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Introduction
This thesis concerns a class of subspaces of Banach spaces called ideals. First, we
follow the development of this notion.

A subspace Y of a Banach space X is complemented if there is a bounded
linear projection PY : X → X such that PY (X) = Y . A well-known result is that
a subspace with finite dimension or codimension is complemented. We say Y is a
non-trivial complemented subspace if Y is complemented and its dimension and
codimension are infinite. We can ask ourselves the following question: Does every
Banach space have a non-trivial complemented subspace? In general, the answer
is negative. In [14], Gowers and Maurey constructed a Banach space that only
has trivially complemented subspaces. Therefore, finding a condition under which
a non-trivial complemented subspace exists is intriguing. For more details, the
reader is referred to the survey paper [25].

In [15, Corollary 3.8], Heinrich and Mankiewicz proved that a dual space of a
non-separable Banach space contains a non-trivial complemented subspace. The
critical observation is that working with Hahn–Banach extension operators suffices.
For a Banach space X and its subspace Y , a linear operator E : Y ∗ → X∗ is a
Hahn–Banach extension operator if it is norm-one and the restriction of Ey∗ to Y
is equal to y∗ for all y∗ ∈ Y ∗. Once we have this operator, we can find a linear
projection P : X∗ → X∗ such that ∥P∥ ≤ 1 and the kernel of P is the annihilator
of Y . We will see this in Theorem 1.4, implication (iii) to (iv).

Heinrich and Mankiewicz proved the existence of this operator in [15, Propo-
sition 3.4]. The proof presented in [15] is involved and uses results from model
theory. Later, Sims and Yost, inspired by Lindenstrauss’ finite dimensional lemma
[22, Lemma 1], simplified the proof using the notion of a locally complemented sub-
space. A subspace Y is locally complemented in X if for every finite-dimensional
subspace F ⊂ X and every ε > 0 there is a linear operator T : F → Y such that
∥T∥ ≤ 1 + ε and Tx = x for all x ∈ Y ∩ F .

In [13], the authors realized a connection between locally complemented
subspaces and the notion of M -ideals, and therefore, they used the term ideal
instead of locally complemented subspace.

In recent years, ideals with additional properties have been studied. The
notion of an almost isometric ideal was introduced in [2] in 2014. We do not state
the whole definition here, as it is long. It will be defined in Definition 3.1. At
this moment, we will only point out its relation to an ideal. In the definition of a
locally complemented subspace (equivalently, an ideal), there is an operator T
such that ∥Tx∥ ≤ (1 + ε)∥x∥, as we mentioned above. In an almost isometric
ideal, we require the operator to satisfy (1 − ε)∥x∥ ≤ ∥Tx∥ ≤ (1 + ε)∥x∥. Hence
the name “almost isometric.”

An essential result in [1] is Theorem 1.5. It states that for every separable
subspace, a separable, almost isometric ideal that contains the subspace exists.
This result has further applications; see, e.g., [1, Section 3], [26], [24], and [6].
Almost isometric ideals are also studied in [5].

2



Brief Content Description
In Chapter 1, we introduce the notions of ideals, locally complemented subspaces,
and Hahn–Banach extension operators. We state and prove the Ideal Character-
ization Theorem 1.4. To this end, we develop the theory of limits with respect
to ultrafilters. We also introduce directed ultrafilters. Limits with respect to a
directed ultrafilter have two advantages over limits with respect to nets which
we will exploit. We can take a limit over an abstract directed set, and we do not
need to worry about the existence because a limit with respect to an ultrafilter in
a compact space always exists.

Chapter 2 is devoted to the method of suitable models. It is a set-theoretical
tool that allows us to write technical proofs in simpler terms. This approach
proves valuable in propositions where for each separable subspace, we construct a
separable superspace with additional properties. The reader can see, e.g., [11],
where several constructions of separable spaces using the method of suitable
models are presented. In Chapter 2, we introduce it, prove several useful lemmas,
and show how we use it. We briefly mention its connection to rich families.

Chapter 3 is devoted to the proof of the existence of an almost isometric ideal
using the method of suitable models. It is a subject of Corollary 3.6, which is the
main new result in this thesis. We also collect some consequences.

Finally, Chapter 4 is about applications of almost isometric ideals and the
method of suitable models. We prove a particular subspace has the local or strong
diameter two property or the Daugavet property if and only if the whole space
has it. Moreover, we unify both separable and non-separable cases. The method
of suitable models allows us to consider both cases simultaneously, unlike in [1],
where the presented proofs consider only separable spaces with a note that we
can extend the result to non-separable spaces.

Notation
We establish the notation we follow in this text.

If f is a mapping and Y is a subset of some set, we denote f [Y ] as the image
of Y under the mapping f . We designate [X]≤ω at most countable subsets of
a set X. Analogously, [X]fin are finite subsets of X. The powerset of a set
X is P(X). By XY we denote the set of all functions from Y to X. The
cardinality of X is |X|. The set of natural numbers and zero is ω. We put
N := ω \ {0}. If X is a topological space, the minimal cardinality of a dense set
Y ⊂ X is denoted by densY . If X is a normed vector space, the diameter of
Y ⊂ X, Y ≠ ∅ is diam Y := sup{∥x − y∥;x, y ∈ Y }. The set of eventually zero
sequences is c00(X) := {x ∈ XN; ∃n0 ∈ N∀n ∈ N, n ≥ n0 : xn = 0}, where X is
a normed vector space. We identify c00 := c00(R). The support of a sequence
x = (xn)n ∈ c00(X) is the set supp x := {n ∈ N;xn ̸= 0}.

We assume all vector spaces are over the field of real numbers. For a Banach
space X, we denote X∗ as the dual space to X. The dual space to X∗ will be
denoted by X∗∗. Let Y ⊂ X be a subspace. We define the annihilator Y ⊥ of Y
as the set {x∗ ∈ X∗;x∗(x) = 0 for all x ∈ Y }. Bi-annihilator Y ⊥⊥ denotes (Y ⊥)⊥.
The operator IdX is the identity operator Id : X → X. If it is clear what the
domain is, we drop the subscript.
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The canonical isometrical embedding from X into X∗∗ is denoted by κX . That
is, κX(x)(x∗) := x∗(x) for x ∈ X, x∗ ∈ X∗. If no confusion can arise, we will omit
the subscript in κX . The rational linear span of a set B ⊂ X is

spanQB :=
{︄

m∑︂
i=1

λibi;λ1, . . . , λm ∈ Q, b1, . . . , bm ∈ B,m ∈ N
}︄
.

We denote by ℓk
1 the space Rk equipped with the ℓ1 norm. The symbol SX denotes

the unit sphere {x ∈ X; ∥x∥ = 1}, and the symbol BX denotes the closed unit
ball {x ∈ X; ∥x∥ ≤ 1}. If T is a mapping, its range is Rng T , its kernel is KerT ,
and its domain is DomT . The notation T : X → Y means the domain of T is
X and Rng T ⊂ Y . If Z ⊂ X, the restriction of T to the set Z is T |Z , that is
T |Z : Z → Y .
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1. Ideals in Banach Spaces
In this chapter, we introduce the notions of ideals, locally complemented subspaces,
and Hahn–Banach extension operators. We state the Ideal Characterization
Theorem 1.4. In order to prove it, we develop the theory of ultrafilters and limits
with respect to ultrafilters. The last section is devoted to the proof of the theorem.

1.1 Characterization of Ideals
We recall the notions discussed in the introductory chapter.

Definition 1.1. Let X be a Banach space, Y ⊂ X a subspace. A linear operator
E : Y ∗ → X∗ is called a Hahn–Banach extension operator if it is norm-one and
Ey∗|Y = y∗ for all y∗ ∈ Y ∗.

Definition 1.2. Let X be a Banach space. We call a subspace Y ⊂ X locally
complemented in X if for every finite-dimensional subspace F ⊂ X and every
ε > 0 there is a linear operator T : F → Y such that ∥T∥ ≤ 1 + ε and Tx = x for
all x ∈ Y ∩ F .

A locally complemented subspace is sometimes called locally 1-complemented
or 1-locally complemented. We use the definition from [1]. The origin of this
notion can be traced to Kalton’s [18, Section 3] from 1984. He was motivated by
finding a reasonable analogy of Lp spaces in the setting of p-Banach spaces for
p ∈ (0, 1).

Definition 1.3. Let X be a Banach space. We say a subspace Y ⊂ X is an ideal
in X if Y ⊥, the annihilator of Y , is the kernel of a norm-one linear projection on
X∗.

The notion of an ideal was introduced by Godefroy, Kalton, and Saphar in
1993 in [13]. The notion of ideals introduced in this paper is a generalization of
well-known M-ideals. At this point, M -ideals were already known, as they were
defined in [4] in the year 1972. If Y is a subspace of a Banach space X, Y is an
M-ideal if it is an ideal and ∥x∗∥ = ∥Px∗∥ + ∥x∗ − Px∗∥ for all x∗ ∈ X∗. This
justifies the naming, as an M -ideal is a special case of an ideal.

We postpone the proof of the Ideal Characterization Theorem to develop the
theory necessary to complete it. The entire Section 1.3 is devoted to the proof
itself.

Theorem 1.4 (Ideal Characterization Theorem). Let X be a Banach space,
Y ⊂ X a closed subspace. Then the following statements are equivalent.

(i) Y is locally complemented in X.

(ii) There is a linear operator T : X → Y ∗∗ such that ∥T∥ ≤ 1 and T (y) = κY (y)
for y ∈ Y .

(iii) There exists a Hahn–Banach extension operator from Y ∗ to X∗.

(iv) Y is an ideal in X.
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The following theorem is often called the principle of local reflexivity, initially
due to Lindenstrauss and Rosenthal in 1969 [23, Theorem 3.1]. The proof can
also be found in [3, Theorem 11.2.4].

Theorem 1.5 (Principle of Local Reflexivity). Let X be a Banach space. Then
κ(X) is locally complemented in X∗∗.

We can immediately state a simple fact about ideals.

Fact 1.6. Let X be a Banach space, Y ⊂ X an ideal in X such that both dimension
and codimension of Y are infinite. Then there exists a projection Q : X∗ → X∗

such that the range of Q has infinite dimension and codimension.

Proof. Because Y is an ideal, we have a projection Q : X∗ → X∗ such that
Y ⊥ = RngQ. We utilize a known fact that we can identify Y ⊥ and (X/Y )∗ via a
linear isometry. From this, RngQ has infinite dimension. From the identification
of Y ∗ and X∗/Y ⊥, we have the codimension of the range of Q is infinite too.

Now we turn our attention away from ideals for a while. We will return to them
in Section 1.3. We begin with stating a lemma on projections and an auxiliary
lemma which will be helpful later.

Lemma 1.7. Let X be a Banach space. Let Q : X → X be a projection and
denote Q∗ : X∗ → X∗ the dual operator to Q. Then RngQ∗ = (KerQ)⊥.

Proof. The dual operator of a projection is clearly a projection. Let x∗ ∈ RngQ∗

and x ∈ KerQ. Because x∗ is in the range of Q∗, we can write Q∗x∗(x) = x∗(x).
Then by the definition of a dual operator and the fact that Q vanishes in x

x∗(x) = Q∗x∗(x) = x∗(Qx) = x∗(0) = 0.

Since x ∈ KerQ was arbitrary, we obtain x∗ ∈ (KerQ)⊥. We have shown
RngQ∗ ⊂ (KerQ)⊥.

On the other hand, we assume x∗ ∈ (KerQ)⊥ and x ∈ X. Because Q is a
projection, Qx− x ∈ KerQ. With this in mind, we calculate

(Q∗x∗ − x∗)(x) = x∗(Qx− x) = 0.

From this, we have Q∗x∗(x) = x∗(x). This means x∗ ∈ RngQ∗. Because
x∗ ∈ (KerQ)⊥ was arbitrary, we see that RngQ∗ ⊂ (KerQ)⊥.

Lemma 1.8. Let X be a Banach space, Y ⊂ X a subspace. Let us define a
mapping I : Y ⊥⊥ → Y ∗∗ by the formula Ix∗∗(y∗) := x∗∗(x∗) for x∗∗ ∈ Y ⊥⊥,
y∗ ∈ Y ∗ and x∗ ∈ X∗ an arbitrary extension of y∗. Then I is a linear surjective
isometry.

Moreover, IκX(y) = κY (y) for y ∈ Y .
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Proof. We demonstrate that the definition of the mapping is correct. Let us have
x∗∗ ∈ Y ⊥⊥, y∗ ∈ Y ∗ and x∗

1, x
∗
2 ∈ X∗ two extensions of y∗. Then x∗

1|Y − x∗
2|Y =

y∗ −y∗ = 0 which means x∗
1 −x∗

2 ∈ Y ⊥. Then x∗∗(x∗
1 −x∗

2) = 0 = x∗∗(x∗
1)−x∗∗(x∗

2).
From this, x∗∗(x∗

1) = x∗∗(x∗
2) so the mapping I is well-defined.

The mapping I is linear. We show it is an isometry. Let us have x∗∗ ∈ Y ⊥⊥.
Then

∥Ix∗∗∥ = sup
y∗∈BY ∗

|Ix∗∗(y∗)| = sup
x∗∈BX∗

|x∗∗(x∗)| = ∥x∗∗∥.

The second equality holds because every element of BX∗ is an extension of some
element of BY ∗ .

To show I is also surjective, we consider v∗∗ ∈ Y ∗∗. Let us put f ∗∗(x∗) :=
v∗∗(x∗|Y ) for x∗ ∈ X∗. Then f ∗∗ is clearly continuous and linear. We will verify
that f ∗∗ ∈ Y ⊥⊥. Let us have x∗ ∈ Y ⊥. Then

f ∗∗(x∗) = v∗∗(x∗|Y ) = v∗∗(0) = 0.

Because the choice of x∗ ∈ Y ⊥ was arbitrary, it follows f ∗∗ ∈ Y ⊥⊥.
We have

If ∗∗(x∗|Y ) = f ∗∗(x∗) = v∗∗(x∗|Y ),
for x∗ ∈ X∗. The Hahn–Banach theorem assures that for each y∗ ∈ Y ∗ we find
x∗ ∈ X∗ satisfying y∗ = x∗|Y . This allows us to conclude If ∗∗ = v∗∗. Because
v∗∗ ∈ Y ∗∗ was arbitrary, I is an onto mapping.

