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Abstract
This thesis investigates the effect of binning numerical variables on the per-
formance of credit risk models. The differences are evaluated utilizing five
publicly available data sets, six evaluation metrics, and a rigorous statistical
test. The results suggest that the binning transformation has a positive and
significant effect on the performance of logistic regression, feedforward artifi-
cial neural network, and the Naïve Bayes classifier. The most affected aspect
of model performance appears to be its ability to differentiate between eligible
and ineligible customers. The obtained evidence is particularly pronounced for
moderately-sized data sets. In addition, the findings are robust to the inclusion
of missing values, the elimination of outliers, and the exclusion of categorical
features. No significant positive effect of the binning transformation was found
for the decision tree algorithm and the Random Forest model.
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Abstrakt
Tato práce zkoumá vliv diskretizace numerických proměnných na výkonnost
modelů kreditního rizika. Rozdíly ve výkonnosti jsou vyhodnoceny s využitím
pěti veřejně dostupných datových souborů, šesti indikátorů výkonnosti a stati-
stického testu. Výsledky naznačují, že diskretizace má pozitivní a významný
vliv na výkonnost logistické regrese, neuronové sítě a naivního Bayes klasi-
fikátoru. Nejvíce ovlivněným aspektem výkonnosti modelu se zdá být jeho
schopnost rozlišovat mezi dobrými a špatnými klienty. Výsledky jsou zvláště
patrné pro středně velké datové soubory. Závěry jsou odolné vůči chybějícím
hodnotám, eliminaci extrémních pozorování a vyloučení kategorických proměn-
ných. Pro rozhodovací strom a náhodný les nebyl nalezen žádný významný
pozitivní účinek diskretizace na výkonnost.
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Chapter 1

Introduction

Estimating the probability that a customer will default in the future is one of
the most fundamental responsibilities of financial institutions. Since a correct
evaluation of a customer’s credibility may have a substantial impact on prof-
itability and is required by the regulatory framework, considerable attention is
devoted to the methodology of the development of credit risk models. While the
estimation process is thoroughly scrutinized, the focus on data preprocessing
is fairly neglected in the existing literature (Raymaekers et al. 2022). In addi-
tion, despite the rapid advancements in computational power and the resulting
feasibility of more complex models, the performance improvements achieved by
employing overly complicated methods do not appear to be substantial (Less-
mann et al. 2015). As a result, the enhancement of data quality inspection and
data preprocessing may constitute a more rewarding line of research.

Nevertheless, even the most basic machine learning methods have been shown
to considerably enhance model performance as compared to the industry stan-
dard logistic regression (Baesens et al. 2003; Lessmann et al. 2015). And since
even a minor improvement in the model’s performance may yield substantial
cost savings for the financial institution (Khandani et al. 2010; Lessmann et al.
2015), the utilization of machine learning methods is enticing. However, the
regulatory framework requires credit risk models to be interpretable, and thus
the employment of non-transparent "black-box" models is infeasible. As a re-
sult, various attempts were made to enhance the interpretability of complicated
models. One of the suggested options is the binning of numerical variables
and their subsequent Weight of Evidence transformation (Augasta & Kathir-
valavakumar 2013; Raymaekers et al. 2022). While this procedure may increase
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the model’s interpretability, its effect on performance is yet to be thoroughly
inspected.

Consequently, this thesis investigates the effect of binning numerical variables
on the performance of common machine learning estimation methods. The
considered algorithms are the industry standard logistic regression, the decision
tree, the Random Forest model, the artificial neural network, and the Naïve
Bayes classifier. In order to address the deficiencies in the existing literature,
six evaluation metrics, as well as a rigorous statistical test, are utilized to
investigate the differences in model performance. In addition, five publicly
available data sets are considered for estimation to secure the robustness of the
results. Moreover, the reliability of the findings is further verified by various
supporting analyses, including the treatment of missing values, exclusion of
categorical variables, and handling of outliers.

The results obtained in this thesis suggest that three of the five considered
estimation methods seem to significantly benefit from utilizing the binning
transformation of numerical features. Strong evidence was found in favor of
the binning transformation for the feedforward artificial neural network and
the Naïve Bayes classifier. In addition, the logistic regression appears to ben-
efit from the binning transformation in certain aspects of model performance,
especially its ability to differentiate between good and bad customers. The
findings are particularly strong for moderately-sized data sets which represent
the industry standard in credit risk modeling. On the other hand, the per-
formance of two considered tree-based algorithms, the decision tree and the
Random Forest model, does not seem to be improved by binning numerical
variables.

The rest of the thesis is structured as follows. Section 2 provides an overview of
the existing literature with regard to the effect of binning numerical variables
on the performance of credit risk models. In addition, a discussion of the exist-
ing binning algorithms is presented, along with a brief outline of the utilization
of machine learning models in credit risk. The chapter concludes by demon-
strating the expected contribution of this thesis and enumerating the tested
hypotheses. Section 3 offers a description of the utilized data sets, while Sec-
tion 4 provides a thorough discussion of the employed methodology, including
the depiction of the binning algorithm, the utilized methods, and, most impor-
tantly, the evaluation metrics. The results for each estimation method and the
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supplementary analyses are examined in Section 5. The conclusion, along with
policy recommendations and research limitations, is available in Section 6.



Chapter 2

Literature review

The literature review is structured as follows. The first part provides an
overview of the extant evidence regarding the effect of binning numerical vari-
ables on the performance of classification models. Then, given the existence of
various types of binning algorithms, the second subsection is concerned with
their description and an inspection of their relative performance. The third
part investigates the current state of the literature concerning the usage of
machine learning algorithms in credit risk modeling, particularly emphasizing
the methodology utilized for comparing classifiers’ performance. The last two
subsections demonstrate the expected contribution of this thesis to the extant
literature and enumerate the proposed hypotheses, respectively.

2.1 Binning and performance
The issue of the effect of binning numerical variables on the performance of
classification models is rather scarcely inspected in the existing literature. The
lack of investigation may be partially attributed to the fact that only a handful
of studies focus on postprocessing and preprocessing the data (Raymaekers
et al. 2022). Nevertheless, several studies attempted to examine this topic.

Sharma (2011) found that the utilization of binning and a subsequent Weight
of Evidence (WoE) transformation has a positive effect on the performance of
a logistic regression model and an adverse impact on the predictive accuracy
of a Random Forest (RF) model. The study utilized three credit risk-related
datasets with a binary dependent variable. On the other hand, Lustgarten et al.
(2008) showed that discretizing numerical features improves the performance
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of three machine learning algorithms (Support Vector Machines, Naïve Bayes,
and Random Forest). However, the data used for training and evaluation of
the models were biomedical and thus likely bear different characteristics than
credit risk data sets. Most importantly, the credit risk data sets tend to be
heavily imbalanced (Addo et al. 2018; Gunnarsson et al. 2021) since they usu-
ally contain only a handful of defaulted clients. On the other hand, the class
distribution in the biomedical data sets utilized in the study oscillates around
50%. Nevertheless, the results are still relevant for binary classification models
in general.

Similarly, Dougherty et al. (1995) demonstrated that Naïve Bayes and a deci-
sion tree algorithm both benefit from pre-binning continuous features. In fact,
the C4.5 decision tree algorithm showed the same or better performance on all
16 data sets covering various fields, including medicine and, most importantly,
credit risk. Abraham et al. (2006) reached the same conclusion for the Naïve
Bayes classifier. As an additional opposing view serves the study by Ventura
& Martinez (1995), who showed that discretization deteriorates the accuracy
of an ID3 decision tree algorithm.

As a result, it can be observed that the literature seems to support the perfor-
mance improvement induced by binning for some estimation methods (SVM,
Naïve Bayes) but is divided regarding the pre-binning of continuous features
when it comes to tree-based algorithms. The question stands whether the lo-
cal discretization inherent to the estimation process of all tree-based models is
superior to binning the data prior to the estimation. While Dougherty et al.
(1995) and Lavangnananda & Chattanachot (2017) show the dominance of
global discretization for a decision tree, Sharma (2011) demonstrates the op-
posite for a Random Forest model. The RF model combines the predictions of
many decision trees, which are, in turn, built by assessing variables’ importance
and a subsequent setting of an appropriate threshold that maximizes entropy
(Breiman 2001). Since the RF model has been shown to outperform the de-
cision tree classifier, especially on larger data sets (Ali et al. 2012; Esmaily
et al. 2018; Prajwala 2015), it may be the case that while the lack of predictive
power of a decision tree might be boosted by pre-binning the data, this might
not hold for the RF classifier. This thesis will attempt to further elucidate this
matter.

Even though the direct effect of binning on performance might be ambiguous,
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there are some widely accepted advantages of discretization. For example, the
ability to conveniently handle missing values by creating a separate bin, thus
preventing information loss. In addition, the binning process allows for de-
creasing outliers’ influence since they are put in a bin with regular observations
(Leung et al. 2008; Verster 2018; Zeng 2014). Moreover, binning might decrease
the nonlinearity in the data (Leung et al. 2008) and reduce the estimation vari-
ance since a slight change in the data does not significantly impact the results
(Dougherty et al. 1995). Furthermore, certain classification algorithms can han-
dle only categorical variables, and as a result, the discretization of continuous
features becomes a necessity (Augasta & Kathirvalavakumar 2013; Ventura &
Martinez 1995; Wójciak & Ĺupińska Dubicka 2018). Other classification algo-
rithms may be designed to utilize continuous features but still perform better
when dealing with categorical attributes, for example, the Naïve Bayes classifier
(Wu et al. 2006). In particular, the Naïve Bayes classifier requires the estima-
tion of frequencies which might prove cumbersome for continuous attributes
with many distinct values. One solution is to assume that the continuous vari-
ables are normally distributed, but this may not always hold (Kotsiantis &
Kanellopoulos 2005). Lastly, binning continuous variables and thus reducing
the number of unique values significantly increases the speed and efficiency
of classification algorithms (Augasta & Kathirvalavakumar 2013; Dash et al.
2011).

On the other hand, the possible disadvantages of binning need to be acknowl-
edged as well. Most importantly, discretizing a continuous variable results in
a loss of information, the so-called "discretization error" (Higham 2002). The
effect of this phenomenon on the models’ performance may be two-fold. Firstly,
the reduced amount of information may decrease the model’s predictive power.
Conversely, if the data is noisy, the loss of information may prove beneficial
since obsolete information can be disregarded and the data is represented in
a more general way, which may help prevent overfitting (Augasta & Kathir-
valavakumar 2013; Ventura & Martinez 1995). The extent of the discretization
error heavily relies on the choice of an appropriate binning algorithm. This
thesis’s main aim is to evaluate one of these algorithms.
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2.2 Binning algorithms
So far, the discussion covered only binning in general, i.e., converting a nu-
merical variable into a categorical variable. However, there are many ways
of achieving this goal. More specifically, the binning algorithms can be di-
vided into several groups, as outlined in Augasta & Kathirvalavakumar (2013).
Firstly, depending on whether the class label is utilized during the binning
process, the algorithms are classified as either supervised (class information is
considered) or unsupervised (class information is not considered). The supe-
riority of either type is ambiguous in the extant literature since even though
some studies suggest that supervised methods tend to outperform their unsu-
pervised counterparts (Augasta & Kathirvalavakumar 2013; Dougherty et al.
1995; Kohavi & Sahami 1996), others show that the results heavily depend on
the utilized data, and in some cases, unsupervised binning may perform equally
well (Agre & Peev 2002; Dash et al. 2011; Wójciak & Ĺupińska Dubicka 2018).
Nevertheless, the studies suggest that the unsupervised methods may group
together values with distinct class labels, leading to the loss of class informa-
tion and subsequent deterioration of a classifier’s performance. On the other
hand, supervised binning algorithms may put all values of a continuous vari-
able into a single interval if the correlation with the dependent variable is close
to zero, effectively disqualifying it for classification (Lustgarten et al. 2008).
This may be viewed as an additional advantage of discretization since an ap-
propriate supervised binning algorithm may be used for variable selection (Liu
& Setiono 1997). Evidently, the feasibility of supervised algorithms depends on
the availability of class labels. In addition, in favor of unsupervised algorithms
speaks their efficiency since, due to their simplicity, they are significantly less
computationally demanding (Augasta & Kathirvalavakumar 2013).

The supervised binning algorithms can be further divided into error-based,
entropy-based, and statistics-based. The error-based algorithms attempt to
minimize the prediction error on the training set resulting from classifying
the observations using solely the given discretized variable (Kohavi & Sahami
1996). On the other hand, the entropy-based methods find the optimal bins by
minimizing the entropy of the resulting intervals (Augasta & Kathirvalavaku-
mar 2013). Lastly, statistics-based algorithms rely on statistical tests when
searching for optimal interval division. An example is the ChiMerge algorithm
(Kerber 1992) which initially assigns all unique values to separate intervals
and subsequently iteratively merges adjacent intervals until all intervals are
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statistically significant from each other.1 Performance-wise comparison of the
three types of algorithms seems to favor statistics-based binning (Augasta &
Kathirvalavakumar 2013; Ventura & Martinez 1995). Kohavi & Sahami (1996)
compared only error-based and entropy-based algorithms, and the latter ap-
pears to be superior. Nevertheless, the studies unanimously recognize that the
performance depends on the underlying data and the classifier utilized.

Secondly, binning algorithms can be differentiated into dynamic and static
based on whether or not the discretization procedure is intertwined with the
classification process. Most binning algorithms are static since the data are
transformed prior to classification. An example of dynamic binning would be
the decision tree algorithm which recursively searches for optimal cut points as
a part of the classification process (Breiman et al. 1984). Thirdly, global dis-
cretization methods perform binning on the entire data set, while local methods
use only a subset of the data. As in the previous example, the decision tree
algorithm may use only data subsets of a fixed size to find the optimal cut
points and thus may represent an instance of a local discretization technique.
This approach is common, especially for ensemble methods (Breiman 2001).
Furthermore, binning algorithms such as ChiMerge, which start with smaller
intervals and iteratively merge them, are called bottom-up. On the other hand,
top-down methods begin with the whole range of data and search for optimal
cut points (once more, the decision tree algorithm serves as an example of such
a method). Moreover, direct methods require the number of intervals to be
specified manually, whilst incremental methods seek optimal division based on
a given criterion. Lastly, univariate binning algorithms differ from their multi-
variate counterparts by considering only a single variable at a time during the
binning process rather than applying the algorithm on all variables simultane-
ously.

2.3 Machine learning in credit risk
Even though the extant credit risk literature does not seem to devote a lot of
attention to data preprocessing, the utilization of machine learning models for
predicting the probability of customers’ default constitutes a popular research
topic (Bhatore et al. 2020).2 It is in banks’ best interest to produce as accurate

1The significance is assessed using the χ2 test.
2For a comprehensive review of the machine learning algorithms utilized in credit risk

modeling see Breeden (2021).
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predictions as possible since the estimated probabilities of default (PDs) enter
the calculation of capital requirements under the Basel III regulatory framework
(BIS 2011) and in case of application scoring also drive the decision of whether
to provide or not to provide the given product. However, the stringency of the
regulatory framework with respect to the methodology of the utilized models
hinders the usage of machine learning algorithms since one of the conditions
for the eligibility of a PD model is its interpretability. As a result, "black-box"3

models are automatically disqualified, and more straightforward, transparent
methods, such as logistic regression, remain the industry standard (Raymaekers
et al. 2022).

Nevertheless, a large number of studies investigate the opportunities of utiliz-
ing machine learning algorithms for predicting default probability. One of the
reasons is the existence of methods introducing interpretability even for compli-
cated black-box models. As Raymaekers et al. (2022) indicate, one way to in-
troduce interpretability to complex models is to discretize continuous variables
and subsequently apply the WoE transformation.4 In this way, the resulting
discrete features attain a small number of unique values and have a straight-
forward relationship with the dependent variable. As a result, more complex
models become feasible, including machine learning algorithms.

However, being more complex does not automatically imply better perfor-
mance. As Addo et al. (2018) and Gunnarsson et al. (2021) demonstrate,
deep learning models do not offer substantial performance gains over less com-
plicated and computationally demanding models such as a single-layer neu-
ral network. A possible explanation might be that since credit risk data sets
are usually small or medium-sized, the potential of deep learning models to
uncover complicated relationships is difficult to exploit (LeCun et al. 2015).
On the other hand, gradient-boosting algorithms such as XGBoost (Chen &
Guestrin 2016) perform significantly better than the industry standard logistic
regression. Such performance improvement might have a sizeable material im-
portance for banks since even a slight improvement in the prediction accuracy
may result in significant cost savings (Khandani et al. 2010; Lessmann et al.
2015). This is caused by the decrease in the probability of providing a loan to
an ineligible customer.

3A model is classified as "black-box" if its complexity does not allow for a straightforward
interpretation (Petch et al. 2022).

4The discussion of the methodology behind the WoE transformation will be provided in
Section 4.1.
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As mentioned above, the comparison of the performance of machine learning al-
gorithms on credit risk data sets appears abundantly in the literature.5 Among
the most influential studies belongs Lessmann et al. (2015) who compared 41
classifiers across eight credit risk datasets. The authors extend and update the
previous article by Baesens et al. (2003) in order to account for the current
progress in the machine learning field. The study utilizes a rigorous methodol-
ogy for classifier comparison, which will serve as an inspiration for this thesis.
One of the most important methodological issues raised by the article is using
an insufficient number of possibly inappropriate evaluation metrics. Most of
the previously mentioned studies used accuracy as a performance indicator,6

a suboptimal choice for substantially imbalanced credit risk data sets (Bekkar
et al. 2013; De La Bourdonnaye & Daniel 2021). Similarly, as Hand (2009) and
Powers (2012) showed, the very commonly utilized Area Under Curve (AUC)
metric has several deficiencies. In addition, many studies employ only one or
a few data sets and consequently cannot secure the robustness of the results.
This thesis will attempt to avoid these deficiencies. A profound discussion is
available in Section 3.

As for the results of Lessmann et al. (2015), the best-performing models appear
to be heterogeneous ensembles that combine several distinct classifiers’ predic-
tions. The closest contender is the Random Forest model which represents a
homogeneous ensemble. As mentioned above, more complex models do not
consistently achieve better performance than their simpler counterparts. The
results of the study support this claim since logistic regression manages to out-
perform a large number of models, including dynamic ensembles. Nevertheless,
algorithms such as a one-layer neural network or the RF model still have the
upper hand, demonstrating the advantage of machine learning utilization. The
study does not consider any form of discretization of numerical features, which
leaves an opportunity for the research of this thesis. It should be noted that
the authors use two versions of each data set. In the first, categorical features
are converted to dummy variables; in the second, they are encoded using WoE.
The advantage of the latter approach is a substantially reduced dimensional-
ity of the data (Raymaekers et al. 2022) which also enhances the efficiency of
the classification process (Sharma 2011). Especially for variables with many
unique values, the dummy variable approach creates a considerable number of

5See, for example, Khandani et al. (2010); Peng & Kou (2008); Putri et al. (2021).
6See Table 2.1.
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features. In addition, it has been shown that using some form of encoding may
positively affect performance (De La Bourdonnaye & Daniel 2021; Potdar et al.
2017).

2.4 Expected contribution
The issue of estimating customers’ probability of default has been widely rec-
ognized as a very important topic. Consequently, a lot of attention in the
literature is devoted to the perfection of the performance of the utilized mod-
els. However, while the estimation process tends to be thoroughly scrutinized,
data preprocessing is fairly neglected. As a result, this thesis will attempt to
evaluate the performance implications of utilizing a binning transformation of
numerical features using rigorous methodology, several data sets, and multiple
classifiers.

As shown above, various studies have attempted to investigate the effects, how-
ever, the utilized methodologies indicate numerous potential avenues for future
research. As a further demonstration, Table 2.1 provides an overview of the
existing articles and the evaluation metrics utilized in their analyses. As can
be seen, all but a single study utilize merely the accuracy indicator which as
discussed above may be a suboptimal choice for imbalanced data sets. Lust-
garten et al. (2008) utilizes the Relative Classifier Information metric which is
similar to AUC but is easily applicable also to multiclassification problems.7 In
addition, apart from Lustgarten et al. (2008),8 none of the mentioned studies
employ a rigorous statistical test to compare the performance of the classifiers.
This thesis will attempt to improve upon the extant literature by employing
several evaluation metrics each capturing a different aspect of classifiers’ per-
formance. Moreover, a statistical test will be conducted to obtain a significance
level of the results.

Since the employment of machine learning algorithms in the credit risk indus-
try is currently hindered by the stringent regulatory framework, new ways of
increasing the feasibility of said algorithms need to be inspected. Improving
the interpretability of complex models may lead to their increased utilization,
which may result in substantial advancements in performance. As indicated

7See, for example, Statnikov et al. (2005).
8The study utilizes the Wilcoxon signed rank test and the t-test on the results from 24

datasets.
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Table 2.1: Overview of the existing articles

Article Metric Classifier
Sharma (2011) Accuracy Logistic regression, RF
Lustgarten et al. (2008) RCI SVM, Naïve Bayes, RF
Dougherty et al. (1995) Accuracy Naïve Bayes, Decision tree (C4.5)
Abraham et al. (2006) Accuracy Naïve Bayes
Ventura & Martinez (1995) Accuracy Decision tree (ID3)
Lavangnananda & Chattanachot (2017) Accuracy NN, KNN, Naïve Bayes, Decision tree (ID3), SVM
Wu et al. (2006) Accuracy Naïve Bayes, Decision tree (ID3)
Augasta & Kathirvalavakumar (2013) Accuracy NN
Wójciak & Ĺupińska Dubicka (2018) Accuracy Bayesian network

Source: Author’s review

above, even a minor performance enhancement may generate significant cost
savings for financial institutions.

