
MASTER THESIS

Věra Kumová

Creating Adversarial Examples in
Machine Learning

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: Mgr. Martin Pilát, Ph.D.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2021

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my thesis supervisor, Mgr. Martin Pilát, Ph.D., for his
helpful comments and advice as well as tremendous support during this work. I
would also like to thank my two great friends for providing me computational
resources to successfully complete my experiments.

ii

Title: Creating Adversarial Examples in Machine Learning

Author: Věra Kumová

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Martin Pilát, Ph.D., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: This thesis examines adversarial examples in machine learning, specif-
ically in the image classification domain. State-of-the-art deep learning models
are able to recognize patterns better than humans. However, we can significantly
reduce the model’s accuracy by adding imperceptible, yet intentionally harmful
noise. This work investigates various methods of creating adversarial images as
well as techniques that aim to defend deep learning models against these mali-
cious inputs. We choose one of the contemporary defenses and design an attack
that utilizes evolutionary algorithms to deceive it. Our experiments show an
interesting difference between adversarial images created by evolution and im-
ages created with the knowledge of gradients. Last but not least, we test the
transferability of our created samples between various deep learning models.

Keywords: Adversarial examples; Deep Learning; Image classification; Evolution-
ary Algorithms

iii

Contents

Introduction 3

1 Theoretical background 4
1.1 Basics of Neural Networks . 4
1.2 Image Processing with Neural Networks 6

1.2.1 Architectures . 8
1.3 Evolutionary Algorithms . 9

1.3.1 Simple Genetic Algorithm 9
1.3.2 Differential Evolution . 10

2 Adversarial examples: existing approaches 12
2.1 Pioneering works . 12
2.2 Attacks . 14

2.2.1 White box attacks . 16
2.2.2 Black box attacks . 18
2.2.3 Evolutionary attacks . 21

2.3 Defenses . 26
2.3.1 Proactive defenses . 26
2.3.2 Reactive defenses . 27

3 Evolutionary Approach to Creating Adversarial Examples 31
3.1 Evolutionary Setup . 31
3.2 Experimental Setup . 35

4 Results 37
4.1 Results Replication . 37

4.1.1 Thresholds computation 39
4.2 Inception-v3 . 41

4.2.1 Noisy attacks . 41
4.2.2 Evolutionary attacks . 43
4.2.3 Effect of Interpolation and Transferability 47
4.2.4 Results analysis . 49
4.2.5 Comparison with the attack by Meunier et al. [2019] . . . 51

4.3 ResNet-101 . 52
4.3.1 Noisy attacks . 52
4.3.2 Evolutionary attacks . 52
4.3.3 Effect of Interpolation and Transferability 54
4.3.4 Results analysis . 56

4.4 ResNet-152 . 58
4.4.1 Evolutionary attacks, Interpolation, Transferability 58
4.4.2 Results analysis . 60

Conclusion 63

Bibliography 65

1

List of Figures 70

List of Tables 72

A Attachments 74
A.1 Digital Content . 74

2

Introduction
Machine learning has achieved many significant successes in recent years. How-
ever, it turns out that most models are sensitive to so-called adversarial exam-
ples. This work focuses on adversarial examples in image classification, where
these samples represents slightly modified patterns so that humans are not able
to recognize this perturbation, but even state of the art deep learning models
classify such a pattern incorrectly.

The question of adversarial examples in image processing rightfully draws
an attention since the deep learning models are used in many industries and
adversarial attacks on these models can pose a security threat. Therefore, many
researchers investigate either the methods of defending neural networks against
adversarial attacks or methods of creating new and more sophisticated adversarial
perturbations which deceive current defenses. The goal of this work is the second
aspect of adversarial examples research, thus finding adversarial examples that
will be able to defeat modern methods of defense. As we will see later, adversarial
examples can be crafted with various amount of information about the model we
aim to deceive. We chose to design a black box attack which uses minimum
knowledge and utilizes evolutionary algorithms.

This work aims to summarize the methods of adversarial attacks with the focus
on evolutionary techniques. The next and main goal is to use the knowledge and
results from previous works and design adversarial attack capable of deceiving one
of the modern defenses. Last, we aim to test the transferability of our designed
adversarial attack between models, including an adversarially trained network.

This work is organized as follows. First chapter describes the fundamental
knowledge about neural networks, deep learning and evolutionary algorithms,
which is necessary for understanding the basic idea of adversarial examples. Sec-
ond chapter defines the adversarial examples, describes their taxonomy and sum-
marizes the methods of attacks and defenses. Since the topic of adversarial exam-
ples is very actual, there are inexhaustible amount of attacks and defenses. We
do not aim to cover all of them. Instead, we chose methods which we consider as
influencing, impressive or important for our further experiments. Third chapter
describes the approach we designed to defeat one of the modern defenses against
adversarial images. In last chapter, we report the result of our experiments and
analyze them.

3

1. Theoretical background
This chapter outlines the fundamental knowledge required for the understanding
of the following theory as well as experiments. In the next sections, we will
discuss a phenomenon called adversarial examples in image processing. Therefore
it is necessary to explain basic approaches to this problem. We will also utilize
evolutionary algorithms, which we also describe.

1.1 Basics of Neural Networks
Image processing, as we know it today, is possible thanks to models called neural
networks. Even though neural networks are now in tremendous use, the idea
behind them is relatively old. We can learn from the book of Š́ıma and Neruda
[1996] that the origin of this field was in the 1940s with a basic mathematical
model of the neuron created by McCulloch and Pitts. In 1957 Rosenblatt [1958]
invented perceptron, which was the generalization of the previous model. He also
proposed a learning algorithm and proved its convergence if the solution exists.
The interest in neural nets has then retreated to the background. In 1986 an
article was published by Rumelhart et al. [1986] about a learning algorithm called
backpropagation, although the algorithm itself was created 16 years earlier by
Linnainmaa [1976]. This algorithm was designed for multilayer neural networks
and is still the most popular and most used algorithm for learning neural nets.

Figure 1.1: An example architecture of a multilayer perceptron by LeDell [2016].

An example architecture of a multilayer perceptron is displayed in Figure
1.1. Each circle represents a neuron, and all neurons are organized into layers.
There are an input layer, hidden layers, and an output layer. All neurons are
interconnected in a specific manner so that the information flows from the input
layer through hidden layers to the output layer. Each connection has a weight w,
a parameter, which needs to be learned. Neurons have one or more inputs and
one output. The output y of a neuron depends on its inputs x, its activation
function f , and its specific number υ called bias:

4

y = f(
n∑︂

i=1
xiwi + υ)

It is obvious, that a neural network computes a compound function h(x) = y,
where x ∈ Rm is an input and y ∈ Rk is an output. All network parameters,
weights and biases, are denoted as θ.

In general, there are two types of learning: supervised and unsupervised. In
unsupervised learning, we want to find some hidden structures and connections
in data. An example is a k-means algorithm, which finds clusters in data based
on some measure of similarity. On the other hand, supervised learning aims to
create a model, which learns to produce specific output based on training data1.
Each example in the training data consists of one or more input values and the
output value, which can be a class (a classification problem) or a number (a
regression problem). We will consider only the classification setting because the
goal of adversarial examples is to confuse the model so that it wrongly classifies
the input pattern. In the classification scenario, the network represents an m-
class classifier. Its output is a vector of probabilities, whose length is m. It is
computed using the softmax function defined by the formula

σ(z)i = ezi∑︁K
j=1 ezj

,

where z ∈ Rk. The inputs to the softmax function are called logits. The class
with the highest probability is then chosen as the final classification of the input
pattern:

C(x) = arg maxih(x)i

The backpropagation algorithm was designed for supervised learning and ap-
plies gradient descent to minimize an error function. The idea behind this algo-
rithm is crucial because it is applied for creating adversarial examples. The error
function, which instantly comes to mind and is often used, computes the sum
of squares and is described by Equation 1.1, where p is a number of patterns in
training data, j is a number of classes, y is an actual output of the neural network
and d is the desired output.

E = 1
2

∑︂
p

∑︂
j

(yj,p − dj,p)2 (1.1)

With every step of the algorithm, we want to get closer to the minimum of
the error function. Each weight needs to be changed by a small bit in a good
direction. This direction is given by a gradient ∆Ewi,j (t), where wi,j is a weight
from neuron i to neuron j and t represents time. The whole adaptation step looks
like this:

wi,j (t + 1) = wi,j (t) + ∆Ewi,j (t)
The gradient is computed with respect to the weight, so the chain rule is applied:

∆Ewi,j = − ∂E

∂wi,j

= −∂E

∂yj

∂yj

∂ξj

∂ξj

∂wi,j

1During a training process, validation data for hyperparameters setting and testing data for
evaluation of the network’s performance are used.

5

The result depends, among other things, on the layer location. For more details,
see Rojas [1996], chapter 7.

In a classification problem, the output of the neural network is a probability
distribution. Therefore there is a better choice for an error function, which draws
inspiration from information theory. It is called cross-entropy loss, or log loss,
and is defined in Equation 1.2.

L = −
∑︂

i

pi log qi (1.2)

Minimizing the cross-entropy corresponds to minimizing the Kullback-Leibler
(KL) divergence, which measures how two probability distributions differ. The
KL divergence is defined as

DKL(P ∥ Q) = EX∼P

[︄
log P (x)

Q(x)

]︄
= EX∼P [log P (x)− log Q(x)] ,

where, in our case, P (x) is the desired probability distribution represented by a
one-hot vector with 1 in a place of true class, and Q(x) is the output probability
distribution of the neural network. For more information about the KL divergence
and its properties, see Goodfellow et al. [2016].

1.2 Image Processing with Neural Networks
Neural networks used for image processing are called convolutional because they
apply an operation called convolution2. According to Goodfellow et al. [2016],
the modern convolutional networks were developed by LeCun in 1989. They were
some of the first deep neural networks trained with the backpropagation algorithm
and further some of the first networks utilized for commercial applications, e.g.,
reading checks in the 1990s.

The basic building blocks of convolutional networks are layers, which apply
a so-called kernel or filter. Because we speak only about image processing, we
can limit ourselves to 2-D convolutions. The kernel represents a sliding window
of some smaller size, looking for a specific feature throughout a whole image.
In this manner, a series of kernels produces a 2-D map of particular features in
the input image, each kernel extracting one kind of feature. Considering that
detecting a feature in an image is positionally insignificant, this approach with
a convolutional kernel is more computationally efficient than applying a fully
connected (FC) layer with significantly more parameters.

In Figure 1.2, there is an example of convolutional operation with a 2×2 kernel
and a 3 × 4 input. The resulting output has a 2 × 3 size because we compute a
convolution only in positions where the kernel fully lies within the input image.
This is called a valid padding. Padding is a method of how to deal with image
edges.

2As a matter of fact, a mathematical operation applied in convolutional networks is the cross-
correlation. However, because it resembles a convolution, the name convolutional networks were
adopted. Probably a more appropriate name would be a positionally invariant locally activated
networks. For more detailed information, see Goodfellow et al. [2016] or Straka [2018].

6

Figure 1.2: An example of 2-D convolution by Goodfellow et al. [2016].

A convolution operation produces a linear activation. Then a nonlinear acti-
vation is applied, most often rectified linear unit (ReLU), defined as

f(x) = max(0, x),

less often hyperbolic tangent

tanh x = ex − e−x

ex + e−x
.

Goodfellow et al. [2016] refer to this as the detector stage. A pooling layer follows,
which replaces the output of nonlinear activation with some summary statistics.
The pooling operation is also used for shrinking the output and, therefore, im-
proving the whole network’s computational efficiency. Figure 1.3 shows how max
pooling along with downsampling works.

Figure 1.3: An example of a pooling operation with downsampling by Goodfellow
et al. [2016].

Several FC layers follow a series of convolutional and pooling layers because
the information from the map of features needs to be connected together. Then,
the softmax activation function follows for classification purposes. Different ar-
chitectures vary in size of kernels, activation functions, and depth of the whole
network, but some also adopt specific improvements.

7

1.2.1 Architectures
In Chapter 3, we use three architectures, VGG, ResNet and GoogLeNet (Incep-
tion). Let us introduce them very briefly.

Simonyan and Zisserman [2015] introduced VGG networks in 2014 as a model
with the generic layout described above but with numerous convolutional layers.
The architecture used in Chapter 3 has 16 convolutional and 3 FC layers. There-
fore, it is referred to as VGG-19. Unlike architectures used before, VGG applies
a smaller kernel size, mainly 3 × 3. A stack of two 3 × 3 kernels has the same
receptive field as one 5 × 5 kernel but fewer parameters. When we compare a
stack of three 3 × 3 kernels with one 7 × 7 kernel, the receptive field is still the
same, but the difference in the number of parameters is even more vigorous.

