
BACHELOR THESIS

Matěj Vais

Deep learning for the solution of
differential equations

Department of Numerical Mathematics

Supervisor of the bachelor thesis: Scott Congreve, Ph.D.
Study programme: Mathematical Modelling

Study branch: MMOP

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor, Dr. Scott Congreve, for his patient guidance.

ii

Title: Deep learning for the solution of differential equations

Author: Matěj Vais

Department: Department of Numerical Mathematics

Supervisor: Scott Congreve, Ph.D., Department of Numerical Mathematics

Abstract: Neural networks are becoming an ever more prominent method in the
field of differential equations. Their use is embodied in the concept of physics-
informed neural network (PINN), which combines a traditional deep neural net-
work with the underlying laws of physics described by PDEs. We investigate the
abilities of this relatively novel approach on thee diverse examples in order to
give a good overview of its advantages and issues. Every problem is also solved
via the finite element method, which serves as a reference. In addition to that,
we propose the usage of pre-training, which is already present in other scientific
areas. If we initialize the process of solving of one equation with a solution to a
similar problem, in some settings, we are able to significantly reduce computation
time, which is a major drawback of PINN.

Keywords: machine learning, deep learning, differential equations, finite element
method, physics-informed neural network

iii

Contents

Introduction 2

1 Methods and Concepts 3
1.1 Feed-Forward Neural Network . 3
1.2 Physics-Informed Neural Network 4
1.3 PINN Optimizers – Gradient Descent 6
1.4 Automatic Differentiation . 7
1.5 Finite Element Method . 7

1.5.1 Weak Formulation . 8
1.5.2 Choice of Mesh and Discretization 9
1.5.3 Choice of Spaces and Summary 10

2 Examples 12
2.1 Simple Example . 12

2.1.1 Physics-Informed Neural Network 12
2.1.2 Finite Element Method . 13

2.2 Nonlinear Problem . 13
2.2.1 Physics-Informed Neural Network 14
2.2.2 Finite Element Method and Newton Iteration 15
2.2.3 Pre-training . 18

2.3 Singularly Perturbed Problem . 18
2.3.1 Physics-Informed Neural Network 18
2.3.2 Finite Element Method . 19

3 Numerical Results 21
3.1 Simple Example . 21
3.2 Nonlinear Problem . 22
3.3 Singularly Perturbed Problem . 24
3.4 Comparison Between PINN and FEM 26

Conclusion 27

Bibliography 28

List of Figures 29

List of Tables 30

List of Abbreviations 31

A Attachments 32
A.1 Detailed Results from Pre-training 32

1

Introduction
Machine and deep learning has been on a constant rise in recent years. We
have seen the the expansion of generative as well as discriminative models in all
major scientific areas. Although text or image processing is arguably the most
widespread application of neural networks, differential equations are becoming an
increasingly popular field, where the deep learning approach shows rapid progress.
The foundations were laid in 1998 (Lagaris et al. [1998]), when the concept of the
so call physics-informed neural network, also known as PINN, was established.
The traditional networks at that time could learn only from data points given
to them. PINN on the other hand, also incorporated the underlying differential
equations into the mix.

Unlike FEM or FDM, the physics-informed neural network does not require
the creation of mesh inside the equation’s domain nor discretization. PINN is
based on minimization of a special function quantifying the approximating accu-
racy of the network in certain points chosen from the domain and the boundary.
The network, specifically constructed for each equation, plays the role of the equa-
tion’s solution. It is parameterized by a set of values that are optimized using
gradient descent algorithms. All these concepts are conveniently bound together
in the Python library DeepXDE (Lu et al. [2021]), which essentially made this
thesis possible.

The following chapters will be focused on exploring the possibilities of this
relatively novel approach. We will deal with three separate differential equations
to get a better understanding of what are the drawbacks as well as the bene-
fits of this method. At first, we will introduce a simple Poisson’s equation to
make the reader familiar with the setting, which will then be modified into its
nonlinear analogue. The last task will be a singularly perturbed problem with a
thin boundary layer exhibiting a steep gradient near the boundary. The singu-
lar perturbation will require from us use divide the equation’s domain into two
subdomains and solve an approximating equation on each part. As a reference
approach to all the problems, we choose the finite element method.

In addition to the three problem, we will also try to improve the second one
with an idea already in use in other parts fields. The focus will be on the so called
pre-training, which consists of initializing the solution process of the original
equation by a solution to a different one. The auxiliary equation is chosen, such
that it is very similar to the original. It will be clear that this process can, in some
cases, alleviate the long computation time, which plagues the the new method.

In chapter 1, we will familiarize the reader with the aforementioned concepts
that are essential to understanding PINN. Chapter 2 will give a detailed descrip-
tion of all the examples, after which we include their results in chapter 3. At the
end of the thesis, concluding remarks regarding the results will be made.

2

1. Methods and Concepts
In this chapter, we will give a brief introduction to some of the methods of machine
and deep learning that are utilized when solving differential equations. We will
explore the idea of feed-forward neural network (FNN) that can be developed into
so called physics-informed neural network (PINN). This network employs many
attractive concepts such as automatic differentiation (AD) or gradient descent,
which will be detailed in the following subsections. At the end of this chapter,
we will also give a short overview of the finite element method (FEM).

1.1 Feed-Forward Neural Network
Feed-forward neural network (FNN, also known as multilayer perceptron) is a
type of neural network that can very easily approximate complex nonlinear data.
It consists of an input layer, one or more hidden layers and an output layer.

From a strictly mathematical point of view, it is a parametric function N L

that is highly nonlinear with respect to its inputs. It maps a real din-dimensional
input vector to a dout-dimensional output vector.

N L(x, θ) : Rdin → Rdout

Here, θ = {W 1, . . . W L, b1, . . . , bL} denotes the weights and biases parameteriz-
ing the neural network and L the number of hidden layers plus the output layer.
Each layer l of size Nl, apart from the input, consist of four parts.

First, the weight matrix W l ∈ RNl×Nl−1 multiplied by the output of the pre-
vious layer N l−1 ∈ RNl−1 . Each row in the weight matrix W l corresponds to one
neuron in the l-th layer. Next, the bias vector bl ∈ RNl is added to the previous
result, which acts as a shift. Eventually, the linear part is wrapped into the so
called activation function al, that introduces the nonlinearity into the scheme.
This process can be iteratively applied multiple times to produce a deep neural
network.

input layer: N 0(x) = x ∈ Rdin

hidden layers: N l(x) = al(W lN l−1(x) + bl) ∈ RNl , l ∈ {1, . . . , L− 1}
output layer: N L(x) = aL(W LN L−1(x) + bl) ∈ Rdout

The aforementioned function composition is efficiently visualized in the scheme
1.1, where each neuron from one layer contributes to the next one via the weights,
biases and subsequent activation to produce a complicated result.

It is a known fact that a neural network with only one hidden layer can
approximate any continuous function on a closed interval. Although this is a very
convenient result, the size of the layer would have to be enormous for complex
problems. Instead, it is much better to define multiple hidden layers of various
sizes that are chosen in accordance with the problem’s complexity. A simple
task might only need one layer, whereas a complicated one may require ten.
Unfortunately, there are no known ways to compute the size, which has to be
determined by trial and error or by looking at similar problem.

3

Figure 1.1: A scheme of a FNN consisting of a two-dimensional
input layer, one three-dimensional hidden layer and a one-
dimensional output layer. The weight matrix W 1 = {w1

ij} ∈
R3×2 has one row for each element of the hidden layer. Thee
dimensional bias vector b1 alos has one element for each neu-
ron/element in the hidden layer. Similarly W 1 ∈ R3×1 and
b1 ∈ R.