To prove the moreover part of the statement, we pick y ∈ Y , y∗ ∈ Y ∗. Recall
the well-know fact that κX [Y ] ⊂ Y ⊥⊥. For x∗ ∈ X∗ an extension of y∗, we have

IκX(y)(y∗) = κX(y)(x∗) = x∗(y) = y∗(y) = κY (y)(y∗).

From this, IκX(y) = κY (y) for y ∈ Y .

1.2 Ultrafilters and Limits with Respect to Ul-
trafilters

We examine the set-theoretic notion of ultrafilters. The study of them will bear
its fruit in the following sections.

Definition 1.9. Given a nonempty set X, a filter on X is a nonempty family U
of subsets of X such that for arbitrary A,B ⊂ X

(i) ∅ ̸∈ U ,

(ii) if A,B ∈ U , then A ∩B ∈ U ,

(iii) if A ∈ U and A ⊂ B, then B ∈ U .

Definition 1.10. A filter U on a set X, which is not properly contained in any
other filter, is called an ultrafilter on the set X. If there is x ∈ I such that
{x} ∈ U , we call U a principal ultrafilter. Otherwise, we call U a non-principal
ultrafilter.
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The proofs of the following two theorems can be found in [16], Theorem 3.6
and Theorem 3.8, respectively.

Theorem 1.11. Let X be a set. Then U is an ultrafilter on X if and only if U is
a filter and for all A ⊂ X either A ∈ U or X \ A ∈ U .

Theorem 1.12. Let X be a set and A be a subset of P(X), which has the finite
intersection property. Then there is an ultrafilter U on X such that A ⊂ U .

We now define a crucial notion of a limit with respect to an ultrafilter. We
use a less general form of the definition from [16, Definition 3.44].

Definition 1.13. Let us have an index set I, an indexed family (ai)i∈I ∈ RI ,
a ∈ R and an ultrafilter U on the set I. We say a is a limit of (ai)i∈I with respect
to an ultrafilter U if for all ε > 0 the set {i ∈ I; |ai − a| < ε} ∈ U . We denote this
as

lim
U
ai = a.

Informally, a = limU ai means that “ai is often close to a.” Recall that an
ultrafilter can be thought of as a two-valued measure. A given subset of a set
either belongs to an ultrafilter or its complement belongs. Now we say that the
subset has measure one, “is almost everything,” if it is a member of the ultrafilter.
We assign zero, “is almost nothing,” if the complement is in the ultrafilter.

The following theorem from [16, Theorem 3.52] on the existence of limits with
respect to ultrafilters will be essential to us.

Theorem 1.14. Let us have an indexed family (ai)i∈I ∈ [−C,C]I for some C > 0
and an ultrafilter U on I. Then limU ai exists and is unique.

We aim to define directed ultrafilters. We use the definition of a directed set
that can be found in [19, p. 65]. Some authors require an additional axiom of
antisymmetry.

Definition 1.15. Let I be a set. We say the pair (I,≤) is a directed set if ≤ is
a binary relation that is reflexive, transitive, and has the property that for each
i, j ∈ I there is k ∈ I such that i ≤ k and j ≤ k.

The following notion of a directed ultrafilter is inspired by [7, Remark 5].

Definition 1.16. Let (I,≤) be a directed set. For i ∈ I we put [i,→) := {j ∈
I; i ≤ j}. We say a non-principal ultrafilter U on I is a directed ultrafilter, if the
family G := {[i,→); i ∈ I} ⊂ U .

Remark 1.17. We observe that a directed ultrafilter does exist. Assume I is infinite
and (I,≤) does not have a maximal element, that is, [i,→) ̸= {i} for every i ∈ I.
The system G ∪ {I \ {i}; i ∈ I} has the finite intersection property. By Theorem
1.12, this system is contained in a directed ultrafilter U .
Notation 1.18. If I is an infinite set such that the directed set (I,≤) has no
maximal element, we say I is an unbounded directed set.

We now prove a few properties of limits with respect to ultrafilters which will
be important in upcoming theorems and to become acquainted with them.

We begin with a simple observation that limits with respect to a principal
ultrafilter are not interesting. This is why we will henceforth concern ourselves
only with limits with respect to non-principal ultrafilters.
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Lemma 1.19. Let U be an ultrafilter on a set I such that there is i0 ∈ I satisfying
{i0} ∈ U . Then limU ai = ai0 for every (ai)i∈I ∈ RI .

Proof. Choose ε > 0. It holds {i0} ⊂ {i ∈ I; |ai − ai0| < ε}. Because U is a filter
on I, {i ∈ I; |ai − ai0| < ε} ∈ U . From the definition, limU ai = ai0 .

We can summarize the next four lemmas as limit arithmetic. We do need
to worry about the existence of a limit. We always work with a compact space
[−C,C]I for some C > 0 and by Theorem 1.14, we have the existence and
uniqueness.
Lemma 1.20. Let U be a non-principal ultrafilter on a set I, C > 0 and (ai)i∈I ∈
[−C,C]I , (bi)i∈I ∈ [−C,C]I . Then

lim
U

(ai + bi) = lim
U
ai + lim

U
bi.

Proof. Denote A := limU ai, B := limU bi. Choose ε > 0. Then U1 := {i ∈
I; |ai −A| < ε

2} ∈ U and U2 := {i ∈ I; |bi −B| < ε
2} ∈ U . Because U is a filter on

I, U1 ∩ U2 ∈ U . At the same time, U1 ∩ U2 ⊂ {i ∈ I; |(ai + bi) − (A + B)| < ε}
from the triangle inequality. By the definition of a limit with respect to U ,
limU(ai + bi) = A+B.

Lemma 1.21. Let U be a non-principal ultrafilter on a set I, C > 0. Let
(ai)i∈I ∈ [−C,C]I , (bi)i∈I ∈ [−C,C]I be such that {i ∈ I : ai ≤ bi} ∈ U . Then
limU ai ≤ limU bi.

Proof. Denote zi := bi − ai, limU ai =: A, limU bi =: B. By Lemma 1.20,
limU zi = B−A =: Z. For any fixed ε > 0, the set U1 := {i ∈ I; |zi −Z| < ε} ∈ U
and from the assumption U2 := {i ∈ I; zi ≥ 0} ∈ U . Then U1 ∩ U2 ∈ U . For any
index i ∈ U1 ∩U2, we obtain Z ≥ zi − ε ≥ −ε. Since ε was arbitrary, we conclude
Z ≥ 0.

Lemma 1.22. Let U be a non-principal ultrafilter on a set I, C > 0 and (ai)i∈I ∈
[−C,C]I , (bi)i∈I ∈ [−C,C]I . Then

lim
U

(aibi) =
(︃

lim
U
ai

)︃(︃
lim

U
bi

)︃
.

Proof. Denote A := limU ai, B := limU bi. Let us have ε > 0. From the definition of
a limit with respect to an ultrafilter, we have sets U1 := {i ∈ I; |ai −A| < ε

2C
} ∈ U

and U2 := {i ∈ I; |A||bi −B| < ε
2} ∈ U . It follows from the triangle inequality,

|aibi − AB| ≤ |ai − A||bi| + |A||bi −B| ≤ C|ai − A| + |A||bi −B| < ε,

that U ∋ U1 ∩ U2 ⊂ {i ∈ I; |aibi − AB| < ε} ∈ U . From the definition of a limit,
we have limU(aibi) = AB, as ε > 0 was arbitrary.
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Lemma 1.23. Let U be a non-principal ultrafilter on a set I, (ai)i∈I ∈ [−C,C]I
for C > 0 and f : R → R a continuous function. Then limU f(ai) = f(limU ai).

Proof. Mark A := limU ai. Choose ε > 0. We find δ > 0 such that f(B(A, δ)) ⊂
P (f(A), ε), where P denotes a punctured neighborhood. Then U := {i ∈
I; |A− ai| < δ} ∈ U and U ⊂ {i ∈ I; |f(A) − f(ai)| < ε} ∈ U .

Let us focus on limits with respect to directed ultrafilters from Definition 1.16.
The first result indicates the relationship between them and limits with respect to
a net.

Lemma 1.24. Let (I,≤) be an unbounded directed set, U a directed ultrafilter on
I, (ai)i∈I ∈ RI a net such that limI ai = a, a ∈ R. Then limU ai = a.

Proof. Assume not. Then, there exists ε > 0 such that the set A := {i ∈
I; |ai − a| < ε} ̸∈ U . From Theorem 1.11, I \ A ∈ U . Let us choose j ∈ I \ A.
Because U is directed, [j,→) ∈ U . Then (I \ A) ∩ [j,→) ∈ U . We show this is
a contradiction with limI ai = a. Let us have i0 ∈ I. Because U is directed we
can find i ∈ [i0,→) ∩ [j,→) which satisfies |ai − a| ≥ ε. This is the contradiction.
Hence limU ai = a.

A limit of a sequence has the property that if we have two sequences (an)n,
(bn)n and there is n0 ∈ N such that for all n > n0 we have an = bn, then their limits
are the same. Limits with respect to an ultrafilter have an analogous property.

Lemma 1.25. Let (I,≤) be an unbounded directed set, U a directed ultrafilter
on I, C > 0, (ai)i∈I ∈ [−C,C]I , (bi)i∈I ∈ [−C,C]I , i0 ∈ I. If ai = bi for any
i ∈ [i0,→), then limU ai = limU bi.

Proof. The limits exist by Theorem 1.14. Let A := limU ai, B := limU bi.
Let us choose ε > 0. We define sets U1 := {i ∈ I; |A − ai| < ε

2} ∈ U ,
U2 := {i ∈ I; |B − bi| < ε

2} ∈ U . Because U is a directed ultrafilter, we also have
[i0,→) ∈ U . Then U1 ∩ U2 ∩ [i0,→) ∈ U . Simultaneously U1 ∩ U2 ∩ [i0,→) ⊂
{i ∈ [i0,→); |(ai + bi) − (A+B)| < ε} ∈ U by the triangle inequality. From the
assumption ai = bi for i ≥ i0, and by the definition of a limit with respect to the
ultrafilter U , it follows limU 2ai = A+B. By Lemma 1.22, limU 2ai = 2A. Thus
A = B.

By Lemma 1.22 and Lemma 1.20, we know that limits with respect to an
ultrafilter are linear. We formulate this separate lemma so we can refer to it in
the future.

Lemma 1.26. Let (I,≤) be an unbounded directed set, U a directed ultrafilter on
I, C > 0, (ai)i∈I ∈ [−C,C]I , (bi)i∈I ∈ [−C,C]I , λ, µ ∈ R. Then

lim
U

(λai + µbi) = λ lim
U
ai + µ lim

U
bi.

10



Proof. The limits exist due to Theorem 1.14. By Lemma 1.20 and Lemma 1.22,
we have the equality.

1.3 Proof of the Ideal Characterization Theorem
We now have the knowledge necessary to prove the Ideal Characterization Theorem
1.4.
Proof of Theorem 1.4. Assume (i) holds. We begin by introducing the system

I := {I = (F, ε);F ⊂ X is a finite-dimensional subspace, ε > 0},

and a binary relation ≤ on I. For I = (F, ε) ∈ I and I ′ = (F ′, ε′) ∈ I, we
write I ≤ I ′ if F ⊂ F ′ and ε′ ≤ ε. Then ≤ is transitive and reflexive. Given
I = (F, ε) ∈ I and I ′ = (F ′, ε′) ∈ I, the pair J := (F +F ′,min{ε, ε′}) is a member
of I and satisfies I ≤ J and I ′ ≤ J . Clearly, (I,≤) has no maximal element.
Thus (I,≤) is an unbounded directed set.

For a given I = (F, ε) ∈ I, we denote by SI : F → Y the linear bounded
mapping such that ∥SI∥ ≤ 1 + ε and SI |F ∩Y = Id. Then we define a mapping
TI : F → Y

TIx =

⎧⎨⎩SIx x ∈ F,

0 x ̸∈ F.

We will show the operator T : X → Y ∗∗ defined below satisfies (ii)

Tx(x∗) := lim
U
x∗(TIx) x ∈ X, x∗ ∈ Y ∗.

The indexed family (x∗(TIx))I∈I is a bounded family of real numbers. By Theorem
1.14, we obtain the existence and uniqueness of the limit with respect to U .

First, we show Tx ∈ Y ∗∗. We consider x ∈ X, x∗ ∈ Y ∗, ε > 0, and the pair
(span{x}, ε) =: I0. Then I0 ∈ I and

|Tx(x∗)| =
⃓⃓⃓⃓
lim

U
x∗(TIx)

⃓⃓⃓⃓
(a)=
⃓⃓⃓⃓
lim

U
x∗(SIx)

⃓⃓⃓⃓
(b)= lim

U
|x∗(SIx)| ≤ lim

U
∥x∗∥∥SI∥∥x∥

≤ (1 + ε)∥x∗∥∥x∥,

(1.1)

where in (a) we used that for any (F, δ) ∈ [I0,→) the element x belongs to the
subspace F . In (b), we employed Lemma 1.23. The mapping Tx is linear by
Lemma 1.26. It follows from (1.1) that Tx ∈ Y ∗∗. Moreover, since ε > 0 was
arbitrary, we have ∥Tx∥ ≤ ∥x∥ for all x ∈ X.

To show T is linear, we pick x, y ∈ X, λ, µ ∈ R, and x∗ ∈ Y ∗. Put I0 :=
(span{x, y}, 1). Then, for any I ∈ [I0,→)

x∗(TI(λx+ µy)) = x∗(SI(λx+ µy))
= λx∗(SIx) + µx∗(SIy)
= λx∗(TIx) + µx∗(TIy),

11



because SI is linear from the assumption. Now we are ready to use Lemma 1.25
in conjunction with limit arithmetic

T (λx+ µy)(x∗) = lim
U
x∗ (TI(λx+ µy))

= λ lim
U
x∗ (TIx) + µ lim

U
x∗ (TIy)

= λT (x)(x∗) + µT (y)(x∗).

