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Abstract
This Bachelor's thesis studies connectedness effects between returns of US-listed
cryptocurrency-linked stocks (CLS), the traditional US stock market, and ma-
jor cryptocurrencies. We present results of connectedness measures obtained by
utilizing the Dynamic Networks framework. Our dataset contains daily returns
of 20 CLS, the stock market index S&P 500 and five major cryptocurrencies,
with a time span ranging from September 2021 to July 2023. The connected-
ness measures indicate a significant total connectedness among variables within
the system, across the whole time span. We also present directional connected-
ness measures for individual variables and decompose the total connectedness
into time horizons. We report the short-term horizon of connectedness effects
between 1-5 days to be the most significant. Finally, we build Ordinary Least
Squares (OLS) regressions for CLS returns and find connectedness measures
to influence returns of CLS with high exposure to the cryptocurrency market
most significantly.

Keywords Connectedness effects of returns, Cryp-
tocurrencies, Bitcoin, Dynamic Networks,
Cryptocurrency-linked stocks, Stock market

Title Connectedness between Stocks of
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Abstrakt
Tato bakalářská práce zkoumá efekty propojenosti mezi výnosy akcií s vazbou
na kryptoměny obchodovaných v USA (CLS), americkým akciovým trhem a
největšími kryptoměnami. Prezentujeme výsledky míry propojenosti získané
pomocí metodologie Dynamic Networks. Náš soubor dat obsahuje denní výnosy
20 CLS, indexu akciového trhu S&P 500 a pěti největších kryptoměn, s časovým
rozpětím od září 2021 do července 2023. Míry propojenosti naznačují význam-
nou celkovou propojenost mezi proměnnými v rámci systému po celou dobu
sledování. Dále předkládáme směrově závislé míry propojenosti pro jednotlivé
proměnné a rozklad celkové propojenosti na časové horizonty. Uvádíme, že
nejsignifikantnější je krátkodobý horizont efektů propojenosti mezi 1-5 dny.
Nakonec budujeme Ordinary Least Squares (OLS) regrese pro výnosy CLS a
zjišťujeme, že míry propojenosti mají nejsignifikantnější vliv na výnosy CLS s
vysokou expozicí na trh s kryptoměnami.

Klíčová slova Účinky propojenosti výnosů, Kryptoměny,
Bitcoin, Síťová struktura, Akcie s vazbou
na kryptoměny, Akciový trh

Název práce Propojenost mezi akciemi společností s
vazbou na kryptoměny v USA a kryp-
toměnovým trhem.
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Chapter 1

Introduction

Since Nakamoto (2009) introduced Bitcoin, the first widely used cryptocurrency
that was created as a reaction to the global financial crisis of 2008, numerous
projects (e.g. Ethereum, Cardano, Litecoin, or Ripple) have tried to replicate
its unprecedented success. These cryptocurrencies are built on the underlying
technology of blockchain, which utilizes a transparent distributed ledger sys-
tem to record and verify peer-to-peer transactions. Consequently, these digital
currencies offer an alternative to the traditional, highly centralized financial
system by allowing users to transfer money without the use of banking systems
and financial institutions. Over the last fifteen years, Bitcoin, together with
other major cryptocurrencies, has experienced a boom among users, which nat-
urally caught the attraction of many businesses that ventured into the field of
cryptocurrencies.

Nowadays, stocks of several publicly traded businesses with linkages to cryp-
tocurrencies (cryptocurrency-linked stocks or CLS) can also be found on the
US stock market. However, these assets represent a bridge between two finan-
cial markets with significant differences. In comparison to the cryptocurrency
market, the traditional US stock market is highly regulated and overseen by
government agencies such as the U.S. Securities and Exchange Commission.
Moreover, the US stock market represents a very mature financial market with
a centuries-long history, while cryptocurrency markets emerged less than fif-
teen years ago. Other main distinctions include the different trading hours of
stocks, which are usually traded during regular business hours, whereas cryp-
tocurrencies are traded continuously, including public holidays and weekends.
These dissimilarities between the two markets pose severe challenges for the
multifaceted analysis of CLS returns dynamics.
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Therefore, this Bachelor’s thesis aims to contribute to the unexplored area
of valuing publicly traded companies with links to the cryptocurrency market
by examining the return connectedness between CLS and major cryptocurren-
cies, as well as the traditional stock market. In other words, we examine the
influences of the traditional US stock market and the cryptocurrency market
on the returns of CLS.

The reciprocal influences across different financial markets and assets can
be characterized by examining connectedness measures of their returns. These
measures (sometimes referred to as return spillovers) quantify the interdepen-
dence and shock transmission across financial markets and assets. Several
methods and frameworks for such connectedness measures have been intro-
duced by researchers in the past. Baruník & Křehlík (2018) elaborate on a fre-
quently used methodology for spillover effect measurement proposed by Diebold
& Yilmaz (2012) by introducing horizon-specific measurements, which allow
distinguishing between long-, medium- and short-term connectedness within
the system. Barunik & Ellington (2020b) introduce a novel methodology Dy-
namic Networks, that employs time-varying parameter vector autoregression
(TVP-VAR) to estimate dynamic measures of network connectedness at each
point in time. The TVP-VAR model allows for changes in vector autoregres-
sion coefficients over time and thus captures dynamic relationships between
variables and replaces Rolling window estimations. Additionally, the utiliza-
tion of the Quasi-Bayesian local-likelihood approach (QBLL) following Petrova
(2019) allows us to obtain confidence intervals for the dynamic connectedness
measures.

Previous research by Frankovic et al. (2022) studied return and volatility
spillover effects between Australian-listed CLS and the cryptocurrency market
by following the methodology of Diebold & Yilmaz (2012). However, there
has been no academic research addressing a similar analysis for US-listed CLS.
The research of Xu et al. (2022) focused on US-listed CLS and examined the
role of jump spillover effects between cryptocurrency markets and 16 US-listed
companies with high exposure to blockchain technology or cryptocurrencies.

In this Bachelor’s thesis, we aim to quantify and analyze the return connect-
edness of US-listed CLS, major cryptocurrencies, and the US stock market by
utilizing the Dynamic Networks framework proposed by Barunik & Ellington
(2020b). This methodology allows us to examine the dynamic time evolution
of connectedness measures (along with confidence intervals) and obtain mea-
sures for specific time horizons. We also create several Ordinary Least Squares
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(OLS) models for CLS returns to model the effect of obtained connectedness
measures on CLS returns.

The thesis is structured in the following way: Chapter 2 provides a review of
published literature regarding spillover effect measurement and cryptocurrency-
linked stocks. Chapter 3 contains specifications about the methodology used
in this thesis. Chapter 4 explains the process of obtaining data and describes
the final dataset. In Chapter 5, obtained results are presented and discussed.
Finally, Chapter 6 is devoted to the conclusion of our findings and the whole
thesis.



Chapter 2

Literature Review

In this chapter, we present available literature that is relevant to our research
topic. This review includes primarily literature regarding the methodology of
return connectedness measurement (especially Dynamic Networks and Diebold-
Yilmaz frameworks), literature on CLS, and academic publications about the
cryptocurrency market in general. The following literature motivates the re-
search question and the aim of this thesis, which is to enlarge previous research
by studying a relatively unexplored field of CLS valuation, as well as the trans-
mission of return spillover effects between CLS and the cryptocurrency market,
and CLS and the traditional stock market.

2.1 Return Connectedness Measurement
To begin with, we will provide a brief review of available literature regarding
the quantitative measures of return spillover effects (or return connectedness),
which yield relevant information for entities operating on financial markets,
since shocks in returns of a certain asset often influence returns of other assets
(Diebold & Yilmaz (2009)).