An additional contribution of this thesis is expected to be the evaluation of
a novel binning algorithm widely utilized in practice. Moreover, various sup-
plementary analyses will attempt to uncover the precise nature of the benefits
of binning numerical variables, including the effect of missing values, outliers,
encoding methods, and the involvement of categorical features.

2.5 Hypotheses
Based on the existing literature, the current thesis formulates the following
hypotheses.

Hypothesis 1: The binning of numerical variables improves the performance
of the logistic regression model on credit risk data sets

The first hypothesis concerns the most widely utilized method in the credit
risk industry, the logistic regression. In line with the reviewed articles (Leung
et al. 2008; Sharma 2011) and given the ability of the binning transformation
to alleviate the effect of outliers as well as remove the noise from the data, the
effect on performance is expected to be positive.

Secondly, a similar hypothesis is formulated for the decision tree.

Hypothesis 2: The binning of numerical variables improves the performance
of the decision tree algorithm on credit risk data sets

The extant literature does not seem to have reached a consensus with regard to
the implications of the binning transformation for the decision tree classifier.



2. Literature review 13

This thesis argues that the advantages exceed the drawbacks, and thus the final
effect on performance is positive.

Thirdly, the prevalent evidence in the reviewed articles is the deterioration of
the performance of the Random Forest classifier upon the utilization of the
binning transformation. As a result, the following hypothesis is formulated.

Hypothesis 3: The binning of numerical variables does not improve the per-
formance of the Random Forest classifier on credit risk data sets

Fourthly, a very powerful machine learning algorithm is the neural network.
The existing literature is not particularly dense with respect to the effect of
binning of numerical variables on its performance. As a result, the following
hypothesis is formulated.

Hypothesis 4: The binning of numerical variables improves the performance
of the feedforward artificial neural network classifier on credit risk data sets

Lastly, it appears to be well-established that the Naïve Bayes algorithm benefits
from the discretization of numerical variables. Consequently, the following
hypothesis will be verified in this thesis:

Hypothesis 5: The binning of numerical variables improves the performance
of the Naïve Bayes classifier on credit risk data sets



Chapter 3

Data description

The current chapter provides a description of the data utilized in this thesis.
Following Lessmann et al. (2015), who suggested the usage of multiple data sets
for classifier comparison to secure the robustness of the results, five publicly
available data sets were acquired. The data originate from two primary sources.
The first two data sets were provided by Kaggle, a Google LLC subsidiary and
a public platform for publishing data sets for machine learning competitions.
The three remaining data sets were obtained from the UCI Machine Learning
Repository, which is a popular data source among researchers in the credit risk
modeling field.1 Each following subsection of the current chapter is devoted to
one data set and its description. Given the quantitative nature of the analysis
and the usage of multiple data sets, detailed characteristics of only the first
data set are provided for conciseness. The last subsection presents an overall
summary of all data sets.

3.1 Give Me Some Credit data set
The first data set called Give Me Some Credit (GMSC), acquired from Kag-
gle, was part of a competition whose goal was to develop a model predicting
the probability that a bank’s customer will default within two years from the
reporting date (Cukierski 2011).

The data set contains 150 000 observations with ten independent variables and
one dependent variable. Each observation represents a single borrower. All

1See, for example, Peng & Kou (2008); Potdar et al. (2017); Wójciak & Ĺupińska Dubicka
(2018).
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of the explanatory features are numerical, which serves well for the purpose
of this thesis. The dependent variable is a binary indicator of whether the
given customer was delinquent within two years from the reporting date. As is
common in the credit risk industry, the data set is largely imbalanced. Merely
approximately 6.68% of observations are flagged as defaulted. However, as
Lessmann et al. (2015) argues, even though the class imbalance might bias the
absolute performance of a classifier, the relative performance of two classifiers
should remain comparable. And since this thesis aims to compare various
methods rather than establish their absolute performance, no class-balancing
techniques should be necessary.

The summary statistics of the data are available in Table 3.1. As can be seen,
only two variables contain missing values. In case of NumberOfDependents,
unavailable observations constitute approximately 2.61% of all observations,
while for MonthlyIncome, the percentage is higher at approximately 19.82%.
The treatment of missing values is described in Section 4.1.

As for the characteristics of the individual variables, the age of an average
customer in the data set is 52, according to both the mean and the median.
Therefore, the distribution does not appear to be substantially skewed. Since
41 and 63 are the 25th and 75th percentiles, respectively, the data set captures
the older part of the population. The maximum age in the data set is 109, which
seems improbable but still is not high enough to be disregarded. As discussed
in Section 2.2, the binning algorithm is expected to handle outliers well by
putting them in a bin with regular observations. Nevertheless, there appear to
be only 13 customers over the age of 100, which is not expected to influence the
results. On the other hand, the minimum value of zero is unreasonable, and
thus the observation will be removed. After that, the minimum value rises to
21, which is above the minimum age of loan eligibility and is therefore deemed
satisfactory. Commonly, credit risk data sets contain illogical or erroneous
observations. As a result, data quality inspection is an essential part of the
modeling process (Leung et al. 2008).

Moving on to the number of dependents, the maximum is twenty, which also
appears unrealistic, especially considering that the 75th percentile is one. Nev-
ertheless, following the reasoning from the previous paragraph, the observations
will not be trimmed.

An additional variable of interest is the income. The distribution of the variable
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is heavily right-skewed, meaning that the data set contains several abnormally
wealthy individuals. While the raw skewed variable may distort the results
since it appears to be far from the normal distribution, the binning algorithm
may group together income groups with similar characteristics and improve
the classification process. It might be argued that above a certain income
level, the effect on the probability of default becomes constant since moderately
rich people are not substantially more likely to default than extremely rich
individuals.

Four variables are present in the data set to capture the credit information
about a customer. Firstly, the debt ratio indicates the total monthly expenses,
including debt payments and living costs, as a percentage of monthly income.
Notably, approximately 23.42% of observations attain a value over 1, mean-
ing that many clients have higher expenses than income. As a result, the
variable’s distribution is also heavily skewed. Secondly, the feature capturing
credit card utilization has similar characteristics. However, in this case, only
approximately 2.21% of observations surpass the value of 1, signaling higher
credit card debt than the limit. Lastly, two additional variables represent the
number of open credit lines and the number of mortgages, respectively. The
distributions of the variables do not appear to be substantially skewed since
the mean and median attain similar values. An average customer in the data
set has eight open lines of credit and one mortgage.

The last group of features records the customers’ historical delinquency. All
variables show the number of times a customer was delinquent for a specific
number of days. Particularly, between 30 and 59 days, between 60 and 89, and
lastly, more than 90 days. As expected, most observations in the data set attain
a value of 0. The utilization of these kinds of variables should be approached
with caution since they are very closely related to the target variable. As a
result, they tend to explain most of the variation during training but may
cause poor performance on the testing set. In addition, for new applications,
historical delinquency data may not be available. Furthermore, considering
that they carry very similar type of information, they are very likely highly
correlated. The measures employed to mitigate multicollinearity are discussed
in Section 4.1.
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Table 3.1: Give Me Some Credit data set - summary

Statistic n Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
Age 150,000 52.295 14.772 0 41 52 63 109
NumberOfDependents 146,076 0.757 1.115 0 0 0 1 20
MonthlyIncome 120,269 6,670.221 14,384.670 0 3,400 5,400 8,249 3,008,750
DebtRatio 150,000 353.005 2,037.819 0.000 0.175 0.367 0.868 329,664.000
NumberOfOpenCreditLinesAndLoans 150,000 8.453 5.146 0 5 8 11 58
NumberRealEstateLoansOrLines 150,000 1.018 1.130 0 0 1 2 54
RevolvingUtilizationOfUnsecuredLines 150,000 6.048 249.755 0.000 0.030 0.154 0.559 50,708.000
NumberOfTime30-59DaysPastDueNotWorse 150,000 0.421 4.193 0 0 0 0 98
NumberOfTime60-89DaysPastDueNotWorse 150,000 0.240 4.155 0 0 0 0 98
NumberOfTimes90DaysLate 150,000 0.266 4.169 0 0 0 0 98
SeriousDlqin2yrs 150,000 0.067 0.250 0 0 0 0 1

Source: Cukierski (2011)

3.2 Home Credit Default Risk data set
The second Kaggle’s data set called Home Credit Default Risk (HCDR) was
also published as a part of a competition (Anna Montoya 2018). The com-
petition was announced by Home Credit, a Czech Republic-based company
providing consumer loans. Its goal was to improve upon the company’s cur-
rently employed credit risk models.

The HCDR data set is substantially larger than the previous one and is the
most sizeable data set utilized in this thesis. It contains 307 511 observations
and 121 variables. Out of all features, 68 are numerical and 52 categorical.2

However, some of the numerical variables are simple transformations3 of a single
variable, and thus are likely highly correlated among each other and will have to
be disregarded. Table B.1 shows the summary statistics of selected numerical
variables. Given the large dimensions of the data, only one transformation of
each numerical variable is presented4 and categorical features are not shown
for the sake of conciseness.

A detailed discussion of the summary statistics will not be provided for the
sake of brevity. However, a comparison with the previous data set might be
of interest. For example, after normalizing the age variable5 from days to
years, it can be seen that the value of mean and median oscillates around
43, which is substantially lower than in the previous data set. Overall, the
customers represent a younger part of the population. Moreover, as in the
previous case, the dependent variable is highly imbalanced. Approximately

2Excluding the dependent variable.
3Mean average, mode, median.
4The median and mode transformation are not shown.
5The name of the age variable in the data set is DAYS_BIRTH.
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8.07% of observations are flagged as defaulted. Furthermore, unlike in the
previous data set, several variables have a significant portion of missing values.
This issue is addressed in Section 4.1.

3.3 Credit Approval data set
The second group of data sets originates from the UCI Machine Learning Repos-
itory (UCI MLR). The first data set from this group is the Credit Approval
data set (Quinlan 2017),6 which contains anonymized information about credit
card applications.

Since the variables’ names are unavailable, the summary statistics in Table B.2
do not convey useful information. Nevertheless, it is essential to note that unlike
in the previous data sets, the current dependent variable is not imbalanced.
Approximately 44.5% of the observations are flagged as delinquent. Apart
from the target, the data set contains 690 observations, six numerical variables,
and nine categorical features. Again, for conciseness, categorical data are not
presented. With regard to missing values, two numerical variables seem to have
a small portion of unavailable observations.

3.4 Default of Credit Card Clients in Taiwan data
set

An additional data set from the UCI MLR is the Default of Credit Card Clients
in Taiwan (DCCCT). The data set was initially published in Yeh & hui Lien
(2009) and later was made available in the repository.7 It contains information
about customers’ default payments in Taiwan. The number of observations is
30 000, the number of numerical features is 20, and the number of categorical
variables is 3. The dependent variable is imbalanced since only approximately
22.12% of observations are flagged as defaulted. The data do not contain any
missing values.

The set of independent variables is very similar to the previous data sets. The
summary statistics are available in Table B.3. Interestingly, the average age of
a customer is approximately 35, which is substantially lower than in the first

6Further referred to as CA.
7DCCCT (2016)
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data set. Most of the observations (around 60%) represent women and less
than half of the customers in the data set are married.

The remaining variables can be divided into three sets. The first one captures
the customers’ payment diligence. Each of the six variables8 records the repay-
ment status in a given month with values ranging from -1 (repaid on time), 1
(1-month delay), up to 9 (9 and more months delay). Each variable represents
a different month. Given the similar nature of the variables, they are expected
to have a very high pairwise correlation with each other.

The second group records how much money a given customer owes to the credit
card company at the end of the month. Similarly to the previous group, each of
the six variables stands for a different month. Finally, the third set of features
indicates the amount of money the customer actually paid each month.

3.5 South German Credit Card data set
Finally, the last data set from the UCI MLR and the last one utilized in this
thesis is the South German Credit Card data set (SGCC). There are two ver-
sions available in the repository. Grömping (2019) provides the latest one which
is, as the authors claim, stripped of coding errors of the original data set.9

The data set consists of 1000 observations and 20 independent variables, of
which three are numerical and 17 are categorical. The dependent variable is
imbalanced, with 30% of the observations being flagged as defaulted. However,
as the authors claim, the provided sample was obtained from the population
using stratified sampling, and therefore, the minority class is oversampled. As
for the independent variables, the average age is approximately 36 years. In
addition, one of the variables captures the duration of the credit, which averages
to about 21 months. The last numerical variable shows the amount of credit
loaned. The summary statistics are available in Table B.4.

3.6 Summary
The summary of the main characteristics of each data set is presented in Table
3.2. It can be seen that the data sets obtained from Kaggle are notably more

8PAY_0, PAY_2, PAY_3, PAY_4, PAY_5, PAY_6.
9SGCC (2019)
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sizable. In addition, the class distribution in the UCI MLR data sets is less
imbalanced. Consequently, the Kaggle data sets are likely more representative
of the credit risk industry. Nevertheless, the wide utilization of the UCI MLR
in the academic literature supports the validity of the provided samples.

Table 3.2: Data sets summary (raw)

Data set n # of numerical features # of categorical features % of defaults
Give Me Some Credit 150 000 10 0 6.68
Home Credit Default Risk 307 511 69 52 8.07
Credit Approval 690 6 9 44.5
Default of Credit Card Clients in Taiwan 30 000 20 3 22.12
South German Credit Card Data Set 1 000 3 17 30.00

Source: Author’s computations
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Methodology

The current chapter outlines the methodology utilized in the empirical analy-
sis. The initial subsection discusses the data preprocessing steps taken prior
to estimation, including the description of the binning algorithm. The second
subsection describes the considered estimation methods. Moreover, the third
part is devoted to the methodology regarding classifier performance and com-
parison, including a thorough discussion of the employed evaluation metrics.
Finally, the last subsection presents an overview of the supplementary analyses.

4.1 Data preprocessing
As indicated in Section 3, several data issues must be addressed. Firstly, three
out of the five utilized data sets contain missing values. While the binning
algorithm can natively handle missing data by assigning them to a separate bin,
unavailable observations in the raw form must be replaced or disregarded. The
latter option is selected to maximize the models’ comparability. As a result, any
potential performance improvement caused by the binning algorithm cannot
be attributed to the treatment of missing values. An alternative approach
will be taken in the supplementary analyses to investigate the impact on the
results. In addition, since, for example, the HCDR data set comprises many
variables, some of which have a significantly low fill rate, the omission of missing
values while retaining all the features would result in a low number of total
observations. Consequently, for all data sets, only variables with at least 80%
of non-missing observations are preserved for the analysis.

Secondly, the main aim of this thesis is to investigate the binning of numerical
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variables. However, four of the utilized data sets contain categorical features
as well. Since the relationship among the numerical and categorical variables
might affect performance, they will be retained following Raymaekers et al.
(2022) and Sharma (2011). However, for conciseness and to reduce the data’s
dimensionality, only categorical variables with at most two categories will be
considered for the analysis. These variables will be dummy encoded.

Thirdly, given the large number of variables in some datasets, adverse statis-
tical and numerical consequences of multicollinearity may arise if not appro-
priately addressed (Alin 2010). Therefore, following Lessmann et al. (2015),
highly correlated features will be disregarded before estimation. The Pearson
correlation coefficient will measure the pairwise relationship between the vari-
ables. Since some variables, including the dependent variable, are categorical,
the point biserial correlation will assess the relationship between the numerical
and dichotomous variables (Kornbrot 2005). The point biserial correlation is
numerically equivalent to the Pearson correlation. For two highly correlated
variables, the one with the higher correlation with the dependent variable will
be retained. In addition, numerical features take precedence over categorical
variables since they are the main focus of this thesis. The threshold for re-
moval is set quite conservatively to 0.75. As a further rigorous verification of
this approach, the Variance Inflation Factor (VIF) will be calculated for the
remaining features. The VIF quantifies how much the behavior of an indepen-
dent variable is affected by its interaction with the other explanatory features.
For each variable, it is computed using the following formula:

V IFj = 1
1 − R2

j

, (4.1)

where R2
j is the R-squared of a regression where the j-th independent variable is

regressed on the remaining explanatory variables. Unlike pairwise correlation,
the VIF can detect more complex relationships among multiple variables. As
Marcoulides & Raykov (2018) suggest, values of VIF above ten may indicate an
alarming degree of multicollinearity. Consequently, variables with values above
this threshold will be disregarded.

After the aforementioned steps, one last data preprocessing stage remains, the
binning of numerical variables. As discussed in Section 2, binning algorithms
can be divided into multiple categories. For the purposes of this thesis, a su-
pervised statistics-based algorithm will be utilized. As the literature suggests,
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supervised learning algorithms usually tend to achieve better performance. In
addition, since the class label is available during training, it is reasonable to ex-
ploit the information it carries. Within the supervised algorithms category, the
statistics-based procedures appear superior to their entropy-based and error-
based counterparts.1 Furthermore, to the author’s best knowledge, the math-
ematical programming formulation of the optimal binning problem introduced
by Navas-Palencia (2020)2 was not yet evaluated in the literature in the credit
risk context, even though it is widely utilized in practice.3

A detailed description of the algorithm is beyond the scope of this text and
is available in Navas-Palencia (2020). Nevertheless, a short overview will be
provided. The algorithm consists of two steps. Firstly, the numerical variable
is divided into n pre-bins. The split points are selected using the Classification
and Regression Tree (CART) (Breiman et al. 1984), which iteratively searches
for optimal split points until a maximum number of pre-bins is reached, or no
additional splitting is feasible. The maximum number of pre-bins is arbitrary
and, for the purpose of this thesis, will be set to twenty, as suggested by the
authors of the algorithm. Too many bins may hinder the algorithm’s ability to
generalize the data, ultimately defeating the purpose of binning. On the other
hand, a small number of bins may result in a loss of too much information. The
pre-binning step substantially reduces the search space and thus significantly
decreases the complexity of the optimization problem. Secondly, the optimal
bins are found by iteratively merging adjacent pre-bins to maximize the given
variable’s Information Value (IV). IV quantifies the predictive power of an
independent variable with respect to a binary dependent variable and is a
widely utilized measure in credit risk analysis (Zeng 2013). Denoting gi and bi

the number of observations for bin i where the dependent variable is equal to
zero and one, respectively, the IV for a given variable is calculated as

IV =
n∑︂

i=1

(︄
gi

g
− bi

b

)︄
WoEi, (4.2)

where
WoEi = ln

(︄ gi

g
bi

b

)︄
(4.3)

1Refer to Section 2.2 for a detailed review.
2The implementation of the binning algorithm is available in the python OptBinning

library (Navas-Palencia 2023) and will be utilized for the purposes of this thesis.
3The OptBinning library was subjected to more than 200 000 downloads in June 2023

(Flynn 2023).
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is the Weight of Evidence (WoE), which evaluates the ability of each bin i to
differentiate between the two classes, g and b are the total number of observa-
tions where the dependent variable is equal to zero and one, respectively, and
n is the number of bins.

Some additional constraints can be defined for the optimization problem. For
example, since the models are required to be interpretable in the credit risk
industry, it is essential to impose a monotonicity constraint on the bins (Ray-
maekers et al. 2022). In this way, a straightforward relationship with the depen-
dent variable is secured. Let ERi = bi

bi+ei
be the Event Rate (ER). Then, the

monotonicity constraint translates to consecutive bins having either ascending
or descending value of ER. Moreover, the Z-test is utilized to assess whether the
difference in ERs between adjacent bins is statistically significant. A constraint
is set for the p-value to be lower or equal to 0.1 for the differences to be signif-
icant at the 10% significance level. Furthermore, as Siddiqi (2012) indicates,
an appropriate binning algorithm needs to satisfy the following requirements:

• Missing observations have a dedicated bin

• The number of observations in each bin is larger or equal to 5% of all
observations

• In every bin, there is at least one observation from each class

The first condition is relatively straightforward and constitutes one of the main
strengths of binning algorithms in general. Nevertheless, it is not directly
applicable to the primary analysis of this thesis since missing observations are
disregarded. The second condition attempts to secure the representativeness of
each sample bin of the total population. Without it, the algorithm could easily
lead to overfitting. The third condition ensures the computational feasibility
of the measures defined above.

The last step of data preprocessing is encoding the binned variables. One op-
tion is to use dummy encoding, which would entail creating a new variable for
each bin. However, this approach substantially increases the dimensionality of
the data and, in addition, the literature suggests that categorical variables, in
general, tend to benefit from other forms of encoding, especially those that uti-
lize the values of the dependent variable (De La Bourdonnaye & Daniel 2021;
Potdar et al. 2017). As a result, following the standard credit scoring prac-
tice (Leung et al. 2008), the data will be encoded using WoE as defined in
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(4.3). The WoE transformation does not inflate the data’s dimensionality and
utilizes the class label information. In addition, combined with the monotonic-
ity constraint, the resulting feature has an interpretable relationship with the
dependent variable.