Unfortunately, even with smaller kernels, the convolutional network cannot
be deepened indefinitely because of a degradation problem when adding more
layers leads to accuracy saturation and consequently higher training error. He
et al. [2016] solve the degradation by a deep residual learning. They utilize short-
cut connections displayed in Figure 1.4 as identity. These residual connections
represent no extra parameters nor computational complexity, and their output is
element-wise added to the outputs of at least two stacked weighted layers, either
convolutional or fully connected.

Figure 1.4: A building block of ResNet architecture by He et al. [2016].

The deepest ResNet architecture has 152 layers and besides residual connec-
tions exploits a bottleneck building block. The bottleneck represents three stacked
layers with 1× 1, 3× 3 and 1× 1 convolutions. In Chapter 3 we use ResNet101
and ResNet152.

Last architecture we use is Inception-v3 by Szegedy et al. [2016]. Its advantage
is lower computational cost thanks to fewer parameters than VGG. On the other
hand, it has a more complex architecture because it utilizes special modules with
various kernels. One such module is depicted in Figure 1.5. It applies at most
3 × 3 kernel, same as VGG. On the other hand, it does not have as many fully
connected layers at its end. Inception implements global pooling instead, which
spares parameters. It is not as deep as ResNet architectures, which we use, as it
has only 48 layers.

Inception-v3 adopts two more techniques, which we did not see in previous
architectures. First of them are auxiliary classifiers implemented in lower layers
for regularization and additional gradients in backpropagation. Second is label
smoothing for the model to be less confident and therefore more adaptive.

Last note to image processing concerns standard deep learning datasets. Most
used datasets for computer vision tasks are MNIST, CIFAR-10 and ImageNet.

8

Figure 1.5: A module of Inception architecture by Szegedy et al. [2016].

MNIST by LeCun and Cortes [1999] contains handwritten single digits. The
images are in grayscale and only 28× 28 pixels small, so they do not correspond
to today’s real-world scenarios. CIFAR-10 by Krizhevsky et al. [2009] contains
color and slightly bigger images of 32 × 32 pixels. Images are in 10 classes.
There is also CIFAR-100 with 100 classes. ImageNet by Deng et al. [2009] is the
most extensive database of millions of color images in full resolution. Since 2010,
there is a contest called the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), where authors compete to provide the best performing model for
image processing. As the database is so enormous, there is always only a subset
of it. In Chapter 3, we do experiments also on a subset of ImageNet.

1.3 Evolutionary Algorithms
Evolutionary algorithms (EA) are optimization methods motivated by Darwin’s
theory. The basic idea is to find a solution to the problem using populations
of potential solutions called individuals and stochastic operations inspired by
evolution such as selection, mutation, or crossover. We describe a simple genetic
algorithm and then a method we are experimenting with in Chapter 3, called
differential evolution.

1.3.1 Simple Genetic Algorithm
Simple genetic algorithm (SGA) is an original version of evolutionary algorithms
proposed by Holland in the 1970s. Although we discuss adversarial examples
in more detail in Chapter 2, we explain the concept of SGA on them to better
understand it.

Suppose we have an image from the MNIST dataset. It is a grayscale image
of 28 × 28 pixels; therefore, we can represent it in a vector of 784 real numbers.
We aim to modify the image in such a way that some neural network classifies
the image incorrectly. We can achieve this by adding noise to the image that can
also be represented in a vector of length 784, but this time there are zeros and
ones. Ones mean we add a small number to the pixel, e.g., 0.1. Zeros mean we do
not perform any change in that position. Thus, all possible vectors of zeros and
ones of length 784 are candidate solutions to the problem, which is 1.02 × 10236

9

potential solutions in total. This search space is enormous, so SGA provides a
heuristic to speed up computation.

To compare two candidate solutions, we need a so-called fitness function.
Fitness should reflect the quality of individuals, and often we aim to maximize it.
In our example, a good fitness could be a probability of the true class returned by
a neural network. As the probability should be the lowest possible, we can turn
it into a maximization problem by subtracting the probability from one. Also,
the algorithm can be implemented as a minimization problem.

With having a measure to select the best solution, we can choose individuals
according to their fitness function values to apply genetic operators. Roulette
wheel selection is often used, in which the probability of being chosen is pro-
portional to the quality of an individual’s fitness. Both crossover and mutation
then happen only with some specific probability. Crossover is an operation for
creating two new individuals, offspring, by crossing two selected old individuals,
parents. The basic kind of crossover is a one-point crossover, where we randomly
select a point in an individual. One child is then created by copying a part of one
parent to that point and copying the rest from the second parent. Second child
has opposite contributions from parents. This approach can be generalized also
to n-point crossover. By mutation, we alter a single individual by some minor
change. In this case, it can be flipping one bit from zero to one or the other way
around. The whole algorithm in pseudocode looks like this:

t← 0;
Pt ← first population of n individuals generated at random;
while condition not met do

compute fitness value for each individual in Pt;
with repetition select n parents based on their fitness;
Ot ← create offspring from parents by applying crossover with
probability pc and mutation with probability pm;

Pt+1 ← Ot;
t← t + 1;

end
Algorithm 1: Simple Genetic Algorithm

The condition for ending the while loop could be reaching a predefined number
of generations or fulfilling some criteria for the best individual. In our example,
evolution is successful if the adjusted image fools the classifier. Also, the algo-
rithm can be stopped if the best fitness for a given number of generations does
not change. For more detailed information, see Š́ıma and Neruda [1996] or Pilát
[2020].

1.3.2 Differential Evolution
Continuous optimization where an individual is a vector of real numbers is better
suited for adversarial examples crafting. We can apply the same approach for con-
tinuous optimization as in SGA, but with modified genetic operations. Mutation
can be done by adding a small number to each position with a small probability.
Apart from the n-point crossover, we can use arithmetic crossover where a child

10

is a weighted average of parents. The problem of this approach is the inability to
optimize non-separable or highly conditioned functions. Therefore, in Chapter 3,
we use differential evolution.

In differential evolution, each individual undergoes mutation and crossover,
and the mutation looks quite differently. For every individual x in a population,
we randomly choose three other individuals xa, xb and xc, and we create a donor:

v = xa + F (xb − xc),

where F is a mutation parameter from range ⟨0, 2⟩. Donor v is then uniformly
crossed with parent x. It means that for each position, we take value from the
donor with probability pc or from the parent probability 1 − pc. Furthermore,
the crossover is done so that at least one element comes from the parent. The
resulting individual goes into the next generation if it has better fitness than the
parent. Otherwise, the parent stays for the next generation. Selection is thus
deterministic. This is differential evolution in pseudocode:

t← 0;
Pt ← first population of n individuals generated at random;
while condition not met do

Pt+1 ← ∅;
for each individual x in Pt do

xa, xb, xc ← individuals selected from Pt at random;
v ← xa + F (xb − xc);
SP ← number of safe position generated at random;
for each position i in x do

RN ← real number generated at random from ⟨0, 1⟩;
if RN ≤ pc and i ̸= SP then

x[i]← v[i];
end

end
if fitness(x) ≤ fitness(v) then

add v to Pt+1;
end
else

add x to Pt+1;
end

end
t← t + 1;

end
Algorithm 2: Differential Evolution

In the next chapter, we describe creating adversarial examples using other
approaches inspired by evolution, such as particle swarm optimization or evolu-
tionary strategies. As we do not use these methods in experiments in Chapter 3,
we do not describe them in more details. For more information about these
methods, see original papers cited with the approach or see Eiben and Smith
[2015].

11

2. Adversarial examples: existing
approaches
This chapter summarizes the theoretical background of adversarial examples.
As it is a prevalent topic, there are many approaches to creating adversarial
examples or defending against them. Therefore, we describe only methods that
are influencing, ingenious, or important for our experiments.

2.1 Pioneering works
The first paper, which referred to adversarial examples, was written by Szegedy
et al. and published in 2014. The authors made a breakthrough discovery that
input–output mapping learned by deep neural networks is not as continuous as
we would expect it to be.

During the training of computer vision models, adjusted images are used for
better generalization and robustness of the models. These adjustments might
include flipping the image, introduction of the Gaussian noise, color distortion,
etc. Adjustments of this kind are well recognized by humans, and of course, there
should be no change in predicted class. However, Szegedy et al. [2014] showed
that when we use a specific distortion, even such that is not visible by the human
eye, the predicted label will change dramatically, and the model might be fairly
confident with the wrong prediction.

The important property of this specific distortion is non-randomness. In this
case, the perturbation is applied in such a manner that the prediction error is max-
imal. Authors created their adversarial examples by solving a box-constrained
optimization problem, where having a classifier C : Rm → {1 . . . k}, input image
x ∈ Rm and given a label l ∈ {1 . . . k}, the aim is to find a minimal ∥η∥2 such
that these conditions hold:

1. C(x + η) = l

2. x + η ∈ [0, 1]m

In other words we are looking for a ”minimum distortion” function D(x, l)
which finds such η that when label of x is k then x + η is classified by f as l ̸= k
and x + η is closest image to x as possible. As the exact computation of D(x, l)
is a hard problem, authors computed an approximation using a box-constrained
L-BFGS 1.

Authors made a series of experiments with different architectures trained on
different datasets and found out important properties of adversarial examples.
The first one is cross model generalization, which means that when adversarial
examples are created against one neural network, then a relatively large portion
of them is also misclassified by a different network that was trained from scratch
with different hyperparameters such as a number of layers, activations or regu-
larization. Second significant property is cross training-set generalization. This

1Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm, which uses an linear
search for finding the optimal value.

12

means that a relatively large portion of adversarial examples created against one
neural network is also misclassified by a different network trained on a completely
distinct dataset.

It is worth emphasizing that adversarial examples and distorted images used
during training, as mentioned above, have distinct properties from a statistical
point of view. Distorted images are highly correlated and drawn from the same
distribution as the images from the training set. On the other hand, adversarial
examples are extremely low probable images, so-called ”pockets” in the network’s
manifold. Nevertheless, an adversarial image can be found for every test example,
which means that they are dense despite their low probability.

One year later, a second major paper was published, which sheds a different
light on how and why adversarial examples are made. According to Goodfellow
et al. [2015], the vulnerability of neural networks to adversarial examples is caused
by their linearity. It is an entirely different point of view from Szegedy et al. [2014]
as they thought they are caused by nonlinearity and overfitting.

The basic idea behind linearity causing adversarial examples lies in a high
dimension of input space and a vast amount of parameters in a single neural
network. As there is a limited precision of the features, the input x seems to
be for the neural network same as the x∗ = x + η, as long as every element of
the perturbation η is smaller than the precision of the features. More rigorously
∥η∥∞ < ϵ where ϵ is below the distinguishing ability of the classifier. When we
compute a dot product of an adversarial example x̃ and a weight vector of the
neural network w we get

w⊤x∗ = w⊤x + w⊤η.

Then w⊤η is a difference in activation between the original and the perturbed
input. As elements of η are very small the maximal increase of the activation
function can be reached by assigning η = sign(w). Since ∥η∥∞ < ϵ and if we
expect the average value of one element of the vector w to be n then the activation
of the neural network will grow by ϵmn where m is a number of elements of the
weight vector w. From this, we can see that even though a single change of one
element can be infinitesimal, if we add many of them, the final difference could
be large enough to change the classifier’s output completely.

This reasoning gave rise to a computationally much more convenient method
of creating adversarial examples than the L-BFGS algorithm used in the previous
case. The method is called fast gradient sign method (FGSM) and as the name
suggests, it is based on the gradient of the loss function L(θ, x, y) used for the
training where θ are the parameters of a neural network, x is the input and y is
the target associated with it. The perturbation can be computed as

η = ϵsign(∇xL(θ, x, y)).

As can be seen from the formula, the gradient is not computed with respect
to the model’s parameters as usual but with respect to the input image. The
parameter ϵ affects how much the resulting adversarial image will differ from
the original input. According to experiments regarding the transferability of
adversarial examples in Papernot et al. [2017], the value above 0.4 was optimal
as the higher value did not increase transferability much and, on the other hand,
could lead to adversarial examples distinguishable by the human eye.

13

With this fast method for creating adversarial examples, it is possible to train
the model adversarially and by that increase its robustness. Authors experi-
mented with this regularization and found out that models trained adversarially
have more interpretable and localized weights. It is worth mentioning that this
adversarial training is different from adding random noise to the inputs because
the expected dot product of noise vector with zero mean and zero covariance with
any other vector is zero. Therefore the activation will not change, and the result
is only harder training without any regularization effect. Adversarial training is
described in more details in Section 2.3.1.

Much progress has been made since publishing the first papers about adver-
sarial examples. Researchers suggested many types of defenses and also many
new types of attacks. In next sections, we describe some of them to provide a
basic overview.