A widely-used framework for measuring volatility and return spillover effects
of financial assets was introduced by Diebold & Yilmaz (2009) and further
elaborated in the following papers: Diebold & Yilmaz (2012), Diebold & Yilmaz
(2014). This framework provides an effective methodology, which is based on
forecast error variance decomposition (FVED), to measure the interdependence
of asset returns and volatilities both in non-crisis and crisis periods of time.

The framework created by Diebold & Yilmaz (2014) was further expanded
by a novel methodology introduced in Barunik & Ellington (2020a) and Barunik
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& Ellington (2020b). This framework measures connectedness in dynamic net-
work structures and enlarges the frequency-dependent setting introduced by
Baruník & Křehlík (2018), which allows distinguishing between multiple layers
in the network structure (e.g., long- and short-term horizons of connected-
ness effects). Extensive subsequent literature simulates time dynamics within
the system by using rolling windows (e.g., Demirer et al. (2018)). However,
this approach suffers from dimensionality issues, and problems with inference
and produces only point estimates. Barunik & Ellington (2020b) use a TVP-
VAR instead of rolling windows to eliminate these problems and to estimate
confidence intervals instead of point estimates. In contrast to Geraci & Gnabo
(2018), who also use TVP-VAR models to estimate network structures, Barunik
& Ellington (2020b) rely on establishing the network structure from a single
TVP-VAR model that allows for the measurement of different properties.

Kumar et al. (2022) study the connectedness among 10 most capitalized
cryptocurrencies in the period ranging from October 2017 to January 2021
(thus including the COVID-19 pandemic). They measure connectedness by
analyzing spillover effects within the framework introduced by Diebold & Yil-
maz (2012), as well as using the horizon-specific perspective of Baruník &
Křehlík (2018). The authors found the total connectedness of cryptocurrencies
to increase during the COVID-19 outbreak, which indicates the sensitivity of
cryptocurrency return spillover effects to exogenous shocks. They also found
spillover effects from Ethereum to other cryptocurrencies to be most dominant
since Ethereum passed its shocks on to other cryptocurrencies but was less
affected by shocks in other cryptocurrencies. Regarding time-specific horizons,
the connectedness was most significant over short-time horizons of one day to
one week.

Ji et al. (2021) use the Diebold & Yilmaz (2014) framework to study the
connectedness in a system of Bitcoin exchanges. The authors base the measures
of interconnectedness on the daily realized volatility of Bitcoin prices for each
of the nine selected cryptocurrency exchanges, and they find Coinbase Global
Inc. to be the market leader among exchanges.

2.2 Cryptocurrency-linked Stocks
Although the number of publicly listed companies with direct exposure to-
ward the cryptocurrency market is growing, it remains an unexplored field
in academia. Cryptocurrencies are typically considered an independent asset
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class. However, CLS are one of the bridges to the “conventional” financial
market since these assets connect cryptocurrencies with the traditional stock
market. This motivates us to examine linkages between the return dynamics
because such research is essential for the valuation purposes of these assets and
thus can be extremely useful for investors interested in CLS since we quantify
the connectedness effects affecting the returns of these stocks.

Frankovic et al. (2022) study spillover effects between CLS listed in Aus-
tralia and the cryptocurrency market by utilizing the framework created by
Diebold & Yilmaz (2012). In the former paper, daily price data of 31 Australian-
listed CLS, ranging from September 2017 to June 2018, are used. The authors
distinguish between different categories of these companies based on their in-
volvement in the cryptocurrency market. They find significant unidirectional
spillover effects of returns and weak volatility spillover effects from the cryp-
tocurrency market towards CLS. The strength of these effects varies across
categories of CLS, being more significant for CLS with great exposure to the
cryptocurrency market and for CLS with high involvement in blockchain tech-
nology. The authors’ findings indicate that investors integrate the price dynam-
ics of the cryptocurrency market in their investment decisions toward CLS.

Xu et al. (2022) examine the presence of jumps and co-jumps in returns of
major cryptocurrencies and US-listed CLS. They use daily price data of 16 US-
listed CLS and a sample period from January 2018 to October 2021. Xu et al.
(2022) find jump behavior to be present in returns of both the cryptocurrency
market and CLS. Furthermore, jumps in returns of major cryptocurrencies
increase the probability of jumps in returns of US-listed CLS, which indicates
the presence of spillover effects similar to the mentioned research by Frankovic
et al. (2022).

2.3 Cryptocurrency Market
Since the introduction of Bitcoin, the largest peer-to-peer decentralized pay-
ment system created by Nakamoto (2009), cryptocurrencies have become a
heavily discussed topic, which has motivated numerous researchers to study
cryptocurrency markets. Bitcoin and the following adoption of its blockchain
technology also inspired the emergence of many other cryptocurrencies (e.g.
Ethereum, Litecoin, Solana, etc.) and the whole cryptocurrency market be-
came attractive to investors. Therefore, academic literature studying these
markets is nowadays highly relevant and desired.
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Härdle et al. (2020) summarize an overview of the available literature on
cryptocurrencies and present potentially interesting research topics in this field
of study. The authors claim that the research of cryptocurrencies is only be-
ginning, which creates an extraordinary opportunity for academic researchers,
as detailed transaction and historical price data are easily and freely available.
As examples of potentially interesting research avenues in cryptocurrencies,
Härdle et al. (2020) mention the topics of bubbles, institutions, portfolio diver-
sification, adoption, or valuation, which motivates the research question of this
thesis.



Chapter 3

Methodology

3.1 Dynamic Networks Framework
The Dynamic Networks framework introduced by Barunik & Ellington (2020b)
elaborates on Diebold & Yilmaz (2014) and Baruník & Křehlík (2018) by creat-
ing a TVP-VAR setting for connectedness estimation within dynamic network
systems. This framework relies on the spectral decomposition of a time-varying
variance decomposition matrix, which defines a dynamic adjacency matrix used
for connectedness estimation within dynamic networks. This methodology al-
lows users to distinguish between shocks with transitory effects (short-term
spillovers) and persistent effects (long-term spillovers) while allowing users to
retrieve adjacency matrices for different frequencies depending on their inter-
ests. Barunik & Ellington (2020b) assume the economy to follow a single locally
stationary TVP-VAR model of lag order p in the following form

Xt,T = Φ1(t/T )Xt−1,T + . . . + Φp(t/T )Xt−p,T + ϵt,T (3.1)

where Xt,T = (X1
t,T , . . . , XN

t,T )T is a process that describes all variables in an
economy and is approximated by a stationary process in the neighborhood
of a fixed time point. Φ(t/T ) = (Φ1(t/T ), . . . , Φp(t/T ))T are time varying
coefficients and ϵt,T is the residual term. The rescaled time index u = t/T is
a continuous time parameter, where T is the number of observations and t is
the discrete time index. Moreover, the process Xt,T can be represented as a
time-varying VMA (∞) (Dahlhaus & Polonik (2009), Roueff & Sanchez-Perez
(2016))

Xt,T =
∞∑︂

h=−∞
Ψt,T (h)ϵt−h (3.2)
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where Ψt,T (h) is a stochastic process with an infinite number of lags. There-
fore, the moving average coefficients are approximated at h = 1, . . . , H finite
horizons, and transformations of Ψt,T (h) (variance decompositions) allow the
estimation of connectedness measures that quantify contributions of shocks to
the network.

