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Abstract: This work considers a fundamental open problem in informatics - dis-
tinguishing two words by a deterministic finite automaton with the smallest pos-
sible number of states. We review the existing research, where proven lower and
upper bounds in terms of words’ lengths differ exponentially. Next, we empiri-
cally try two approaches not studied previously: analysis of discerning sets and
application of randomly generated automata. We show that the first approach
does not help improve the bounds for the main problem, while the random au-
tomata could be successful for randomly taken word pairs but not for all of them.
A combination of a randomly generated automaton with the best performing al-
ready known, though, may decrease an average number of states by several orders
of magnitude. We propose several topics for further investigation based on the
obtained experimental results.
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Introduction
One can be surprised by the apparent simplicity of some problems in the infor-
matics world, which are still open. Take possibly the simplest one - what are the
minimum needed resources to determine if two strings are identical? Considering
a computational model of the deterministic finite automaton, the problem was
stated in the 1980s and is still open nowadays, while some bounds were obtained
in various studies.

The choice of formalism acknowledges the fact that deterministic finite au-
tomata is an important and extensively used concept in the computer science
field. Automata are used to study the behavior of simple machines with finite
memory under mathematical formalism. Their model captures the essential com-
putation features, such as input, output, memory, states, and transitions between
them. Although it is an abstract concept, automata may be (and often are) imple-
mented in hardware or software to solve some specific problems, such as pattern
matching or lexical analysis. They are used in compilers, artificial intelligence,
robotics, and many more fields. Besides their practical use, they are also utilized
to theoretically model and analyze the behavior of various discrete systems.

The question addressed in this work is very simple: given two words, what
is the minimum size of a deterministic finite automaton that accepts one and
rejects the other, thus allowing us to say that those words are different? This
formulation is quite original, as we are interested only in distinguishing two given
words – automaton’s behavior for any other input is not essential. Moreover, the
input is known in advance so that we may tailor the automaton to those exact
words. The main goal is to provide some bounds for the number of automaton’s
states depending on the input lengths. Such a significant component as discerning
two inputs should not be a restrictive part of any research, so it is important to
minimize the considered problem. The examined area is connected, for example,
to the topics of data compression [Johnson, 1986] and distinguishing Kolmogorov
complexity [Allender et al., 2003].

The research was started at Charles University by Goralč́ık and Koubek [1986],
though authors acknowledged that the question was suggested to them by Chris-
tian Choffrut. Later on, Robson [1989] and Chase [2021] gradually improved the
suggested upper bound, and Demaine et al. [2011] examined the lower bound for
the problem. Obtained bounds, however, are still exponentially far from each
other, with the lower being Ω(log n) and the upper O( 3

√
n), where n is the max-

imum length of the input words. We should also mention Wiedermann [2016],
who proposed a significantly different approach to the studied problem, which we
describe later.

This thesis discusses existing approaches and presents tools that may help
further research. The remainder of this work is organized as follows. We introduce
needed preliminaries in Chapter 1, formulate the problem and discuss special cases
in Chapter 2, and present related work with proven bounds for the problem in
Chapter 3. Then we discuss our experimental results considering the problem.

In Chapter 4, we further develop the ideas of Wiedermann [2016] using a
conversion of studied automata to so-called discerning sets. Although we prove
that the presented approach is too weak to improve the upper bound for the
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studied problem, we are convinced that the presented concept and experimental
results deserve further research, possibly not in relation to this thesis’s subject.

In Chapter 5, we examine the behavior of randomly generated automata with
respect to the given topic. We compare the performance of different automata
constructions and define a specific subclass of random automata whose elements
of constant size perform well on average on randomly generated words without
the need to tailor the automaton to a specific input. This allows us to reduce the
average needed automaton’s size by several orders of magnitude using two simple
steps. First, we randomly generate an automaton that will distinguish between
the words with a high probability. If it does not declare the words different,
we proceed with the deterministic approach according to the best results on the
subject to date. Though this approach differs from the problem formulation, it
may be successfully used in practice.

Finally, we summarize the results of this work and propose several topics for
further research in the Conclusion.
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1. Preliminaries
In this chapter, we briefly describe the concept of automata for readers who
are not entirely familiar with it. Although presented facts may be considered
common knowledge, we base our presentation on the book ”Introduction to Au-
tomata Theory, Languages, and Computation” by Hopcroft, Motwani, and Ull-
man [2001]. We start with some basic terminology in Section 1.1, continue with
several definitions of deterministic finite automaton in Section 1.2, define a couple
of operations over automata in Section 1.3 and finish with defining some specific
automata types in Section 1.4.

1.1 Basic definitions
Definition 1 (Alphabet). An alphabet Σ is a non-empty finite set of symbols.
Unary alphabet is an alphabet containing one symbol, binary alphabet is a term
used for Σ = {0, 1}.

Definition 2 (Word). A word w ∈ Σ∗ is a finite sequence of symbols from the
alphabet Σ. |w| denotes the length of the word w ∈ Σ∗. Word of zero length is
usually denoted as ε. wi denotes the i-th symbol of the word w (counting from
1) and wa...b the slice of the word w from the index a (including) to the index b
(excluding). w−1 is the last symbol of the word.

Definition 3 (Words concatenation). We denote the concatenation of words u
and v by u · v.

Remark. In the whole text of this work, log denotes a natural logarithm. Most
studies on the topic omit the base of the used logarithms, as it is not essential
as long as only the asymptotic complexity of the problem is considered. As we
will see in the following text, most of the obtained results in the related work
follow from one crucial lemma, which we present in the next section (see Lemma
21). We see that whenever O(log n) result is obtained using this lemma, the
actual bound is 4 ln n. We want to present the most precise bounds and avoid
asymptotic notation where possible to show that there is no big hidden constant
in the obtained complexity. However, we want the text to be consistent with the
rest of the studies, so we use log instead of ln.

1.2 Deterministic finite automata
In this section, we recall the most essential definition of this work: a determin-
istic finite automaton. Automaton is an abstract computational model which
simulates input processing by a system with a limited number of states, where
only some information can be remembered. The output of the processing is the
state where the system ends after reading the whole input, or, even more simply,
a boolean value determining whether or not the input meets some requirements
which we are testing.

Let us start with a simple example of an automaton answering the question
of whether the number of ones in a given binary input is divisible by 3. In Figure
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1.11 we see an automaton with three states q0, q1 and q2, the automaton starts in
the state q0 (denoted by the input arrow without any symbol). Then, if the first
symbol of the input is 1, the automaton moves to the state q1; otherwise (if the
input symbol is 0), it remains in q0. Then, the following input symbol is read, and
the process continues until we reach the end of the input. The process of moving
to another state is always determined by a symbol that is read and guided by the
arrow with the corresponding symbol on it. It is easy to see that, after reading
the whole input, the automaton will be in q0 if and only if the number of 1’s in
the input is divisible by 3. That is why q0 is also marked as an accepting state
(denoted by a double circle around the state). Words finishing in the accepting
state q0 are accepted by this automaton; all others are rejected. Thus, we claim
that this automaton accepts the words with the number of 1’s divisible by 3, and
only them.

q0 q1 q2

0

1

0

1

0

1

Figure 1.1: Example of an automaton testing if the number of 1’s in the input is
divisible by 3.

States of the automaton maintain some information about the input read so
far. In the preceding example, this information is the remainder of the number of
1’s in the input modulo 3. In the example, we asked a true/false question: whether
this remainder is zero. However, we may also be interested in a question about
what this remainder actually is. Then, it is natural to look at the automaton
as a function that outputs the final state for a given input. We may classify all
existing words according to the final state: ones that finish in q0 have the number
of 1’s divisible by 3, ones in q1 are those where the number of 1’s has a remainder
1 modulo 3, and in q2 are the ones with the number of 1’s having a remainder 2
modulo 3.

As we will be interested in finding an automaton that, for the given two words
u and v, accepts one and rejects the other, it is natural to see the automaton M
as a function M(w) : Σ∗ → Q giving the final state for each word and ask whether
M(u) = M(v), omitting the definition of accepting states. First, we will give a
classical definition of a deterministic finite automaton for the sake of clarity (see
Definition 4), then we will tailor it for our purposes (see Definition 6).

Definition 4 (Deterministic finite automaton). A deterministic finite automaton
(DFA) M = (Q, Σ, δ, q0, F ) is a 5-element tuple, where

• Q is a finite set of states,

• Σ is an input alphabet,
1Automata diagrams in this thesis are generated using tikz package as described in [Sikdar,

2017]
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• δ : Q × Σ → Q is a transition function which for every state q ∈ Q and
input symbol a ∈ Σ gives a state δ(q, a) in which automaton gets after
reading symbol a while being in the state q,

• q0 is a starting state where the automaton begins the word’s processing,

• F is a set of accepting states, F ⊆ Q.

We define a size of automaton |M | as the number of its states |Q|.

The word deterministic in the definition refers to the fact that for every input
symbol and every state, exactly one transition is defined (in contrast with NFA
- nondeterministic finite automaton). Finite means that we work with a finite
number of states in the system.

Definition 5 (Extended transition function). For a given transition function
δ : Q × Σ → Q of an automaton M = (Q, Σ, δ, q0, F ), we define the extended
transition function δ̂ : Q × Σ∗ → Q so that δ̂(q, w) determines where the automa-
ton M will finish after reading w ∈ Σ∗ starting in q ∈ Q. We define its value
recursively as follows.

δ̂(q, w) =
⎧⎨⎩q, if w = ε,

δ̂(q′, w2...|w|), where q′ = δ(q, w1), otherwise.

Definition 6 (DFA as a function). A deterministic finite automaton M is a
function Σ∗ → Q defined as a 4-element tuple (Q, Σ, δ, q0), where

• Q is a finite set of states,

• Σ is an input alphabet,

• δ : Q × Σ → Q is a transition function which for every state q ∈ Q and
input symbol a ∈ Σ gives a state δ(q, a) in which automaton gets after
reading symbol a being in the state q,

• q0 is a starting state where the automaton begins the word’s processing.

We define M(w) as a final state after the automaton M reads the word w ∈ Σ∗.
It holds that M(w) = δ̂(q0, w).

Definition 7. We say that automaton M distinguishes the words u, v ∈ Σ∗ if
M(u) ̸= M(v).

What happens if we change the starting state of the automaton? Processing
of the words will be different, and we may or may not end up in a different state.
In the example in Figure 1.1, if we start processing the word in q1 instead of q0,
words with the number of 1’s divisible by 3 will end in q1 instead of q0. Naturally,
if we want to distinguish two words by a given automaton, it is sufficient that at
least one ending state will be different for them if we try all the starting states
(clearly, in each trial, we are starting in the same state for both words). Thus,
we can furthermore simplify the definition of DFA by omitting the starting state
and defining the output for each word as a tuple of final states for each starting
state.
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Definition 8 (Simplified DFA). A simlified deterministic finite automaton M̂ is
a function Σ∗ → Q|Q| defined as a triple (Q, Σ, δ), where

• Q is a finite set of states,

• Σ is an input alphabet,

• δ : Q × Σ → Q is a transition function which for every state q ∈ Q and
input symbol a ∈ Σ gives a state δ(q, a) in which automaton gets after
reading symbol a being in the state q,

M̂(w) =
(︂
Mq(w)

)︂
q∈Q

,

where Mq(w) is the output of an automaton Mq = (Q, Σ, δ, q) defined as above.

Definition 9. We say that a simplified DFA M̂ distinguishes the words u, v ∈ Σ∗

if M̂(u) ̸= M̂(v) (i.e., the tuples corresponding to both words differ in at least
one element).

Definition 10 (Automaton size). We define the size of a (simplified) DFA M =
(Q, . . . ) as the number of its states. We denote it by |M | = |Q|.

1.3 Automata operations
There are multiple ways to combine two automata into one. The choice of a
particular method depends on the desired behavior of the resulting automata.
In this section, we define a concatenation of two automata, which will be useful
in further chapters. We define it for a classic automata definition, where the
automaton is a quintuple with a set of accepting states. If the input automata
are defined as a function, i.e., as a quadruple without the accepting states, the
accepting states of the resulting automaton can be trivially omitted.

Concatenation of the two automata produces an automaton that starts with
simulating the work of the first given automaton and then switches to the second
one when the first automaton has nothing left to do (we define this as the first
automaton getting to the terminal state, from which he cannot exit, i.e., all
transitions from this state lead to the same state).

Definition 11 (Terminal state). State t ∈ Q is called terminal in an automaton
M = (Q, Σ, δ, q0, F ) if δ(t, a) = t for any a ∈ Σ. Usually, terminal states are also
the accepting ones.

Definition 12 (Automata concatenation). Given two automata M1 and M2,
where M1 = (Q1, Σ, δ1, q1

0, F1), M2 = (Q2, Σ, δ2, q2
0, F2), Q1 ∩ Q2 = ∅ and M1

contains exactly one terminal state f ∈ Q1, we define their concatenation as an
automaton M1 ◦M2 = M = (Q1 ∪Q2\{q2

0}, Σ, δ, q1
0, F2), where transition function

δ is defined as follows.

δ(q, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
δ1(q, a), if q ∈ Q1\{f},

δ2(q2
0, a), if q = f,

f, if q ∈ Q2 and δ2(q, a) = q2
0,

δ2(q, a), otherwise.
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1.4 Automata types
In this section, we define a permutation automaton, which is mentioned plenty
of times in this thesis as well as in the related work. Furthermore, we define
random automata, to whom Chapter 5 is dedicated.

Definition 13 (Permutation automaton). An automaton M = (Q, Σ, δ, q0) is a
permutation automaton if all partial transition functions δa(q) = δ(q, a) form a
permutation of the states Q. Equivalently, the definition states that every state
q ∈ Q has exactly one input arrow with each symbol. I.e., if we define I(q, a) =
{q′ ∈ Q | δ(q′, a) = q}, |I(q, a)| = 1 for each q ∈ Q, a ∈ Σ.

In literature, one can encounter different names for the same concept. A
permutation automaton is also often called reversible [Pin, 1992] or injective [Hall,
1984].

Definition 14 (Random automaton). We define a construction of a random
automaton M = (Q, Σ, δ, q0), where Q, Σ and q0 are given, in a way that for
every q ∈ Q and s ∈ Σ, we choose a value for δ(q, s) uniformly at random from
Q.

We want to point out that one can often find a slightly different definition
of this term in various sources: random automaton of size n is a DFA taken
uniformly at random from the collection of all n|Σ|n deterministic finite automata
of size n over alphabet Σ [Nicaud, 2014, Chapuy and Perarnau, 2023]. This
definition is similar to ours, as by the described construction, we obtain one of
those automata, each one with the same probability.

Finally, we present a combination of two definitions above - a random permu-
tation automaton.

Definition 15. We define a construction of a random permutation automaton
M = (Q, {0, 1}, δ, q0), where Q and q0 are given, in a way that we choose two
permutations π0, π1 of the set of states Q uniformly at random and assign δ(q, 0) =
π0(q) and δ(q, 1) = π1(q). It is clear that this construction yields a permutation
automaton as introduced in Definition 13.

Now we have all we need to proceed with the definition of this thesis’s main
problem in the next chapter.
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2. Problem statement
In this chapter, we formulate the main problem of this thesis and discuss some
special, easily solvable cases. We define a precise formulation in Section 2.1,
discuss several dual problems in Section 2.2, present the solutions for some trivial
cases in Section 2.3, and discuss what is remaining besides those in Section 2.4.

2.1 Formulation
Let us now formulate the problem this thesis is all about. As mentioned earlier,
our goal is to distinguish between two words using the smallest possible automata.
Given two words u, v of limited length, we are looking for an automaton that will
distinguish between them in terms of accepting one and rejecting the other (or,
equivalently, finishing in the different states after reading those words). We want
this automaton to have as few states as possible. We stick to the definitions as
presented in [Goralč́ık and Koubek, 1986].

Definition 16 (Discernibility). Let u, v ∈ Σ∗ be distinct words over finite alphabet
Σ. We say that u and v are d-discernible if there exists an automaton with d states
which accepts u and rejects v.

Definition 17. Let u, v ∈ Σ∗ be again distinct words over finite alphabet Σ. We
say that D(u, v) = d if u and v are d-discernible, and u and v are not d′-discernible
for any d′ < d .

Definition 18 (Worst-case discernibility function). We define a function f(n),
so-called worst-case discernibility function, as a minimum value for each n ∈ N
such that D(u, v) ≤ f(n) for any two distinct words u, v such that |u|, |v| ≤ n.

In Section 2.3.3, we will see that f(n) does not depend on a specific alphabet
Σ or its size as long as it contains more than one symbol. It is also easy to see
that f(n) ≤ n + 1, as one can trivially construct an automaton with n + 1 states
which accepts the given word of length n and only that. While there exist proven
lower and upper bounds for f(n), they are asymptotically far from each other
and should be improved. We discuss them in Chapter 3. It is believed that f(n)
actually behaves logarithmically, which corresponds to the proven lower bound,
while the proven upper bound nowadays is as far as O( 3

√
n).

Conjecture 19 (Discerning problem).

f(n) ∈ Θ(log n)

This thesis aims to examine f(n) behavior: present existing proofs, study
some special cases, and experiment with approaches not studied before.

2.2 Dual problem
There are several possibilities to reverse the discerning problem, which we briefly
describe in this section.

11



2.2.1 Discernible automata
First, a natural inversion of the studied question can be stated as follows. Given
the two automata M1 and M2, what is the shortest word distinguishing between
them (i.e., one automaton accepts the word, and another one rejects it)? This
question arose very early in the studies of the automata theory and is solved
routinely by construction and automata minimization techniques with a tight
bound for the word length to be ≤ |M1| + |M2| − 2 [Shallit, 2009, Theorems
3.10.5 and 3.10.6].

The relationship of this question to the main problem of this thesis is unclear,
but it presents an interesting insight into a related problem.

2.2.2 Indiscernible words
The second possible dual question is, given an automaton M , to find two words
that it can not distinguish. It makes sense to generalize this approach and con-
sider a simplified DFA M̂ instead of a normal one. Thus, we are looking for such
words u, v that M̂(u) = M̂(v). This is clearly a stronger question than words
non-distinguishable by a classic 5-tuple DFA, as we are not restricted by a start-
ing state, and a given automaton should not distinguish the words regardless of
the state it starts in. This problem statement was not studied as it is, as far as
we are concerned. However, there is an area whose results are useful in answering
the question - synchronizing words.

Definition 20. The word w is called synchronizing for a simplified DFA M̂ if
vector M̂(w) is constant (i.e., contains one and only state).

That is to say, if any word contains a synchronizing word as a suffix, the
final state after reading it is uniquely determined and does not depend on the
starting one. Thus, if we have a synchronizing word for a given automaton,
we can construct a pair of words it can not distinguish by adding any prefixes
to a synchronizing one. However, the question of synchronizing words remains
unsolved in general: first, not every DFA has such a word (e.g., the example
automaton from Figure 1.1 clearly does not have one), and second, the bound for
the word length is not proven. There exists an automaton that has the shortest
synchronizing word of length (|M |−1)2, which is also an upper bound conjectured
by Černy [1964], but the proven upper bound is O(n3)[Shitov, 2019]. Thus, the
length of a synchronizing word is (if exists) at least quadratic in terms of the
number of automaton states.

But are those considerations applicable to the primal problem? If we are able
to find the word of a given length, which will be synchronizing for a lot of small
automata, then it will be harder to provide a discerning automaton of a small size,
as any inputs containing the word as a suffix will be indistinguishable. However,
it is not clear if words that are synchronizing for some automata possess some
unique qualities. I.e., even with a sufficiently large word, it is hard to say if it will
be synchronizing for some automaton. Moreover, a synchronizing word is clearly
doing much more than we need to ensure that two words are indistinguishable.
For those reasons, this approach is not applicable to the main problem of this
thesis.

12



Another way to look at this question is to count all possible values of a map-
ping M̂(u). Clearly, if M̂ represents an automaton with m states, there are mm

possible values for M̂(u). Let us assume that we are working with words from
the binary alphabet. Then, there are 2n+1 − 1 words of length up to n, thus,
if 2n+1 − 1 > mm, there necessarily exists a pair of words indistinguishable by
M̂ . Omitting negligible 1’s, we have that n ≥ m log2 m. That is to say, for any
simplified automaton of size m, there necessarily exists a pair of indistinguishable
words of length m log2 m, which is less than quadratic and thus gives a stronger
result than with synchronizing words. Gimadeev and Vyalyi [2010] show that
for a permutation automaton (see Definition 13), this bound can be stated as
n ≥

√
m log m, i.e., for a simplified permutation automaton of size m there nec-

essarily exists an indistinguishable pair of words of length
√

m log m. This bound
is more powerful than the previous one, as the length of the words is smaller than
the number of automaton’s states.

This problem can be related to the main one in terms of the existence of
an automaton distinguishing between all the words of a given length. If we fix
the word length n, presented results give us a lower bound of the size of such
an automaton - if an automaton is too small with respect to the length of the
word, it would not be capable of distinguishing between all the words due to
the limited number of states it has. However, it turns out that already obtained
results for the main problem (m ∈ O( 3

√
n), see Chapter 3) are stronger than any

of the suggested bounds. Thus, we may surely say that there does not exist a
sufficiently small automaton distinguishing between all the words of length up to
n simultaneously, and the solution to the main problem should be tailored to the
two input words.

2.3 Trivial cases
This section describes several special cases where estimating bounds for f(n) is
easy or can be reduced to a simpler problem. All presented lemmas are rather
trivial and could be found in more or less every work considering this subject,
containing different levels of details in proofs. Thus, we collect and present them
with our own proofs, citing specific sources only in non-obvious parts. In all the
examined cases, it is possible to prove that f(n) ∈ O(log n) or even f(n) ∈ O(1).
We show, however, that those special cases, although presenting interesting ideas,
cover only an insignificant part of all examined words. Thus, the main part of
the problem remains unsolved. In Chapter 3, we will see that, in general, f(n) ∈
Ω(log n). We start with a helpful lemma about the existence of a separating
modulo, which we formulate in two slightly different ways to utilize whichever is
better suitable for the situation.

Lemma 21. For given a, b, n ∈ N, a, b ≤ n, a ̸= b there exists m ∈ N such that
a ̸≡ b mod m and m < 4 log n.

Proof. Without loss of generality, we assume that a > b. Let p1, . . . , pk denote
first k prime numbers. Choose k so that ∏︁k−1

i=1 pi ≤ a <
∏︁k

i=1 pi.
First, we prove by contradiction that there exists 1 ≤ i ≤ k such that a ̸≡ b

mod pi. Assume this is false and a ≡ b mod pi for all 1 ≤ i ≤ k. Then, pi|a − b
for any 1 ≤ i ≤ k and ∏︁k

i=1 pi | a − b as p1, . . . , pk are co-prime. However, this is
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possible only if a − b = 0, as a − b < a <
∏︁k

i=1 pi, which leads to a contradiction
with the fact that a ̸= b. Assign m = pi with a minimum i such that a ̸≡ b
mod pi.

It remains to prove that m is sufficiently small. There are several ways to do
this, we utilize one from Wiedermann [2016]. We use the fact stated in Rosser
and Schoenfeld [1962, formula (3.16)], that for any k such that pk ≥ 41

log
k∏︂

i=1
pi > pk(1 − 1

log pk

) > pk/2. (2.1)

We also use Bertrand’s postulate [Ramanujan, 1919], which states that for any
j > 1 there exists a prime p such that j < p < 2j.

We have log a ≥ log∏︁k−1
i=1 pi > pk−1/2 (by Equation 2.1). Using the Bertrand’s

postulate we state that pk−1 < pk < 2pk−1. Thus, m ≤ pk < 2pk−1 < 4 log a ≤
4 log n.
Lemma 22. For given n ∈ N there exists a prime p ∈ N such that p ∤ n and
p < 4 log n.
Proof. The statement immediately follows from Lemma 21 after setting a =
n, b = 0 and noticing that any m < 4 log n has a prime divisor p ≤ m < 4 log n
for which the claim also holds.