2.2 Attacks
As discovered by Szegedy et al. [2014], adversarial images are transferable between
models. This property leads to two basic types of attack: white box attack and
black box attack. In a white box attack, an attacker can access the underlying
model, its architecture, weights, hyper-parameters, training process, or training
data. An example of a white box attack is FGSM mentioned earlier. On the
other hand, a black box attack has no such knowledge, and generating adversarial
examples takes advantage of this transferability or uses the attacked model only
as an oracle, which provides a vector of probabilities.

The second categorization of attacks is targeted and non-targeted. In a tar-
geted attack, an attacker crafts adversarial examples so that the fooled network
classifies them as a requested class. It is used in multi-class classification prob-
lems. On the other hand, the aim of a non-targeted attack is for the network to
classify the adversarial input to any class but the true one. According to Yuan
et al. [2019], there are two options for creating a non-targeted attack. One of
them is to lower the probability of the true class. The other one is to compute
several targeted images and take the one with the smallest perturbation. This
implies that non-targeted attacks are less powerful than targeted.

Another categorization of attacks is single-step and multi-step (iterative). In
a single-step attack, an adversarial example is crafted in one iteration; therefore
a gradient needed for the attack is computed only once. These examples are
faster to create, but they are not necessarily as successful as examples crafted in
a multi-step attack.

We can also divide attacks based on the type of computation used for creating
the adversarial input. Most common are gradient-based attack, but there are also
attacks which exploit evolutionary approaches.

These types of attacks could be mixed. For example, we can have a non-
targeted black box attack or multi-step white box attack. A very informative
point of view on types of attacks can also be found in Papernot et al. [2016a].

Figure 2.1, which is slightly modified from the original, shows the dependence
of adversarial goals on knowledge about the model, which should be deceived.
The most manageable goal is just a reduction of the confidence level. Then, mere
misclassification means a non-targeted attack, thus changing the model’s output

14

Figure 2.1: Taxonomy of threat models from Papernot et al. [2016a]

on any other class than the true one. It means reducing the confidence level of
the true class so much that some other class will have higher confidence. Targeted
misclassification means creating an input classified by the model as the chosen
class different from the true one. Created input does not need to resemble any
of the real classes to humans. Nguyen et al. [2015] refers to these inputs also as
fooling images2. The last and most demanding adversarial goal is target/source
misclassification, thus targeted attack, which means changing the output class of
the real input to another specific output class different from the true one.

Regarding the knowledge of the original model, the best scenario for the at-
tacker is the full knowledge of the model. It means the awareness of architecture
F, training data T, and also loss function c used during the training process. Less
informative is the knowledge of only the architecture. When the attacker has a
first or second type of knowledge, it is considered a white box attack. Otherwise,
it is a black box attack. If the attacker knows the distribution of training data,
they can create a surrogate model based on a very similar dataset. The attacker
can only have access to the model as an oracle and ask on any input and get the
output assigned by the original model. The worst case, meaning the least infor-
mative, is having only samples. Samples are input-output pairs, but the attacker
cannot change the input and see the difference in output.

Yuan et al. [2019] also suggest a taxonomy of adversarial attacks based on
2Fooling images can be created using evolution or gradient methods. As these images are

not adversary images as defined before, we will not deal with them further.

15

perturbation and benchmark, but these types already mentioned are sufficient
for our purpose.

Now let’s see some particular examples of attacks.

2.2.1 White box attacks
An attacker using a white box attack has a significant advantage of knowing the
architecture and weights of the target model. With this knowledge, the derivative
can be computed, and the adversary image can be created based on this derivative.

FGSM and its extensions

We have already discussed FGSM method, which is non-targeted. According to
Kurakin et al. [2017], it is usually not very successful, but its straightforward
extension is an iterative version:

x∗
t+1 = Clipx,ϵ{x∗

t + ϵsign(∇xL(x∗
t , ytrue))},

where Clipx,ϵ is element-wise clipping. The iterative method produces more ef-
fective examples, but due to its greedy nature, it tends to end up in local optima,
which leads to poor transferability. Therefore, Dong et al. [2018] integrated the
momentum3 introducing methods both for L∞ and L2 norm.

Another extension of FGSM is fast gradient value method (FGVM) described
in Rozsa et al. [2016]. As the name of the method suggests, FGVM does not
apply only the direction of the gradient but also takes into account the scaled
magnitude. Perturbations in adversarial examples crafted with this method are
more focused with less structural damage.

Basic target class method

Kurakin et al. [2017] describe an alternative to FGSM, which aims to maximize
the probability of a target class. The least likely class, which means the class
with the lowest probability assigned by the model, is suggested as a target class
. The formula for computing such image is

x∗ = x− ϵsign(∇xL(x, ytarget)).

Again, there is an iterative version successful in more than 99% cases, according
to Kurakin et al. [2017].

Saliency maps

Papernot et al. [2016a] describe an attack using the forward derivative and
saliency maps. Saliency maps were described by Simonyan et al. [2014]. It is a
tool used in image classification for identifying the influence of each pixel on the
predicted class. Considering a model with a classification function hk(x), where
x is an input image and k is a class, then computing an influence of each pixel
of the input image is problematic given high non-linearity of the classification

3The method of momentum was designed to accelerate learning with backpropagation algo-
rithm. For more details, see Goodfellow et al. [2016].

16

function. However, using a Taylor expansion, we can get a linear approximation
in the neighborhood of input image x0:

hk(x) ≈ w⊤x, where w = ∂hk

∂x

⃓⃓⃓⃓
⃓
x0

.

According to Simonyan et al. [2014], the saliency map for the given input image
is created in two steps. First, the derivative w is computed using the back-
propagation algorithm. Then, as w is a vector, it is rearranged to correspond
the dimensions of the input image. This rearrangement depends on whether the
image is grey-scale or multi-channel.

This notion of saliency maps is a visualization tool, but Papernot et al. [2016a]
extend it into adversarial saliency maps. The saliency maps used to find such
input feature that its increase leads to the desired adversarial image is computed
as follows:

S(x, t)[i] =

⎧⎪⎪⎨⎪⎪⎩
0 if ∂ht(x)

∂xi
< 0 or ∑︁

j ̸=t
∂ht(x)

∂xi
> 0(︂

∂ht(x)
∂xi

)︂ ⃓⃓⃓⃓
⃓ ∑︁

j ̸=t
∂ht(x)

∂xi

⃓⃓⃓⃓
⃓ otherwise

where x is an input image, i is an input feature, t is a target class such that
t ̸= label(x) and h is the function computed by the model. As can be seen, the
target derivative should be positive, and the overall derivative on other classes
should be negative. Then the increase of the given input feature leads to higher
output probability for the target class or lower output probability for other classes.
The saliency map for finding features which need to be decreased is computed
very similarly, where the only difference is in the first line of the equation in
comparison symbols:

S(x, t)[i] =

⎧⎪⎪⎨⎪⎪⎩
0 if ∂ht(x)

∂xi
> 0 or ∑︁

j ̸=t
∂ht(x)

∂xi
< 0(︂

∂ht(x)
∂xi

)︂ ⃓⃓⃓⃓
⃓ ∑︁

j ̸=t
∂ht(x)

∂xi

⃓⃓⃓⃓
⃓ otherwise

The algorithm for computing adversary image needs five inputs: clean image
x, which will be turned into adversary x∗, target class t, function h, the value
of maximum allowed distortion Υ and the value for the change in one feature
θ. The whole attack consists of three steps in a loop. First is computing the
forward derivative∇h(x∗), then the saliency map S, and the last step is to modify
the feature with the highest value in the map S. The loop is repeated until the
adversarial input has the target class t; thus h(x∗) = t, or until the maximum
distortion is reached; thus ∥x−x∗∥ ≥ Υ . We can see that this attack is targeted
and multi-step.

C&W’s Attack

An attack described in Carlini and Wagner [2017] was created as a response to
defensive distillation, which is one of the defenses specified later in this chapter.
The authors used the gradient method and did a comprehensive search for the
best settings of their attack. The ideas behind this powerful attack are as follows.

The authors started with the basic formulation of the problem, where we
want to minimize the distance between benign and adversarial input, such that

17

classification of the adversarial example is as requested, meaning C(x + η) = t,
and the constraint x + η ∈ [0, 1]m holds. As the first constraint is highly non-
linear, the author reformulated the problem so that it could be better optimized.
They defined a function f, such that C(x+η) = t holds if and only if f(x+η) ≤ 0.
This change leads to an alternative formulation of the problem:

minimize D(x, x + η) + c · f(x + η)

such that x + η ∈ [0, 1]m

where c is a suitable constant. Regarding the function f, the authors tried seven
possible choices, and the most effective one was

f(x) = (max
i ̸=t

(Z(x)i)− (Z(x)t)+

where Z(x) are the logits, so it is the output of the layer before the softmax, and
(e)+ means max(e, 0).

The second modification concerns the box constraint x+η ∈ [0, 1]m. Szegedy
et al. [2014] solved this with L-BFGS, but Carlini and Wagner [2017] investigated
three different methods, which allows them to use a wider range of optimization
methods. For the L2 attack, they chose a change of variables. This means that
instead of optimizing over η, they optimized over w, such that ηi = 1

2(tanh(wi)+
1)− xi. The complete attack for L2 metric is:

minimize ∥12(tanh(w) + 1)− x∥2
2 + c · f(1

2(tanh(w) + 1),

where f is defined as

f(x) = max(max{Z(x)i : i ̸= t} − Z(x)t,−κ).

This loss function is based on the function described before, and κ is used to
control the confidence of the misclassification. In Chapter 3, we denote this
function as the margin loss.

For more details about L0 and L∞ attacks, see Carlini and Wagner [2017].

2.2.2 Black box attacks
When attacking a model without any knowledge of its architecture, parameters or
training set, the basic approach is to exploit transferability, thus obtain a different
independent training set and train a new model with it. The new training set
should come from the same distribution as the original one. This should lead
to a new model with very similar decision boundaries as the original model.
Adversarial examples are then crafted for the new model using some white box
attack. The disadvantage of this approach is its time consumption as mostly it
is needed to train on an extensive dataset to obtain a model most similar to the
original one.

18

Jacobian-based Augmentation

Papernot et al. [2017] suggest a more elaborate method that uses synthetic dataset
and should be possible to use in practical cases. Authors consider an attack where
the only information an attacker has is the labels assigned by the original network
to specific inputs. This original network, which ought to be deceived, is perceived
as an oracle. The attacker is able to ask the oracle about any input and get a
relevant label. Of course, the best substitute of the oracle can be trained when
we ask on every single element from a relevant input domain of the given oracle,
but this approach is impracticable. Instead, the authors suggest a method of
producing such inputs, which leads to the best exploration of the oracle’s decision
boundaries. This method is called Jacobian-based Dataset Augmentation, and as
the name suggests, it uses a Jacobian matrix of the substitute model.

The whole algorithm for training the substitute model M works in training
epochs. In the beginning, we have to choose the architecture for model M , a
number of training epochs, and initial training set T0. The architecture details
of M , such as the number or size of layers, do not significantly impact the per-
formance of the resulting attack. The initial training set could be a randomly
selected subset of the input domain. In each epoch, the current dataset is labeled
with the oracle, and on the labeled dataset, the substitute model M is trained.
The dataset is then augmented using a Jacobian matrix of M :

Tt+1 ← {x + λ · sgn(JM [Õ(x)]) : x ∈ Tt} ∪ Tt,

where Tt is the current dataset, Õ(x) is the label assigned by the oracle to the
input x, JM [Õ(x)] is Jacobian matrix dimension which corresponds to this label
and λ is a parameter influencing how much the new input will be changed. With
this augmentation method, the new dataset should contain inputs that are close
to the decision boundaries. Therefore the final substitute M should mimic the
behavior of the original oracle.

Zeroth Order Optimization

Another black box attack does not exploit the transferability of adversarial ex-
amples at all. Instead, the authors in Chen et al. [2017] used the zeroth order
optimization method4. Their attack is based on white box C&W’s attack, but in
the practical black box setting, where an attacker has only access to inputs and
outputs of the targeted network, two changes needed to be done.

First, the objective function in C&W’s attack uses the logit layer represen-
tation, which is absent in the black box scenario. Instead, the authors modified
the function, so it uses only the output of the targeted network and label of the
desired class:

f(x, t) = max{max
i ̸=t

log[h(x)]i − log[h(x)]t,−κ).

The second change concerns the computation of an approximate gradient. Since
standard backpropagation is not applicable, the authors use for gradient estima-
tion the symmetric difference quotient:

∂f(x)
∂xi

≈ f(x + cei)− f(x− cei)
c

,

4These are so-called derivative-free methods where no derivation is computed.