4.2 Estimation methods
Several estimation methods will be utilized to assess the impact of binning on
performance since, as discussed in Section 2, the effect does not appear to be
homogeneous across algorithms. Firstly, the logistic regression represents the
industry standard in credit risk modeling (Leung et al. 2008; Raymaekers et al.
2022) and, as such, should be considered for the analysis. In addition, since
WoE is, in essence, a logit transformation, the methods are closely linked. Even
though the logistic regression is considered interpretable, it is still common
practice to utilize binning and a subsequent WoE transformation (Leung et al.
2008).

The logistic regression estimates a model of the following form (Wooldridge
2013):

log
(︄

pi

1 − pi

)︄
= β0 +

M∑︂
j=1

βijxij + ϵi, (4.4)

where β0 is the intercept, β1, . . . , βM are the coefficients, M is the number of
independent variables, ϵi represents the error term, and pi is the probability
of yi = 1. The estimates of the coefficients are obtained using the Maximum
Likelihood Estimator (MLE) such that the log-likelihood function is maximized.

For regression analysis in general, with an increasing number of variables, the
chance of overfitting grows (Hawkins 2004). And since some of the utilized
data sets contain many features, this potential issue must be addressed. Given
the quantitative nature of the analysis, any form of advanced feature selection
is infeasible. In addition, the comparability between the models with binned
variables and with raw variables must be preserved, which could not be the
case if the chosen variables differed across the models. Therefore, an alternative
approach will be taken through regularization.

The most common types of regularization are the ℓ1 (Lasso) and ℓ2 (Ridge).
These algorithms introduce a penalty for the size of coefficients into the loss
function (Friedman et al. 2010). The penalty terms have the following form:
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• ℓ1: λ1
∑︁M

j=1|βj|

• ℓ2: λ2
∑︁M

j=1 β2
j ,

where λ1 and λ2 control the regularization strength. Unlike Ridge, the Lasso
regularization method allows for the coefficients to shrink to the value of zero,
and as a result, effectively acts as a feature selection method (Bühlmann 2011).
For the purposes of the analysis, both methods will be considered along with
several values of λ1 and λ2, which will be subjected to hyperparameter boost-
ing.4 For completeness and also to accommodate data sets with a sufficiently
low number of observations, the logistic regression without regularization will
be considered as well.

Moving on to the machine learning field, the second employed estimation
method is the Classification and Regression Tree (CART) introduced by Breiman
et al. (1984). As discussed in Section 2, the impact of binning on tree-based
methods appears to be ambiguous and therefore requires further investigation.
In addition, the CART represents an interpretable machine learning model,
making it an eligible candidate for credit risk modeling purposes (Khandani
et al. 2010). The algorithm searches through all possible splits among all vari-
ables and selects the one that decreases a given criterion the most. The training
data are partitioned according to the split, and a new search is initiated for
each partition. Each partition is called a node, and a node that is not split
further is called a leaf.

The commonly used criteria are either the Gini index or the Entropy criterion.
The former is defined for binary classification for node T as

Gini(T ) = NT

1∑︂
k=0

pT (k)[1 − pT (k)] = 2NT pT (0)pT (1), (4.5)

where NT is the number of observations for node T and pT (k) is the probability
that an observation belonging to node T is equal to class k. On the other hand,
the entropy criterion is defined as

Entropy(T ) = −NT

1∑︂
k=0

pT (k) log pT (k), (4.6)

Since neither of the criteria is universally superior, both will be considered for
4A discussion of hyperparameter boosting is available in Section 4.3.
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estimation. Moreover, similarly to logistic regression, there are various meth-
ods to prevent overfitting a decision tree. For example, a threshold for the
minimum number of observations demanded to perform a split can be set, the
number of total leaves of the tree can be regulated, or the tree is allowed to only
reach a certain depth. Alternatively, the tree can be pruned post-estimation
by replacing some of the subtrees with leaves. For the hyperparameter opti-
mization, two ways of regularization will be considered, maximum depth and
maximum number of leaves. The former impacts the algorithm only by stop-
ping when a certain depth is reached. The latter on the other hand, searches
during each iteration for the best possible split among all existing nodes, which
usually results in an assymetric tree structure.

An additional tree-based algorithm that will be utilized in the analysis is the
Random Forest classifier.5 As Lessmann et al. (2015) shows, this homogeneous
ensemble achieves one of the best performances in credit risk modeling. With
respect to pre-binning the variables, as discussed in Section 2, it appears to
have an adverse effect on the classifier. However, since it belongs to the group
of so-called "black-box" models, it is necessary to introduce some form of inter-
pretability into the model to ensure its feasibility for credit risk modeling.

The Random Forest is an ensemble of decision trees whose individual predic-
tions are averaged to form the final prediction. Each subtree is built in the
following manner. The training data set is sampled with replacement, with the
sample size being optional but usually set to the original data size. In addi-
tion, only a random subset of features is considered when looking for the best
split. Apart from the optimizable parameters of the individual trees (maximum
depth and maximum number of leaves), the RF classifier has an additional pa-
rameter, which is the number of trees. As a result, all the tree parameters will
be candidates for hyperparameter tuning. While a too complex decision tree
may overfit and provide unreliable predictions, the strength of the RF is in
the ability to combine the predictions of many possibly overfitted trees, which
results in superior performance (Ali et al. 2012).

Remaining in the area of black-box models but moving away from tree-based al-
gorithms, the next highly popular machine learning method that will be consid-
ered is the neural network (NN). As shown in Section 2, the literature suggests
that neural networks appear to induce a performance improvement compared

5Introduced by Breiman (2001).
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to simpler methods such as logistic regression. On the other hand, exceedingly
complicated deep learning models do not seem to outperform their single-layer
counterparts. As a result, only a one-layer feedforward artificial neural network
will be employed. Following Heaton (2008), the number of nodes of the hidden
layer will be set to 2/3 of the number of independent variables. This rule of
thumb is expected to prevent both underfitting and overfitting of the neural
network. However, to ensure the optimal parameter setting, two additional
options for the number of nodes will be considered: K

2 and K, where K is the
number of independent variables. Moreover, to avoid the issue of overfitting
even further, the ℓ2 regularization will be employed to shrink the coefficients.
The regularization parameter will be subjected to hyperparameter boosting.
With regard to the activation function, three candidates will be considered.
Firstly, the Rectified Linear Unit (ReLU) activation function, which is defined
as ReLU(x) = max(x, 0). The ReLU appears to be superior in performance
to other common activation functions (Bircanoǧlu & Arıca 2018; Krizhevsky
et al. 2012), it does not suffer from the problem of vanishing gradients, and
it secures high computational efficiency. Moreover, its formulation allows for
disabling nodes by outputting the value of zero. However, for completeness,
the well-know sigmoid and tanh activation functions will be considered as well.
The former is defined as σ(x) = 1

1+e−x , while the latter as tanh(x) = 2σ(2x)−1.
As can be seen, the tanh activation function is a transformation of the sigmoid,
which results in a symmetrical function with the derivation in zero being equal
to one.

The last model included in the analysis is the Naïve Bayes classifier. This prob-
abilistic model based on the Bayes theorem seems to greatly benefit from the
binning of numerical features.6 Notably, the Bernoulli Naïve Bayes is only able
to handle binary variables, and thus the categorization of numerical variables
is necessary for its feasibility. However, since, as introduced above, the data
will be WoE encoded, the Gaussian Naïve Bayes (GaussNB) will be utilized
instead. Apart from the essential assumption that the explanatory variables
are independent of each other, the GaussNB algorithm also assumes that they
are normally distributed. This constitutes a very strong assumption but is of-
ten adopted since the model seems to perform quite well even if it is violated
(Soria et al. 2011).

6See Section 2.



4. Methodology 29

4.3 Evaluation
An essential part of the empirical analysis is evaluating the models’ performance
and their subsequent comparison. As discussed in Section 2, the existing stud-
ies often suffer from methodological deficiencies, such as using inappropriate
evaluation metrics or deriving conclusions based on comparing only a single
performance indicator. Following Lessmann et al. (2015), these shortcomings
will be addressed by employing six evaluation metrics, each capturing a differ-
ent aspect of the model’s performance. The metrics can be divided into three
distinct categories.

Firstly, a fundamental characteristic of the model is its ability to differentiate
between creditworthy and unreliable customers. The Area Under the Receiver
Operating Characteristic (ROC) Curve (AUC) is often utilized to quantify this
ability. Given a threshold above which predicted probabilities are classified as
defaulted, the ROC curve represents values of the True Positive Rate (TPR)
and False Positive Rate (FPR) for all possible thresholds. The TPR is cal-
culated as T P

T P +F N
, where TP are observations correctly classified as defaulted

and FN are observations falsely classified as non-defaulted. The FPR is equal
to 1 − TPR. The area under the ROC curve represents the probability that
a default observation will receive a higher probability prediction than a non-
defaulted observation. As a result, the AUC measure attains values between 0
and 1, with 1 indicating a perfect model.

Despite its wide popularity, the AUC measure suffers from several shortcomings
(Hand 2009). Most importantly, comparing two classifiers can be misleading if
their ROC curves cross. Therefore, Hand (2009) proposed a more appropriate
alternative that considers a distribution of misclassification costs depending on
the classification problem rather than the classifier. As a result, to ensure the
robustness of the results, the H-measure will be used to quantify the classifiers’
performance.

Another deficiency of the AUC metric is its focus on the entire distribution
of the predicted probabilities. In the credit risk context, only observations
with probabilities below a certain threshold might be accepted. Therefore, the
investigation of the lower tail of the distribution is crucial. To address this
issue Pundir & Seshadri (2012) proposed the usage of the Partial Gini Index
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(PGI), which is calculated as

PGI = 2 ∗ AUC(β) − 1 (4.7)

The PGI rescales the AUC metric such that it has more intuitive properties. It
ranges from -1 to 1, with 1 being a perfect model. In addition, the value of 0
corresponds to an AUC value of 0.5 which represents a 50% percent probability
of assigning a higher probability to a default observation than to a non-default
one. A model with such a value of AUC is equivalent to a coin toss and thus
is deemed underperforming. In addition, values of AUC, which are lower than
0.5, correspond to negative values of PGI, which is likely more intuitive to the
human eye. The term Partial stems from the fact that the AUC value in (4.7)
is calculated only for observations with probabilities below a certain threshold
β. Following Lessmann et al. (2015), β is set to 0.4.

The second group of metrics evaluates the accuracy of the probability pre-
dictions. The only member of this group is the Brier score7 (BS), which is
calculated as the mean-squared error between the predicted probabilities and
the dependent variable (Hernandez-Orallo et al. 2011). As a result, unlike for
the remaining metrics, the lower the BS, the better performance of the model.
The BS was not utilized in any of the studies reviewed in Section 2 for as-
sessing classifier performance regarding the binning of numerical variables and,
therefore, might provide valuable insight into this issue. The calibration of the
estimated probabilities is an inseparable part of the credit modeling process,
and thus should be adequately evaluated.

Lastly, the third group of metrics captures the correctness of categorical pre-
dictions. The first member of this group is the widely utilized Kolmogorov-
Smirnov statistic (KS).8 It is obtained using the KS test, which quantifies the
similarity between two distributions. In the credit risk modeling context, it is
utilized to assess the distance between the distribution of estimated probabili-
ties of defaulted observations and the distribution of estimated probabilities of
non-defaulted observations. The higher the value of the KS statistic, the lower
the p-value for the null hypothesis that the two distributions are identical.
Therefore, higher KS statistic indicates better model performance.

The last employed evaluation metric is the F2-score. Generally, the correctness
7Brier (1950).
8Smirnov (1939).
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of categorical predictions is often evaluated using accuracy.9 However, given
the imbalance of credit risk data sets, accuracy is not a suitable metric since
it assigns equal weights to the majority class and the minority class (Branco
et al. 2016). A model predicting that all customers are expected not to default
would likely achieve an acceptable level of accuracy; however, it would result
in significant problems for the bank employing the model. The F-beta score is
often utilized to address this issue since it calculates a harmonic mean between
the TPR10 and the precision.11 The formula for the F-beta score is defined as
follows

Fβ = (1 + β2) × precision × TPR

β2 × precision + TPR
(4.8)

As can be seen, TPR is β times more important in the formula. Since it is
desirable to achieve as low Type II error as possible in the credit risk industry,
β will be set to 2 to prioritize the TPR.12

Unlike all the previous metrics, the F2-score requires class membership pre-
dictions. These are derived from the estimated probabilities by setting an
appropriate threshold. Following Lessmann et al. (2015), the threshold is se-
lected such that the resulting percentage of defaults in the testing set is the
same as that of the training set. Using prior default probability is expected to
alleviate further any potential bias caused by class imbalance.

All the metrics introduced above will be calculated using the testing set. Data
partitioning is a common practice in machine learning and for predictive models
in general. Rather than investigating the performance of a classifier on the data
it was trained, the performance on unseen data is evaluated. Therefore, all the
results presented in Section 5 are obtained using the testing set. Each data set
is split into a training set comprising 80% of the observations and a testing set
containing the remaining 20%.

In addition to partitioning the data into a training and testing set, a 3-fold
cross-validation during training is employed to find the optimal parameters for
each model. As discussed above, all the utilized estimation methods apart
from the Naïve Bayes classifier require a parameter setting before estimation.
Therefore, since the model using raw variables may require a different param-

9Accuracy is defined as the percentage of correctly classified observations.
10Also sometimes referred to as recall or sensitivity.
11precision = T P

T P +F P
12Type II error occurs when an ineligible customer is predicted to be a good customer.
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eter setting for optimal performance than the one using binned variables, a
grid search is performed. For each model, the training set is split into three
folds. The model is estimated on two folds and evaluated on the third one.
Therefore, the estimation and evaluation take place three times for each pa-
rameter setting, and the mean average of the three performances is calculated.
The optimal binning algorithm is applied repeatedly during each iteration to
prevent data leakage during cross-validation. The common practice is to uti-
lize the AUC metric for hyperparameter boosting. The best parameter setting
according to the average AUC is then used to estimate the final model on the
entire training set and subsequently evaluated on the testing set. Table B.5
shows the list of parameters entering the search for each model.

The last part of the evaluation process is the statistical test of the difference
in performance between the model utilizing binned variables and the model
estimated on raw features. While a comparison of the metrics calculated on the
testing set provides a certain indication of the differences, it does not represent a
rigorous test. Therefore, the null hypothesis that the model with raw variables
performs better or worse than model with binned variables will be tested to
obtain some significance level of the result. With this approach, rejecting the
null hypothesis in favor of the alternative results in the conclusion that the
binned model performs better.

Even though five data sets are employed, the total number of five values of
each metric for each model is not sufficient to perform a reliable statistical test.
One feasible approach would be the paired bootstrap test.13 However, as Good
(2004) argues, bootstrap testing is more appropriate to estimate the confidence
intervals of a metric. When it comes to statistical hypotheses testing, the value
returned by the paired bootstrap test cannot be interpreted as the p-value since
the distribution of the test statistic was obtained under the true distribution
and not under the null hypothesis.

An alternative and more appropriate approach constitutes the permutation
test.14 The intuition behind the test is that if the models predict equally well,
it should not be of importance from which one we obtain the predictions. As a
result, if all possible alternatives of prediction origins could be considered, then
the distribution of performances under the null hypothesis would have been ob-
tained. However, enumerating every alternative is infeasible, and thus a Monte

13Konietschke & Pauly (2014).
14See, for example, Collingridge (2013).
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Carlo simulation is often performed (Collingridge 2013). The permutation test
is then employed in the following manner. Given two models whose perfor-
mances are to be compared, for each observation from the test set, one model
is randomly selected and used for prediction. Subsequently, the performance of
the resulting set of predictions is evaluated. This process is repeated R times,
and each time the resulting value of the metric is stored, forming the distribu-
tion under the null hypothesis. To obtain the p-value, the ratio of performances
greater or equal to the performance of the model in question is calculated. As
Collingridge (2013) indicates, the resulting p-value is only an approximation
of the true p-value since not all alternatives were considered. However, since
the goal of the test is to reject the null hypothesis at some significance level α,
then if the estimated p-value is smaller than α, the probability that the true
p-value is below α as well converges to zero with the number of repetitions.

4.4 Supplementary analyses
As outlined in Section 4.1, the missing values are disregarded for the primary
analysis. However, with this approach, the main strength of the binning algo-
rithm is not exploited. And since credit risk data sets often suffer from missing
values (Leung et al. 2008), their appropriate treatment may significantly affect
estimation outcomes. As a result, for the purpose of the supplementary anal-
ysis, missing values will be replaced by the means, medians, or modes of the
respective columns. This approach follows Lessmann et al. (2015). For cate-
gorical and numerical variables with a small number of unique values, mode
imputation will be used. For continuous variables with a skewed distribution,
missing values will be replaced with median to avoid biasing the results (Jad-
hav et al. 2019). For a non-skewed variable, the value of its skewness should be
between -2 and 2 (Hair et al. 2022).15 These variables will be imputed using
the mean. The resulting imputed data set will be used for the estimation of the
model with raw variables.16 The results will be compared to the model utiliz-
ing binning and assigning missing observations to a separate bin. The resulting
bin has its own WoE value, which is allocated to all missing observations for
a given variable during the encoding process. Only three of the available data

15Skewness for a variable X is calculated as E[(X−µ)3]
σ3 , where µ and σ are the mean and

standard deviation of X, respectively (Kokoska & Zwillinger 2000).
16The imputation is performed after data partitioning to avoid leakage into the test set.
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sets will be employed for the current analysis since the remaining two do not
suffer from missing observations.

An additional widely recognized benefit of the binning transformation is its ef-
fective treatment of outlying observations. Since, for example, the performance
of logistic regression may be hindered by the presence of extreme outliers (Jen-
nings 1986), the robustness of the results after the exclusion of irregular ob-
servations will be investigated. As a result, for estimation purposes, all values
above the 99th percentile and below the 1st percentile of each variable within
each data set will be disregarded.

A third supplementary analysis will be performed to inspect the effect of in-
cluding categorical variables in the estimation process. For this purpose, the
same steps will be taken as in the main analysis, but only the numerical vari-
ables will be utilized. Considering that the GMSC data set does not contain
categorical features, the results from the primary analysis are identical to the
results of the supplementary analysis.

The fourth auxiliary analysis concerns the transformation of the binned vari-
ables. As mentioned above, the literature suggests that using dummy encoding
appears inferior to other advanced forms of encoding. However, inspecting
whether this approach still surpasses the usage of raw non-binned numerical
variables might be interesting. Since the dummy variable transformation re-
sults in the formation of many features, the analysis is feasible only for sizeable
data sets. In addition, given the binary nature of the explanatory variables,
the Bernoulli Naïve Bayes becomes feasible and will be used instead of the
Gaussian.

Lastly, the current thesis employs a quantitative approach to evaluate the ef-
fect of binning on the performance of credit risk models. However, as Leung
et al. (2008) indicates, the process of building a scorecard is often of a more
qualitative nature. In addition, the aim of this thesis thus far was not to find a
model with optimal performance, which is one of the main goals of credit risk
analyses besides interpretability. As a result, the last supplementary analysis
will employ a more qualitative approach to model estimation, including vari-
able transformations and sophisticated variable selection. The preprocessing of
the raw data will include the logarithmic transformation of non-normal vari-
ables and the trimming of outliers. Since such an analysis for all estimation
methods and data sets would be infeasible, only the logistic regression with
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the GMSC data set will be considered. The logistic regression represents the
industry standard, and the data set has a sufficiently small number of variables
while bearing a reasonable number of observations. Two models will be de-
veloped, one using raw (possibly transformed) variables and one with binned
features. Subsequently, their performance will be evaluated. Missing values
will be disregarded since they have a devoted separate analysis.



Chapter 5

Empirical analysis

The current chapter provides a description of the empirical analysis. The ini-
tial subsection is concerned with the results of data preprocessing and variable
selection. The second part illustrates the utilization of the binning algorithm.
The following five subsections discuss the results of the main analysis for each
considered estimation method. The subsequent subsection summarizes the re-
sults of the previous analyses. Finally, the last four subsections address the
robustness checks.

5.1 Variable selection
As outlined in Section 4.1, several data preprocessing steps were performed
before estimation. Firstly, the elimination of variables with insufficient fill rate
affected only the HCDR data set, where 50 variables had to be disregarded
since they contained less than 80% observations. Secondly, categorical features
with more than two categories were removed. This particular step impacted
three out of the five data sets and eliminated 29 variables in total.

Thirdly, in an attempt to alleviate potential multicollinearity, the available
variables were filtered using the Pearson correlation coefficient. For demon-
stration purposes, Table B.6 presents the correlation matrix of the GMSC data
set. As indicated in Section 3.1, the features capturing customers’ delinquency
are very severely correlated with each other.1 Therefore, only the one with the
greatest correlation with the dependent variable can be retained. Expectedly,
these variables also have the strongest pairwise relationship with the default

1The correlation is as high as 0.99.
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indicator. It stands to reason that more delinquent customers are more likely
to default. An additional variable with a high correlation with the target is
Age. The sign of the coefficient is negative, suggesting that older people are
expected to be less prone to default. A moderately high correlation is also be-
tween the features recording the number of loans and the number of mortgages.
Nevertheless, the degree of correlation is not large enough to cause any con-
cern. With respect to the remaining features, none of the pairwise correlations
exceed the defined threshold. Moreover, the VIF analysis did not result in any
further disqualification. The highest calculated value is 4.71 for the variable
capturing the number of loans.