Activations al are nonlinear function modifying the output and can be, in the-
ory, chosen differently for each layer. However, we usually choose one activation
for all the hidden layers and another for the output layer. The most frequent
options are ReLU 1.1, hyperbolic tangent 1.2, the sigmoid function 1.3 and, of
course, the identity.

ReLU(x) = max{0, x} (1.1)

tanh(x) = e2x − 1
e2x + 1 (1.2)

σ(x) = 1
1 + e−x

(1.3)

softmax(x)i = exi∑︁
1≤j≤dim(x) exj

(1.4)

For inputs of higher dimensions, i.e. dim(x) ≥ 2, the activations are applied
component-wise, one exception being the sigmoid which is generalized into the
softmax function 1.4 ([Goodfellow et al., 2016, page 181]).

1.2 Physics-Informed Neural Network
In the section 1.1 above, we have seen a general setting of FNN but haven’t been
concerned with the optimality of the network. To produce accurate predictions,
i.e. outputs y ∈ Rdout for a given input x ∈ Rdin , the network must undergo
so called training, where it gradually learns to predict on the training set. Its
approximation capacity is then tested on the test set. To quantify the discrepancy
between the desired output (also known as target), we employ the loss function,
which is minimized during training.

4

To continue further, we must introduce the setting. Throughout this thesis,
we will be concerned with differential equations in a very general form. Setting
d = din, let us define x = (x1, · · · , xd) ∈ Rd as a point in the domain of the
equation

f

(︄
x; u,

∂u

∂x1
; . . . ; ∂u

∂xd

; ∂2u

∂x2
1
; . . . ; ∂2u

∂x2
d

; . . .

)︄
= 0, x ∈ Ω, (1.5)

with an appropriate boundary condition

B
(︄

x, u,
∂u

∂x1
; . . . ; ∂u

∂xd

; ∂2u

∂x2
1
; . . . ; ∂2u

∂x2
d

; . . .

)︄
= 0, x ∈ ∂Ω. (1.6)

Two finite sets of training points are then chosen from the domain Ω and ∂Ω
respectively. The first set Tf ⊂ Ω allows the neural network to approximate the
solution of 1.5 in the domain, whereas the second set Tb ⊂ ∂Ω allows it to cap-
ture the boundary condition 1.6. Their size is usually tens or at most hundreds of
points for a one-dimensional problem, squared that for a two-dimensional (∼ 104)
and cubed for a three-dimensional (∼ 106). The points are mostly sampled ran-
domly, but an equidistant division also works in most cases. Moreover, this can
be aided by adaptive sampling that happens during the training (Lu et al. [2021]).
Similarly, two sets of testing points are chosen, on which the approximating ca-
pability of N L is tested.

As originally proposed in Lagaris et al. [1998] and further developed in Lu
et al. [2021], we define a FNN û(x; θ) parameterized by its weights and biases
that will represent the solution to the equation 1.5 with the boundary condition
1.6. The loss function L of this network takes the form of a weighted sum

L(θ; T) = wfLf (θ; Tf) + wbLb(θ; Tb), (1.7)

where wf and wb are the weights and Lf and Lb are sub-parts of the loss function
corresponding to the both training sets. They appear as sum of L2-norms of the
equation operator, and the boundary condition respectively, evaluated at each
point of the set.

Lf (θ; Tf) = 1
|Tf |

∑︂
x∈Tf

⃦⃦⃦⃦
⃦f
(︄

x; û; ∂û

∂x1
, . . . ,

∂û

∂xd

; ∂2û

∂x2
1
, . . . ,

∂2û

∂x2
d

; . . .

)︄⃦⃦⃦⃦
⃦

2

2

Lb(θ; Tb) = 1
|Tb|

∑︂
x∈Tb

⃦⃦⃦⃦
⃦B
(︄

x; û; ∂û

∂x1
, . . . ,

∂û

∂xd

; ∂2û

∂x2
1
, . . . ,

∂2û

∂x2
d

; . . .

)︄⃦⃦⃦⃦
⃦

2

2

Small values of L on both the training set and the test indicates an accurate
solution. Sometimes, a high value on the test occurs, which together a with
small value on the training set signals over-training, meaning that the neural
network approximates the training set too well and shows considerably worse
performance elsewhere. This displays the necessity to exploit the test set, which
is not employed during the loss function minimization, and is used solely as a
check.

We call this modified FNN physics-informed neural network, because, apart
from the training set with the target values, it also incorporates the governing

5

equations into the mix. Without them, the network would work as simple function
approximator learning only from data and not utilizing the underlying laws of
physics. For that, the mean square error MSE can be employed instead of 1.7.

MSE(θ, T) = 1
2|T |

∑︂
x∈T

(û(x; θ)− tx)2 ,

where N L(x, θ) is a prediction for a given data point and tx its target value.
It is worth noting that the treatment of the equation doesn’t depend much on

its difficulty and is the same for both linear and nonlinear case. Also, multiple
dimensions don’t scale the problem as much (Lu et al. [2021]) as with the finite
element method, the only increase being the in the number of training points,
which will be visible in the following chapters.

1.3 PINN Optimizers – Gradient Descent
During training, we search the space of parameters for an optimal vector θ ∈ Rn

which minimizes the loss function L. Here, n is the dimension of the parameter
space (one dimension for each scalar in each weight matrices and bias vectors).
This search is usually done using gradient descent methods. We start with some
initial estimation of θ and employing the so called learning rate α update the
original estimate as

θi+1 ← θi − α∇L(θ; T)
to obtain the next approximation. This simple process is then repeated until we
reach the minimum with desired accuracy.

The Adam optimizer (Kingma and Ba [2017]) refines this simple approach
in multiple ways. It uses a vector of learning rates rather than a constant, one
element for each parameter. This way, it can adaptively adjust the step length in
all directions. Nonetheless, the constant α must be provided as an upper bound
for the step. Secondly, it includes a history of previous updated into the evaluation
of the current step. The weight of the history of updates can be tweaked by two
constants β1 and β2. However, in most cases, they require very little tuning. The
recommended values are β1 = 0.9, β2 = 0.999. Finally, among some other minor
benefit, the algorithm is invariant to rescaling of ∇θ.

The L-BFGS (Byrd et al. [1995]) is a quasi-Newton method that, as opposed
to Adam, also employs the second derivative. We first compute the direction
of the steepest descent, in which we substitute the minimized function L by a
quadratic model. The Cauchy point of this approximation is then computed as
the next approximate value of the L’s minimizer. This approach is based on the
BFGS algorithm, but has only linear memory requirements O(n) for the inverse
of the Hesse matrix B. The inverse is stored in a decomposed form represented
by a set of m vectors that are given by the update history of θ and ∇L. The
reduced demand for memory broadens its field of applications to neural networks
with large n, because the original algorithm requires us to store a dense estimate
of B, which is O(n2).

Both optimizers offer advantages. Adam is typically more efficient than L-
BFGS in terms of computation time. The latter approach however provides more
accurate result in fewer iterations as can be seen in chapter 2.

6

Figure 1.2: Evolution of parameters θ in the space Rn. We move per-
pendicular to the contour lines of the loss function L until we reach a
minimum within the required tolerance.

1.4 Automatic Differentiation
In the previous section, we have seen the need for an efficient computation of
network’s derivatives. Traditional numerical differentiation is not very well suited
for such a task, since it is computationally expensive and often introduces large
errors. Neither symbolic differentiation, which results in very large expressions,
is optimal. On the other hand, automatic differentiation (AD), which is already
embedded in the TensorFlow package (backend of the DeepXDE library), offers
an applicable way of computing gradients for deep neural networks that have a
large input x ∈ Rdin and a small output y ∈ Rdout .

