482 0.006637 10.62069 0.0000	S E of regression	0.011032	Sum squared resid		0.009760		
Equation: DLKB = C(4)*DLPX(-1) + C(5)*DLPX(-2) + C(6)*DLPX(-3) R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.013509 S.D. dependent var 0.015639 S.E. of regression 0.015533 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1) M is an indefinite matrix A1 is an indefinite matrix B1 is an indefinite matrix* Coefficient Std. Error z-Statistic Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(1,2) 2.59E-06 7.48E-07 7.894109 0.0000 M(1,2) 0.070491 0.006637 10.62069 0.0000 A1(1,1) 0.4875036 0.011916 73.43661 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD.	Durbin-Watson stat	1.962439	Sum Squared re	-310	0.101303		
Equation: DERX = C(4) DEPX(-1) + C(3) DEPX(-2) + C(6) DEPX(-3) R-squared 0.014662 Mean dependent var -0.000177 Adjusted R-squared 0.013509 S.D. dependent var 0.015639 S.E. of regression 0.015533 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 0.412361 Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)* + B1.*GARCH(-1) Mis an indefinite matrix B1 is an indefinite matrix B1 is an indefinite matrix* Variance Coefficients Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(1,2) 2.59E-06 7.48E-07 7.894109 0.0000 M(1,2) 0.07491 0.006637 10.62069 0.0000 A1(1,1) 0.875036 0.011916 73.43661 0.0000 A1(2,2) 0.888463 0.01657 83.36808 0.0000 B1(1,2) 0.896812 0.008458 106.0336 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 <td>Equation: $DLKB = C(4)*D$</td> <td></td> <td></td> <td></td> <td></td>	Equation: $DLKB = C(4)*D$						
Adjusted 0.014002 Weah dependent var 0.015639 Adjusted R-squared 0.015533 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 0.412361 Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1) 0.412361 M is an indefinite matrix A1 is an indefinite matrix 81 is an indefinite matrix 81 is an indefinite matrix Transformed Variance Coefficients M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(1,2) 2.59E-06 7.48E-07 7.894109 0.0000 M(1,2) 0.070491 0.006637 10.62069 0.0000 A1(1,2) 0.071826 0.006275 11.44652 0.0000 A1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(1,2) 0.896812 0.008458 106.0336 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000	Equation: DLKB = C(4) D	0 014662	Moon donordor	0.000177			
Number of regression 0.015533 Sum squared resid 0.412361 Durbin-Watson stat 1.981112 0.412361 Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1) 0.412361 M is an indefinite matrix A1 is an indefinite matrix B1 is an indefinite matrix* Transformed Variance Coefficients M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(1,2) 2.59E-06 7.48E-07 7.894109 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.888463 0.010657 83.36808 0.0000 B1(1,2) 0.896812 0.008458 106.0336 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000	Adjusted R-squared	0.014002	S D dependent var		0.000177		
Durbin-Watson stat 1.981112 0.11000 Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1) M is an indefinite matrix san indefinite matrix san indefinite matrix A1 is an indefinite matrix B1 is an indefinite matrix* san indefinite matrix san indefinite matrix M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(2,2) 5.91E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.001275 11.44652 0.0000 B1(1,2) 0.888463 0.011916 73.43661 0.0000 B1(1,2) 0.896812 0.008458 106.0336 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000	S F of regression	0.015533	Sum squared resid		0.412361		
Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1) M is an indefinite matrix A1 is an indefinite matrix B1 is an indefinite matrix* Transformed Variance Coefficients Coefficient Std. Error z-Statistic Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,1) 2.43E-06 7.894109 0.0000 M(1,1) 0.085129 0.009154 9.29206 0.0000 A1(1,1) 0.085129 0.009154 9.29206 0.0000 A1(1,2) 0.07482 0.0000 A1(1,2) 0.88463 0.010637 10.62069 0.0000 B1(1,1) 0.888463 0.008458 10.6036 0.0000 B1(1,2) <th< td=""><td>Durbin-Watson stat</td><td>1.981112</td><td>oun oquarou re</td><td>, or u</td><td>0.112001</td></th<>	Durbin-Watson stat	1.981112	oun oquarou re	, or u	0.112001		