From now on, we deal with some special cases defined as restrictions on the
set of examined words, where f(n) behaves ”nicely”.
Definition 23 (Restricted worst-case discernibility function). We call a set of
word pairs that possess some unique quality a case. For example, the case of
words with different lengths can be defined as C = {(u, v) ∈ Σ∗ | |u| ̸= |v|}. We
define a restriction of function f(n) to a case C to be

fC(n) = min({D(u, v) | (u, v) ∈ C, |u|, |v| ≤ n}).

Clearly, if we are able to separate all existing word pairs into different cases
and bound fC(n) for each of them, we obtain a bound for f(n). Even if we are not
able to do this, restricting the set of analyzed words by excluding some belonging
to ”simple” cases may help with the examination of f(n), especially in the case
of experiments where one wants to analyze all possible word pairs.

2.3.1 Different length
Lemma 24. If we restrict ourselves to the case C = {(u, v) ∈ Σ∗ | |u| ≠ |v|} of
the words with different lengths, fC(n) ≤ 4 log n.

Proof. To prove this lemma, we create a modulo automaton, which distinguishes
the words whose lengths have different remainders by some modulo. Let m be
a minimum modulo such that |u| ̸≡ |v| mod m, by Lemma 21 it exists and
m ≤ 4 log max(|u|, |v|). We create an automaton M = ({q0, . . . , qm−1}, Σ, δ, q0)
with m states, where δ(qi, a) = qi+1 mod m for any a ∈ Σ. An example of such
an automaton for m = 5 is shown in Figure 2.1. It is easy to see that any word
of length k will end up in the state qk mod m, thus, as |u| ̸≡ |v| mod m, modulo
automaton with m states will distinguish u and v. It follows that fC(n) ≤ m ≤
4 log n.
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q0 q1 q2 q3 q4
Σ Σ Σ Σ

Σ

Figure 2.1: Modulo automaton for m = 5.

2.3.2 Unary alphabet
Lemma 25. If we restrict ourselves to the case C = {(u, v) ∈ Σ∗}, |Σ| = 1 of
words over unary alphabet, fC(n) ≤ 4 log n.
Proof. We require the words u and v to be distinct, and words from the unary
alphabet could be distinct only if they have different lengths. Thus, the statement
clearly follows from Lemma 24.

2.3.3 Alphabet size
Lemma 26. Bounds for f(n) do not depend on the size of the input alphabet as
long as its size is bigger than 1.
Proof. Let us denote by fd(n) a restriction of f(n) to the case Cd containing
words over an alphabet of size d. We claim that fd(n) = f2(n) for any d > 1.

• fd(n) ≥ f2(n)
Let Σ = {a, b, . . . }. Clearly, words from {a, b}∗ form a subset of the words
from Σ∗. Thus, their bound could not be bigger than the bound for all
words.

• fd(n) ≤ f2(n)
Consider any two distinct words u, v of length n over the alphabet Σ =
{a, b, . . . } with more than two symbols. There exists an index i where they
differ for the first time, having ui = a and vi = b. Create u′, v′ ∈ {0, 1}∗

so that all symbols a in the u, v are replaced by 0 and all other symbols
from Σ\{a} are replaced by 1. It is easy to see that we have two distinct
words over the alphabet {0, 1} of size 2. There exists an m-state DFA M ′,
m ≤ f2(n), which distinguishes u′ and v′. It follows that there exists an
m-state DFA M which distinguishes u and v, created as follows:

Let M ′ = (Q, {0, 1}, δ′, q0),
We create M = (Q, Σ, δ, q0), where

δ(q, s) =
⎧⎨⎩δ′(q, 0), if s = a,

δ′(q, 1), otherwise.

Thus, D(u, v) ≤ m ≤ f2(n) for any words u, v and fd(n) ≤ f2(n).

This lemma allows us to restrict the main problem to Σ = {0, 1} from now
on.
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2.3.4 Parity
Definition 27. Let us denote the number of zeros and ones in a given word u by
|u|0 and |u|1, respectively.

Lemma 28. If we restrict f(n) to the case C = {(u, v) | |u|1 ̸≡ |v|1 mod 2} of
the words with a number of 1’s in each having different parity, then fC(n) ≤ 2.

Proof. To prove this lemma, we create a parity automaton, as shown in Figure
2.2. It is easy to see, that all the words with an even number of 1’s will finish in
the state q0, and all the words with an odd number of 1’s will finish in the state
q1. Thus, any u, v from the lemma are distinguishable by an automaton of the
size 2, and fC(n) ≤ 2.

q0 q1

0
1

0

1

Figure 2.2: Parity automaton.

2.3.5 Different composition
Now, let us present a slightly more complicated lemma, which unites the ones
described in Subsections 2.3.1 and 2.3.4. The idea of the union is similar: if the
words have a different number of ones (or, equivalently, zeros) in them, we should
be able to detect the difference using Lemma 21.

Lemma 29. If we restrict the problem to the case C = {(u, v) | |u|1 ̸= |v|1} of
the words with a different number of 1’s, then fC(n) ≤ 4 log n.

Proof. Let us construct an improved m-state modulo automaton, which counts
the number of ones in the input modulo m. Each of its m states {q0, . . . , qm−1} =
Q represents one reminder. We describe the automaton as M = (Q, {0, 1}, δ, q0),
Q = {q0, . . . qm−1}, where δ(q, 0) = q for any q ∈ Q and δ(qi, 1) = qi+1 mod m for
any 0 ≤ i < m. Figure 2.3 shows an example of such an automaton with m = 5
states.

It is easy to see that words with k ones will end up in the state qk mod m. Let
ku = |u|1 and kv = |v|1, ku ̸= kv. Then, by the Lemma 21, there exists an m
such that ku ̸≡ kv mod m and thus m-state automaton as described above will
distinguish u and v. By the same lemma, m ≤ 4 log max(ku, kv) ≤ 4 log n.

2.3.6 Limited differences
In this subsection, we present several lemmas about pairs of words where the
position of the first/last difference or the number of differences is small (constant).
While the Lemmas 30 and 31 about the differences near the start/end of the words
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can be considered common knowledge, the last Lemma 32 about the pairs with a
small number of differences requires a slightly more involved argument and was
presented in [Demaine et al., 2011].
Lemma 30. If we restrict ourselves to the case C with words u, v where the first
difference occurs at the index ≤ d ∈ N, then fC(n) ≤ d + 2.
Proof. By construction. Construct a difference automaton Dd = (Q, {0, 1}, δ, q0)
with d + 2 states Q = {q0, . . . , qd−1, t1, t2} such that

δ(qi, s) = qi+1, ∀s ∈ {0, 1}, 0 ≤ i < d − 1,

δ(qd−1, 0) = t1,

δ(qd−1, 1) = t2,

δ(t, s) = t, ∀s ∈ {0, 1}, ∀t ∈ {t1, t2}.

It is clear that after reading d − 1 symbols, the automaton is in state qd−1 for
both words. After that, as the symbols on the d-th position differ, the automaton
will proceed to the different states t1 and t2. Those are terminal (all transitions
go into them), so the automaton will remain in them and distinguish the words.
Example of a difference automaton D3 can be seen in Figure 2.4.

Lemma 31. If we restrict f(n) to a case C of the words u, v where the last
difference occurs at the index > n − d, d ∈ N, then fC(n) ≤ d + 1.
Proof. Given the string s of length d, it is easy to construct an automaton that
accepts the words ending with s and rejects all others (i.e., all the words ending
with s will finish in one particular state, while all others in different ones). Having
it, we can distinguish the words u, v, which differ at the index n − d + 1, so
u−d... ̸= v−d..., by creating a ”string difference” automaton Ss for a string s = u−d...

of length d. Ss has exactly d + 1 states.
We construct a ”string difference” automaton Ss = ({q0, . . . , qd}, {0, 1}, δ, q0)

that maintains the invariant ”word w finishes in the state qi where i is a maximum
index such that w−i···−1 = s1...i (i.e., w ends with first i symbols of s). To do this,
we define a transition function δ as follows:

δ(qi, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
qi+1, if i < d and si+1 = a,

qj, where j = max({2 ≤ j ≤ i | s(i−j+2)...i · a = s1...j}) if exists,
q1, if a = s1,

q0, otherwise.

We present an example of such an automaton for a string 1101 in Figure
2.5.

The next lemma considers a constant Hamming distance H(u, v) between the
words and was presented in [Demaine et al., 2011]. Clearly, for the words u and v
of the same lengths, H(u, v) = d means that u and v differ in exactly d positions.
Although it does not mean that the numbers of ones and zeros in the two words
have different parity and we can not apply Lemma 28 directly, we can prove that
there exists a subset of indices that is easily detectable by DFA and where parity
differs. The proof uses the same idea as the one we further develop in Chapter 4,
but with much easier assumptions.
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q0 q1 q2 q3 q4

0

1

0

1

0

1

0

1

0

1

Figure 2.3: Improved modulo automaton for m = 5 counting a remainder of the
number of 1’s in the input modulo m.

q0 q1 q2

t1

t2

0, 1 0, 1

0

1

0, 1

0, 1

Figure 2.4: Example of a difference automaton D3 which distinguishes the words
which differ in the third symbol.

ε 1 11 110 11011

0

1
0

0

0

1

1 1

0

Figure 2.5: Example of a string difference automaton S1101.
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Lemma 32 ([Demaine et al., 2011]). If we limit ourselves to the words u, v with
at most d ∈ N differences, then f(n) ∈ O(d log n).

Proof. Let the words u, v have the differences on positions x1, . . . , xd. Assign
N = ∏︁k

i=2(xi − x1). By Lemma 22 there exists a prime p such that N is not
divisible by p and p ∈ O(log N) = O(d log n), as N < nd−1. Consider the values

dp,x1(u) =
⎛⎝ ∑︂

j ≡ x1 mod p

uj

⎞⎠ mod 2.

We claim that dp,x1(u) ̸= dp,x1(v), as p does not divide N and thus p does not
divide any xi − x1 for 2 ≤ i ≤ k. Thus, on indices {j | j ≡ x1 mod p} words u
and v contain exactly one difference (on index x1). Now we construct a Hamming
distance automaton Hp,x1 = (Q, {0, 1}, δ, q0) with 2p ∈ O(d log n) states which
computes dp,x1(u). To do this, we construct two ”circles” of p states, where all
states in the first one indicate that dp,x1(u) = 0, and in the second one, conversely,
dp,x1(u) = 1. To do this, we assign Q = {a1, . . . , ap, b1, . . . , bp}, q0 = ap and

δ(ai, s) =
⎧⎨⎩bi+1 mod p, if s = 1 and i ≡ x1 mod p,

ai+1 mod p, otherwise,
,

δ(bi, s) =
⎧⎨⎩ai+1 mod p, if s = 1 and i ≡ x1 mod p,

bi+1 mod p, otherwise.

It is clear that the word with dp,x1(u) = 1 finishes in some of {b1, . . . bp} states
and the word with dp,x1(u) = 0 finishes in some of {a1, . . . ap} states. Thus, u and
v are distinguished by Hp,x1 . Figure 2.6 shows an example of H3,1 .

a3

a1

a2

b2

b1

b3

0, 1

0, 1

0

1

0, 1

0, 1

0

1

Figure 2.6: Example of a hamming distance automaton H3,1.

2.4 Unsolved cases
As can be seen in the preceding section, a large number of word pairs are eas-
ily distinguishable by a small automaton of logarithmic or even constant size.
As a logarithmic lower bound is already known, it makes sense to restrict the
analysis to the word pairs that are not distinguishable in the logarithmic case.
Any restriction of the word pairs set is useful, especially for some experimental
solutions where all possible pairs undergo some inspection. However, we see that
the ratio of those pairs belonging to easily-solvable cases is mostly negligible. Let
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us summarize what restrictions to the main problem are available using all the
lemmas stated in this chapter and describe the word pairs we should still deal
with. To summarize, words that do not belong to easily-solvable cases...

• ...come from a binary alphabet {0, 1},
This restriction clearly allows us to simplify the studied problem greatly, as
the values of f(n) do not depend on the size or composition of the input
alphabet.

• ...have the same length,
This restriction again helps with the reduction of the studied set. Clearly,
if we pair any word of length n with one of the length up to n, we have
2n(20 + 21 + · · · + 2n − 1) = 2n(2n+1 − 2) total pairs. However, if we count
the pairs where both of the words have length n, we have only 2n(2n − 1)
possible pairs, which is roughly half that number.
Unfortunately, all other stated restrictions do not really help. We show
that the ratio of restricted pairs tends toward zero in each case. Let us
denote the number of all pairs of distinct words of length n over the binary
alphabet by An. Clearly, An = 2n(2n − 1) = 4n − 2n.

• ...have the same number of zeros (and ones, conversely),
Let us count the number of pairs having the same composition (number of
ones and zeros) and denote it by Bn. We could compute it as a sum per
possible number of ones: there are

(︂
n
k

)︂
words with exactly k ones. Thus,

the total number of pairs with the same number of ones is

Bn =
n∑︂

k=0

(︄
n

k

)︄⎛⎝(︄n

k

)︄
− 1

⎞⎠ =
n∑︂

k=0

(︄
n

k

)︄2

−
n∑︂

k=0

(︄
n

k

)︄
=
(︄

2n

n

)︄
− 2n.

We want to show that limn→∞
Bn

An
= 0. Clearly, as An > Bn,

Bn

An

=

(︂
2n
n

)︂
− 2n

4n − 2n
<

(︂
2n
n

)︂
4n

.

Using Stirling’s approximation [Namias, 1986], we get that(︄
2n

n

)︄
∼ 4n

√
πn

.

Thus,

lim
n→∞

(︂
2n
n

)︂
4n

= lim
n→∞

1√
πn

= 0.

From that we derive that limn→∞
Bn

An
= 0, as it is clearly non-negative and

bounded by 0 from above.

• ...do not differ in the first and last ω(log n) positions,
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Let Cn denote the number of pairs of words that differs only among the first
d ∈ O(log n) positions (not necessarily in all of them). Clearly, the number
of those words can be expressed as

Cn = 2d(2d − 1)2n−d = 2n(2d − 1).

It is easy to see that limn→∞
Cn

An
= limn→∞

2d−1
2n−1 ≤ limn→∞ 2d−n = 0. Thus,

limn→∞
Cn

An
= 0, as all the numbers are non-negative.

The case when the differences between the words occur only in the last d
positions is perfectly similar and thus asymptotically negligible.

• ...have ω(1) number of differences.
Here, we denote the number of word pairs with at most d differences by
Dn. We may see that Dn ≤

(︂
n
d

)︂
2d(2d − 1)2n−d =

(︂
n
d

)︂
2n(2d − 1). Again, we

are interested in the limit

lim
n→∞

Dn

An

= lim
n→∞

(︄
n

d

)︄
2d − 1
2n − 1 ≤ lim

n→∞

(︂
n
d

)︂
2n−d

=

= lim
n→∞

n(n − 1) · · · (n − d + 1)
2n−dd! ≤ lim

n→∞

nd

2n−dd! = 0.

As d is a small constant, we may ignore the 2d

d! part. Thus, as values of Dn

and An are non-negative, limn→∞
Dn

An
= 0.

We may see that the main contribution to the studied problem consists of the
independence of f(n) values on the input alphabet. The fact that we can examine
only words of the same length helps to halve the set of all analyzed word pairs.
All the other studied cases may bring interesting insight into the problem but do
not significantly decrease the amount of examined words.
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3. Related work
In 1986 Goralč́ık and Koubek proved that for given words x, y with length ≤ n
there exists an automaton discerning those words with o(n) states. In 1989 the
upper bound was improved by Robson with the result of O(n2/5 log3/5 n). In 2021
the bound was further improved by Zachary Chase to O(n1/3 log7 n). The lower
bound was proved to be Ω(log n) by Demaine et all in 2011. In this chapter, we
present the main ideas of those proofs, which may be useful in further research
on the topic.

3.1 Upper bound

3.1.1 First result
The first result on the topic was obtained in 1986 at Charles University by
Goralč́ık and Koubek [1986]. In that work, they solve some trivial cases such
as the unary alphabet or words of different lengths, state that the result is inde-
pendent of the alphabet size, and, most importantly, establish an upper bound
for the worst-case discernibility function to be o(n). The proof they provided is
based on a careful enumeration of all possible cases of the words’ compositions
and differences. In this section, we sketch some ideas instead of presenting the
full proof, as it is, by its nature, rather long and complicated. All details can be
found in [Goralč́ık and Koubek, 1986].

The proof is done by contradiction. We assume that the worst-case discerni-
bility function (see Definition 18) does not belong to o(n), and there exists d such
that lim sup f(n)/n = d > 0. We then consider different cases - subsets of all
word pairs possessing some specific quality such as too big or too small number
of zero blocks, number of zeros in the block containing the first difference and so
on - and for each case C prove that lim sup fC(n)/n < d. When studied cases
cover all existing words, the proof is complete.

To deal with every case, we should reduce the problem to one which can be
solved by an automaton with logarithmic number of states - in most cases, we
want to get the words of different lengths or with different number of ones in
them (in Section 2.3 we show how to deal with such pairs). The proof contains
several automata constructions, which are then used to settle each case together
with proof that with this particular conditions on the input pairs the constructed
automaton will be small enough to achieve the desired bound of less than dn
states. Main idea of those helping automata is to stop after encountering specific
number of zeros / blocks of zeros in the word, and usually the counting occur by
some modulo to decrease the number of states of a constructed automata. We
present several examples of those constructions to give the reader an idea of the
proof.

Definition 33. We define a discerning block automaton Km
01 to be an automaton

accepting the words with at least m blocks of zeros and ones by its only terminal
state. We create Km

01 as an m-times concatenation Km
01 = K01 ◦ · · · ◦ K01 of an

automaton K01 with 3 states accepting only the word w = 01.
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ε 0 01/ε 0 010

1

1

0

0

1

1

0 0, 1

Figure 3.1: Example of a discerning block automaton K2
01.

An example of K2
01 is shown in Figure 3.1. It accepts exactly the words

containing at least two disjoint occurrences of 01, i.e. those with at least two zero
blocks followed by one blocks.
Definition 34. We define a zero modulo counter automaton Kr:x as the one
accepting the words containing a block of zeros of lengths l ≡ x mod r by its only
terminal state. We create it from an automaton accepting only the word 0r by
replacing its terminal state with a state 0x ·1 and redefining δ(0r−1, 0) = ε instead
of 0r and δ(0x, 1) = 0x · 1 instead of ε.

Figure 3.2 shows an example of K4:2 accepting exactly the words having a
zero block of lengths l ≡ 2 mod 4.

ε 0 00 000

001

0

1

0

1

0

1

0, 1

0, 1

Figure 3.2: Example of a counter K4:2

Both shown automata have one terminal state, which we may use to concate-
nate it with the discerning one. So, whenever we have the first difference between
the words u and v in the m-th zero blocks, Km

01 will reach the terminal state at
the different indices for those words. Thus, we may concatenate the discerning
block automaton with the logarithmic one discerning words of different lengths
(see Lemma 24) and be done. The same holds with the zero modulo counter
automaton as long as we find two blocks of the size congruent by some modulo at
the different positions in words – even if there are some preceding blocks of the
same size, we can concatenate Kr:x with itself several times to achieve the situa-
tion where both words reach the terminal state at the different indices. Having
this, it is remaining to prove under which conditions those constructed automata
would be small enough.

A slightly different principle is used for the next shown automaton.
Definition 35. We define a zero translator automaton Tr:x,y as a one with two
terminal states t0, t1, where all the words having a block of zeros of size l0 ≡ x
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mod r will finish in t0 and all the words having a block of zeros of size l1 ≡ x
mod r will finish in t1 (depending on what block is coming first). To achieve this,
we take an automaton accepting exactly one word 0r and replace its terminal state
0r with two new ones 0x · 1 and 0y · 1, redefining δ(0r−1, 0) = ε, δ(0x, 1) = 0x · 1,
δ(0y, 1) = 0y · 1.

ε 0 00 000

00101

0

1

0

1

0

1

0, 1

0, 10, 1

Figure 3.3: Example of a translator T4:1,2

An example of T4:1,2 is shown in Figure 3.3. We see that T ends in t0 = 01
after reading zero block of length l0 ≡ 1 mod 4 and in t1 = 001 after reading zero
block of length l1 ≡ 2 mod 4. Let us create T4:1,2-translation T (u) of the word u
by writing down 0 for each occurrence of the zero block of the first type and 1 for
each occurrence of the zero block of the second type. Doing the same procedure
for v, we obtain T (v), which may have a different number of ones than T (u) if
the sizes of the blocks in u and v differ. If we have an automaton discerning T (u)
and T (v) (e.g. by Lemma 29), we may replace each state in it with an instance
of T4:1,2 and obtain an automaton discerning u and v.

Those presented are examples of used automata, which, together with careful
computations, help to achieve the desired bound of the number of states in each
considered case. We refer the reader to [Goralč́ık and Koubek, 1986] for the full
proof.

3.1.2 Second result
The second result for the upper bound was proposed by Robson [1989], not long
after Goralč́ık’s and Koubek’s research. In his work, J.M. Robson proved the
upper bound to be O(n2/5 log3/5 n). The main idea of the work combines the pe-
riodicity in words with congruence, when we focus on a subset of indices belonging
to some remainder class of a small modulo. Those can be easily selected with a
suitable automaton. The proof starts with a simpler bound O(

√
n log n), which

we will discuss here without going into detail. The improved bound is based on
this one and consists of rather technical improvements and enumeration of cases,
so we refer the reader to the original work Robson [1989] for the complete proof
as well as proofs of some lemmas we present in this section.

Definition 36 (Word’s period). A word w = w1...l has a period p if wi = wi+p

for any 1 ≤ i ≤ l − p.
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Definition 37 (Periodic word). A word S is periodic if it has a period that is
not greater than half of its length. The period of the word is the smallest period
it has.
Lemma 38. If w · 0 is periodic, then w · 1 is not.
Lemma 39. If a string s has a period p and a word w contains two occurrences
of s starting at indices i and j, then |i − j| ≥ p.
Lemma 40. Given w ∈ {0, 1}n and its non-periodic substring s = wi...i+ℓ−1 of
length ℓ, there exists prime p ∈ O(n

ℓ
log n) such that there is no other occurrence

of s starting on indices congruent to i modulo p. I.e.,

wk...k+ℓ−1 ̸= s

for every k ̸= i, k ≡ i mod p.
Proof. First, let us observe that s is non-periodic, thus its period is greater than
ℓ/2, and by Lemma 39 there is at most 2n/ℓ occurrences of s in w. Let us
assume that those occurrences (besides one starting at index i) start at the indices
i1, i2, . . . , im. Consider I = ∏︁m

j=1 |ij − i| ≤ n2n/ℓ. By Lemma 22 there exists a
prime p ∈ O(log I) = O(n

ℓ
log n) such that p ̸ | I. Thus, p ̸ | |ij − i| for any

1 ≤ j ≤ m and ij ̸≡ i mod p.
Definition 41. An automaton M finds a word w if, after reading an input w, it
enters the accepting state f for the first time.

The construction of a discerning automaton in both simple and sophisticated
proofs uses the following method. Given the words u and v as input, construct
an automaton M which finds u1...i by the state f and does not accept v1...i. If
M never enters the state f while reading v, we may make a state f in the M
terminal and be done - M will distinguish u and v. Otherwise, if M enters q for
the first time after reading vj, construct an automaton M ′ distinguishing between
ui+1...n and vj+1...n, which has logarithmic size, as the words ui+1...n and vj+1...n

have different lengths. Composition M ◦ M ′ will distinguish u and v. As long as
the size of M is Ω(log n), the asymptotic size of M ◦ M ′ is fully determined by
the size of M , so we can omit M ′.

Now, in order to present the idea of Robson’s work, we define an automaton
M(w, k, p) with |w| + p states, which finds the first occurrence of the word w
starting on position k modulo p. To do this, we combine a p-state counting
automaton with the one distinguishing w from all other words. Figure 3.4 shows
an example of such an automaton.
Definition 42. We define an automaton M(w, k, p) = (Q, {0, 1}, δ, a0, {w}),
where Q = {a0, . . . ap−1} ∪ P (w)\{ε}, ak = ε, and δ is defined as follows ∀s ∈
{0, 1}:

δ(ai, s) = ai+1 mod p, i ̸≡ k mod p,

δ(w, s) = w, s ∈ {0, 1},

δ(w′, s) = w′ · s, if w′ · s ∈ P (w),
δ(w′, s) = ak+|w′|+1 mod p, w′ · s ̸∈ P (w), |w′| < p

δ(w′, s) = w′
−r... · s, if w′

−r... · s ∈ P (w), where r = k + |w′| mod p,

δ(w′, s) = ak+|w′|+1 mod p, otherwise.
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a0a1a2 = ε

1 10 101 1010

0, 10, 1

0

1

0
1

1

0

0

1

0, 1

Figure 3.4: Example of an automaton M(w, k, p) for w = 1010, k = 2, p = 3.