However, shocks do not automatically emerge alone in the system, and
thus an identification scheme is essential. In this case, Barunik & Ellington
(2020b) modify the identification scheme introduced by Pesaran & Shin (1998)
for locally stationary TVP-VAR. The horizon specification (i.e., long-run and
short-run connections) of networks proposed by Baruník & Křehlík (2018) is
applied by using a time-varying local frequency response function Ψt/T e−iω =∑︁

h e−iωhΨt,T (h) that is retrieved by Fourier transformation of the coefficients,
where i =

√
−1. The time-frequency variance decompositions of variable j at

a given rescaled time u = t0/T with regards to shocks in variable k on a given
frequency band d = (a, b); a, b ∈ (−π, π), ; a < b shape the dynamic adjacency
matrix, which is characterized by the following equation

[Θ(u, d)]j,k = σ−1
kk

∫︁ b
a |[Ψ(u)e−iω ∑︁(u)]j,k|2dω∫︁ π

−π[{Ψ(u)e−iω} ∑︁(u){Ψ(u)e+iω}T ]jjdω
(3.3)

where Ψ(u)e−iω = ∑︁
h e−iωhΨ(u, h) is a local impulse transfer (or frequency

response) function obtained by Fourier transformation of Ψ(u, h).
The dynamic adjacency matrix can be aggregated across any horizon of

interest ds as
[Θ(u, d)]j,k =

∑︂
ds∈D

[Θ(u, ds)]j,k (3.4)

where D is a set of intervals that create a partition of (−π, π) in such manner
that ∩ds∈D ds = ∅ and ∪ds∈D ds = (−π, π). Since the sum of each row in
the aggregated Dynamic Adjacency Matrix is not always equal to one, every
element is normalized by the sum of the corresponding row

[Θ̃(u, d)]j,k = [Θ(u, d)]j,k/
N∑︂

k=1
[Θ(u)]j,k (3.5)

Local variance decompositions at a frequency band Θ̃(u, d) are sufficient es-
timates of the time-varying variance decompositions of Xt,T (see Dahlhaus
(1996)).

In previous network-related literature, adjacency matrices contained solely
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values of zero and one, which could only explain whether certain nodes (vari-
ables) are linked or not. However, in the setting of Barunik & Ellington (2020b),
variance decompositions represent weighted links between nodes and thus show
also the strength of the connection between nodes. Moreover, the links dis-
played in the adjacency matrix are directional, as the link from node j to node
k is not necessarily the same as the link from k to j, which implies asymmetric-
ity of the adjacency matrix.

Now, we can specify several connectedness measures obtained from the dy-
namic adjacency matrix. The local aggregated connectedness measure at a
given frequency d and rescaled time u is defined as

C(u, d) = 100 ×
∑︁N

j,k=1;j ̸=k[Θ̃(u, d)]j,k∑︁N
j,k=1[Θ̃(u, d)]j,k

(3.6)

This equation measures the Total connectedness within the network system,
i.e., the contribution of all shocks within the system minus the contribution of
own shocks.

Furthermore, directional connectedness measures can be defined within dy-
namic network systems. The local directional connectedness measure, which
explains how much of the variance of variable j is caused by shocks in the other
variables k; k ̸= j, is the so-called FROM connectedness, which is characterized
by the following equation

Cj←•(u, d) = 100 ×
∑︁N

k=1;k ̸=j[Θ̃(u, d)]j,k∑︁N
j,k=1[Θ̃(u)]j,k

(3.7)

In the same way, the contribution of shocks in variable j to variances of other
variables k; k ̸= j in the system is measured by the so-called TO connectedness
as

Cj•→(u, d) = 100 ×
∑︁N

k=1;k ̸=j[Θ̃(u, d)]k,j∑︁N
k,j=1[Θ̃(u)]k,j

(3.8)

It is clear that both of these directional connectedness measures are character-
ized respectively as the sum of directional links to variable j from the system
(or from variable j to the system), weighted by the total sum of the adjacency
matrix. By subtracting the FROM connectedness from the TO connectedness,
it is possible to obtain the so-called NET connectedness

CNET
j (u, d) = Cj•→(u, d) − Cj←•(u, d) (3.9)
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The NET connectedness indicates whether variable j is a net transmitter
(CNET

j (u, d) > 0) or a net receiver (CNET
j (u, d) < 0) of shocks within a certain

dynamic network system.
Lastly, local network connectedness measures aggregated over frequencies

can be calculated from the mentioned total and directional connectedness mea-
sures, respectively, by summing over intervals ds from the set of intervals D

C(u) =
∑︂

ds∈D

C(u, ds) (3.10)

3.2 Estimation of the TVP-VAR model
Barunik & Ellington (2020b) assume the system of returns to follow a locally
stationary TVP-VAR model presented in equation 3.1. Moreover, they follow
the approach of Petrova (2019) in using the Quasi-Bayesian Local-Likelihood
methods to obtain estimates of the time-varying coefficients ˆ︁Φ1(u), . . . , ˆ︁Φp(u)
and time-varying covariance matrices ˆ︂∑︁(u) at a certain time u. This method
utilizes a kernel weighting function, which prioritizes observations in the neigh-
borhood of periods of interest by assigning higher valued weights to these ob-
servations. Barunik & Ellington (2020b) further mention that using QBLL for
estimation provides a distribution of parameters used to build connectedness
measures that produce confidence intervals instead of point estimates. They
also provide efficient frameworks in JULIA and MATLAB that allow users to ob-
tain dynamic network connectedness measures. In this Bachelor’s thesis, we
will utilize the code provided in JULIA programming language to estimate net-
work connectedness of returns within our system of variables.

To begin with, we need to abbreviate the VMA (∞) representation of pro-
cess Xt,T by a finite approximation factor H, which according to Barunik &
Ellington (2020b) should be sufficiently high. They record quantitatively simi-
lar results of frequency-dependent connectedness measures for H ∈ {50, 100, 200}
and chose to set H = 100. The next step involves choosing a bandwidth of the
kernel depending on the characteristics of the data. Shorter bandwidths are
feasible for time series that are volatile and contain frequent jumps. On the
contrary, choosing a longer bandwidth results in a smoother time evolution of
connectedness measures. The short- and long-term horizons also need to be
specified, and here we follow Barunik & Ellington (2020b) to define short-term
horizons as 1-5 business days and long-term horizons as periods greater than 5
business days. For TVP-VAR models, it is required to choose a lag of a certain

JULIA
MATLAB
JULIA
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order p. Barunik & Ellington (2020b) experimented with different values of
the lag p ∈ {2, 3, 4, 5}, but experienced similar results for all options. Thus, we
choose to set p=2 in order to reduce the computation time of our measures.

Considering all above mentioned characteristics, our proposed TVP-VAR
model for estimation can be described by the following equation

Xt,T = Φ0(t/T ) + Φ1(t/T )Xt−1,T + Φ2(t/T )Xt−2,T + ϵt,T (3.11)

where Φ0(t/T ) is the intercept, Φ1(t/T ) and Φ2(t/T ) are the parameters, ϵt,T

is the error term and Xt,T is a vector of all variables in our dynamic network
system.

Before estimating the proposed TVP-VAR model, several parameters need
to be specified. The number of lags L is set to be equal to two since exper-
iments with higher numbers of lags produce similar results of connectedness
measures. As a next step, the number of horizons H is set to be equal to 100,
following Barunik & Ellington (2020b), who test that results are similar for
H ∈ {50, 100, 200} and set H = 100. The kernel bandwidth W is assigned
the value of 8 since we aim to analyze short-term fluctuations of connectedness
measures and higher values of the kernel bandwidth have a smoothing effect
on dynamic network measures. Finally, we choose to generate 100 simulations
(parameter Nsim) for connectedness measures.



Chapter 4

Data

In this thesis, we examine the return connectedness of 20 US-listed CLS, five
major cryptocurrencies1 and the US stock market (represented by a stock mar-
ket index). Daily prices of all stocks, cryptocurrencies, and indices are obtained
using the Yfinance2 library in Python programming language, which utilizes
the publicly available API of Yahoo Finance. Price data for the assets span
from September 23rd, 2021, to July 16th, 2023, resulting in a total period
of 662 days. For the five major cryptocurrencies and 20 US-listed CLS, equal-
weighted portfolios are calculated to increase the clarity of connectedness effects
of returns between asset classes within the system.