19

where c is a small constant and ei is a basis vector with one in i-th compo-
nent. With only a small adjustment in the formula, they also compute Hessian
approximation:

∂2f(x)
∂x2

i

≈ f(x + cei)− 2f(x) + f(x− cei)
c2

Relatively extensive computational cost was solved with the proposed algorithm
based on Adam, a method for stochastic optimization by Kingma and Ba [2015],
and stochastic coordinate descent.

Boundary Attack

The Boundary Attack described by Brendel et al. [2018] is a black box attack
that uses only information about the decision of the target model without spe-
cific probabilities. The basic idea is to start with high perturbation, which is
gradually decreased. The initial adversarial example is either a randomly gen-
erated input in case of a non-targeted attack or a sample of the target class in
case of a targeted attack. The perturbation is being adjusted using a simple re-
jection sampling algorithm to be less and less visible. This approach leads to an
adversarial example that is very close to the target model’s decision boundary.

The advantage of this attack is an amount of required knowledge about the
target model and the fact that it does not rely on transferability. It is additionally
robust against the defenses based on gradient masking. On the other hand, this
kind of black box attack requires more computation, which is the price for its
benefits.

Limited queries and imperfect gradient estimation

The last two mentioned and other attacks based on a similar principle of craft-
ing adversarial examples with querying the model deal with numerous queries,
representing a problem either time-wise or even regarding actual monetary cost
for the queries themselves. Several papers deal with limited queries and try to
effectively approximate gradients using evolutionary algorithms. We will discuss
these works in the next section.

Ilyas et al. [2019] go further, and besides effective estimation of gradients, they
also use prior information about gradients, which brings further improvement of
the black box attack. The authors show that for creating a successful adversarial
example, the gradient or its estimation is genuinely needed, but this estimation
does not need to be perfect. According to their experiment, it suffices to have
only 20 % of randomly selected coordinates with an actual gradient to have 60 %
success in fooling the classifier with one step PGD. Then, besides the gradient
estimation with the least square method, they exploit prior knowledge about the
gradient, namely time-dependent and data-dependent priors. Time-dependent
priors benefit from the correlation of successive gradients. Data-dependent priors
utilize a spatially local similarity in images, which allows incorporating of “tiles”.
The gradient does not need to be computed for each pixel, but the average of
gradients for each tile of size k is enough, which reduces dimensionality by k2.
The whole gradients estimation is built on the framework of bandit optimization,
which is a technique for convex optimization based on reinforcement learning.

20

Discrete optimization

Moon et al. [2019] also aim to effectively craft adversarial examples in the sense
of the number of queries. Their approach is although different in the formula-
tion of the problem; instead of continuous optimization, they suggest a discrete
surrogate:

max
x∗

f(x∗) subject to x∗ − x ∈ {ϵ,−ϵ}p

where ϵ is the maximum allowed noise in one pixel and p is the number of pixels
in the image. This problem can be reformulated as finding the pixels in which the
perturbation should be ϵ, and the rest of them should have the perturbation −ϵ,
which is NP-Hard. Thus, the authors exploit the accelerated greedy algorithm
Lazy-Greedy with a hierarchical approach inspired by tiling.

2.2.3 Evolutionary attacks
Evolutionary attacks differ from previous attacks in the overall approach. White
box attacks use exact mathematical formulas to create the adversarial input.
Their utilization of gradient methods leads to faster computation but requires
knowledge about the model’s internals. Evolutionary attacks are suitable for the
black box scenario as no gradient needs to be computed. However, as in some
of the previous black box attacks, the evolutionary attacks can suffer from high
computational cost, which grows with the image size.

One Pixel Attack

Su et al. [2019] describe the evolutionary attack, which differs from others in the
strength and focus of perturbation. When considering L2 attacks, most of them
construct adversarial inputs such that total distortion from the original image
is minimal but does not restrict the number of changed pixels. Therefore many
pixels can be modified in a way that humans cannot notice. On the other hand,
one pixel attack aims to modify only one pixel but does not limit the strength
of the modification. Actually, paper by Su et al. [2019] is not the first one about
an attack where only one pixel is perturbed. Narodytska and Kasiviswanathan
[2017] introduced a black box attack, where only one or a few pixels were changed.
First, they used completely random perturbation, and for perturbing more pixels,
they used a greedy local search. They also showed a connection between pixels
found with their local-search procedure and saliency maps.

Nevertheless, this change in the restriction effectively tackles the handicap
of evolution regarding the computation cost. Su et al. [2019] utilize differential
evolution and further compare the evolutionary approach with a random attack.
The evolution gave better results.

Their methodology is the following. An individual consists of a fixed number
of perturbations where one perturbation modifies one pixel. Each perturbation
contains five elements: coordinates in two-dimensional space and RGB values.
There are 400 individuals in each population, and a new generation is produced
based on the formula:

xi(t + 1) = xa(t) + F · (xb(t) + xc(t)),

21

Figure 2.2: Examples of adversarial images created by One Pixel Attack.

where a ̸= b ̸= c, t is the index of the current generation, xi is an element of one
individual, a, b and c are random numbers, and parameter F is set to 0.5. The
maximum number of generations is 100, but the authors included early stopping
criteria based on the type of attack. In the targeted attack, the evolution stopped
when the desired class had more than 50 % probability. In the non-targeted
attack, the stopping criterion was a probability of less than 5 % for the true
class. This implies that the fitness function was either the probability of the
desired or true class. The authors additionally did not use the crossover. Figure
2.2 shows examples of this attack.

Adversarial scratches

The work of Jere et al. [2019] can be seen as an extension of the previous One Pixel
Attack. The authors crafted adversarial examples using scratches in the form of
simple geometric shapes, either lines or second-degree Bézier curves. Figure 2.3
shows an adversarial example created by this method.

Figure 2.3: Original image and image perturbed by adversarial scratches tech-
nique.

Their L0 black box attack has two scenarios which are in network domain or
image domain setup. The image domain setup holds a restriction for pixel values,
which must lie in the range [0,1] for RGB images. Also, the whole scratch was

22

created in a single color. For this scenario, they used differential evolution. The
network domain scenario forces no such restriction; therefore, covariance matrix
adaptation evolution strategy was used.

The disadvantage of the high dimensionality of evolutionary black box attacks
is, in this case, surpassed by parameterization of the adversarial scratches and
focusing on perturbing only a small part of the image. For example, in the image
domain setup, the individual is either a 10 or 7-dimensional vector depending on
the type of scratch. In the network domain setup, the individual is even smaller
as there is no restriction on the pixel’s color. In both setups the same fitness func-
tions were used. For targeted attacks, authors wanted to simultaneously increase
the confidence of the target class and reduce the confidence of the true class. The
logarithm was used for numerical stability and the whole fitness function is this:

fit(x) = α · log(h(x)t)− β · log(h(x)s),

where t is a target class, s is a true class and parameters α and β were set to
1 and 50. For non-targeted attacks, the fitness function aimed to maximize the
entropy of the predictions:

fit(x) = H(x) = −
K∑︂

i=0
h(x)i · log(h(x)i). (2.1)

GenAttack

GenAttack is a targeted black box attack of Alzantot et al. [2019], which does
not aim to modify only a small fraction of pixels or approximate the gradients,
but utilizes basic genetic algorithms with adaptive parameter scaling and dimen-
sionality reduction.

The initialized population consists of examples around the given benign in-
put. Thus, an individual i is computed as xorig + U(−ϵmax, ϵmax), where added
noise is generated from uniform distribution bounded by maximal possible distor-
tion. The fitness function is similar to the targeted fitness function in adversarial
scratches attack by Jere et al. [2019], but instead of minimizing only the probabil-
ity of the true class, all other probabilities besides the target one are minimized
together, therefore

fit(x) = log(h(x)t)− log
K∑︂

i=0,i ̸=t

(h(x)i).

The authors use roulette selection with the elitism technique of one elite member5.
The crossover is uniform, where the parent with better fitness has a greater chance
to be copied into the child. Precisely, the probability of selecting a value from
parent1 is p, the probability of selecting a value from parent2 is 1− p, where

p = fitness(parent1)
fitness(parent1) + fitness(parent2) .

5Elitism is a strategy where a few best individuals are automatically passed on to the next
generation.

23

Mutation was represented by adding random noise, again uniformly sampled from
the range (−αϵmax, αϵmax), and clipping the pixel values to ensure maximal dis-
tortion restriction. The probability of mutation and the mutation range α were
adjusted during the evolution with an annealing scheme using exponential decay,
which led to a lower number of queries.

Dimensionality reduction was achieved by a bilinear resizing technique where
the noise is computed in the lower dimension and then scaled up before adding
to the original image. This technique is similar to “tiling” by Ilyas et al. [2019].
In both techniques, the adversarial noise vector is condensed, and one value of
the adversarial noise vector perturbs more values of the original image, which
improves query efficiency. Alzantot et al. [2019] also deal with the number of
queries by adjusting the population size in the genetic algorithm. They describe
the trade-off between population size and query efficiency, and to achieve a smaller
number of queries, they used the population size of six individuals.

Tiling and evolution strategies

Meunier et al. [2019] also apply dimensionality reduction to overcome the weak-
ness of black box evolutionary attacks. They exploit the tiling trick from Ilyas
et al. [2019] and found that convolution networks are not robust even to tiled
random noise. They optimized continuous and discrete problems for which they
combined tiling with evolution strategies, namely the (1 + 1)-evolution strat-
egy with one-fifth rule using Cauchy distributions instead of Gaussian sampling.
They further used the covariance matrix adaptation evolution strategy with ap-
proximating the covariance matrix by a diagonal one for improving computational
complexity. They utilized the implementation of evolution strategies from Never-
grad by Rapin and Teytaud [2018] and, according to their experiments, achieved
better results in query efficiency than Ilyas et al. [2019] and Moon et al. [2019].

Luo et al. [2019] also applied CMA-ES for the targeted black box attack. Their
fitness function was the distance between the benign and adversarial example, and
the evolution took until the classification of the adversarial input was as required.

Gradients approximation

One of the black box techniques for attacking neural networks is crafting adver-
sarial examples using gradients approximation. This approach is well suited also
for evolutionary algorithms. We can find an effective attack from Ilyas et al.
[2018] who applied Natural Evolution Strategies (NES) to specifically tackle the
problem of a large number of queries in black box attacks. After they obtained
the estimation of gradients, they performed the white box attack, specifically a
projected gradient descent (PGD) with momentum6.

Another black box attack exploiting an evolutionary algorithm for gradients
approximation can be found in a paper by Lin et al. [2020]. In this case, the
authors utilize differential evolution and iterative FGSM with momentum. For
better performance, they propose a double step size method for preventing the
risk of being stuck in a local optimum, and a candidate reuse method for sim-
ulating the momentum in the evolutionary setting. The population consists of

6Projected gradient descent is a standard method for constrained optimization. In this
context, the L∞ version of projected gradient descent is essentially iterative FGSM.

24

individuals who represent gradients approximation. Thus, an individual has the
same dimensions as input images, and consists of 1 and -1 with the first generation
initialized randomly. In contrast with Su et al. [2019], the authors used crossover.
The only difference from standard differential evolution is the application of sign
function as they are interested only in gradients signs:

xi(t + 1) = sign(xa(t) + F · (xb(t)− xc(t)))

Like in previous attacks, the fitness function aims to decrease the probability of
the ground-truth label, but this time the authors did not use logarithm and used
max instead of sums:

fit(x∗) =

⎧⎨⎩ht(x∗)−maxi ̸=t{hi(x∗)} non-targeted
maxi ̸=q{hi(x∗)} − hq(x∗) targeted

where x∗ is the input image plus the perturbation. The aim is to minimize
fit(x∗).

BANA

A (B)lack-box (A)ttack on (N)eural Networks Based on Swarm Evolutionary
(A)lgorithm by Liu et al. [2020] exploits the swarm optimization algorithm with
the information about the probability of the labels. The fitness function is the
combination of the Lp distance between adversary and original input and the loss
function L:

fit(x∗) = D(x, x∗) + κ · L(x∗),

where the loss function depends on the type of attack:

L(x∗) =

⎧⎨⎩max([h(x∗)]r −maxi ̸=r[h(x∗)]i, 0) non-targeted
max(maxi ̸=t[h(x∗)]i − [h(x∗)]t, 0) targeted

and κ is a positive number much larger than D(x, x∗), r is the real label and t
is the target label. With this form of the fitness function, the loss is first being
pushed towards zero, and then adversarial inputs are crafted to be most similar
to the original input.