Now, we have everything we need to formulate the theorem about a simple
upper bound.

Theorem 43. Words u and v can be separated by an automaton with O(
√

n log n)
states.

Proof. Let i be the first index where ui ̸= vi. If i <
√

n log n, then we may
trivially construct small M which finds u1...i and does not accept v1...i (by Lemma
30).

Otherwise, consider two words u′ = ui−
√

n log n...i and v′ = vi−
√

n log n...i. By
Lemma 38, at least one of them is not periodic, w.l.o.g. we say that is it u′. Now,
let p be a number from Lemma 40 for the word u′. We claim that M(u′, k, p),
where k = (i −

√
n log n) mod p finds u1...i and does not accept v1...i. Size of

M(u′, k, p) is |u′| + p =
√

n log n + 1 + p. By Lemma 40 p ∈ O(n
l

log n), where
l =

√
n log n, thus n

l
=
√︂

n
log n

and p ∈ O(
√

n log n), which gives us the desired
upper bound.

To improve the upper bound, one should consider the fact that the part dis-
tinguishing w from all other words in M(w, k, p) does a lot more than we require
it to do. It accepts w and all the words having w as a prefix, separating all
the other ones. However, as we have limited input, it is sufficient to distinguish
u′ from all other suffixes of u starting on the congruent positions. Using this,
a more sophisticated automaton is created to achieve the desired upper bound
O(n2/5 log3/5 n). The proof is based on determining the set of the prefixes of u and
v starting on indices congruent by some modulo and constructing the automaton
which will distinguish them. We refer the reader to [Robson, 1989] for the full
proof.

3.1.3 Third result
The third result in the field was obtained by Chase [2021] after a significant
amount of time. The contribution of his work consists in replacing the O(n2/5)
bound by O(n1/3 log7 n) and connecting the studied problem to other areas such as
trace reconstruction and ”k-deck” problem. The main ideas of the proof include:
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• restriction of the input to the subset of indices represented by a residue
class of some small modulo,

• counting the occurrences of a given substring in both words,

• complex analysis methods used to prove the desired bounds.

We start with a few definitions:

Definition 44. For a given word w and string s we denote by poss(w) a set of
starting indices of all occurrences of s in w. I.e.,

poss(w) = {1 ≤ i ≤ |w| | wi...i+|s|−1 = s}.

Definition 45 (Residue class). For a given set A and numbers m ∈ N, 0 ≤ i < m
we define residue class Am,i of A as a subset of its elements belonging to a residue
class i modulo m. I.e.,

Am,i = {x ∈ A | x ≡ i mod m}.

Definition 46. Set A ⊆ N is d-separated if for any a ̸= a′ ∈ A

|a − a′| ≥ d.

Now, we construct a small automaton, which checks if the number of occur-
rences of some substring at some residue class indices belongs to a given residue
class, i.e., for given numbers i, p, a, q and a substring s it accepts the word w if
and only if |poss(w)p,i| ≡ a mod q.

Lemma 47. Given the numbers p, q ∈ N, 0 ≤ i < p, 0 ≤ a < q and a string
s ∈ {0, 1}ℓ, ℓ ≤ p, there exists an automaton with 2pq states accepting w ∈ {0, 1}n

if and only if |poss(w)p,i| ≡ a mod q.

Proof. By construction. We create an automaton M = (Q, {0, 1}, Σ, q0, F ) with
states represented as triples, Q = Zp × {0, 1} ×Zq, where the first element shows
a next position to be read from the input modulo p, the second one is a flag
whether we are in the middle of s occurrence right now, and the third one counts
|poss(w)p,i| modulo q. More precisely, we define q0 = (1, 0, 0), F = Zp × {0, 1} ×
{a} and

δ((j, f, c), a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(j + 1, 0, c), if f = 0, j ̸≡ i mod p,

(j + 1, 1, c), if f = 0, j ≡ i mod p, a = s1,

(j + 1, 0, c), if f = 0, j ≡ i mod p, a ̸= s1,

(j + 1, 1, c), if f = 1, j ̸≡ i + l − 1 mod p, a = sj−i+1,

(j + 1, 0, c), if f = 1, j ̸≡ i + l − 1 mod p, a ̸= sj−i+1,

(j + 1, 0, c + 1), if f = 1, j ≡ i + l − 1 mod p, a = sl,

(j + 1, 0, c), if f = 1, j ≡ i + l − 1 mod p, a ̸= sl.
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Having this automaton, we need to determine an appropriate substring w so
that posw(u) ̸= posw(v) and there exists two small moduli p, q and a remainder
0 ≤ i < p such that |posw(u)p,i| ̸≡ |posw(v)p,i| mod q. We are always able to
choose q ∈ O(log n) due to Lemma 21, but what about p? It depends on the
choice of a separating substring w. A natural decision would be to take pos1(u)
and pos1(v), which are clearly different. However, it turns out that one can not
provide a sufficient upper bound for p. It can be proved that p ∈ O(n1/2 log1/2 n),
with a total upper bound to the problem being O(n1/2 log3/2 n), which is too big
(we refer to [Chase, 2021] for the proof).

To present a sufficient lower bound for p, one should choose a longer substring
w. While longer possible w does not affect the size of the discerning automaton,
it makes the sets posw(x) and posw(y) smaller, which may help with finding an
appropriate p value. Ideally, we want to prove the following fact:

Conjecture 48. For any sets A ̸= B ⊆ [n], |A|, |B| ≤ n2/3 there exists p ∈
O(n1/3) and 0 ≤ i < p such that |Ap,i| ≠ |Bp,i|.

This conjecture is hard to solve, but it becomes easier by introducing a con-
dition that both A and B should be n1/3-separated. The proof of the following
lemmas can be found in the original work.

Lemma 49. For any n1/3-separated sets A ̸= B ⊆ [n], |A|, |B| ≤ n2/3, there exist
p ∈ Θ(n1/3 log6 n) and 0 ≤ i < p such that |Ap,i| ≠ |Bp,i|.

We also state that we can construct a ”good” set by choosing an appropriate
substring w.

Lemma 50. For any word u ∈ {0, 1}n and a substring w, |w| = 2n1/3, such that
w has no period of length ≤ n1/3, the set posw(u) is n1/3-separated.

Now, we are ready to present the main steps of the proof.

Theorem 51. Any u ̸= v ∈ {0, 1}n can be separated by an automaton with
O(n1/3 log7 n) states.

Proof. Let i be the index of the first difference between u and v. If i < 2n1/3,
then the proof is complete (by Lemma 30). Otherwise, assign w′ = ui−2n1/3+1...i−1
a substring of u of length 2n1/3 − 1. Choose w = w′ · 0 or w = w′ · 1 so that
A = posw(u) and B = posw(v) are both n1/3-separated (see Lemmas 38 and 50).
Clearly, A ̸= B. By Lemma 49 there exist p ∈ Θ(n1/3 log6 n) and 0 ≤ i < p
so that |Ap,i| ≠ |Bp,i|. As |A|, |B| < n, there exists q ∈ O(log n) such that
|A|p,i ̸≡ |B|p,i mod q (by Lemma 21). Thus, we can construct a discerning
automaton as described above with 2pq ∈ O(n1/3 log7 n) states.

Remark. We should mention that in all the original statements, the numbers p, q
are considered prime. Their primeness neither affects the existence and function-
ality of the separating automaton nor helps or harms the obtained asymptotic
results. That is why we decided to omit this consideration, although it can be
helpful in related areas.
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3.2 Lower bound
This section presents the proof of the Ω(log n) lower bound, which can be found
in Demaine et al. [2011]. The proof is done by construction - we show a word
pair that can not be distinguished by an automaton of smaller than logarithmic
size. We use the following definition.

Definition 52. A sequence (pi)i≥0 is ultimately periodic if there exist integers
r > 0, s ≥ 0 such that pi = pi+r for any i ≥ s. In this case, s is called the
preperiod and r the period.

Lemma 53. For any DFA M = (Q, Σ, δ, q0) of size m, any state q ∈ Q and any
symbol a ∈ Σ

δ̂(q, am−1) = δ̂(q, am−1+lcm(1,2,...,m)).

Proof. Let us define a sequence (pi) such that pi = δ̂(q, ai). As an automaton
has m states, it is clear that the first m + 1 elements of (pi) can not be unique,
and some of them will appear there at least twice. After the first duplicate, the
sequence will repeat, as the automaton M is deterministic, so there is exactly one
state we can get to from another one by a given symbol a. Thus, it is clear that
(pi) is ultimately periodic with a period r ≤ m and preperiod s ≤ m − 1.

The statement pm−1 = pm−1+lcm(1,2,...,m) follows from the fact that m − 1 ≥ s

and r | lcm(1, 2, . . . , m), as r ≤ m. Thus, by the definition of pi, δ̂(q, am−1) =
δ̂(q, am−1+lcm(1,2,...,m)).

Theorem 54. There exists an infinite number of the words u, v of the same length
n such that D(u, v) ∈ Ω(log n).

Proof. Consider two words u, v of the same length constructed as follows.

u = 0m−11m−1+lcm(1,2,...,m)

v = 0m−1+lcm(1,2,...,m)1m−1

Consider any automaton M = (Q, {0, 1}, δ, q0) with m states. We show that
M(u) = M(v) by applying the Lemma 53 twice. First, we see that M will be in
the same state after reading the sequence of zeros in u and v, i.e., δ̂(q0, 0m−1) =
δ̂(q0, 0m−1+lcm(1,2,...,m)) = q1. Then, we observe that the same holds for the se-
quences of ones in both words, i.e., δ̂(q1, 1m−1+lcm(1,2,...,m)) = δ̂(q1, 1m−1). Thus,
δ̂(q0, u) = δ̂(q0, v) and M(u) = M(v).

From the prime number theorem it follows that lcm(1, 2, . . . , m) = em(1+o(1))

[Hardy and Wright, 1979, Theorem 414]. Hence, for sufficiently large n, if m ≤
log n, then there are words of size n that are not distinguishable by any automaton
of size m or smaller.
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4. Discerning sets
In this chapter, we further develop the ideas of Wiedermann [2016]. In his tech-
nical report, Wiedermann suggests that f(n) ∈ Θ(log n). However, the proposed
proof of the upper bound contains a gap, and to the best of our knowledge, this
gap was not resolved. We explain the gap later on.

In Section 4.1, we describe a reduction of the discernibility problem to a
possibly simpler one, which solution provides a valid upper bound for the main
problem. Next, we present the proof of the upper bound for this new problem
by Wiedermann [2016] in Section 4.2 and explain the gap it contains. Then,
in Section 4.3, we show how to deal with some easily solvable cases in a new
problem formulation. We provide our empirical results on the topic in Section
4.4. Finally, in Section 4.5, we present our proof showing that Wiedermann’s
approach does not lead to improvement of the upper bound of the discerning
problem. Nevertheless, we believe that obtained empirical results might be useful
in other areas.

4.1 Problem statement

4.1.1 Formulation
Let us start with some necessary definitions and notions. First, we describe
a discerning automaton A(m, i) which accepts exactly the words with the odd
number of 1’s on positions congruent to i modulo m.

Definition 55 (Discerning automaton). We construct a discerning automaton
A(m, i) = (Q, Σ, δ, q0, F ) as follows.

• Q = {(q, p) | 0 ≤ q < m, p ∈ {0, 1}},

• Σ = {0, 1},

• q0 = (0, 0),

• F = {(q, 1) | (q, 1) ∈ Q}.

While δ is given by the following definition.

δ((q, p), s) =
⎧⎨⎩((q + 1) mod m, 1 − p), if s = 1 and q = i,

((q + 1) mod m, p), otherwise.

We can see that A(m, i) has the size 2m ∈ O(m). Example of such an au-
tomaton with m = 5, i = 3 can be seen in Figure 4.1.

Definition 56 (Discerning set). For two words u, v ∈ {0, 1}n we define a dis-
cerning set ∆(u, v) = {i | 1 ≤ i ≤ n, ui ̸= vi}.

We then show that the fact that A(m, i) discerns u and v is equivalent to
the fact that the residue class ∆(u, v)m,i (as defined in Definition 45) has an odd
number of elements. Thus, if we prove that for any u, v of length n, there exists
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0, 0 1, 0 2, 0 3, 0 4, 0

0, 1 1, 1 2, 1 3, 1 4, 1

0, 1 0, 1 0, 1 0

1

0, 1

0, 1 0, 1 0, 1 0

1

0, 1

Figure 4.1: Discerning automaton A(5, 3)

sufficiently small m and i such that ∆(u, v)m,i has odd cardinality, we will show
the upper bound for the studied problem.

That is to say, we study the worst-case scenario - i.e., such ∆(u, v) (for given
n) that we need m as large as possible. Moreover, actual words u, v do not matter
for the discerning set, and it is clear that any subset of [n] can be a discerning set
for a pair of words of length n. Thus, studying sets S ⊆ [n] without a connection
to original words is sufficient. We examine a value M for each set S such that
for all i, m < M |Sm,i| is even, but there exists i such that |SM,i| is odd. We are
looking for a maximum such M over all possible sets S ⊆ [n]. Let us generalize
this in the following definitions.

Definition 57. For given S ⊆ [n], we denote by M(S) a number M such that

∀ m < M, ∀ 0 ≤ i < m |Sm,i| is even,

∃ 0 ≤ i < M |SM,i| is odd.

Definition 58. For n ∈ N, we define M(n) as a maximum M(S) over all sets
S ⊆ [n].

Definition 59 (Critical set). We call a ”worst-case” set S ⊆ [n] such that
M(S) = M(n) a critical set.

Conjecture 60 (Discerning set problem).

M(n) ∈ Θ(log n)

While the main goal should be to prove the preceding conjecture, any progress
towards the upper bound will also be useful, as it is applicable to the main
discerning problem. Any two words of the same length could be converted to a
discerning set and distinguished using techniques described in this chapter.
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4.1.2 Bounds
It is easy to see that M(n) is at least logarithmic. For example, for given m
we may take S = {1, 1 + lcm(1, . . . , m)} which will have |Sm′,1| = 2 for each
2 ≤ m′ ≤ m and |Sm′,i| = 0 for each i ̸= 1 and 2 ≤ m′ ≤ m. It is known that
limn→∞

lcm(1,...,n)
en = 1 [Hardy and Wright, 1979, Theorem 414], thus constructed

S is of size around 2em, which proves that there exist sets where smaller than
logarithmic m is not sufficient. Actually, any stronger result would contradict
already proven bounds for the main discerning problem.

Proving any higher lower bound will contradict Conjecture 60, but not the
main Conjecture 19, as it is not clear if the chosen approach with converting the
word pairs to the discerning sets is an optimal one.

4.2 Previous research
As we mentioned earlier, Wiedermann suggested in his technical report that
M(n) ∈ Θ(log n). Our aim is to prove or disprove this assumption by study-
ing critical (”the worst”) sets S. For completeness, we present the proof from
Wiedermann’s work here and point out the problematic part.

Conjecture 61 ([Wiedermann, 2016]). Let S ⊆ [n] be a set with 2 ≤ |S| ≤ n,
n is even. There exists m ∈ O(log n) and number 0 ≤ i < m such that the
cardinality of Sm,i is odd.

Proof. By contradiction, assume that for all m ∈ O(log n) and 0 ≤ i < m, |Sm,i|
is even. Consider two cases: S = [n] and S ⊂ [n].

In the former case, consider any m ̸ | n (which exists by Lemma 21). The
number of elements in all residue classes can not be the same and differ by at
most one. Thus, at least one residue class will have odd cardinality.

In the latter case, consider the complement set S ′ = [n]\S. |S ′| is even, so the
assumption of the conjecture holds for it too, and according to the contradictory
assumption, |S ′

m,i| is even for all m, i. For any i Sm,i ∪ S ′
m,i = [n]m,i, and Sm,i ∩

S ′
m,i = ∅. Thus cardinality of [n]m,i is even for all m, i, which is in contradiction

with the fact stated in the former case.

Corollary ([Wiedermann, 2016]). Any words u ̸= v ∈ {0, 1}n can be discerned by
an automaton with O(log n) states.

Proof. For even values of n by Conjecture 61, there exists logarithmic m and
0 ≤ i < m such that the cardinality of Sm,i is odd. Then, a discerning automaton
A(m, i) of logarithmic size discerns the words.

Having the bound for M(n) for all even n, it is simple to prove that we may
transform the case for odd n to an even one without asymptotically increasing
the upper bound. Given u, v ∈ {0, 1}n, where n is odd, consider the first symbols
of u, v. If u1 ̸= v1, we discern them with automata with O(1) states (see Lemma
30). Otherwise, we create a trivial automaton skipping the first symbol and
concatenate it to a discerning automaton A(m, i) for u2... and v2.... The resulting
automaton has (|A(m, i)| + 1) ∈ O(log n) states. This consideration proves the
upper bound for M(n) for all n.
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The problem with the presented proof of Conjecture 61, however, is a classic
logical mistake. We want to prove that for every S ⊆ [n] M(S) is logarithmic.
Negation of this fact states that there exists S ⊆ [n] having larger M(S), not
that all S ⊆ [n] have larger M(S). So, we may assume for contradiction that for
some S, conjecture does not hold, but this does not imply that conjecture does
not hold for every S, including S ′. Thus |S ′

m,i| can be odd without violating the
contradictory assumption, and this technique will not lead to a contradiction. We
disprove this conjecture later on in Section 4.5

4.3 Trivial cases
In this section, we present some trivial limitations of the studied problem, which
partly follow from the cases described in Section 2.3. As we can limit the main
problem to some ”interesting”/”worst-case” pairs of words, we may also present
the following reductions of the studied sets.

Lemma 62. W.L.O.G. we can consider only sets S ⊆ [n] with even number of
elements.

Proof. Let us show that in all other cases, the main problem can be trivially
solved with f(n) ∈ O(log n).

The fact that the discerning set S has an odd number of elements means that
we are dealing with two words u, v ∈ {0, 1}∗ with an odd number d of differences
between them. Let u have ku ones on the indices where it differs from v and ℓu

ones on the remaining indices. Then the number of ones in v can be expressed
as ℓu + (d − ku), while u has ℓu + ku ones in total. The difference in the number
of ones between those two words is |d − 2ku|, which is odd. Thus, by Lemma 28
we have f(n) ∈ O(1).

We may see that for the proof we used Lemma 28 about the different parity
of the number of ones, not the stronger Lemma 29 about the different number of
ones in general. Can this lemma introduce any more limitations to the studied
problem? Surprisingly, the answer is no. Even if we limit ourselves to the words
of the same compositions, we will still be dealing with all possible subsets of [n]
with even cardinality amongst their discerning sets. We prove it in the following
lemma.

Lemma 63. Collection of discerning sets of all pairs u ̸= v ∈ {0, 1}n with the
same composition contains all non-empty sets of [n] of even length.

Proof. Consider S ⊆ [n] of even length. Let us show that it can be constructed
from two words u ̸= v of length n with the same number of ones in them. Let
us divide S into two disjoint sets S1, S2 of the same length. Construct u from
0n by placing ones at indices contained in S1 and v similarly but placing ones
on the indices from the S2. It is clear, that the number of ones in both words is
|S1| = |S|/2 = |S2|, and their discerning set ∆(u, v) is exactly S. Clearly, u ̸= v
if S ̸= ∅.

We may furthermore employ lemmas from Subsection 2.3.6 about the number
and positions of the differences in the words. As the main problem we are studying
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has a proven logarithmic lower bound, we may ignore the cases where the solution
is clearly logarithmic. Those, in terms of discerning sets, we may omit the sets
where the minimum element in O(log n) (see Lemma 30), sets where the maximum
element is O(log n) close to n (see Lemma 31) and sets with O(1) elements (see
Lemma 32).

However, we did not find those limitations useful in our research. Sets with
O(1) size are easy to analyze, so their omission does not contribute to any sig-
nificant reduction in computational time. In the next section, we also show that
discerning sets can be shifted, preserving the cardinalities of their residue classes,
so limitations about the smallest or the biggest element turn out to be not par-
ticularly useful. Also, the ratio of the sets to be omitted amongst all the sets is
negligible.

4.4 Experiments
In this section, we describe different experiments which help us analyze the sub-
ject of discerning sets and present obtained results. All the experiments are
implemented as Python scripts, and the source code is an inseparable part of
this work. We describe the structure of the codebase in Appendix A and specify
paths to corresponding scripts in the description of each experiment.

Our main goal is to take a look at critical sets. Obviously, it is not easy, as
we need to go over all possible subsets of [n] to find ”the worst” ones. There is an
exponentially large number of them, so we are able to do it only for small values
of n. Hopefully, we will be able to deduct some pattern in their construction so
that we may construct critical sets for larger values of n without the need to go
through all possible sets. This would bring us closer to estimating some bounds
for M(n).

Experiment 64 (Critical sets). The goal of our first experiment is to compute
M(n) for various n and analyze what the critical sets look like. To achieve this,
for given n ∈ N, we go over all possible sets S ⊆ [n] of even size and compute
M(S) for each of them. We then find a maximum M(S) and store it together
with all sets where M(S) is the maximum. It is clear that the number of such
sets grows exponentially, and we will be able to analyze only small n values.

• Input: n

• Input range: 6 − 34

• Output: M(n) values and the list of critical sets for given n

• Path: discerning sets/generate/discerning sets.py

In Figure 4.2, we may see that obtained M(n) values seem not to be logarith-
mic, but the very limited sample does not allow us to draw any firm conclusions
about the asymptotic behavior of the function. Anyway, we may investigate the
critical sets and determine some interesting facts about them. We refer to Table
4.1 for an idea of how the sets look like for several small values of n, while listing
of all of them is rather long and is presented in Table B.1 in Appendix B. There,
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Figure 4.2: Results of Experiment 64: values of M(n).

m i set m i set

n = 6 n = 7
4 0 {1, 2, 3, 4} 5 0 {1, 2, 3, 5, 6, 7}
4 0 {1, 3, 4, 6}
4 1 {2, 3, 5, 6}

n = 8 n = 9
5 0 {1, 4, 5, 8} 5 1 {1, 3, 7, 9}
5 0 {1, 2, 3, 5, 6, 7} 5 0 {1, 4, 5, 8}
5 1 {2, 3, 4, 6, 7, 8} 5 0 {2, 5, 6, 9}

5 0 {1, 2, 3, 5, 6, 7}
5 0 {1, 2, 4, 6, 8, 9}
5 0 {2, 3, 4, 6, 7, 8}
5 0 {3, 4, 5, 7, 8, 9}

Table 4.1: Results of Experiment 64: critical sets for n = 6, 7, 8, 9.

we present all existing sets S ⊆ [n] such that M(S) = M(n) for n from 6 to
34. We introduce several lemmas and conjectures based on the results of the
experiment. First, we note that M(n) is piece-wise constant, and when it grows,
it grows only by 1. We are interested in values of n where those ”jumps” appear.

Lemma 65. M(n) is non-decreasing.

Proof. Let S ⊆ [n] be any critical set for a given n, i.e., M(S) = M(n). Clearly,
S ⊂ [n + 1], thus M(n + 1) ≥ M(S) = M(n).

Conjecture 66. Values of M(n) grow smoothly: for each n either M(n) =
M(n − 1) or M(n) = M(n − 1) + 1.

Definition 67 (Cardinal n). We call n ∈ N cardinal if M(n) > M(n − 1).

The next observations we make are related to how the critical sets are con-
structed. We may see that for most of them, the sum of the first and the last
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element is equal to the sum of the second and the second-to-last ones, the third
and the third-to-last ones, and so on till the middle of the critical set.