4.1 Cryptocurrency-linked Stocks
The main asset class that is examined in this thesis includes stocks of US-listed
companies with links to the cryptocurrency market. Recently, such companies
more commonly entered the US stock market. However, the number of publicly
traded CLS in the US is still small. We choose a set of 20 US-listed CLS for the
connectedness analysis of daily returns. These companies can be divided into
the following four groups according to the nature of their link to the cryptocur-
rency market. Yet, some companies have several linkages to cryptocurrencies
and thus can be included in multiple categories.

1Five major cryptocurrencies are chosen based on market capitalization, information avail-
able on www.coinmarketcap.com. Cryptocurrencies pegged to the US dollar, namely USDT,
and USDC, are neglected because of the irrelevance of their daily returns.

2More information available on www.pypi.org/project/yfinance

Yfinance
Python
Yahoo
Finance
www.coinmarketcap.com
www.pypi.org/project/yfinance
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Figure 4.1: CLS portfolio performance
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Notes: (1) Figure 4.1 plots the daily performance of the equal-weight portfolio, which was
calculated by taking the sum of “Adjusted Close” prices of individual CLS that are multiplied
by an equal weight factor ( 1

20 ).

In Figure 4.1 we can see, that the plot of CLS portfolio performance exhibits
relatively similar movements as prices of Bitcoin and Ethereum displayed in
Figure 4.2. This fact might indicate significant connectedness effects between
the performance of CLS and the price movements of major cryptocurrencies.
CLS portfolio performance reached a top in November 2021 and a minimum in
December 2022.

4.1.1 Mining Companies & Mining Hardware Producers

Cryptocurrency mining companies represent the largest category among US-
listed CLS. These companies specialize in the mining industry of cryptocurren-
cies and usually own significant amounts of hardware used for mining purposes.
Producers of such hardware are also an essential part of the whole industry.
The cryptocurrency mining industry is heavily dependent on electricity costs
and cryptocurrency prices, as energy consumption represents the major input
for miners, and their profits depend on the price of mined cryptocurrencies.
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4.1.2 Cryptocurrency Exchanges

In April 2021, a leading cryptocurrency exchange Coinbase Global Inc. (COIN)
was listed on Nasdaq, which aroused a wave of public interest, as Coinbase
represents the first publicly traded cryptocurrency exchange. Bakkt Holdings
Inc. (BKKT) runs a platform for cryptocurrency trading and provides custody
services and cryptocurrency payment solutions3 for their clients. In the dataset
of this thesis, we include both COIN and BKKT stocks as representatives of
US-listed cryptocurrency exchanges.

4.1.3 Companies Investing in Cryptocurrencies

In this category, we include companies that invest in cryptocurrencies and hold
them as part of their portfolios. MicroStrategy Inc.(MSTR) is arguably the
biggest holder of Bitcoin (BTC) among public companies, with approximately
152 thousand BTC on their balance sheet as of July 2023. Another CLS heavily
invested in cryptocurrencies that we include in the dataset of this thesis is Block
Inc. (SQ).

4.1.4 Blockchain-linked Fintech Companies & Cryptocurrency-
payment Companies

The last category of US-listed CLS is devoted to fintech companies that utilize
blockchain technologies and to companies that provide cryptocurrency pay-
ments. As Block Inc. runs the product CashApp, which allows to transfer Bit-
coin (as well as traditional currencies) among their users, the company can also
be included in this category. PayPal Holdings Inc. (PYPL) mainly provides fi-
nancial payment services but also allows users to buy and sell cryptocurrencies
as well. Future FinTech Group Inc. (FTFT) provides financial services based
on blockchain technologies. At last, Overstock.com Inc. (OSTK), an online
furniture retailer that has accepted Bitcoin payments since 2014, is included in
the dataset.

3Since Bakkt Holdings Inc. (BKKT) also offers cryptocurrency-payment services, it can
be included in category 4.1.4 as well.
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4.2 Cryptocurrencies
Five major cryptocurrencies, according to their market capitalization (available
on www.coinmarketcap.com) are as of July 2023: Bitcoin (BTC), Ethereum
(ETH), Binance Coin (BNB), Ripple XRP (XRP) and Cardano (ADA). In the
choice of most capitalized cryptocurrencies, the so-called stablecoins, namely
Tether (USDT) and USD Coin (USDC), are neglected since their value is
pegged to the value of the US dollar, and thus the daily returns of these cryp-
tocurrencies are irrelevant.

Figure 4.2: Prices of Bitcoin and Ethereum
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Figure 4.2 plots daily prices of the two largest cryptocurrencies by market
capitalization: Bitcoin (BTC) and Ethereum (ETH), across the time span of
the dataset used throughout this thesis. The curves of both plots are similar
to each other, which potentially indicates a significant correlation between the
two major cryptocurrencies. Both graphs peak in December 2021. Except for
several pull-backs, prices of both cryptocurrencies followed a downward trend
in 2022. The trend changed in January 2023, and since then, the prices of
Bitcoin and Ethereum have been increasing until today.

4.3 Stock Market Index
As a proxy for the US stock market, the stock market index S&P 500 (SPY) is
chosen in this thesis. This index represents a suitable performance measure of
the whole US stock market, as it includes hundreds of stocks listed on the US
stock market. Figure 4.3 shows Adjusted Close prices of the S&P 500 index.

www.coinmarketcap.com
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Figure 4.3: Adjusted Close price of S&P 500
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4.4 Non-business Days
Cryptocurrencies are traded on the market at any point in time, whereas stocks
are usually traded only during normal business hours and days. The absence of
trade on stock markets during weekends and public holidays poses a challenge
for comparing the two asset classes. In this thesis, that difficulty is solved by
applying a resample function on the dataset using the Pandas library for data
analysis in Python programming language. The daily price data are resam-
pled according to the US federal holiday calendar. Thus, weekends and public
holidays are merged into a single day either with the previous (Friday for week-
ends) or the following business day (Monday for weekends). This creates two
different versions of the dataset: “dataF” and “dataM”, where non-business
days are merged with the previous or following day accordingly.

4.5 Daily Returns
After resampling, the final datasets contain daily “Open”, “Close”, “High” and
“Low” price data, as well as the daily “Volume” of trade for all assets. We
measure the connectedness of returns of CLS, cryptocurrencies, and the stock

Pandas
Python
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market, and therefore, daily returns for all individual assets are calculated as

Daily return i,t = Closing price i,t

Closing price i,t−1
− 1 (4.1)

where Closing price i,t represents the “Adjusted Close” price of asset i on day
t.