The length of individuals in a population depends on the input resolution and
color as one gene corresponds to one pixel value of one color channel. The initial
population was created by adding a small random noise to the original input.
With the lower values of the fitness being better, the authors used tournament
selection7. Further, they applied uniform crossover and Gaussian mutation8. The
authors also constrained the mutation to speed up the convergence since the final
adversarial example has to be very close to the original one. They additionally did
not change pixels with 0 value based on the assumption that it is the background.

7A selection method where two or more individuals are selected at random, and the best
one is passed on to the next generation.

8With Gaussian mutation, a random number generated from a normal distribution is added
to the mutated value in the individual.

25

2.3 Defenses
Yuan et al. [2019] divide defenses into two types: reactive and proactive. In
reactive techniques, the training process is not adjusted, and defense consists of
detecting and then rejecting adversarial samples. On the other hand, proactive
techniques modify the training process to make neural networks robust against
adversarial inputs, which leads to correct classification. This section focuses on
two proactive defense methods, which adversaries try to break most often. Then
we describe one reactive method, which is relatively new, and combine two crucial
insights to detect adversarial samples.

2.3.1 Proactive defenses
Adversarial training

A method that immediately comes in mind when considering making the neural
network more robust against adversarial examples is adversarial training. The
essence of the method lies in the augmentation of the training set by constantly
adding new adversarial examples. Szegedy et al. [2014] used this method in such a
manner that they created adversarial inputs for each layer. As mentioned before,
Goodfellow et al. [2015] also applied this technique by modifying the loss function
with FGSM:

L̃(θ, x, y) = αL(θ, x, y) + (1− α)L(θ, x + ϵsign(∇xL(θ, x, y))).

This led to reducing an error rate from 89.4 % to 17.9 %. Kurakin et al. [2017]
scaled adversarial training with batch normalization to large models and datasets,
also using FGSM.

Unfortunately, adversarially trained networks are not very robust against
black box attacks and even against white box multi-step attacks. Therefore
Tramèr et al. [2018] introduced Ensemble Adversarial Training, which injects
adversarial samples created not only on the trained network but also transferred
from other pre-trained models. Xie et al. [2019] suggest another improvement.
Besides adversarial training with PGD, they use denoising blocks, which are added
to the convolutional architecture.

Defensive distillation

Another proactive defense aims against white box attacks as it masks the gradi-
ents. It was proposed by Papernot et al. [2016b] and is inspired by the distillation
technique used for knowledge transfer between different networks.

Distillation was designed to distill information encoded in parameters of a
more extensive network into the parameters of a network with smaller architec-
ture. It is performed in two steps. In first step, a large network with a softmax
output layer is trained in a usual way. It is important that the output vector of
the softmax layer is computed using a distillation temperature T :

h(x) =
[︄

ezi(x)/T∑︁N−1
l=0 ezl(x)/T

]︄
i∈0...N−1

26

The output vectors of probabilities are used as soft labels for training the smaller
network in the second step of the process. Soft labels encode knowledge of the
higher capacity model. Higher temperature increases the entropy and thus the
information in the soft labels. The temperature should therefore be larger than
one. It holds that probabilities in the output vector converge to 1/N as T →∞.

Defensive distillation does not aim to compress the network but to make
it more robust. Therefore, the same architecture is trained in both steps of the
process. The resulting distilled model generalizes better around training samples.
Even though the authors have promising results with their approach, some of the
described attacks succeeded in cracking it. For example Carlini&Wagner attack
was crafted especially for this defense. Also, the black box attack BANA broke
defensive distillation.

2.3.2 Reactive defenses
In this section, we describe one reactive defense characterized by the ability to
detect adversarial inputs even though the adversary has full knowledge of the
defense. We have also chosen this defense as the one that we aim to deceive due
to its interesting approach, so we describe its implementation in detail and also
the authors’ results.

Yu et al. [2019] draw on two properties of natural images, which may seem to
be contradicting. Firstly, natural images are robust to random noise, as pointed
out by Szegedy et al. [2014]. It means that if we add i.i.d. Gaussian noise
to the image, it should not change the classification. Secondly, natural images
also probably lie near the decision boundaries. According to Yu et al. [2019],
adversarial images mostly violate at least one of these attributes. This assumption
leads to the defense based on the testing of both of them. The authors designed
the defense against white box and gray box9 attacks as they say they are more
powerful than black box attacks.

Figure 2.4: Schema of adversarial pockets near a benign image x.

Robustness to random noise of the input x is tested by sampling ϵ ∼ N(0, σ2I)
of the same dimension, where σ is a hyperparameter, and then computing the
change in classification after adding ϵ to x. The authors denote this value as ∆:

∆ = ∥h(x)− h(x + ϵ)∥1 (2.2)
9The adversary is not aware of the defense mechanism but has full access to the classifier.

27

The input x is rejected as adversarial if ∆ is high enough. Figure 2.4 shows a
schematic illustration of a decision boundary near an input x in high dimensional
space. By creating an adversarial sample x∗ classified as class B, we get an image
whose classification can be corrected by random perturbation in most directions.
However, if there was only this criterion, an adversary could change a loss function
and create a sample xn deeper in the pocket and less sensitive to random noise.

Therefore, the authors chose close proximity to decision boundary as the se-
cond criterion. It is tested with some first-order iterative attack algorithm A (the
authors used PGD and C&W), where a defender records the minimum number
of steps K needed to perturb x. Again, the input x is rejected as adversarial
if K is high enough. Furthermore, this part can be divided into targeted and
non-targeted attacks depending on whether we measure a number of steps to a
specific class Kt or not Ku.

The whole whole defense mechanism can be described by the following algo-
rithm:

Input: An image x
∆← change in classification defined by Eq. 2.2;
Kt ← number of targeted steps required to adversarially perturb x;
Ku ← number of untargeted steps required to adversarially perturb x;
if ∆ ≥ T∆ or Kt ≥ TKt or Ku ≥ TKu then

reject x as adversarial;
end
else

accept x as benign ;
end

Algorithm 3: Detection Algorithm

T∆, TKt and TKu are respective thresholds. Thus, the image is rejected as
adversarial if it exceeds at least one of these thresholds.

Implementation The authors implemented their solution in Python 3 using
PyTorch and numpy packages10. Their gray box attack is implemented as a
standard white box PGD or C&W attack with their basic losses denoted as L1.
For the white box attack, they created “best effort adversary” by adding three
more losses to bypass both noise detection (L2) and the number of steps detection
for targeted (L3) and non-targeted (L4) attacks:

L1 = L(h(x∗), padv),

L2 = Eϵ∼N(0,σ2I) [∥h(x∗)− h(x∗ + ϵ)∥1] ,

L3 = Ey′∼Uniform,y′ ̸=yt [L(h(x∗ − αδy′), y′)] ,

L4 = −L(h(x∗ + αδyt), yt),

where L(·, ·) is the cross-entropy loss in PGD and the margin loss in CW attack,
padv is a probability vector identical to h(x) in every dimension but the true class

10Implementation of the defense is available on https://github.com/s-huu/
TurningWeaknessIntoStrength.

28

https://github.com/s-huu/TurningWeaknessIntoStrength
https://github.com/s-huu/TurningWeaknessIntoStrength

yt and target class y′, whose probabilities are swapped. δy′ denotes the gradient
of L with respect to x∗, (x∗ − αδy′) is the one-step move towards class y′ at the
step size α and (x∗ + αδyt) is one gradient step away from the true class yt. The
complete adversarial loss becomes

L∗ = λL1 + L2 + L3 + L4, (2.3)

where λ controls the domination of L1 so that the adversarial example generation
would be successful.

They used two datasets for their experiments: CIFAR-10 test set and Ima-
geNet validation set from 2012. CIFAR-10 was used with the VGG-19 model,
which authors trained by themselves. ImageNet was used with two models pre-
trained in PyTorch: ResNet-101 and Inception-v3. Images from ImageNet were
resized to 256 × 256 pixels and then cropped at the center, so the final dimen-
sions are 224 × 224 pixels. The authors used L∞-bound τ = 0.1 for all attacks,
which determines the maximally allowed distortion for one pixel. 0.1 distortion
is relatively high and recognizable by the human eye.

Results As with many statistical tests and machine learning models, there is
a competition between true positive rate (TPR) and false positive rate (FPR).
This defense could have been 100 % effective in detecting adversarial examples if
it would have rejected all images. This would have mean 100 % TPR, but also
100 % FPR. As the goal is to have 0 % FPR, or the smallest possible percentage,
the authors tested two levels of FPR, 10 % and 20 %. They experimented with
attack settings, but the most significant impact on the defense effectivity had the
learning rate used in loss function L1 during the attack. Table 2.1 shows the best
and the worst detection rates for all combination of models, attacks and FPR.

Model Attack FPR Detection Rate
Best (LR) Worst (LR)

VGG-19 PGD 0.2 100 % (0.001) 66 % (0.1)
VGG-19 PGD 0.1 97 % (0.001) 19 % (0.1)
VGG-19 CW 0.2 74 % (0.1) 37 % (0.001)
VGG-19 CW 0.1 57 % (0.1) 26 % (0.001)

ResNet-101 PGD 0.2 61 %

(0.1)

49 % (0.03)
ResNet-101 PGD 0.1 38 % 26 % (0.03)
ResNet-101 CW 0.2 81 % 69 % (0.01)
ResNet-101 CW 0.1 60 % 48 % (0.03)
Inception-v3 PGD 0.2 76 %

(0.01)

47 %

(0.1)Inception-v3 PGD 0.1 52 % 20 %
Inception-v3 CW 0.2 79 % 48 %
Inception-v3 CW 0.1 64 % 20 %

Table 2.1: Best and worst detection rates with their relevant learning rates from
the paper. The detection rate depends on the model, attack and false positive
rate.

The authors had to determine the thresholds for the maximal change in pre-
diction ∆ defined by Equation 2.2, and the maximal number of steps towards or

29

away from a required class TKt and TKu . The thresholds are in Table 2.2. The
maximal number of steps for untargeted attacks is set to 10000 for all attacks
with the comment in the code that it is possible to lower the number to 1000 or
neglect it at all to save computation time.

Model FPR T∆ TKt

VGG-19 0.2 0.0006 89
VGG-19 0.1 0.009 119

ResNet-101 0.2 1.77 22
ResNet-101 0.1 1.90 35
Inception-v3 0.2 1.83 26
Inception-v3 0.1 1.95 57

Table 2.2: Original thresholds for the monitored metrics depending on the model
and false positive rate.

We can see a significant difference in thresholds between models trained on
ImageNet and VGG-19 trained on CIFAR-10. Yu et al. [2019] claim that models
trained on CIFAR-10 are less robust to added random noise because of low diver-
sity of training images. Furthermore, due to lower dimensionality, natural images
are farther from the decision boundary than samples from ImageNet. Also, the
criterion for the number of steps in untargeted attacks was ineffective because
VGG-19 over-saturates predicted probabilities for natural images. These reasons
lead to worse performance of the defense and realization that not all images sa-
tisfy the authors’ hypotheses about natural samples. On this basis, we do not
perform evolutionary attacks on CIFAR-10 dataset because creating adversarial
images on ImageNet should be more challenging in all aspects.

One last note to original results concerns gray box attacks performed on Im-
ageNet. With the L∞-bound τ = 0.03, the authors reached a detection rate
97.6% on PGD and 98.1% on CW at 5% FPR. These are very good results com-
pared to white box scenario. Also, the detection rate is better for τ = 0.03 than
τ = 0.1. This may seem surprising at first sight, but we have to understand that
although humans are able to visually distinguish images with higher adversarial
noise, when we create an adversarial example with stricter noise limitation, the
algorithm can more easily break one of the two hypotheses about natural images.
We will see this effect later in the experiments.

30

3. Evolutionary Approach to
Creating Adversarial Examples
This chapter describes our approach that applies evolutionary algorithms to craft
adversarial examples. Our goal is not only to fool a clean model without any
defense but also to evade the chosen detection mechanism specified in Section
2.3.2. Since the chosen defense counts the number of gradient steps towards the
decision boundary, which is not a differentiable problem, evolutionary algorithms
are very suitable for acquiring a solution. We perform the black box attack
because we use only output probabilities of the attacked model.

The previous work by Meunier et al. [2019] used tiling trick and evolutionary
strategies. We decided to apply differential evolution explained in Section 1.3.2
due to its ability to solve non-separable and highly conditioned problems. Thanks
to its specific mutation, differential evolution is also invariant to rotations and
scaling of the search space. Although CMA-ES has also this property, the ope-
rations of differential evolution are simpler and faster, especially with longer
vectors. Differential evolution is additionally easier to implement.