Now it follows from the estimate ∥Tx∥ ≤ ∥x∥, x ∈ X that, ∥T∥ ≤ 1.
It remains to show T (x) = κY (x) for x ∈ Y . Let us have x ∈ Y , x∗ ∈ Y ∗. We

set I0 := (span{x}, 1). Then for any I ∈ [I0,→), we have SI(x) = x. Finally

Tx(x∗) = lim
U
x∗ (TIx) = lim

U
x∗ (SIx)

= lim
U
x∗ (x) = x∗(x)

= κY (x)(x∗).

Since x ∈ Y was arbitrary, we conclude Tx = κY (x) on Y . This finishes the proof
of the implication from (i) to (ii).

Let us assume (ii) holds. We will prove (iii). To this end, we define E : Y ∗ →
X∗, Ey∗(x) := Tx(y∗) where x ∈ X, y∗ ∈ Y ∗ and T : X → Y ∗∗ is the operator
from (ii). Because the operator T is linear, it follows that Ey∗ is linear for every
y∗ ∈ Y ∗. It is clear that E is linear too, and for y ∈ Y we have

Ey∗(y) = Ty(y∗) = κY y(y∗),

which means Ey∗|Y = y∗. From ∥T∥ ≤ 1, it follows ∥E∥ ≤ 1.
We have Ey∗|Y = y∗. Thus for y∗ ∈ SY ∗ , it follows ∥Ey∗∥ = ∥y∗∥ = 1.

Combining this with the norm estimate above, we see ∥E∥ = 1.
Now we show (iv) follows from (iii). Let E : Y ∗ → X∗ be a Hahn–Banach

extension operator from (iii). We are looking for a norm-one linear projection
Q : X∗ → X∗ such that KerQ = Y ⊥. We set Qx∗ := E(x∗|Y ), x∗ ∈ X∗. Then
∥Q∥ ≤ 1 and Q is linear. From the property of the Hahn–Banach extension
operator Ey∗|Y = y∗ for y∗ ∈ Y ∗, we have

QQx∗ = Q(E(x∗|Y )) = E(E(x∗|Y )|Y ) = E(x∗|Y ) = Qx∗,

thus Q is a projection. It remains to demonstrate that the kernel of Q is the
annihilator of Y . First, we assume x∗ ∈ KerQ and y ∈ Y . Then

0 = Qx∗(y) = (Ex∗|Y )(y) = x∗(y).

From the arbitrariness of y, we obtain x∗ ∈ Y ⊥. Since we chose x∗ arbitrarily, we
have KerQ ⊂ Y ⊥. On the other hand, we pick x∗ ∈ Y ⊥, y ∈ Y . It follows

Qx∗(y) = (Ex∗|Y )(y) = x∗(y) = 0.

Since this holds for any x∗ ∈ Y ⊥, we see Y ⊥ ⊂ KerQ. Thus Y is an ideal in X.
We will prove that (iv) implies (i). Let us have ε > 0 and a finite-dimensional

subspace F ⊂ X.
From the assumption, Y is an ideal in X. We find a projection Q : X∗ → X∗

such that ∥Q∥ ≤ 1 and KerQ = Y ⊥. Let us denote P : X∗∗ → X∗∗ the dual
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operator to Q. Then P is a projection and has the same norm. From Lemma 1.7,
we have RngP = (KerQ)⊥ = Y ⊥⊥.

By the Principle of Local Reflexivity 1.5, we have a linear operator ˜︁TS : S →
κY (Y ) for every finite-dimensional subspace S ⊂ Y ∗∗ such that ∥ ˜︁TS∥ ≤ 1 + ε
and ˜︁TS|S∩κY (Y ) = Id. Let I : Y ⊥⊥ → Y ∗∗ be the surjective linear isometry from
Lemma 1.8. We consider the following chain of mappings

X
κX−→ X∗∗ P−→ Y ⊥⊥ I−→ Y ∗∗ ˜︁TS−→ κY (Y )

κ−1
Y−→ Y.

Now we define the operator T : F → Y as

T := κ−1
Y ◦ ˜︁TIP κX(F ) ◦ I ◦ P ◦ κX ,

where ˜︁TIP κX(F ) is the operator corresponding to the finite-dimensional subspace
I(P (κX(F ))) of Y ∗∗. The chain of mappings above implies T is well defined. Next,
we estimate the norm of T ,

∥T∥ ≤ ∥κ−1
Y ∥∥ ˜︁TIP κX(F )∥∥I∥∥P∥∥κX∥ ≤ 1 + ε.

It remains to check whether T is the identity on F ∩ Y . Since κX [F ∩ Y ] ⊂
κX(F ) ∩ Y ⊥⊥ ⊂ RngP , it follows P ◦ κX [F ∩ Y ] = κX [F ∩ Y ] because P is a
projection. From Lemma 1.8, we have IκX(y) = κY (y) for y ∈ Y . Then

I(PκX [F ∩ Y ]) = I(κX [F ∩ Y ]) = κY [F ∩ Y ].

Finally, for x ∈ F ∩ Y

Tx = κ−1
Y ◦ ˜︁TIP κX(F ) ◦ I ◦ P ◦ κX(x)

= κ−1
Y ◦ ˜︁TIP κX(F ) ◦ I ◦ κX(x)

= κ−1
Y ◦ ˜︁TIP κX(F ) ◦ κY (x)

= κ−1
Y ◦ κY (x)

= x.

We have shown that T |F ∩Y = Id. Thus Y is indeed locally complemented in X,
as the operator T witnesses.
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2. Suitable Models
This chapter introduces the method of suitable models, a set-theoretical approach
that enables us to write technical proofs in simpler terms. This approach was
used already by Dow [12] in 1988. In 2009, Kubís [20] applied this method to
obtain new results in functional analysis. The method was later refined by Cúth
in 2012 [10]. We follow Cúth’s approach from [10], [11], and [8]. The reader is
referred to Kunen’s book [21], especially chapter four, for more details about the
involved set-theoretic background.

In the first section, we introduce some elementary notions. We continue with
notions important in the area of suitable models. Then we show how we apply
this method. In the last section, we briefly mention its connection to rich families.

2.1 Elementary Notions
We review elementary notions from set theory and logic. We work in the Zermelo–
Fraenkel set theory framework with the axiom of choice. Our language uses the
following basic symbols. The connectives

¬ ∧ ∨ → ↔,

the parentheses, the universal and existential quantifier, the equality symbol, the
membership symbol

( ) ∀ ∃ = ∈,

and the variable symbols vj for any j ∈ N.

Definition 2.1. A finite sequence of basic symbols is called an expression. An
expression is a formula if constructed by the following three rules.

1. For any i, j ∈ N the expressions vi = vj and vi ∈ vj are formulas.

2. If φ, ψ are formulas, then (¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), (φ ↔ ψ) are
formulas.

3. If φ is a formula, then (∃vi φ) and (∀vi φ) are formulas for all i ∈ N.

Notation 2.2. To simplify notation, we write

¬(vi ∈ vj) vi ̸∈ vj

¬(vi = vj) vi ̸= vj.

We drop parentheses if it is clear how to put them in from the context. We also
use other letters from the English and Greek alphabet as variables.

Definition 2.3. Let φ be a formula. A subformula of φ is a consecutive sequence
of symbols from φ, which forms a formula.

Example 2.4. The five subformulas of the formula φ := (∃x(x = y)) ∨ (∀z(z ∈ y))
are x = y, z ∈ y, ∃x(x = y), ∀z(z ∈ y), and the formula φ itself.
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Definition 2.5. We say an occurrence of a variable x in a formula φ is bound if
x is a part of some subformula of φ in the form ∃x(ψ) or ∀x(ψ). Otherwise, we
call the occurrence of x free.
Example 2.6. In the formula ∃y(x ̸= y), the variable y is bound, and x is free. In
∀x∃y(x ̸= y), both variables x and y are bound.
Notation 2.7. Let ψ be a formula. If all free variables in ψ are among x1, . . . , xn

we write ψ(x1, . . . , xn). If y1, . . . , yn are other variables, ψ(y1, . . . , yn) denotes the
formula which results from substituting yi for each free occurrence of xi.

The notation ψ(x1, . . . , xn) does not imply that all the listed variables are free.
It also does not mean no other variable is in ψ. We only list variables important
for our discussion.

2.2 Further Notions
Now we introduce notions crucial to the method of suitable models.
Definition 2.8. LetM be a set. For any formula ψ we define ψM , the relativization
of ψ to M , by the following rules

(x = y)M := x = y,

(x ∈ y)M := x ∈ y,

(ψ ∧ φ)M := ψM ∧ φM ,

(ψ ∨ φ)M := ψM ∨ φM ,

(¬ψ)M := ¬(ψM),
(ψ → φ)M := ψM → φM ,

(ψ ↔ φ)M := ψM ↔ φM ,

(∃xψ)M := ∃x(x ∈ M ∧ ψM),
(∀xψ)M := ∀x(x ∈ M → ψM).

We write ∃x ∈ M ψ instead of ∃x(x ∈ M ∧ ψ) to ease notation. Analogously, we
write ∀x ∈ M ψ in the place of ∀x(x ∈ M → ψ).

Essentially, we obtain the relativization of ψ to M by replacing ∃x with
∃x ∈ M and ∀x with ∀x ∈ M in ψ.
Example 2.9. Let M be a set. Put ψ := ∃z ∀x ((z ∈ y) ∧ (x ̸∈ z)). Then the
relativization of ψ to M is ψM = ∃z ∈ M ∀x ∈ M ((z ∈ y) ∧ (x ̸∈ z)). To verify
this, we follow the definition above

ψM = [(∃z ∀x ((z ∈ y) ∧ (x ̸∈ z)))]M

= ∃z (z ∈ M ∧ [∀x((z ∈ y) ∧ (x ̸∈ z))]M)
= ∃z (z ∈ M ∧ (∀x(x ∈ M → [(z ∈ y) ∧ (x ̸∈ z)]M)))
= ∃z (z ∈ M ∧ (∀x(x ∈ M → (z ∈ y) ∧ (x ̸∈ z))))
= ∃z (z ∈ M ∧ (∀x ∈ M((z ∈ y) ∧ (x ̸∈ z))))
= ∃z ∈ M ∀x ∈ M ((z ∈ y) ∧ (x ̸∈ z)),

where the last two equalities are our simplified notation. The parentheses [,] bear
the same meaning as (,). They are merely a visual aid to help the reader.
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Definition 2.10. Let M be a set, ψ(x1, . . . , xn) a formula with all free variables
shown. We say ψ is absolute for M if

∀y1, . . . , yn ∈ M
(︂
ψM(y1, . . . , yn) ↔ ψ(y1, . . . , yn)

)︂
.

Definition 2.11. Let Φ = (ψ1, . . . , ψn) be a finite list of formulas, X be a set.
Let M ⊃ X be a set such that each ψi ∈ Φ is absolute for M . Then we say M is
a suitable model for Φ containing X. We write M ≺ (Φ, X).

It is sometimes assumed that the set M is countable. This assumption can be
found in [11], [10]. We follow [8] where M is not necessarily countable. A similar
approach can be found in [9].

The following theorem asserts that suitable models exist. A proof can be found
in [21, Theorem IV.7.8].

Theorem 2.12. Let Φ be a finite list of formulas, X be any set. Then there exists
a set R such that R ≺ (Φ, X) and |R| ≤ max{ω, |X|}.

2.3 Practical Use of the Method
In this section, we present known results. All but the last two can be found in [10]
and [8]. We provide proofs here because we use a slightly different terminology
(closer to newer [9]), and we consider uncountable models (unlike in [10]).

To use the absoluteness of the formula ψ(x1, . . . , xn) for a set M we first need
to make sure x1, . . . , xn ∈ M . The following lemma allows us to add elements to
M .

Lemma 2.13 (Absoluteness Lemma). Let X be a set, ψ(y, x1, . . . , xn) be a formula
with all free variables shown. Let M ≺ ((ψ,∃y ψ(y, x1, . . . , xn)), X). Let us assume
a1, . . . , an ∈ M are such that there exists u which satisfies ψ(u, a1, . . . , an). Then
there is v ∈ M satisfying ψ(v, a1, . . . , an). Moreover, if the set u is unique, then
u ∈ M .

Proof. The relativization of the formula ∃y ψ(y, x1, . . . , xn) to M is simply ∃y ∈ M
ψM(y, x1, . . . , xn). The absoluteness of the formula ∃y ψ(y, x1, . . . , xn) implies
there is v ∈ M such that ψM (v, a1, . . . , an) holds. It follows from the absoluteness
of ψ(y, x1, . . . , xn) that ψ(v, a1, . . . , an) holds. If the set u is unique, then immedi-
ately u = v, thus u ∈ M .

We introduce useful conventions.

Convention 2.14. When we write,

“For a suitable model M the following statement holds.”

We mean,

“There is a finite list of formulas Φ and a countable set Z such that
the following statement holds for every M ≺ (Φ, Z).”

16



Convention 2.15. When we write,

“Let us have a suitable model M for the formulas marked with (∗).”

It is to be understood as,

“Let us have all the formulas marked with (∗) and their subformulas
in the preceding proofs in this thesis and number them ψ1, . . . , ψm.
Add all the formulas marked with (∗) in the proof below and their
subformulas to this list. We have a finite list of formulas ψ1, . . . , ψn.
Let us have a set Z such that

Q ∪ {ω,Z,Q,R,+,−, ·, /, <, | · |} ⊂ Z,

where +,−, ·, /, < are the common operations and relation on real
numbers, and | · | : R → R is the absolute value. Now we fix a suitable
model M ≺ ((ψ1, . . . , ψn), Z).”

Convention 2.16. To even further ease notation, we write formulas less formally,
and we use other symbols besides the ones present in our basic language. For
example, the ordered pair (a, b) is the set {{a}, {a, b}}. If f is a function, we write
f(x) = y instead of (x, y) ∈ f . We also use other common notation and symbols.

The approach with the formulas marked with (∗) allows us to use the preceding
results. It also improves the readability of the text.

As an illustration, we prove the following lemma. We prove the first statement
in great detail to illustrate how we use the established conventions.

Lemma 2.17. For a suitable model M , the following holds. Let f be a function
such that f ∈ M . Then

(i) Dom f ∈ M ,

(ii) Rng f ∈ M ,

(iii) f(x) ∈ M for all x ∈ M ∩ Dom f ,

(iv) if f is injective, f−1 ∈ M .