Table 4.1: Descriptive statistics of daily returns for dataM

Tickersssss Obs. Mean (%) Std. dev. Min. (%) Max. (%)
Cryptocurrency - linked stocks
a) Mining companies & mining hardware producers
ARBK 453 −0.100 8.490 −43.655 36.539
BITF 453 0.030 6.986 −19.926 44.286
BTBT 453 0.044 6.958 −18.235 41.791
CAN 453 −0.003 6.456 −28.790 37.572
CIFR 453 0.178 8.573 −46.749 −44.928
CLSK 453 0.082 6.410 −16.667 27.778
EBON 453 −0.149 7.446 −26.973 41.479
GREE 453 −0.371 9.290 −39.024 60.606
HIVE 453 −0.003 6.314 −22.689 37.662
HUT 453 0.061 6.797 −17.935 22.222
MARA 453 0.136 7.808 −27.028 32.172
NCTY 453 −0.251 6.895 −21.127 37.180
RIOT 453 0.118 6.572 −19.178 17.925
b) Cryptocurrency exchanges
BKKT(1) 453 0.262 14.510 −34.012 234.426
COIN 453 0.028 6.454 −26.401 24.491
c) Companies investing in cryptocurrencies
MSTR 453 0.119 6.016 −25.554 20.648
SQ(2) 453 −0.169 4.707 −15.606 26.140
d) Blockchain-linked Fintech & Cryptocurrency-payment companies
FTFT 453 0.495 17.500 −18.367 352.273
OSTK 453 −0.093 4.752 −11.748 22.826
PYPL 453 −0.247 3.175 −24.590 12.176
Cryptocurrencies
BTC 453 −0.013 3.810 −22.681 19.866
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ETH 453 0.009 4.795 −27.655 28.025
XRP 453 0.085 5.973 −19.518 73.075
BNB 453 −0.007 4.171 −22.214 13.950
ADA 453 −0.291 5.341 −22.119 37.266
Stock market index
SPY 453 0.017 1.285 −4.348 5.495

Notes: (1) BKKT (Bakkt Holdings Inc.) operates a platform for cryptocurrency trading and
provides cryptocurrency payment solutions for their clients, and thus might be included in
category d) of CLS as well. (2) SQ (Block Inc.) can also be included in CLS categories c)
and d), as the company invests in cryptocurrencies, but also offers cryptocurrency-payment
solutions. (3) Descriptive statistics for the dataset dataF can be found in Appendix A.

Since differences between both versions of the dataset dataM and dataF
are rather negligible, we present here only descriptive statistics of daily returns
for the version dataM and choose this version as the primary dataset also for
calculations of results included in the following chapter. Descriptive statistics
and detailed results for version dataF can be found in Appendix A.

4.6 Crypto and CLS Portfolios
Finally, we create two equal-weighted portfolios: “CLS” for the 20 US-listed
CLS and “Crypto” for the five major cryptocurrencies. These portfolios contain
daily returns for the asset classes, which are calculated by taking arithmetic
means of daily returns of individual assets (stocks or cryptocurrencies). Thus,
the final system contains daily return data of three variables: “CLS”, “Crypto”
and “SPY”.
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Table 4.2: Descriptive statistics of daily returns (portfolios)

Number of
obs. = 453

dataF dataM
SPY Crypto CLS SPY Crypto CLS

Mean (%) 0.017 −0.043 0.008 0.017 −0.046 0.008
Std. dev. 1.285 4.208 5.094 1.285 4.194 5.094
Min. (%) −4.348 −22.095 −13.491 −4.348 −16.576 −13.491
Max. (%) 5.495 22.559 23.612 5.495 22.559 23.612

Notes: The table contains descriptive statistics for daily returns of the stock market index
SPY and two equal-weighted portfolios: “Crypto” and “CLS”. The statistics are provided
for both versions dataF and dataM of the dataset. Note that descriptive statistics for CLS
and SPY are identical for dataF and dataM, since stocks are not traded on weekends and
holidays. Thus, these asset classes are not affected by differences in the resampling functions
of dataF and dataM.



Chapter 5

Results and Discussion

This chapter is devoted to the presentation of the main results and the dis-
cussion about the possible implications of our findings. Firstly, individual
results obtained from the analysis of network connectedness measures are pre-
sented. This analysis represents the core part of the thesis and includes the
Total network connectedness and the directional TO, FROM, and NET con-
nectedness measures. Furthermore, time horizon dynamics of connectedness
effects within the system are presented and discussed. All connectedness mea-
sures are calculated for the datasets containing daily return data for three
variables: “Crypto” (equal-weighted portfolio of five major cryptocurrencies),
“CLS” (equal-weighted portfolio of 20 US-listed CLS), and “SPY” (S&P 500
stock market index). The dataset of daily returns contains 453 observations of
daily returns, with the time span ranging from September 23rd, 2021, to July
16th, 2023. Connectedness measures are calculated for both versions of the
dataset: dataM and dataF. Finally, we construct several versions of OLS regres-
sion models for daily returns of the whole “CLS” portfolio, as well as individual
CLS in order to reveal the main drivers affecting returns of cryptocurrency-
linked stocks within the system.

5.1 Network Connectedness Measures
To obtain network connectedness measures of daily returns, we utilize the Dy-
namic Networks framework introduced in Barunik & Ellington (2020a) and
Barunik & Ellington (2020b) and we use the Julia programming language
code accompanying their papers1.

1the code is available on www.github.com/barunik/DynamicNets.jl

Julia
www.github.com/barunik/DynamicNets.jl
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5.1.1 Total Dynamic Network Connectedness

The Total network connectedness is a dynamic measure of the overall inter-
connectedness of the system, which in our case includes “Crypto” and “CLS”
portfolios and the stock market index “SPY”. Thus, higher levels of Total net-
work connectedness indicate significant interrelations between the cryptocur-
rency and stock markets. We plot the Total connectedness for both versions
dataM and dataF.

Figure 5.1: Total Dynamic Network Connectedness for dataM

Notes: (1) Figure 5.1 and Figure 5.2 plot Total Dynamic Network connectedness for the
two versions of the dataset containing daily returns of “CLS”, “Crypto”, and “SPY”. (2)
These plots are the results of the Dynamic Networks setting with parameter Corr = FALSE.
Results for Corr = TRUE can be found in Appendix B. (3) Total network connectedness is
depicted by the black line and grey areas are bordered by 2.5% and 97.5% quantiles, and
thus represent 95% confidence intervals of the measure.

As we can see on the graphs, in both cases the plot of Total connectedness
follows a similar pattern and lies in the range from 40 to 60 for the entire time
span. However, several peaks and troughs can be observed throughout the
period, with a significant low in July 2022. In January 2023 Total connectedness
dropped to a minimum level of 41.4. The system exhibited a maximum Total
connectedness in September 2021, reaching a level of 57.5.
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Figure 5.2: Total Dynamic Network Connectedness for dataF

5.1.2 Directional Connectedness

To obtain a better understanding of connectedness effects among variables in
the system, it is crucial to study directional connectedness measures. Barunik
& Ellington (2020b) allow to study TO, FROM, and NET directional connect-
edness measures within the Dynamic Networks framework for each variable.
We follow their methodology and plot these measures for the three variables
“CLS”, “Crypto” and “SPY”. The so-called TO connectedness indicates, how
much variable j contributes to variances of other variables in the system. On
the other hand, FROM connectedness measures the contribution of shocks in
other variables in the system to the variance of variable j. The directional
NET connectedness is obtained by subtracting the FROM connectedness from
the TO connectedness and indicates variable j's position in the system (net
transmitter or receiver of shocks). The results of Directional connectedness
measures below are obtained for the dataset version dataM and results for the
version dataF are to be found in Appendix A.

CLS

The NET connectedness of “CLS” stayed in the range between -2.5 and 2.5
throughout the sample. The maximum of NET connectedness was reached in
June 2022 and was equal to 2.5. “CLS” received shocks from other variables
most significantly in January 2023, when NET connectedness hit a minimum
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of -2.8. Overall, we cannot easily claim, whether “CLS” is a net transmitter or
receiver of shocks, since NET connectedness fluctuates significantly and both
mean and median values of NET connectedness are close to zero.

Figure 5.3: Directional Connectedness for CLS

Notes: (1) Figure 5.3 plots Directional TO, FROM, and NET connectedness measures for
variable “CLS” and dataset version dataM. Similar measures for version dataF can be found
in Appendix A.
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Cryptocurrencies

The “Crypto” portfolio cannot be easily categorized as a net receiver or trans-
mitter of shocks, since both mean and median values of NET connectedness
are very close to zero. However, NET connectedness fluctuates throughout the
period, reaching a maximum of 2.1 in January 20232 and a minimum of -3.3 at
the end of September 2022.

Figure 5.4: Directional Connectedness for Crypto

Notes: (1) Figure 5.4 plots Directional TO, FROM, and NET connectedness measures for
variable “Crypto” and dataset version dataM. Similar measures for version dataF can be
found in Appendix A.