3.1 Evolutionary Setup
One individual represents an array of size 3 × num tiles × num tiles, where
num tiles is the number of tiles per image side and 3 is the number of channels
in the image. To calculate the fitness value, we translate an individual into an
adversarial sample, as described in Algorithm 4. We remind that the images have
3×224×224 pixels and τ denotes L∞ bound of the adversarial noise η. Previous
works used nearest-neighbor interpolation, resulting in uniform squares of noise.
This interpolation is most easily recognized by the human eye, especially at higher
noise levels. We performed our experiments mostly with this type of interpolation,
but after tuning the hyperparameters of evolution, we also tested bilinear and
bicubic interpolations. These types of interpolation appear less disturbing, as can
be seen from the results.

Input: An image x, an individual i, int: num tiles, float: τ
η ← i reshaped into 3× num tiles× num tiles tensor;
for each value ηi in η do

if | ηi | > τ then
ηi ← sign(ηi) · τ ;

end
end
if num tiles < 224 then

interpolate η to the size of 3× 224× 224 ;
end
Output: x + η

Algorithm 4: Creating an adversarial sample from an individual

Regarding population size, we inspire ourselves by results of Alzantot et al.

31

[2019], who used very small populations for query efficiency. We also tried a small
population size of 10 individuals, but it took too long to find suitable adversarial
noise. Therefore, we set up a population size of 30 individuals. The number of
generations is set to 500, but we use early stopping in later experiments. It means
that if the fitness of the best individual did not improve for 30 or 15 generations,
we stopped the evolution.

The considerable distinction in our evolutionary setting compared to previous
works is the fitness function. Chapter 2 provided a basic overview of evolutionary
attacks. All of them used the output vector of probabilities for fitness compu-
tation, some added the distance between original and adversarially perturbed
sample. Since previous attacks did not aim to bypass any defense, their choice
of fitness functions is reasonable. Our experiments have shown that, for exam-
ple, the entropy H(x) defined by Equation 2.1 is well optimized by evolutionary
algorithms. However, our approach had to be different. We aimed to circumvent
detection, which counts the number of steps toward the decision boundary for
targeted (Kt) and non-targeted (Ku) attacks and checks the difference in classifi-
cation of the image after adding random noise (∆ defined by Eq. 2.2). Therefore,
our first fitness function was a weighted sum of these metrics. We also added L2
distance to obtain an adversarial image close to the original.

if true label == adv label then
return MAX;

end
else

return A * L2 distance + B * ∆ + C * Kt + D * Ku;
end

Algorithm 5: Pseudocode of the first tested fitness function.

Algorithm 5 describes our first tested fitness function. The goal of evolution
is to minimize fitness values. Letters A, B, C and D represent the weights and a
constant MAX was set to 10000. Adv label denotes the label of the adversarial
image. As long as the adversarial label equals the true label of the original image,
the attack is not successful and we continue in searching the right adversarial
noise. Once the adversarial image succeeds, we minimize the weighted sum of the
specified metrics.

The results were promising and differential evolution could deceive the net-
work even with adversarial noise of lower level τ than 0.1 used by the authors
of the defense. However, we encountered two issues. First, the change in clas-
sification ∆ is random, and only one good value during the fitness computation
can be a coincidence. Therefore, we decided to add random Gaussian noise to
the image ten times, which gave us ten different values of ∆. We computed the
minimum, the maximum and the average of these values. We denote them as
∆min, ∆max and ∆avg. The fitness value is further computed with ∆max, which
should prevent a randomly good result of ∆.

Second, we have discovered that evolution is mostly unable to find images far
from decision boundaries. Even with a weight setting that should force evolution
to reduce ∆ at the cost of increasing the number of steps, the number of steps
towards the boundary was still low. This observation leads us to the conclusion

32

that images far from decision boundary are hard to find naturally. The hypothesis
of Yu et al. [2019] that adversarial images with low values of ∆ have high values
of K seems to be correct only for adversarial images created by gradient attacks.
It is hard to get far from the decision boundary without information about the
direction to go. Thus, we removed values of Kt and Ku from the fitness.

Next, we hypothesized that adding entropy H(x) to the fitness function could
help to achieve a stable adversarial image, meaning more robust to added random
Gaussian noise. The lower entropy of the probability vector y = h(x) means that
the model is more certain with its prediction. Therefore, the prediction could be
more robust to added noise. To support this idea, we computed values of ∆avg,
Kt and Ku for the original images selected for both Imagenet-v3 and ResNet-101.
For each image x, we also computed the entropy of a probability vector h(x),
where h denotes either Imagenet-v3 or ResNet-101. We denote this value as Horig.
Correlation matrices of these variables for both models are in Figure 3.1.

Figure 3.1: Correlation matrices of Horig, Kt, Ku and ∆avg of original images
correctly classified by Inception-v3 and ResNet-101.

We see a positive correlation between Horig and ∆avg. There are also negative
correlations between both Kt and Ku and ∆avg. It means that the lower the

33

classification change after adding random Gaussian noise, the higher the number
of steps toward a decision boundary, and vice versa. This imply that the obser-
vations by Yu et al. [2019] about the adversarial samples also partially applies to
the benign images.

if true label == adv label then
return MAX;

end
else

return A * L2 distance + B * ∆max + C * Hadv;
end

Algorithm 6: Pseudocode of the second tested fitness function.

Due to the positive correlation between Horig and ∆avg in the original images,
we decided to measure the entropy of a probability vector also for adversarial
images. We denote this value as Hadv. We then tested second fitness, which
returned either a constant 10000 or weighted sum of L2 distance, ∆max and Hadv.

Unfortunately, we were not able to reach values of ∆avg close to zero. There-
fore, we tested the fitness, which returned only ∆max, but we still found it difficult
for evolution to minimize it. Thus, we plotted ∆avg and Horig for the original im-
ages to see if it is possible to minimize classification change towards zero.

Figure 3.2: Values of ∆avg and Horig for the original images correctly classified by
Inception-v3 and ResNet-101. The dashed orange line denotes the mean of ∆avg

for all images. The images are sorted in ascending order by ∆avg value, thus the
x-axis determines the order of the images according to this value.

Figure 3.2 shows that there are about 75 % of benign images whose value of
∆avg is above average. Approximately half of the original images for both models
have value of ∆avg close to zero, which cohere to very low value of Horig. However,
the other half have higher values of both variables, and we also see a significant
difference between both models. Thus, we conclude, that low values of ∆avg close
to zero are not necessary even for the benign images.

In the next phase of the experiments, we tested the second fitness on 50
different images chosen at random. Although the fitness function was successful
in the one chosen image of a tiger shark, it was not as successful in other images.
One problem was in returning a constant when the model was not deceived.

34

Images with lower entropy and higher confidence in prediction were harder to
adversarially change and evolution did not know the right direction. Therefore,
we change this part to return the probability of the true class multiplied by 10000.
We also exchange entropy for the probability of the adversarial class, which we
subtracted from other values. This change also minimized entropy, but at the
same time better minimized the change in classification after adding random
noise. The whole fitness is described by Algorithm 7. A denotes a weight which
was set to 10 or 100.

if true label == adv label then
return probability of true class * 10000;

end
else

return 10 * L2 distance + 100 * ∆max - A * probability of adv class;
end

Algorithm 7: Pseudocode of the third tested fitness function.

Last fitness function is described by Algorithm 8. We used it in order to
increase the transferability of adversarial examples between models. There is
an extra bonus for deceiving an adversarially trained ResNet-152. We used this
fitness function only with the pre-trained ResNet-152 from PyTorch.

if true label == adv label then
return probability of true class * 10000;

end
else if true label == resnet adv label then

return 10 * L2 distance + 100 * ∆max - 100 * probability of adv class;
end
else

return 10 * L2 distance + 100 * ∆max - 100 * probability of adv class
- 400;

end
Algorithm 8: Pseudocode of the last tested fitness function.

The whole pseudocode of creating an adversarial image from the benign image
x describes Algorithm 9. All constants were set experimentally.

3.2 Experimental Setup
We perform our experiments against two networks used in the original paper by
Yu et al. [2019], Inception-v3 and ResNet-101, both pre-trained in PyTorch. The
first tests are against Inception-v3 on one image chosen at random. We selected
Inception-v3 as it is harder to fool. The chosen sample is an image of a tiger
shark.

First tests on one image were used to find the best fitness and population size.
After that, we choose 50 images at random for both networks. We experiment
with parameters of differential evolution, level of noise τ and the number of tiles
per image side to find the best setting.

35

In this phase, we added the third model, ResNet-152, to test transferabil-
ity. We chose this model because it is available pre-trained in Pytorch, but also
adversarially trained by Xie et al. [2019]1.

The experiments’ final part is computing adversarial examples for all correctly
classified images from sample of 1000 images against all three networks and ana-
lyzing results. Images for Inception-v3 and ResNet-101 are chosen the same way
as in the original paper by Yu et al. [2019]. Images for ResNet-152 are chosen at
random to have greater diversity in image classes.

The next chapter describes our results.

Input: An image x, int: num tiles
t← 0;
Pt ← 30 individuals size 3× num tiles2 generated at random;
best fit ← 10000;
best ind ← empty array;
while t < 500 do

Pt+1 ← ∅;
for each individual x in Pt do

xa, xb, xc ← individuals selected from Pt at random;
v ← xa + F (xb − xc);
SP ← number of safe position generated at random;
for each position i in x do

RN ← real number generated at random from ⟨0, 1⟩;
if RN ≤ pc and i ̸= SP then

x[i]← v[i];
end

end
if fitness(x) ≤ fitness(v) then

add x to Pt+1;
end
else

add v to Pt+1;
end

end
best ind pop ← best individual in population;
if fitness(best ind pop) < best fit then

best ind ← best ind pop; best fit ← fitness(best ind pop);
end
t← t + 1;
if t ≥ 15 and best fit did not improve last 15 generations then

break;
end

end
Output: adversarial image created from best ind

Algorithm 9: Evolutionary Attack

1Adversarially trained models by Xie et al. [2019] are available on https://github.com/
facebookresearch/ImageNet-Adversarial-Training/blob/master/INSTRUCTIONS.md.

36

https://github.com/facebookresearch/ImageNet-Adversarial-Training/blob/master/INSTRUCTIONS.md
https://github.com/facebookresearch/ImageNet-Adversarial-Training/blob/master/INSTRUCTIONS.md

4. Results
This chapter describes the results of our experiments. First, we try to replicate
the outcomes of the original paper by Yu et al. [2019]. Then we proceed with
our experiments, which include attacks that exploits tiled random noise and the
evolutionary attacks described in the previous section. We also test the fitness
function from the attack described by Meunier et al. [2019] and compare how
the resulting adversarial images deceive the chosen defense. Finally, we test the
transferability of our generated adversarial samples to other models, one of which
is adversarially trained ResNet-152.

4.1 Results Replication
We attempted to replicate the authors’ results of the detection mechanism. We
used their implementation available online1. The authors tested their defense on
1000 images for each model. The images were not selected at random but one
by one from the beginning which is the reason why there prevail categories of
birds and fish in chosen ImageNet samples2. More specifically, there are images
with labels 0 to 19. As we wanted to replicate the results, so we used the same
strategy.

We also had to train our VGG-19 model. The authors provide a script for the
training called train vgg19.py. The script also downloads CIFAR-10 dataset
available in PyTorch. We used this script without any changes in parameters
setting. We trained the model on Google Colab3 using GPU runtime. Table 4.1
shows our achieved model accuracy for all three architectures.

Model Accuracy
VGG-19 90.2 %

ResNet-101 90.1 %
Inception-v3 85.1 %

Table 4.1: Our achieved accuracy for all three models from the paper.

From now on we will use two metrics to describe the quality of the attack. First
one is success rate. This is the percentage of images from which an adversarial
sample was successfully created. Success rate of white box attacks that utilize
gradient is often very high. Our tests confirmed, that both PGD and CW attacks
created an adversarial example from at least 99 % of correctly classified images
for all models, although none had 100 % success. Second metric is detection rate.
This indicates the percentage of adversarial images that bypassed the defense.

Our achieved detection rates for both attacks are in Table 4.2. We used
learning rates corresponding to the authors’ best results. Besides detection rates,
we measured also accurate false positive rates. It is the accurate percentage

1https://github.com/s-huu/TurningWeaknessIntoStrength
2A list of ImageNet categories is available online on https://gist.github.com/yrevar/

942d3a0ac09ec9e5eb3a.
3colab.research.google.com

37

https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
colab.research.google.com

of benign images rejected as adversarial on the given thresholds. We can see a
significant difference in accurate false positive rates and target false positive rates
for VGG-19. Furthermore, our detection rates for C&W attack against VGG-19 is
distinctly lower. The reason for these discrepancies is mainly a differently trained
model, as we trained our own without random seed and probably with distinct
hyperparameters like the number of epochs. Also, as we have already mentioned,
CIFAR-10 dataset is not suitable for the chosen defense, so we will not deal with
it further.