Proof. Let us have a suitable model M for the formulas marked with (∗). Let us
pick a function f ∈ M . The formula

(∗) ∃D ∀x (x ∈ D ↔ (∃y f(x) = y)),

defines the domain of f . The Absoluteness Lemma 2.13 suggests Dom f ∈ M .
In more detail, the suitable model M contains all the subformulas of this

formula. Hence it also contains ψ(D, f) := ∀x (x ∈ D ↔ (∃y f(x) = y)). We
can rewrite the original formula as ∃D ψ(D, f). Now M is absolute for both ψ
and ∃D ψ(D), and Dom f is uniquely defined by the formula ∃D ψ(D). Now it
is clear from the Absoluteness Lemma 2.13 that Dom f ∈ M .

The range of f is defined by the formula

(∗) ∃R ∀y (y ∈ R ↔ (∃x f(x) = y)).
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Again from Lemma 2.13, Rng f ∈ M . The formula

(∗) ∀x ∈ D (∃y f(x) = y)

is absolute for M . From the absoluteness, we conclude that for any x ∈ M∩Dom f ,
we have f(x) ∈ M . To prove the last point, we use the following formula

(∗) (∃g : Rng f → Dom f) (∀y ∈ Rng f) (∃x ∈ Dom f) (g(y) = x ∧ f(x) = y) .

Then the Absoluteness Lemma 2.13 implies f−1 ∈ M .

The following lemma is a collection of fundamental results we will need later.

Lemma 2.18. For a suitable model M , the following holds.

(i) ∅ ∈ M .

(ii) Let S be a countable set. If S ∈ M , then S ⊂ M .

(iii) Let S be a finite set. Then S ∈ M if and only if S ⊂ M .

(iv) If A,B ∈ M , then A ∩B ∈ M , A ∪B ∈ M , B \ A ∈ M .

Proof. Let us have a suitable model M for the formulas marked with (∗). The
first item follows from Lemma 2.13 and the formula

(∗) ∃x ∀z (z ∈ x ↔ z ̸= z).

Let us have S ∈ M countable and infinite. We introduce the formula

(∗) ∃f (f : S → ω is a bijective function).

From Lemma 2.13, we have f ∈ M such that f is a bijection between S and ω
and from Lemma 2.17 the inverse function f−1 ∈ M . For any n ∈ ω, it holds
f−1(n) ∈ M from Lemma 2.17. Then S = {f−1(n);n ∈ ω} ⊂ M .

Now we assume S ∈ M is a nonempty finite set. Then there is a bijection
g : S → N for some N ∈ ω. The absoluteness of the formula

(∗) ∃g (g : S → N is a bijective function),

and Lemma 2.13 allow us to find g ∈ M such that g is bijection between S and
N . Now the argument is analogous to the case where S is countable. By Lemma
2.17, the inverse g−1 ∈ M and by Lemma 2.17, we have g−1(n) ∈ M for all n ∈ N .
Then S = {g−1(n);n ∈ N} ⊂ M . This proves (ii).

Now we will prove (iii). The implication from the left to the right follows from
what we have just proved. We prove the converse implication. Let S be a subset
of M . First, we show that if u, v ∈ M , then u ∪ {v} ∈ M . To this end, we use
the following formula

(∗) ∃x ∀z (z ∈ x ↔ (z ∈ u ∨ z = v)).

The claim u ∪ {v} ∈ M immediately follows from Lemma 2.13 because M is
a suitable model for this formula and all its subformulas. We proceed with a
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subsequent claim. For all n ∈ ω and any V ⊂ M such that |V | = n, it holds
V ∈ M . This claim ensues from the previous one by induction on the cardinality
of V . The set S is finite. We have |S| = m ∈ ω. The last claim allows us to
conclude S ∈ M .

We pick A,B ∈ M to prove the last point. We routinely use the Absoluteness
Lemma 2.13 and the absoluteness of the following three formulas,

(∗) ∃P ∀a (a ∈ P ↔ (a ∈ A ∧ a ∈ B)),
(∗) ∃S ∀a (a ∈ S ↔ (a ∈ A ∨ a ∈ B)),
(∗) ∃R ∀a (a ∈ R ↔ (a ̸∈ A ∧ a ∈ B)).

We get A ∩B ∈ M , A ∪B ∈ M and B \ A ∈ M .

So far, we have stated very general results where we considered only sets. Now
we focus on sets with an additional structure of normed vector spaces.
Notation 2.19. Let (X,+, ·, ∥ · ∥) be a normed vector space. We say a suitable
model M contains X, or X is contained in M , if {X,+, ·, ∥ · ∥} ⊂ M . If M is a
suitable model which contains X, we denote the set X ∩M by XM .

The following lemma states that the set XM is, in fact, a subspace. Its
existence, and later, other properties, will be crucial to us.

Lemma 2.20. For a suitable model M , the following holds. If M contains a
normed vector space X, then XM is a closed subspace of X.

Proof. Let us have a suitable model M for the formulas marked with (∗). The
suitable model M contains the vector addition map + : X × X → X. From
Lemma 2.17, we have x+ y ∈ M ∩X for any x, y ∈ X ∩M .

Due to our Convention 2.15, we have R,Q ∈ M . However, the set R is
uncountable, so R ̸⊂ M . We turn to Q, a dense countable subset of R to deal
with this issue. Again by Convention 2.15, we have Q ⊂ M . Now we pick any
λ ∈ Q. Then, of course, λ ∈ M . The suitable model M contains the scalar
multiplication map · : R × X → X. From this, for any λ ∈ Q and x ∈ X ∩ M
it holds λ · x = λx ∈ X ∩M by Lemma 2.17. We have just proved that the set
X ∩M is a Q-linear subspace of X. Thus the closure X ∩M = XM is a closed
subspace of X.

The first interesting property of the subspace XM is that the restriction of a
functional to this subspaces does not change its norm. We will see use of this
lemma in Chapter 4.

Lemma 2.21. For a suitable model M , the following holds. Let X be a Banach
space contained in M . If x∗ ∈ X∗ ∩M , then ∥x∗|XM

∥ = ∥x∗∥.

Proof. Let us have a suitable model M for the formulas marked with (∗). Let
us have x∗ ∈ X∗ ∩M . From the definition of the operator norm, it is clear that
∥x∗|XM

∥ ≤ ∥x∗∥. We will show the inequality ∥x∗|XM
∥ ≥ ∥x∗∥ also holds. Let us
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have n ∈ N. From the absoluteness of the following formula (and its subformulas)
and Lemma 2.13

(∗) ∃x ∈ BX ∥x∗∥ − 1
n

≤ x∗(x),

for each n ∈ N we can find some x ∈ BX ∩ M such that x∗(x) ≥ ∥x∗∥ − 1
n
. It

follows ∥x∗|XM
∥ ≥ ∥x∗∥. Thus we have ∥x∗|XM

∥ = ∥x∗∥.

The next lemma is technical. We will need it in the proof of Proposition
4.7. In that proof, we will need to write down one formula which encodes linear
combinations of arbitrary length. The mapping W introduced below will allow
us to do that. We will comment on the issue in more detail in the proof of the
aforementioned proposition.

Lemma 2.22. For a suitable model M , the following holds. Let X be a Banach
space contained in M . Then there is a mapping W : c00 × c00(X) → X, W ∈ M
such that for all λ ∈ c00 ∩M and for all x ∈ c00(X) ∩M we have

W (λ, x) =
∑︂

i∈supp λ ∪ supp x

λ(i)x(i) ∈ M.

In particular, there is a mapping WR : c00 × c00 → R such that

WR(λ, σ) =
∑︂

i∈supp λ ∪ supp σ

λ(i)σ(i) ∈ M,

for all λ, σ ∈ c00 ∩M .

Proof. Let us have a suitable model M for the formulas marked with (∗). We
inductively define a mapping W ′ : N × c00 × c00(X) → X which sums elements

(∗) ∃W ′ : N × c00 × c00(X) → X ∀λ ∈ c00 ∀x ∈ c00(X) ∀n ∈ N
W ′(1, λ, x) = λ(1)x(1) ∧W ′(n+ 1, λ, x) = λ(n+ 1)x(n+ 1) +W ′(n, λ, x).

By the Absoluteness Lemma 2.13, we have W ′ ∈ M . To finish the proof, we put
W (λ, x) := W ′(max{suppλ, suppx}, λ, x). By the absoluteness of

(∗) ∃W : c00 × c00(X) ∀λ ∈ c00 ∀x ∈ c00(X)
W (λ, x) = W ′(max{suppx, suppλ}, λ, x)

and Lemma 2.13, we have W ∈ M .
To prove the in particular part, we put X = R.

2.4 Suitable Models and Rich Families
We point out how the method of suitable models relates to the concept of rich
families. The reader can see [11] for more details. We will utilize this notion
to summarize propositions proved in Chapter 4. We formulate the following
definitions only for Banach spaces, although it is possible to define these concepts
for a general topological space too.
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Definition 2.23. Let X be a Banach space. The family of all closed separable
subspaces of X is S(X). A family F ⊂ S(X) is rich if both following conditions
hold.

(i) Each separable subspace of X is contained in an element of F .

(ii) For every sequence (Fi)∞
i=1 ⊂ F such that F1 ⊂ F2 ⊂ F3 ⊂ . . ., the closure

of the union ⋃︁∞
i=1 Fi belongs to F .

Definition 2.24. Let X be a Banach space. We say a family F ⊂ S(X) is large
in the sense of suitable models if there exists a finite list of formulas Φ and a
countable set Y such that

F = {XM ;M ≺ (Φ, Y ) contains X} .

The following theorem states that the two approaches coincide if we deal with
Banach spaces. The proof can be found in [11, Theorem 4].

Theorem 2.25. Let X be a Banach space, F ⊂ S(X).

(i) If F is a rich family, then there is F ′ ⊂ F which is large in the sense of
suitable models.

(ii) If F is large in the sense of suitable models, then there is F ′ ⊂ F which is
rich.
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3. Existence of Almost Isometric
Ideals Using the Method of
Suitable Models
In this chapter, we define almost isometric ideals. We use the method of suitable
models to prove their existence. We devote an entire section to Key Lemma 3.4,
which is crucial in the proof of the Main Theorem 3.5, which is used to prove
the existence of an almost isometric ideal. In the last section, we collect several
corollaries.

The notion of an almost isometric ideal was first introduced in [2] in 2014. The
introduction is a result of research in diameter two properties of Banach spaces.
An almost isometric ideal inherits both local and strong diameter two property.
We will see this in Chapter 4.

Definition 3.1. Let X be a Banach space, Y ⊂ X a subspace. We say Y is an
almost isometric ideal in X if there exists a Hahn–Banach extension operator
E : Y ∗ → X∗ such that for every ε > 0, every finite-dimensional subspace
F ⊂ X and every finite-dimensional subspace F∗ ⊂ Y ∗ there is a linear operator
T : F → Y which satisfies the following conditions

(i) Tx = x for all x ∈ F ∩ Y ,

(ii) (Ey∗)x = y∗(Tx) for all x ∈ F , y∗ ∈ F∗,

(iii) (1 − ε)∥x∥ ≤ ∥Tx∥ ≤ (1 + ε)∥x∥ for all x ∈ F .

The set of all Hahn–Banach extension operators from Y ∗ to X∗ which satisfy the
conditions above is denoted by HBai(Y ∗, X∗).

Remark 3.2. In [2, Theorem 1.4], it was shown that we could omit (ii) in the
definition of an almost isometric ideal. We use the “bulkier” Definition 3.1 because
we will later provide proof of the existence of an almost isometric ideal that
satisfies all the points in Definition 3.1.

3.1 Key Lemma
The following preliminary lemma essentially states that the linear projection
associated with a finite-dimensional, hence complemented, subspace belongs to a
suitable model.

Lemma 3.3. For a suitable model M the following holds. Let X be a Banach
space which is contained in M , B ∈ M ∩ [X]≤ω such that E := spanB has
finite dimension. Then there is a linear projection PB : X → X such that
PB[X] = spanB, PB ∈ M and KerPB ∈ M .

Proof. Let us have a suitable model M for the formulas marked with (∗).
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The subspace E is a finite-dimensional subspace of a Banach space X, hence
it is complemented. There exists a continuous linear projection PB : X → X such
that PB[X] = E. The absoluteness of the formula

(∗) ∃S ∀x
(︂
x ∈ S ↔ x ∈

⋂︂
{P ⊂ X;P is a closed subspace, B ⊂ P}

)︂
and Lemma 2.13 imply E = spanB ∈ M . From the formula

(∗) ∃P (P : X → X is a projection such that P [X] = E)

and the Absoluteness Lemma 2.13, we deduce PB ∈ M .
Analogously, the formula

(∗) (∃K ⊂ X) (∀x) (x ∈ K ↔ PB(x) = 0)

and Lemma 2.13 imply KerPB ∈ M .

The Key Lemma is a vital result. We will utilize it in the proof of the Main
Theorem 3.5.

Lemma 3.4 (Key Lemma). For a suitable model M , the following holds. Let X be
a Banach space which is contained in M , ε > 0, D ∈ M ∩ [X∗]fin, B ∈ M ∩ [X]fin

and E, E ⊃ B is a finite-dimensional subspace. Then there is a continuous linear
mapping T : E → XM such that

(Ka) Tx = x for all x ∈ B,

(Kb) (1 − ε)∥x∥ ≤ ∥Tx∥ ≤ (1 + ε)∥x∥ for all x ∈ E,

(Kc) ∥(d ◦ T − d)|E∥ ≤ ε∥d∥ for all d ∈ D,

Proof. Let us have a suitable model M for the formulas marked with (∗). Let
us have ε > 0, D ∈ M ∩ [X∗]fin, B ∈ M ∩ [X]fin and E ⊃ B a finite-dimensional
subspace.

Since spanB is finite-dimensional, by Lemma 3.3, there is a projection PB :
X → X satisfying PB[X] = spanB, PB ∈ M , and U := KerPB ∈ M .