Definition 68 (Symmetric set). A critical set S = {a1 < · · · < ak} is symmetric
with a sum ℓ ∈ N if

∀ i ≤ k

2 ai + ak+1−i = ℓ

5 10 15 20 25 30 35
n

4

2

0

2

4

6 min a1 + a 1 n
max a1 + a 1 n

Figure 4.3: Results of Experiment 64: sums of the symmetric sets, shifted by n
(e.g. critical sets for n = 10 have sums from n − 2 to n + 4).

In Figure 4.3, we see that most of the critical sets are symmetric with a sum
close to n. The number of critical sets grows for every consecutive non-cardinal
n, and so do the values of possible sums. For example, for n = 8 we have sets
with sums 8, 9, 10 (n to n + 2), for n = 9 with sums from 8 to 12 (n − 1 to n + 3)
and so on.

Definition 69. We call the biggest interval of n’s sharing the same M(n) value
an interval. For example, 13 − 18 or 19 − 22 are intervals. When we say i-th
non-cardinal n, we mean that n is at the (i + 1)-th position in its interval.

We are now ready to present some conjectures about the sets’ sums.

Conjecture 70. Cardinal n’s are always odd and have exactly one critical set S.
It is symmetric with a sum n + 1.

Conjecture 71. Most of the critical sets for non-cardinal n are also symmetric,
with a bigger interval of sums present. Symmetric sets for i-th non-cardinal n
have sums from n − i + 1 to n + i + 1, with each value present at least once. In
particular, a critical set with sum n + 1 is present for every n.

Then we realize that some sets are similar to each other, and we do not
need to consider them separately. For example, S = {a1, . . . , ak} and S ′ =
{a1 + 1, . . . , ak + 1} behave equivalently in terms of the existence of an odd
residue class, and M(S) = M(S ′). Thus, if we are interested in some specific
construction patterns of critical sets, we may filter out the sets which behave
similarly to the ones we already have.
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Definition 72 (Equal w.r.t. shift). We say that sets S1 = {a1, . . . , ak}, S2 =
{b1, . . . , bk} are equal w.r.t. shift if

∃d : ∀ i ∈ [k] ai − bi = d.

It is easy to see that the relation ”equal w.r.t. shift” is an equivalence.

Definition 73 (Canonical set). We define canonical sets for given n as the rep-
resentatives of equivalence classes of the relation ”equal w.r.t. shift”. From each
class, we choose a representative to be a set where the smallest element is 1. It
is clear that such an element always exists.

It makes sense to stick only to canonical critical sets from now on. Also, every
set which is critical for n−1 is also a critical one for n, as long as n is not cardinal.
Thus, if we want to reduce the collection of considered critical sets even more, it
makes sense to take a look only at unique sets.

Definition 74 (Unique set). We call the critical set for given n unique if it is
not a critical set for smaller n.

Now, we are able to purify the collection of considered sets in order to analyze
only sets possessing some unique characteristics.

Definition 75 (Proper set). We call the critical set for given n proper if it is
unique, canonical, and symmetric.

Lemma 76. Proper sets necessarily contain both 1 and n and thus have a sum
n + 1.

As follows from the results of Experiment 64, at least one proper set exists for
every n we considered, and we conjecture that it holds even for larger n values.
Thus we can decrease the number of sets considered in the experiment, which will
decrease computational time, and we will be able to obtain more M(n) values
and critical sets for them thanks to it.

Conjecture 77. For any n, there exists a proper set.

Definition 78. We denote by M ′(n) a restriction of M(n) to proper sets, i.e.,

M ′(n) = max({M(S) | S ⊆ [n], 1, n ∈ S, S is symmetric}).

Clearly, M ′(n) ≤ M(n), but based on the results of the first experiment, we
assume that the values are actually equal, as a proper set exists amongst critical
ones for any n.

Conjecture 79.
∀n ∈ N M(n) = M ′(n).

Before we move to the result of the next experiment, where we compute M ′(n)
for higher n values, let us recall that by taking into account only proper sets, we
cover all existing symmetric ones (those we do not analyze directly are those equal
to considered w.r.t. to shift or those which are considered for smaller values of
n). But what about the sets which are not symmetric? We empirically observe

38



5 10 15 20 25 30 35
n

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f u
ni

qu
e 

ca
no

ni
ca

l s
et

s

all
symmetric
asymmetric

Figure 4.4: Results of Experiment 64: number of symmetric and asymmetric
unique canonical sets.

symmetric asymmetric total

1 0 1
2 0 or 2 2 or 4
4 4 or 12 8 or 16

Table 4.2: Results of Experiment 64: correlation of the number of symmetric and
asymmetric unique sets.

that the number of symmetric and asymmetric sets for each n correlate (see Table
4.2 and Figure 4.4). Interestingly, the total number of unique canonical sets is
always a power of 2, and so is the number of proper sets. For now, we leave those
observations as is and focus on proper sets, as we believe that this restriction is
valid and results in a significant reduction of computational time for higher n’s.

Experiment 80 (Proper sets). This experiment is similar to Experiment 64, but
we limit ourselves to proper sets, as we believe that at least one such set exists
for every n (as stated in Conjecture 77). To do this, we go all over all sets
S ′ ⊆ [⌊n/2⌋ − 1] and for each of them construct

S = {1} ∪ {a + 1 | a ∈ S ′} ∪ {n − a | a ∈ S ′} ∪ {n}.

For each S, we compute M(S), find a maximum M(S) over all S, and store it
together with all sets S where M(S) is maximum. We pursue the same goals as
in the previous experiment - find M ′(n) and take a look at the critical sets to find
some clues about how they are constructed.

• Input: n

• Input range: 6 − 62

• Output: M ′(n), list of proper sets for given n

• Path: discerning sets/generate/discerning proper sets.py
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This definition of an experiment allows us to save some computational time,
as we do not need to go over all subsets of [n]. In Experiment 64, we analyzed
all non-empty sets of [n] of even size. There are 2n−1 − 1 of them. In Experiment
80, we only need to construct half of the set (i.e., elements from [⌊n/2⌋]), also
knowing that 1 is always in the set. Thus, we examine only 2⌊n/2⌋−1 sets and can
run the experiment for approximately twice bigger n.

This experiment allows us to obtain more values of the function M ′(n), which
looks more promising for higher n, as the curve is starting to look flatter (see
Figure 4.5). We are also able to examine more critical sets for some clues on their
construction (see Table B.2).
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Figure 4.5: Results of Experiment 80: values of M ′(n).

We may also take a look at cardinal values of n and see if there is some
pattern in whether the n is cardinal or not. In Table 4.3, we see that almost all
(9 out of 10) cardinal n are prime, but not all prime numbers are present. This
is an interesting result, which, however, can not be generalized as it seems that
cardinal n’s do not correspond to some obvious pattern.

M ′(n) cardinal n

5 7
6 11
7 13
8 19
9 23
10 29
11 33
12 43
13 47
14 59

Table 4.3: Results of Experiment 80: cardinal n’s.

We again observe that the number of examined sets is always a power of 2,
which we already saw in the result of the previous experiment. Moreover, if we
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restrict ourselves to an interval of n’s with the same M ′(n), the number of proper
sets is the same for consecutive odd and even n, while for the next odd n, it will
be twice as big unless it is cardinal (see Figure 4.6). It is particularly well seen
for bigger intervals of n’s, we present one of them in Table 4.4. The number of
the proper sets is 1 for a cardinal n = 33. Then, it doubles with every second
value of n for n up to 42 until it becomes 1 again for a cardinal n = 43. The
clear assumption would be that the proper sets for the odd non-cardinal n are
somehow constructed from the sets for two previous n’s (even and odd).
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Figure 4.6: Results of Experiment 80: Number of proper sets (logarithmic).

n number of proper sets

33 1
34 1
35 2
36 2
37 4
38 4
39 8
40 8
41 16
42 16
43 1

Table 4.4: Results of Experiment 80: number of proper sets for n from 33 to 43.

Now, it is time to take a closer look at how the proper sets are constructed so
that we can prove or disprove our assumption. To do this, we construct a ”critical
matrix”, where we visualize every set as a binary number depending on whether
or not each element of [n] is present in the set. Our main goal is to determine
some patterns they possess.

Definition 81 (Critical binary representation). For every proper set S ⊆ [n] with
sum n + 1 we denote its binary representation as a word x ∈ {0, 1}⌊n/2⌋ defined
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as follows.

xi =
⎧⎨⎩1, if i ∈ S,

0, otherwise.

This representation is a bijection because such set S is fully determined by the
first half of its elements (others can be computed due to the set’s symmetry), and
the biggest element of the first half is < (n + 1)/2 ≤ ⌊n/2⌋.

Experiment 82 (Proper matrix). In this experiment, we convert every proper
set S ⊆ [n] to its binary representation x ∈ {0, 1}⌊n/2⌋ as described above. We
construct a binary matrix of sets for given n, where each proper set is represented
as a column of the matrix. Columns are sorted lexicographically.

• Input: proper sets with sum n + 1 (listed in Table B.2)

• Input range: 6 − 62

• Output: visualization of sets as a matrix for each n

• Path: discerning sets/plot/plot proper matrix.py
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28
29

Figure 4.7: Results of Experiment 82: proper matrix for n = 58.

Figure 4.7 contains 32 proper sets for n = 58, divided into groups of four by
visual guidelines. The picture does not look arbitrary at all, and we may note
several interesting observations, which hold for other examined values of n as well
(we do not present matrices for all examined values of n here, as it would take
a lot of space, but all the observations could be verified in Table B.2). First,
we may see that in those groups of four, which we separated, every number is
presented 0, 2, or 4 times. Moreover, the presence of each number is balanced
amongst all sets.
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Conjecture 83. Every element is contained in all, half, or none of the proper
sets for given n.

Moreover, we see that those appearances in the groups of four are codepen-
dent. Let us take 20, for example. It appears in the first and the third set of a
group (i.e., we have 1010 in its row), and we observe that its appearance in the
next group will always be the same (1010) or inverse (0101).

Conjecture 84. In critical sets sorted lexicographically according to their binary
representation and divided into groups of four, each element appears in an even
number of the sets in each group (0 - none of them, 2 - exactly half, or 4 - all).
Moreover, its appearance in the next groups coincides with the first group in a
way that it is the same or completely inverse.

Besides those facts, we may also take a closer look at the first 6 rows of the
matrix. It turns out that they contain all binary representations of numbers from
100000 to 111111 in columns, each number exactly once.

Conjecture 85. For any i ≥ 2, proper sets for i-th non-cardinal n contain all
possible combinations of numbers from 2 to ⌊i/2⌋ + 1 (1 is always present in all
sets).

This allows us to state an even stronger conjecture. As none of the sets
for one n share the same elements amongst the first ones, and the number of
possible combinations of those elements perfectly correspond to the number of
examined sets, we may assume that every proper set is completely determined
by the appearance of the several smallest elements in it. We define it precisely in
the following conjecture.

Conjecture 86. For any i-th non-cardinal n, i ≥ 2, every proper set has a unique
combination of elements from 2 to ⌊i/2⌋ + 1 and is completely determined by it.

For now, we looked at the proper sets for each n separately. However, as
consecutive non-cardinal n share M(n) value, we assume that their proper sets
should share some construction patterns and sets for higher n values could be
constructed from the sets for smaller ones. Because of that, we concatenate the
critical matrices for the two biggest intervals of non-cardinal n values we obtained,
33 − 42 and 47 − 58, in Figures 4.8 and 4.9.

The last conjecture we stated was related to the first elements of the sets. In
Figure 4.8, we see that even the last elements of the set are somehow related.
If we take a look at the last 5 elements of the sets for n = 41 and n = 42, we
see that their appearances correspond perfectly, although they are not the same
numbers (last 5 elements for n = 41 are number from 16 to 20, while for n = 42,
those are 17 to 21). There is no such obvious correspondence between n = 40
and n = 41, but there is a similar one for n = 39 and n = 40, although it affects
only 4 rows. It turns out that this holds for all the n values in this interval.
More precisely, for i-th and (i + 1)-th non-cardinal n values, where i is even,
last ⌊i/2⌋ + 1 elements share the same pattern. Unfortunately, this statement is
only true for this interval (with M(n) = 11), and the claim breaks for another
examined interval 47 − 58 (M(n) = 13). There are no obvious patterns in that
interval.
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Figure 4.8: Results of Experiment 82: proper matrix for n from 33 to 42.
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Figure 4.9: Results of Experiment 82: proper matrix for n from 47 to 58.

Unfortunately, we could not prove the conjectures stated in this section, but
we believe this direction is promising. We list several essential ones which remain
unproven.

Conjecture 87 (Discerning sets structure). We list the claims about the structure
and construction of critical sets which we believe hold.

• Every n has a proper set S with M(n) = M(S).

• Every cardinal n has exactly one critical set, which is also proper.

• There are 2⌊i/2⌋ proper sets for i-th non-cardinal n amongst values of n
sharing the same M(n) value.

• Proper sets for i-th non-cardinal n are fully determined by the appearances
of number from 2 to ⌊i/2⌋ + 1 in them.

• Proper sets for i-th and (i + 1)-th non-cardinal n’s, where i ≥ 2 is even,
may be constructed as a combination of the proper sets for n − 1 and n − 2.

We believe solving at least some of those conjectures will introduce valuable
progress toward estimating M(n) bounds. The ultimate goal, however, is to
present a construction of one or more critical sets for a given n, which will allow
to compute M(n) without the need to go over different critical sets candidates.
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4.5 Theory
In this section, we show that Conjecture 60 does not hold in general, and the
approach described in this section does not help to achieve the desired upper
bound for the discerning problem. To show this, we need to get back to the roots
of the problem we are solving. The constructed discerning automaton accepts the
words having an odd number of ones at indices belonging to some residue class.
Thus, to discern two words, we need to find a residue class of indices where the
numbers of ones in those words have different parity. It turns out that the number
of those residue classes with logarithmic modulo is too small to distinguish all
the words of length n sufficiently.

Lemma 88.
M(n) ∈ Ω(

√
n).

Proof. Let us fix some word length n. For every pair of words u, v, we need
to find 2 ≤ m ≤ M(n) and 0 ≤ i ≤ m such that |um,i|1 ̸≡ |vm,i|1 mod 2.
Let us create a mapping r : {0, 1}n → {0, 1}k describing the words in terms of
those remainders. I.e., for every modulo 2 ≤ m ≤ M(n) and every remainder
0 ≤ i ≤ m, we write down 1 if the number of ones on corresponding indices is
odd and 0 otherwise. How long would such a description be? Clearly, we write
down k = 2 + 3 + · · · + M(n) = O(M(n)2) numbers. Thus, the range of function
r contains 2k = 2O(M(n)2) values or even less, as probably not all combinations
of parities are admissible. To be able to distinguish all pairs of input words
with some modulo up to M(n), we require r to be an injection, so the necessary
condition is 2n ≤ 2O(M(n)2), which proves the claimed bound.

It is worth mentioning that we assume the equivalence between the discerning
set problem, where M(n) is defined as a maximum of M(S) over all S ⊆ [n], and
discerning the words by a discerning automaton A(m, i). Indeed, the existence
of two words with the same parity of the number of ones in all residue classes
implies that their discerning set has all residue classes of even cardinality.

This consideration corresponds to one Chase [2021] presented in his work. He
claimed that comparing the numbers of ones at some residue class indices is not
sufficient by itself and leads to O(

√
n log3/2 n) upper bound. Clearly, the number

of ones is a stronger criterion than its parity. Thus, obtaining any better result
would actually contradict Chase’s claim.

Although we proved that the approach described in this section will not help
to improve the bounds for the discerning problem, this does not diminish the
fact that the obtained results may be valuable for some other research involving
all subsets of [n] with small residue classes considered. We are convinced that
the structure of the examined critical sets is interesting, and this topic deserves
further research.
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5. Random automata
In this chapter, we study an alternative approach to the discerning problem.
Specifically, we assume that there is no need to construct a tailored automaton
for two words given as input. Instead, we might take several randomly gener-
ated small automata and use them together to distinguish the input with high
probability. Clearly, just some random automata may not be good enough, then
one can consider a specific subclass of automata. Namely, we consider random
permutation automata (as defined in Section 1.4) and compare their performance
with the simple ones. We also introduce one slight improvement to the permu-
tation automata construction. We analyze the behavior of randomly generated
automata on randomly chosen subsets of words of a given length and claim that
the random permutation automata perform well on average in contrast to the
simple random ones.

We start with some definitions, theoretical considerations, and conjectures in
Section 5.1 and support them with several conducted experiments and empirically
obtained results in Section 5.2. We show that a specific subclass of random au-
tomata actually performs well on average for randomly generated pairs of words,
even with a constant number of states. Thus it could be used as the first step of
the discerning process, followed by a traditionally constructed automaton in case
the random one will not be successful in distinguishing the words.

5.1 Theory
In this section, we discuss what we want to measure and how, what pitfalls
this approach has, and how we can improve the performance of the automata.
Clearly, when we analyze an automaton’s performance, the most important part
is the evaluation method. If we want to estimate an automaton’s success rate
for longer words empirically, we can not run the automaton over all of them,
as it will demand enormous computational time with an exponentially growing
number of words. Instead, we generate some number of word pairs randomly and
test the automaton on them. However, as Demaine et al. [2011] mentioned, the
discerning problem is small on average.

Lemma 89 (Demaine et al. [2011]). The average size of an automaton discerning
two words chosen uniformly at random from {0, 1}n is constant.

Proof. The probability that two randomly chosen words differ for the first time
at i-th position is 2−i. If the first difference between the words occurs at i-th
position, the automaton with i + 2 states is sufficient (see Lemma 30). Then

E(# states) =
m∑︂

i=1
2−i(i + 2) ≤ 4.

This consideration, however, uses a construction of an automaton specifically
tailored for the input words. We, on the contrary, assume that even a not tailored
automaton may be sufficient. Nevertheless, we can expect that some word pairs
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are more difficult to distinguish than others, and if there are not many of them, we
may not encounter them during the evaluation of automata performance. Thus,
it is not possible to guarantee absolute accuracy with this approach.

Let us return to the automata we will analyze: random ones (see Definition
14) and random permutation ones (see Definition 15). We call the latter just
permutation ones from now on. It is clear that permutation automata feature a
certain advantage compared to random ones. If we have the same substring in
both input words, a permutation automaton can not finish in the same state after
reading it unless it was already in the same state for both words at the beginning
of the substring. Thus, once achieved, discernment is preserved until the next
difference between the word. A random automaton can not guarantee this.

This consideration would be almost sufficient for the permutation automaton
to always discern the words containing only one difference between them. How-
ever, it can happen that the transitions it makes reading the different symbols
lead from the same state to the same state – then, the automaton will not be
able to distinguish the words. Luckily, we can avoid this by introducing a class
of improved permutation automata as follows.

Definition 90 (Shifted permutation automaton). We define a construction of a
shifted permutation automaton M = (Q, {0, 1}, δ, q0), where Q = {q0, . . . , qk−1},
in a way that we choose a permutation π of the numbers from 0 to k−1 uniformly
at random and assign δ(qi, 0) = qπ(i) and δ(qi, 1) = qπ(i+1 mod k) for all 0 ≤ i < k.
It is clear that this construction yields a permutation automaton as introduced in
Definition 13, and moreover δ(qi, 0) ̸= δ(qi, 1) for all the states qi ∈ Q.

There are clearly more ways to ensure that the transitions from any state lead
to different states. For example, instead of δ(qi, 1) = qπ(i+1 mod k), one can assign
δ(qi, 1) = qπ(i)+1 mod k. Those automata types, however, behave similarly, so we
present the analysis only for one of them. This gives us three classes of automata
to analyze, which could be described by the parts they can not contain, which
we show in Figure 5.1.

qi

qj qk

s

s

(a) for permutation automata

qi qk
0, 1

(b) for shifted permutation automata

Figure 5.1: Forbidden configurations

• Random automaton may not preserve the discernment while reading the
same substring (i.e., being in different states, the automaton can get into
the same state even if it reads the same sequence of symbols in both runs).
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• Permutation automaton preserves the discernment but does not guarantee
its creation (i.e., it can not get to the same state from different ones reading
the same input but can get to the same state from the same one after reading
different inputs).

• Shifted permutation automaton preserves the discernment and guarantees
its creation (i.e., being in the same state and reading different symbols, it
would necessarily get to the different states).

None of the automata can guarantee to discern more than one difference in
the input, as we can not say anything about the possibility of getting to the same
state from the different ones by different symbols. Thus, even if we encountered
a discernment, the automaton can get back to the same state after the next
difference between the words. Now, let us see if we can assume something about
the automata’s behavior before we conduct the experiments.

5.1.1 Permutation automata
As we already mentioned, the transition function of a permutation automaton
represents an injective mapping for each symbol. This gives us an opportunity
to easily analyze what is happening when the automaton deals with the words
having only one difference between them.

Lemma 91. A randomly constructed permutation automaton with m states dis-
tinguishes the words of length n with one difference between them with probability
m−1

m
.

Proof. Let us have an automaton M = (Q, {0, 1}, δ, q0). For any state q ∈ Q,
by construction, it is clear that the probability that δ(q, 0) ̸= δ(q, 1) is m−1

m
, as

both permutations for the transition function are taken randomly. Let the words
u and v have the one and only difference at index i. As we are dealing with the
permutation automaton, we may be certain that if the automaton is in different
states after reading the difference, it will remain so till the end and distinguish
the words. If the automaton is in the same state after reading the difference,
it will also remain so and will not distinguish the words. Thus, P [δ(q, ui) ̸=
δ(q, vi)] = P [δ̂(q, ui...) ̸= δ̂(q, vi...)]. So, after reading the beginning of the words
u...i−1 = v...i−1 the automaton will be in some state q ∈ Q, and, as we showed,
the probability of distinguishing the words P [δ̂(q0, u) ̸= δ̂(q0, v)] will be the same
as P [δ(q, ui) ̸= δ(q, vi)], which is m−1

m
.

Corollary. The probability of distinguishing the words with one difference by a
permutation automaton does not depend on the length of the words.

Thus, if we want to achieve, for example, a 99% success ratio, an automa-
ton with m = 100 states will be sufficient, regardless of the input length. The
obtained result, however, is not strong or surprising, as we can construct even a
2-state deterministic automaton that is able to distinguish such words. Also, this
consideration does not hold for simple random automata, as they can ”collapse”
to the same state even while reading the same input - thus, the different states
immediately after the difference do not guarantee the different states at the end.
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The computation of the success probability for a higher number of differences
between the words is, unfortunately, much more complicated. We can not assume
the probability of δ(q, 0) ̸= δ(q, 1) independently, as we need to take into account if
we already were in a state q or not and the probability of finishing in the particular
state after reading multiple symbols is hard to estimate without knowing the exact
automaton’s structure. Even if we want to analyze two consecutive differences
one after another, we need to start with a result of the first transition, which
could be two new states, the same new state, the same state as the automaton
already was in, or one same and one different. In each of the cases, there are
plenty of possibilities to analyze with regard to the situation after the second
transition. However, for the case of 2 or more consecutive differences, we can
provide a lower bound for the distinguishing probability by taking into account
only the case where all the visited states are unique. Clearly, for a sufficiently
large number of states, this case will be the most probable and thus gives us a
reasonable estimate.

Lemma 92. m-state permutation automaton distinguishes two words u and v
with k consecutive differences, where 2k < m, with probability P such that

P ≥ (m − 1) · · · (m − 2k)
m2(m − 1)2 · · · (m − k + 1)2 ≥ 1 − 4k2

m

Proof. Let us assume that the automaton is in the state q before the first differ-
ences. We consider a situation where after each read symbol in both words,
the automaton gets to a new state. I.e., there exist 2k + 1 distinct states
Qd = {q, qu1 , . . . , quk

, qv1 , . . . , qvk
} such that the automaton goes through q →

qu1 → · · · → quk
while reading the first word, and through q → qv1 → · · · → qvk

while reading the second word. Let us call a probability of this happening
Pdistinct = P [q ̸= qui

̸= qvj
∀i, j ∈ [k]]. Clearly, as qvk

̸= quk
, if the described

situation happens, the automaton will distinguish the words. So, P ≥ Pdistinct.
The first rough estimate we could obtain is to say that for any state in Qd\{q}
the possibility that some already existing state would be picked instead of it is
2k
m

. This gives us a second bound from the lemma.