For the sake of brevity, the correlation matrices for the remaining data sets are
not disclosed.2 Table 5.1 shows the final statistics for all data sets after data
preprocessing and variable selection. As can be seen, the correlation analysis
eliminated eight features from the HCDR data set. Furthermore, five addi-
tional variables were eliminated due to the high values of the VIF. Given the
large number of features, the VIF likely captured some degree of interdepen-
dence among multiple variables, which cannot be discovered by mere pairwise
correlation. The DCCCT data set contains two groups of features that share
large similarities, and as a result, eight variables in total had to be disregarded.
The correlation and VIF analyses did not affect the remaining two data sets.

The number of observations in Table 5.1 also reflects the elimination of missing
values. As can be seen, while three data sets are unaffected, the HCDR and
GMSC data sets suffer from a moderate loss of observations. Nevertheless,
for the purpose of the main analysis, the data is assumed to be missing at
random. In addition, any potential bias caused by the removal of missing
values is expected to affect both models; therefore, the results should remain
comparable. Furthermore, the effect of missing values is studied in Section 5.9.

Table 5.1: Data sets summary (final form)

Data set n # of numerical features # of categorical features % of defaults
Give Me Some Credit 120 268 8 0 6.95
Home Credit 245 155 18 29 7.78
Credit Approval 654 6 4 54.74
Default of Credit Card Clients in Taiwan 30 000 12 1 22.12
South German Credit Card 1 000 3 3 30.00

Source: Author’s computations

2They are available upon request.



5. Empirical analysis 38

5.2 Binning
Considering that one of the main reasons for utilizing the binning algorithm
is to increase the interpretability of complex models, the current subsection
demonstrates the outcomes of the binning transformation and the resulting
relationship of the transformed features with the dependent variable. Since
going through all variables in all data sets is infeasible, only several examples
will be discussed.3 Given its moderate number of variables, the GMSC data
set will be utilized for the demonstration.

As mentioned in Section 2, the binning transformation can also serve as a
variable selection method. Figure 5.1 shows the values of Information Value
for the variables in GMSC.4 The highest value of IV, and thus the highest
expected predictive power, is attained by the variable capturing the balance
vs. credit limit ratio (RevUtilization). The runner-up is the feature recording
the number of times a customer was 30-59 days past due (NoOfTimePD).
As discussed in Section 3.1, variables indicating customer delinquency tend to
constitute strong predictors. The remaining variables attain substantially lower
values of IV, signaling possibly weak predictive power.

Table 5.2 shows the optimal bin decomposition of RevUtilization. The first
column outlines the intervals for which the values of the variable are grouped
together. As can be seen, all observations below 7% utilization belong to the
first category, which also attains the lowest Event Rate. As a result of the im-
posed monotonicity constraint, with each subsequent group, the ER increases.
This outcome appears intuitive since customers who draw only a small portion
of their available credit are expected to be more likely to repay it success-
fully. On the other hand, the last bin, which realizes the highest ER, suggests
that almost every fourth customer with utilization higher than 90% defaulted.
Moreover, the seventh column of Table 5.2 shows the values of WoE assigned
to all observations falling into the respective bins. Since the WoE values de-
crease with increasing utilization, the coefficient in the logistic regression for
this variable would be expected to have a negative sign such that higher utiliza-
tion results in an increased probability of default. As can be seen in Table B.7,
this is indeed the case. Finally, the last column of the table records the values
of IV for individual bins. The total IV of the variable is the sum of all individ-

3The results for any given variable are available upon request.
4Two variables were eliminated during correlation analysis and thus did not enter the

binning process.
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Figure 5.1: Information Values of binned variables in GMSC
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ual IVs. As can be seen, the combined IV of the first and last bin constitutes
most of the IV for RevUtilization. These two bins also contain a large portion
of total observations. As a result, a very low and very high utilization appears
to be informative when predicting the probability that customer defaults.

Table 5.2: Binning of RevUtilization

Bin Count Count (%) Non-event Event ER∗ WoE∗∗ IV∗∗∗

(-inf, 0.07) 32859 34.15 32220 639 1.94 1.33 0.35
[0.07, 0.11) 8174 8.50 7985 189 2.31 1.15 0.07
[0.11, 0.22) 10564 10.98 10225 339 3.21 0.81 0.05
[0.22, 0.30) 6107 6.35 5863 244 4.00 0.59 0.02
[0.30, 0.39) 5791 6.02 5487 304 5.25 0.30 0.00
[0.39, 0.49) 5036 5.23 4723 313 6.22 0.12 0.00
[0.49, 0.70) 8205 8.53 7406 799 9.74 -0.37 0.01
[0.70, 0.90) 6905 7.18 5887 1018 14.74 -0.84 0.07
[0.90, inf) 12573 13.07 9729 2844 22.62 -1.36 0.43
Totals 96214 100.00 89525 6689 6.95 1.01
∗Event Rate
∗∗Weight of Evidence
∗∗∗Information Value

Source: Author’s computations

As an additional example, Table 5.3 presents the result of optimal binning for
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NoOfTimePD, which has the second highest IV. As can be seen, three bins were
found. The first bin covers all observations with a value of zero, which signals
no recorded delinquency. Consequently, the first bin contains the majority of
the observations.5 The second bin captures customers, which were precisely
once 30-59 days past due. It can be argued that the second bin represents
moderate but not severe delinquency. The remaining customers are assigned
to the last bin, which comprises the least observations but the highest Event
Rate. Again, the ER is monotonic across bins, and given the decreasing values
of WoE, the coefficient in the logistic regression would be expected to have a
negative sign.6 As for IV, the last bin constitutes more than 50% of the total
IV of the variable.

Table 5.3: Binning of NoOfTimePD

Count Count (%) Non-event Event ER∗ WoE∗∗ IV∗∗∗

Bin
(-inf, 0.50) 80002 83.15 76666 3336 4.17 0.54 0.19
[0.50, 1.50) 10768 11.19 9152 1616 15.01 -0.86 0.12
[1.50, inf) 5444 5.66 3707 1737 31.91 -1.84 0.40
Totals 96214 100.00 89525 6689 6.95 0.71
∗Event Rate
∗∗Weight of Evidence
∗∗∗Information Value

Source: Author’s computations

5.3 Logistic regression
Moving away from data preprocessing, the current subsection discusses the
results of the analysis of the industry standard in credit scoring, the logistic
regression. Table 5.4 presents the optimal parameters for each data set obtained
via hyperparameter boosting. As can be seen, in all cases, the highest average
performance was obtained with models using some form of regularization. The
prevalent regularization method is ℓ1, which, as discussed in Section 4.2, allows
for the shrinkage of coefficient values to zero and, as a result, effectively works
as a feature selection method. For example, for the relatively high-dimensional

5As discussed in Section 3.1, the NoOfTimePD variable attains the value of zero for the
majority of observations.

6As can be seen in Table B.7, the estimated coefficient for NoOfTimePD is negative.
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HCDR dataset, this characteristic of the regularization method resulted in the
elimination of seven variables.7

The λ coefficient representing the inverse of regularization strength appears to
be quite similar across the data set. An exception is the GMSC data set, where
for the model with raw variables, the coefficient is relatively high, signifying
low regularization strength. Overall, the raw models seem less regularized than
those utilizing binned variables. On the other hand, the average AUCs seem
slightly in favor of the binned models.

Table 5.4: Logistic regression - hyperparameters

Data set Model λ∗ Penalty Average AUC
CA binned 0.126 ℓ1 0.938
CA raw 0.184 ℓ1 0.931
DCCCT binned 0.126 ℓ2 0.765
DCCCT raw 0.028 ℓ1 0.720
GMSC binned 1.758 ℓ2 0.818
GMSC raw 6866.488 ℓ1 0.660
HCDR binned 0.829 ℓ1 0.740
HCDR raw 0.829 ℓ1 0.737
SGCC binned 0.184 ℓ2 0.635
SGCC raw 1.758 ℓ1 0.649

∗Inverse of the regularization strentgh
The table presents the optimal parameters found through 3-fold cross-
validation of the training set. The last column shows the average out-of-
sample AUC over the three iterations.

Source: Author’s computations

The final models for each data set were re-estimated on the entire training set
using the optimal parameters. Table 5.5 presents the resulting performance
evaluation on the test set. As can be seen, on average, the model utilizing
the binning algorithm outperforms the raw model for all evaluation metrics.
However, the unweighted average may be skewed by large differences for one
particular data set. Therefore, the third row from the bottom shows the number
of data sets for which the binned model outperforms the raw model for each
evaluation metric. For all metrics, the binned model outperforms the raw model
on most data sets. Nevertheless, a closer inspection reveals that the raw model
surpasses the binned model for the Credit Approval data set according to four
evaluation metrics. The CA data set does not suffer from class imbalance and

7The coefficients for all models and all data sets are not presented in this text due to
space constraints. They are available upon request.
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contains the fewest observations. As a result, out of the considered data sets,
it represents the actual credit scoring environment the least. Apart from the
CA, the raw model outperforms the binned model only for the SGCC data set
according to the Partial GINI Index. Similarly, the SGCC data set comprises
only a few observations. Consequently, the evidence favoring the binned model
appears stronger for larger data sets. As a result, the binning transformation
seems to prove beneficial to performance with increasing sample size when it
comes to logistic regression. It can be argued that more sizeable data sets
contain more noise, which is eliminated by the binning transformation.

Considering the AUC metric, the performances vary across data sets. For the
GMSC data set, the difference in performance between the raw and binned
model is substantial. Even though the difference is not so large for the remain-
ing data sets, even a slight performance improvement may have a considerable
positive impact on the financial institution,8 which encourages the usage of the
binning transformation. The absolute performance of the models is acceptable
in a majority of the cases,9 however, the aim of the analysis was not to find
the best model. A closely related to AUC is the H-measure, which seems to
indicate very similar results. The last member of the group of metrics evalu-
ating the model’s ability to differentiate between creditworthy and unreliable
customers is the Partial GINI index. As mentioned above, the raw model seems
to achieve better performance in terms of PGI for the SGCC and CA data sets.
In the former case, the difference is minimal; however, in the latter case, the
raw model performs substantially better. As a result, the binning transforma-
tion seems to slightly hinder the model’s ability to assign proper probabilities
to well-behaved clients in small data sets.

The second group of metrics, evaluating the correctness of categorical predic-
tions, includes the F2-score. As can be seen, apart from the CA data set, the
absolute performances in terms of this metric are quite low. However, the uti-
lized threshold was not selected such that the performance is optimal but such
that the predicted percentage of defaults matches the training set. Moreover,
the aim of the analysis is to compare relative rather than absolute performance.
In this regard, the binned model seems superior for all data sets. The second

8See Section 2.3.
9Mandrekar (2010) suggests that values above 0.7 are considered acceptable and values

above 0.8 excellent.
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metric from the current group is the KS statistic. Apart from the CA data set,
the binned model attains a higher value of the statistic than the raw model.

Lastly, the Brier score measures the accuracy of probabilistic predictions. Un-
like the remaining metrics, the lower the value of this measure, the better. Even
though the differences appear to be minor, the binned model outperforms the
raw model for all data sets.

Table 5.5: Logistic regression - results

Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
CA binned 0.892 0.847 0.122 0.679 0.573 0.564
CA raw 0.895 0.833 0.125 0.701 0.661 0.601
DCCCT binned 0.762 0.531 0.137 0.405 0.322 0.268
DCCCT raw 0.723 0.510 0.145 0.378 0.215 0.237
GMSC binned 0.816 0.340 0.056 0.491 0.587 0.319
GMSC raw 0.670 0.167 0.063 0.249 0.335 0.090
HCDR binned 0.741 0.264 0.06709 0.365 0.472 0.183
HCDR raw 0.739 0.262 0.06714 0.357 0.469 0.182
SGCC binned 0.625 0.456 0.200 0.249 0.081 0.138
SGCC raw 0.607 0.421 0.205 0.223 0.083 0.115
binned > raw - 4 5 5 4 3 4
Average binned 0.767 0.488 0.117 0.438 0.407 0.295
Average raw 0.727 0.439 0.121 0.381 0.353 0.245

The table presents the results of calculating the six evaluation metrics (columns (3)-(8)) on the test set
comprising 20% observations of each data set. Values in bold signal a better performance of the given
model type for the given data set. Note that except for the Brier score, the higher the value of the metric,
the better. The third row from the bottom shows the number of data sets for which the binned model
outperformed the raw model for a given evaluation metric. The last two rows show the average value for
each metric for each model type across all data sets.

Source: Author’s computations

The discussion so far only concerned the comparison of a single value for each
metric and each data set. However, it is desirable to obtain the significance level
of the differences. Therefore, Table 5.6 presents the results of the permutation
test for each metric and each data set. For two data sets (DCCCT and GMSC),
the null hypothesis that the raw model performs better or equally to the binned
model is rejected for all evaluation metrics. For the remaining data sets, the
evidence is not as strong. As discussed above, the CA and SGCC data sets
do not seem to benefit from the binning transformation, which is confirmed
by the inability to reject the null hypothesis. With respect to the HCDR
data set, the null is rejected only for two metrics at the 5% significance level,
namely the AUC and the KS statistic. The p-value for the PGI and H-measure
appears to be quite close to the 10% significance level, suggesting that some
weak evidence in favor of the alternative hypothesis does exist. As a result,
the binning transformation seems to positively affect the model’s ability to
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differentiate between eligible and ineligible customers according to most data
sets. For the CA data set, the p-values are quite high. On the other hand,
for the SGCC data, the null is rejected at the 10% significance level for three
metrics, while for one metric at the 5% significance level. As a result, with
more data, the null could possibly be rejected even for most of the metrics for
the SGCC data set.

Table 5.6: Logistic regression - permutation tests

Data set AUC F2-score Brier score KS statistic Partial GINI Index H-measure
CA 0.562 0.553 0.381 0.813 0.766 0.907
DCCCT 0.000 0.001 0.000 0.000 0.000 0.000
GMSC 0.000 0.000 0.000 0.000 0.000 0.000
HCDR 0.035 0.407 0.210 0.004 0.161 0.116
SGCC 0.149 0.096 0.036 0.090 0.532 0.070
p <= 0.05 3 2 3 3 2 2

The values in the table represent the p-values of the null hypothesis that the model with raw variables
performs better or equally to the binned model. As a result, p-values below 0.05 (in bold) signal the
rejection of the null hypothesis in favor of the alternative that the binned model performs better at the
5% significance level. The last row shows the number of data sets for which the null is rejected for a given
evaluation metric. The permutation test was performed for 5000 repetitions.

Source: Author’s computations

For illustration purposes, Figure 5.2 shows the results of the permutation test
for the HCDR data set and the AUC metric. As can be seen, the majority
of the performances for randomly selected predictions from both models are
worse than the performance of the binned model. Consequently, the p-value of
the null hypothesis is approximately 0.035.10

To conclude, the logistic regression appears to benefit from the binning transfor-
mation, especially for larger data sets, which serves as evidence for Hypothesis
1. The most significant impact appears to be on the model’s ability to dif-
ferentiate between good and bad customers. As a result, the findings of this
thesis advocate the usage of the binning transformation and subsequent WoE
encoding for credit risk models. The results seem to align with Sharma (2011)
and Leung et al. (2008).

10See Table 5.5 row 4, column 2.
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Figure 5.2: Logistic regression - Permutation test (HCDR, AUC)
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The figure shows the distribution of the results of the permutation test for the AUC
metric. The predictions were obtained using logistic regression estimated on the
HCDR data set. The simulation was run for 5000 iterations.

Source: Author’s computations

5.4 Decision tree
The next inspected estimation method is the CART decision tree. Table 5.7
presents the results of the grid search for optimal parameters. As can be seen,
for all models, the preferred criterion is entropy. Concerning regularization,
in most cases, the algorithm restricting the number of total leaves of the tree
appears superior. Nevertheless, the CA and SGCC data sets seem to favor the
maximum depth parameter, which could be connected to the lower number of
observations. The average AUCs are quite similar for the model types for all
data sets.

As in the previous subsection, Table 5.8 presents the absolute performances of
the models with optimal parameters for each data set and model type. As can
be seen, the results are less convincing than in the case of the logistic regression.
While, on average, the binning transformation appears to be mostly superior,
the differences within individual data sets are minimal. In addition, the average
performance according to PGI of the binned model seems to be substantially
worse than that of its raw counterpart. In fact, the value of the metric is
higher for the binned model only for the GMSC data set. In addition, the
binned model appears to perform very poorly for low-probability clients on the
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Table 5.7: Decision tree - hyperparameters

Data set Model Criterion Max depth Max leaves Average AUC
CA binned entropy 5 - 0.896
CA raw entropy 5 - 0.909
DCCCT binned entropy - 25 0.761
DCCCT raw entropy - 25 0.765
GMSC binned entropy - 50 0.814
GMSC raw entropy - 50 0.814
HCDR binned entropy - 100 0.719
HCDR raw entropy - 50 0.718
SGCC binned entropy - 25 0.624
SGCC raw entropy 5 - 0.617
The table presents the optimal parameters found through 3-fold cross-validation of the training set.
The last column shows the average out-of-sample AUC over the three iterations.

Source: Author’s computations

CA data set where the PGI attains a negative value.

Table 5.8: Decision tree - results

Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
CA binned 0.877 0.897 0.131 0.710 -0.057 0.572
CA raw 0.873 0.879 0.135 0.702 0.229 0.548
DCCCT binned 0.763 0.536 0.1361 0.3986 0.333 0.2631
DCCCT raw 0.766 0.553 0.1362 0.3987 0.350 0.2632
GMSC binned 0.812 0.3644 0.0562 0.481 0.593 0.3143
GMSC raw 0.811 0.3643 0.0559 0.482 0.581 0.3142
HCDR binned 0.721 0.253 0.0680 0.337 0.432 0.159
HCDR raw 0.723 0.271 0.0678 0.340 0.434 0.160
SGCC binned 0.679 0.574 0.193 0.272 0.150 0.149
SGCC raw 0.656 0.466 0.210 0.268 0.184 0.102
binned > raw - 3 3 3 2 1 3
Average binned 0.771 0.525 0.117 0.440 0.290 0.292
Average raw 0.766 0.507 0.121 0.438 0.356 0.277

The table presents the results of calculating the six evaluation metrics (columns (3)-(8)) on the test set
comprising 20% observations of each data set. Values in bold signal a better performance of the given
model type for the given data set. Note that except for the Brier score, the higher the value of the metric,
the better. The third row from the bottom shows the number of data sets for which the binned model
outperformed the raw model for a given evaluation metric. The last two rows show the average value for
each metric for each model type across all data sets.

Source: Author’s computations

As a verification of the results, Table 5.8 shows the p-values of the permutation
tests. Notably, the null hypothesis is rejected at the 5% significance level only
in three cases. Moreover, in the majority of the instances, the p-values are
very high, which suggests that the binned model does not seem to perform
significantly better when it comes to the decision tree classifier.
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Table 5.9: Decision tree - permutation tests

Data set AUC F2-score Brier score KS statistic Partial GINI Index H-measure
CA 0.434 0.032 0.412 0.486 0.933 0.424
DCCCT 0.761 1.000 0.365 0.694 0.908 0.721
GMSC 0.358 0.386 0.935 0.519 0.025 0.501
HCDR 0.843 1.000 0.939 0.805 0.751 0.726
SGCC 0.312 0.015 0.102 0.689 0.576 0.399
p <= 0.05 0 2 0 0 1 0

The values in the table represent the p-values of the null hypothesis that the model with raw variables
performs better or equally to the binned model. As a result, p-values below 0.05 (in bold) signal the
rejection of the null hypothesis in favor of the alternative that the binned model performs better at the
5% significance level. The last row shows the number of data sets for which the null is rejected for a given
evaluation metric. The permutation test was performed for 5000 repetitions.

Source: Author’s computations

As discussed in Section 2.1, the literature seems to be divided with respect to
the effect of binning on the performance of the decision tree classifier. The
results of the current analysis support the view of Ventura & Martinez (1995),
who found that the ID3 decision tree algorithm does not seem to benefit from
binning numerical variables. It is important to note that the CART algorithm
was not used in any of the considered studies, and therefore the current thesis
inspects a new aspect of the issue. As Table 5.8 suggests, the performances
of the models are very similar. This could be attributed to the fact that the
CART algorithm is utilized during pre-binning, and therefore, the resulting
tree structures of the raw and binned models are very similar.11 Consequently,
the available evidence does not seem to support Hypothesis 2.

5.5 Random Forest
The second tree-based algorithm utilized in this thesis is the Random For-
est model. Once again, Table 5.10 enumerates the optimal parameters found
through cross-validation of the training test. Even though for the decision tree
the selected criterion was entropy for all models, the Random Forest seems to
attain higher performance with the gini criterion for three instances. In addi-
tion, unlike for the decision tree, the prevalent regularization parameter appears
to be the tree depth since the maximum number of leaves achieved better av-
erage performance only for four models. Since the selected maximum depth is
either 5 or 10, the algorithm seems to prefer a rather shallow tree structure. On

11See Figures A.1 and A.2. As can be seen, the initial splits are essentially the same.
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the other hand, the number of estimators is relatively high since, apart from
two cases, the maximum considered number of trees was selected as best per-
forming. The average AUCs seem to be similar, with the raw model achieving
slightly higher performance for all data sets.