Covariance specification: Diagonal VECH GARCH = M + A1.*RESID(-1)*RESID(-1)' + B1.*GARCH(-1) M is an indefinite matrix B1 is an indefinite matrix Transformed Variance Coefficients Coefficient Std. Error z-Statistic Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(1,2) 2.59E-06 7.48E-07 7.894109 0.0000 M(2,2) 5.91E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD.							
GARCH = M + A1."RESID(-1)" + B1."GARCH(-1) M is an indefinite matrix Statistic Transformed Variance Coefficients Coefficient Std. Error z-Statistic Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(2,2) 5.91E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.001275 11.44652 0.0000 B1(1,2) 0.888463 0.011916 73.43661 0.0000 B1(1,2) 0.896812 0.008458 106.0336 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000	Covariance specification:	Diagonal VECH					
M is an indefinite matrix B1 is an indefinite matrix Transformed Variance Coefficients Coefficient Std. Error z-Statistic Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(2,2) 5.91E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.888463 0.011916 73.43661 0.0000 B1(1,2) 0.898812 0.008458 106.0336 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD.	GARCH = M + A1.*RESIE)(-1)*RESID(-1)'	+ в1.*GARCH(-1))			
Main and the matrix B1 is an indefinite matrix* Transformed Variance Coefficients Coefficient Kl. Error z-Statistic Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(2,2) 5.91E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.8988463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD. * * * *	M is an indefinite matrix						
Transformed Variance Coefficients Coefficient Std. Error z-Statistic Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(2,2) 5.91E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.8988463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD. * * * *	A'l is an indefinite matrix						
Transformed Variance Coefficients Coefficient Std. Error z-Statistic Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(2,2) 5.91E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD. * * * *							
Coefficient Std. Error z-Statistic Prob. M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(2,2) 5.91E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD. * * * *	Transformed Variance Coefficients						
M(1,1) 2.43E-06 3.90E-07 6.231859 0.0000 M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(2,2) 5.91E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD. * * * * *		Coefficient	Std. Error	z-Statistic	Prob.		
M(1,2) 2.59E-06 4.30E-07 6.023478 0.0000 M(2,2) 5.91E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD. * * * * * *	M(1,1)	2.43E-06	3.90E-07	6.231859	0.0000		
M(2,2) 5.91E-06 7.48E-07 7.894109 0.0000 A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD. *<	M(1,2)	2.59E-06	4.30E-07	6.023478	0.0000		
A1(1,1) 0.085129 0.009154 9.299206 0.0000 A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD. *	M(2,2)	5.91E-06	7.48E-07	7.894109	0.0000		
A1(1,2) 0.070491 0.006637 10.62069 0.0000 A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD. *	A1(1,1)	0.085129	0.009154	9.299206	0.0000		
A1(2,2) 0.071826 0.006275 11.44652 0.0000 B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD. *<	A1(1,2)	0.070491	0.006637	10.62069	0.0000		
B1(1,1) 0.875036 0.011916 73.43661 0.0000 B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD. *	A1(2,2)	0.071826	0.006275	11.44652	0.0000		
B1(1,2) 0.888463 0.010657 83.36808 0.0000 B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD.	B1(1,1)	0.875036	0.011916	73.43661	0.0000		
B1(2,2) 0.896812 0.008458 106.0336 0.0000 * Coefficient matrix is not PSD.	B1(1,2)	0.888463	0.010657	83.36808	0.0000		
* Coefficient matrix is not PSD.	B1(2,2)	0.896812	0.008458	106.0336	0.0000		
	* Coefficient matrix is not	PSD.					