Pdistinct ≥ 1 − 2k · 2k

m
.

To obtain the stricter bound, we need to compute the probability using the
fact that we are dealing with a permutation automaton. That is to say, no state
can have more than one incoming arrow with the same symbol. Let us pick the
states for Qd one by one. We can do this under the assumption that we are not
revisiting the states. Thus, we have no additional constraints for the values of
the transition function for them. In the beginning, Qd = {q}. When we pick
qu1 , we have m states to choose from, and (m − 1) of them are suitable. For qv1

there are also m possibilities, but only (m − 2) suitable ones (as qv1 ̸= q, qu1).
Now we have one arrow with each symbol in our automata (as u1 ̸= v1). Thus,
when we choose states qu2 and qv2 , there are only (m − 1) possibilities for each
of them, from which (m − 3) and (m − 4) are suitable, respectively. As in each
step we necessarily define one transition by zero and one transition by one, the
number of possibilities at i-th step is always (m − i + 1), while the number of
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suitable possibilities is equal to the number of the states not visited yet, and will
be (m − 2i + 1) for qui

and (m − 2i) for qvi
. Continuing like this, we obtain that

Pdistinct =
k∏︂

i=1

(m − 2i + 1)(m − 2i)
(m − i + 1)2 ,

which gives us a desired bound.

This consideration gives us a lower bound on distinguishing the words with
k consecutive differences by a permutation automaton, but the bound is getting
smaller with the increasing number of differences - this is because the assumption
that we will visit only previously unvisited states becomes less and less probable.

Nevertheless, while testing automata on randomly generated words, we can
not guarantee that the differences in the words will be consecutive. Moreover,
between all possible pairs with k differences, there is a negligible number of those
ones with consecutive differences. Thus we are not able to make any general
conclusions about the automata success rate based on this approach. We conclude
this subsection with a simple conjecture.

Conjecture 93. Permutation automata have a higher success rate than random
ones.

5.1.2 Shifted permutation automata
With a shifted permutation automaton, there are two statements that are cer-
tainly true.

Lemma 94. A shifted permutation automaton always distinguishes words with
one difference between them.

Proof. Let us consider a shifted permutation automaton M = (Q, {0, 1}, δ, q0).
By its construction, if M is in a state q ∈ Q before reading the difference, it will
get to the different states after it, as δ(q, 0) ̸= δ(q, 1) by definition, and remain
there (by nature of permutation automata).

Lemma 95. A shifted permutation automaton with 2 states always distinguishes
words with an odd number of differences between them.

Proof. If we apply all the constraints in the definition of the shifted permutation
automaton, we see that there are only two 2-state automata satisfying all of them.
Figure 5.2 show both of them, and we may see that those are exactly the parity
ones. I.e., they discern the words with different parity of the number of ones/zeros
(See Lemma 28). Clearly, the words with an odd number of differences will have
different parities of the numbers of zeros and ones.

Other than that, the analysis is also complicated, so we only conjecture that
the shifted permutation automaton will perform better than the simple permu-
tation one.

Conjecture 96. Shifted permutation automata have a higher success rate than
permutation ones.
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(a) Automaton discerning parity of ones

q0 q1

0
1

0

1

(b) Automaton discerning parity of zeros

Figure 5.2: Shifted permutation automata with 2 states

5.1.3 Random automata
With random automata, we can not predict anything - the main difference is that
we can get to the same state from the different ones by the same symbol. So, we
can say that the finishing state is also random and does not depend on the word
we are reading. Then, if the probability of ending in every state is the same,
the probability that automata distinguish two input words is m−1

m
. However, it is

obvious that the probability of finishing in each state is not the same - some of the
states have more input arrows than others (otherwise, it would be a permutation
automaton). This is the reason why we can not even compute the probability
of the automaton distinguishing two words with one difference. Obviously, if the
words differ in the last symbol, the probability will be m−1

m
, but if the difference

occurs somewhere in the middle, the result depends on the whole words’ parts
which come after the difference, and it is impossible to estimate finishing state(s)
without knowing the automaton construction. Even the estimation of distin-
guishing probability for the words with consecutive differences, as we stated in
Lemma 92 for a permutation automaton, is not possible because the fact that the
automaton will be in different states after the last difference does not guarantee
that it remains so. To the best of our knowledge, no analysis of such randomly
generated automata was conducted previously.

The main problem of the random automaton is that it can converge to the
same state from different ones while reading the same input. For example, if the
words contain only one difference close to the beginning, it is natural to assume
that the random automaton will distinguish them with a lower probability than
if there is a difference close to the end of the words. As we generate the word
pairs randomly, we do not take into account the positions of the differences in
the word. However, with a higher number of differences, there probably will be
a difference closer to the end of the words. Thus, we come up with a natural
conjecture.

Conjecture 97. The success rate of random automata increases with a growing
number of differences between the input words.

5.2 Experiments
In this section, we present empirical results on the success rate of automata from
three different classes (random, permutation, and shifted permutation). We start
with an input that differs only in one symbol in Experiment 98, where we see
that both permutation classes drastically outperform the random one. We then
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proceed with Experiment 99, increasing the percentage of differences between
the words, which helps random automata to distinguish the words better. After
that, we recall what a simplified DFA is (see Definition 8) and realize that a
fixed starting state may negatively affect the performance of the automata. In
Experiment 100, we measure the success rate of the simplified versions of the
automata and see that it improves the performance of both permutation types
but not the random one. In Experiments 101,103 and 105, we are looking for
the smallest number of states for a random shifted permutation automaton to be
successful for all the words of a given length from a randomly generated sample.
It turns out that it performs very well on average - even a constant size is sufficient
with high probability. However, there exist words that are not distinguishable
even with a linear size. Finally, we conduct the same experiments for the random
automata to see that it does not perform well even on average - the successful
size is twice the length of the word.

We start with analyzing the performance of three automata types on random
words which differ only in one symbol.

Experiment 98 (One symbol difference). For given word length n, number of
tried words w, number of tried automata t, and number of automata sizes to try s,
we generate a specified number of automata sizes logarithmically on a scale from
1 to n. For each automata size, we generate w random words from {0, 1}n, and
in each of them, randomly choose and swap one symbol to obtain a random pair.
Then, we generate t automata of each type and compute the success rate - the
number of tries where the automaton successfully distinguished the words (ended
in different states) divided by the total number of tries. For a given automaton
size, we compute the overall average success rate - i.e., the number of successful
discernments divided by all w · t tries, and also the minimum and maximum
success rate over all words (i.e., a ratio of successful tries for the best and worst
distinguishable pair).

• Input: n (word length), w (number of words), t (number of tries), s (number
of automata sizes).

• Input values: n = 4000, w = 100, t = 1000, s = 100.

• Output: average, minimum, and maximum success ratio for each automata
type and size

• Path: random automata/experiments/success rate one symbol.py

In Figure 5.3, we see that shifted permutation automata with more than
one state always discern the words with one difference, as we stated in Lemma
94. Otherwise, in terms of performance, permutation automata with log n states
distinguish the words in more than 85% of tries and more than 98% with

√
n

size. The obtained results also confirm the Lemma 91, as m1 = ⌊log n⌋ = 8 and
m1−1

m1
= 7

8 = 0.875, while m2 = ⌊
√

n⌋ = 63 and m2−1
m2

= 62
63 ≈ 0.984. Random

automata do not have those rates, even for bigger sizes. The average success
ratio is around 65%, while the minimum and maximum ones are approximately
36% and 98%, respectively. We may assume that a hardly distinguishable pair of
words with a low success ratio contained a difference toward the beginning of the
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Figure 5.3: Result of Experiment 98: success ratio of automata of different types
and sizes for n = 4000, input words differ in one symbol.

words, while the easiest one contained a difference near the end, which allowed
the maximum success rates to at least tend to 100%.

We proceed with a similar experiment, changing only the input words to
contain more than 1 difference.

Experiment 99 (Multiple symbol difference). Given the number of differences
to be done in the word, we choose a subset of positions of a given size uniformly
at random and swap all the symbols on those positions. To reduce computational
time, we process shorter words and try fewer automata sizes.

• Input: n (word length), w (number of words), t (number of tries), s (number
of automata sizes), D (list of numbers of differences in the words)

• Input values: n = 1000, w = 100, t = 100, s = 50 and numbers of differences
D = [1, 2, 3, 5, 10, 50, 100, 500, 1000]

• Output: average success ratio for each number of differences, automata
type, and size

• Path: random automata/experiments/success rate more symbols.py

The results of the experiment are visualized in Figure 5.4, where we present
the performance of individual automata types, and Figure 5.5, where we com-
pare automata types with each other for several numbers of differences. Some
interesting observations can be derived from the results.

• We see that the performance of the random automata increases with the
increasing number of differences in the words. This corresponds to our
Conjecture 97.
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Figure 5.4: Result of Experiment 99: success ratio for different automata types
and sizes, multiple differences between the words.
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Figure 5.5: Comparison of different automata types performance for 5, 100, 500,
and 1000 differences
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• When the words are completely different (i.e., they have n = 1000 differ-
ences in this case), random automata are almost as good as the permutation
ones but still do not outperform them with increasing size.

• However, random automata present slightly better results amongst really
small automata with 2 to 5 states. This can be explained by permutation
constraints being too strict for the small automata (for example, as we al-
ready said, there exists only 2 shifted permutation automata with 2 states,
while there are 16 automata with 2 states in total). In particular, no per-
mutation automaton with 2 states can distinguish the words with an even
number of differences (by construction), while random ones distinguish at
least some of them.

• We see that shifted permutation automaton outperforms other types for
any automata size bigger than 2, while the simple permutation one starts
to continuously outperform the random one for any size bigger than 6. Both
facts correspond to our Conjectures 93 and 96 with some tolerable deviation
for smaller sizes, which we explained above.

• We see that both permutation automata types with a small number of states
perform better for the odd number of differences. This, again, probably has
something to do with their construction. Actually, the case with an odd
number of differences is never our main concern, as it can be solved by an
automaton with 2 states (see Lemma 28).

• Shifted permutation automata with two states always distinguish the words
with the odd number of differences, which we stated in Lemma 95, and
any shifted permutation automata always distinguish the words with one
difference, which we already mentioned in the analysis of the previous ex-
periment.

• We should also mention the improved performance of the shifted permuta-
tion automata with 4 states on the words with an odd number of differences.
It turns out that the shifted permutation automata with 4 states share an
interesting structure, but we do not describe it in detail as we were unable
to describe the behavior of those automata analytically.

The next important observation is that our goal is not only to measure the
success rate of different automata but to be able to find the best ones. We
can improve our approach by choosing different initial states for each random
automata. Up to now, we were starting in the state q0 all the time, but the
fact that the automaton is not successful starting from q0 does not mean that it
will not be successful starting from some other state. Thus we may improve the
preceding experiment by taking this into account.
Experiment 100 (Choosing initial state). We proceed similarly as in Experiment
99, but for each generated automaton we iterate over all its states for each au-
tomaton and write down unsuccessful result only if the automaton is unsuccessful
for all possible initial states.

• Input: n (word length), w (number of words), t (number of tries), s (number
of automata sizes), D (list of numbers of differences in the words)
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• Input values: n = 1000, w = 100, t = 100, s = 50 and numbers of differences
D = [1, 2, 3, 5, 10, 50, 100, 500, 1000]

• Output: average success ratio for each number of differences, automata
type, and size

• Path: random automata/experiments/success rate choose start.py
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Figure 5.6: Result of Experiment 100: success ratio for different automata types
and sizes, starting state can be chosen.

In Figure 5.6, we present the results of the experiment for each automaton
type separately. We can see that choosing the initial state helps both permu-
tation automata a lot: for an automaton of logarithmic size, we achieve a 95%
success rate for permutation and 98% for shifted permutation automata. In com-
parison, without choosing the initial state, logarithmic permutation automata
have 74 − 83% success rate depending on the number of differences, while shifted
permutation ones have 78 − 85% (apart from the case with 1 difference, where
they are 100% successful).

We also compare those results to results obtained with fixed initial state q0 in
Figure 5.7. We see that choosing the initial state does not help random automata
that much, especially with the growing number of changes. We assume that it
could be due to the existence of the state with a lot of input arrows, where the
automaton could get with a high probability, even from different states. Then,
choosing of initial state does not affect the behavior of automata that much (it
will get to a ”sink” state anyway).

Now we move to the next question. It is nice to be able to compute that
amongst 100 random words and 100 randomly generated automata, 98% tries
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(c) 100 (10%) differences
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Figure 5.7: Result of Experiment 100: comparison of automata performance for
fixed and various initial states, for a number of differences 1, 5, 100 and 1000.

were successful, but what if we want to achieve complete success? How many
states are needed? We conduct the next experiment to find the minimum size of
shifted permutation automaton, where it will be indistinguishable from an always
successful one on all the words we try.

Experiment 101 (100% rate bound - shifted permutation automata). In this
experiment, we iterate over different word lengths n (50, 100, 150, . . . , 4000) and
percentages of differences d (10%, 20%, 50%, 70%, 90%, 100%) between the words.
For each word length and differences’ percentage, we start with an automaton of
⌊log n⌋ size. We generate w random word pairs with t randomly generated au-
tomata for each pair and evaluate a simplified version of the generated automaton
in each of w · t tries. Then, we increase the automata size by 1 and repeat the
process until we see that all automata in the previous 5 iterations were 100% suc-
cessful - then we say that the first one of them was a minimal successful one. In
that way, we ensure that the 100% success rate was not a coincidence or result of a
specific automata structure (e.g. for a 2-state automaton with an odd differences’
number).

• Input: N (list of word lengths), w (number of words), t (number of tries),
D (list of percentages of differences in the words)

• Input values: N = [50, 100, . . . , 4000], w = 100, t = 1000, and percentages
of differences D = [10%, 20%, 50%, 70%, 90%, 100%]

• Output: for each word length n we output the smallest automaton size m
such that all 5·t generated automata of size m to m+4 were 100% successful
on all w generated words.
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• Path: random automata/experiments/success rate linear.py
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Figure 5.8: Result of Experiment 101: minimal successful size of shifted permu-
tation automaton.

Figure 5.8 presents the result of the experiment. Interestingly, the 100%
success rate border seems to be constant. Thus we may claim that, with high
probability, an automaton of a constant size is enough.

Conjecture 102. A randomly generated shifted permutation automaton of con-
stant size will distinguish two distinct randomly generated words with high prob-
ability.

This, however, as we discussed in the previous section, means only that permu-
tation automata perform well on average but says nothing about the worst-case
scenario. In our case, when we try only 100 word pairs from all possible

(︂
n
d

)︂
2n,

where n is from 50 up to 4000 and d is the number of differences, it makes sense
that we will probably not encounter ”bad” words. Clearly, we are not able to
examine any significant portion of such long words. Thus, we modify our exper-
iment to examine a bigger number of shorter words instead.

Experiment 103 (100% rate bound - shifted permutation automata, shorter
words). We repeat Experiment 101 with a bigger number of shorter words to en-
sure that we test a significant percentage of all possible word pairs.

• Input: N (list of word lengths), w (number of words), t (number of tries),
D (list of percentages of differences in the words)

• Input values: N = [10, 15, . . . , 45], w = 10 000, t = 100, and percentages of
differences D = [10%, 20%, 50%, 70%, 90%, 100%]

• Output: for each word length n we output the smallest automaton size m
such that all 5·t generated automata of size m to m+4 were 100% successful
on all w generated words.
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Figure 5.9: Result of Experiment 103: successful size of shifted permutation
automaton, shorter words

• Path: random automata/experiments/success rate linear.py

In Figure 5.9, we present the results for small n, where we try a significant
percentage of all possible words. For example, for n = 10 and 20% of differences,
we have

(︂
10
2

)︂
210 = 46080 possible word pairs, and thus we examine 104/46080 ≈

22% of words. We see that the needed automaton size is much higher - even
bigger than the length of the words. Thus, we may state that even though shifted
permutation automata perform well on average, they do not achieve such a good
performance on all possible word pairs.

Conjecture 104. There exist word pairs that a randomly generated shifted per-
mutation automaton of sublinear size will not distinguish.

Having all this, we try to formulate a more precise statement about the behav-
ior of shifted permutation automata of constant size using statistical methods. We
define a slightly different experiment to obtain the necessary values. We choose
larger words to really show that the automaton size is negligible in comparison
with the word length.

Experiment 105 (Constant size success rate - shifted permutation automata).
For given automaton size m, word length n, and number of changes d, we conduct
t Bernoulli trials. In each trial, we generate a random word pair and a shifted
permutation automaton according to given parameters. We measure the success
of the trial as ”the simplified automaton distinguishes the pair”.

• Input: n (word length), d (number of differences), m (automata size), t
(number of trials)

• Input values: n = 10 000, d = 1000, m = 10, t = 1 000 000

• Output: number of successful trials
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• Path: random automata/experiments/success rate linear constant size.py

We obtain the result of 99.9993% successful trials. Assuming that the proba-
bility of success in each trial is the same, we may calculate a binomial proportion
confidence interval. As Brown et al. [2001] suggested, we use the Agresti–Coull
interval, as we deal with a success rate extremely close to 1 and a large number of
samples. Namely, we compute the following interval for a 99% confidence level.

CIAC = p̃ ± κ

√︄
p̃(1 − p̃)

ñ
, where ñ = n + κ2 and p̃ = ns + κ2/2

ñ
.

Having n = 1000000, ns = 999993, κ = 2.576, we estimate with 99% confi-
dence that

p ∈ [99.9981%, 99.9998%].

This gives us the following claim.

Claim 106. A randomly generated simplified shifted permutation automaton of
size 10 will distinguish a randomly generated pair of words of length 10 000 with
10% differences between them with high probability. More precisely, we may esti-
mate the probability to be ≥ 99.9981% with 99% confidence.

Having the randomly generated automata of small constant size m that will
distinguish the words with high probability p allows us to decrease an average
necessary automaton size not asymptotically but by a huge constant. Precisely,
we are able to employ the following discerning method:

• Generate a random shifted permutation automaton of size m.

• If its simplified version discerns the input words, claim that the words are
different.

• Otherwise, create an automaton of size C ∈ O( 3
√

n log7 n) using existing
techniques and use it to distinguish the words.

The average number of needed states will be

E(# states) = pm + (1 − p)(m + C) = m + (1 − p)C,

which allows us to decrease the average number of states for sufficiently big words
by a big constant factor 1/(1 − p).

This approach does not allow us to improve the asymptotic bounds for the
main problem, but it is clearly useful in practice. Especially with no need to tailor
the automaton to the specific words on input, which will significantly simplify its
creation in case of dealing with extremely long words. This method should be,
though, supported by theoretical proofs of the obtained probabilities, which are
beyond the scope of this work.

Finally, for completeness, we try the same approach for random automata,
both for longer and shorter words.
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Experiment 107 (100% rate bound - random automata). We adapt Experiment
101 for a random automaton, making some changes to improve running time:
first, we increase automaton size m by 5 in each step instead of 1, as the resulting
values tend to be much higher. We also require 10 subsequent successful sizes for
a size to be marked as successful, as random automata tend to oscillate more.

• Input: N (list of word lengths), w (number of words), t (number of tries),
D (list of percentages of differences in the words)

• Input values: N = [50, 100, . . . , 1000], w = 100, t = 1000, and percentages
of differences D = [10%, 20%, 50%, 70%, 90%, 100%]

• Output: for each word length n we output the smallest automaton size m
such that all 10 · t generated automata of size m, m + 5, . . . , m + 45 were
100% successful on all w generated words.

• Path: random automata/experiments/success rate linear.py

Experiment 108 (100% rate bound - random automata, shorter words). The
setting of this experiment remains as in Experiment 107, but we again increase
the size of an automaton by 1 in each step, as we expect smaller sizes for shorter
words.

• Input: N (list of word lengths), w (number of words), t (number of tries),
D (list of percentages of differences in the words)

• Input values: N = [10, 15, . . . , 45], w = 10 000, t = 100, and percentages of
differences D = [10%, 50%, 100%]

• Output: for each word length n we output the smallest automaton size m
such that all 10·t generated automata of size m to m+9 were 100% successful
on all w generated words.

• Path: random automata/experiments/success rate linear.py
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(b) Word length from 50 to 1000

Figure 5.10: Results of Experiments 107 and 108: minimal successful size of a
random automaton.

Figure 5.10 shows the results for both experiments. The successful random
automaton size is approximately twice the word length in both cases. This allows
us to say that random automata do not perform well even on average, which
makes the results we obtained for permutation ones even more valuable.
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Conclusion
In this thesis, we examined the fundamental open problem in the informatics
field, presented existing proven bounds, and dug deeper into several approaches
not considered before. Although we were not able to push the bound for the main
problem, we present several interesting conjectures that deserve further research.

In particular, the construction of discerning sets seems to be a promising
topic, and we honestly think it is a puzzle that only misses some small piece to
be solved completely. Even though we proved that this approach could not be
used to prove the logarithmic upper bound and therefore close the whole problem,
the presented results are too systematic to be a coincidence, and we hope they
may be found useful in a different area.

We also presented some considerations and experiments about the usage of
randomly generated automata in the problem. It turns out that while simple
random automata do not perform well, there is an easily definable and gener-
atable subclass of automata whose elements perform well on average and can
distinguish randomly generated words with high probability. They do so even
with a constant number of states, which is much better than a proven determin-
istic lower bound. Even though there exist words that such randomly generated
automata can not distinguish, and this approach is not sufficiently generic, it
can achieve excellent performance on average with the support of already-known
deterministic methods.

Further research
This thesis contains several conjectures which we obtained empirically and not
fully proved. We believe that it may be beneficial to explore them further.

In relation to discerning sets, we stated some conjectures about the structure
of the critical sets at the end of Section 4.4. While the topic turned out to be
not useful for the main discerning problem, we believe that there might be some
other usage for the existence of a small modulo with an odd residue class in any
S ⊆ [n], and thus values of M(n) are worth examining without the connection to
discerning automata. As follows from the results of our experiments, critical sets
possess some interesting structural patterns, which we believe might be further
utilized for estimating the bounds for M(n).

Regarding random automata, there are three main directions for further re-
search. First, ”bad” word pairs are worth examining. Why are some word pairs
harder or almost impossible to distinguish by randomly generated automata?
How big a part of all pairs do they represent? Is it possible to distinguish them
easily using other methods? Besides that, one can also do some state analysis and
scrutinize the behavior of shifted permutation automata on different inputs to es-
timate the guaranteed probability of distinguishing specific word pairs. Finally,
further theoretical research may be done regarding the performance of shifted
permutation automata of constant size on a randomly chosen input. After some
further analysis, we believe this approach can be utilized to solve the main dis-
cerning problem.
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A. Source code
This appendix describes the source code used to obtain experimental results in
Chapters 4 and 5. All code is written in Python 3.9 using NumPy, Matplotlib,
and seaborn libraries. The scripts directory contains two subdirectories, each ded-
icated to one chapter of this thesis. As conducted experiments are costly in terms
of computational power and time, we store the results in data subdirectories for
reproducibility of the following analysis without the need to regenerate the input.
In discerning sets directory, one can find two scripts generating critical sets: gen-
erate/discerning sets.py and generate/discerning proper sets.py corresponding to
conducted Experiments 64 and 80. The plot directory contains various plotting
functions used to visualize obtained results. In the following listing, we limit
ourselves to the files used to produce results for a final version of this work, while
there are more for an interested reader to examine. In random automata direc-
tory one can find five scripts computing the success rate of different automata,
each corresponding to an experiment in Chapter 5. Two compare scripts are used
to create comparison plots in Figures 5.5 and 5.7. Described files are submitted
together with this text but could also be found in [Bilan, 2023]. The source tree
with a limited listing of files follows.

scripts
discerning sets

data
generate

discerning sets.py
discerning proper sets.py

plot
plot proper matrix.py
plot proper matrix interval.py
plots.py

random automata
data
experiments

compare.py
compare initial.py
success rate linear.py
success rate linear constant size.py
success rate choose start.py
success rate more symbols.py
success rate one symbol.py

automaton.py
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B. Critical sets
In this appendix, we present all critical sets for values of n from 6 to 34 in Table
B.1 and all proper sets for values of n from 6 to 62 in Table B.2.