Table 5.10: Random Forest - hyperparameters

Data Set Model Criterion Max depth # of trees Max leaves Average AUC
CA binned gini 5 50 - 0.938
CA raw entropy 5 100 - 0.945
DCCCT binned entropy - 500 100 0.772
DCCCT raw entropy - 500 500 0.780
GMSC binned entropy - 500 100 0.821
GMSC raw gini 10 500 - 0.827
HCDR binned entropy 10 500 - 0.736
HCDR raw entropy - 500 500 0.739
SGCC binned gini 5 500 - 0.639
SGCC raw entropy 5 500 - 0.661
The table presents the optimal parameters found through 3-fold cross-validation of the training set. The
last column shows the average out-of-sample AUC over the three iterations.

Source: Author’s computations

The results for the RF classifier are available in Table 5.11. As can be seen,
the evidence is even less favorable than for the decision tree. In a majority of
cases, the raw model performs better, and for the exceptions where it does not,
the differences in performance are very small. Moreover, on average, the raw
model achieves higher performance according to all evaluation metrics.

Table 5.11: Random Forest - results

Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
CreditApproval binned 0.890 0.847 0.123 0.715 0.399 0.591
CreditApproval raw 0.900 0.847 0.119 0.719 0.704 0.606
CreditCardTaiwan binned 0.771 0.535 0.136 0.416 0.343 0.277
CreditCardTaiwan raw 0.778 0.528 0.134 0.419 0.363 0.286
GiveMeSomeCredit binned 0.818 0.345 0.056 0.499 0.623 0.324
GiveMeSomeCredit raw 0.826 0.361 0.055 0.508 0.621 0.340
HomeCredit binned 0.736 0.260 0.0678 0.354 0.473 0.178
HomeCredit raw 0.740 0.267 0.0676 0.357 0.479 0.183
SouthGermanCredit binned 0.686 0.476 0.1923 0.2800 0.247 0.194
SouthGermanCredit raw 0.695 0.502 0.1915 0.306 0.251 0.186
binned > raw - 0 1 0 0 1 1
Average binned 0.780 0.493 0.115 0.453 0.417 0.313
Average raw 0.788 0.501 0.114 0.462 0.484 0.320

The table presents the results of calculating the six evaluation metrics (columns (3)-(8)) on the test set
comprising 20% observations of each data set. Values in bold signal a better performance of the given
model type for the given data set. Note that except for the Brier score, the higher the value of the metric,
the better. The third row from the bottom shows the number of data sets for which the binned model
outperformed the raw model for a given evaluation metric. The last two rows show the average value for
each metric for each model type across all data sets.
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The previous findings are confirmed in Table 5.12 since the null hypothesis is
not rejected at the 5% significance level in any of the considered scenarios. In
addition, the p-values for all of the tests are quite high. Consequently, it ap-
pears that the obtained results are aligned with the extant literature (Sharma
2011) since binning numerical variables does not seem to improve the perfor-
mance of the Random Forest classifier. The inability to reject the null hypoth-
esis serves as evidence for Hypothesis 3 of this thesis.

Table 5.12: Random Forest - permutation tests

Data set AUC F2-score Brier score KS statistic Partial GINI Index H-measure
CreditApproval 0.876 0.814 0.881 0.730 0.958 0.835
CreditCardTaiwan 0.999 0.208 0.999 0.779 0.969 0.993
GiveMeSomeCredit 1.000 0.991 1.000 0.968 0.369 1.000
HomeCredit 1.000 0.995 1.000 0.872 1.000 1.000
SouthGermanCredit 0.630 0.592 0.577 0.808 0.491 0.289
p <= 0.05 0 0 0 0 0 0

The values in the table represent the p-values of the null hypothesis that the model with raw variables
performs better or equally to the binned model. As a result, p-values below 0.05 (in bold) signal the
rejection of the null hypothesis in favor of the alternative that the binned model performs better at the
5% significance level. The last row shows the number of data sets for which the null is rejected for a given
evaluation metric. The permutation test was performed for 5000 repetitions.

Source: Author’s computations

5.6 Neural network
Abandoning the tree-based algorithms, the next machine learning method un-
der inspection is the neural network. As shown in Section 2, the effect of
binning transformation on the NN’s performance was not thoroughly evalu-
ated. As a result, this thesis will attempt to shine some light on this issue.
For this purpose, Table 5.13 shows the optimal hyperparameters for each data
set. As can be seen, the prevalent activation function is the ReLU, which is
expected for reasons outlined in Section 4.3. Nevertheless, for some of the data
sets, the tanh and sigmoid activation functions seem to achieve competitive
performance. As for the number of nodes, it seems to depend on the data set
size. For data sets with fewer variables, the number of nodes tends to be closer
to the number of features. On the other hand, for data sets such as HCDR,
the optimal number of nodes appears to be equal to two-thirds or even half of
the number of variables. With respect to the average AUCs, the binned model
seems to achieve superior performance across all data sets. In addition, the
differences seem to be substantial.
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Table 5.13: Neural network - hyperparameters

Data set Model Activation function α∗ # of nodes Average AUC
CA binned tanh 0.0100 5 0.932
CA raw sigmoid 0.0100 10 0.880
DCCCT binned tanh 0.0001 9 0.769
DCCCT raw ReLU 1.0000 7 0.669
GMSC binned ReLU 0.0100 8 0.820
GMSC raw ReLU 0.0100 8 0.792
HCDR binned tanh 0.0100 32 0.741
HCDR raw ReLU 0.0100 24 0.555
SGCC binned ReLU 0.0010 6 0.642
SGCC raw ReLU 10 6 0.574
∗Regularization strength
The table presents the optimal parameters found through 3-fold cross-validation of the training set. The
last column shows the average out-of-sample AUC over the three iterations. The maximum number of
epochs for the neural network was set to 500.

Source: Author’s computations

The pattern spotted in the cross-validated AUCs seems to be confirmed by the
results in Table 5.14. Notably, the binned model outperforms its raw coun-
terpart for almost all metrics across all data sets, with the differences being
economically important. The only instances for which the binned model slightly
lacks behind are the F2-score for the HCDR data set and the PGI for the CA
data set. Consequently, the binning transformation appears to have a strong
positive effect on the model’s ability to differentiate between bad and good
customers (AUC, PGI, H-measure) as well as on the accuracy of probability
predictions. Since the KS statistic represents a more rigorous approach to eval-
uating the correctness of categorical predictions than the F2-score, the third
model characteristic also seems to be improved.

As further evidence in support of Hypothesis 4, Table 5.15 presents the results
of the permutation tests. As can be seen, the null hypothesis of the raw model
performing better or equal to the binned model is rejected for the majority of
the cases. Similarly to the logistic regression, the evidence seems to be stronger
for large data sets. In fact, the null hypothesis is rejected at the 5% significance
level according to all metrics for all of the three largest data sets. In addition,
for the SGCC data set, the null hypothesis is rejected for two metrics at the
5% significance level and for three metrics at the 10% significance level. The
evidence is insufficient to reject the null hypothesis for any of the considered
metrics only for the CA data set. Nevertheless, the analysis provides substantial
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Table 5.14: Neural network - results

Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
CA binned 0.899 0.847 0.121 0.719 0.615 0.608
CA raw 0.875 0.820 0.134 0.652 0.831 0.557
DCCCT binned 0.765 0.541 0.136 0.413 0.333 0.273
DCCCT raw 0.643 0.358 0.215 0.219 0.247 0.082
GMSC binned 0.819 0.353 0.056 0.502 0.596 0.326
GMSC raw 0.771 0.306 0.060 0.426 0.542 0.252
HCDR binned 0.742 0.265 0.067 0.366 0.473 0.185
HCDR raw 0.498 0.298 0.078 0.004 -0.004 0.000
SGCC binned 0.633 0.429 0.202 0.237 0.170 0.128
SGCC raw 0.539 0.388 0.217 0.175 -0.140 0.090
binned > raw - 5 4 5 5 4 5
Average binned 0.772 0.487 0.116 0.447 0.437 0.304
Average raw 0.665 0.434 0.141 0.295 0.295 0.196

The table presents the results of calculating the six evaluation metrics (columns (3)-(8)) on the test set
comprising 20% observations of each data set. Values in bold signal a better performance of the given
model type for the given data set. Note that except for the Brier score, the higher the value of the metric,
the better. The third row from the bottom shows the number of data sets for which the binned model
outperformed the raw model for a given evaluation metric. The last two rows show the average value for
each metric for each model type across all data sets.

Source: Author’s computations

evidence in favor of the binning transformation for the neural network.

Table 5.15: Neural network - permutation tests

Data set AUC F2-score Brier score KS statistic Partial GINI Index H-measure
CA 0.01 0.323 0.160 0.163 0.620 0.237
DCCCT 0.000 0.000 0.000 0.000 0.000 0.000
GMSC 0.000 0.000 0.000 0.000 0.000 0.000
HCDR 0.000 0.000 0.000 0.000 0.000 0.000
SGCC 0.044 0.304 0.087 0.068 0.043 0.075
p <= 0.05 4 3 3 3 4 3

The values in the table represent the p-values of the null hypothesis that the model with raw variables
performs better or equally to the binned model. As a result, p-values below 0.05 (in bold) signal the
rejection of the null hypothesis in favor of the alternative that the binned model performs better at the
5% significance level. The last row shows the number of data sets for which the null is rejected for a given
evaluation metric. The permutation test was performed for 5000 repetitions.

Source: Author’s computations

5.7 Gaussian Naïve Bayes
The last machine learning algorithm considered in this thesis is the Naïve Bayes
classifier. As demonstrated in Section 2, the literature seems to support the per-
formance enhancement provided by the binning transformation when it comes
to this estimation method.
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Since the Naïve Bayes does not have any trainable parameters, the hyperparam-
eter optimization did not have to be performed for this method. Consequently,
Table 5.16 presents the results of the performance evaluation. As can be seen,
the binned model appears to be superior in most cases, but the results are
not completely unambiguous. For example, in terms of the Brier score, the
raw model seems to be performing better, especially for the two largest data
sets. Overall, the binning transformation appears to boost the model’s abil-
ity to differentiate between eligible and ineligible customers as measured by
the AUC and the H-measure. However, the evidence supporting the correct-
ness of categorical predictions and the precision of estimated probabilities is
slightly weaker. Nevertheless, on average, the binned model outperforms the
raw model for all metrics apart from the Brier score. Moreover, the binned
model also achieves better performance on a majority of the data sets for all
metrics but the Brier score.

Table 5.16: Gaussian Naïve Bayes - results

Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
CA binned 0.886 0.820 0.139 0.683 0.713 0.579
CA raw 0.855 0.820 0.172 0.670 0.238 0.523
DCCCT binned 0.760 0.520 0.187 0.406 0.237 0.260
DCCCT raw 0.670 0.395 0.417 0.263 0.148 0.119
GMSC binned 0.805 0.328 0.088 0.486 0.458 0.306
GMSC raw 0.691 0.219 0.067 0.271 0.353 0.127
HCDR binned 0.688 0.200 0.891 0.289 0.130 0.115
HCDR raw 0.605 0.135 0.073 0.159 0.211 0.036
SGCC binned 0.635 0.442 0.2181 0.225 0.094 0.117
SGCC raw 0.629 0.453 0.2180 0.230 0.153 0.104
binned > raw - 5 3 2 4 3 5
Average binned 0.755 0.462 0.305 0.418 0.326 0.275
Average raw 0.690 0.404 0.189 0.319 0.220 0.182

The table presents the results of calculating the six evaluation metrics (columns (3)-(8)) on the test set
comprising 20% observations of each data set. Values in bold signal a better performance of the given
model type for the given data set. Note that except for the Brier score, the higher the value of the metric,
the better. The third row from the bottom shows the number of data sets for which the binned model
outperformed the raw model for a given evaluation metric. The last two rows show the average value for
each metric for each model type across all data sets.

Source: Author’s computations

The results of the permutation tests in Table 5.17 support the conclusions de-
rived so far. For large data sets, the null hypothesis of the raw model performing
better or equal to the binned model is rejected consistently across most metrics.
The exceptions are the Brier score and the PGI. For the smaller data sets, the
results seem to be more ambiguous since while for CA the null is rejected for
two metrics at the 5% significance level, for SGCC the null hypothesis fails to
be rejected for any of the considered metrics.
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Table 5.17: Gaussian Naïve Bayes - permutation tests

Data set AUC F2-score Brier score KS statistic Partial GINI Index H-measure
CA 0.047 0.589 0.092 0.204 0.034 0.140
DCCCT 0.000 0.000 0.000 0.000 0.100 0.000
GMSC 0.000 0.000 1.000 0.000 0.000 0.000
HCDR 0.000 0.000 1.000 0.000 1.000 0.000
SGCC 0.327 0.370 0.503 0.471 0.727 0.321
p <= 0.05 4 3 1 3 2 3

The values in the table represent the p-values of the null hypothesis that the model with raw variables
performs better or equally to the binned model. As a result, p-values below 0.05 (in bold) signal the
rejection of the null hypothesis in favor of the alternative that the binned model performs better at the
5% significance level. The last row shows the number of data sets for which the null is rejected for a given
evaluation metric. The permutation test was performed for 5000 repetitions.

Source: Author’s computations

To conclude, while the Naïve Bayes seems to benefit from the binning of nu-
merical variables in certain aspects of model performance, in other areas, such
as the accuracy of the estimated probabilities, the binning transformation ap-
pears to have a hindering effect. Nevertheless, the provided evidence is mostly
aligned with the extant literature (Abraham et al. 2006; Lustgarten et al. 2008)
and serves in favor of Hypothesis 5.

5.8 Summary
To provide a comprehensive overview of the results of the primary analysis and
also as a means of comparison for the subsequent robustness checks, Table 5.18
presents the summarized results across all estimation methods. A clear pattern
arises from the summary since the estimation methods appear to be divided
into two groups. Firstly, the tree-based algorithms do not seem to benefit from
the binning transformation since the null hypothesis is rarely rejected for any
estimation metric within any data set. On the other hand, for the logistic
regression, neural network, and the Naïve Bayes classifier, strong evidence in
favor of the binning transformation was found. In addition, overall, the binning
transformation appears superior for larger data sets.

As discussed in Section 4.3, multiple evaluation metrics were utilized to cap-
ture different aspects of model performance. To demonstrate the relationships
between the utilized metrics, Table 5.19 shows the Pearson correlation coeffi-
cient for the metrics across all estimation methods and data sets. The metrics
are divided into three groups. The first group, evaluating the model’s ability
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Table 5.18: Results - summary

Method Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg binned > raw - 4 5 5 4 3 4
LogReg Average binned 0.767 0.488 0.117 0.438 0.407 0.295
LogReg Average raw 0.727 0.439 0.121 0.381 0.353 0.245
LogReg p <= 0.05 - 3 2 3 3 2 2
DecTree binned > raw - 3 3 3 2 1 3
DecTree Average binned 0.771 0.525 0.117 0.44 0.29 0.292
DecTree Average raw 0.766 0.507 0.121 0.438 0.356 0.277
DecTree p <= 0.05 - 0 2 0 0 1 0
RandForest binned > raw - 0 1 0 0 1 1
RandForest Average binned 0.78 0.493 0.115 0.453 0.417 0.313
RandForest Average raw 0.788 0.501 0.114 0.462 0.484 0.32
RandForest p <= 0.05 - 0 0 0 0 0 0
NN binned > raw - 5 4 5 5 4 5
NN Average binned 0.772 0.487 0.116 0.447 0.437 0.304
NN Average raw 0.665 0.434 0.141 0.295 0.295 0.196
NN p <= 0.05 - 4 3 3 3 4 3
GaussNB binned > raw - 5 3 2 4 3 5
GaussNB Average binned 0.755 0.462 0.305 0.418 0.326 0.275
GaussNB Average raw 0.69 0.404 0.189 0.319 0.22 0.182
GaussNB p <= 0.05 - 4 3 1 3 2 3

The table presents the summarized results of calculating the six evaluation metrics (columns (3)-(8)) on the
test set comprising 20% observations of each data set. Values in bold signal a better average performance
of the given model type for the evaluation metric. Note that except for the Brier score, the higher the
value of the metric, the better. The first row for each method shows the number of data sets for which the
binned model outperformed the raw model for a given evaluation metric. The second and third rows for
each estimation method show the average value for each metric for each model type across all data sets.
The last row shows the number of data sets for which the null hypothesis of the raw model performing
better or equal to the binned model was rejected.

Source: Author’s computations
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to differentiate between bad and good customers, contains the AUC, PGI, and
H-measure. As can be seen, these three measures appear to be highly pos-
itively correlated. However, the PGI is slightly less related to the other two
metrics and thus may capture an additional aspect of the model’s performance.
Secondly, the accuracy of the estimated probabilities is measured by the Brier
score, which, as expected, has a negative relationship with the remaining met-
rics. In addition, the correlation does not appear to be particularly strong,
and therefore its employment secures the inspection of an additional element
of the model’s performance. Lastly, the KS statistic and the F2-score capture
the correctness of categorical predictions and are quite highly correlated. In
addition, the KS statistic seems to be substantially related to the AUC statistic
and the H-measure.

Table 5.19: Correlation matrix - evaluation metrics

AUC F2-score BS KS PGI H-measure
AUC 1 0.64 -0.26 0.97 0.72 0.93
F2-score 1 -0.01 0.76 0.15 0.84
BS 1 -0.21 -0.43 -0.20
KS 1 0.61 0.98
PGI 1 0.55
H-measure 1
The table presents the Pearson correlation coefficient between the metrics in the main
analysis across all data sets and estimation methods.

Source: Author’s computations

5.9 Missing values
For the purposes of the main analysis, missing values were disregarded from
all affected data sets in order to maximize comparability between the models.
However, as discussed in Section 2.1, one of the main strengths of the binning
transformation is its ability to handle missing values. As a result, an additional
round of estimations was performed with missing values included. Only three
data sets were considered for the robustness analysis: CA, GMSC, and HCDR
since the remaining data sets do not contain missing values. Since, for the
raw estimation, missing values were replaced by mean, median, or mode, the
current analysis ultimately compares the binning algorithm’s ability to handle
missing values with simple imputation. It is possible that the results may differ
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for other more advanced forms of imputation. However, such an investigation
is behind the scope of this text.

To demonstrate the management of missing values, Table 5.20 presents the
results of optimal binning for the MonthlyIncome variable from the GMSC data
set. As can be seen, missing values comprise nearly 20% of all observations.
In addition, since the Event Rate appears to be decreasing, customers with
higher income seem to be less prone to default. The bin consisting of missing
values attains only the fourth-highest ER of all the bins. Considering that the
resulting WoE assigned to the missing bin is quite close to the bin representing
the second largest income group, customers for which the income information
is unavailable appear to be moderately creditworthy. Even though the total
Information Value of the variable is relatively low, the information derived from
missing observations may be useful for estimation.

Table 5.20: Binning of MonthlyIncome (with missing values)

Bin Count Count (%) Non-event Event ER∗ WoE∗∗ IV∗∗∗

(-inf, 3332.50) 23098 19.25 20947 2151 9.31 -0.35 0.03
[3332.50, 4833.50) 18455 15.38 16904 1551 8.40 -0.24 0.01
[4833.50, 6642.50) 18878 15.73 17595 1283 6.80 -0.01 0.00
[6642.50, 9950.50) 19905 16.59 18843 1062 5.34 0.25 0.01
[9950.50, inf) 15943 13.29 15258 685 4.30 0.47 0.02
Missing 23720 19.77 22385 1335 5.63 0.19 0.01
Totals 119999 100.00 111932 8067 6.72 0.08
∗Event Rate
∗∗Weight of Evidence
∗∗∗Information Value

Source: Author’s computations

Table 5.21 presents the summarized results of the robustness analysis with
missing values.12 As can be seen, the results do not seem to differ substantially
from the previous analysis. However, the evidence in favor of the logistic regres-
sion is slightly weakened by the introduction of missing values. Even though
the binned model outperforms the raw model, on average, for all metrics, the
null hypothesis is rejected only for a single data set in most cases. In addi-
tion, the p-values for the data set with the greatest portion of missing values
(HCDR) are very high, suggesting that handling unavailable observations using
the binning transformation is not superior to simple imputation when it comes
to logistic regression.

12For complete results see Tables B.8 and B.9.
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In the previous analysis, no convincing evidence was obtained in favor of the
binning transformation regarding tree-based algorithms. The inclusion of miss-
ing values further weakens the evidence since the null hypothesis of the raw
model performing better or equally to the binned model can be rejected at the
5% significance only for a single instance, which is the F2-score for the deci-
sion tree. Since standard credit risk data sets usually contain a nonnegligible
share of missing values, applying the binning transformation for a tree-based
algorithm likely does not provide a performance enhancement based on the
available evidence.