AD relies mainly on the multivariable chain rule and other basic properties of
derivatives to construct an computational graph, which subdivides the evaluation
into primitive operations. One pass in the direction opposite to the construction
grants us the whole Jacobian matrix, i.e. derivatives of the output with respect
to all the inputs (Lu et al. [2021]). This approach in know as backpropagation
or reverse mode AD and gives us the function value and its gradient in constant
time. An example showing the computation for FNN with one hidden layer is
given in Lagaris et al. [1998]. Forward mode also exists, its use is, however,
mostly limited to generative applications that have a low-dimensional input and
a high-dimensional output.

1.5 Finite Element Method
Finite element method (FEM) is a numerical method traditionally used for solving
ordinary and partial differential equation in one, two or three spacial dimensions.
First, the domain of the equation is divided into subdomains of polygonal shape,
the finite elements. Then, the solution is found as a polynomial interpolation
separately on each element, which produces the discretization. This allows us to

7

solve equations where the analytical solution is inaccessible or impractical to use.
This approach, which will serve as a benchmark method for PINN, will be

illustrated on one dimensional Poisson’s equation with zero Dirichlet boundary
conditions. We chose this equation due to its simplicity and close resemblance
to other problems detailed in the Examples chapter. However, a straightforward
generalization to more dimensions is possible, even including zero Neumann con-
dition. The method also offers ways to tackle non-zero values on the boundary,
but this will not be pursued in this thesis.

Let us define

−u′′(x) = f(x) ∀x ∈ Ω, (1.8)
u(x) = 0 ∀x ∈ ∂Ω, (1.9)

where Ω ⊂ R, u ∈ C2(Ω) ∩ C(Ω) and f ∈ C(Ω). The method consists of
two main steps that also apply to any other equation other than Poisson’s: the
weak formulation and a subsequent discretization, which provides a piecewise
polynomial solution.

1.5.1 Weak Formulation
Starting with the weak formulation, we multiply the the equation 1.8 by a test
function v ∈ V and integrate over the whole domain Ω. We obtain

−
∫︂

Ω
u′′(x)v(x)dx =

∫︂
Ω

f(x)v(x)dx.

Next, we apply integration by parts to reduce the order of the derivative of u:

−
∫︂

∂Ω
u′(x)v(x)dx +

∫︂
Ω

u′(x)v′(x)dx =
∫︂

Ω
f(x)v(x)dx. (1.10)

So far, we have not defined the space V to which the test functions v belong.
Doing it now will help us eliminate the integral over ∂Ω, because V will be
designed as a space of functions that are zero on ∂Ω.

V := H1
0 =

{︂
v : v ∈ L2(Ω), v′ ∈ L2(Ω), v(x) = 0 ∀x ∈ ∂Ω

}︂
.

The equation 1.10 therefore reduces to∫︂
Ω

u′(x)v′(x)dx =
∫︂

Ω
f(x)v(x)dx,

which is often described as an equality between a symmetric bilinear form a
dependent on u and v and a functional F dependent on v

a(u, v) = ⟨F, v⟩, u, v ∈ V. (1.11)

1.11 is the final weak formulation that helped us reduce the assumptions imposed
on u.

8

1.5.2 Choice of Mesh and Discretization
Since the space V is infinite-dimensional, we choose its subspace Vh to produce a
discretization. For that, we need to divide the interval Ω into subintervals. The
most straightforward approach is an equidistant division into N subintervals of
length h with dividing points {xi}N

i=0, where x0 and xN are the left and right
boundary points. In more dimensions, this step would be equivalent to creating
a polygonal mesh inside Ω. Let us define Vh ⊂ V as

Vh :=
{︂
vh ∈ H1

0 , vh|[xi,xi+1] ∈ P1([xi, xi+1]), i = 0, . . . , N − 1
}︂

.

The space Vh is a space of piecewise linear functions, in which we will look for
an approximate solution uh to the weak formulation 1.11. It is possible to choose
polynomials of higher order, but we will not pursue this option. Let us state the
equation approximating 1.11 as

a(uh, vh) = ⟨F, vh⟩, uh, vh ∈ Vh.

To continue further, we must select a basis of Vh. Making the following choice
that will greatly simplify the successive procedure.

Vh = span{ϕj}N
j=1

ϕj(x) =

⎧⎪⎪⎨⎪⎪⎩
x−xj−1

h
if x ∈ [xj−1, xj],

xj+1−x

h
if x ∈ (xj, xj+1],

0 otherwise,

ϕ′
j(x) =

⎧⎪⎪⎨⎪⎪⎩
1
h

if x ∈ [xj−1, xj],
− 1

h
if x ∈ (xj, xj+1],

0 otherwise.
Here, ϕ′

j expresses the derivative of ϕj. The function ϕj are often call hat function
due to their characteristic shape. Apart from ϕ0 and ϕN , they are zero every-
where except for two subintervals, where they produce a characteristic peak in
the middle. The two outer hat functions are defined only on one interval with
their peak on the boundary.

In this basis, the approximate solution can be expressed as a linear combina-
tion

uh(x) =
N−1∑︂
j=1

uh(xj)ϕj(x).

Functions ϕ0 and ϕN are excluded due to zero boundary conditions. We note
that the coefficient of the linear combination are exactly the function values at
the points xj. Substituting for uh in 1.11 and exploiting the linearity of the form
a, we obtain

a(uh, vh) = ⟨F, vh⟩

a

(︄
N−1∑︂
i=1

uh(xi)ϕi(x), vh

)︄
= ⟨F, vh⟩

N−1∑︂
i=1

uh(xi)a(ϕi(x), vh) = ⟨F, vh⟩

9

Choosing vh := ϕj and labeling aij := a(ϕi, ϕj) =
∫︁

Ω ϕ′
i(x)ϕ′

j(x)dx and fj :=
⟨F, ϕj⟩ =

∫︁
Ω f(x)ϕj(x)dx yields

N−1∑︂
i=1

uh(xi)a(ϕi(x), ϕj) = ⟨F, ϕj⟩

N−1∑︂
i=1

uh(xi)
∫︂

Ω
ϕ′

i(x)ϕ′
j(x)dx =

∫︂
Ω

f(x)ϕj(x)dx,

N−1∑︂
i=1

uh(xi)aij = fj, j = 1, . . . , N − 1,

which can be represented in a matrix form as

Auh = f . (1.12)

Here, A = {aij}N−1
i,j=1 ∈ R(N−1)×(N−1) and f = {fj}N−1

j=1 ∈ R(N−1). The boundary
values u(x0) and u(xN) are, of course, equal to zero as a result of the imposed
boundary conditions 1.9. The matrix 1.12 equation can be further simplified,
since many of the elements of the matrix A are zero. Thanks to the compact
support functions ϕi have, a straightforward computation leads us to

aij =

⎧⎪⎪⎨⎪⎪⎩
2

h2 if i = j,

− 1
h2 if i = j + 1 or j = i + 1,

0 otherwise.

Note that a concrete example of the evaluation of aij can be seen in subsection
2.2.2.

Finally, we present the matrix equation 1.12 explicitly as

1
h2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0
−1 2 −1 ...
0 −1 2 . . . 0
... −1
0 · · · 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uh(x1)

...

uh(xN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1

...

fN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (1.13)

which completes the whole process. We have successfully transformed the original
differential equation into a set of N − 1 linear algebraic equation, which can be
efficiently solve, as it has a tridiagonal matrix.

1.5.3 Choice of Spaces and Summary
To summarize, a linear partial differential equation is solved using the FEM
generally in the following way:

• integration by parts and subsequent weak formulation,

• choice of mesh subdividing the domain Ω,

• definition of the solution space Vh and choice of base (discretization),

10

• formulation of the algebraic system.