Table B.1: Results of Experiment 64: critical sets for n from 6 to 34.

m i sum−n
unique &
canonical set

n = 6
4 0 0 {1, 2, 4, 5}
4 0 1 ✓ {1, 3, 4, 6}
4 1 2 {2, 3, 5, 6}

n = 7
5 0 1 ✓ {1, 2, 3, 5, 6, 7}

n = 8
5 0 1 ✓ {1, 4, 5, 8}
5 0 0 {1, 2, 3, 5, 6, 7}
5 1 2 {2, 3, 4, 6, 7, 8}

n = 9
5 1 1 ✓ {1, 3, 7, 9}
5 0 0 {1, 4, 5, 8}
5 0 2 {2, 5, 6, 9}
5 0 -1 {1, 2, 3, 5, 6, 7}
5 2 1 ✓ {1, 2, 4, 6, 8, 9}
5 1 1 {2, 3, 4, 6, 7, 8}
5 0 3 {3, 4, 5, 7, 8, 9}

n = 10
5 1 - ✓ {1, 2, 5, 10}
5 1 0 {1, 3, 7, 9}
5 0 -1 {1, 4, 5, 8}
5 0 - ✓ {1, 6, 9, 10}
5 0 2 {2, 4, 8, 10}
5 0 1 {2, 5, 6, 9}
5 0 3 {3, 6, 7, 10}
5 0 -2 {1, 2, 3, 5, 6, 7}
5 2 0 {1, 2, 4, 6, 8, 9}
5 1 0 {2, 3, 4, 6, 7, 8}
5 3 2 {2, 3, 5, 7, 9, 10}
5 0 2 {3, 4, 5, 7, 8, 9}
5 1 4 {4, 5, 6, 8, 9, 10}
5 0 1 ✓ {1, 2, 3, 4, 7, 8, 9, 10}
5 2 1 ✓ {1, 3, 4, 5, 6, 7, 8, 10}

n = 11
6 1 1 ✓ {1, 3, 4, 8, 9, 11}

n = 12
Table B.1: (continued)
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Table B.1: (continued)

m i sum−n
unique &
canonical set

6 1 0 {1, 3, 4, 8, 9, 11}
6 0 2 {2, 4, 5, 9, 10, 12}
6 0 1 ✓ {1, 2, 3, 5, 8, 10, 11, 12}

n = 13
7 2 1 ✓ {1, 2, 6, 8, 12, 13}

n = 14
7 2 0 {1, 2, 6, 8, 12, 13}
7 3 2 {2, 3, 7, 9, 13, 14}
7 2 1 ✓ {1, 3, 6, 7, 8, 9, 12, 14}

n = 15
7 2 -1 {1, 2, 6, 8, 12, 13}
7 3 1 {2, 3, 7, 9, 13, 14}
7 0 3 {3, 4, 8, 10, 14, 15}
7 2 0 {1, 3, 6, 7, 8, 9, 12, 14}
7 0 1 ✓ {1, 4, 6, 7, 9, 10, 12, 15}
7 0 2 {2, 4, 7, 8, 9, 10, 13, 15}
7 0 1 ✓ {1, 2, 3, 4, 6, 10, 12, 13, 14, 15}

n = 16
7 2 -2 {1, 2, 6, 8, 12, 13}
7 3 0 {2, 3, 7, 9, 13, 14}
7 0 2 {3, 4, 8, 10, 14, 15}
7 1 4 {4, 5, 9, 11, 15, 16}
7 2 -1 {1, 3, 6, 7, 8, 9, 12, 14}
7 0 0 {1, 4, 6, 7, 9, 10, 12, 15}
7 0 1 ✓ {1, 5, 6, 7, 10, 11, 12, 16}
7 0 1 {2, 4, 7, 8, 9, 10, 13, 15}
7 0 2 {2, 5, 7, 8, 10, 11, 13, 16}
7 0 3 {3, 5, 8, 9, 10, 11, 14, 16}
7 0 0 {1, 2, 3, 4, 6, 10, 12, 13, 14, 15}
7 1 2 {2, 3, 4, 5, 7, 11, 13, 14, 15, 16}
7 0 - ✓ {1, 2, 3, 5, 6, 9, 10, 11, 12, 13, 14, 16}
7 1 1 ✓ {1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16}
7 1 - ✓ {1, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16}

n = 17
7 0 1 ✓ {1, 7, 11, 17}
7 2 -3 {1, 2, 6, 8, 12, 13}
7 3 -1 {2, 3, 7, 9, 13, 14}
7 0 1 {3, 4, 8, 10, 14, 15}
7 1 3 {4, 5, 9, 11, 15, 16}
7 2 5 {5, 6, 10, 12, 16, 17}
7 0 - ✓ {1, 2, 3, 9, 11, 13, 14, 17}
7 5 1 ✓ {1, 2, 5, 8, 10, 13, 16, 17}
7 2 -2 {1, 3, 6, 7, 8, 9, 12, 14}

Table B.1: (continued)
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Table B.1: (continued)

m i sum−n
unique &
canonical set

7 0 - ✓ {1, 4, 5, 7, 9, 15, 16, 17}
7 0 -1 {1, 4, 6, 7, 9, 10, 12, 15}
7 0 0 {1, 5, 6, 7, 10, 11, 12, 16}
7 0 0 {2, 4, 7, 8, 9, 10, 13, 15}
7 0 1 {2, 5, 7, 8, 10, 11, 13, 16}
7 0 2 {2, 6, 7, 8, 11, 12, 13, 17}
7 0 2 {3, 5, 8, 9, 10, 11, 14, 16}
7 0 3 {3, 6, 8, 9, 11, 12, 14, 17}
7 1 4 {4, 6, 9, 10, 11, 12, 15, 17}
7 0 1 ✓ {1, 2, 3, 4, 5, 13, 14, 15, 16, 17}
7 0 -1 {1, 2, 3, 4, 6, 10, 12, 13, 14, 15}
7 1 - ✓ {1, 2, 4, 8, 9, 10, 11, 13, 15, 17}
7 1 1 ✓ {1, 3, 4, 7, 8, 10, 11, 14, 15, 17}
7 3 - ✓ {1, 3, 5, 7, 8, 9, 10, 14, 16, 17}
7 1 1 {2, 3, 4, 5, 7, 11, 13, 14, 15, 16}
7 0 3 {3, 4, 5, 6, 8, 12, 14, 15, 16, 17}
7 0 - {1, 2, 3, 5, 6, 9, 10, 11, 12, 13, 14, 16}
7 1 0 {1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16}
7 1 - {1, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16}
7 1 - {2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 15, 17}
7 2 2 {2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17}
7 0 - {2, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 17}

n = 18
7 1 1 ✓ {1, 6, 13, 18}
7 0 0 {1, 7, 11, 17}
7 1 2 {2, 8, 12, 18}
7 2 -4 {1, 2, 6, 8, 12, 13}
7 3 -2 {2, 3, 7, 9, 13, 14}
7 0 0 {3, 4, 8, 10, 14, 15}
7 1 2 {4, 5, 9, 11, 15, 16}
7 2 4 {5, 6, 10, 12, 16, 17}
7 0 6 {6, 7, 11, 13, 17, 18}
7 1 - ✓ {1, 2, 3, 6, 7, 9, 14, 18}
7 0 - {1, 2, 3, 9, 11, 13, 14, 17}
7 5 0 {1, 2, 5, 8, 10, 13, 16, 17}
7 0 1 ✓ {1, 2, 7, 8, 11, 12, 17, 18}
7 2 -3 {1, 3, 6, 7, 8, 9, 12, 14}
7 0 - {1, 4, 5, 7, 9, 15, 16, 17}
7 0 -2 {1, 4, 6, 7, 9, 10, 12, 15}
7 0 -1 {1, 5, 6, 7, 10, 11, 12, 16}
7 1 - ✓ {1, 5, 10, 12, 13, 16, 17, 18}
7 0 - {2, 3, 4, 10, 12, 14, 15, 18}
7 0 2 {2, 3, 6, 9, 11, 14, 17, 18}
7 0 -1 {2, 4, 7, 8, 9, 10, 13, 15}

Table B.1: (continued)
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Table B.1: (continued)

m i sum−n
unique &
canonical set

7 1 - {2, 5, 6, 8, 10, 16, 17, 18}
7 0 0 {2, 5, 7, 8, 10, 11, 13, 16}
7 0 1 {2, 6, 7, 8, 11, 12, 13, 17}
7 0 1 {3, 5, 8, 9, 10, 11, 14, 16}
7 0 2 {3, 6, 8, 9, 11, 12, 14, 17}
7 1 3 {3, 7, 8, 9, 12, 13, 14, 18}
7 1 3 {4, 6, 9, 10, 11, 12, 15, 17}
7 0 4 {4, 7, 9, 10, 12, 13, 15, 18}
7 0 5 {5, 7, 10, 11, 12, 13, 16, 18}
7 0 0 {1, 2, 3, 4, 5, 13, 14, 15, 16, 17}
7 0 -2 {1, 2, 3, 4, 6, 10, 12, 13, 14, 15}
7 0 - ✓ {1, 2, 4, 6, 7, 8, 9, 10, 15, 18}
7 1 - {1, 2, 4, 8, 9, 10, 11, 13, 15, 17}
7 0 - ✓ {1, 2, 5, 6, 7, 8, 10, 11, 16, 18}
7 0 - ✓ {1, 3, 4, 6, 8, 10, 13, 14, 15, 18}
7 1 0 {1, 3, 4, 7, 8, 10, 11, 14, 15, 17}
7 3 - {1, 3, 5, 7, 8, 9, 10, 14, 16, 17}
7 0 - ✓ {1, 3, 8, 9, 11, 12, 13, 14, 17, 18}
7 4 - ✓ {1, 4, 5, 6, 9, 11, 13, 15, 16, 18}
7 2 - ✓ {1, 4, 9, 10, 11, 12, 13, 15, 17, 18}
7 0 2 {2, 3, 4, 5, 6, 14, 15, 16, 17, 18}
7 1 0 {2, 3, 4, 5, 7, 11, 13, 14, 15, 16}
7 0 - {2, 3, 5, 9, 10, 11, 12, 14, 16, 18}
7 2 2 {2, 4, 5, 8, 9, 11, 12, 15, 16, 18}
7 4 - {2, 4, 6, 8, 9, 10, 11, 15, 17, 18}
7 0 2 {3, 4, 5, 6, 8, 12, 14, 15, 16, 17}
7 0 4 {4, 5, 6, 7, 9, 13, 15, 16, 17, 18}
7 3 - ✓ {1, 2, 3, 4, 5, 6, 7, 11, 14, 15, 16, 18}
7 2 - ✓ {1, 2, 3, 4, 7, 10, 11, 12, 14, 15, 17, 18}
7 0 - {1, 2, 3, 5, 6, 9, 10, 11, 12, 13, 14, 16}
7 1 1 ✓ {1, 2, 3, 5, 7, 9, 10, 12, 14, 16, 17, 18}
7 1 -1 {1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16}
7 0 - ✓ {1, 2, 4, 5, 7, 8, 9, 12, 15, 16, 17, 18}
7 1 - {1, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16}
7 0 - ✓ {1, 3, 4, 5, 8, 12, 13, 14, 15, 16, 17, 18}
7 0 1 ✓ {1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 16, 18}
7 1 - {2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 15, 17}
7 2 1 {2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17}
7 0 - {2, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 17}
7 2 - {3, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 18}
7 3 3 {3, 4, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18}
7 1 - {3, 5, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18}

n = 19
Table B.1: (continued)
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Table B.1: (continued)

m i sum−n
unique &
canonical set

8 0 1 ✓ {1, 6, 7, 8, 12, 13, 14, 19}
n = 20

8 2 1 ✓ {1, 2, 6, 9, 12, 15, 19, 20}
8 0 0 {1, 6, 7, 8, 12, 13, 14, 19}
8 0 2 {2, 7, 8, 9, 13, 14, 15, 20}

n = 21
8 2 0 {1, 2, 6, 9, 12, 15, 19, 20}
8 0 -1 {1, 6, 7, 8, 12, 13, 14, 19}
8 0 2 {2, 3, 7, 10, 13, 16, 20, 21}
8 0 1 {2, 7, 8, 9, 13, 14, 15, 20}
8 1 3 {3, 8, 9, 10, 14, 15, 16, 21}
8 1 1 ✓ {1, 2, 3, 6, 8, 10, 12, 14, 16, 19, 20, 21}
8 0 1 ✓ {1, 3, 6, 7, 9, 10, 12, 13, 15, 16, 19, 21}

n = 22
8 2 -1 {1, 2, 6, 9, 12, 15, 19, 20}
8 0 -2 {1, 6, 7, 8, 12, 13, 14, 19}
8 0 1 {2, 3, 7, 10, 13, 16, 20, 21}
8 0 0 {2, 7, 8, 9, 13, 14, 15, 20}
8 0 3 {3, 4, 8, 11, 14, 17, 21, 22}
8 1 2 {3, 8, 9, 10, 14, 15, 16, 21}
8 0 4 {4, 9, 10, 11, 15, 16, 17, 22}
8 1 0 {1, 2, 3, 6, 8, 10, 12, 14, 16, 19, 20, 21}
8 0 - ✓ {1, 2, 4, 6, 10, 11, 12, 16, 17, 19, 20, 22}
8 3 - ✓ {1, 3, 4, 6, 7, 11, 12, 13, 17, 19, 21, 22}
8 0 0 {1, 3, 6, 7, 9, 10, 12, 13, 15, 16, 19, 21}
8 2 2 {2, 3, 4, 7, 9, 11, 13, 15, 17, 20, 21, 22}
8 1 2 {2, 4, 7, 8, 10, 11, 13, 14, 16, 17, 20, 22}
8 0 1 ✓ {1, 2, 3, 4, 6, 8, 9, 11, 12, 14, 15, 17, 19, 20,

21, 22}
8 1 1 ✓ {1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

19, 22}
n = 23

9 0 1 ✓ {1, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19,
23}

n = 24
9 0 1 ✓ {1, 2, 5, 9, 10, 12, 13, 15, 16, 20, 23, 24}
9 0 0 {1, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19,

23}
9 1 2 {2, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 20,

24}
n = 25

9 0 1 ✓ {1, 2, 3, 5, 7, 8, 18, 19, 21, 23, 24, 25}
9 0 0 {1, 2, 5, 9, 10, 12, 13, 15, 16, 20, 23, 24}

Table B.1: (continued)
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Table B.1: (continued)

m i sum−n
unique &
canonical set

9 1 2 {2, 3, 6, 10, 11, 13, 14, 16, 17, 21, 24, 25}
9 0 1 ✓ {1, 3, 5, 6, 9, 11, 12, 14, 15, 17, 20, 21, 23,

25}
9 0 -1 {1, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19,

23}
9 1 1 {2, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 20,

24}
9 2 3 {3, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21,

25}
n = 26

9 0 0 {1, 2, 3, 5, 7, 8, 18, 19, 21, 23, 24, 25}
9 0 -1 {1, 2, 5, 9, 10, 12, 13, 15, 16, 20, 23, 24}
9 1 1 ✓ {1, 4, 5, 6, 7, 9, 18, 20, 21, 22, 23, 26}
9 0 2 {2, 3, 4, 6, 8, 9, 19, 20, 22, 24, 25, 26}
9 1 1 {2, 3, 6, 10, 11, 13, 14, 16, 17, 21, 24, 25}
9 0 3 {3, 4, 7, 11, 12, 14, 15, 17, 18, 22, 25, 26}
9 0 0 {1, 3, 5, 6, 9, 11, 12, 14, 15, 17, 20, 21, 23,

25}
9 0 -2 {1, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19,

23}
9 0 2 {2, 4, 6, 7, 10, 12, 13, 15, 16, 18, 21, 22, 24,

26}
9 1 0 {2, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 20,

24}
9 2 2 {3, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21,

25}
9 0 4 {4, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22,

26}
9 5 - ✓ {1, 2, 4, 5, 8, 11, 12, 14, 15, 17, 19, 21, 22,

23, 24, 26}
9 1 - ✓ {1, 3, 4, 5, 6, 8, 10, 12, 13, 15, 16, 19, 22, 23,

25, 26}
9 2 1 ✓ {1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18,

20, 22, 23, 24, 25, 26}
n = 27

9 3 1 ✓ {1, 3, 6, 10, 18, 22, 25, 27}
9 0 -1 {1, 2, 3, 5, 7, 8, 18, 19, 21, 23, 24, 25}
9 0 1 ✓ {1, 2, 4, 8, 9, 10, 18, 19, 20, 24, 26, 27}
9 0 -2 {1, 2, 5, 9, 10, 12, 13, 15, 16, 20, 23, 24}
9 1 - ✓ {1, 2, 11, 13, 14, 16, 17, 18, 21, 22, 24, 27}
9 1 0 {1, 4, 5, 6, 7, 9, 18, 20, 21, 22, 23, 26}
9 0 - ✓ {1, 4, 6, 7, 10, 11, 12, 14, 15, 17, 26, 27}
9 0 1 {2, 3, 4, 6, 8, 9, 19, 20, 22, 24, 25, 26}
9 1 0 {2, 3, 6, 10, 11, 13, 14, 16, 17, 21, 24, 25}
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Table B.1: (continued)

m i sum−n
unique &
canonical set

9 0 2 {2, 5, 6, 7, 8, 10, 19, 21, 22, 23, 24, 27}
9 1 3 {3, 4, 5, 7, 9, 10, 20, 21, 23, 25, 26, 27}
9 0 2 {3, 4, 7, 11, 12, 14, 15, 17, 18, 22, 25, 26}
9 1 4 {4, 5, 8, 12, 13, 15, 16, 18, 19, 23, 26, 27}
9 0 1 ✓ {1, 2, 3, 4, 7, 12, 13, 15, 16, 21, 24, 25, 26,

27}
9 0 -1 {1, 3, 5, 6, 9, 11, 12, 14, 15, 17, 20, 21, 23,

25}
9 0 -3 {1, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19,

23}
9 2 1 ✓ {1, 6, 7, 8, 9, 12, 13, 15, 16, 19, 20, 21, 22,

27}
9 0 1 {2, 4, 6, 7, 10, 12, 13, 15, 16, 18, 21, 22, 24,

26}
9 1 -1 {2, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 20,

24}
9 0 3 {3, 5, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 25,

27}
9 2 1 {3, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21,

25}
9 0 3 {4, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22,

26}
9 0 5 {5, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22,

23, 27}
9 5 - {1, 2, 4, 5, 8, 11, 12, 14, 15, 17, 19, 21, 22,

23, 24, 26}
9 1 - {1, 3, 4, 5, 6, 8, 10, 12, 13, 15, 16, 19, 22, 23,

25, 26}
9 0 - {2, 3, 5, 6, 9, 12, 13, 15, 16, 18, 20, 22, 23,

24, 25, 27}
9 2 - {2, 4, 5, 6, 7, 9, 11, 13, 14, 16, 17, 20, 23, 24,

26, 27}
9 1 - ✓ {1, 2, 3, 7, 8, 9, 10, 11, 12, 14, 15, 17, 19, 20,

22, 24, 25, 27}
9 0 - ✓ {1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 17, 18, 19, 20,

21, 25, 26, 27}
9 2 0 {1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18,

20, 22, 23, 24, 25, 26}
9 3 2 {2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 19,

21, 23, 24, 25, 26, 27}
n = 28

9 3 0 {1, 3, 6, 10, 18, 22, 25, 27}
9 4 2 {2, 4, 7, 11, 19, 23, 26, 28}
9 0 -2 {1, 2, 3, 5, 7, 8, 18, 19, 21, 23, 24, 25}
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Table B.1: (continued)

m i sum−n
unique &
canonical set

9 0 0 {1, 2, 4, 8, 9, 10, 18, 19, 20, 24, 26, 27}
9 1 - ✓ {1, 2, 5, 6, 9, 11, 18, 19, 20, 21, 22, 28}
9 0 -3 {1, 2, 5, 9, 10, 12, 13, 15, 16, 20, 23, 24}
9 0 1 ✓ {1, 2, 6, 10, 12, 14, 15, 17, 19, 23, 27, 28}
9 1 - {1, 2, 11, 13, 14, 16, 17, 18, 21, 22, 24, 27}
9 0 1 ✓ {1, 3, 4, 5, 8, 11, 18, 21, 24, 25, 26, 28}
9 1 -1 {1, 4, 5, 6, 7, 9, 18, 20, 21, 22, 23, 26}
9 0 - {1, 4, 6, 7, 10, 11, 12, 14, 15, 17, 26, 27}
9 4 1 ✓ {1, 5, 7, 8, 12, 14, 15, 17, 21, 22, 24, 28}
9 0 - ✓ {1, 7, 8, 9, 10, 11, 18, 20, 23, 24, 27, 28}
9 0 0 {2, 3, 4, 6, 8, 9, 19, 20, 22, 24, 25, 26}
9 1 2 {2, 3, 5, 9, 10, 11, 19, 20, 21, 25, 27, 28}
9 1 -1 {2, 3, 6, 10, 11, 13, 14, 16, 17, 21, 24, 25}
9 0 - {2, 3, 12, 14, 15, 17, 18, 19, 22, 23, 25, 28}
9 0 1 {2, 5, 6, 7, 8, 10, 19, 21, 22, 23, 24, 27}
9 1 - {2, 5, 7, 8, 11, 12, 13, 15, 16, 18, 27, 28}
9 1 2 {3, 4, 5, 7, 9, 10, 20, 21, 23, 25, 26, 27}
9 0 1 {3, 4, 7, 11, 12, 14, 15, 17, 18, 22, 25, 26}
9 0 3 {3, 6, 7, 8, 9, 11, 20, 22, 23, 24, 25, 28}
9 0 4 {4, 5, 6, 8, 10, 11, 21, 22, 24, 26, 27, 28}
9 1 3 {4, 5, 8, 12, 13, 15, 16, 18, 19, 23, 26, 27}
9 2 5 {5, 6, 9, 13, 14, 16, 17, 19, 20, 24, 27, 28}
9 0 0 {1, 2, 3, 4, 7, 12, 13, 15, 16, 21, 24, 25, 26,

27}
9 0 - ✓ {1, 2, 4, 5, 6, 8, 10, 13, 14, 16, 17, 18, 26, 28}
9 0 -2 {1, 3, 5, 6, 9, 11, 12, 14, 15, 17, 20, 21, 23,

25}
9 0 - ✓ {1, 3, 11, 12, 13, 15, 16, 19, 21, 23, 24, 25,

27, 28}
9 0 -4 {1, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19,

23}
9 2 0 {1, 6, 7, 8, 9, 12, 13, 15, 16, 19, 20, 21, 22,

27}
9 0 2 {2, 3, 4, 5, 8, 13, 14, 16, 17, 22, 25, 26, 27,

28}
9 0 0 {2, 4, 6, 7, 10, 12, 13, 15, 16, 18, 21, 22, 24,

26}
9 1 -2 {2, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 20,

24}
9 0 2 {2, 7, 8, 9, 10, 13, 14, 16, 17, 20, 21, 22, 23,

28}
9 0 2 {3, 5, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 25,

27}
Table B.1: (continued)

80



Table B.1: (continued)

m i sum−n
unique &
canonical set

9 2 0 {3, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21,
25}

9 1 4 {4, 6, 8, 9, 12, 14, 15, 17, 18, 20, 23, 24, 26,
28}

9 0 2 {4, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22,
26}

9 0 4 {5, 9, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22,
23, 27}

9 0 6 {6, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 23,
24, 28}

9 3 1 ✓ {1, 2, 3, 4, 6, 7, 10, 11, 18, 19, 22, 23, 25, 26,
27, 28}

9 1 - ✓ {1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 22,
25, 28}

9 5 - {1, 2, 4, 5, 8, 11, 12, 14, 15, 17, 19, 21, 22,
23, 24, 26}

9 1 - {1, 3, 4, 5, 6, 8, 10, 12, 13, 15, 16, 19, 22, 23,
25, 26}

9 2 - ✓ {1, 3, 5, 9, 10, 13, 14, 16, 17, 18, 19, 20, 22,
24, 25, 28}

9 0 - ✓ {1, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 19, 20,
24, 26, 28}