S&P 500 stock market index

NET connectedness of “SPY” was predominantly positive, implying that “SPY”
transmits its shocks to the system more often than receives shocks from other
variables. This effect was most significant in September 2022, when NET con-

2Note that NET connectedness of “CLS” reached a minimum around this period.
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nectedness culminated at 4.13. Contrarily, “SPY” hit a minimum NET con-
nectedness of -2.3 in March 2022.

Figure 5.5: Directional Connectedness for SPY

Notes: (1) Figure 5.5 plots Directional TO, FROM, and NET connectedness measures for
variable “SPY” and dataset version dataM. Similar measures for version dataF can be found
in Appendix A.

5.1.3 Time Horizon Dynamics

The horizon decomposition of Total connectedness provides useful information
about the characteristics of connectedness effects, which can be divided into
three groups by time horizons. Connectedness effects are labeled as short-term
for a time horizon of 1-5 days (corresponds to a week), medium-term for 5-20
days, and long-term for horizons greater than 20 days (greater than one month).
We provide results of time horizon dynamic measures of connectedness for both
versions of the dataset dataM and dataF. Note that black lines in Figure 5.6

3Note that NET connectedness of “Crypto” reached a minimum around this period.
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and Figure 5.7 correspond to the Total connectedness measures presented in
Figure 5.1 and Figure 5.2.

Figure 5.6: Time Horizon dynamics of Connectedness for dataM

Figure 5.7: Time Horizon dynamics of Connectedness for dataF

Notes: (1) Figure 5.6 and Figure 5.7 plot horizon dynamics of network connectedness for
the two versions of the dataset containing daily returns of “CLS”, “Crypto”, and “SPY”. (2)
These plots are results of the Dynamic Networks setting with parameter Corr = FALSE.
Results for Corr = TRUE can be found in Appendix B. (3) Total network connectedness is
depicted by the black line. Lighter-colored areas are bordered by 2.5% and 97.5% quantiles
and thus represent 95% confidence intervals of respective measures.
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In both Figure 5.6 and Figure 5.7 short-term connectedness is the strongest
among time horizons and lies in the range between 20 and 35 throughout the
time span. Fluctuations in the short-term horizon mimic the shape of Total
connectedness plots. Connectedness in the medium-term horizon is less volatile
and ranges between 15 and 20. Long-term connectedness effects are the least
significant and are represented by a relatively flat curve, which lies constantly
below the level of 10.

5.2 OLS Regression of CLS Returns
In this subsection, we analyze the main drivers of daily returns of CLS, by build-
ing OLS regressions and estimating various models. We also try to demonstrate,
how connectedness measures within the system influence and explain CLS re-
turns. To be able to use connectedness measures as explanatory variables of
CLS returns, we first have to modify the function normker in the Dynamic Net-
works Julia code by stopping the iteration at the present observation. This
prevents the framework from looking at future observations when calculating
network connectedness measures. After doing so, we can recalculate connected-
ness measures as shown in Section 5.1, and begin to build OLS regressions. Our
baseline model for daily CLS returns is described by the following equation.

rCLSt = β0 + β1rSPYt + β2TO_difft + ut (5.1)

where rCLSt and rSPYt are daily returns of the “CLS” portfolio and S&P 500
index respectively, TO_diff t = TOCrypto,t − TOSP Y,t is the difference between
the TO connectedness for variable “Crypto” and the TO connectedness for
variable “SPY” and thus presents an interaction term between the cryptocur-
rency and stock markets. The error term is represented by ut. Note that we
use version dataM of the dataset for all OLS regressions within Section 5.2

Firstly, we estimate the regression for the whole “CLS” portfolio and sec-
ondly, for the 20 individual cryptocurrency-linked stocks as dependent vari-
ables. We present results of OLS estimations, as well as 95% confidence in-
tervals for estimated coefficients. Following Wooldridge (2012) we apply the
nonparametric bootstrapping method as a robustness test for OLS estimates,
which allows us to generate confidence intervals from standard errors of the
coefficient estimates. The method consists of drawing n random observations

normker
Julia
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from the original dataset (of size n) with replacement, which produces a new
dataset of the same size n. Then, OLS estimations are run on the new sample
b, and new coefficient estimates θ̂

(b) are saved. The resampling and estimation
are repeated m = 1000 times and bootstrap standard errors of parameter es-
timates bse(θ̂) are calculated as sample standard deviations of estimates from
bootstrap samples.

bse(θ̂) =
[︄
(m − 1)−1

m∑︂
b=1

(θ̂(b)
− θ̂)2

]︄ 1
2

(5.2)

where θ̂ is the average of the bootstrap estimates θ̂
(b), for b = 1, 2, ..., m. The

95% confidence intervals for estimated coefficients are then calculated in the
usual way from the 2.5% and 97.5% percentiles using the bootstrap standard
errors.

Table 5.1: OLS regression estimates for returns of the“CLS” portfolio

Dependent Variable:

rCLSt

Constant 1.413∗∗∗

(0.148)

rSPYt 2.418∗∗∗

(0.148)

TO_difft 0.419∗∗

(0.211)

Observations 451

R-squared 0.378

Adjusted R-squared 0.375

Notes: (1) *** - significant at 1% level, ** - significant at 5% level, * -significant at 10%
level. (2) Numbers in parentheses represent standard errors.
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Table 5.1 shows OLS estimates of the model with daily returns of the “CLS”
portfolio. Both independent variables rSPYt and TO_difft are significant at
the 5% level (rSPYt significant even at 1% level) and the model's Adjusted R-
squared is equal to 37.5%, which means that the model explains almost 40% of
the variance in daily returns of the “CLS” portfolio. The estimated coefficient
of rSPYt is equal to 2.418, which means that an increase by one percentage
point in daily returns of S&P 500 will, ceteris paribus, increase daily returns
of the “CLS” portfolio by 2.4 percentage points. TO_difft has a positive
estimated coefficient of 0.419, which can be interpreted as follows. An increase
in the difference between TOCrypto,t and TOSP Y,t by one percentage point will
increase daily returns of the “CLS” portfolio by 0.4 percentage points, ceteris
paribus. In other words, an increase in the TO connectedness of “Crypto”,
while keeping TO connectedness of S&P 500 constant, will have a positive
effect on CLS returns. Such an effect is interesting since it suggests, that CLS
returns are higher in periods of time when CLS are relatively more influenced
by the cryptocurrency market than by traditional stocks.

Table 5.2: Confidence intervals for OLS regression estimates

Estimated coefficient 95% CI

Constant 1.413 (1.165 , 1.676)

rSPYt 2.418 (2.169 , 2.679)

TO_difft 0.419 (-0.051 , 0.905)

Notes: Table 5.2 shows estimated OLS coefficients of independent variables from Table 5.1
and respective 95% confidence intervals for these estimates. The confidence intervals were
calculated by following the nonparametric bootstrapping method in Wooldridge (2012).