Model Attack Target FPR Accurate FPR Detection Rate
Ours Authors’

VGG-19 PGD 0.2 0.494 0.994 0.998
VGG-19 CW 0.2 0.431 0.740
VGG-19 PGD 0.1 0.285 0.960 0.966
VGG-19 CW 0.1 0.299 0.568

ResNet-101 PGD 0.2 0.152 0.667 0.612
ResNet-101 CW 0.2 0.801 0.809
ResNet-101 PGD 0.1 0.074 0.484 0.378
ResNet-101 CW 0.1 0.680 0.601
Inception-v3 PGD 0.2 0.186 0.827 0.762
Inception-v3 CW 0.2 0.799 0.788
Inception-v3 PGD 0.1 0.106 0.695 0.516
Inception-v3 CW 0.1 0.708 0.635

Table 4.2: Our detection rates and accurate false positive rates for all combina-
tions of model, attack and target FPR, using original thresholds.

Model Attack FPR T∆ TKt TKu Detection Rate
VGG-19 PGD 0.2 0.014 200 1000 0.943
VGG-19 PGD 0.1 0.078 200 1000 0.674
VGG-19 CW 0.2 1.068 149 682 0.739
VGG-19 CW 0.1 1.068 77 1000 0.383

ResNet-101 PGD 0.2 1.984 14 1000 0.781
ResNet-101 PGD 0.1 1.997 20 1000 0.683
ResNet-101 CW 0.2 1.999 14 991 0.883
ResNet-101 CW 0.1 1.997 20 1000 0.817
Inception-v3 PGD 0.2 0.445 200 1000 0.940
Inception-v3 PGD 0.1 1.651 200 1000 0.870
Inception-v3 CW 0.2 0.467 157 1000 0.895
Inception-v3 CW 0.1 1.651 200 1000 0.827

Table 4.3: New thresholds with target FPR equal to accurate FPR and corre-
sponding detection rates.

Regarding ImageNet dataset, we see that the authors’ thresholds are rather
pessimistic. Attacks against ResNet-101 achieve mostly higher detection rates
with lower accurate false positives rates. Attacks on Inception-v3 have also higher

38

detection rates, but differences in accurate false positives rates are not as large.
The reason for this differences between ours results and the results by Yu et al.
[2019] is the randomness of gradient attacks.

4.1.1 Thresholds computation
Since we want to achieve the same values for accurate and target FPR, we com-
puted our own thresholds for each model and each attack. We used the script
provided by the authors in their implementation. Specific values are in Table
4.3. The last column of the table shows the detection rate computed with these
thresholds. Of course, there are occasionally differences in thresholds between
attacks, and unfortunately, it is not clear how to combine them. For ImageNet,
we achieved even higher detection rates due to the authors’ pessimistic thresh-
olds. The thresholds for CIFAR-10 are again problematic as there are significant
differences between attacks.

Since we are no longer interested in CIFAR-10, let us see the differences be-
tween ResNet-101 and Inception-v3 on ImageNet. For ResNet-101, the distinction
between 10 % and 20 % FPR is in the value of Kt. On the other hand, the value of
∆ makes the difference in detection rate at various FPR for Inception-v3. Addi-
tionally, T∆ for 10 % FPR is significantly lower for Inception-v3 than ResNet-101
and vice versa for TKt .

These differences can be explained by the nature of the classification space
formed by each architecture and the capabilities of the tested white box attacks.
We have already seen the differences in Horig and ∆avg for both models in Chap-
ter 3 (Figure 3.2). Figure 4.1 shows histograms of ∆avg for the real images and
images created by PGD attack against both models. We see significant differences
in the values of adversarial images, where the images against Inception-v3 have
mostly high values of ∆avg, while adversarial images crafted against ResNet-101
have significantly lower and more uniformly distributed values.

Figure 4.2 shows the values of Kt. The values are only plotted for a maximum
of 60 due to space limitation, but the real images classified with Inception-v3
have values of targeted steps up to 200 as well as adversarial images against
ResNet-101. Again, we see a difference between the adversarial examples against
Inception-v3 and ResNet-101, where the adversarial images against Inception-v3
have mostly a low values of Kt. On the other hand, the images crafted against
ResNet-101 have diversified values of Kt.

According to the graphs, we can conclude that it is problematic to create an
adversarial image against Inception-v3 with a high number of steps towards the
decision boundary. In fact, the adversarial images have a lower values of Kt than
the real images, but at the cost of higher values of ∆avg. On the other hand, the
adversarial images against ResNet-101 are not so sharply defined and their values
in both metrics are much more uniformly distributed.

The rest of the chapter is divided into three sections according to the tested
architecture. We start with attacks against Inception-v3 as it seems more intricate
to deceive due to lower T∆ thresholds.

39

Figure 4.1: Values of a mean change in classification ∆avg for real and adversarial
images classified by ResNet-101 and Inception-v3. The orange lines indicate the
thresholds for Inception-v3. Dashed lines specify the threshold for 10% FPR,
dash-dotted lines are for 20% FPR.

Figure 4.2: The number of targeted steps Kt for adversarial and real images
classified by ResNet-101 and Inception-v3. The blue lines indicate the thresholds
for ResNet-101. Dashed lines specify the threshold for 10% FPR, dash-dotted
lines are for 20% FPR.

40

4.2 Inception-v3
This section describes series of experiments performed against Inception-v3. Since
evolutionary attacks can be computational demanding in higher dimensions, we
chose the trick with tiles by Ilyas et al. [2019] for dimensionality reduction. As
mentioned in Chapter 2, Meunier et al. [2019] claim that convolution networks
are not robust even to tiled random noise. For this reason, we decided to first try
this simple attack before evolution itself.

4.2.1 Noisy attacks
Meunier et al. [2019] tested discrete tiled noise which means they added to a pixel
value either +ϵ or −ϵ. They attacked three architectures, Inception-v3, VGG-
16 with batch normalization and ResNet-50, and tested four levels of noise and
various numbers of tiles. Their results on ImageNet are in Figure 4.3.

Figure 4.3: Results of the random tiled attack by Meunier et al. [2019].

We see that the higher the noise, the more effective the attack, which is not
surprising. More effective attacks are also with 20 to 50 tiles per image. According
to the right plot, we see that Inception-v3 is the most robust against this type
of attack due to blocks of parallel convolutions with different filter sizes. We
emphasize that Meunier et al. [2019] attacked clean models without any defense
mechanism.

Figure 4.4: Our results of the random tiled attack against Inception-v3. Tested
numbers of tiles per image side are 3, 7, 14, 28, 56, 112 and 224.

41

We tested our noisy attacks against with different numbers of tiles per image
side. One tile spans through all three image channels. The noise is not discrete but
continuous, generated from a normal distribution with a mean 0 and a variance
corresponding to the value of L∞ bound τ ∈ [0.001, 0.01, 0.05, 0.1]. Our results
are in Figure 4.4. We did not plot the results for the attack with L∞ bound
τ = 0.001 due to its ineffectiveness.

We see that attacks with 14, 28 and 56 tiles achieve the best results. Also,
attacks with τ = 0.1 have the best success rate, which is not surprising. More
interesting are detection rates. We computed values of ∆avg, Kt and Ku for each
noisy image and then we computed detection rates with the original and our
thresholds according to Algorithm 3. The results are in Table 4.4. The column
Tile Size in the table denotes the number of tiles per image side. The detection
rate is divided into three columns by the maximal level of adversarial noise τ .

FPR Tile Size
Detection Rate

τ = 0.01 τ = 0.05 τ = 0.1
Original Ours Original Ours Original Ours

10 %

3 0 % 14 % 18 % 60 % 18 % 56 %
7 13 % 20 % 21 % 51 % 21 % 59 %
14 0 % 13 % 16 % 51 % 19 % 52 %
28 4 % 26 % 4 % 31 % 8 % 33 %
56 16 % 26 % 8 % 27 % 5 % 29 %
112 19 % 44 % 4 % 22 % 3 % 20 %
224 10 % 10 % 9 % 28 % 2 % 19 %

20 %

3 14 % 100 % 38 % 90 % 39 % 89 %
7 20 % 100 % 40 % 92 % 41 % 93 %
14 6 % 63 % 31 % 88 % 38 % 93 %
28 22 % 78 % 18 % 84 % 19 % 88 %
56 21 % 100 % 17 % 85 % 14 % 81 %
112 25 % 94 % 10 % 81 % 9 % 81 %
224 10 % 80 % 18 % 82 % 12 % 76 %

Table 4.4: Detection rates of noisy attack against Inception-v3 based on the
original and our thresholds.

As we saw in the previous section, adversarial images created against Incep-
tion-v3 have not as uniformly distributed values of monitored metrics as ResNet-
101. This property serves Inception-v3 well against noisy attacks. We see that our
computed thresholds are more efficient because they utilize this integrity property
more. Interestingly, there is not much difference in detection adversarial images
with τ = 0.05 and τ = 0.1. The defense mechanism achieves the highest detection
rates against attacks with larger tiles. Figure 4.4 shows that attacks with these
tiles have also the highest success rate. Thus we can conclude that even though
Inception-v3 is vulnerable to random tiled noise, the chosen defense is able to
protect it.

42

4.2.2 Evolutionary attacks
We saw that our chosen defense is able to protect Inception-v3 against misclas-
sification of adversarial images by filtering them according to their values of ∆
and Kt. At the same time this capability to detect adversarial images depends
on specific thresholds for particular attributes. Next, we test our evolutionary
attack designed in previous section.

We performed our first evolutionary experiments on one image selected at
random from images correctly classified by Inception-v3. Figure 4.5 (a) shows
the original image with its label and monitored values. We set the parameters of
differential evolution to CR = 0.25 and F = 0.8 as these values are often used.
We set the L∞ bound for the adversarial noise to τ = 0.05 because we saw from
the results of the random tiled attack that it is possible to deceive the network
even with this level of noise. We also used early stopping, which means that we
stopped the evolution after 30 generations without fitness improvement.

Tiles Fitness Success ∆min ∆avg ∆max Hadv Detection
28 100 % 0.70 1.01 1.36 1.30 0
56 second 88 % 0.46 0.99 1.43 1.43 0
112 (Alg. 6) 94 % 0.34 0.83 1.18 1.02 0

no tiles 100 % 0.27 0.77 1.09 1.01 0
112 only ∆max

100 % 0.36 0.83 1.22 1.00 0
no tiles 100 % 0.28 0.78 1.14 1.01 0

Table 4.5: Inception-v3. Results of 50 runs on one image with different numbers
of tiles per image side and two fitness functions.

Table 4.5 demonstrates the results. The column Fitness denotes the tested
fitness functions. The column Success indicates what percentage of the runs were
successful in creating an adversarial image. We see that the attack with no tiles
gives the best results as it has 100 % success and also the lowest value of all
∆. There is no significant difference between fitness that minimizes Horig and
∆max and fitness that minimizes only ∆max. This leads to the conclusion that it
is difficult for differential evolution to minimize the change in classification after
adding random Gaussian noise. The last column Detection indicates the detection
rate of successful adversarial images by the defense. We used our computed
thresholds for 10 % FPR because these thresholds are even stricter than the
original thresholds for 20 % FPR. It means that if the adversarial sample deceives
the defense with our 10 % FPR thresholds, it also deceives the defense with the
original thresholds. We see that the defense mechanism failed in detecting our
attack, so we can consider it successful.

A noteworthy discovery concerns the labels of the adversarial images created
by evolution. Figure 4.5 (d) shows the sample created by the evolutionary attack
with adversarial noise without any tiles. We see that the label of the sample
is a hammerhead shark, which is visually close to the original tiger shark. The
specific label of an adversarial example created by evolution depends on the size
of the tiles. Adversarial noise without tiles or with 112 tiles per image side, which
is a tile of length 2 pixels, creates adversarial images with the label “hammerhead
shark”. Noise with the tiles of size 4× 4 pixels usually produces samples with the

43

(a) Original image (b) PGD attack
“tiger shark” “T-shirt”

0.42, 1, 1, 0.09 1.76, 3, 1, 3.92

(c) CW attack (d) DE attack with no tiles
“fly” “hammerhead shark”

2.00, 3, 1, 0.04 0.77, 1, 1, 1.01

Figure 4.5: Comparison of gradient and evolutionary attacks. Labels of images
are in quotation marks. The values on the third line are the change of classifi-
cation ∆, the number of targeted steps Kt, the number of untargeted steps Ku,
entropy H.

label “garfish” and noise with the tiles of size 8× 8 pixels creates mostly samples
with the label “barracouta”.