The choice of space V and its finite-dimensional counterpart Vh was done,
such that we can guarantee H1

0 -boundedness and H1
0 -ellipticity of the left-hand

side of the equation 1.11. This is valid thanks to the Hölder’s and Poincaré’s
inequality and leads us to the existence and uniqueness of a solution for most
functions f by applying the well known Lax-Milgram lemma.

11

2. Examples
In this section, we will illustrate PINN on three example. Starting with a simple
Poisson’s equation described in subsection 1.5, we will continue with a nonlinear
modification of the same problem and see what changes are necessary in order
to obtain an accurate solution. The section will be concluded by a linear prob-
lem with a singular perturbation that shows an interesting behaviour near the
boundary.

All of the thee examples will also be solved via the finite element method. This
and an analytical solutions will allow us to assess the deep learning approach.

2.1 Simple Example
This section will show try to show the application of the PINN on a simple
equation to make the reader more familiar with the concept. For this purpose,
we will use the one-dimensional Poisson’s equation 1.8 with f = 1 and Ω = (0, 1).
Let us define

−u′′(x) = 1, ∀x ∈ (0, 1), (2.1)
u(0) = u(1) = 0, (2.2)

with an analytical solution u(x) = −1
2(x2 − x).

2.1.1 Physics-Informed Neural Network
We start with subtracting the right-hand side of 2.1, to produce an equation
with zero right-hand size usable for training, which corresponds to the general
differential equation 1.5. This is represented via the function pde. Next, we
define an analytical solution func and an auxiliary function boundary involved
in determining, whether a point is on the boundary or not.

import deepxde as dde
import numpy as np

def pde(x, y):
dy_xx = dde.grad.hessian(y, x)
return (- dy_xx - 1)

def boundary(x, on_boundary):
return on_boundary

def sol(x):
return (-0.5 * x**2 + 0.5 * x)

At this point, we are able to define the geometry of the problem including
the boundary conditions 2.2, which corresponds to general boundary condition
1.6. Inside the interval, we chose 16 random points and 2 on the boundary,

12

i.e. |Tf | = 16 and |Tb| = 2. All the points, which were sampled from a uniform
distribution, are then used in the evaluation of the losses Lf and Lb. The geometry
geom and boundary conditions bc are ultimately combined in a data object.

geom = dde.geometry.Interval(0, 1)
bc = dde.icbc.DirichletBC(geom, sol, boundary)
data = dde.data.PDE(

geom, pde, bc, num_domain=16, num_boundary=2,
solution=sol, num_test=100, train_distribution="uniform")

We further define the neural network object net corresponding to the neural
network û with three hidden layers presented in section 1.1. Each one of the
hidden layers consists of 50 neurons.

layer_size = [1] + [50] * 3 + [1]
activation = "tanh"
initializer = "Glorot uniform"
net = dde.nn.FNN(layer_size, activation, initializer)

Finally, we are able to combine the data and the net and create a model
object which undergoes training. For this particular example, we chose the Adam
optimizer, 10000 epochs and a learning rate of 0.001. The approximate values
of the solution û(x) are obtained from the function predict. To compare of the
result with the prescribed analytical solution, we chose a discrete ℓ2 relative error,
which is a standard metric used in the library.

model = dde.Model(data, net)
model.compile("adam", lr=0.001, metrics=["l2 relative error"])
losshistory, train_state = model.train(iterations=10000)
x = geom.uniform_points(1000, True)
u = model.predict(x)

2.1.2 Finite Element Method
To produce a finite element approximation of the solution u(x), we will utilize
the already derived matrix equation 1.13.

2.2 Nonlinear Problem
The problem we will tackle in this section is an one dimensional ordinary dif-
ferential equation with a zero Dirichlet boundary condition very similar to the
previous Poisson’s equation.

13

− d

dx

(︄
µ

(︄⃓⃓⃓⃓
⃓du

dx

⃓⃓⃓⃓
⃓
)︄

du

dx

)︄
= f in (0, 1), (2.3)

u(0) = u(1) = 0 (2.4)

µ(x) = 1 + 1
1 + x2 . (2.5)

Since the function µ is between 1 and 2, it introduces only a weak nonlinearity
into the equation. The function f is chosen such that the solution u satisfies

u(x) = sin(πx),

namely
f(x) = π2 sin(πx) (π4 cos4(πx) + π2 cos2(πx) + 2)

(π2 cos2(πx) + 1)2 . (2.6)

2.2.1 Physics-Informed Neural Network
Handling of this nonlinear problem via a neural network is very similar to the
previous example. In fact, it doesn’t require any major modification, even thought
the problem is not linear. As we will see in the following subsection, this is an
advantage, because the finite element method cannot be applied directly and
needs significant adjustments.

The derivative present in the argument of the function µ in 2.3 is introduce as
an supplementary function dy, which is then used very naturally in the definition
of the function nonlinear corresponding to the nonlinear equation.

def dy(x, y):
return dde.grad.jacobian(y, x)

def nonlinear(x, y):
dy_x = dy(x, y)
operator = dde.grad.jacobian(

(1 + 1 / (1 + tf.abs(dy_x)**2)) * dy_x, x)
f = np.pi**2 * tf.sin(np.pi*x)

* (2 + (np.pi* tf.cos(np.pi*x))**2
+ (np.pi * tf.cos(np.pi*x))**4)

/ (1 + (np.pi* tf.cos(np.pi*x))**2)**2
return (- operator - f)

The second major difference is in the use of L-BFGS optimizer together with
64-bit floats. This change allows for higher accuracy of the approximation.

dde.config.real.set_float64()

model.compile(optimizer="L-BFGS", metrics = ["l2 relative error"])

14

2.2.2 Finite Element Method and Newton Iteration
The traditional numerical approach to this task is to employ the finite element
method. In general, we will follow the steps described in section 1.5, i.e. in-
tegration by parts, weak formulation and discretization. However, the integral
equation will first have to be linearized and then solved via the Newton’s method.

After employing the procedure described in subsection 1.5.1, we obtain the
weak formulation ∫︂ 1

0
µ

(︄⃓⃓⃓⃓
⃓du

dx

⃓⃓⃓⃓
⃓
)︄

du

dx

dv

dx
dx =

∫︂ 1

0
fvdx, u, v ∈ V,

of the equation 2.3, where V is defined again as

V := H1
0 =

{︂
v : v ∈ L2((0, 1)), v′ ∈ L2((0, 1)), v(0) = v(1) = 0

}︂
.

Then, by choosing an equidistant division {xi}N
i=0 of the interval [0, 1], we define

the approximating problem∫︂ 1

0
µ

(︄⃓⃓⃓⃓
⃓duh

dx

⃓⃓⃓⃓
⃓
)︄

duh

dx

dvh

dx
dx =

∫︂ 1

0
fvhdx, uh, vh ∈ Vh.

The space Vh is a space of piecewise linear functions is defined analogously to the
space V as

Vh :=
{︂
vh ∈ H1

0 , vh|[xi,xi+1] ∈ P1([xi, xi+1]), i = 0, . . . , N − 1
}︂

.