For k := dimE ∩ U , the space E ∩ U is isomorphic to ℓk
1, that is, Rk equipped

with the finite ℓ1 norm. We can find a basis (ei)i≤k, ∥ei∥ = 1 of this space and
C > 0 such that for all a ∈ ℓk

1 the following inequality holds⃦⃦⃦⃦
⃦

k∑︂
i=1

aiei

⃦⃦⃦⃦
⃦

X

≥ C∥a∥ℓk
1
. (3.1)

For all i ∈ N ∪ {N}, we can find a mapping Λi : N → ℓi
1 such that the set

{Λi(n);n ∈ N} is dense in ℓi
1. To ensure the mappings are in the suitable model

M , we introduce the following formula for i ∈ N

(∗) (∃Λi : N → ℓi
1)
(︂
{Λi(n);n ∈ N} is dense in ℓi

1

)︂
.

Then {Λi; i ∈ N ∪ {N}} ∈ M by the Absoluteness Lemma 2.13.

23



Now we choose δ ∈ Q, δ > 0 such that δ < ε, δ < Cε
(3+2k)∥I−PB∥ and 1 + δ < 1

1−ε
.

We also pick G ∈ N which satisfies G > δ+2
δ

.
We write GBspanB := {x ∈ spanB; ∥x∥ ≤ G}. Because spanB is finite-

dimensional, the ball GBspanB is compact. There exists a finite δ-net of GBspanB.
From the absoluteness of the formula

(∗) ∃S (S is a finite δ-net of GBspanB, S ⊂ GBspanB) ,

and Lemma 2.13, we have a finite δ-net B′ of GBspanB such that B′ ∈ M .
For the given δ, we can find P ⊂ N such that W := {Λk(i); i ∈ P} is a finite δ-

net of the unit sphere in ℓk
1. We denote the members of W by Λk,δ(i) to emphasize

their dependence on δ. Now we define a mapping ϕ : (BU)k → RB′×k × RD×k,
where BU is the unit ball in U , by

ϕ((un)) :=
⎛⎝(︄⃦⃦⃦⃦⃦b+

k∑︂
n=1

(Λk,δ(i))nun

⃦⃦⃦⃦
⃦
)︄

b∈B′,i≤k

, (d(un))d∈D,n≤k

⎞⎠ , (3.2)

for (un)k
n=1 ∈ (BU)k. The absoluteness of the formula

(∗) ∃φ (φ : Bk
U → RB′×k × RD×k is a mapping which satisfies (3.2))

and Lemma 2.13 assure ϕ ∈ M . Because the range of ϕ is separable, the absolute-
ness of the formula

(∗) ∃F ∈ [(BU)k]≤ω : ϕ[F ] is dense in ϕ[(BU)k],

and Lemma 2.13 imply the existence of a countable set F ⊂ (BU)k, F ∈ M such
that ϕ[F ] is dense in ϕ[(BU)k]. Because F is countable, F ⊂ M by Lemma 2.18.
We use this to approximate the basis (en)n≤k, ∥en∥ = 1, of E ∩ U . That is, for
ϕ((en)) we find (fn)n≤k ⊂ F such that ∥ϕ((en)) − ϕ((fn))∥ < δ in the norm of the
space RB′×k × RD×k. More precisely⃓⃓⃓⃓

⃓
⃦⃦⃦⃦
⃦b+

k∑︂
n=1

(Λk,δ(i))nen

⃦⃦⃦⃦
⃦−

⃦⃦⃦⃦
⃦b+

k∑︂
n=1

(Λk,δ(i))nfn

⃦⃦⃦⃦
⃦
⃓⃓⃓⃓
⃓ < δ, b ∈ B′, i ≤ k, (3.3)

and
|d(en) − d(fn)| < δ, d ∈ D,n ≤ k. (3.4)

We decompose the space E as the topological sum of E ∩ spanB and E ∩ U .
Further, we consider the unique linear mapping S : E ∩ U → X which satisfies
S(ei) = fi for i = 1, . . . , k, where (ei)i≤k is the norm-one basis satisfying the
estimate (3.1). Next, we introduce T : E → XM , T := PB + S ◦ (IdX −PB). Then
T is evidently a continuous linear operator. The operator T can also be written
more directly, which is better suited for our needs. For y ∈ E ∩ spanB and a ∈ Rk

we have
T

(︄
y +

k∑︂
n=1

anen

)︄
= y +

k∑︂
n=1

anfn.

The mapping T is basically two mappings combined. Each of them acts on one
summand of E. On the set E ∩ spanB, the respective mapping is the identity.
On E ∩U , the corresponding mapping perturbs the vector ∑︁k

n=1 anen by mapping
it to ∑︁k

n=1 anfn.
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We prove (Ka). If x ∈ B \ {0}, then x is not a member of KerPB = U , as U
is the topological complement of B. This means T is the identity on B.

First, we prove (Kb) holds for all y in the form y = x+∑︁k
n=1 anen where a ∈ ℓk

1
is from the unit sphere and x ∈ GBspanB. Let us have such x +∑︁k

n=1 anen ∈ E.
For this x, we find b ∈ B′ such that ∥x− b∥X < δ, where B′ is the finite δ-net of
GBspanB. We can also find Λk,δ(i) ∈ W such that ∥Λk,δ(i) − a∥ℓk

1
< δ, where W is

the finite δ-net of the unit sphere in ℓk
1.

Now we perform two auxiliary calculations,⃦⃦⃦⃦
⃦

k∑︂
n=1

anen −
k∑︂

n=1
(Λk,δ(i))n en

⃦⃦⃦⃦
⃦ ≤

k∑︂
n=1

⃓⃓⃓
an − (Λk,δ(i))n

⃓⃓⃓
∥en∥ < δk, (3.5)

⃦⃦⃦⃦
⃦

k∑︂
n=1

anfn −
k∑︂

n=1
(Λk,δ(i))n fn

⃦⃦⃦⃦
⃦ ≤

k∑︂
n=1

⃓⃓⃓
an − (Λk,δ(i))n

⃓⃓⃓
∥fn∥⏞ ⏟⏟ ⏞

≤1

< δk. (3.6)

From this, we deduce⃓⃓⃓⃓
⃓⃓
⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦−

⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anfn

⃦⃦⃦⃦
⃦
⃓⃓⃓⃓
⃓⃓

≤ ∥x− b∥ +
⃦⃦⃦⃦
⃦

k∑︂
n=1

anen −
k∑︂

n=1
(Λk,δ(i))nen

⃦⃦⃦⃦
⃦

+ ∥x− b∥ +
⃦⃦⃦⃦
⃦

k∑︂
n=1

anfn −
k∑︂

n=1
(Λk,δ(i))nfn

⃦⃦⃦⃦
⃦

+
⃓⃓⃓⃓
⃓
⃦⃦⃦⃦
⃦b+

k∑︂
n=1

(Λk,δ(i))nen

⃦⃦⃦⃦
⃦−

⃦⃦⃦⃦
⃦b+

k∑︂
n=1

(Λk,δ(i))nfn

⃦⃦⃦⃦
⃦
⃓⃓⃓⃓
⃓

< δ + kδ + δ + kδ + δ

= δ(3 + 2k),

(3.7)

where we used (3.5), (3.6), and the choice of fn (3.3) in the last inequality.
Since

k∑︂
n=1

anen = (I − PB)
(︄
x+

k∑︂
n=1

anen

)︄
,

the following holds⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦ ≥

⃦⃦⃦
(I − PB)

(︂
x+∑︁k

n=1 anen

)︂⃦⃦⃦
∥I − PB∥

= 1
∥I − PB∥

⃦⃦⃦⃦
⃦

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦

(3.1)
≥

C∥a∥ℓk
1

∥I − PB∥

= C

∥I − PB∥
.

Which means
ε

⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦ ≥ ε

C

∥I − PB∥
> δ(3 + 2k), (3.8)
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due to our choice of δ. Combining (3.7) and (3.8) yields⃓⃓⃓⃓
⃓
⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦−

⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anfn

⃦⃦⃦⃦
⃦
⃓⃓⃓⃓
⃓ < ε

⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦ . (3.9)

Thus the mapping T satisfies

(1 − ε)
⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦ ≤

⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anfn

⃦⃦⃦⃦
⃦ ≤ (1 + ε)

⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦ , (3.10)

for a ∈ ℓk
1, ∥a∥ = 1 and x ∈ GBspanB.

Now we prove (3.10) also holds for all a ∈ Sℓk
1

and x ∈ X \ GBspanB. Let us
pick arbitrary a ∈ Sℓk

1
and x ∈ X \GBspanB. We observe

∥x∥ − 1 ≤ ∥x∥ −
⃦⃦⃦⃦
⃦

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦ ≤

⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦ ≤ ∥x∥ +

k∑︂
n=1

∥anen∥ ≤ ∥x∥ + 1.

The same argument yields

∥x∥ − 1 ≤
⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anfn

⃦⃦⃦⃦
⃦ ≤ ∥x∥ + 1.

This means⃦⃦⃦
x+∑︁k

n=1 anfn

⃦⃦⃦
⃦⃦⃦
x+∑︁k

n=1 anen

⃦⃦⃦ ≤ ∥x∥ + 1
∥x∥ − 1 and

⃦⃦⃦
x+∑︁k

n=1 anen

⃦⃦⃦
⃦⃦⃦
x+∑︁k

n=1 anfn

⃦⃦⃦ ≤ ∥x∥ + 1
∥x∥ − 1 . (3.11)

We consider the real function f : z ↦→ z+1
z−1 . Because ∥x∥ > G > δ+2

δ
and the

function f is decreasing, we calculate

∥x∥ + 1
∥x∥ − 1 = f(∥x∥) < f

(︄
δ + 2
δ

)︄
= δ + 1.

From this, the first inequality in (3.11) and δ < ε⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anfn

⃦⃦⃦⃦
⃦ ≤ (1 + ε)

⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦ . (3.12)

From the other inequality in (3.11) and 1 + δ < 1
1−ε

(1 − ε)
⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦ ≤

⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anfn

⃦⃦⃦⃦
⃦ . (3.13)

This means that (3.10) holds for a ∈ ℓk
1, ∥a∥ = 1 and x ∈ X \GBspanB.

Now we justify why it is enough to work with a ∈ Sℓk
1
. Let us have x ∈ spanB

and a ∈ ℓk
1 \ {0}. We have

⃦⃦⃦⃦
⃦x+

k∑︂
n=1

anfn

⃦⃦⃦⃦
⃦ = ∥a∥ℓk

1

⃦⃦⃦⃦
⃦⃦ x

∥a∥ℓk
1

+
k∑︂

n=1

an

∥a∥ℓk
1

fn

⃦⃦⃦⃦
⃦⃦ .
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Then, we estimate

∥a∥ℓk
1

⃦⃦⃦⃦
⃦⃦ x

∥a∥ℓk
1

+
k∑︂

n=1

an

∥a∥ℓk
1

fn

⃦⃦⃦⃦
⃦⃦ ≤ ∥a∥ℓk

1
(1 + ε)

⃦⃦⃦⃦
⃦⃦ x

∥a∥ℓk
1

+
k∑︂

n=1

an

∥a∥ℓk
1

en

⃦⃦⃦⃦
⃦⃦ ,

where we used (3.10) and (3.12). Analogously, we use (3.10) and (3.13) to obtain

∥a∥ℓk
1

⃦⃦⃦⃦
⃦⃦ x

∥a∥ℓk
1

+
k∑︂

n=1

an

∥a∥ℓk
1

fn

⃦⃦⃦⃦
⃦⃦ ≥ (1 − ε)∥a∥ℓk

1

⃦⃦⃦⃦
⃦⃦ x

∥a∥ℓk
1

+
k∑︂

n=1

an

∥a∥ℓk
1

en

⃦⃦⃦⃦
⃦⃦ .

We conclude the inequality (3.10) holds for all x ∈ spanB and all a ∈ ℓk
1. Thus

(Kb) holds.
Next, we prove (Kc). Let us denote y = x + ∑︁k

n=1 anen, ∥a∥ℓk
1

= 1 and pick
d ∈ D ∩ [X∗]fin. Then from definition (3.4) of fn, |d(en) − d(fn)| < δ. Also

|d(Ty) − d(y)| =
⃓⃓⃓⃓
⃓d
(︄
x+

k∑︂
n=1

anfn

)︄
− d

(︄
x+

k∑︂
n=1

anen

)︄⃓⃓⃓⃓
⃓

=
⃓⃓⃓⃓
⃓

k∑︂
n=1

and(en − fn)
⃓⃓⃓⃓
⃓ <

k∑︂
n=1

|an|δ = δ∥a∥ℓk
1

≤ δ

C

⃦⃦⃦⃦
⃦

k∑︂
n=1

anen

⃦⃦⃦⃦
⃦ ≤ δ

C
∥(I − PB)(y)∥

≤ δ

C
∥I − PB∥∥y∥ < ε∥y∥.

To obtain the result for any a ∈ ℓk
1 we, as in the previous paragraph, divide by

the norm ∥a∥ℓk
1

and utilize what we have just proved.

3.2 Main Theorem
This is a central result in this text. We will collect several corollaries of this
theorem in the section below. In particular, it will allow us to prove the main new
result in this text, namely, that XM is an almost isometric ideal.

Theorem 3.5. For every suitable model M , the following holds. Let X be a Banach
space which is contained in M . Then there is a linear operator R : X → (XM)∗∗,
∥R∥ ≤ 1 which satisfies

(Ra) R(x) = κXM
(x) for all x ∈ XM .

(Rb) Rx(d|XM
) = d(x) for all x ∈ X and d ∈ X∗ ∩M .

(Rc) For all ε > 0 and all finite-dimensional subspaces E ⊂ X, F ⊂ (XM )∗ there
exists a linear operator T : E → XM such that

(Rc1) Tx = x for all x ∈ E ∩XM ,
(Rc2) Rx(x∗) = x∗(Tx) for all x ∈ E and x∗ ∈ F ,

27



(Rc3) (1 − ε)∥x∥ ≤ ∥Tx∥ ≤ (1 + ε)∥x∥ for all x ∈ E.