Obrázek 3.7: Model vech_01

System: VECH_02 Estimation Method: ARCH Maximum Likelihood (BFGS / Marquardt					
steps) Covariance specification: I Date: 07/07/23 Time: 18:	Diagonal VECH 28				
Sample: 17 1715					
Included observations: 169	99 h	,			
I otal system (balanced) of	oservations 3398	s ar =0.7)			
Convergence achieved aft	er 63 iterations	er =0.7)			
Coefficient covariance con	nputed using out	er product of grad	lients		
	Coefficient	Std. Error	z-Statistic	Prob.	
C(1)	0.043068	0.024972	1.724619	0.0846	
C(2)	0.054780	0.022355	2.450404	0.0143	
C(3)	-0.034798	0.021877	-1.590575	0.1117	
C(4)	0.105380	0.037926	2.778576	0.0055	
C(5)	0.056398	0.032576	1.731278	0.0834	
C(6)	-0.091137	0.037337	-2.440926	0.0146	
	Variance Equation	on Coefficients			
C(7)	3.18E-06	4.86E-07	6.542602	0.0000	
C(8)	3.45E-06	5.25E-07	6.569051	0.0000	
C(9)	7.23E-06	8.61E-07	8.389511	0.0000	
C(10)	0.097168	0.010328	9.408140	0.0000	
C(11)	0.080529	0.007365	10.93361	0.0000	
C(12)	0.079105	0.006696	11.81465	0.0000	
C(13)	0.850088	0.013792	61.63817	0.0000	
C(14)	0.864123	0.012023	/1.8/094	0.0000	
C(15)	0.881875	0.009197	95.88790	0.0000	
Log likelihood	11270.02	Schwarz criter	-13.20098		
Avg. log likelihood	3.316662	Hannan-Quinn criter.		-13.23122	
Akaike info criterion	-13.24899				
Equation: DLPX = C(1)*DL	_PX(-1) + C(2)*D	LPX(-2) + C(3)*D	LPX(-16)		
R-squared	0.013649	Mean dependent var		0.000270	
Adjusted R-squared	0.012486	S.D. dependent var		0.009719	
S.E. of regression	0.009658	B Sum squared resid 0.158		0.158194	
Durdin-watson stat	1.961322				
Equation: DLKB = C(4)*DI	_PX(-1) + C(5)*D	LPX(-2) + C(6)*D	LPX(-16)		
R-squared	0.016694	Mean dependent var -0.000		-0.000160	
Adjusted R-squared	0.015534	S.D. dependent var 0.015		0.015585	
S.E. of regression Durbin-Watson stat	0.015464 1 988944	4 Sum squared resid 0.405		0.405548	
Covariance specification: I	Diagonal VECH				
GARCH = M + A1.*RESID	(-1)*RESID(-1)' ·	+ B1.*GARCH(-1))		
M is an indefinite matrix					
A I is an indefinite matrix					
ы is an indéfinite matrix					
	Transformed Va	riance Coefficient	S		
	Coefficient	Std. Error	z-Statistic	Prob.	
M(1,1)	3.18E-06	4.86E-07	6.542602	0.0000	
M(1,2)	3.45E-06	5.25E-07	6.569051	0.0000	
M(2,2)	7.23E-06	8.61E-07	8.389511	0.0000	
A1(1,1)	0.097168	0.010328	9.408140	0.0000	
A1(1,2)	0.080529	0.007365	10.93361	0.0000	
A1(2,2)	0.079105	0.006696	11.81465	0.0000	
B1(1,1)	0.850088	0.013792	61.63817	0.0000	
B1(1,2)	B1(1,2) 0.864123 0.012023 71.87094 0.000				
B1(2,2)	0.881875	8750.00919795.887900.0000			

Obrázek 3.8: Model vech_02

System: VECH_03 Estimation Method: ABCH Maximum Likelihood (BEGS / Marguardt					
steps)			quarat		
Covariance specification:	Diagonal VECH				
Date: 07/07/23 Time: 18:	:29				
Sample: 16 1715	~~				
Included observations: 1/	UU haamvatiana 2400	`			
Presample covariance: ba	oservations 3400) er =0.7)			
Convergence achieved aft	ter 69 iterations	er =0.7)			
Coefficient covariance cor	nputed using out	er product of grad	lients		
		1 5			
	Coefficient	Std. Error	z-Statistic	Prob.	
C(1)	0.007415	0.013163	0.563292	0.5732	
C(2)	0.053697	0.022285	2.409529	0.0160	
C(3)	0.027787	0.022894	1.213701	0.2249	
C(4)	-0.003556	0.023811	-0.149327	0.8813	
C(5)	0.051121	0.032861	1.555648	0.1198	
C(6)	-0.001758	0.035549	-0.049448	0.9606	
	Variance Equation	on Coefficients			
C(7)	2.94E-06	4.75E-07	6.203210	0.0000	
C(8)	3.16E-06	5.10E-07	6.196347	0.0000	
C(9)	6.89E-06	8.42E-07	8.179502	0.0000	
C(10)	0.093068	0.010146	9.172758	0.0000	
C(11)	0.077483	0.007139	10.85300	0.0000	
C(12)	0.078393	0.006527	12.01067	0.0000	
C(13)	0.858210	0.013732	62.49540	0.0000	
C(14)	0.872163	0.011914	73.20328	0.0000	
C(15)	0.884957	0.009045	97.83471	0.0000	
Log likelihood	11272.57	Schwarz criterion		-13.19622	
Avg. log likelihood	3.315462	Hannan-Quinn	criter.	-13.22644	
	-10.24420				
Equation: $DLPX = C(1)^{*}DI$	$LKB(-7) + C(2)^{-}D$	$LPX(-2) + C(3)^{D}$	LPX(-15)	0.00070	
Adjusted P squared	0.012641	S D dependent	it var	0.000272	
S E of regression	0.0011477	Sum squared resid		0.009710	
Durbin-Watson stat	1.882038	oun oqualou re		0.100000	
Equation: $DLKR = C(4)*DL$			I DV(15)		
R-squared	0.003456	Mean dependent var		-0 000164	
Adjusted R-squared	0.000400	S D dependent var		0.015581	
S.E. of regression	0.015563	Sum squared resid		0.411046	
Durbin-Watson stat	1.888166				
Covariance specification:	Diagonal VECH				
GARCH = M + A1.*RESID	J(-1)^RESID(-1)'	+ B1.^GARCH(-1))		
M IS an indefinite matrix					
B1 is an indefinite matrix*					
	Transfer				
	I ransformed Va	riance Coefficients	5		
	Coefficient	Std. Error	z-Statistic	Prob.	
M(1,1)	2.94E-06	4.75E-07	6.203210	0.0000	
M(1,2)	3.16E-06	5.10E-07	6.196347	0.0000	
M(2,2)	6.89E-06	8.42E-07	8.179502	0.0000	
A1(1,1)	0.093068	0.010146	9.172758	0.0000	
A1(1,2)	0.077483	0.007139	10.85300	0.0000	
A1(2,2)	0.078393	0.006527	12.01067	0.0000	
B1(1,1)	0.858210	0.013732	02.49540	0.0000	
B1(1,2)	0.0/2103	0.011914	13.20328	0.0000	
ט ו(2,2)	0.004937	0.009040	31.0041 I	0.0000	
* Coefficient matrix is not	PSD.				