On the other hand, the results in Table 5.21 confirm the findings of the previous
analysis since the binning transformation appears to improve the performance
of the NN and Naïve Bayes classifiers even after the inclusion of missing values.
Moreover, the evidence is even stronger since the null hypothesis is rejected for
most evaluation metrics in most data sets for both methods. The only larger
drawback of the binning transformation seems to be the sub-optimal Brier score
for the Naïve Bayes, which, as in the previous analysis, seems to be surpassed
by the raw model. In addition, in line with the previous investigation, the
neural network seems to provide slightly weaker evidence for the CA data set,
which contains few observations.
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Table 5.21: Results - estimation with missing values

Method Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg binned > raw - 2 1 2 2 2 2
LogReg Average binned 0.816 0.493 0.083 0.516 0.557 0.359
LogReg Average raw 0.753 0.427 0.088 0.417 0.429 0.263
LogReg p <= 0.05 - 2 1 2 1 1 1
DecTree binned > raw - 3 0 2 3 1 2
DecTree Average binned 0.803 0.499 0.086 0.487 0.562 0.341
DecTree Average raw 0.797 0.501 0.093 0.47 0.564 0.323
DecTree p <= 0.05 - 0 1 0 0 0 0
RandForest binned > raw - 0 0 0 1 1 1
RandForest Average binned 0.817 0.5 0.081 0.529 0.586 0.375
RandForest Average raw 0.825 0.513 0.08 0.525 0.601 0.381
RandForest p <= 0.05 - 0 0 0 0 0 0
NN binned > raw - 3 2 3 3 2 3
NN Average binned 0.813 0.492 0.083 0.521 0.519 0.361
NN Average raw 0.623 0.472 0.097 0.216 0.212 0.172
NN p <= 0.05 - 2 2 3 3 2 2
GaussNB binned > raw - 3 3 1 3 2 3
GaussNB Average binned 0.784 0.45 0.372 0.485 0.417 0.32
GaussNB Average raw 0.705 0.381 0.128 0.356 0.286 0.21
GaussNB p <= 0.05 - 3 3 1 3 1 3

The table presents the summarized results of calculating the six evaluation metrics (columns (3)-(8)) on
the test set comprising 20% observations of each data set. Only three data sets containing missing values
were considered: CA, GMSC, and HCDR. For the raw model estimation, unavailable observations were
replaced by mean, median, or mode. Values in bold signal a better average performance of the given
model type for the evaluation metric. Note that except for the Brier score, the higher the value of the
metric, the better. The first row for each method shows the number of data sets for which the binned
model outperformed the raw model for a given evaluation metric. The second and third rows for each
estimation method show the average value for each metric for each model type across all data sets. The
last row shows the number of data sets for which the null hypothesis of the raw model performing better
or equal to the binned model was rejected. For detailed results, see Tables B.8 and B.9.

Source: Author’s computations
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5.10 Outliers
The second supplementary analysis investigates the effect of removing outliers
on the findings obtained in the primary analysis. Table 5.22 presents the re-
sults. In general, the findings appear to be robust to the exclusion of outlying
observations, with the exception of the logistic regression. As indicated in Sec-
tion 4.4, logistic regression may be sensitive to extreme observations. While
in the main analysis, the binning transformation handles outliers by grouping
them together with regular observations, the raw estimation does not have any
inherent outlier management. Consequently, the performance of the logistic
regression might be deteriorated. This appears to be the case since the null
hypothesis of the raw model performing better or equally to the binned model
can be consistently rejected for most of the metrics only for a single data set.
As a result, the treatment of outliers seems to have a substantial effect on
performance when it comes to logistic regression.

On the other hand, the evidence in favor of the binned model for the neural
network is still quite strong, even after the elimination of outliers. For all
metrics, the null hypothesis is rejected for the majority of data sets. Similarly,
significant results are obtained for the Naïve Bayes classifier for four of the
six considered evaluation metrics. The exceptions are the Brier score and the
F2-score, which is in line with the primary analysis. Lastly, the tree-based
algorithms still do not seem to benefit from the binning transformation.
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Table 5.22: Results - estimation without outliers

Method Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg binned > raw - 3 3 3 5 4 3
LogReg Average binned 0.767 0.483 0.11 0.444 0.441 0.301
LogReg Average raw 0.752 0.473 0.113 0.435 0.375 0.286
LogReg p <= 0.05 - 1 0 1 1 2 1
DecTree binned > raw - 5 2 2 5 1 3
DecTree Average binned 0.762 0.504 0.112 0.428 0.268 0.281
DecTree Average raw 0.749 0.49 0.119 0.404 0.284 0.263
DecTree p <= 0.05 - 0 1 1 0 0 0
RandForest binned > raw - 1 2 1 1 2 1
RandForest Average binned 0.778 0.488 0.107 0.45 0.419 0.307
RandForest Average raw 0.777 0.485 0.107 0.457 0.391 0.319
RandForest p <= 0.05 - 0 0 0 0 0 0
NN binned > raw - 5 4 5 5 4 5
NN Average binned 0.775 0.484 0.108 0.444 0.427 0.306
NN Average raw 0.677 0.427 0.143 0.314 0.313 0.211
NN p <= 0.05 - 4 3 4 3 3 3
GaussNB binned > raw - 4 4 2 3 3 3
GaussNB Average binned 0.756 0.463 0.148 0.436 0.356 0.286
GaussNB Average raw 0.715 0.41 0.155 0.355 0.248 0.224
GaussNB p <= 0.05 - 3 2 1 3 3 3

The table presents the summarized results of calculating the six evaluation metrics (columns (3)-(8)) on
the test set comprising 20% observations of each data set. Outliers above 99% and below 1% were trimmed
from all data sets. Values in bold signal a better average performance of the given model type for the
evaluation metric. Note that except for the Brier score, the higher the value of the metric, the better. The
first row for each method shows the number of data sets for which the binned model outperformed the
raw model for a given evaluation metric. The second and third rows for each estimation method show the
average value for each metric for each model type across all data sets. The last row shows the number of
data sets for which the null hypothesis of the raw model performing better or equal to the binned model
was rejected. For detailed results, see Tables B.10 and B.11.

Source: Author’s computations
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5.11 Omitting categorical variables
An additional robustness investigation regards the inclusion of categorical vari-
ables. While in the main analysis, categorical features were retained since their
interaction with the numerical variables may affect performance, in the supple-
mentary examination, they will be disregarded, and the impact on the results
will be inspected. Four data sets were utilized since the GMSC data set does
not contain categorical variables. The unavailable observations are disregarded
to avoid any effects caused by a different treatment of missing values, as in the
primary analysis.

The results are presented in Table 5.23. The overall picture seems to be very
similar to the previous analyses. However, the logistic regression does not seem
to benefit significantly from the binning transformation. While the absolute
values of the metrics tend to be, on average, better for the binning transfor-
mation, the differences are statistically significant only for a single data set.
Nevertheless, even though the positive results for GMSC are not presented,
they are relevant since the data set contains only numerical variables. Conse-
quently, it appears that the presence of categorical variables does not have to
be necessary for the binning transformation to induce a performance improve-
ment. However, their omission seems to deteriorate the effect.

The evidence regarding the tree-based algorithms seems consistent with the
previous analyses, given the inability to reject the null hypothesis in nearly
all cases. On the other hand, the NN and Naïve Bayes estimators appear to
benefit from the binning transformation even after the exclusion of categorical
variables.
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Table 5.23: Results - estimation without categorical variables

Method Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg binned > raw - 4 3 2 3 3 3
LogReg Average binned 0.744 0.518 0.142 0.401 0.412 0.259
LogReg Average raw 0.724 0.493 0.143 0.391 0.362 0.244
LogReg p <= 0.05 - 1 1 1 1 1 1
DecTree binned > raw - 1 1 2 1 2 2
DecTree Average binned 0.731 0.514 0.144 0.373 0.261 0.227
DecTree Average raw 0.735 0.545 0.145 0.399 0.24 0.239
DecTree p <= 0.05 - 0 1 0 0 0 0
RandForest binned > raw - 0 0 0 0 0 0
RandForest Average binned 0.746 0.512 0.138 0.398 0.381 0.262
RandForest Average raw 0.765 0.531 0.136 0.435 0.454 0.285
RandForest p <= 0.05 - 0 0 0 0 0 0
NN binned > raw - 4 3 3 3 3 3
NN Average binned 0.743 0.521 0.157 0.4 0.357 0.257
NN Average raw 0.664 0.42 0.175 0.296 0.196 0.163
NN p <= 0.05 - 3 2 3 2 4 2
GaussNB binned > raw - 3 4 3 3 2 3
GaussNB Average binned 0.736 0.521 0.162 0.392 0.226 0.248
GaussNB Average raw 0.688 0.453 0.233 0.321 0.214 0.178
GaussNB p <= 0.05 - 3 3 2 2 1 2

The table presents the summarized results of calculating the six evaluation metrics (columns (3)-(8)) on
the test set comprising 20% observations of each data set. Only four data sets containing categorical
variables were considered: CA, DCCCT, HCDR, and SGCC. Categorical variables were removed from
the data sets prior to estimation. Values in bold signal a better average performance of the given model
type for the evaluation metric. Note that except for the Brier score, the higher the value of the metric,
the better. The first row for each method shows the number of data sets for which the binned model
outperformed the raw model for a given evaluation metric. The second and third rows for each estimation
method show the average value for each metric for each model type across all data sets. The last row
shows the number of data sets for which the null hypothesis of the raw model performing better or equal
to the binned model was rejected. For detailed results, see Tables B.12 and B.13.

Source: Author’s computations
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5.12 One-hot encoding
The last quantitative supplementary analysis performed in this thesis is the
utilization of one-hot encoding of the binned variables. In all the previous
analyses, the resulting discretized features were encoded using the Weight of
Evidence. While this is the industry standard, one-hot encoding is one of
the most popular forms of categorical variable transformation. In addition, the
question stands whether one-hot encoding of the binned variables still surpasses
the usage of raw features.

Based on the results in Table 5.24, the binning transformation seems to pos-
itively affect performance even when a different form of encoding is utilized.
For logistic regression, the null hypothesis of the raw model performing better
or equal to the binned model is rejected only for the larger data sets. However,
the HCDR does not seem to benefit from the transformation. It can be argued
that the large number of variables inflated by the usage of one-hot encoding
may result in very few degrees of freedom, and thus worse performance.

However, the neural network and the Bernoulli Naïve Bayes appear to benefit
from the binning transformation for all large data sets, including the HCDR. As
a result, this thesis provides robust evidence in favor of binning transformation
for these two estimation methods. On the other hand, the findings for the
decision tree and Random Forest algorithms seem to follow the trend of the
previous analyses.
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Table 5.24: Results - estimation with one-hot encoding

Method Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg binned > raw - 5 4 5 4 2 4
LogReg Average binned 0.759 0.477 0.122 0.415 0.397 0.276
LogReg Average raw 0.713 0.428 0.127 0.362 0.357 0.213
LogReg p <= 0.05 - 2 2 2 2 2 2
DecTree binned > raw - 1 1 1 1 1 1
DecTree Average binned 0.742 0.492 0.127 0.386 0.379 0.238
DecTree Average raw 0.75 0.509 0.127 0.416 0.308 0.254
DecTree p <= 0.05 - 0 1 0 0 0 0
RandForest binned > raw - 0 0 0 0 0 0
RandForest Average binned 0.759 0.482 0.123 0.415 0.418 0.263
RandForest Average raw 0.777 0.497 0.12 0.449 0.487 0.296
RandForest p <= 0.05 - 0 0 0 0 0 0
NN binned > raw - 5 4 5 5 4 5
NN Average binned 0.757 0.48 0.122 0.428 0.408 0.281
NN Average raw 0.685 0.397 0.152 0.322 0.265 0.181
NN p <= 0.05 - 3 3 5 4 4 4
BernoulliNB binned > raw - 4 4 4 4 4 4
BernoulliNB Average binned 0.747 0.447 0.132 0.399 0.394 0.239
BernoulliNB Average raw 0.689 0.406 0.2 0.311 0.242 0.168
BernoulliNB p <= 0.05 - 4 2 3 3 3 4

The table presents the summarized results of calculating the six evaluation metrics (columns (3)-(8)) on
the test set comprising 20% observations of each data set. For the binned model, the discretized variables
were one-hot encoded. Values in bold signal a better average performance of the given model type for the
evaluation metric. Note that except for the Brier score, the higher the value of the metric, the better. The
first row for each method shows the number of data sets for which the binned model outperformed the
raw model for a given evaluation metric. The second and third rows for each estimation method show the
average value for each metric for each model type across all data sets. The last row shows the number of
data sets for which the null hypothesis of the raw model performing better or equal to the binned model
was rejected. For detailed results, see Tables B.14 and B.15.

Source: Author’s computations
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5.13 Qualitative case study
All the previous analyses employed a quantitative approach. To at least par-
tially imitate the actual development of a credit-scoring model, a more quali-
tative approach will be applied using the logistic regression on the GMSC data
set.

For the estimation of the model with raw variables, outliers from both tails will
be trimmed to alleviate the distortion of the results.13 In addition, upon the
inspection of the histograms of the variables, the logarithmic transformation
was applied to two of them to attempt to satisfy the assumption of normality.14

As for the second model, the binning transformation is expected to handle
outliers well, and thus the data was unaltered.

The second step of the development process is the forward sequential feature
selection based on the average value of AUC. For each candidate, 5-fold cross-
validation is performed, and the average AUC over the five iterations is consid-
ered for comparison. The final models were re-estimated on the entire training
set and evaluated on the testing set utilizing the same procedures as in the
previous analyses. Table 5.25 presents the results.

As can be seen, the raw model’s performance improved substantially compared
to the main analysis. Consequently, the appropriate treatment of outliers ap-
pears to greatly impact the logistic regression. The performance of the binned
model was enhanced only slightly, and the overall results for both models seem
to be very similar. An exception is the AUC and Brier score metrics for which
the null hypothesis is rejected.

To conclude, taking a qualitative approach seems to reduce the performance
differences between the models for the logistic regression. However, with the in-
creasing number of variables, the feasibility of the qualitative approach rapidly
decreases. The advantage of the binning transformation is its ability to handle
conveniently raw unaltered data, including outliers.

13The 1% and 99% quantiles were used for trimming.
14DebtRatio and MonthlyIncome
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Table 5.25: Results - qualitative analysis

AUC F2-score Brier score KS statistic Partial GINI Index H-measure
raw 0.813 0.328 0.058 0.488 0.582 0.316
binned 0.815 0.337 0.056 0.492 0.585 0.315
p 0.046 0.619 0.000 0.141 0.195 0.530

The table presents the results of calculating the six evaluation metrics for the logistic regression on the
test set of the GMSC data set. Values in bold signal a better performance of the given model type for the
given metric. Note that except for the Brier score, the higher the value of the metric, the better. The last
row shows the p-value of the null hypothesis that the raw model performs better or equally to the binned
model for the given evaluation metric.

Source: Author’s computations
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Conclusion

The development of credit risk models is a thoroughly scrutinized topic in the
extant literature. However, while many studies focus on improving performance
using advanced methods, the impact of the data preprocessing phase appears
to be fairly neglected. In addition, the existing regulatory framework requires
credit risk models to be interpretable, hindering the usage of complicated esti-
mation methods. As a result, the potential performance enhancements gener-
ated by methods capitalizing on rapidly increasing computational power cannot
be exploited in practice. One way to make the estimation more interpretable is
to discretize numerical features and a subsequent Weight of Evidence transfor-
mation. However, the effect of this transformation on performance has not yet
been thoroughly investigated. Consequently, this thesis attempted to inspect
the impact of the binning transformation on the performance of five widely
known estimation methods.

To address the methodological deficiencies of the existing articles, six evalua-
tion metrics along with a statistical test were employed to compare the perfor-
mance of the questioned methods. The evaluation metrics are divided into three
groups, each inspecting a different aspect of model performance. In addition,
five publicly available credit risk data sets of different sizes and characteristics
were utilized to secure the robustness of the results.

Three of the five considered estimation methods seem to significantly benefit
from utilizing the binning transformation of numerical features. Namely, the lo-
gistic regression, the feedforward artificial neural network, and the Naïve Bayes
classifier all seem to achieve higher performance when the binning transforma-
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tion is utilized prior to estimation. The most substantial impact appears to be
on the model’s ability to differentiate between eligible and ineligible customers.
The results are particularly strong for moderately-sized data sets which repre-
sent the industry standard in credit risk modeling. The findings for the neural
network and the Naïve Bayes classifier are robust to the inclusion of missing
values, the elimination of outliers, and the exclusion of categorical features.
Furthermore, the results hold even for utilizing one-hot encoding of the binned
variables. In the case of logistic regression, the effect appears to be weakened by
the presence of unavailable and extreme observations. In addition, employing a
qualitative approach seems to diminish the differences in performance between
the raw and binned model. As a result, the main strength of the binning al-
gorithm appears to be its ability to handle outlying observations conveniently
without individual investigation of each variable in the data set.

On the other hand, no statistically significant effect of the binning transfor-
mation on performance was detected for two tree-based methods, namely, the
CART decision tree and the Random Forest model.

The findings of this thesis implicate several recommendations for the develop-
ment of credit scoring models. While the application of the binning transforma-
tion and subsequent WoE encoding is usually justified by its ability to handle
missing values, reduce non-linearity, increase interpretability, and alleviate the
impact of outliers, the performed analyses suggest that it also positively affects
performance. However, since the results do not seem to be entirely robust for
small data sets, the data size should be taken into account when applying the
transformation. In addition, even though a qualitative approach is usually em-
ployed to develop credit risk models, the need for a qualitative procedure grows
with increasing dimensions of the data. The binning transformation provides a
convenient way of handling missing values and outliers without extensive user
input.

The selection of an appropriate algorithm is vital since the effects do not seem
to be homogeneous across methods. The recommended frameworks based on
the results of this thesis are the Naïve Bayes classifier and the neural network.
While the industry standard logistic regression appears to benefit from the
binning transformation, the data size, the presence of missing values, and the
presence of outliers, all need to be considered.

The analysis performed within the current thesis is not without limitations.
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Firstly, the findings relate only to the utilized binning algorithm. While they
may be generalized to most supervised statistics-based algorithms, the results
may differ for other types. Secondly, only the five most common machine learn-
ing estimation methods were considered. The impact of the binning transfor-
mation on the performance of more complex algorithms such as heterogenous
ensembles is an opportunity for future research. Thirdly, while the utilized
data sets are expected to cover the main aspects of actual credit scoring data
sets, unseen characteristics may affect the results. Lastly, the stringency of
the existing regulatory framework may hinder the utilization of advanced ma-
chine learning methods even after applying the binning transformation since
the improvement in interpretability may not be sufficient. Therefore, more so-
phisticated ways of introducing interpretability into "black-box" models may
be required.
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Appendix A

Figures

Figure A.1: Decision tree structure (GMSC, binned)

RevolvingUtilizationOfUnsecuredLines <= -0.124
96214

[89525, 6689]

NumberOfTime30-59DaysPastDueNotWorse <= -0.16
27683

[23022, 4661]

NumberOfTime30-59DaysPastDueNotWorse <= -0.16
68531

[66503, 2028]

(...) (...) (...) (...)

The figure shows the top of the structure of a decision tree estimated on
binned features of the GMSC data set. The whole structure is not presented
due to space constraints.

Source: Author’s computations. Generated using the Python package "scikit-learn"
(Pedregosa et al. 2011).



A. Figures II

Figure A.2: Decision tree structure (GMSC, raw)

RevolvingUtilizationOfUnsecuredLines <= 0.507
96214
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NumberOfTime30-59DaysPastDueNotWorse <= 0.5
27114

[22499, 4615]

(...) (...) (...) (...)

The figure shows the top of the structure of a decision tree estimated on raw
features of the GMSC data set. The whole structure is not presented due to
space constraints.

Source: Author’s computations. Generated using the Python package "scikit-learn"
(Pedregosa et al. 2011).