To examine in more detail the mentioned effect of connectedness measures
on CLS returns, we run the OLS regression described in Equation 5.1 also for
daily returns of each individual CLS as dependent variables and study changes
in the estimated coefficients for TO_difft. Results of the 20 OLS regressions
are presented in Table 5.3.
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Table 5.3: OLS regression estimates for returns of individual CLS

Dep. variable R2 Adj. R2 TO_difft 95% CI

a) Mining companies & mining hardware producers

rARBKt 0.089 0.085 0.303 (-0.544 , 1.074)

rBITFt 0.270 0.267 0.405 (-0.166 , 1.056)

rBTBTt 0.237 0.234 0.491 (-0.137 , 1.130)

rCANt 0.184 0.180 0.090 (-0.452 , 0.610)

rCIFRt 0.093 0.089 1.158∗∗∗ (0.241 , 2.131)

rCLSKt 0.311 0.308 0.456∗ (-0.067 , 0.995)

rEBONt 0.098 0.094 0.678∗ (-0.044 , 1.581)

rGREEt 0.099 0.095 0.822∗ (-0.103 , 1.760)

rHIV Et 0.325 0.322 0.365 (-0.205 , 0.993)

rHUTt 0.319 0.316 0.434 (-0.184 , 1.020)

rMARAt 0.283 0.280 0.595∗ (-0.128 , 1.381)

rNCTYt 0.192 0.188 0.350 (-0.272 , 1.005)

rRIOTt 0.312 0.309 0.789∗∗∗ (0.119 , 1.448)

Median a) 0.237 0.234 0.456 (-0.137 , 1.074)

b) Cryptocurrency exchanges

rBKKTt 0.051 0.047 0.905 (-0.243 , 2.343)

rCOINt 0.330 0.327 0.454∗ (-0.151 , 1.123)

Median b) 0.191 0.187 0.680 (-0.197 , 1.733)

c) Companies investing in cryptocurrencies

rMSTRt 0.375 0.372 0.234 (-0.356 , 0.789)

rSQt 0.509 0.506 −0.157 (-0.514 , 0.236)

Median c) 0.442 0.439 0.039 (-0.435 , 0.513)

d) Blockchain-linked Fintech & Cryptocurrency-payment companies

rOSTKt 0.280 0.277 0.042 (-0.322 , 0.398)

rPY PLt 0.399 0.396 −0.207 (-0.454 , 0.019)

Median d) 0.340 0.337 −0.083 (-0.388 , 0.209)

Notes: (1) Table 5.3 presents 20 estimated OLS coefficients of TO_difft and 95% confidence
intervals for these estimates. The confidence intervals were calculated by following the
nonparametric bootstrapping method in Wooldridge (2012) for m = 1000.
(2) *** - significant at 1% level, ** - significant at 5% level, * - significant at 10% level.
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Table 5.3 shows R-squared and Adjusted R-squared measures for all 20 in-
dividual OLS regressions, with a minimum Adj. R-squared equal to 5% for
the model with rBKKTt as the dependent variable and a maximum Adjusted
R-squared of 51% for dependent variable rSQt. Furthermore, estimated pa-
rameters of TO_difft and 95% confidence intervals of this measure are pre-
sented for each model4. Dependent variables are divided into four groups of
CLS according to Section 4.1 and the nature of the company's linkage to the
cryptocurrency market. We provide median values for all measures within each
CLS category and study if the effects of connectedness measures on CLS returns
vary significantly across individual categories.

The estimated effect of TO_difft on CLS returns is the largest for cate-
gories b) Cryptocurrency exchanges (median estimate equal to 0.680) and a)
Mining companies & mining hardware producers (with a median estimate of
0.456). TO_difft is statistically significant at the 1% level for two models
(those with rCIFRt and rRIOTt as dependent variables), and significant at
10% level for five models (rCLSKt, rEBONt, rGREEt, rMARAt and rCOINt

as dependent variables) within these two categories. Furthermore, CLS within
the first two categories have arguably a stronger linkage towards the cryptocur-
rency market in comparison to categories c) Companies investing in cryptocur-
rencies and d) Blockchain-linked Fintech & Cryptocurrency-payment compa-
nies, as for these companies cryptocurrency-linked activities often represent
only a minor part of their business activities. This intuition is supported by
median values of TO_difft estimates for groups c) and d), which are remark-
ably closer to zero. Moreover, the effect of TO_difft on CLS returns is in-
significant for all models within categories c) and d). Within categories c) and
d) the estimated effect of TO_difft on CLS returns is highest for the model
with rMSTRt as the dependent variable and equal to 0.234.5

To sum up, the connectedness variable TO_difft might represent a useful
measure for explaining CLS returns. The estimated effect and significance of
connectedness measures on the returns of CLS vary across different categories
of CLS, being more significant and higher for CLS with stronger linkages to
cryptocurrencies. These findings are similar to those of Frankovic et al. (2022),

4Confidence intervals are results of the nonparametric bootstrapping method described
in Wooldridge (2012).

5Note that MicroStrategy Inc. (MSTR) is arguably the biggest holder of Bitcoin among
public companies. Thus, the linkage of MSTR to the cryptocurrency market might be sig-
nificantly larger in comparison to other CLS in categories c) and d).
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who find stronger connectedness effects of cryptocurrencies on CLS with rela-
tively higher exposures towards the cryptocurrency market.



Chapter 6

Conclusion

This Bachelor’s thesis studies the connectedness effects of returns between US-
listed Cryptocurrency-linked stocks, five major cryptocurrencies, and the US
stock market. By doing so, we contribute to the academically unexplored field
of Cryptocurrency-linked stocks since a similar analysis for US-listed CLS has
not been conducted before. We utilize the Dynamic Networks framework, a
novel methodology proposed by Barunik & Ellington (2020b), for the measure-
ment of connectedness effects within dynamic network systems.

In our findings, the network consisting of daily returns data of 20 US-
listed CLS, five major cryptocurrencies, and the stock market index S&P 500
demonstrated significant levels of Total connectedness, which ranged from 41
to 57 throughout the sample.

Moreover, we present directional connectedness measures for individual vari-
ables, in order to analyze the main transmitters and receivers of shocks within
the system. However, these measures fluctuate throughout the period of our
sample, making the labeling of asset classes as “net transmitters” and “net
receivers” of shocks rather difficult. Nevertheless, we identify several periods
of increased or decreased NET directional connectedness for variables in the
system and observe interesting interrelations of these measures. As an exam-
ple, we point out the period of September 2022, when NET connectedness of
cryptocurrencies reached a sample minimum, NET connectedness of S&P 500
hit a maximum and NET connectedness of CLS was close to zero.

We also decompose network connectedness into time horizons and report
short-term horizons of one week to be most significant for connectedness effects.
On the other hand, long-term connectedness effects within the horizon of 20+
days are the least significant.
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Lastly, we study OLS regressions for CLS returns, to analyze significant
explanatory variables among connectedness measures that explain returns of
CLS. Firstly, we use the daily returns of the whole portfolio of 20 CLS as the
dependent variable, and secondly, we substitute the whole portfolio with indi-
vidual CLS returns as explained variables. We use TO_difft (the difference
between the TO connectedness of the portfolio containing five major cryptocur-
rencies and the TO connectedness of S&P 500) as an interaction term between
the cryptocurrency and stock market. This variable is statistically significant
at the 5% level in the baseline model for CLS returns (see Table 5.1). The
effect of TO_difft exhibits considerable variation across categories of CLS,
being largest and most significant for categories with greater exposure to the
cryptocurrency market. These findings corroborate Frankovic et al. (2022) who
find stronger linkages between cryptocurrencies and CLS with high exposure
to the cryptocurrency markets.

Our findings have implications for investors interested in the emerging and
unexplored asset class of CLS, which represents a bridge between traditional
stocks and the unconventional market of cryptocurrencies. Moreover, this thesis
might also motivate other researchers to extend our research and contribute to
this unexplored field of academia in the future.



Bibliography

Barunik, J. & M. Ellington (2020a): “Dynamic Network Risk.” arXiv
preprint arXiv:2006.04639 .

Barunik, J. & M. Ellington (2020b): “Dynamic networks in large financial
and economic systems.” SSRN Electronic Journal .

Baruník, J. & T. Křehlík (2018): “Measuring the Frequency Dynamics of
Financial Connectedness and Systemic Risk.” Journal of Financial Econo-
metrics 16(2): pp. 271–296.

Dahlhaus, R. (1996): “On the kullback-leibler information divergence of
locally stationary processes.” Stochastic Processes and their Applications
62(1): pp. 139–168.