9 1 - ✓ {1, 4, 7, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24,
26, 27, 28}

9 0 - {2, 3, 5, 6, 9, 12, 13, 15, 16, 18, 20, 22, 23,
24, 25, 27}

9 2 - {2, 4, 5, 6, 7, 9, 11, 13, 14, 16, 17, 20, 23, 24,
26, 27}

9 1 - {3, 4, 6, 7, 10, 13, 14, 16, 17, 19, 21, 23, 24,
25, 26, 28}

9 3 - {3, 5, 6, 7, 8, 10, 12, 14, 15, 17, 18, 21, 24,
25, 27, 28}

9 0 - ✓ {1, 2, 3, 4, 5, 6, 7, 9, 12, 14, 15, 17, 19, 20,
21, 25, 26, 28}

9 0 - ✓ {1, 2, 3, 6, 7, 8, 9, 13, 14, 16, 17, 18, 20, 21,
23, 25, 27, 28}

9 1 - {1, 2, 3, 7, 8, 9, 10, 11, 12, 14, 15, 17, 19, 20,
22, 24, 25, 27}

9 2 - ✓ {1, 2, 4, 6, 8, 9, 11, 12, 13, 15, 16, 20, 21, 22,
23, 26, 27, 28}

9 0 - {1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 17, 18, 19, 20,
21, 25, 26, 27}

9 1 - ✓ {1, 3, 4, 8, 9, 10, 12, 14, 15, 17, 20, 22, 23,
24, 25, 26, 27, 28}

Table B.1: (continued)
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Table B.1: (continued)

m i sum−n
unique &
canonical set

9 2 - {2, 3, 4, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
21, 23, 25, 26, 28}

9 0 - {2, 4, 5, 7, 9, 10, 12, 14, 15, 17, 18, 19, 20,
21, 22, 26, 27, 28}

9 2 -1 {1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18,
20, 22, 23, 24, 25, 26}

9 3 1 {2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 19,
21, 23, 24, 25, 26, 27}

9 0 3 {3, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, 18, 19, 20,
22, 24, 25, 26, 27, 28}

n = 29
10 1 1 ✓ {1, 4, 5, 6, 9, 11, 12, 13, 14, 16, 17, 18, 19,

21, 24, 25, 26, 29}
n = 30

10 0 1 ✓ {1, 2, 4, 7, 9, 10, 11, 15, 16, 20, 21, 22, 24,
27, 29, 30}

10 1 0 {1, 4, 5, 6, 9, 11, 12, 13, 14, 16, 17, 18, 19,
21, 24, 25, 26, 29}

10 0 2 {2, 5, 6, 7, 10, 12, 13, 14, 15, 17, 18, 19, 20,
22, 25, 26, 27, 30}

n = 31
10 0 0 {1, 2, 4, 7, 9, 10, 11, 15, 16, 20, 21, 22, 24,

27, 29, 30}
10 1 2 {2, 3, 5, 8, 10, 11, 12, 16, 17, 21, 22, 23, 25,

28, 30, 31}
10 0 1 ✓ {1, 3, 4, 5, 7, 8, 9, 12, 15, 17, 20, 23, 24, 25,

27, 28, 29, 31}
10 1 -1 {1, 4, 5, 6, 9, 11, 12, 13, 14, 16, 17, 18, 19,

21, 24, 25, 26, 29}
10 0 1 {2, 5, 6, 7, 10, 12, 13, 14, 15, 17, 18, 19, 20,

22, 25, 26, 27, 30}
10 0 3 {3, 6, 7, 8, 11, 13, 14, 15, 16, 18, 19, 20, 21,

23, 26, 27, 28, 31}
10 3 1 ✓ {1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 18, 19, 22, 23,

24, 26, 28, 29, 30, 31}
n = 32

10 2 - ✓ {1, 2, 8, 10, 11, 12, 14, 17, 19, 28, 30, 32}
10 1 - ✓ {1, 3, 5, 14, 16, 19, 21, 22, 23, 25, 31, 32}
10 0 -1 {1, 2, 4, 7, 9, 10, 11, 15, 16, 20, 21, 22, 24,

27, 29, 30}
10 0 1 ✓ {1, 5, 6, 7, 8, 11, 13, 15, 18, 20, 22, 25, 26,

27, 28, 32}
10 1 1 {2, 3, 5, 8, 10, 11, 12, 16, 17, 21, 22, 23, 25,

28, 30, 31}
Table B.1: (continued)
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Table B.1: (continued)

m i sum−n
unique &
canonical set

10 2 3 {3, 4, 6, 9, 11, 12, 13, 17, 18, 22, 23, 24, 26,
29, 31, 32}

10 0 0 {1, 3, 4, 5, 7, 8, 9, 12, 15, 17, 20, 23, 24, 25,
27, 28, 29, 31}

10 1 -2 {1, 4, 5, 6, 9, 11, 12, 13, 14, 16, 17, 18, 19,
21, 24, 25, 26, 29}

10 1 2 {2, 4, 5, 6, 8, 9, 10, 13, 16, 18, 21, 24, 25, 26,
28, 29, 30, 32}

10 0 0 {2, 5, 6, 7, 10, 12, 13, 14, 15, 17, 18, 19, 20,
22, 25, 26, 27, 30}

10 0 2 {3, 6, 7, 8, 11, 13, 14, 15, 16, 18, 19, 20, 21,
23, 26, 27, 28, 31}

10 0 4 {4, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 22,
24, 27, 28, 29, 32}

10 3 0 {1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 18, 19, 22, 23,
24, 26, 28, 29, 30, 31}

10 0 1 ✓ {1, 2, 3, 6, 7, 10, 12, 13, 15, 16, 17, 18, 20,
21, 23, 26, 27, 30, 31, 32}

10 0 2 {2, 3, 4, 5, 7, 9, 10, 11, 14, 15, 19, 20, 23, 24,
25, 27, 29, 30, 31, 32}

n = 33
11 2 1 ✓ {1, 2, 3, 5, 6, 7, 8, 9, 12, 22, 25, 26, 27, 28,

29, 31, 32, 33}
n = 34

11 0 1 ✓ {1, 4, 5, 10, 12, 13, 22, 23, 25, 30, 31, 34}
11 2 0 {1, 2, 3, 5, 6, 7, 8, 9, 12, 22, 25, 26, 27, 28,

29, 31, 32, 33}
11 0 2 {2, 3, 4, 6, 7, 8, 9, 10, 13, 23, 26, 27, 28, 29,

30, 32, 33, 34}
Table B.1: (concluded)

Table B.2: Results of Experiment 80: proper sets for n from 6 to 62

m i set
n = 6

4 0 {1, 3, 4, 6}
n = 7

5 0 {1, 2, 3, 5, 6, 7}
n = 8

5 0 {1, 4, 5, 8}
Table B.2: (continued)
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Table B.2: (continued)

m i set
n = 9

5 1 {1, 3, 7, 9}
5 2 {1, 2, 4, 6, 8, 9}

n = 10
5 0 {1, 2, 3, 4, 7, 8, 9, 10}
5 2 {1, 3, 4, 5, 6, 7, 8, 10}

n = 11
6 1 {1, 3, 4, 8, 9, 11}

n = 12
6 0 {1, 2, 3, 5, 8, 10, 11, 12}

n = 13
7 2 {1, 2, 6, 8, 12, 13}

n = 14
7 2 {1, 3, 6, 7, 8, 9, 12, 14}

n = 15
7 0 {1, 4, 6, 7, 9, 10, 12, 15}
7 0 {1, 2, 3, 4, 6, 10, 12, 13, 14, 15}

n = 16
7 0 {1, 5, 6, 7, 10, 11, 12, 16}
7 1 {1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16}

n = 17
7 0 {1, 7, 11, 17}
7 5 {1, 2, 5, 8, 10, 13, 16, 17}
7 0 {1, 2, 3, 4, 5, 13, 14, 15, 16, 17}
7 1 {1, 3, 4, 7, 8, 10, 11, 14, 15, 17}

n = 18
7 1 {1, 6, 13, 18}
7 0 {1, 2, 7, 8, 11, 12, 17, 18}
7 1 {1, 2, 3, 5, 7, 9, 10, 12, 14, 16, 17, 18}
7 0 {1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 16, 18}

n = 19
8 0 {1, 6, 7, 8, 12, 13, 14, 19}

n = 20
8 2 {1, 2, 6, 9, 12, 15, 19, 20}

n = 21
8 1 {1, 2, 3, 6, 8, 10, 12, 14, 16, 19, 20, 21}
8 0 {1, 3, 6, 7, 9, 10, 12, 13, 15, 16, 19, 21}

n = 22
8 0 {1, 2, 3, 4, 6, 8, 9, 11, 12, 14, 15, 17, 19, 20, 21, 22}
8 1 {1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 22}

n = 23
9 0 {1, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 18, 19, 23}

n = 24
Table B.2: (continued)
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Table B.2: (continued)

m i set
9 0 {1, 2, 5, 9, 10, 12, 13, 15, 16, 20, 23, 24}

n = 25
9 0 {1, 2, 3, 5, 7, 8, 18, 19, 21, 23, 24, 25}
9 0 {1, 3, 5, 6, 9, 11, 12, 14, 15, 17, 20, 21, 23, 25}

n = 26
9 1 {1, 4, 5, 6, 7, 9, 18, 20, 21, 22, 23, 26}
9 2 {1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26}

n = 27
9 3 {1, 3, 6, 10, 18, 22, 25, 27}
9 0 {1, 2, 4, 8, 9, 10, 18, 19, 20, 24, 26, 27}
9 0 {1, 2, 3, 4, 7, 12, 13, 15, 16, 21, 24, 25, 26, 27}
9 2 {1, 6, 7, 8, 9, 12, 13, 15, 16, 19, 20, 21, 22, 27}

n = 28
9 0 {1, 2, 6, 10, 12, 14, 15, 17, 19, 23, 27, 28}
9 0 {1, 3, 4, 5, 8, 11, 18, 21, 24, 25, 26, 28}
9 4 {1, 5, 7, 8, 12, 14, 15, 17, 21, 22, 24, 28}
9 3 {1, 2, 3, 4, 6, 7, 10, 11, 18, 19, 22, 23, 25, 26, 27, 28}

n = 29
10 1 {1, 4, 5, 6, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 24, 25, 26, 29}

n = 30
10 0 {1, 2, 4, 7, 9, 10, 11, 15, 16, 20, 21, 22, 24, 27, 29, 30}

n = 31
10 0 {1, 3, 4, 5, 7, 8, 9, 12, 15, 17, 20, 23, 24, 25, 27, 28, 29, 31}
10 3 {1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 18, 19, 22, 23, 24, 26, 28, 29, 30, 31}

n = 32
10 0 {1, 5, 6, 7, 8, 11, 13, 15, 18, 20, 22, 25, 26, 27, 28, 32}
10 0 {1, 2, 3, 6, 7, 10, 12, 13, 15, 16, 17, 18, 20, 21, 23, 26, 27, 30, 31,

32}
n = 33

11 2 {1, 2, 3, 5, 6, 7, 8, 9, 12, 22, 25, 26, 27, 28, 29, 31, 32, 33}
n = 34

11 0 {1, 4, 5, 10, 12, 13, 22, 23, 25, 30, 31, 34}
n = 35

11 1 {1, 2, 4, 6, 10, 11, 12, 14, 22, 24, 25, 26, 30, 32, 34, 35}
11 0 {1, 3, 7, 8, 9, 11, 12, 13, 14, 22, 23, 24, 25, 27, 28, 29, 33, 35}

n = 36
11 0 {1, 2, 3, 4, 7, 10, 11, 15, 22, 26, 27, 30, 33, 34, 35, 36}
11 1 {1, 3, 4, 5, 6, 7, 10, 13, 14, 15, 22, 23, 24, 27, 30, 31, 32, 33, 34, 36}

n = 37
11 1 {1, 2, 3, 8, 10, 11, 13, 16, 22, 25, 27, 28, 30, 35, 36, 37}
11 1 {1, 5, 7, 8, 10, 12, 15, 16, 22, 23, 26, 28, 30, 31, 33, 37}
11 2 {1, 2, 4, 5, 7, 9, 13, 14, 16, 22, 24, 25, 29, 31, 33, 34, 36, 37}
11 7 {1, 3, 4, 9, 11, 12, 14, 15, 16, 22, 23, 24, 26, 27, 29, 34, 35, 37}

Table B.2: (continued)
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Table B.2: (continued)

m i set
n = 38

11 7 {1, 2, 3, 5, 9, 10, 11, 13, 14, 17, 22, 25, 26, 28, 29, 30, 34, 36, 37,
38}

11 0 {1, 4, 8, 9, 10, 12, 13, 14, 16, 17, 22, 23, 25, 26, 27, 29, 30, 31, 35,
38}

11 0 {1, 2, 5, 6, 7, 9, 10, 11, 12, 13, 15, 17, 22, 24, 26, 27, 28, 29, 30, 32,
33, 34, 37, 38}

11 2 {1, 3, 4, 6, 7, 8, 9, 10, 13, 15, 16, 17, 22, 23, 24, 26, 29, 30, 31, 32,
33, 35, 36, 38}

n = 39
11 0 {1, 2, 6, 9, 10, 16, 18, 22, 24, 30, 31, 34, 38, 39}
11 2 {1, 8, 10, 11, 13, 17, 18, 22, 23, 27, 29, 30, 32, 39}
11 2 {1, 2, 3, 5, 6, 11, 13, 14, 15, 18, 22, 25, 26, 27, 29, 34, 35, 37, 38,

39}
11 2 {1, 2, 4, 5, 8, 11, 12, 15, 16, 18, 22, 24, 25, 28, 29, 32, 35, 36, 38,

39}
11 0 {1, 3, 5, 8, 9, 14, 15, 16, 17, 18, 22, 23, 24, 25, 26, 31, 32, 35, 37,

39}
11 0 {1, 4, 5, 6, 9, 12, 13, 15, 17, 18, 22, 23, 25, 27, 28, 31, 34, 35, 36,

39}
11 0 {1, 2, 3, 4, 8, 9, 10, 12, 13, 14, 18, 22, 26, 27, 28, 30, 31, 32, 36, 37,

38, 39}
11 2 {1, 3, 4, 6, 10, 11, 12, 14, 16, 17, 18, 22, 23, 24, 26, 28, 29, 30, 34,

36, 37, 39}
n = 40

11 0 {1, 5, 8, 11, 12, 15, 18, 19, 22, 23, 26, 29, 30, 33, 36, 40}
11 1 {1, 2, 3, 4, 5, 6, 8, 10, 14, 19, 22, 27, 31, 33, 35, 36, 37, 38, 39, 40}
11 2 {1, 2, 8, 9, 10, 12, 13, 14, 17, 19, 22, 24, 27, 28, 29, 31, 32, 33, 39,

40}
11 1 {1, 3, 6, 7, 9, 11, 16, 17, 18, 19, 22, 23, 24, 25, 30, 32, 34, 35, 38,

40}
11 2 {1, 4, 5, 7, 11, 12, 13, 16, 18, 19, 22, 23, 25, 28, 29, 30, 34, 36, 37,

40}
11 0 {1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 16, 19, 22, 25, 26, 27, 28, 31, 34, 35,

36, 38, 39, 40}
11 0 {1, 2, 4, 7, 9, 10, 12, 14, 15, 16, 17, 19, 22, 24, 25, 26, 27, 29, 31,

32, 34, 37, 39, 40}
11 0 {1, 3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 22, 23, 24, 26, 28, 30, 32, 33,

35, 37, 38, 40}
n = 41

11 0 {1, 2, 3, 4, 5, 7, 8, 13, 20, 22, 29, 34, 35, 37, 38, 39, 40, 41}
11 2 {1, 2, 3, 8, 9, 14, 15, 17, 20, 22, 25, 27, 28, 33, 34, 39, 40, 41}
11 0 {1, 2, 7, 8, 10, 12, 15, 18, 20, 22, 24, 27, 30, 32, 34, 35, 40, 41}

Table B.2: (continued)
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Table B.2: (continued)

m i set
11 2 {1, 3, 8, 11, 12, 15, 17, 18, 19, 20, 22, 23, 24, 25, 27, 30, 31, 34, 39,

41}
11 1 {1, 4, 5, 8, 10, 11, 13, 17, 19, 20, 22, 23, 25, 29, 31, 32, 34, 37, 38,

41}
11 0 {1, 7, 8, 9, 10, 11, 14, 15, 19, 20, 22, 23, 27, 28, 31, 32, 33, 34, 35,

41}
11 0 {1, 3, 4, 6, 8, 10, 14, 16, 18, 19, 20, 22, 23, 24, 26, 28, 32, 34, 36,

38, 39, 41}
11 2 {1, 4, 6, 7, 8, 9, 12, 16, 17, 19, 20, 22, 23, 25, 26, 30, 33, 34, 35, 36,

38, 41}
11 0 {1, 5, 6, 8, 12, 13, 14, 15, 16, 19, 20, 22, 23, 26, 27, 28, 29, 30, 34,

36, 37, 41}
11 0 {1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 16, 20, 22, 26, 30, 31, 32, 33, 34, 36,

38, 39, 40, 41}
11 2 {1, 2, 4, 6, 7, 8, 11, 14, 16, 17, 18, 20, 22, 24, 25, 26, 28, 31, 34, 35,

36, 38, 40, 41}
11 0 {1, 2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 22, 24, 26, 27, 29, 31, 33, 34,

36, 37, 40, 41}
11 1 {1, 2, 4, 5, 8, 9, 10, 12, 13, 14, 17, 18, 20, 22, 24, 25, 28, 29, 30, 32,

33, 34, 37, 38, 40, 41}
11 0 {1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 18, 19, 20, 22, 23, 24, 28, 29, 30,

31, 33, 34, 35, 37, 38, 39, 41}
11 1 {1, 3, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26,

27, 29, 32, 33, 34, 35, 36, 37, 39, 41}
11 1 {1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 20, 22, 25, 26, 27,

28, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 41}
n = 42

11 0 {1, 2, 7, 12, 14, 16, 19, 21, 22, 24, 27, 29, 31, 36, 41, 42}
11 1 {1, 4, 5, 9, 10, 18, 20, 21, 22, 23, 25, 33, 34, 38, 39, 42}
11 0 {1, 6, 7, 9, 13, 14, 20, 21, 22, 23, 29, 30, 34, 36, 37, 42}
11 1 {1, 2, 3, 4, 5, 11, 13, 14, 15, 21, 22, 28, 29, 30, 32, 38, 39, 40, 41,

42}
11 0 {1, 2, 3, 6, 7, 10, 11, 15, 18, 21, 22, 25, 28, 32, 33, 36, 37, 40, 41,

42}
11 0 {1, 2, 5, 7, 8, 9, 12, 17, 19, 21, 22, 24, 26, 31, 34, 35, 36, 38, 41, 42}
11 2 {1, 4, 8, 10, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 39,

42}
11 0 {1, 5, 6, 7, 8, 13, 16, 17, 20, 21, 22, 23, 26, 27, 30, 35, 36, 37, 38,

42}
11 2 {1, 2, 3, 4, 8, 9, 11, 13, 15, 16, 17, 21, 22, 26, 27, 28, 30, 32, 34, 35,

39, 40, 41, 42}
11 2 {1, 2, 4, 5, 6, 10, 12, 13, 16, 18, 19, 21, 22, 24, 25, 27, 30, 31, 33,

37, 38, 39, 41, 42}
11 1 {1, 3, 4, 6, 8, 11, 12, 15, 17, 19, 20, 21, 22, 23, 24, 26, 28, 31, 32,

35, 37, 39, 40, 42}
Table B.2: (continued)
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Table B.2: (continued)

m i set
11 1 {1, 2, 4, 6, 8, 9, 10, 12, 13, 14, 17, 18, 19, 21, 22, 24, 25, 26, 29, 30,

31, 33, 34, 35, 37, 39, 41, 42}
11 2 {1, 3, 4, 5, 6, 9, 11, 12, 14, 15, 16, 19, 20, 21, 22, 23, 24, 27, 28, 29,

31, 32, 34, 37, 38, 39, 40, 42}
11 0 {1, 3, 7, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27,

28, 30, 31, 32, 33, 34, 36, 40, 42}
11 0 {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 21, 22, 25, 26, 27,

28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42}
11 0 {1, 3, 5, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 42}
n = 43

12 3 {1, 3, 4, 6, 8, 13, 16, 18, 20, 21, 23, 24, 26, 28, 31, 36, 38, 40, 41,
43}

n = 44
12 0 {1, 2, 3, 5, 6, 7, 8, 9, 13, 14, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27,

28, 29, 31, 32, 36, 37, 38, 39, 40, 42, 43, 44}
n = 45

12 1 {1, 4, 5, 10, 13, 15, 16, 21, 22, 24, 25, 30, 31, 33, 36, 41, 42, 45}
12 0 {1, 2, 7, 9, 10, 13, 14, 15, 16, 17, 19, 27, 29, 30, 31, 32, 33, 36, 37,

39, 44, 45}
n = 46

12 0 {1, 3, 7, 8, 9, 11, 13, 18, 19, 20, 27, 28, 29, 34, 36, 38, 39, 40, 44,
46}

12 1 {1, 2, 4, 6, 10, 11, 13, 14, 15, 17, 21, 23, 24, 26, 30, 32, 33, 34, 36,
37, 41, 43, 45, 46}

n = 47
13 0 {1, 4, 7, 8, 12, 13, 15, 16, 17, 20, 21, 27, 28, 31, 32, 33, 35, 36, 40,

41, 44, 47}
n = 48

13 4 {1, 2, 4, 5, 7, 9, 12, 14, 15, 18, 20, 22, 27, 29, 31, 34, 35, 37, 40, 42,
44, 45, 47, 48}

n = 49
13 1 {1, 2, 3, 4, 5, 6, 7, 10, 12, 17, 19, 20, 23, 27, 30, 31, 33, 38, 40, 43,

44, 45, 46, 47, 48, 49}
13 0 {1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 27, 28,

29, 30, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 49}
n = 50

13 0 {1, 2, 3, 5, 6, 11, 12, 15, 16, 17, 18, 24, 27, 33, 34, 35, 36, 39, 40,
45, 46, 48, 49, 50}

13 1 {1, 8, 10, 11, 12, 13, 17, 18, 19, 21, 23, 24, 27, 28, 30, 32, 33, 34,
38, 39, 40, 41, 43, 50}

n = 51
13 2 {1, 4, 5, 7, 11, 13, 15, 19, 24, 25, 27, 28, 33, 37, 39, 41, 45, 47, 48,

51}
Table B.2: (continued)
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Table B.2: (continued)

m i set
13 3 {1, 2, 3, 6, 8, 15, 18, 19, 20, 21, 25, 27, 31, 32, 33, 34, 37, 44, 46,

49, 50, 51}
13 1 {1, 2, 8, 9, 10, 14, 17, 20, 21, 22, 23, 25, 27, 29, 30, 31, 32, 35, 38,

42, 43, 44, 50, 51}
13 1 {1, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 22, 23, 24, 25, 27, 28, 29,

30, 34, 35, 38, 39, 41, 42, 43, 45, 46, 47, 48, 49, 51}
n = 52

13 0 {1, 2, 3, 8, 9, 12, 13, 15, 17, 19, 22, 26, 27, 31, 34, 36, 38, 40, 41,
44, 45, 50, 51, 52}

13 0 {1, 3, 8, 11, 14, 15, 17, 18, 20, 24, 25, 26, 27, 28, 29, 33, 35, 36, 38,
39, 42, 45, 50, 52}

13 3 {1, 4, 6, 7, 8, 9, 15, 16, 18, 22, 25, 26, 27, 28, 31, 35, 37, 38, 44, 45,
46, 47, 49, 52}

13 2 {1, 2, 4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 20, 24, 26, 27, 29, 33, 34,
37, 38, 39, 40, 41, 42, 45, 46, 47, 49, 51, 52}

n = 53
13 0 {1, 7, 8, 11, 12, 14, 17, 22, 24, 26, 28, 30, 32, 37, 40, 42, 43, 46, 47,