Appendix B

Tables

Table B.1: Home Credit Default Risk data set - summary

Statistic n Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
TARGET 307,511 0.081 0.272 0 0 0 0 1
CNT_CHILDREN 307,511 0.417 0.722 0 0 0 1 19
AMT_INCOME_TOTAL 307,511 168,797.900 237,123.100 25,650.000 112,500.000 147,150.000 202,500.000 117,000,000.000
AMT_CREDIT 307,511 599,026.000 402,490.800 45,000.000 270,000.000 513,531.000 808,650.000 4,050,000.000
AMT_ANNUITY 307,499 27,108.570 14,493.740 1,615.500 16,524.000 24,903.000 34,596.000 258,025.500
AMT_GOODS_PRICE 307,233 538,396.200 369,446.500 40,500.000 238,500.000 450,000.000 679,500.000 4,050,000.000
REGION_POPULATION_RELATIVE 307,511 0.021 0.014 0.0003 0.010 0.019 0.029 0.073
DAYS_BIRTH 307,511 −16,037.000 4,363.989 −25,229 −19,682 −15,750 −12,413 −7,489
DAYS_EMPLOYED 307,511 63,815.050 141,275.800 −17,912 −2,760 −1,213 −289 365,243
DAYS_REGISTRATION 307,511 −4,986.120 3,522.886 −24,672.000 −7,479.500 −4,504.000 −2,010.000 0.000
DAYS_ID_PUBLISH 307,511 −2,994.202 1,509.450 −7,197 −4,299 −3,254 −1,720 0
OWN_CAR_AGE 104,582 12.061 11.945 0 5 9 15 91
CNT_FAM_MEMBERS 307,509 2.153 0.911 1 2 2 3 20
EXT_SOURCE_1 134,133 0.502 0.211 0.015 0.334 0.506 0.675 0.963
EXT_SOURCE_2 306,851 0.514 0.191 0.00000 0.392 0.566 0.664 0.855
EXT_SOURCE_3 246,546 0.511 0.195 0.001 0.371 0.535 0.669 0.896
APARTMENTS_AVG 151,450 0.117 0.108 0.000 0.058 0.088 0.148 1.000
BASEMENTAREA_AVG 127,568 0.088 0.082 0.000 0.044 0.076 0.112 1.000
YEARS_BEGINEXPLUATATION_AVG 157,504 0.978 0.059 0.000 0.977 0.982 0.987 1.000
YEARS_BUILD_AVG 103,023 0.752 0.113 0.000 0.687 0.755 0.823 1.000
COMMONAREA_AVG 92,646 0.045 0.076 0.000 0.008 0.021 0.052 1.000
ELEVATORS_AVG 143,620 0.079 0.135 0.000 0.000 0.000 0.120 1.000
ENTRANCES_AVG 152,683 0.150 0.100 0.000 0.069 0.138 0.207 1.000
FLOORSMAX_AVG 154,491 0.226 0.145 0.000 0.167 0.167 0.333 1.000
FLOORSMIN_AVG 98,869 0.232 0.161 0.000 0.083 0.208 0.375 1.000
LANDAREA_AVG 124,921 0.066 0.081 0.000 0.019 0.048 0.086 1.000
LIVINGAPARTMENTS_AVG 97,312 0.101 0.093 0.000 0.050 0.076 0.121 1.000
LIVINGAREA_AVG 153,161 0.107 0.111 0.000 0.045 0.074 0.130 1.000
NONLIVINGAPARTMENTS_AVG 93,997 0.009 0.048 0.000 0.000 0.000 0.004 1.000
NONLIVINGAREA_AVG 137,829 0.028 0.070 0.000 0.000 0.004 0.028 1.000
OBS_30_CNT_SOCIAL_CIRCLE 306,490 1.422 2.401 0 0 0 2 348
DEF_30_CNT_SOCIAL_CIRCLE 306,490 0.143 0.447 0 0 0 0 34
OBS_60_CNT_SOCIAL_CIRCLE 306,490 1.405 2.380 0 0 0 2 344
DEF_60_CNT_SOCIAL_CIRCLE 306,490 0.100 0.362 0 0 0 0 24
DAYS_LAST_PHONE_CHANGE 307,510 −962.859 826.808 −4,292 −1,570 −757 −274 0
AMT_REQ_CREDIT_BUREAU_HOUR 265,992 0.006 0.084 0 0 0 0 4
AMT_REQ_CREDIT_BUREAU_DAY 265,992 0.007 0.111 0 0 0 0 9
AMT_REQ_CREDIT_BUREAU_WEEK 265,992 0.034 0.205 0 0 0 0 8
AMT_REQ_CREDIT_BUREAU_MON 265,992 0.267 0.916 0 0 0 0 27
AMT_REQ_CREDIT_BUREAU_QRT 265,992 0.265 0.794 0 0 0 0 261
AMT_REQ_CREDIT_BUREAU_YEAR 265,992 1.900 1.869 0 0 1 3 25

Source: Anna Montoya (2018)
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Table B.2: Credit Approval data set - summary

Statistic n Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
V2 678 31.568 11.958 13.750 22.602 28.460 38.230 80.250
V3 690 4.759 4.978 0.000 1.000 2.750 7.207 28.000
V8 690 2.223 3.347 0.000 0.165 1.000 2.625 28.500
V11 690 2.400 4.863 0 0 0 3 67
V14 677 184.015 173.807 0 75 160 276 2,000
V15 690 1,017.386 5,210.103 0 0 5 395.5 100,000
Target 690 0.445 0.497 0 0 0 1 1

Source: Quinlan (2017)

Table B.3: Default of Credit Card Clients in Taiwan data set - sum-
mary

Statistic n Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
LIMIT_BAL 30,000 167,484.300 129,747.700 10,000 50,000 140,000 240,000 1,000,000
SEX_FEMALE 30,000 0.604 0.489 0 0 1 1 1
EDUCATION 30,000 1.853 0.790 0 1 2 2 6
MARRIAGE 30,000 0.455 0.498 0 0 0 1 1
AGE 30,000 35.486 9.218 21 28 34 41 79
PAY_0 30,000 −0.017 1.124 −2 −1 0 0 8
PAY_2 30,000 −0.134 1.197 −2 −1 0 0 8
PAY_3 30,000 −0.166 1.197 −2 −1 0 0 8
PAY_4 30,000 −0.221 1.169 −2 −1 0 0 8
PAY_5 30,000 −0.266 1.133 −2 −1 0 0 8
PAY_6 30,000 −0.291 1.150 −2 −1 0 0 8
BILL_AMT1 30,000 51,223.330 73,635.860 −165,580 3,558.8 22,381.5 67,091 964,511
BILL_AMT2 30,000 49,179.070 71,173.770 −69,777 2,984.8 21,200 64,006.2 983,931
BILL_AMT3 30,000 47,013.150 69,349.390 −157,264 2,666.2 20,088.5 60,164.8 1,664,089
BILL_AMT4 30,000 43,262.950 64,332.860 −170,000 2,326.8 19,052 54,506 891,586
BILL_AMT5 30,000 40,311.400 60,797.160 −81,334 1,763 18,104.5 50,190.5 927,171
BILL_AMT6 30,000 38,871.760 59,554.110 −339,603 1,256 17,071 49,198.2 961,664
PAY_AMT1 30,000 5,663.580 16,563.280 0 1,000 2,100 5,006 873,552
PAY_AMT2 30,000 5,921.164 23,040.870 0 833 2,009 5,000 1,684,259
PAY_AMT3 30,000 5,225.682 17,606.960 0 390 1,800 4,505 896,040
PAY_AMT4 30,000 4,826.077 15,666.160 0 296 1,500 4,013.2 621,000
PAY_AMT5 30,000 4,799.388 15,278.310 0 252.5 1,500 4,031.5 426,529
PAY_AMT6 30,000 5,215.503 17,777.470 0 117.8 1,500 4,000 528,666
Target 30,000 0.221 0.415 0 0 0 0 1

Source: DCCCT (2016)

Table B.4: South German Credit Card data set - summary

Statistic n Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
duration 1,000 20.903 12.059 4 12 18 24 72
amount 1,000 3,271.248 2,822.752 250 1,365.5 2,319.5 3,972.2 18,424
age 1,000 35.542 11.353 19 27 33 42 75
Target 1,000 0.300 0.458 0 0 0 1 1

Source: SGCC (2019)
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Table B.5: Hyperparameter grid

Classifier Hyperparameter Values # of models1

LogReg Regularization ℓ1, ℓ2, None 101
λ2 10−4, 10−4+ 1

49 , 10−4+ 2
49 , . . . , 104

DecTree
Criterion gini, entropy

16Max depth 5, 10, 20, 50
Max leaves 25, 50, 100, 500

RandForest

# of trees 10, 50, 100, 500

32Criterion gini, entropy
Max depth 5, 10, 20, 50
Max leaves 25, 50, 100, 500

NN
# of nodes K

2 , 2K
3 , K3

54α 0.0001, 0.001, 0.01, 0.1, 1, 10
activation ReLU, sigmoid, tanh

1 The number of models corresponds to a single data set. In addition, for each model, 3-fold cross-validation
is performed. Moreover, each procedure is performed for the binned and non-binned cases totaling (30 *
# of models) estimations
2λ is the inverse of regularization strength for ℓ1 and ℓ2. Not applied when regularization is None
3K represents the number of independent variables

Source: Author’s selection

Table B.6: Give Me Some Credit data set - Correlation matrix
Age NoD MI DR NoOCLaL NoRELoL RUoUL NoT30-59DPDNW NoT60-89DPDNW NoT90DL

Age 1
NumberOfDependents -0.21∗ 1
MonthlyIncome 0.038∗ 0.063∗ 1
DebtRatio 0.024∗ -0.041∗ -0.029∗ 1
NumberOfOpenCreditLinesAndLoans 0.15∗ 0.065∗ 0.091∗ 0.05∗ 1
NumberRealEstateLoansOrLines 0.033∗ 0.12∗ 0.12∗ 0.12∗ 0.43∗ 1
RevolvingUtilizationOfUnsecuredLines -0.0059∗ 0.0016 0.0071∗ 0.004 -0.011∗ 0.0062∗ 1
NumberOfTime30-59DaysPastDueNotWorse -0.063∗ -0.0027 -0.01∗ -0.0065∗ -0.055∗ -0.031∗ -0.0013 1
NumberOfTime60-89DaysPastDueNotWorse -0.057∗ -0.011∗ -0.011∗ -0.0075∗ -0.071∗ -0.04∗ -0.001 0.99∗ 1
NumberOfTimes90DaysLate -0.061∗ -0.01∗ -0.013∗ -0.0083∗ -0.08∗ -0.045∗ -0.0011 0.98∗ 0.99∗ 1
SeriousDlqin2yrs -0.12∗ 0.046∗ -0.02∗ -0.0076∗ -0.03∗ -0.007∗ -0.0018 0.13∗ 0.1∗ 0.12∗

∗Significant at the 5% significance level

Source: Author’s computations
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Table B.7: Model coefficients for logistic regression (GMSC, binned)

Variable Coefficient
Intercept -2.596
NumberOfTime30-59DaysPastDueNotWorse -0.756
DebtRatio -0.773
NumberRealEstateLoansOrLines -0.634
Age -0.395
NumberOfOpenCreditLinesAndLoans -0.205
RevolvingUtilizationOfUnsecuredLines -0.749
NumberOfDependents -0.416
MonthlyIncome -0.299

The table contains the estimated coefficients of the logistic regression on the
GMSC data set. The variables were binned prior to estimation.

Source: Author’s computations
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Table B.8: Complete results - estimation with missing values

Method Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg CA binned 0.899 0.881 0.126 0.712 0.633 0.591
LogReg CA raw 0.872 0.881 0.136 0.666 0.531 0.545
LogReg GMSC binned 0.825 0.351 0.053 0.5 0.608 0.331
LogReg GMSC raw 0.658 0.145 0.06 0.244 0.308 0.077
LogReg HCDR binned 0.724 0.247 0.07 0.335 0.429 0.156
LogReg HCDR raw 0.73 0.255 0.069 0.34 0.448 0.166
LogReg binned > raw - 2 1 2 2 2 2
LogReg Average binned 0.816 0.493 0.083 0.516 0.557 0.359
LogReg Average raw 0.753 0.427 0.088 0.417 0.429 0.263
DecTree CA binned 0.879 0.881 0.135 0.655 0.667 0.554
DecTree CA raw 0.864 0.884 0.156 0.606 0.674 0.496
DecTree GMSC binned 0.82 0.362 0.053 0.496 0.611 0.326
DecTree GMSC raw 0.818 0.362 0.053 0.494 0.607 0.329
DecTree HCDR binned 0.711 0.256 0.07 0.312 0.41 0.145
DecTree HCDR raw 0.709 0.256 0.07 0.311 0.412 0.143
DecTree binned > raw - 3 0 2 3 1 2
DecTree Average binned 0.803 0.499 0.086 0.487 0.562 0.341
DecTree Average raw 0.797 0.501 0.093 0.47 0.564 0.323
RandForest CA binned 0.897 0.895 0.119 0.74 0.662 0.622
RandForest CA raw 0.909 0.909 0.119 0.713 0.7 0.618
RandForest GMSC binned 0.826 0.345 0.053 0.507 0.639 0.334
RandForest GMSC raw 0.833 0.363 0.052 0.514 0.637 0.352
RandForest HCDR binned 0.729 0.26 0.07 0.34 0.458 0.168
RandForest HCDR raw 0.734 0.268 0.07 0.347 0.468 0.174
RandForest binned > raw - 0 0 0 1 1 1
RandForest Average binned 0.817 0.5 0.081 0.529 0.586 0.375
RandForest Average raw 0.825 0.513 0.08 0.525 0.601 0.381
NN CA binned 0.891 0.881 0.126 0.726 0.515 0.595
NN CA raw 0.865 0.852 0.148 0.639 0.63 0.514
NN GMSC binned 0.824 0.35 0.053 0.501 0.606 0.331
NN GMSC raw 0.503 0.259 0.061 0.006 0.006 0.001
NN HCDR binned 0.725 0.244 0.07 0.335 0.435 0.155
NN HCDR raw 0.5 0.304 0.08 0.002 0.0 0.0
NN binned > raw - 3 2 3 3 2 3
NN Average binned 0.813 0.492 0.083 0.521 0.519 0.361
NN Average raw 0.623 0.472 0.097 0.216 0.212 0.172
GaussNB CA binned 0.882 0.881 0.139 0.697 0.558 0.57
GaussNB CA raw 0.83 0.824 0.242 0.638 0.303 0.49
GaussNB GMSC binned 0.812 0.315 0.088 0.484 0.496 0.309
GaussNB GMSC raw 0.677 0.179 0.066 0.265 0.338 0.104
GaussNB HCDR binned 0.656 0.155 0.891 0.275 0.197 0.082
GaussNB HCDR raw 0.609 0.139 0.075 0.166 0.217 0.037
GaussNB binned > raw - 3 3 1 3 2 3
GaussNB Average binned 0.784 0.45 0.372 0.485 0.417 0.32
GaussNB Average raw 0.705 0.381 0.128 0.356 0.286 0.21
All binned > raw - 11 6 8 12 8 11
All Average binned 0.807 0.487 0.141 0.508 0.528 0.351
All Average raw 0.741 0.459 0.097 0.397 0.419 0.27

The table presents the results of calculating the six evaluation metrics (columns (3)-(8)) on the test set
comprising 20% observations of each data set. The missing values were removed from the data set prior
to estimation. For the raw model estimation, unavailable observations were replaced by mean, median, or
mode. Values in bold signal a better performance of the given model type for the given data set. Note
that except for the Brier score, the higher the value of the metric, the better. The third row from the
bottom for each method shows the number of data sets for which the binned model outperformed the raw
model for a given evaluation metric. The last two rows for each estimation method show the average value
for each metric for each model type across all data sets. The third row from the bottom of the table shows
the total number of cases where the binned model outperformed the raw model across all methods and
data sets. The very last two rows of the table present total averages across all methods and data sets.

Source: Author’s computations
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Table B.9: Permutation tests - estimation with missing values

Method Data set AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg CA 0.004 0.666 0.015 0.126 0.255 0.131
LogReg GMSC 0.000 0.000 0.000 0.000 0.000 0.000
LogReg HCDR 0.982 0.906 1.000 0.794 1.000 0.985
LogReg p <= 0.05 2 1 2 1 1 1
DecTree CA 0.179 0.423 0.07 0.192 0.508 0.104
DecTree GMSC 0.251 0.001 0.861 0.374 0.279 0.805
DecTree HCDR 0.133 0.529 0.19 0.439 0.785 0.261
DecTree p <= 0.05 0 1 0 0 0 0
RandForest CA 0.832 0.953 0.532 0.442 0.56 0.458
RandForest GMSC 1.000 1.000 1.000 0.967 0.159 1.000
RandForest HCDR 1.000 1.000 1.000 0.975 1.000 1.000
RandForest p <= 0.05 0 0 0 0 0 0
NN CA 0.114 0.634 0.012 0.033 0.572 0.058
NN GMSC 0.000 0.000 0.000 0.000 0.000 0.000
NN HCDR 0.000 0.000 0.000 0.000 0.000 0.000
NN p <= 0.05 2 2 3 3 2 2
GaussNB CA 0.000 0.002 0.000 0.002 0.121 0.001
GaussNB GMSC 0.000 0.000 1.000 0.000 0.000 0.000
GaussNB HCDR 0.000 0.000 1.000 0.000 0.997 0.000
GaussNB p <= 0.05 3 3 1 3 1 3
The values in the table represent the p-values of the null hypothesis that the model with raw variables
performs better or equal to the binned model. As a result, p-values below 0.05 (in bold) signal the
rejection of the null hypothesis in favor of the alternative that the binned model performs better at the 5%
significance level. The last row for each estimation method shows the number of data sets for which the
null is rejected for a given evaluation metric. The permutation tests were performed for 5000 repetitions.

Source: Author’s computations
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Table B.10: Complete results - estimation without outliers

Method Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg CA binned 0.922 0.849 0.113 0.733 0.765 0.665
LogReg CA raw 0.907 0.822 0.121 0.708 0.578 0.618
LogReg DCCCT binned 0.757 0.518 0.144 0.391 0.302 0.258
LogReg DCCCT raw 0.714 0.51 0.151 0.373 0.173 0.23
LogReg GMSC binned 0.803 0.312 0.049 0.483 0.595 0.293
LogReg GMSC raw 0.804 0.324 0.049 0.48 0.583 0.297
LogReg HCDR binned 0.722 0.238 0.066 0.342 0.44 0.158
LogReg HCDR raw 0.723 0.241 0.066 0.341 0.441 0.158
LogReg SGCC binned 0.63 0.496 0.178 0.274 0.102 0.133
LogReg SGCC raw 0.613 0.467 0.179 0.273 0.101 0.126
LogReg binned > raw - 3 3 3 5 4 3
LogReg Average binned 0.767 0.483 0.11 0.444 0.441 0.301
LogReg Average raw 0.752 0.473 0.113 0.435 0.375 0.286
DecTree CA binned 0.909 0.889 0.121 0.704 0.039 0.59
DecTree CA raw 0.903 0.891 0.126 0.682 0.065 0.573
DecTree DCCCT binned 0.756 0.531 0.143 0.394 0.293 0.259
DecTree DCCCT raw 0.755 0.531 0.142 0.385 0.306 0.258
DecTree GMSC binned 0.797 0.305 0.049 0.469 0.574 0.279
DecTree GMSC raw 0.797 0.329 0.049 0.466 0.579 0.284
DecTree HCDR binned 0.703 0.23 0.067 0.305 0.406 0.131
DecTree HCDR raw 0.701 0.233 0.067 0.301 0.402 0.131
DecTree SGCC binned 0.648 0.564 0.181 0.266 0.028 0.147
DecTree SGCC raw 0.588 0.466 0.213 0.184 0.066 0.069
DecTree binned > raw - 5 2 2 5 1 3
DecTree Average binned 0.762 0.504 0.112 0.428 0.268 0.281
DecTree Average raw 0.749 0.49 0.119 0.404 0.284 0.263
RandForest CA binned 0.929 0.861 0.108 0.713 0.543 0.631
RandForest CA raw 0.934 0.877 0.105 0.768 0.437 0.669
RandForest DCCCT binned 0.765 0.532 0.142 0.411 0.324 0.271
RandForest DCCCT raw 0.769 0.529 0.141 0.421 0.343 0.276
RandForest GMSC binned 0.807 0.314 0.049 0.483 0.614 0.296
RandForest GMSC raw 0.813 0.328 0.048 0.492 0.623 0.311
RandForest HCDR binned 0.718 0.237 0.067 0.336 0.436 0.153
RandForest HCDR raw 0.722 0.241 0.067 0.337 0.445 0.16
RandForest SGCC binned 0.672 0.498 0.169 0.305 0.179 0.183
RandForest SGCC raw 0.646 0.447 0.173 0.269 0.107 0.18
RandForest binned > raw - 1 2 1 1 2 1
RandForest Average binned 0.778 0.488 0.107 0.45 0.419 0.307
RandForest Average raw 0.777 0.485 0.107 0.457 0.391 0.319
NN CA binned 0.924 0.849 0.111 0.712 0.661 0.645
NN CA raw 0.909 0.822 0.127 0.684 0.669 0.614
NN DCCCT binned 0.761 0.525 0.142 0.404 0.318 0.266
NN DCCCT raw 0.627 0.344 0.232 0.191 0.25 0.072
NN GMSC binned 0.804 0.31 0.049 0.489 0.602 0.294
NN GMSC raw 0.796 0.307 0.049 0.468 0.592 0.283
NN HCDR binned 0.722 0.237 0.066 0.336 0.44 0.158
NN HCDR raw 0.469 0.053 0.133 0.066 -0.046 0.0
NN SGCC binned 0.665 0.498 0.173 0.278 0.115 0.164
NN SGCC raw 0.583 0.61 0.175 0.161 0.102 0.088
NN binned > raw - 5 4 5 5 4 5
NN Average binned 0.775 0.484 0.108 0.444 0.427 0.306
NN Average raw 0.677 0.427 0.143 0.314 0.313 0.211
GaussNB CA binned 0.923 0.849 0.12 0.76 0.747 0.673
GaussNB CA raw 0.885 0.808 0.153 0.661 0.294 0.558
GaussNB DCCCT binned 0.753 0.507 0.202 0.391 0.236 0.246
GaussNB DCCCT raw 0.644 0.375 0.274 0.214 0.093 0.099
GaussNB GMSC binned 0.792 0.286 0.074 0.473 0.469 0.276
GaussNB GMSC raw 0.791 0.297 0.072 0.474 0.472 0.287
GaussNB HCDR binned 0.677 0.183 0.114 0.278 0.277 0.1
GaussNB HCDR raw 0.592 0.123 0.07 0.135 0.185 0.028
GaussNB SGCC binned 0.638 0.49 0.233 0.28 0.051 0.135
GaussNB SGCC raw 0.661 0.447 0.205 0.29 0.194 0.148
GaussNB binned > raw - 4 4 2 3 3 3
GaussNB Average binned 0.756 0.463 0.148 0.436 0.356 0.286
GaussNB Average raw 0.715 0.41 0.155 0.355 0.248 0.224
All binned > raw - 18 15 13 19 14 15
All Average binned 0.768 0.484 0.117 0.44 0.382 0.296
All Average raw 0.734 0.457 0.128 0.393 0.322 0.261

*
Source: Author’s computations
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The table presents the results of calculating the six evaluation metrics (columns (3)-(8)) on the test set
comprising 20% observations of each data set. Outliers above 99% and below 1% were trimmed from all
data sets. Values in bold signal a better performance of the given model type for the given data set.
Note that except for the Brier score, the higher the value of the metric, the better. The third row from
the bottom for each method shows the number of data sets for which the binned model outperformed the
raw model for a given evaluation metric. The last two rows for each estimation method show the average
value for each metric for each model type across all data sets. The third row from the bottom of the table
shows the total number of cases where the binned model outperformed the raw model across all methods
and data sets. The very last two rows of the table present total averages across all methods and data sets.