Dahlhaus, R. & W. Polonik (2009): “Empirical spectral processes for locally
stationary time series.” Bernoulli 15(1): pp. 1–39.

Demirer, M., F. Diebold, L. Liu, & K. Yilmaz (2018): “Estimating global
bank network connectedness.” Journal of Applied Econometrics 33(1): pp.
1–15.

Diebold, F. X. & K. Yilmaz (2009): “Measuring financial asset return and
volatility spillovers, with application to global equity markets.” The Eco-
nomic Journal 119: pp. 158–171.

Diebold, F. X. & K. Yilmaz (2012): “Better to give than to receive: Predic-
tive directional measurement of volatility spillovers.” International Journal
of Forecasting 28(1): pp. 57–66.

Diebold, F. X. & K. Yilmaz (2014): “On the network topology of variance
decompositions: Measuring the connectedness of financial firms.” Journal of
Econometrics 182(1): pp. 119–134.



Bibliography 37

Frankovic, J., B. Liu, & S. Suardi (2022): “On spillover effects between
cryptocurrency-linked stocks and the cryptocurrency market: Evidence from
Australia.” Global Finance Journal 54(C).

Geraci, M. V. & J.-Y. Gnabo (2018): “Measuring interconnectedness be-
tween financial institutions with bayesian time-varying vector autoregres-
sions.” Journal of Financial and Quantitative Analysis 53(3): pp. 1371–
1390.

Härdle, W. K., C. R. Harvey, & R. C. G. Reule (2020): “Understanding
Cryptocurrencies.” The Journal of Financial Econometrics 18(2): pp. 181–
208.

Ji, Q., E. Bouri, L. Kristoufek, & B. Lucey (2021): “Realised volatility
connectedness among bitcoin exchange markets.” Finance Research Letters
38: p. 101391.

Kumar, A., N. Iqbal, S. K. Mitra, L. Krištoufek, & E. Bouri (2022):
“Connectedness among major cryptocurrencies in standard times and during
the covid-19 outbreak.” Journal of International Financial Markets, Institu-
tions and Money 77(C).

Nakamoto, S. (2009): “Bitcoin: A peer-to-peer electronic cash system.” Cryp-
tography Mailing list at https://metzdowd.com .

Pesaran, H. & Y. Shin (1998): “Generalized impulse response analysis in
linear multivariate models.” Economics Letters 58(1): pp. 17–29.

Petrova, K. (2019): “A quasi-bayesian local likelihood approach to time vary-
ing parameter VAR models.” Journal of Econometrics 212(1): pp. 286–306.

Roueff, F. & A. Sanchez-Perez (2016): “Prediction of weakly locally sta-
tionary processes by auto-regression.” arXiv preprint arXiv:1602.01942 .

Wooldridge, J. M. (2012): “Introductory Econometrics: A Modern Ap-
proach.” 5th edition.

Xu, F., E. Bouri, & O. Cepni (2022): “Blockchain and crypto-exposed us
companies and major cryptocurrencies: The role of jumps and co-jumps.”
Finance Research Letters 50: p. 103201.



Appendix A

Results for Version dataF of the
Dataset

Table A.1: Descriptive statistics of daily returns for dataF

Tickersssss Obs. Mean (%) Std. dev. Min. (%) Max. (%)
Cryptocurrency - linked stocks
a) Mining companies & mining hardware producers
ARBK 453 −0.1002 8.4900 −43.6548 36.5385
BITF 453 0.0302 6.9855 −19.9262 44.2857
BTBT 453 0.0444 6.9577 −18.2353 41.7910
CAN 453 −0.0032 6.4559 −28.7897 37.5723
CIFR 453 0.1781 8.5732 −46.7492 44.9275
CLSK 453 0.0822 6.4101 −16.6667 27.7778
EBON 453 −0.1494 7.4464 −26.9729 41.4791
GREE 453 −0.3712 9.2904 −39.0244 60.6061
HIVE 453 −0.0032 6.3135 −22.6891 37.6623
HUT 453 0.0607 6.7967 −17.9348 22.2222
MARA 453 0.1360 7.8080 −27.0284 32.1721
NCTY 453 −0.2511 6.8947 −21.1268 37.1795
RIOT 453 0.1185 6.5723 −19.1781 17.9245
b) Cryptocurrency exchanges
BKKT(1) 453 0.2621 14.5098 −34.0116 234.4262
COIN 453 0.0278 6.4542 −26.4009 24.4910
c) Companies investing in cryptocurrencies
MSTR 453 0.1190 6.0163 −25.5540 20.6482
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SQ(2) 453 −0.1689 4.7067 −15.606 26.1396
d) Blockchain-linked Fintech & Cryptocurrency-payment companies
FTFT 453 0.4951 17.4997 −18.3673 352.2727
OSTK 453 −0.0930 4.7519 −11.7479 22.8258
PYPL 453 −0.2468 3.1745 −24.5904 12.1755
Cryptocurrencies
BTC 453 −0.0153 3.7869 −15.9747 14.5412
ETH 453 0.0033 4.7206 −19.2538 18.1149
XRP 453 0.0852 5.8218 −19.5181 73.0750
BNB 453 −0.0118 4.2135 −18.5654 16.2070
ADA 453 −0.2896 5.5212 −21.4970 29.2719
Stock market index
SPY 453 0.0172 1.2849 −4.3483 5.4954

Notes: (1) BKKT (Bakkt Holdings Inc.) operates a platform for cryptocurrency trading and
provides cryptocurrency payment solutions for their clients, and thus might be included in
category d) of CLS as well. (2) SQ (Block Inc.) can also be included in CLS categories c)
and d), as the company invests in cryptocurrencies, but also offers cryptocurrency-payment
solutions.
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A.1 Directional Connectedness Measures for dataF

Figure A.1: Directional Connectedness for CLS (dataF)

Notes: (1) Figure A.1 plots Directional TO, FROM, and NET Connectedness measures for
variable “CLS” and dataset version dataF.
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Figure A.2: Directional Connectedness for Crypto (dataF)

Notes: (1) Figure A.2 plots Directional TO, FROM, and NET Connectedness measures for
variable “Crypto” and dataset version dataF.
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Figure A.3: Directional Connectedness for SPY (dataF)

Notes: (1) Figure A.3 plots Directional TO, FROM, and NET Connectedness measures for
variable “SPY” and dataset version dataF.



Appendix B

Connectedness Results for
Parameter Corr=TRUE

Figure B.1: Total Dynamic Network Connectedness for dataM
(Corr=TRUE)
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Figure B.2: Total Dynamic Network Connectedness for dataF
(Corr=TRUE)

Notes: (1) Figure B.1 and Figure B.2 plot Total Dynamic Network Connectedness for the
two versions of the dataset containing daily returns of “CLS”, “Crypto”, and “SPY”. (2)
These plots are results of the Dynamic Networks setting with parameter Corr = TRUE. (3)
Total Network Connectedness is depicted by the black line and grey areas are bordered by
2.5% and 97.5% quantiles, and thus represent 95% confidence intervals of the measure.

Figure B.3: Time Horizon dynamics of Connectedness for dataM
(Corr=TRUE)
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Figure B.4: Time Horizon dynamics of Connectedness for dataF
(Corr=TRUE)

Notes: (1) Figure B.3 and Figure B.4 plot Horizon dynamics of Network Connectedness for
the two versions of the dataset containing daily returns of “CLS”, “Crypto”, and “SPY”.
(2) These plots are results of the Dynamic Networks setting with parameter Corr = TRUE.
(3) Total Network Connectedness is depicted by the black line. Lighter-colored areas are
bordered by 2.5% and 97.5% quantiles and thus represent 95% confidence intervals of
respective measures.
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