Proof. Let us have a suitable model M for the formulas marked with (∗). We
introduce the system

I := {I = (E,B,D, ε); E ⊂ X,E is a finite-dimensional subspace,
B ⊂ X ∩M is finite, B ⊂ E,D ⊂ X∗ ∩M is finite, ε > 0}.

and a binary relation ≤ on I. For I, I ′ ∈ I we write (E,B,D, ε) = I ≤ I ′ =
(E ′, B′, D′, ε′) if E ⊂ E ′, B ⊂ B′, D ⊂ D′ and ε′ ≤ ε. This relation is undoubtedly
transitive and reflexive. Let us have arbitrary I = (E,B,D, ε) ∈ I and I ′ =
(E ′, B′, D′, ε′) ∈ I. The four-tuple K := (E + E ′, B ∪ B′, D ∪ D′,min{ε, ε′})
belongs to I and satisfies I ≤ K and I ′ ≤ K. It is clear that (I,≤) has no
maximal element. Thus the pair (I,≤) is an unbounded directed set.

For a given (E,B,D, ε) = I ∈ I, there is an operator TI : E → XM from the
Key Lemma 3.4 which satisfies (Ka)-(Kc). We define the operator RI : X → XM

in the following way

RIx :=

⎧⎨⎩TIx for x ∈ E,

0 for x ̸∈ E.

We will show the sought-after operator R : X → (XM)∗∗ is the limit of RI with
respect to a directed ultrafilter U on (I,≤)

Rx(x∗) := lim
U
x∗(RIx), x ∈ X, x∗ ∈ (XM)∗.

Informally, we want the operator R to be “something like a limit with respect to
the w∗ topology.”

Because (x∗(RIx))I∈I is a bounded indexed family of real numbers, the limit
with respect to the ultrafilter U exists and is unique by Theorem 1.14.

To show Rx ∈ (XM)∗∗, we consider x ∈ X, x∗ ∈ (XM)∗. Choose ε ∈ (0, 1).
Mark J0 := (span{x}, ∅, ∅, ε). Then

|Rx(x∗)| =
⃓⃓⃓⃓
lim

U
x∗(RJx)

⃓⃓⃓⃓
(a)=
⃓⃓⃓⃓
lim

U
x∗(TJx)

⃓⃓⃓⃓
(b)= lim

U
|x∗(TJx)|

≤ lim
U

∥x∗∥∥TJ∥∥x∥

< (1 + ε)∥x∥∥x∗∥.

In (a), we used for any (Ê, B̂, D̂, ε̂) = J ∈ [J0,→) the vector x belongs to Ê.
In (b), we used Lemma 1.23. In the very last inequality, we made good use of
the binary relation ≤ on I. For any (E ′, B′, D′, ε′) = J ∈ [J0,→), we have the
estimate ∥TJ∥ ≤ (1 + ε′) ≤ (1 + ε). Since Rx is linear by the linearity of limits
with respect to the ultrafilter U , Lemma 1.26, the computation above shows that
Rx ∈ (XM)∗∗. Since ε > 0 was arbitrarily small, we have

∥Rx∥ ≤ ∥x∥ (3.14)
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for every x ∈ X.
Now we show the linearity of R. Pick x, y ∈ X, λ, µ ∈ R and x∗ ∈ (XM)∗.

We can find a finite-dimensional subspace E0 which contains both x and y, for
example, span{x, y}. Put I0 := (E0, ∅, ∅, 1). Then for any I ∈ [I0,→)

x∗ (RI(λx+ µy)) = x∗ (TI(λx+ µy))
= λx∗(TIx) + µx∗(TIy)
= λx∗(RIx) + µx∗(RIy),

because TI is linear. This allows us to use Lemma 1.25. Together with Lemma
1.26, we have

R(λx+ µy)(x∗) = lim
U
x∗(RI(λx+ µy))

= λ lim
U
x∗(RIx) + µ lim

U
x∗(RIy)

= λRx(x∗) + µRy(x∗).

We have just proved that R : X → (XM)∗∗ is a well-defined operator. It follows
from (3.14) that ∥R∥ ≤ 1.

To prove (Ra), we consider x ∈ X ∩ M . We put I0 := (span{x}, {x}, ∅, 1).
Then for any I ∈ [I0,→), we have x = TIx = RIx from (Ka). Hence

κXM
(x)(x∗) = x∗(x) = x∗(RIx)

for x∗ ∈ (XM)∗. It follows

κXM
(x)(x∗) = lim

U
κXM

(x)(x∗) = lim
U
x∗(RIx) = Rx(x∗),

by Lemma 1.25. From the continuity of R, the formula above also holds for
x ∈ X ∩M = XM .

To show (Rb) holds, we pick x ∈ X, d ∈ X∗ ∩ M and δ ∈ (0, 1). Put
I0 :=

(︂
span{x}, ∅, {d}, δ

∥d∥

)︂
. Let us have (E,B,D, ε) = I ∈ [I0,→). Using

(Kc), we have ∥(d ◦ TI − d)|E∥ ≤ ε∥d∥. In particular, because x ∈ E, we have
|d(TIx) − d(x)| ≤ ε∥d∥ and TIx ∈ XM . Then by Lemma 1.21, we have

lim
U

|d(TIx) − d(x)| ≤ lim
U
ε∥d∥ = ε∥d∥.

Then from Lemma 1.23 and Lemma 1.25, we have

|Rx(d|XM
) − d(x)| = lim

U
|d|XM

(RIx) − d(x)|

= lim
U

|d(TIx) − d(x)|

≤ ε∥d∥

≤ δ
∥d∥
∥d∥

= δ,

where in the last inequality we used ε ≤ δ
∥d∥ because I ∈ [I0,→). The choice of δ

was arbitrary, thus Rx(d|XM
) = d(x) for d ∈ X∗ ∩M . By the continuity of R, the

equality holds for d ∈ X∗ ∩M as well. This concludes the proof of (Rb).
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In order to prove (Rc), we consider the mapping PM : (XM )∗ → X∗ defined by

PMx
∗(x) := Rx(x∗), x∗ ∈ (XM)∗, x ∈ X.

Since R is linear and ∥R∥ ≤ 1, we have PMx
∗ ∈ X∗ and ∥PMx

∗∥ ≤ ∥x∗∥ for every
x∗ ∈ (XM)∗, so PM is well-defined, linear and ∥PM∥ ≤ 1. Since R = κXM

on XM ,
we have PMx

∗|XM
= x∗|XM

for every x∗ ∈ X∗.
Now we pick ε > 0 and finite-dimensional subspaces E ⊂ X and F ⊂ (XM)∗.

Let {x∗
1, . . . , x

∗
dim F } ⊂ SF be a basis of F ⊂ (XM )∗ and let {x1, . . . , xdim F } ⊂ XM

be points which satisfy x∗
i (xj) = δji, where δji is the Kronecker delta. Now we

consider the operator Q : X∗ → X∗ given by the following formula

Qx∗ :=
dim F∑︂
i=1

x∗(xi)PMx
∗
i , x∗ ∈ X∗.

Then Q is clearly bounded and linear. We will show it is a projection as well.
Let us begin with an auxiliary calculation. Since xi ∈ XM , we use (Ra) together
with the biorthogonality of the basis (x∗

i , xi)dim F
i=1

PMx
∗
i (xj) = Rxj(x∗

i ) = κXM
(xj)(x∗

i ) = x∗
i (xj) = δji.

Then

QQx∗ = Q

(︄dim F∑︂
i=1

x∗(xi)PMx
∗
i

)︄

=
dim F∑︂
j=1

dim F∑︂
i=1

x∗(xi)PMx
∗
i (xj)PMx

∗
j

=
dim F∑︂
j=1

dim F∑︂
i=1

x∗(xi)δjiPMx
∗
j

=
dim F∑︂
i=1

x∗(xi)PMx
∗
i

= Qx∗.

So we have Q a projection with Q[X∗] = PM [F ]. The dual operator Q∗ : X∗∗ →
X∗∗ is a bounded linear projection. We will relax notation in the rest of this proof.
We identify points from XM with their isometric images in (XM)∗∗. That is, for
x ∈ XM we write x in the place of κXM

(x). Let us have x∗ ∈ X∗, x∗∗ ∈ X∗∗. It
follows from

Q∗x∗∗(x∗) = x∗∗(Qx∗) =
dim F∑︂
i=1

x∗(xi)x∗∗(PMx
∗
i ),

that
Q∗x∗∗ =

dim F∑︂
i=1

x∗∗(PMx
∗
i )xi, x∗∗ ∈ X∗∗,

so Q∗ satisfies Q∗[X∗∗] = span{x1, . . . , xdim F } ⊂ XM .
We define K := maxi≤dim F {∥xi∥, ∥x∗

i ∥}. Pick δ > 0 such that

δ <
ε

2K(1 + dimE)(dimF )(3 + ε)
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and a finite δ-net N in SE. Put η := ε
2(1+dim E) . From the compactness of BE∩XM

,
we find a finite set ˜︁B ⊂ BE∩XM

such that for all x ∈ BE∩XM
there is b̃ ∈ ˜︁B which

satisfies ∥x− b̃∥ < η
2(η+2) . There is a mapping φ : ˜︁B → M such that for b̃ ∈ ˜︁B it

holds ∥φ(b̃) − b̃∥ < η
2(η+2) . Finally, we mark the set φ[ ˜︁B] as B. Then by Lemma

2.17, B ∈ M and for any x ∈ BE∩XM
we can find b ∈ B satisfying ∥x− b∥ < η

η+2 .
Since limU x

∗(RIx) = Rx(x∗) for every x ∈ N and x∗ ∈ (XM)∗, there exists
I = (E ′, B′, D′, η) ∈ I such that E ′ ⊃ span(E ∪B), B′ ⊃ B, and

|x∗
i (RIx) −Rx(x∗

i )| < δ, i ≤ dimF, x ∈ N.

We will show the operator TI : E ′ → XM associated with the four-tuple
(E ′, B′, D′, η) = I satisfies ∥(TI − Id)|E∩XM

∥ ≤ η. Let us choose arbitrary x ∈
BE∩XM

. We can find b ∈ B such that ∥x− b∥ < η
η+2 . Then

∥TIx− x∥ ≤ ∥TIx− TIb∥ + ∥TIb− b∥ + ∥x− b∥

< ∥TI(x− b)∥ + 0 + η

η + 2
< ∥TI∥ η

η + 2 + η

η + 2
≤ (1 + η) η

η + 2 + η

η + 2 = η,

where we utilized TI is the identity on B in the second inequality. Thus, ∥(TI −
IdX)|E∩XM

∥ < η.
Also RI |E′ = TI |E′ by the definition of RI and PMx

∗
i |XM

= x∗
i |XM

. From all
this, we get

|PMx
∗
i (TI − Id)(x)| = |PMx

∗
i (RIx− x)| = |x∗

i (RIx) −Rx(x∗
i )| < δ, (3.15)

for i ∈ {1, . . . , dimF}, x ∈ N .
Now we pick a projection P : E → E with ∥P∥ ≤ dimE, P [E] = E ∩XM and

consider the operator SI : E → XM defined as

SI := P + TI(IdE −P ) −Q∗(TI − IdE)(IdE −P )
= P + (TI −Q∗(TI − IdE))(IdE −P )
= P + ((TI − IdE) + IdE −Q∗(TI − IdE))(IdE −P )
= P + (IdX∗∗ −Q∗)(TI − IdE)(IdE −P ) + IdE − IdE P

= IdE +(IdX∗∗ −Q∗)(TI − IdE)(IdE −P ).

(3.16)

Then for any e ∈ E ∩XM , we have SI(e) = e+ TI(0) −Q∗(TI − IdE)(0) = e, e is
in the range of P , and so SI = Id on E ∩XM . This proves (Rc1). Now we prove
(Rc2). For every x∗ ∈ F and x ∈ E using that SI [E] ⊂ XM , we obtain

x∗(SIx) = PMx
∗(SIx)

(3.16)= PMx
∗(x) +

(︂
(IdX∗∗ −Q∗)(TI − IdE)(IdE −P )x

)︂
(PMx

∗)

= PMx
∗(x) +

(︂
(TI − IdE)(IdE −P )x

)︂(︂
(IdX∗ −Q)PMx

∗
)︂

= PMx
∗(x) +

(︂
(TI − IdE)(IdE −P )x

)︂
(0)

= PMx
∗(x)

= Rx(x∗).
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It remains to verify SI satisfies (Rc3). We begin with a helpful inequality.
For arbitrary e ∈ SE, we find x ∈ N such that ∥e − x∥ ≤ δ. Recall that
K = maxi≤dim F {∥xi∥, ∥x∗

i ∥}. Lastly, we will employ ∥PM∥ ≤ 1. Then we have

∥Q∗(TI − IdE)∥ ≤
dim F∑︂
i=1

∥xi∥ sup
e∈SE

|PMx
∗
i (TIe− e)|

≤
dim F∑︂
i=1

∥xi∥ sup
e∈SE

|PMx
∗
i ((TIe− TIx) + (x− e) + (TIx− x))|

≤ (dimF )K
(︄

∥TI∥δ + δ + sup
x∈N

|PMx
∗
i (TIx− x)|

)︄
(3.15)
≤ (dimF )K(3 + ε)δ.

(3.17)

It follows

∥SI − TI∥ (3.16)= ∥(IdE −TI)P −Q∗(TI − IdE)(IdE −P )∥
≤ ∥(IdE −TI)|E∩XM

∥∥P∥ + ∥Q∗(TI − IdE)∥(1 + ∥P∥)
(3.17)
≤ η dimE + (1 + dimE)(dimF )K(3 + ε)δ + η − η

≤ (1 + dimE)η + (1 + dimE)(dimF )K(3 + ε)δ − η

≤ ε

2 + ε

2 − η = ε− η.

Now we make two final estimates

∥SIx∥ − ∥x∥ ≤ ∥(SI − TI)x∥ + ∥TIx∥ − ∥x∥
≤ (ε− η)∥x∥ + (1 + η)∥x∥ − ∥x∥
= ε∥x∥,

if ∥SIx∥ − ∥x∥ ≥ 0. The remaining case follows

∥SIx∥ − ∥x∥ ≥ ∥TIx∥ − ∥(SI − TI)x∥ − ∥x∥
≥ (1 − η)∥x∥ + (η − ε)∥x∥ − ∥x∥
= −ε∥x∥.

We have shown (1−ε)∥x∥ ≤ ∥SIx∥ ≤ (1+ε)∥x∥. The sought-after linear operator
T from (Rc) is precisely the operator SI .

3.3 Corollaries
The following corollary is the main new result in this text. We provide proof of
the existence of an almost isometric ideal in its broadest definition.