Table B.11: Permutation tests - estimation without outliers

Method Data set AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg CA 0.111 0.319 0.081 0.178 0.061 0.1
LogReg GMSC 0.634 0.981 0.72 0.344 0.016 0.795
LogReg DCCCT 0.0 0.089 0.0 0.001 0.0 0.0
LogReg HCDR 0.743 0.754 0.825 0.459 0.689 0.493
LogReg SGCC 0.203 0.15 0.453 0.351 0.477 0.358
LogReg p <= 0.05 1 0 1 1 2 1
DecTree CA 0.443 0.47 0.384 0.453 0.517 0.461
DecTree GMSC 0.491 0.833 0.736 0.158 0.819 0.774
DecTree DCCCT 0.492 0.478 0.847 0.135 0.848 0.575
DecTree HCDR 0.22 0.715 0.781 0.147 0.22 0.723
DecTree SGCC 0.134 0.016 0.043 0.256 0.559 0.095
DecTree p <= 0.05 0 1 1 0 0 0
RandForest CA 0.605 0.855 0.693 0.996 0.184 0.925
RandForest GMSC 1.0 0.995 1.0 0.96 0.999 1.0
RandForest DCCCT 0.968 0.286 0.993 0.963 0.989 0.985
RandForest HCDR 1.0 0.921 1.0 0.319 1.0 1.0
RandForest SGCC 0.181 0.211 0.204 0.535 0.234 0.64
RandForest p <= 0.05 0 0 0 0 0 0
NN CA 0.114 0.354 0.028 0.494 0.291 0.172
NN GMSC 0.001 0.387 0.001 0.005 0.032 0.012
NN DCCCT 0.0 0.0 0.0 0.0 0.0 0.0
NN HCDR 0.0 0.0 0.0 0.0 0.0 0.0
NN SGCC 0.021 0.025 0.404 0.08 0.202 0.095
NN p <= 0.05 4 3 4 3 3 3
GaussNB CA 0.018 0.113 0.062 0.013 0.018 0.008
GaussNB GMSC 0.139 0.447 0.947 0.083 0.31 0.794
GaussNB DCCCT 0.0 0.0 0.0 0.0 0.001 0.0
GaussNB HCDR 0.0 0.004 1.0 0.0 0.0 0.0
GaussNB SGCC 0.585 0.178 1.0 0.323 0.75 0.441
GaussNB p <= 0.05 3 2 1 3 3 3
The values in the table represent the p-values of the null hypothesis that the model with raw variables
performs better or equal to the binned model. As a result, p-values below 0.05 (in bold) signal the
rejection of the null hypothesis in favor of the alternative that the binned model performs better at the 5%
significance level. The last row for each estimation method shows the number of data sets for which the
null is rejected for a given evaluation metric. The permutation tests were performed for 5000 repetitions.

Source: Author’s computations
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Table B.12: Complete results - estimation without categorical vari-
ables

Method Data set Type AUC F2-score Brier score KS statistic Partial GINI Index∗ H-measure
LogReg CA binned 0.841 0.793 0.151 0.63 0.6 0.479
LogReg CA raw 0.821 0.766 0.154 0.59 0.586 0.45
LogReg DCCCT binned 0.762 0.527 0.137 0.403 0.317 0.268
LogReg DCCCT raw 0.723 0.515 0.145 0.381 0.221 0.238
LogReg HCDR binned 0.729 0.255 0.068 0.344 0.448 0.168
LogReg HCDR raw 0.728 0.256 0.068 0.34 0.45 0.168
LogReg SGCC binned 0.642 0.497 0.214 0.228 0.285 0.122
LogReg SGCC raw 0.622 0.437 0.204 0.252 0.193 0.121
LogReg binned > raw - 4 3 2 3 3 3
LogReg Average binned 0.744 0.518 0.142 0.401 0.412 0.259
LogReg Average raw 0.724 0.493 0.143 0.391 0.362 0.244
DecTree CA binned 0.808 0.764 0.166 0.541 0.076 0.401
DecTree CA raw 0.824 0.849 0.153 0.621 0.013 0.452
DecTree DCCCT binned 0.765 0.536 0.136 0.399 0.337 0.264
DecTree DCCCT raw 0.766 0.553 0.136 0.399 0.35 0.263
DecTree HCDR binned 0.719 0.269 0.068 0.333 0.427 0.156
DecTree HCDR raw 0.721 0.269 0.068 0.332 0.431 0.157
DecTree SGCC binned 0.631 0.487 0.208 0.217 0.204 0.087
DecTree SGCC raw 0.628 0.509 0.223 0.246 0.167 0.084
DecTree binned > raw - 1 1 2 1 2 2
DecTree Average binned 0.731 0.514 0.144 0.373 0.261 0.227
DecTree Average raw 0.735 0.545 0.145 0.399 0.24 0.239
RandForest CA binned 0.832 0.793 0.153 0.608 0.562 0.46
RandForest CA raw 0.844 0.806 0.15 0.612 0.712 0.475
RandForest DCCCT binned 0.771 0.536 0.135 0.413 0.347 0.277
RandForest DCCCT raw 0.777 0.538 0.135 0.414 0.366 0.281
RandForest HCDR binned 0.728 0.254 0.068 0.343 0.456 0.167
RandForest HCDR raw 0.734 0.263 0.067 0.352 0.466 0.177
RandForest SGCC binned 0.654 0.463 0.196 0.23 0.16 0.145
RandForest SGCC raw 0.704 0.518 0.191 0.361 0.272 0.205
RandForest binned > raw - 0 0 0 0 0 0
RandForest Average binned 0.746 0.512 0.138 0.398 0.381 0.262
RandForest Average raw 0.765 0.531 0.136 0.435 0.454 0.285
NN CA binned 0.836 0.793 0.216 0.612 - 0.463
NN CA raw 0.834 0.806 0.168 0.626 0.246 0.464
NN DCCCT binned 0.764 0.543 0.136 0.414 0.331 0.275
NN DCCCT raw 0.66 0.385 0.24 0.241 0.219 0.1
NN HCDR binned 0.73 0.25 0.068 0.345 0.451 0.169
NN HCDR raw 0.571 0.084 0.078 0.136 0.142 0.02
NN SGCC binned 0.643 0.497 0.207 0.228 0.287 0.121
NN SGCC raw 0.589 0.405 0.214 0.181 0.178 0.069
NN binned > raw - 4 3 3 3 3 3
NN Average binned 0.743 0.521 0.157 0.4 0.357 0.257
NN Average raw 0.664 0.42 0.175 0.296 0.196 0.163
GaussNB CA binned 0.827 0.806 0.169 0.608 0.145 0.454
GaussNB CA raw 0.802 0.78 0.227 0.564 0.217 0.402
GaussNB DCCCT binned 0.759 0.523 0.187 0.402 0.237 0.258
GaussNB DCCCT raw 0.67 0.396 0.417 0.263 0.148 0.119
GaussNB HCDR binned 0.696 0.242 0.081 0.299 0.302 0.136
GaussNB HCDR raw 0.605 0.134 0.073 0.159 0.211 0.036
GaussNB SGCC binned 0.662 0.514 0.212 0.26 0.221 0.144
GaussNB SGCC raw 0.675 0.502 0.217 0.299 0.28 0.154
GaussNB binned > raw - 3 4 3 3 2 3
GaussNB Average binned 0.736 0.521 0.162 0.392 0.226 0.248
GaussNB Average raw 0.688 0.453 0.233 0.321 0.214 0.178
All binned > raw - 12 11 10 10 10 11
All Average binned 0.74 0.517 0.149 0.393 0.326 0.251
All Average raw 0.715 0.489 0.166 0.368 0.293 0.222

The table presents the results of calculating the six evaluation metrics (columns (3)-(8)) on the test set
comprising 20% observations of each data set. Categorical variables were removed from the data sets prior
to estimation. Values in bold signal a better performance of the given model type for the given data set.
Note that except for the Brier score, the higher the value of the metric, the better. The third row from
the bottom for each method shows the number of data sets for which the binned model outperformed the
raw model for a given evaluation metric. The last two rows for each estimation method show the average
value for each metric for each model type across all data sets. The third row from the bottom of the table
shows the total number of cases where the binned model outperformed the raw model across all methods
and data sets. The very last two rows of the table present total averages across all methods and data sets.
∗A missing value for PGI can occur when the selected probability threshold causes all predictions to belong
to the same class, since then the metric is not defined.

Source: Author’s computations
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Table B.13: Permutation tests - estimation without categorical vari-
ables

Method Data set AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg CA 0.128 0.282 0.363 0.229 0.383 0.323
LogReg DCCCT 0.0 0.03 0.0 0.0 0.0 0.0
LogReg HCDR 0.231 0.273 0.52 0.125 0.717 0.549
LogReg SGCC 0.088 0.057 0.932 0.376 0.051 0.107
LogReg p <= 0.05 1 1 1 1 1 1
DecTree CA 0.75 0.96 0.72 0.914 0.583 0.819
DecTree DCCCT 0.62 1.0 0.333 0.694 0.823 0.609
DecTree HCDR 0.943 0.0 0.865 0.367 0.926 0.718
DecTree SGCC 0.526 0.603 0.152 0.676 0.486 0.61
DecTree p <= 0.05 0 1 0 0 0 0
RandForest CA 0.873 0.872 0.711 0.688 0.932 0.765
RandForest DCCCT 1.0 0.754 1.0 0.774 0.998 0.999
RandForest HCDR 1.0 0.997 1.0 1.0 1.0 1.0
RandForest SGCC 0.965 0.816 0.834 0.996 0.904 0.97
RandForest p <= 0.05 0 0 0 0 0 0
NN CA 0.217 0.546 1.0 0.333 0.0 0.292
NN DCCCT 0.0 0.0 0.0 0.0 0.0 0.0
NN HCDR 0.0 0.0 0.0 0.0 0.0 0.0
NN SGCC 0.029 0.2 0.003 0.172 0.03 0.057
NN p <= 0.05 3 2 3 2 4 2
GaussNB CA 0.044 0.022 0.003 0.093 0.419 0.057
GaussNB DCCCT 0.0 0.0 0.0 0.0 0.101 0.0
GaussNB HCDR 0.0 0.0 1.0 0.0 0.0 0.0
GaussNB SGCC 0.551 0.055 0.132 0.729 0.643 0.392
GaussNB p <= 0.05 3 3 2 2 1 2
The values in the table represent the p-values of the null hypothesis that the model with raw variables
performs better or equal to the binned model. As a result, p-values below 0.05 (in bold) signal the
rejection of the null hypothesis in favor of the alternative that the binned model performs better at the 5%
significance level. The last row for each estimation method shows the number of data sets for which the
null is rejected for a given evaluation metric. The permutation tests were performed for 5000 repetitions.

Source: Author’s computations
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Table B.14: Complete results - estimation with one hot encoding

Method Data set Type AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg CA binned 0.847 0.806 0.147 0.621 0.495 0.485
LogReg CA raw 0.821 0.766 0.154 0.59 0.586 0.45
LogReg DCCCT binned 0.767 0.539 0.137 0.411 0.349 0.274
LogReg DCCCT raw 0.723 0.515 0.145 0.381 0.221 0.238
LogReg GMSC binned 0.816 0.34 0.056 0.494 0.588 0.32
LogReg GMSC raw 0.67 0.167 0.063 0.249 0.335 0.09
LogReg HCDR binned 0.729 0.254 0.068 0.342 0.448 0.167
LogReg HCDR raw 0.728 0.256 0.068 0.34 0.45 0.168
LogReg SGCC binned 0.635 0.447 0.2 0.207 0.104 0.132
LogReg SGCC raw 0.622 0.437 0.204 0.252 0.193 0.121
LogReg binned > raw - 5 4 5 4 2 4
LogReg Average binned 0.759 0.477 0.122 0.415 0.397 0.276
LogReg Average raw 0.713 0.428 0.127 0.362 0.357 0.213
DecTree CA binned 0.781 0.785 0.176 0.487 0.461 0.338
DecTree CA raw 0.824 0.849 0.153 0.621 0.013 0.452
DecTree DCCCT binned 0.755 0.544 0.137 0.396 0.306 0.259
DecTree DCCCT raw 0.766 0.553 0.136 0.399 0.35 0.263
DecTree GMSC binned 0.809 0.368 0.057 0.474 0.58 0.305
DecTree GMSC raw 0.811 0.364 0.056 0.482 0.581 0.314
DecTree HCDR binned 0.715 0.256 0.068 0.323 0.419 0.153
DecTree HCDR raw 0.721 0.269 0.068 0.332 0.431 0.157
DecTree SGCC binned 0.65 0.509 0.197 0.251 0.131 0.134
DecTree SGCC raw 0.628 0.509 0.223 0.246 0.167 0.084
DecTree binned > raw - 1 1 1 1 1 1
DecTree Average binned 0.742 0.492 0.127 0.386 0.379 0.238
DecTree Average raw 0.75 0.509 0.127 0.416 0.308 0.254
RandForest CA binned 0.836 0.793 0.155 0.603 0.516 0.457
RandForest CA raw 0.844 0.806 0.15 0.612 0.712 0.475
RandForest DCCCT binned 0.767 0.532 0.137 0.406 0.324 0.27
RandForest DCCCT raw 0.777 0.538 0.135 0.414 0.366 0.281
RandForest GMSC binned 0.812 0.34 0.057 0.494 0.61 0.306
RandForest GMSC raw 0.826 0.361 0.055 0.508 0.621 0.34
RandForest HCDR binned 0.711 0.23 0.069 0.321 0.423 0.141
RandForest HCDR raw 0.734 0.263 0.067 0.352 0.466 0.177
RandForest SGCC binned 0.666 0.512 0.198 0.251 0.219 0.14
RandForest SGCC raw 0.704 0.518 0.191 0.361 0.272 0.205
RandForest binned > raw - 0 0 0 0 0 0
RandForest Average binned 0.759 0.482 0.123 0.415 0.418 0.263
RandForest Average raw 0.777 0.497 0.12 0.449 0.487 0.296
NN CA binned 0.853 0.806 0.146 0.648 0.589 0.506
NN CA raw 0.834 0.806 0.168 0.626 0.246 0.464
NN DCCCT binned 0.768 0.535 0.137 0.409 0.358 0.277
NN DCCCT raw 0.66 0.385 0.24 0.241 0.219 0.1
NN GMSC binned 0.819 0.348 0.056 0.505 0.601 0.325
NN GMSC raw 0.771 0.306 0.06 0.426 0.542 0.252
NN HCDR binned 0.728 0.251 0.068 0.34 0.445 0.167
NN HCDR raw 0.571 0.084 0.078 0.136 0.142 0.02
NN SGCC binned 0.614 0.457 0.203 0.237 0.049 0.128
NN SGCC raw 0.589 0.405 0.214 0.181 0.178 0.069
NN binned > raw - 5 4 5 5 4 5
NN Average binned 0.757 0.48 0.122 0.428 0.408 0.281
NN Average raw 0.685 0.397 0.152 0.322 0.265 0.181
BernoulliNB CA binned 0.863 0.793 0.141 0.612 0.589 0.507
BernoulliNB CA raw 0.802 0.78 0.227 0.564 0.217 0.402
BernoulliNB DCCCT binned 0.736 0.504 0.17 0.373 0.217 0.218
BernoulliNB DCCCT raw 0.67 0.396 0.417 0.263 0.148 0.119
BernoulliNB GMSC binned 0.782 0.24 0.07 0.457 0.531 0.24
BernoulliNB GMSC raw 0.691 0.219 0.067 0.271 0.353 0.127
BernoulliNB HCDR binned 0.697 0.204 0.07 0.3 0.385 0.117
BernoulliNB HCDR raw 0.605 0.134 0.073 0.159 0.211 0.036
BernoulliNB SGCC binned 0.656 0.492 0.206 0.255 0.246 0.114
BernoulliNB SGCC raw 0.675 0.502 0.217 0.299 0.28 0.154
BernoulliNB binned > raw - 4 4 4 4 4 4
BernoulliNB Average binned 0.747 0.447 0.132 0.399 0.394 0.239
BernoulliNB Average raw 0.689 0.406 0.2 0.311 0.242 0.168
All binned > raw - 15 13 15 14 11 14
All Average binned 0.753 0.475 0.125 0.409 0.399 0.259
All Average raw 0.723 0.447 0.145 0.372 0.332 0.222

*
Source: Author’s computations



B. Tables XIV

*The table presents the results of calculating the six evaluation metrics (columns (3)-(8)) on the test set
comprising 20% observations of each data set. For the binned model, the discretized features were one
hot encoded. Values in bold signal a better performance of the given model type for the given data set.
Note that except for the Brier score, the higher the value of the metric, the better. The third row from
the bottom for each method shows the number of data sets for which the binned model outperformed the
raw model for a given evaluation metric. The last two rows for each estimation method show the average
value for each metric for each model type across all data sets. The third row from the bottom of the table
shows the total number of cases where the binned model outperformed the raw model across all methods
and data sets. The very last two rows of the table present total averages across all methods and data sets.

Table B.15: Permutation tests - estimation with one hot encoding

Method Data set AUC F2-score Brier score KS statistic Partial GINI Index H-measure
LogReg CA 0.125 0.184 0.265 0.408 0.492 0.322
LogReg GMSC 0.0 0.0 0.0 0.0 0.0 0.0
LogReg DCCCT 0.0 0.0 0.0 0.0 0.0 0.0
LogReg HCDR 0.286 0.48 0.476 0.451 0.772 0.69
LogReg SGCC 0.236 0.192 0.084 0.957 0.896 0.201
LogReg p <= 0.05 2 2 2 2 2 2
DecTree CA 0.942 0.615 0.832 0.985 0.109 0.971
DecTree GMSC 0.844 0.065 1.0 0.95 0.565 0.987
DecTree DCCCT 0.987 0.014 0.87 0.847 0.997 0.915
DecTree HCDR 0.998 0.881 0.889 0.964 0.998 0.969
DecTree SGCC 0.362 0.123 0.053 0.516 0.645 0.274
DecTree p <= 0.05 0 1 0 0 0 0
RandForest CA 0.815 1.0 0.848 0.753 0.946 0.852
RandForest GMSC 1.0 0.999 1.0 0.977 0.97 1.0
RandForest DCCCT 0.999 0.793 1.0 0.901 0.999 1.0
RandForest HCDR 1.0 1.0 1.0 1.0 1.0 1.0
RandForest SGCC 0.918 0.338 0.943 0.982 0.73 0.979
RandForest p <= 0.05 0 0 0 0 0 0
NN CA 0.132 0.637 0.01 0.109 0.037 0.069
NN GMSC 0.0 0.0 0.0 0.0 0.0 0.0
NN DCCCT 0.0 0.0 0.0 0.0 0.0 0.0
NN HCDR 0.0 0.0 0.0 0.0 0.0 0.0
NN SGCC 0.082 0.254 0.018 0.037 0.609 0.036
NN p <= 0.05 3 3 5 4 4 4
BernoulliNB CA 0.003 0.248 0.0 0.058 0.011 0.004
BernoulliNB GMSC 0.0 0.606 1.0 0.0 0.0 0.0
BernoulliNB DCCCT 0.0 0.0 0.0 0.0 0.189 0.0
BernoulliNB HCDR 0.0 0.0 0.0 0.0 0.0 0.0
BernoulliNB SGCC 0.553 0.144 0.226 0.803 0.457 0.836
BernoulliNB p <= 0.05 4 2 3 3 3 4
The values in the table represent the p-values of the null hypothesis that the model with raw variables
performs better or equal to the binned model. As a result, p-values below 0.05 (in bold) signal the
rejection of the null hypothesis in favor of the alternative that the binned model performs better at the 5%
significance level. The last row for each estimation method shows the number of data sets for which the
null is rejected for a given evaluation metric. The permutation tests were performed for 5000 repetitions.

Source: Author’s computations



Appendix C

Software implementation

All data preprocessing steps and analyses in this thesis were performed using
the Python programming language. The main two utilized packages are the
"OptBinning" module containing the implementation of the optimal binning
algorithm (Navas-Palencia 2023) and the "scikit-learn" package providing vari-
ous functionalities for predictive modeling, including estimation methods, data
partitioning, and evaluation metrics (Pedregosa et al. 2011).

The code necessary for the replication of the results of this thesis is publicly
available in the following GitHub repository: https://github.com/Matyas-M
attanelli/Master-Thesis

https://github.com/Matyas-Mattanelli/Master-Thesis
https://github.com/Matyas-Mattanelli/Master-Thesis
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