Obrázek 3.9: Model vech_03

Závěr

V této práci jsme představili modelování volatility použitím mnohorozměrného modelu GARCH. Nejprve jsme definovali jednorozměrný model ARCH a jednorozměrný model GARCH. Uvedli jsme definici stacionarity a podmínku kovarianční stacionarity modelu GARCH.

Definici jednorozměrného modelu GARCH jsme rozšířili na mnohorozměrný model GARCH a zabývali jsme se vlastnostmi podmíněné varianční matice H_t . Uvedli jsme parametrizace H_t , z nichž jsme dostali reprezentace vech, BEKK a vec modelu GARCH. Pro reprezentace vech a BEKK jsme uvedli obecnou a diagonální variantu a porovnávali jsme počty jejich parametrů. Dále jsme se věnovali vztahům mezi parametrizacemi, konkrétně vyjádření parametrů reprezentace vech pomocí parametrů reprezentace BEKK a podmínkám ekvivalence reprezentace BEKK a reprezentace vec. Následně jsme se zabývali kovarianční stacionaritou mnohorozměrného modelu GARCH. Uvedli jsme nutnou a postačující podmínku kovarianční stacionarity pro všechny výše zmíněné reprezentace. Také jsme pojednali o odhadování parametrů mnohorozměrného modelu GARCH metodou maximální věrohodnosti.

Diagonální model GARCH s parametrizací BEKK a diagonální model GARCH s parametrizací vech jsme aplikovali na časové řady reálných dat. Časové řady vývoje ceny akcie Komerční banky a indexu PX jsme převedli na časové řady logaritmických výnosových měr. Pro tyto řady jsme odhadli rovnice podmíněných středních hodnot a následně jsme pro parametrizaci BEKK i parametrizaci vech odhadli rovnici podmíněného rozptylu. Posuzované modely s různě volenou rovnicí podmíněné střední hodnoty se jevily jako kvalitativně srovnatelné. Tímto se nám podařilo mnohorozměrně modelovat volatilitu.

Seznam použité literatury

- BOLLERSLEV, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307–327.
- BURZA CENNÝCH PAPÍRŮ PRAHA, A. S. (2023). PX. Burza cenných papírů Praha. URL https://www.pse.cz/indexy/hodnoty-indexu/detail/ XC0009698371?tab=detail-composition.
- BWIRE, T. (2019). Modelling and Forecasting Volatility in Financial Markets Using E-Views. *COMESA Monetary Institute*.
- CIPRA, T. (2008). *Finanční ekonometrie*. První vydání. Ekopress, Praha. ISBN 978-80-86929-43-9.
- ENGLE, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. *Econometrica*, **50**(4), 987–1007.
- ENGLE, R. F. a KRONER, K. F. (1995). Multivariate Simultaneous Generalized ARCH. *Econometric Theory*, **11**(1), 122–150.
- ERTEN, I., TUNCEL, M. B. a OKAY, N. (2012). Volatility Spillovers in Emerging Markets During the Global Financial Crisis: Diagonal BEKK Approach. *Bogazici University.*
- KOMERČNÍ BANKA, A. S. (2023). Akcie KB. Komerční banka. URL https:// www.kb.cz/cs/o-bance/pro-investory/akcionari-akcie-a-dividendy/ akcie-kb.
- RAO, C. R. (1978). Lineární metody statistické indukce a jejich aplikace. První vydání. Academia, Praha.
- ROSSI, E. (2004). Lecture Notes on GARCH Models. University of Pavia.