53}
13 0 {1, 2, 5, 6, 7, 11, 16, 17, 20, 22, 24, 25, 29, 30, 32, 34, 37, 38, 43,

47, 48, 49, 52, 53}
13 3 {1, 2, 4, 5, 6, 10, 15, 17, 18, 19, 22, 23, 25, 29, 31, 32, 35, 36, 37,

39, 44, 48, 49, 50, 52, 53}
13 0 {1, 3, 4, 5, 6, 9, 11, 17, 19, 21, 24, 25, 26, 28, 29, 30, 33, 35, 37, 43,

45, 48, 49, 50, 51, 53}
13 4 {1, 2, 3, 7, 8, 9, 10, 12, 14, 15, 17, 18, 21, 23, 31, 33, 36, 37, 39, 40,

42, 44, 45, 46, 47, 51, 52, 53}
13 0 {1, 2, 3, 4, 8, 9, 11, 12, 14, 16, 17, 19, 20, 21, 24, 30, 33, 34, 35, 37,

38, 40, 42, 43, 45, 46, 50, 51, 52, 53}
13 5 {1, 4, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 26, 28, 31, 32, 34,

35, 36, 37, 38, 39, 40, 42, 44, 46, 50, 53}
13 3 {1, 3, 5, 6, 7, 9, 10, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33,

34, 36, 37, 38, 39, 44, 45, 47, 48, 49, 51, 53}
n = 54

13 0 {1, 3, 4, 7, 10, 11, 15, 16, 17, 20, 22, 24, 25, 26, 29, 30, 31, 33, 35,
38, 39, 40, 44, 45, 48, 51, 52, 54}

13 0 {1, 3, 5, 8, 11, 12, 16, 18, 20, 21, 22, 23, 24, 26, 29, 31, 32, 33, 34,
35, 37, 39, 43, 44, 47, 50, 52, 54}

13 4 {1, 4, 7, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23, 24, 31, 32, 33, 34, 36,
38, 39, 41, 42, 43, 44, 48, 51, 54}

13 1 {1, 5, 8, 10, 11, 13, 14, 15, 16, 18, 19, 22, 24, 25, 30, 31, 33, 36, 37,
39, 40, 41, 42, 44, 45, 47, 50, 54}

13 0 {1, 2, 3, 4, 5, 8, 9, 11, 15, 19, 20, 22, 23, 24, 25, 27, 28, 30, 31, 32,
33, 35, 36, 40, 44, 46, 47, 50, 51, 52, 53, 54}

Table B.2: (continued)
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Table B.2: (continued)

m i set
13 0 {1, 2, 3, 7, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22, 24, 27, 28, 31, 33,

34, 35, 36, 37, 38, 43, 44, 45, 46, 48, 52, 53, 54}
13 5 {1, 2, 4, 5, 8, 9, 10, 11, 12, 13, 14, 21, 22, 24, 26, 27, 28, 29, 31, 33,

34, 41, 42, 43, 44, 45, 46, 47, 50, 51, 53, 54}
13 1 {1, 2, 7, 9, 11, 13, 14, 15, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 37, 38, 40, 41, 42, 44, 46, 48, 53, 54}
n = 55

13 1 {1, 2, 4, 7, 12, 15, 17, 18, 24, 32, 38, 39, 41, 44, 49, 52, 54, 55}
13 5 {1, 3, 4, 6, 8, 15, 21, 23, 24, 25, 26, 30, 31, 32, 33, 35, 41, 48, 50,

52, 53, 55}
13 0 {1, 4, 7, 8, 9, 13, 17, 23, 24, 25, 27, 29, 31, 32, 33, 39, 43, 47, 48,

49, 52, 55}
13 0 {1, 3, 5, 7, 9, 10, 13, 20, 21, 22, 24, 25, 31, 32, 34, 35, 36, 43, 46,

47, 49, 51, 53, 55}
13 8 {1, 5, 6, 10, 15, 17, 20, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 36, 39,

41, 46, 50, 51, 55}
13 0 {1, 2, 3, 4, 6, 9, 12, 13, 18, 21, 24, 26, 27, 29, 30, 32, 35, 38, 43, 44,

47, 50, 52, 53, 54, 55}
13 1 {1, 3, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 22, 34, 37, 39, 40, 43, 44,

45, 46, 47, 48, 49, 53, 55}
13 0 {1, 6, 8, 10, 11, 12, 15, 16, 19, 21, 22, 26, 27, 29, 30, 34, 35, 37, 40,

41, 44, 45, 46, 48, 50, 55}
13 0 {1, 2, 4, 5, 7, 8, 11, 15, 16, 18, 19, 20, 21, 25, 31, 35, 36, 37, 38, 40,

41, 45, 48, 49, 51, 52, 54, 55}
13 0 {1, 3, 4, 5, 6, 11, 12, 15, 16, 17, 19, 20, 23, 26, 30, 33, 36, 37, 39,

40, 41, 44, 45, 50, 51, 52, 53, 55}
13 1 {1, 4, 5, 7, 9, 11, 12, 13, 16, 19, 20, 21, 23, 27, 29, 33, 35, 36, 37,

40, 43, 44, 45, 47, 49, 51, 52, 55}
13 0 {1, 2, 3, 7, 10, 11, 15, 16, 17, 18, 19, 22, 23, 25, 27, 29, 31, 33, 34,

37, 38, 39, 40, 41, 45, 46, 49, 53, 54, 55}
13 6 {1, 2, 6, 9, 10, 11, 13, 16, 18, 19, 21, 22, 23, 25, 26, 30, 31, 33, 34,

35, 37, 38, 40, 43, 45, 46, 47, 50, 54, 55}
13 1 {1, 2, 3, 5, 7, 8, 10, 12, 15, 18, 20, 21, 22, 23, 24, 27, 29, 32, 33, 34,

35, 36, 38, 41, 44, 46, 48, 49, 51, 53, 54, 55}
13 0 {1, 2, 5, 6, 8, 9, 10, 12, 13, 17, 18, 20, 22, 23, 24, 26, 30, 32, 33, 34,

36, 38, 39, 43, 44, 46, 47, 48, 50, 51, 54, 55}
13 5 {1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 16, 17, 18, 19, 20, 25, 26, 27, 29, 30,

31, 36, 37, 38, 39, 40, 43, 45, 47, 48, 50, 51, 52, 53, 54, 55}
n = 56

13 0 {1, 2, 3, 4, 7, 14, 16, 18, 19, 20, 22, 23, 34, 35, 37, 38, 39, 41, 43,
50, 53, 54, 55, 56}

13 0 {1, 7, 8, 10, 11, 12, 13, 14, 16, 21, 25, 28, 29, 32, 36, 41, 43, 44, 45,
46, 47, 49, 50, 56}

13 0 {1, 2, 3, 5, 6, 7, 8, 9, 15, 16, 21, 22, 23, 27, 30, 34, 35, 36, 41, 42,
48, 49, 50, 51, 52, 54, 55, 56}

Table B.2: (continued)
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Table B.2: (continued)

m i set
13 0 {1, 2, 3, 7, 11, 13, 15, 18, 19, 21, 23, 24, 26, 27, 30, 31, 33, 34, 36,

38, 39, 42, 44, 46, 50, 54, 55, 56}
13 1 {1, 2, 4, 5, 7, 10, 13, 14, 17, 18, 23, 26, 27, 28, 29, 30, 31, 34, 39,

40, 43, 44, 47, 50, 52, 53, 55, 56}
13 1 {1, 3, 4, 5, 7, 8, 12, 13, 15, 16, 17, 19, 24, 25, 32, 33, 38, 40, 41, 42,

44, 45, 49, 50, 52, 53, 54, 56}
13 1 {1, 3, 4, 6, 7, 9, 11, 12, 15, 17, 18, 22, 25, 26, 31, 32, 35, 39, 40, 42,

45, 46, 48, 50, 51, 53, 54, 56}
13 0 {1, 4, 7, 8, 10, 12, 15, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

35, 37, 42, 45, 47, 49, 50, 53, 56}
13 0 {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 20, 23, 24, 26, 31, 33, 34, 37, 43,

44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56}
13 8 {1, 2, 5, 7, 10, 11, 15, 16, 17, 18, 20, 21, 22, 23, 24, 28, 29, 33, 34,

35, 36, 37, 39, 40, 41, 42, 46, 47, 50, 52, 55, 56}
13 2 {1, 2, 6, 7, 8, 9, 10, 13, 15, 17, 19, 20, 21, 23, 26, 28, 29, 31, 34, 36,

37, 38, 40, 42, 44, 47, 48, 49, 50, 51, 55, 56}
13 2 {1, 3, 5, 7, 8, 11, 12, 14, 17, 19, 20, 21, 22, 25, 26, 27, 30, 31, 32,

35, 36, 37, 38, 40, 43, 45, 46, 49, 50, 52, 54, 56}
13 6 {1, 3, 6, 7, 9, 12, 13, 14, 16, 17, 18, 20, 21, 24, 25, 27, 30, 32, 33,

36, 37, 39, 40, 41, 43, 44, 45, 48, 50, 51, 54, 56}
13 0 {1, 5, 6, 7, 9, 10, 12, 14, 18, 19, 21, 22, 24, 25, 26, 28, 29, 31, 32,

33, 35, 36, 38, 39, 43, 45, 47, 48, 50, 51, 52, 56}
13 1 {1, 2, 4, 6, 7, 8, 9, 10, 11, 14, 16, 17, 19, 22, 23, 24, 27, 28, 29, 30,

33, 34, 35, 38, 40, 41, 43, 46, 47, 48, 49, 50, 51, 53, 55, 56}
13 0 {1, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 18, 19, 20, 25, 27, 28, 29, 30,

32, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 56}
n = 57

13 1 {1, 4, 5, 10, 15, 17, 21, 24, 27, 28, 30, 31, 34, 37, 41, 43, 48, 53, 54,
57}

13 0 {1, 6, 9, 10, 11, 15, 17, 18, 22, 23, 27, 31, 35, 36, 40, 41, 43, 47, 48,
49, 52, 57}

13 1 {1, 2, 4, 6, 8, 12, 13, 14, 15, 20, 22, 27, 31, 36, 38, 43, 44, 45, 46,
50, 52, 54, 56, 57}

13 2 {1, 2, 6, 7, 10, 12, 13, 15, 16, 18, 20, 28, 30, 38, 40, 42, 43, 45, 46,
48, 51, 52, 56, 57}

13 7 {1, 5, 7, 8, 14, 15, 16, 17, 18, 21, 22, 24, 34, 36, 37, 40, 41, 42, 43,
44, 50, 51, 53, 57}

13 2 {1, 10, 11, 12, 13, 15, 20, 21, 23, 25, 26, 27, 31, 32, 33, 35, 37, 38,
43, 45, 46, 47, 48, 57}

13 2 {1, 2, 3, 7, 13, 14, 15, 17, 19, 21, 22, 24, 25, 33, 34, 36, 37, 39, 41,
43, 44, 45, 51, 55, 56, 57}

13 0 {1, 2, 4, 8, 9, 14, 15, 17, 18, 21, 25, 26, 27, 31, 32, 33, 37, 40, 41,
43, 44, 49, 50, 54, 56, 57}

13 0 {1, 2, 7, 9, 10, 15, 16, 17, 21, 22, 25, 26, 28, 30, 32, 33, 36, 37, 41,
42, 43, 48, 49, 51, 56, 57}

Table B.2: (continued)
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Table B.2: (continued)

m i set
13 8 {1, 3, 5, 6, 7, 8, 10, 12, 15, 19, 20, 25, 28, 30, 33, 38, 39, 43, 46, 48,

50, 51, 52, 53, 55, 57}
13 0 {1, 4, 6, 7, 8, 9, 11, 14, 15, 16, 17, 23, 28, 30, 35, 41, 42, 43, 44, 47,

49, 50, 51, 52, 54, 57}
13 0 {1, 2, 3, 6, 7, 9, 12, 14, 15, 18, 19, 20, 24, 26, 32, 34, 38, 39, 40, 43,

44, 46, 49, 51, 52, 55, 56, 57}
13 0 {1, 3, 4, 5, 9, 13, 14, 15, 16, 17, 19, 21, 26, 27, 31, 32, 37, 39, 41,

42, 43, 44, 45, 49, 53, 54, 55, 57}
13 1 {1, 3, 4, 5, 6, 12, 14, 15, 16, 18, 19, 20, 22, 25, 27, 31, 33, 36, 38,

39, 40, 42, 43, 44, 46, 52, 53, 54, 55, 57}
13 1 {1, 3, 4, 6, 7, 8, 10, 11, 13, 15, 17, 19, 23, 24, 26, 32, 34, 35, 39, 41,

43, 45, 47, 48, 50, 51, 52, 54, 55, 57}
13 0 {1, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 20, 24, 25, 26, 32, 33, 34, 38, 42,

43, 44, 45, 46, 49, 50, 51, 52, 53, 57}
13 1 {1, 2, 4, 5, 6, 7, 10, 11, 15, 16, 17, 18, 23, 24, 25, 26, 32, 33, 34, 35,

40, 41, 42, 43, 47, 48, 51, 52, 53, 54, 56, 57}
13 7 {1, 2, 5, 6, 8, 11, 14, 15, 17, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32,

33, 34, 35, 36, 41, 43, 44, 47, 50, 52, 53, 56, 57}
13 0 {1, 3, 5, 7, 8, 9, 10, 13, 15, 17, 18, 19, 21, 22, 26, 28, 30, 32, 36, 37,

39, 40, 41, 43, 45, 48, 49, 50, 51, 53, 55, 57}
13 0 {1, 3, 9, 11, 12, 14, 15, 16, 19, 20, 21, 23, 24, 25, 27, 28, 30, 31, 33,

34, 35, 37, 38, 39, 42, 43, 44, 46, 47, 49, 55, 57}
13 1 {1, 2, 3, 4, 5, 7, 11, 12, 14, 15, 19, 20, 21, 22, 23, 26, 28, 30, 32, 35,

36, 37, 38, 39, 43, 44, 46, 47, 51, 53, 54, 55, 56, 57}
13 1 {1, 2, 3, 4, 8, 10, 13, 15, 16, 17, 18, 19, 21, 24, 25, 27, 28, 30, 31,

33, 34, 37, 39, 40, 41, 42, 43, 45, 48, 50, 54, 55, 56, 57}
13 8 {1, 2, 3, 5, 8, 10, 11, 12, 15, 16, 18, 19, 20, 21, 23, 26, 27, 31, 32,

35, 37, 38, 39, 40, 42, 43, 46, 47, 48, 50, 53, 55, 56, 57}
13 0 {1, 2, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 20, 21, 22, 23, 24, 34, 35, 36,

37, 38, 42, 43, 45, 46, 47, 48, 49, 51, 53, 54, 56, 57}
13 0 {1, 2, 5, 8, 9, 11, 12, 13, 14, 15, 18, 20, 21, 23, 24, 27, 28, 30, 31,

34, 35, 37, 38, 40, 43, 44, 45, 46, 47, 49, 50, 53, 56, 57}
13 2 {1, 3, 6, 11, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 26, 27, 28, 30, 31,

32, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 47, 52, 55, 57}
13 0 {1, 4, 5, 6, 9, 10, 12, 13, 15, 18, 20, 22, 24, 25, 26, 27, 28, 30, 31,

32, 33, 34, 36, 38, 40, 43, 45, 46, 48, 49, 52, 53, 54, 57}
13 0 {1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 19, 23, 25, 28, 30, 33,

35, 39, 40, 41, 43, 44, 45, 47, 49, 51, 52, 53, 54, 55, 56, 57}
13 0 {1, 2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 19, 20, 22, 24, 26, 27, 28, 30, 31,

32, 34, 36, 38, 39, 42, 43, 46, 48, 49, 50, 52, 54, 55, 56, 57}
13 0 {1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 15, 16, 17, 19, 22, 23, 25, 27, 31, 33,

35, 36, 39, 41, 42, 43, 45, 47, 48, 49, 50, 52, 53, 55, 56, 57}
13 0 {1, 3, 4, 7, 8, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 33, 34,

35, 36, 37, 38, 39, 40, 43, 46, 47, 48, 49, 50, 51, 54, 55, 57}
Table B.2: (continued)
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Table B.2: (continued)

m i set
13 1 {1, 4, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 25, 26, 28, 30,

32, 33, 35, 36, 37, 38, 40, 42, 43, 44, 45, 46, 47, 50, 51, 54, 57}
n = 58

13 0 {1, 2, 3, 5, 7, 13, 15, 16, 18, 26, 33, 41, 43, 44, 46, 52, 54, 56, 57,
58}

13 0 {1, 2, 5, 10, 12, 17, 20, 21, 24, 27, 32, 35, 38, 39, 42, 47, 49, 54, 57,
58}

13 1 {1, 3, 4, 8, 10, 12, 15, 19, 23, 27, 32, 36, 40, 44, 47, 49, 51, 55, 56,
58}

13 0 {1, 2, 5, 6, 7, 9, 14, 19, 21, 23, 24, 25, 34, 35, 36, 38, 40, 45, 50, 52,
53, 54, 57, 58}

13 0 {1, 2, 10, 14, 15, 16, 20, 22, 23, 24, 25, 28, 31, 34, 35, 36, 37, 39,
43, 44, 45, 49, 57, 58}

13 1 {1, 3, 4, 6, 7, 8, 9, 14, 15, 17, 20, 25, 34, 39, 42, 44, 45, 50, 51, 52,
53, 55, 56, 58}

13 2 {1, 2, 3, 4, 6, 7, 11, 12, 13, 20, 22, 25, 26, 29, 30, 33, 34, 37, 39, 46,
47, 48, 52, 53, 55, 56, 57, 58}

13 0 {1, 2, 3, 6, 9, 10, 13, 18, 19, 20, 21, 22, 26, 28, 31, 33, 37, 38, 39,
40, 41, 46, 49, 50, 53, 56, 57, 58}

13 1 {1, 2, 4, 5, 6, 10, 11, 12, 14, 18, 23, 24, 28, 29, 30, 31, 35, 36, 41,
45, 47, 48, 49, 53, 54, 55, 57, 58}

13 0 {1, 2, 6, 7, 9, 12, 15, 16, 17, 19, 22, 24, 27, 28, 31, 32, 35, 37, 40,
42, 43, 44, 47, 50, 52, 53, 57, 58}

13 1 {1, 3, 4, 5, 8, 10, 14, 16, 17, 19, 21, 22, 25, 28, 31, 34, 37, 38, 40,
42, 43, 45, 49, 51, 54, 55, 56, 58}

13 0 {1, 3, 5, 7, 8, 9, 11, 12, 14, 16, 17, 18, 22, 29, 30, 37, 41, 42, 43, 45,
47, 48, 50, 51, 52, 54, 56, 58}

13 0 {1, 3, 7, 8, 9, 11, 15, 18, 21, 23, 25, 27, 28, 29, 30, 31, 32, 34, 36,
38, 41, 44, 48, 50, 51, 52, 56, 58}

13 2 {1, 4, 7, 8, 13, 16, 17, 18, 19, 20, 21, 23, 24, 26, 33, 35, 36, 38, 39,
40, 41, 42, 43, 46, 51, 52, 55, 58}

13 0 {1, 6, 7, 8, 11, 13, 14, 16, 19, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35,
40, 43, 45, 46, 48, 51, 52, 53, 58}

13 2 {1, 2, 3, 4, 9, 10, 11, 13, 14, 17, 19, 22, 23, 26, 27, 29, 30, 32, 33,
36, 37, 40, 42, 45, 46, 48, 49, 50, 55, 56, 57, 58}

13 0 {1, 2, 3, 7, 12, 13, 14, 17, 18, 21, 22, 23, 25, 26, 27, 28, 31, 32, 33,
34, 36, 37, 38, 41, 42, 45, 46, 47, 52, 56, 57, 58}

13 1 {1, 2, 4, 5, 7, 9, 11, 17, 18, 19, 20, 24, 25, 27, 28, 29, 30, 31, 32, 34,
35, 39, 40, 41, 42, 48, 50, 52, 54, 55, 57, 58}

13 1 {1, 2, 4, 6, 10, 11, 15, 16, 17, 18, 21, 22, 24, 25, 27, 29, 30, 32, 34,
35, 37, 38, 41, 42, 43, 44, 48, 49, 53, 55, 57, 58}

13 1 {1, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 21, 22, 23, 27, 28, 31, 32, 36, 37,
38, 39, 43, 47, 50, 51, 52, 53, 54, 55, 56, 58}

13 0 {1, 3, 5, 6, 8, 10, 11, 16, 18, 19, 20, 22, 23, 25, 27, 29, 30, 32, 34,
36, 37, 39, 40, 41, 43, 48, 49, 51, 53, 54, 56, 58}

Table B.2: (continued)
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Table B.2: (continued)

m i set
13 0 {1, 3, 6, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 28, 29, 30, 31, 38,

39, 40, 41, 42, 44, 45, 47, 48, 49, 51, 53, 56, 58}
13 8 {1, 4, 5, 6, 8, 9, 10, 13, 15, 17, 18, 22, 23, 24, 26, 28, 31, 33, 35, 36,

37, 41, 42, 44, 46, 49, 50, 51, 53, 54, 55, 58}
13 2 {1, 4, 6, 8, 9, 10, 12, 13, 14, 16, 18, 21, 24, 25, 26, 27, 32, 33, 34,

35, 38, 41, 43, 45, 46, 47, 49, 50, 51, 53, 55, 58}
13 0 {1, 5, 8, 9, 10, 11, 13, 14, 15, 20, 21, 22, 24, 26, 27, 29, 30, 32, 33,

35, 37, 38, 39, 44, 45, 46, 48, 49, 50, 51, 54, 58}
13 0 {1, 8, 9, 10, 11, 12, 13, 16, 17, 20, 23, 24, 25, 26, 28, 29, 30, 31, 33,

34, 35, 36, 39, 42, 43, 46, 47, 48, 49, 50, 51, 58}
13 8 {1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 15, 16, 19, 21, 25, 26, 28, 29, 30, 31,

33, 34, 38, 40, 43, 44, 46, 47, 48, 49, 50, 54, 55, 56, 57, 58}
13 1 {1, 2, 4, 7, 9, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 29, 30,

35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 50, 52, 55, 57, 58}
13 3 {1, 4, 5, 7, 8, 12, 13, 14, 15, 18, 19, 20, 22, 24, 25, 26, 27, 28, 31,

32, 33, 34, 35, 37, 39, 40, 41, 44, 45, 46, 47, 51, 52, 54, 55, 58}
13 0 {1, 5, 6, 7, 8, 11, 12, 13, 15, 17, 19, 21, 22, 23, 24, 25, 26, 29, 30,

33, 34, 35, 36, 37, 38, 40, 42, 44, 46, 47, 48, 51, 52, 53, 54, 58}
13 3 {1, 2, 3, 4, 5, 6, 7, 11, 13, 14, 15, 16, 17, 20, 21, 23, 26, 27, 28, 29,

30, 31, 32, 33, 36, 38, 39, 42, 43, 44, 45, 46, 48, 52, 53, 54, 55, 56,
57, 58}

13 0 {1, 2, 3, 5, 6, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27,
32, 33, 34, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 53, 54, 56,
57, 58}

n = 59
14 5 {1, 2, 3, 7, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 29, 31, 34,

36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 53, 57, 58, 59}
n = 60

14 0 {1, 4, 7, 8, 12, 13, 14, 15, 16, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36,
45, 46, 47, 48, 49, 53, 54, 57, 60}

n = 61
14 0 {1, 2, 4, 5, 7, 9, 12, 17, 25, 28, 29, 33, 34, 37, 45, 50, 53, 55, 57, 58,

60, 61}
14 1 {1, 3, 5, 7, 8, 9, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30,

32, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 47, 49, 50, 53, 54, 55, 57,
59, 61}

n = 62
14 1 {1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 16, 18, 25, 27, 31, 32, 36, 38, 45,

47, 48, 49, 51, 53, 56, 57, 58, 59, 60, 61, 62}
14 2 {1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 17, 18, 25, 26, 28, 30, 33, 35, 37, 38,

45, 46, 50, 51, 53, 54, 55, 56, 57, 59, 60, 62}
Table B.2: (concluded)
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