This weak formulation unfortunately cannot be solved directly, linearization is
therefore needed. Substituting u = uh and v = vh, we define the form a as

a(u, v) =
∫︂ 1

0
µ

(︄⃓⃓⃓⃓
⃓du

dx

⃓⃓⃓⃓
⃓
)︄

du

dx

dv

dx
dx (2.7)

for u, v ∈ Vh. Next, we introduce a parameter ϕ ∈ Vh and compute the Gateaux
derivative of a with respect to the that parameter in the direction u as

a′(ϕ; u, v) = lim
t→0

1
t
{a(ϕ + tu; ϕ + tu, v)− a(ϕ; ϕ, v)}

= lim
t→0

1
t

∫︂ 1

0
µ

(︄⃓⃓⃓⃓
⃓dϕ

dx
+ t

du

dx

⃓⃓⃓⃓
⃓
)︄ (︄

dϕ

dx
+ t

du

dx

)︄
dv

dx
dx

− lim
t→0

1
t

∫︂ 1

0
tµ

(︄⃓⃓⃓⃓
⃓dϕ

dx

⃓⃓⃓⃓
⃓
)︄

dϕ

dx

dv

dx
dx

= lim
t→0

1
t

∫︂ 1

0

{︄
µ

(︄⃓⃓⃓⃓
⃓dϕ

dx
+ t

du

dx

⃓⃓⃓⃓
⃓
)︄
− µ

(︄⃓⃓⃓⃓
⃓dϕ

dx

⃓⃓⃓⃓
⃓
)︄}︄

dϕ

dx

dv

dx
dx

+ lim
t→0

1
t

∫︂ 1

0
tµ

(︄⃓⃓⃓⃓
⃓dϕ

dx
+ t

du

dx

⃓⃓⃓⃓
⃓
)︄

du

dx

dv

dx
dx (2.8)

=
∫︂ 1

0
µ′
(︄⃓⃓⃓⃓
⃓dϕ

dx

⃓⃓⃓⃓
⃓
)︄ ⃓⃓⃓⃓
⃓dϕ

dx

⃓⃓⃓⃓
⃓
−1

du

dx

(︄
dϕ

dx

)︄2
dv

dx
dx

+
∫︂ 1

0
µ

(︄⃓⃓⃓⃓
⃓dϕ

dx

⃓⃓⃓⃓
⃓
)︄

du

dx

dv

dx
dx. (2.9)

15

To get from 2.8 to 2.9, we had to use the following trick:

lim
t→0

{︄
µ

(︄⃓⃓⃓⃓
⃓dϕ

dx
+ t

du

dx

⃓⃓⃓⃓
⃓
)︄
− µ

(︄⃓⃓⃓⃓
⃓dϕ

dx

⃓⃓⃓⃓
⃓
)︄}︄

= d

dt

{︄
µ

(︄⃓⃓⃓⃓
⃓dϕ

dx
+ t

du

dx

⃓⃓⃓⃓
⃓
)︄}︄⃓⃓⃓⃓

⃓
t=0

= µ′
(︄⃓⃓⃓⃓
⃓dϕ

dx
+ t

du

dx

⃓⃓⃓⃓
⃓
)︄
· d

dt

(︄⃓⃓⃓⃓
⃓dϕ

dx
+ t

du

dx

⃓⃓⃓⃓
⃓
)︄⃓⃓⃓⃓
⃓
t=0

= µ′
(︄⃓⃓⃓⃓
⃓dϕ

dx
+ t

du

dx

⃓⃓⃓⃓
⃓
)︄
·

dϕ
dx

+ tdu
dx⃓⃓⃓

dϕ
dx

+ tdu
dx

⃓⃓⃓
· d

dt

(︄
dϕ

dx
+ t

du

dx

)︄⃓⃓⃓⃓
⃓
t=0

= µ′
(︄⃓⃓⃓⃓
⃓dϕ

dx
+ t

du

dx

⃓⃓⃓⃓
⃓
)︄
·

dϕ
dx

+ tdu
dx⃓⃓⃓

dϕ
dx

+ tdu
dx

⃓⃓⃓ · du

dx

⃓⃓⃓⃓
⃓⃓
t=0

= µ′
(︄⃓⃓⃓⃓
⃓dϕ

dx

⃓⃓⃓⃓
⃓
)︄
·

dϕ
dx⃓⃓⃓
dϕ
dx

⃓⃓⃓ · du

dx

⃓⃓⃓⃓
⃓⃓
t=0

.

Now that we have the formulas 2.7 and 2.9 for a and a′ at hand, we can
formulate the Newton iteration ([Süli and Mayers, 2003, section 4.3]) as

a′(un−1; un, vn) = a′(un−1; un−1, vn)−
(︃

a(un−1; un−1, vn)−
∫︂ 1

0
fvndx

)︃
, (2.10)

where n denotes the index of the iteration. With an initial guess u0 consisting of
a zero vector, we usually arrive at an accurate solution in a few iterations.

In the second argument of a in 2.10, we substitute the linear combination of
the basis functions ϕj

un(x) =
N−1∑︂
j=1

un(jh)ϕj(x)

=
N−1∑︂
j=1

u(j)
n ϕj(x)

and obtain

a′

⎛⎝un−1;
N−1∑︂
j=1

u(j)
n ϕj, vn

⎞⎠ = a′

⎛⎝un−1;
N−1∑︂
j=1

u
(j)
n−1ϕj, vn

⎞⎠
− a

⎛⎝un−1;
N−1∑︂
j=1

u
(j)
n−1ϕj, vn

⎞⎠+
∫︂ 1

0
fvndx

(2.11)

for j = 0, . . . , N − 1. Indices j = 0 and j = N are not included in the sum
because of the zero boundary condition 2.4.

Since the form a is linear in the second argument, the equation 2.11 can be
thought of as a linear system that can be represented by the following matrix
equation:

Aun = Aun−1 − (Bun−1 − f) , (2.12)

16

where A, B ∈ R(N−1)×(N−1) and
aij = a′(un−1, ϕj, ϕi)

=
∫︂ 1

0
µ′
(︄⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
)︄ ⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
−1 (︄

dun−1

dx

)︄2
dϕi

dx

dϕj

dx
dx

+
∫︂ 1

0
µ

(︄⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
)︄

dϕi

dx

dϕj

dx
dx

bij =
∫︂ 1

0
µ

(︄⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
)︄

dϕi

dx

dϕj

dx
dx

fi =
∫︂ 1

0
fϕidx

are the the elements of matrices A and B and i, j = 1, . . . , N − 1. This can be
again simplified due to the fact that the function ϕi have a compact support. For
the diagonal elements, we attain

aii =
∫︂ xi

xi−1

⎧⎨⎩µ′
(︄⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
)︄ ⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
−1 (︄

dun−1

dx

)︄2

+ µ (|un−1|)
⎫⎬⎭
(︄

dϕi

dx

)︄2

dx

+
∫︂ xi+1

xi

⎧⎨⎩µ′
(︄⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
)︄ ⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
−1 (︄

dun−1

dx

)︄2

+ µ (|un−1|)
⎫⎬⎭
(︄

dϕi

dx

)︄2

dx

= 1
h2

∫︂ xi

xi−1

⎧⎨⎩µ′
(︄⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
)︄ ⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
−1 (︄

dun−1

dx

)︄2

+ µ (|un−1|)
⎫⎬⎭ dx

+ 1
h2

∫︂ xi+1

xi

⎧⎨⎩µ′
(︄⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
)︄ ⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
−1 (︄

dun−1

dx

)︄2

+ µ (|un−1|)
⎫⎬⎭ dx.

If i = j + 1, the elements are on the first subdiagonal and

aij = − 1
h2

∫︂ xi

xi−1

⎧⎨⎩µ′
(︄⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
)︄ ⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
−1 (︄

dun−1

dx

)︄2

+ µ (|un−1|)
⎫⎬⎭ dx.

If i = j − 1, the elements are on the first superdiagonal and

aij = − 1
h2

∫︂ xi+1

xi

⎧⎨⎩µ′
(︄⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
)︄ ⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
−1 (︄

dun−1

dx

)︄2

+ µ (|un−1|)
⎫⎬⎭ dx.