Corollary 3.6. For every suitable model M , the following holds. Let X be a
Banach space which is contained in M . Then XM is an almost isometric ideal in
X.
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Proof. Let us have a suitable model M for the formulas marked with (∗) in the
proofs above. Let us define the operator E : (XM)∗ → X∗ as

Ex∗(x) := Rx(x∗), x∗ ∈ (XM)∗, x ∈ X,

where R : X → (XM)∗∗ is the operator from Theorem 3.5. We verify that E
is a Hahn–Banach extension operator. Because ∥R∥ ≤ 1, we immediately have
∥E∥ ≤ 1. Now we pick y∗ ∈ (XM)∗ and y ∈ XM . Then

Ey∗(y) = Ry(y∗) = κXM
y(y∗) = y∗(y),

where the second equality is due to (Ra) in Theorem 3.5. Thus for all y∗ ∈ (XM )∗,
we have Ey∗|Y = y∗. Combining this with the estimate ∥E∥ ≤ 1, we have ∥E∥ = 1.
Hence, E is a Hahn–Banach extension operator.

Now, we pick ε > 0 and finite-dimensional subspaces F ⊂ X, F∗ ⊂ (XM)∗.
From (Rc) in Theorem 3.5, there exists a linear operator T : F → XM which
satisfies

(i) Tx = x for all x ∈ F ∩XM ,

(ii) Rx(x∗) = x∗(Tx) for all x ∈ F , x∗ ∈ F∗,

(iii) (1 − ε)∥x∥ ≤ ∥Tx∥ ≤ (1 + ε)∥x∥ for all x ∈ F .

We show that the operator T witnesses XM is an almost isometric ideal. Because
of the listed properties (i) and (iii) of the operator T , we only need to check
Ex∗(x) = x∗(Tx) for x ∈ F and x∗ ∈ F∗. This follows from

Ex∗(x) = Rx(x∗) (ii)= x∗(Tx).

Thus XM is an almost isometric ideal in X according to Definition 3.1.

The corollary below has no mention of suitable models in its statement.

Corollary 3.7. Let X be a Banach space. Then for each S ⊂ X there exists an
almost isometric ideal Y in X which satisfies S ⊂ Y and densY ≤ max{|S|, ω}.

Proof. If |S| = densX, we may put Y = X, and there is nothing to prove. We
may assume that |S| < densX. To find the almost isometric ideal Y , we use the
results obtained using the method of suitable models. We look at the conventions
we established in Convention 2.14, Convention 2.15, and Notation 2.19. According
to them, we construct a set that will allow us to prove this corollary. First, the
set needs to contain the elementary structures and operations. We define the set
A as follows

A := S ∪ {X, ∥ · ∥,+, ·, ω,Z,Q,R,
operations on R⏟ ⏞⏞ ⏟

+,−, /, · , <, | · |} ∪ Q.

Now we put all formulas (and their subformulas) marked with (∗) in the proof
of Corollary 3.6 and in the proofs of preceding statements which were used in
the proof of Corollary 3.6 to a finite list Φ. From Theorem 2.12, there is a set
M ⊃ A such that M ≺ (Φ, A) and |M | ≤ max{ω, |A|}. By Corollary 3.6, XM is
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an almost isometric ideal in X. The sought-after almost isometric ideal Y is the
subspace XM .

We can find a linear bounded projection such that its kernel is the annihilator
of the subspace XM . This will be useful in the proof of the next Corollary 3.9.

Corollary 3.8. For every suitable model M , the following holds. Let X be a
Banach space which is contained in M . Then there exists a projection PM : X∗ →
X∗ which satisfies ∥PM∥ ≤ 1, KerPM = (XM)⊥ and X∗ ∩M ⊂ PM [X∗].

Proof. Let us have a suitable model M for the formulas marked with (∗) in the
proofs above. We define the mapping PM as follows

PMx
∗(x) := Rx(x∗|XM

), x ∈ X, x∗ ∈ X∗,

where R : X → (XM)∗∗ is the mapping from Theorem 3.5. First, we check that
PM is a projection. We begin with an auxiliary calculation. Let us have xM ∈ XM

and x∗ ∈ X∗. Then from (Ra) in Theorem 3.5

PMx
∗(xM) = RxM(x∗|XM

) = κXM
xM(x∗|XM

) = x∗(xM). (3.18)

With this in mind, we pick x ∈ X and x∗ ∈ X∗. Then

PMPMx
∗(x) = Rx(PMx

∗|XM
) (3.18)= Rx(x∗|XM

) = PMx
∗(x).

Thus, for any x∗ ∈ X∗ we have P 2
Mx

∗ = PMx
∗.

Because ∥R∥ ≤ 1, it follows ∥PM∥ ≤ 1. To verify KerPM = (XM)⊥, we first
show (XM)⊥ ⊂ KerPM . To this end, we pick x∗ ∈ (XM)⊥ and x ∈ X. Then
PMx

∗(x) = Rx(x∗|XM
) = Rx(0) = 0. To show the other inclusion, we consider

x ∈ XM and x∗ ∈ KerPM . Then from (Ra) in Theorem 3.5

0 = PMx
∗(x) = Rx(x∗|XM

) = κXM
x(x∗|XM

) = x∗(x).

Thus, for any x∗ ∈ KerPM and all x ∈ XM we have x∗(x) = 0, so x∗ ∈ (XM)⊥.
Now have KerPM ⊂ (XM)⊥.

To show the last point in the statement, we pick d ∈ X∗ ∩M and x ∈ X.
Then

PMd(x) = Rx(d|XM
) = d(x),

where we employed (Rb) from Theorem 3.5 in the last equality. Now we have
PMd = d, which means d ∈ RngPM . Thus X∗ ∩M ⊂ RngPM .

Another consequence is that the dual space X∗ has a non-trivial complemented
subspace.

Corollary 3.9. Let X be a non-separable Banach space. Then, there is a con-
tinuous projection P : X∗ → X∗ such that RngP and KerP are both infinite-
dimensional.
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Proof. Let us have a suitable model M for the formulas marked with (∗). The
following formula

(∗) ∃S [|S| = ω ∧ (∀x∗ x∗ ∈ S → x∗ ̸∈ span(S \ {x∗}))]

expresses that there is a countable linearly independent set S and the formula
holds because the dual space X∗ is non-separable. From the absoluteness of the
formula and Lemma 2.13, there is a set S which satisfies the formula above and
S ∈ M . The set S is countable and by Lemma 2.18, it follows S ⊂ M . Thus, we
can find an infinite linearly independent set {x∗

1, x
∗
2, . . .} ⊂ M .

From Corollary 3.8 there is a continuous projection PM : X∗ → X∗ such that
X∗ ∩M ⊂ RngPM and KerPM = (XM )⊥. We have {x∗

1, x
∗
2, . . .} ⊂ X∗ ∩M , thus

the range of PM is infinite-dimensional.
We will show (XM)⊥ is infinite-dimensional too. We find (yi)i ⊂ X which

satisfies yi ̸∈ span{y1, . . . , yi−1} ∪ XM for each i ∈ N. By one of the corollaries
of the Hahn–Banach theorem, we can find y∗

i ∈ X∗ such that y∗
i (yi) = 1 and

y∗
i (y) = 0 for all y ∈ span{y1, . . . , yi−1} ∪ XM . Then, {y∗

1, y
∗
2, . . .} is a linearly

independent set and each y∗
i ∈ (XM )⊥. Thus, KerPM is also infinite-dimensional.

35



4. Applications of Almost
Isometric Ideals
In this chapter, we present the usefulness of almost isometric ideals and the
method of suitable models. We work with closely related diameter two properties
and the Daugavet property.

4.1 Diameter Two Properties
Definition 4.1. Let X be a Banach space. For ε > 0 and x∗ ∈ SX∗ , a slice of
BX is the set S(x∗, ε) := {x ∈ BX ;x∗(x) > 1 − ε}. We say C is a finite convex
combination of slices of BX if it is in the form

C =
n∑︂

i=1
λiS(x∗

i , εi),

where n ∈ N, ∑︁n
i=1 λi = 1 and λi ≥ 0, x∗

i ∈ SX∗ , εi > 0 for each i ∈ {1, . . . , n}.

Definition 4.2. Let X be a Banach space. We say X has

(i) the local diameter two property if every slice of BX has a diameter of two,

(ii) the strong diameter two property if every finite convex combination of slices
of BX has a diameter of two.

We prove an almost isometric ideal inherits local and strong diameter two
properties from its superspace. The proofs will be straightforward consequences of
the following Proposition 4.4. To formulate it clearly, we introduce the following
notation.
Notation 4.3. Let X be a Banach space. For n ∈ N, we denote the set of all
finite convex combination of slices of BX with n summands by CX(n). That is,
C ∈ CX(n) is in the form

C =
n∑︂

i=1
λiS(x∗

i , εi),

where ∑︁n
i=1 λi = 1 and for each i ∈ {1, . . . , n} we have λi ≥ 0, x∗

i ∈ SX∗ , εi > 0.
The proof below is inspired by [2, Proposition 3.3].

Proposition 4.4. Let X be a Banach space, Y ⊂ X an almost isometric ideal in
X, n ∈ N. If every C ∈ CX(n) has a diameter of two, then every C ′ ∈ CY (n) has
a diameter of two.

Proof. Let us have C ′ := ∑︁n
i=1 λiS(x∗

i , εi) ∈ CY (n), a finite convex combination of
slices of BY with n summands. The subspace Y is an almost isometric ideal. Thus,
a Hahn–Banach extension operator E ∈ HBai(Y ∗, X∗) exists. Then, S(Ex∗

i , εi) is
a slice of BX . We put

C :=
n∑︂

i=1
λiS(Ex∗

i , εi). (4.1)
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By the assumption, C ∈ CX(n). From this, for any δ > 0 we find x1, x2 ∈ C
such that ∥x1 − x2∥ > 2 − δ and max{∥x1∥, ∥x2∥} < 1

To justify that we can find x1, x2 such that max{∥x1∥, ∥x2∥} < 1, we provide
the following perturbation argument. For i ∈ {1, 2, . . . , n} we find yi ∈ S(Ex∗

i , εi),
wi ∈ S(Ex∗

i , εi) such that x1 = ∑︁n
i=1 λiyi and x2 = ∑︁n

i=1 λiwi. A slice of BX is an
open set. This allows us to find η > 0 such that (1−η)yi ∈ S(Ex∗

i , εi), (1−η)wi ∈
S(Ex∗

i , εi), i ∈ {1, . . . , n}, and η < 1 − 2−δ
∥x1−x2∥ . Now we put ˜︂x1 := ∑︁n

i=1(1 − η)λiyi

and ˜︂x2 := ∑︁n
i=1(1 − η)λiwi. Then ˜︂x1 ∈ C, ˜︂x2 ∈ C and ∥˜︂x1∥ < 1, ∥˜︂x2∥ < 1. We

also have ∥˜︂x1 − ˜︂x2∥ = (1 − η)∥x1 − x2∥ > 2 − δ.
We write x1, x2 in the following way

xj =
n∑︂

i=1
λis

j
i , j = 1, 2,

where s1
i , s

2
i ∈ S(Ex∗

i , εi) and λi are the real numbers from (4.1). Now, we put
F := span{x1, x2, s

1
1, . . . , s

1
n, s

2
1, . . . , s

2
n} ⊂ X and F∗ := span{x∗

1, . . . , x
∗
n} ⊂ Y ∗.

We find ε > 0 such that (1 + ε) max{∥x1∥, ∥x2∥} ≤ 1.
Because E ∈ HBai(Y ∗, X∗), we find a bounded linear operator T : F → Y such

that
(i) (Ex∗)x = x∗(Tx) for all x ∈ F and x∗ ∈ F∗,

(ii) (1 − ε)∥x∥ ≤ ∥Tx∥ ≤ (1 + ε)∥x∥ for x ∈ F .

We will show Txj ∈ C ′ for j = 1, 2. We have Txj = T
(︂∑︁n

i=1 λis
j
i

)︂
= ∑︁n

i=1 λiTs
j
i .

We also have ∥Txj∥ ≤ (1 + ε)∥xj∥ ≤ 1 from (ii) and from our choice of ε. It
remains to verify Tsj

i ∈ S(x∗
i , εi). Because sj

i ∈ S(Ex∗
i , εi) and (i) holds, it follows

x∗
i (Ts

j
i ) = Ex∗

i (s
j
i ) > 1 − εi,

hence Tsj
i ∈ S(x∗

i , εi). Now we see Txj ∈ C ′ for j = 1, 2. Finally ∥Tx1 − Tx2∥ >
(1 − ε)(2 − δ), hence diamC ′ ≥ (1 − ε)(2 − δ). From this, we infer diamC ′ ≥ 2. At
the same time C ′ ⊂ BY , so diamC ′ ≤ 2. Ultimately, we conclude diamC ′ = 2.

Corollary 4.5. Let X be a Banach space, Y ⊂ X an almost isometric ideal in
X. If X has the strong diameter two property, then Y has the strong diameter
two property.

Proof. The proof follows immediately from Proposition 4.4 applied to n ∈ N.

Corollary 4.6. Let X be a Banach space, Y ⊂ X an almost isometric ideal in
X. If X has the local diameter two property, then Y has the local diameter two
property.

Proof. It follows from Proposition 4.4. We take n = 1.

We use the method of suitable models to prove the strong diameter two
property is inherited from the subspace XM to its superspace. The proof using
the method is quite technical.
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Proposition 4.7. For a suitable model M , the following holds. Let X be a Banach
space contained in M . If XM has the strong diameter two property, then X has
the strong diameter two property.

Proof. Let us have a suitable model M for the formulas marked with (∗). We
prove this assertion by contraposition. Let us assume X does not have the strong
diameter two property. We aim to write a formula that expresses this statement.