Otherwise aij = 0.
Similarly for B, we have

bii = 1
h2

∫︂ xi

xi−1
µ′
(︄⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
)︄

dx + h2
∫︂ xi+1

xi

µ′
(︄⃓⃓⃓⃓
⃓dun−1

dx

⃓⃓⃓⃓
⃓
)︄

dx,

bij =

⎧⎪⎪⎨⎪⎪⎩
− 1

h2

∫︁ xi
xi−1

µ′(|dun−1
dx
|)dx if i = j + 1,

− 1
h2

∫︁ xi+1
xi

µ′(|dun−1
dx
|)dx if i = j − 1,

0 otherwise.

17

We are now in a situation analogous to the matrix equation 1.13, the only
difference being that the 2.12 has to be solved multiple times for us to converge
to an precise result.

2.2.3 Pre-training
In the succeeding chapter, we will see that, when we employ the deep learning
approach with the L-BFGS optimizer, the computation process becomes very
long. To at least partially mitigate that, we will pre-train the neural network
with a solution to a different but similar equation. In simple words, we first solve
the similar equation, and then save the FNN û approximating its solution. This
we load before computing the solution of 2.13 and start the training from there.

Let us define a problem analogous to the nonlinear equation 2.3.

−a
d2u

dx2 = f in (0, 1), (2.13)

u(0) = u(1) = 0,

where f is chose again as 2.6 and a is a positive constant. This is the equation
that will be utilized in the pre-training for the original nonlinear equation 2.3.

By “similar” solutions, we mean that that the solution are similar in shape, i.e.
are well comparable. This characterization will suffice, for we will not perform any
analysis and only demonstrate the concept by means of a numerical experiment.

2.3 Singularly Perturbed Problem
The last example we will be interested in is a one-dimensional linear ODE per-
turbed by a small constant at its highest derivative.

−ϵ
d2u

dx2 + b
du

dx
= 1 in (0, 1), (2.14)

u(0) = u(1) = 0, (2.15)

where b ≫ ϵ. Throughout the thesis, we will work with b = 1 and ϵ ∼ 10−2.
Near x = 1, this choice results in behaviour much different from the rest of the
interval (see figure 2.1 on the next page). We can observe this from the analytical
solution

u(x) = xeb/ϵ − ebx/ϵ − x + 1
b (eb/ϵ − 1) .

2.3.1 Physics-Informed Neural Network
Sadly, the physics informed neural network cannot cope with equation 2.14 in the
setting explained on the previous two examples. This is a known phenomenon
at length explained in Arzani et al. [2023]. The authors propose the so called
boundary-layer PINN (BL-PINN), which enables us to manage cases, where the
regular PINN cannot find a meaningful solution.

The central thought behind BL-PINN is to split the domain Ω into two parts:
the outer part where the solution behaves nicely and the inner part near the

18

0.0 0.2 0.4 0.6 0.8 1.0 1.2
x

0.0

0.2

0.4

0.6

0.8

y

outer
region

inner
region

analytical solution

Figure 2.1: An approximate division of the domain Ω = [0, 1] into
the outer an inner region. If we substitute ϵ = 0.01 and b = 1,
we find that the derivative u′(x) is equal to −99 at x = 1.

boundary in which large gradients occurs. On both subdomains, the equation
2.14 is approximated with an asymptotic expansion. Additionally, the very thin
inner part is “stretched” with a coordinate transformation which enables a precise
solution. Ultimately, we solve the equation via two coupled PINNs, one for each
part of the domain.

For the purposes of this example, we will devise a simplified approach similar
to BL-PINN. We first solve the outer approximation, the inner approximation is
then solved separately (without stretching the interval) by guessing the constant
C, which determines the derivative a x = 1. Both solutions are then “cut” and
“tied together” at their intersection which produces the final solution.

Outer approximation

b
duout

dx
= 1

uout(0) = 1

Inner approximation

−ϵ
d2uin

dx2 = 1

uin(1) = 0
u′

in(1) = C

Another viable procedure, which will not be pursued in the thesis, is to first
solve the outer approximation and choose a point A ∈ (0, 1) inside the domain.
The value of the outer solution at that point u(A) would then serve as a left
boundary condition for the inner part, i.e. uin(A) = uout(A).

2.3.2 Finite Element Method
As always, we obtain a weak formulation of 2.14 by multiplication by a test
function v, integration over the whole domain and integration by parts.

ϵ
∫︂ 1

0
u′(x)v′(x)dx + b

∫︂ 1

0
u′(x)v(x)dx =

∫︂ 1

0
f(x)v(x)dx,

where u, v ∈ H1
0 .

19

Discretizing on an equidistant mesh {xi}N
i=0 and exploiting the bilinearity of

the left-hand side in u and v, we retrieve

ϵ
N−1∑︂
j=1

u(xj)
∫︂ 1

0
ϕ′

jϕ
′
i + b

N−1∑︂
j=1

u(xj)
∫︂ 1

0
ϕ′

jϕi =
∫︂ 1

0
fϕi, i = 1, . . . , N − 1,

where u(x) was expressed as a linear combination of basis functions {ϕi}N−1
i=1 .

Utilizing the compact support of ϕi, i = 1, . . . , N − 1, only a few integrals in
the first and second sum are non-zero. This leads to a matrix equation similar to
1.13 with one additional term corresponding to bu′.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
−1 0 1 ...
0 −1 0 . . . 0
... 1
0 · · · 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ϵ

h2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0
−1 2 −1 ...
0 −1 2 . . . 0
... −1
0 · · · 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1

...

uN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f 1

...

fN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

20

3. Numerical Results
This chapter provides an outcome of the computations described above as well a
brief discussion.

3.1 Simple Example
The first thing we observe on the machine learning approach, when running the
DeepXDE code multiple times, is the randomness of the result. This stems mainly
from the random choice of training points T and can be combated by fixing a
random seed at the beginning of the program. The authors of the DeepXDE
library recommend to run the code multiple times and choose the solution with the
smallest training loss as solution, because, currently, there in no way of predicting
the approximation error of PINN. It is an open research problem (Lu et al. [2021]).

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

y

1e 5

absolute error of PINN

Figure 3.1: Absolute error of a solution to 2.1 provided by PINN
after 10000 training epochs using the random seed 6. All other
hyperparameters are taken from section 2.1.1.

We may expose the issue on the following example. Setting random seed equal
to 6, the PINN provides a solution with an error displayed in figure 3.1. If we
then decide to switch to double-precision, the order of error rises from 10−5 to
10−2. However, increasing the number of epochs from 10000 to 20000 fixes the
issue by achieving the order of 10−6. This occurs due to the evolution of the loss
which, from the global point of view, decreases during training, but this descent
is not monotonous.

The second issue we may notice from the figure 3.1 is the fact that the bound-
ary conditions are not satisfied exactly. By design, we enforce “soft” boundary
conditions via the boundary part of the loss Lb. If this approach is not suitable,
we can replace the approximating neural network N L(x) by x(x−1)Ñ L(x), which
satisfies the boundary conditions automatically (Lagaris et al. [1998]).

On the other hand, finite elements do not face any of the problems mentioned
above. As can be seen in figure 3.2, only 51 dividing point are enough for a very

21

accurate solution. As opposed to PINN, where it is necessary to fix a random
seed, solving a system of linear algebraic equations is a deterministic process.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

5

4

3

2

1

0

y

1e 5
absolute error of FEM

Figure 3.2: Absolute error of a solution obtained from the finite
element code described in 1.5. We chose 51 equally space points
dividing the interval [0, 1] into 50 subintervals.

For future comparison with the nonlinear example, we state that the evalua-
tion time is bellow 0.1 seconds for all N ∈ {16, 31, 51, 101, 201}. Detailed result
are available in table 3.1 below.