To use the method of suitable models, we can only work with a finite number
of formulas. This poses a problem in this proof. The following formula

∃n ∈ N ∃λ1, . . . , λn,
n∑︂

i=1
λi = 1, λi ≥ 0 ∃x∗

1, . . . , x
∗
n ∈ SX∗

∃ε1, . . . , εn ∈ R diam
(︄

n∑︂
i=1

λiS(x∗
i , εi)

)︄
≤ C,

where C ∈ (0, 2), expresses the existence of a convex combination of slices with
a diameter of less than two. It also represents an infinite number of formulas,
one for each natural number n. For example, the formulas λ1 + λ2 = 1 and
λ1 + λ2 + λ3 = 1 are formally different because they have different number of
variables. We cannot use the method of suitable models with this formula. To
overcome this problem, we will proceed cautiously and utilize Lemma 2.22. This
approach will allow us to write a finite number of formulas which encode the same
statement as the one we cannot use.

We split the wanted formula into four parts so it is easier to read. We point
out only the variables which are important to us, as we agreed on in Notation
2.7. By Lemma 2.22, there are two mappings W : c00 × c00(X) → X, W ∈ M
such that W (λ, x) = ∑︁

i∈supp λ ∪ supp x λ(i)x(i) ∈ M , for λ ∈ c00, x ∈ c00(X), and
WR : c00 × c00 → R with analogous properties. We denote the sequence

(1, 1, . . . , 1,⏞ ⏟⏟ ⏞
k-times

0, 0, . . .) ∈ c00

by 1k. For a fixed λ ∈ c00, the sequence 1k which satisfies k = max suppλ is
denoted by 1λ. We write down the first three formulas and comment on them
below.

ψ1(λ) := WR(λ,1λ) = 1 ∧ ∀n ∈ N λi ≥ 0,

ψ2(x∗, λ) := ∀i ∈ N x∗(i) ̸= 0 ↔ ∥x∗(i)∥ = 1 ↔ λ(i) ̸= 0,
ψ3(x∗, ε, P ) := ∀x x ∈ P ↔ x ∈ c00(X) ∧ ∀i ∈ N

[(x∗(i) = 0 → x(i) = 0) ∧ (x∗(i) ̸= 0 → x(i) ∈ S(x∗(i), ε(i)))],
where x∗ ∈ c00(X∗), λ, ε ∈ c00 and S(x∗(i), ε(i)) is a slice of BX . The formula ψ1
means that (λi)i = λ ∈ c00 are coefficients of a convex combination. The second
formula ψ2 essentially means “we work with x∗(1), . . . , x∗(n) ∈ SX∗ .” The formula
ψ3 says that the set P ⊂ c00(X) consists of a finite number of points x(1), . . . , x(n)
such that x(1) ∈ S(x∗(1), ε(1)), x(2) ∈ S(x∗(2), ε(2)), . . . The fourth part of the
formula we aim to write is

ψ4(λ, x, P ) := diam {W (λ, x);x ∈ P} ≤ C,
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where C ∈ Q∩ (0, 2). This last formula encodes that the finite convex combination
of slices has a diameter less than two. To better understand it, we can write it
down in a more accessible form. We assume max{suppλ, suppx} = n0 for λ ∈ c00,
x ∈ c00(X). Then, we have W (λ, x) = ∑︁n0

i=1 λ(i)x(i). We recall that the set P
consists of finitely many points x(1), . . . , x(n) such that x(i) ∈ S(x∗(i), ε(i)). The
formula ψ4 can be rewritten as

diam
{︄

n0∑︂
i=1

λ(i)x(i);x(i) ∈ S(x∗(i), ε(i))
}︄

≤ C.

We adhere to writing formulas with the mapping W . Those formulas are in-
dependent of the number of summands and we avoid having infinitely many
formulas.

The following formula

(∗) ∃λ ∈ c00 ∃ε ∈ c00 ∃x∗ ∈ c00(X∗) ∃P ⊂ c00(X)
ψ1(λ) ∧ ψ2(x∗, λ) ∧ ψ3(x∗, ε, P ) ∧ ψ4(λ, x, P )

expresses the existence of a finite convex combination of slices with a diameter less
than two and holds because X does not have the strong diameter two property.

The absoluteness of this formula and Lemma 2.13 suggest we find λ, ε ∈ c00∩M ,
x∗ ∈ c00(X∗) ∩ M and P ∈ M which satisfy ψ1(λ), ψ2(x∗, λ), ψ3(x∗, ε, P ) and
ψ4(λ, x, P ). We denote this convex combination of slices by CX := {W (λ, x);x ∈
P}. From Lemma 2.21 for each i ∈ N such that x∗(i) ̸= 0, we have ∥x∗(i)|XM

∥ = 1.
We use this to define a convex combination of slices of BXM

. We put

P ′ := {x ∈ P ∩XM ;x(i) ∈ S(x∗(i)|XM
, ε(i)), x∗(i) ̸= 0}

Then, CXM
:= {W (λ, x);x ∈ P ′} is a finite convex combination of slices of BXM

.
But CXM

⊂ CX , thus diamCXM
≤ diamCX ≤ C < 2. We conclude that the

subspace XM does not have the strong diameter two property.

The idea of the proof of the following proposition is the same as in the previous
Proposition 4.7. Because we only work with one slice, and not a sum of slices, we
do not run into technical difficulties and the proof is quite short.

Proposition 4.8. For a suitable model M , the following holds. Let X be a Banach
space contained in M . If XM has the local diameter two property, then X has the
local diameter two property.

Proof. Let us have a suitable model M for the formulas marked with (∗). We
prove this proposition by contraposition. Let us assume the space X does not
have the local diameter two property. We can find a slice of BX that witnesses it.
That is, the following formula holds

(∗) ∃x∗ ∈ SX∗ ∃ε ∈ R diamS(x∗, ε) ≤ C,

where C ∈ Q∩(0, 2). From the absoluteness of this formula and Lemma 2.13, there
are x∗ ∈ SX∗ ∩M and ε ∈ R∩M such that diamS(x∗, ε) ≤ C. It follows by Lemma
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2.21 that ∥x∗|XM
∥ = 1. We also have S(x∗|XM

, ε) = {v ∈ BXM
;x∗(v) > 1 − ε} ⊂

S(x∗, ε). Thus, diamS(x∗|XM
, ε) ≤ diamS(x∗, ε) ≤ C < 2. We have found a slice

of BXM
that does not have a diameter of two. Hence, XM does not possess the

local diameter two property.

4.2 The Daugavet Property
Definition 4.9. Let X be a Banach space. We say X has the Daugavet property
if for every rank-one operator T : X → X the equality ∥IdX +T∥ = 1 + ∥T∥ holds.

The following characterization of the Daugavet property was discovered in [17,
Lemma 2.2].

Lemma 4.10. A Banach space X has the Daugavet property if and only if for
every ε > 0, y ∈ SX and x∗ ∈ SX∗ there exists x ∈ SX such that x∗(x) ≥ 1 − ε
and ∥x+ y∥ ≥ 2 − ε.

We prove that the Daugavet property is inherited by almost isometric ideals.
The proof is inspired by [2, Proposition 3.8].

Proposition 4.11. Let X be a Banach space, Y ⊂ X an almost isometric ideal
in X. If X has the Daugavet property, then Y has the Daugavet property.

Proof. We will use the characterization of the Daugavet property from Lemma
4.10. Let us have 0 < ε < 2, y ∈ SY and y∗ ∈ SY ∗ . Let us also have a slice
SY (y∗, ε) of BY , that is

SY (y∗, ε) = {w ∈ BY ; y∗(w) > 1 − ε}.

We are looking for a vector x ∈ SY (y∗, ε) such that ∥x∥ = 1 and ∥x+ y∥ ≥ 2 − ε.
The subspace Y is an almost isometric ideal. Thus, a Hahn–Banach extension

operator E ∈ HBai(Y ∗, X∗) exists. Let us have 0 < η < ε
2 and 0 < δ < ε

2 such
that δ <

ε
2 −η

2−η
. Next, we consider a slice SX(Ey∗, η) of BX . Because X has the

Daugavet property, we find z ∈ X which satisfies ∥z∥ = 1, Ey∗(z) ≥ 1 − η, and
∥z + y∥ ≥ 2 − η. We put F := span{z, y} ⊂ X and F∗ := span{y∗} ⊂ Y ∗. We
find a linear operator T : F → Y , which satisfies

(i) Tx = x for all x ∈ F ∩ Y ,

(ii) (Ey∗)x = y∗(Tx) for all x ∈ F , y∗ ∈ F∗,

(iii) (1 − δ)∥x∥ ≤ ∥Tx∥ ≤ (1 + δ)∥x∥ for all x ∈ F .

We will show the desired vector is x := T z
∥T z∥ . Because ∥z∥ = 1, x is not a zero

vector. Immediately, ∥x∥ = 1. We proceed with several estimates,

|∥Tz∥ − 1| =

⎧⎪⎨⎪⎩ ∥Tz∥ − 1
(iii)
≤ (1 + δ)∥z∥ − 1 = δ

1 − ∥Tz∥
(iii)
≤ 1 − (1 − δ)∥z∥ = δ,

(4.2)
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thus |∥Tz∥ − 1| ≤ δ. Next,

∥x− Tz∥ =
⃦⃦⃦⃦
⃦ Tz

∥Tz∥
− Tz

⃦⃦⃦⃦
⃦ =

⃓⃓⃓⃓
⃓ 1
∥Tz∥

− 1
⃓⃓⃓⃓
⃓ ∥Tz∥ = |∥Tz∥ − 1|

(4.2)
≤ δ. (4.3)

Because y ∈ F ∩ Y , we have Ty = y,

∥Tz + y∥ (i)= ∥T (z + y)∥
(iii)
≥ (1 − δ)∥z + y∥ ≥ (1 − δ)(2 − η) > 2 − ε

2 , (4.4)

where the last inequality is due to our choice of δ. Because ∥y∗∥ = 1 and the
inequality (4.3) holds, we have

y∗(x− Tz) ≥ −δ. (4.5)

We combine the estimates (4.3) and (4.4),

∥x+ y∥ = ∥Tz + y + x− Tz∥ ≥ ∥Tz + y∥ − ∥x− Tz∥
(4.3)
≥ ∥Tz + y∥ − δ

(4.4)
> 2 − ε

2 − δ

> 2 − ε

2 − ε

2 = 2 − ε.

It remains to verify x ∈ SY (y∗, ε). To this end, we will utilize Ey∗(z) ≥ 1 − η. We
have

y∗(x) = y∗(Tz) + y∗(x− Tz) (ii)= Ey∗(z) + y∗(x− Tz)
(4.5)
≥ Ey∗(z) − δ ≥ 1 − η − δ > 1 − ε

2 − ε

2 = 1 − ε.

We have found x satisfying ∥x∥ = 1, ∥x+ y∥ ≥ 2 − ε and y∗(x) ≥ 1 − ε. Lemma
4.10 allows us to conclude Y has the Daugavet property.

Analogously to the local and strong diameter two properties, we prove the
Daugavet property of XM is inherited to the space X.

Proposition 4.12. For a suitable model M , the following holds. Let X be a
Banach space contained in M . If XM has the Daugavet property, then X has the
Daugavet property.

Proof. Let us have a suitable model M for the formulas marked with (∗). We prove
the statement by contraposition. Let us assume X does not have the Daugavet
property. From Lemma 4.10, we find witnesses. That is, the following formula
holds

(∗) ∃ε ∈ R ∃x∗ ∈ SX∗ ∃y ∈ SX ∀x ∈ SX ((∥x+ y∥ < 2 − ε) ∨ (x∗(x) < 1 − ε)).

From the absoluteness of this formula and from Lemma 2.13, we find ε ∈ R ∩M ,
x∗ ∈ SX∗ ∩M and y ∈ SX ∩M such that for all x ∈ SX we have ∥x+ y∥ < 2 − ε
or x∗(x) < 1 − ε. We will show ε, x∗|XM

and y witness XM does not possess the
Daugavet property.
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Because y ∈ M and y ∈ SX , it follows y ∈ SXM
. We also have x∗|XM

∈ (XM )∗

and ∥x∗|XM
∥ = 1 from Lemma 2.21. Let us have arbitrary x ∈ SXM

. Then
x∗(x) < 1 − ε or ∥x+ y∥ < 2 − ε. The subspace XM does not have the Daugavet
property by Lemma 4.10.

We summarize our results using the notion of rich families introduced in
Section 2.4.

Corollary 4.13. Let X be a Banach space. Then there is a rich family F ⊂ S(X)
such that for each F ∈ F the following holds.

(i) F is an almost isometric ideal.

(ii) X has the strong diameter two property if and only if F has the strong
diameter two property.

(iii) X has the local diameter two property if and only if F has the local diameter
two property.

(iv) X has the Daugavet property if and only if F has the Daugavet property.

Proof. It is enough to prove a family F is large in the sense of suitable models.
Then by Theorem 2.25, there is a rich family F ′ ⊂ F .

By our Convention 2.14, if we have a suitable model M there exists a finite list
of formulas Φ and a countable set Z such that M ≺ (Φ, Z). Let us put all formulas
marked with (∗) in the proof of Corollary 3.6, Proposition 4.7, Proposition 4.8,
Proposition 4.12, and in the proofs above each of them, into a finite list Φ. We
now consider countable sets X1 from Corollary 3.6, X2 from Proposition 4.7,
X3 from Proposition 4.8, and X4 from Proposition 4.12. These countable sets
exist due to our Convention 2.14. Put S := X1 ∪X2 ∪X3 ∪X4. Finally, we put
F := {XM ;M ≺ (Φ, S) contains X}. Thus F is large in the sense of suitable
models.

Let us have F ∈ F . Then F satisfies (i) by the construction of the family
F . The implications from the right to the left in (ii)-(iv) also follow by the
construction. The subspace F is an almost isometric ideal by (i). Then, (ii)
follows by Corollary 4.5, (iii) by Corollary 4.6, and (iv) by Proposition 4.11.

Finally, we compare Corollary 4.13 with similar published results. The Corol-
lary is in a certain sense an improvement of [1, Proposition 3.2] and [1, Proposition
3.3]. They state that a Banach space X has the strong diameter two property (or
the local diameter two property or the Daugavet property) if and only if every
separable almost isometric ideal Y in X does. We have shown that it suffices to
consider a particular rich family F . Moreover, the rich family F works for all
notions.

By [5, Theorem 2.4] the family of all separable almost isometric ideals is a rich
family (in [5] the authors use the term “skeleton”). This means that if F were all
almost isometric ideals, proposition (i) and implication from the left to the right
in (ii)-(iv) would be satisfied.
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