N ℓ2 rel. error time (s)
16 3.7× 10−3 < 0.1
31 9.3× 10−4 < 0.1
51 3.3× 10−4 < 0.1
101 8.4× 10−5 < 0.1
201 2.1× 10−5 < 0.1

Table 3.1: Evolution of ℓ2 relative error with increasing N in the
simple example.

3.2 Nonlinear Problem
The nonlinear example shows the very same behaviour as the previous linear
example. As we have already discussed, there is no significant difference between
the two examples from the perspective of PINN.

Let us therefore move towards pre-training described in the subsection 2.2.3.
As was mentioned above, the Poisson’s equation 2.13 is used to generate solutions
for different values of parameter a, which then serve as a starting point for solving
2.3. For each value of a, only 3000 epoch of training take place, because a
rough approximation suffices as a starting point for the nonlinear equation. This
approach will be compared to training starting from default initializers available
in the library.

22

optimizer Adam
layer size [1] + [20]× 3 + [1]
initializer Glorot normal
learning rate 0.001
epochs 3000
training points 16 + 2
a ∈ [1, 2]

Table 3.2: Hyperparameters used during pre-training.

When solving the equation of interest, we utilize both Adam and L-BFGS
optimizer. As a stopping criterion for training we chose the ℓ2 relative error. Un-
fortunately, DeepXDE doesn’t provide us with an easy way to stop the training,
as soon as we reach the desired precision, neither a straightforward modification
is possible. The only two available criterions are the training loss and the test
loss, none of which can be reliably converted to ℓ2 relative error, at least to our
knowledge. For this reason, we chose to train for a fixed number of epochs repet-
itively, until a solution error below the desired tolerance was achieved. In the
case of L-BFGS, we chose 10−4, with Adam, we opted for 10−3, because higher
accuracy could not be reliably attained for all initializers and random seeds.

optimizer no pre-training
mean

pre-training
mean

decrease/
increase

L-BFGS 632.7 559.1 −13 %
Adam 3594.3 5550.0 +54 %

Table 3.3: An average number of epoch needed for convergence
in pre-training.

In the table 3.3, we can see that pre-training actually helps to decrease number
of iterations needed for convergence, when we employ L-BFGS. Employing pre-
training, number of epochs is mostly independent of a. The same cannot be said
about Adam, where the mean number of iterations is actually higher with pre-
training. However for a = 1.35 and a = 1.4 the number drops to a few hundreds,
which is much lower than the no pre-training mean (see the attachments A).

Moving on to the finite elements, just 16 points were enough to produce an ℓ2

relative error of 3.3 × 10−4. Further increase in the number of points N proved
to reduce the error, as can be see in the table 3.4. However, the computational
costs scale superlinearly with increasing N , it is therefore very inefficient beyond
a certain value.

Looking back at the previous example, we see that the computation time
increased immensely, when we switched from a linear Poisson’s equation to its
nonlinear analogue. Some of it can be attributed to the simple implementation
of the latter case, but the repeated solving of a linear algebraic system is funda-
mentally more expensive then doing it only once.

Contrarily, the PINN does not face these issues. There is no fundamental
difference between solving a nonlinear differential equation and a nonlinear one.
If we unify the hyperparameters of examples 2.1 and 2.2 and use the Adam

23

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

0.00125

0.00100

0.00075

0.00050

0.00025

0.00000

y

absolute error
of FEM

Figure 3.3: Absolute error of a solution to the nonlinear equation
2.3 provided by FEM (N = 51). The result was interpolated by
a cubic spline.

N ℓ2 rel. error time (s)
16 3.3× 10−4 0.6
31 8.2× 10−5 2.4
51 3.0× 10−5 6.6
101 7.4× 10−6 27.0
201 1.8× 10−6 114

Table 3.4: Evolution of ℓ2 relative error and computation time
with increasing N in the nonlinear example. Newton’s method
converged in 5 iterations for all values of N .

optimizer, we discover that, the first example takes about 14 seconds to compute
and the second one approximately 18 seconds.

3.3 Singularly Perturbed Problem
As we have mentioned in the previous chapter, the machine learning approach
is not as smooth as in the previous examples. For higher values of ϵ, PINN can
approximate the analytical solution quite well. It starts to deviate heavily around
ϵ = 0.05 and is unusable for values below. The primitive version of BL-PINN
described above, allows us to extend the range for ϵ approximately to 0.005. For
smaller values, we unfortunately run again into numerical issues. This prevents
us from seeing the full potential of the approximations, because uout and uin have
the best fit, when ϵ is very small.

Having witnessed that PINN can solve singularly perturbed problems, we
move on to the finite element method. Figure 3.5 suggests that not even here
is the situation without troubles. For a small number of dividing points N ,
we observe very large oscillations near the right boundary. As opposed to the
machine learning approach, the issue can be mitigated by increasing N , however,
smaller ϵ again reintroduce the oscillations. A proper choice of ϵ and N is related

24

0.80 0.85 0.90 0.95 1.00 1.05
x

0.6

0.7

0.8

0.9

1.0

1.1

y
outer solution
inner solution
analytical solution

Figure 3.4: Analytical solution of 2.14 together with the outer
and inner approximations obtained from the simplified BL-PINN.
Exact analytical solutions: uout(x) = x, uin(x) = −50x2 + x + 49
for C = −99.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

y

N = 16
N = 31
analytical solution

Figure 3.5: Analytical solution of 2.14 compared to numerical
solutions obtained from FEM with different numbers of dividing
points.

to a so called Péclet’s number Pe, which is defined as a ration between coefficients
b and ϵ (Pe = b

ϵ
).

Choosing N = 1001, the ℓ2 relative error is of the order 10−5, which we
consider to be an accurate result. Thousands of points needed for a precise
solution may seem like a lot, however, considering that the usual computation
time for PINN is in tens of seconds, it is still a faster and perhaps an even more
reliable option.

25

3.4 Comparison Between PINN and FEM
A the end of this chapter, we include a listing the major advantages and disad-
vantages of PINN, many of which we have encountered in the text above. The
specified properties are meant to be in direct contrast to the reference finite ele-
ment method.

Advantages
• easy integration of different kinds

of boundary conditions

• linear and nonlinear problems are
handled in the same way

• the code closely resembles the
mathematical formulation (Deep-
XDE)

• solving a particular equation does
not require a tedious derivation of
the code

• general flexibility in solving vari-
ous types of PDEs

Disadvantages

• long computation time even for
simple problems

• no known error bounds

• has troubles dealing with strong
nonlinearities and discontinuities

• some problems need a significant
modification (BL-PINN)

• multiple runs with different set-
tings are often necessary to
achieve and optimal result

26

Conclusion
Previous chapters have demonstrated to us the possibilities opened by neural
networks applied to the field of differential equations. We have seen that in some
respects, such as versatility, PINN outperforms the traditional numerical methods
significantly. For example, in terms of computation time, however, FEM is still
considerably better. Although PINNs are effective in a wide range of problems,
they are by no means a silver bullet. They still struggle with highly nonliner
behaviour and suffer from the same issues as optimization problems. Since they
are often solving non-convex optimization problems, there is no guarantee of
finding a global minimum.

A useful application of the machine learning approach might be parametric
PDEs, where the values of the parameter are from a narrow interval. We can
therefore initialize training for one value with another much like we have seen
in the example 2.2. This brings, in many cases, a profound decrease in number
of epochs and computation time. One might even consider a more sophisticated
approach (Uriarte et al. [2022]) that is inspired by the finite element method and
has already shown favourable results. Nonetheless, some may still prefer iterative
methods, since they in principle offer the same benefit, thanks to the choice of
initial guess.

Example 2.3 was a great illustration of the limitations faced by PINN. We
have observed the difficulties tied with thin boundary layer problems. Unlike
the previous nonlinear example, the approach needed substantial modification
in order to return meaningful results. All in all, just like FEM required major
adjustments in the nonlinear case, PINN needed similar treatment when solving
the thin boundary layer problem.

Several other modifications to PINN have emerged in recent years such as
XPINN or DPINN, each one suited for different problems. As a result, the deep
learning approach to ODEs and PDEs is gradually becoming more and more
applicable. This in also thanks to the rise of specialized processors (TPUs),
which speed up computations.

In our opinion, pre-training is the topic that deserves a more thorough investi-
gation. The nonlinear example showed us the possibility to substantially decrease
computation time if the we choose the right set of hyperparameters initializing
the training. For reasons unknown, some choices decreased the time by an order
of magnitude, other options caused the exact opposite.

27

Bibliography
Amirhossein Arzani, Kevin W. Cassel, and Roshan M. D’Souza. Theory-guided

physics-informed neural networks for boundary layer problems with singular
perturbation. Journal of Computational Physics, 473:111768, 2023. ISSN
0021-9991. doi: https://doi.org/10.1016/j.jcp.2022.111768. URL https:
//www.sciencedirect.com/science/article/pii/S0021999122008312.

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory
algorithm for bound constrained optimization. SIAM Journal on Scientific
Computing, 16(5):1190–1208, 1995. doi: 10.1137/0916069. URL https://
doi.org/10.1137/0916069.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE Transactions on Neural Net-
works, 9(5):987–1000, 1998. doi: 10.1109/72.712178.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis, jan 2021. URL
https://doi.org/10.1137%2F19m1274067.

Endre Süli and David F. Mayers. An Introduction to Numerical Analysis. Cam-
bridge University Press, 2003. doi: 10.1017/CBO9780511801181.

Carlos Uriarte, David Pardo, and Ángel Javier Omella. A finite element based
deep learning solver for parametric pdes. Computer Methods in Applied Me-
chanics and Engineering, 391:114562, 2022. ISSN 0045-7825. doi: https://
doi.org/10.1016/j.cma.2021.114562. URL https://www.sciencedirect.com/
science/article/pii/S0045782521007374.

28

https://www.sciencedirect.com/science/article/pii/S0021999122008312
https://www.sciencedirect.com/science/article/pii/S0021999122008312
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
http://www.deeplearningbook.org
https://doi.org/10.1137%2F19m1274067
https://www.sciencedirect.com/science/article/pii/S0045782521007374
https://www.sciencedirect.com/science/article/pii/S0045782521007374

List of Figures

1.1 A scheme of a FNN. 4
1.2 Evolution of parameters θ in the space Rn. 7

2.1 An approximate division of the domain Ω into the outer an inner
region. 19

3.1 Absolute error of a solution to 2.1 provided by PINN after 10000
training epochs using the random seed 6. 21

3.2 Absolute error of a solution obtained from the finite element code
described in 1.5. 22

3.3 Absolute error of a solution to the nonlinear equation 2.3 provided
by FEM (N = 51). 24

3.4 Analytical solution of 2.14 together with the outer and inner ap-
proximations obtained the simplified BL-PINN. 25

3.5 Analytical solution of 2.14 compared to numerical solutions ob-
tained from FEM. 25

29

List of Tables

3.1 Evolution of ℓ2 relative error with increasing N in the simple ex-
ample. 22

3.2 Hyperparameters used during pre-training. 23
3.3 An average number of epoch needed for convergence in pre-training. 23
3.4 Evolution of ℓ2 relative error and computation time with increasing

N in the nonlinear example. 24

A.1 Number of epochs needed for convergence below a desired toler-
ance. Solver: L-BFGS. 32

A.2 Number of epochs needed for convergence below a desired toler-
ance. Solver: Adam. 33

30

List of Abbreviations
AD automatic differentiation (algorithmic differentiation). 3, 7

BL-PINN boundary-layer physics-informed neural network. 18, 19, 24, 25, 26,
29

DPINN distributed physics-informed neural networks. 27

FDM finite difference method. 2

FEM finite element method. 2, 3, 7, 10, 24, 25, 27, 29

FNN feed-forward neural network (multilayer perceptron). 3, 4, 5, 7, 18, 29

L-BFGS limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. 6, 14,
18, 23, 30, 32

ODE ordinary differential equation. 18, 27

PDE partial differential equation. 26, 27

PINN physics-informed neural network. 2, 3, 8, 12, 18, 19, 21, 22, 23, 24, 25,
26, 27, 29

TPU tensor processing unit. 27

XPINN extended physics-informed neural network. 27

31

A. Attachments

A.1 Detailed Results from Pre-training

Initializer/a
Random Seed Mean

Epochs0 1 2 3 4
Glorot normal 920 694 463 1134 912 824.6
Glorot uniform 460 472 234 1162 686 602.8
He normal 681 918 230 231 1128 637.6
He uniform 467 222 706 464 668 505.4
LeCun normal 468 695 693 468 464 557.6
LeCun uniform 914 719 473 686 911 740.6
Orthogonal 464 482 460 477 917 560.0
1.0 451 451.0
1.05 440 440.0
1.1 445 445.0
1.15 667 667.0
1.2 443 443.0
1.25 665 665.0
1.3 438 438.0
1.35 675 675.0
1.4 447 447.0
1.45 691 691.0
1.5 895 895.0
1.6 675 675.0
1.7 676 676.0
1.8 440 440.0
1.9 453 453.0
2.0 444 444.0
no pre-training mean 632.7
pre-training mean 559.1

Table A.1: Number of epochs needed for convergence below a desired tolerance.
Solver: L-BFGS, tolerance: 10−4, step: 200 epochs. Note that in the pre-
training part, the number of epochs doesn’t depend on the random seed.

32

Initializer/a
Random Seed Mean

Epochs0 1 2 3 4
Glorot normal 2200 2400 2400 1000 3000 2200.0
Glorot uniform 1800 1400 1600 2400 1800 1800.0
He normal 2200 3200 3600 800 2600 2480.0
He uniform 800 2200 8200 3200 13600 5600.0
LeCun normal 2600 6200 7400 4600 2200 4600.0
LeCun uniform 2200 1200 2200 2200 2600 2080.0
Orthogonal 7800 3600 3000 1800 15800 6400.0
1.0 8200 11400.0
1.05 8200 10600.0
1.1 11200 11200.0
1.15 1800 1800.0
1.2 1600 1600.0
1.25 4400 4400.0
1.3 4400 4400.0
1.35 600 600.0
1.4 800 800.0
1.45 6600 6600.0
1.5 2800 2800.0
1.6 3000 3000.0
1.7 10200 10200.0
1.8 7200 7200.0
1.9 4000 4000.0
2.0 8200 8200.0
no pre-training mean 3594.3
pre-training mean 5550.0

Table A.2: Number of epochs needed for convergence below a desired tolerance.
Solver: Adam, tolerance: 10−3, step: 200 epochs. Note that in the pre-training
part, the number of epochs doesn’t depend on the random seed.

33

	Introduction
	Methods and Concepts
	Feed-Forward Neural Network
	Physics-Informed Neural Network
	PINN Optimizers – Gradient Descent
	Automatic Differentiation
	Finite Element Method
	Weak Formulation
	Choice of Mesh and Discretization
	Choice of Spaces and Summary

	Examples
	Simple Example
	Physics-Informed Neural Network
	Finite Element Method

	Nonlinear Problem
	Physics-Informed Neural Network
	Finite Element Method and Newton Iteration
	Pre-training

	Singularly Perturbed Problem
	Physics-Informed Neural Network
	Finite Element Method

	Numerical Results
	Simple Example
	Nonlinear Problem
	Singularly Perturbed Problem
	Comparison Between PINN and FEM

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Detailed Results from Pre-training