In contrast, the white box attack created adversarial samples with completely
different labels, such as a T-shirt or a fly. The reason behind this observation is
the nature of both attacks. The white box attacks utilize only the information
about gradients, not the whole classification space. On the other hand, evolu-
tionary algorithms search the classification space to find the best results with
no information about the gradients. Therefore, the easiest approach is to find
an image in a proximity of the original class and then minimize the prescribed
metrics. Our fitness function also changes its behaviour immediately after finding
the first successful image that is probably close to the original.

Regarding the monitored metrics, there is a significant difference between

44

∆ values, where the evolutionary attack crafted a sample with less than half
the values of the samples created by the white box attacks. The number of steps
towards the decision boundary is also lower. Our adversarial sample would deceive
the defense with the original thresholds and the defense with our thresholds at
10 % FPR. The deception of the defense with our thresholds at 20 % FPR would
depend on the generated random Gaussian noise that is added to the image.
Table 4.5 shows that the minimal change in classification ∆min out of ten cases
was 0.28, which is below the threshold 0.45. Actually, when we add random noise
to the original image ten times, the mean value of the change in classification is
0.42, which is very close to the threshold, and the maximum value ∆max is 1.71.
We can therefore conclude that our adversarial image was successful.

Tiles per Side Success ∆min ∆avg ∆max Hadv

28 64 % 0.50 0.78 1.06 0.94
56 64 % 0.46 0.84 1.22 1.04
112 58 % 0.52 0.89 1.21 0.97

no tiles 48 % 0.57 0.92 1.25 1.14

Table 4.6: Inception-v3. Results of the second fitness function on 50 different
images from ImageNet.

After first successful experiments, we randomly selected 50 other images and
tested the second fitness function on them. The results are in Table 4.6. We used
the same setting as before. We did not compute the detection rate as we can
estimate from the values of ∆ that we would deceive the defense because even
the values of ∆max are below the threshold T∆ = 1.65 for 10 % FPR.

Tiles per Side τ Success ∆min ∆avg ∆max Hadv

7

0.05

70 % 0.73 0.92 1.21 1.28
14 78 % 0.65 0.89 1.19 1.13
28 72 % 0.46 0.79 1.18 1.14
56 68 % 0.55 0.87 1.26 1.30
112 58 % 0.48 0.86 1.26 1.14

no tiles 42 % 0.60 0.92 1.27 1.21
7

0.1

96 % 0.46 0.71 1.12 1.06
14 98 % 0.6 0.78 1.12 1.13
28 96 % 0.37 0.59 0.98 1.15
56 92 % 0.40 0.69 1.22 1.03
112 78 % 0.34 0.76 1.26 1.00

no tiles 60 % 0.52 0.88 1.27 1.12

Table 4.7: Inception-v3. Results of the third fitness function on 50 different
images from ImageNet with weight A in Algorithm 7 set to 10.

We see that the second fitness function is not as successful as before. From
this result we can conclude that the choice of the first image was a happy accident
and not all images can be perturbed so easily. The adversarial noise without tiles
also has the worst results, which is the opposite outcome than in the previous

45

experiments. Therefore, we used the third fitness function described by Algo-
rithm 7 and tested two levels of L∞ bounds τ . We tested two different weights
for a variable that subtracts the predicted probability of the adversarial class from
the rest. Results for the lower weight are in Table 4.7. We see that larger tile
sizes have better success rate, which corresponds to the results of attacks with
random tiled noise, but evolution has much better efficiency. Higher weight was
tested only for larger tiles, as they provide better outcomes. These results are
shown in Table 4.8.

Tiles per Side τ Success ∆min ∆avg ∆max Hadv

7
0.05

68 % 0.78 0.96 1.29 0.86
14 78 % 0.70 0.97 1.28 0.86
28 78 % 0.54 0.81 1.18 0.90
7

0.1
96 % 0.51 0.75 1.11 0.80

14 98 % 0.53 0.75 1.13 0.83
28 96 % 0.37 0.63 1.05 0.70

Table 4.8: Inception-v3. Results of the third fitness function on 50 different
images from ImageNet with weight A in Algorithm 7 set to 100.

We see that a higher weight for the predicted probability of the adversarial
class reduces the entropy. The values of ∆ are mostly slightly higher, but these
differences can only be random. The success rate of evolution in creating adver-
sarial images is better for τ = 0.1. All settings would deceive the defense with
both the original threshold 1.83 at 20 % and our threshold 1.65 at 10 % FPR.

CR F Success ∆min ∆avg ∆max Hadv

0.25 0.8 94 % 0.40 0.69 1.08 0.95
0.25 1 92 % 0.32 0.62 1.07 1.01
0.25 1.5 94 % 0.40 0.69 1.12 1.05
0.5 0.8 94 % 0.47 0.78 1.20 1.01
0.5 1 96 % 0.45 0.74 1.18 1.02
0.5 1.5 92 % 0.42 0.74 1.18 1.12
0.75 0.8 98 % 0.43 0.72 1.09 0.95
0.75 1 96 % 0.41 0.72 1.21 0.91
0.75 1.5 98 % 0.51 0.79 1.29 1.05

Table 4.9: Inception-v3. Results of different parameters of differential evolution
on 50 images from ImageNet.

So far, we have only evaluated the size of tiles and L∞ bound τ . The follow-
ing experiments test the setting of differential evolution’s parameters. We tried
combinations of three values for CR and three values for F . The results are in
Table 4.9. We set the number of tiles per image side to 28 and L∞ bound τ to
0.1, because this setting provides high success rate at lower values of ∆. We used
the third fitness function with weight A set to 100. We also decreased the number
of generations for early stopping to 15 due to time consumption. This reduced
the time per image from an average of eight minutes and 56 generations to three
and a half minutes and 28 generations.

46

We see that our initial choice of parameters was not poor at all and that
setting of these parameters does not have such impact as the size of tiles and
L∞ bound τ for adversarial noise. Nevertheless, we decided to use the setting
CR = 0.75 and F = 0.8 for further experiments with transferability and types of
interpolation.

4.2.3 Effect of Interpolation and Transferability
So far, we have performed all experiments with nearest-neighbor interpolation,
which was also used in previous works. In the following experiment, we evaluate
two other types of interpolation: bilinear and bicubic. Furthermore, we test the
transferability of resulting adversarial images to other three models: pretrained
ResNet-101 and ResNet-152 from PyTorch and adversarially trained ResNet-152
by Xie et al. [2019]. The results are in Table 4.10. The last part called Trans-
ferability shows the percentage of successful adversarial images that was also
misclassified by another respective model.

Interpolation Success ∆min ∆avg ∆max Hadv
Transferability

R101 R152 R152adv
nearest 96 % 0.38 0.66 1.06 0.88 56 % 54 % 35 %
bilinear 90 % 0.61 0.85 1.16 0.91 47 % 38 % 29 %
bicubic 98 % 0.54 0.82 1.15 0.79 57 % 53 % 41 %

Table 4.10: Inception-v3. Results for three different interpolations with the best
setting: third fitness function with weight A in Algorithm 7 set to 100, 28 tiles
per image side, CR = 0.75, F = 0.8 and L∞ = 0.1. 15 generations without fitness
improvement before early stopping.

We see that bilinear interpolation has the worst performance. Adversarial
images with bicubic interpolation have lower entropy and higher transferability to
the adversarially trained model. On the other hand, images with nearest-neighbor
interpolation are characterized by a lower values of ∆. It is worth noting that
when we saved the crafted adversarial images in JPEG format, the images were
then reloaded differently and the models often classified them correctly. We did
not have such problem with the PNG format. An example of crafted images with
their monitored values is in Figure 4.6.

Adversarial noise with bilinear interpolation is the least visible, which is prob-
ably also the reason for its worst success rate. Bicubic adversarial noise is less
visible but similarly successful as nearest-neighbor. Therefore, and also because
of greater transferability, we opted for bicubic interpolation. The final setting for
Inception-v3 is CR = 0.75, F = 0.8, 15 generations without fitness improvement
before early stopping, τ = 0.1 and tiles of the size 8× 8 pixels with bicubic inter-
polation. We performed the evolutionary attack with this setting against all 851
correctly classified images. The results are in Table 4.11.

We see that evolutionary attacks are more successful compared to random
tiled noise. The best success rate of a random attack with τ = 0.1 was 48 % with
16× 16 pixels tiles, but the detection rate with our thresholds was 52 % at 10 %
FPR and 93 % at 20 % FPR. The detection rate with the original thresholds was
19 % at 10 % FPR and 38 % at 20 % FPR.

47

(a) Original image (b) Nearest-neighbor
“ostrich” “warthog”

4× 10−4, 4, 174, 2× 10−5 1.23, 1, 1, 1.2

(c) Bilinear (d) Bicubic
“gazelle hound” “cock”
1.50, 1, 1, 0.95 1.28, 1, 1, 2.16

Figure 4.6: Comparison of different types of interpolation. Labels of images are
in quotation marks. The values on the third line are the change of classification
∆, the number of targeted steps Kt, the number of untargeted steps Ku, entropy
H.

Success ∆min ∆avg ∆max
Transferability Detection

R101 R152 R152-adv Orig Ours

93 % 0.50 0.78 1.17 44 % 39 % 30 % 3 % 9 %
43 % 39 % 12 % 6 % 62 %

Table 4.11: Inception-v3. Results for all images with the best setting. Second
row of transferability gives the values after correction. First row of detection is
measured at 10 % FPR, second row is at 20 % FPR.

Compared to the white box attacks, both PGD and CW had more than 99 %
success rate, and an adversarial sample was created approximately four times
faster, which is not surprising. On the other hand, the detection rate with our

48

thresholds was roughly 85 % at 10 % FPR and 90 % at 20 % FPR. The detection
rate with the original thresholds was 70 % at 10 % FPR and 80 % at 20 % FPR.

In terms of transferability, we computed two values. The value in the first
line tr1 is the percentage of misclassified images out of all images correctly clas-
sified by Inception-v3. Since not all models classify everything in the same way,
we adjusted the value by changing the denominator to the number of images,
which were correctly classified by the chosen model in the first place (tr2). This
adjustment made the greatest change for the adversarially trained ResNet-152.
It means that there are higher proportion of images, which adversarially trained
ResNet-152 did not classified correctly even without the adversarial noise.

tr1 = #images misclassified by the model
#images correctly classified by Inception-v3 · 100

tr2 = #images misclassified by the model
#images correctly classified by the model · 100

We also computed transferability of adversarial images created by the white
box attacks. According to results in Table 4.12 we see that evolutionary images
are more successful.

Attack R101 R152 R152-adv
CW 33 % 26 % 23 %
PGD 32 % 25 % 7 %

Table 4.12: Transferability of adversarial samples created against Inception-v3
by the white box attacks.

4.2.4 Results analysis
Figure 4.7 shows a comparison for the values of ∆avg for benign images, adversarial
images created by evolution, and adversarial images crafted by CW attack. We
do not plot a graph for the number of targeted steps Kt, as only 13 evolutionary
images have a value 10 or more.

Figure 4.7: Inception-v3. Comparison of ∆avg values for original images, images
created by evolutionary attack, and images created by CW white box attack.

49

We see that the evolutionary attack creates images with significantly lower
values of change in classification than the white box attack. The values are more
distributed, but only about 40 % of images have a value below the threshold for
10 % FPR.

Figure 4.8 shows the relationship between ∆avg values, entropy of the original
image Horig and the confidence of Inception-v3 in the prediction of true class
ptrue for the original image. We see that there is no relation between ∆avg of the
adversarial image and the other two variables. At the same time, we see that
unsuccessful images have lower entropy Horig, which in the beginning also means
a higher probability of a true class. These failed images have lower values of ∆avg

because, despite the noise, we can consider them as benign samples and, as we
saw earlier, benign images have lower values of ∆avg.

Figure 4.8: Inception-v3. Relationship between ∆avg of adversarial images and
Horig and probability of true class for the original images.

Regarding transferability, we only analyzed pretrained ResNet-101 and Res-
Net-152, because adversarially trained ResNet-152 had low transferability. Figure
4.9 shows that the transferred samples have slightly lower L2 distance between
the original and the adversarial image, but the difference does not seem to be
significant.

Figure 4.9: Inception-v3. Transferability between models based on the L2 dis-
tance between the original and the adversarial image.

50

Figure 4.10: Inception-v3. Transferability between models based on values of
Hadv and ∆avg of the adversarial images.

Figure 4.10 shows transferability to the two models based on Hadv and ∆avg.
There does not seem to be any distinct pattern, but we can see a dependency
between the two values, which corresponds to the positive correlation that we
computed for the benign images in Chapter 3 (Fig. 3.1).

4.2.5 Comparison with the attack by Meunier et al. [2019]
Last experiments we performed against Inception-v3 compare our attack with the
attack by Meunier et al. [2019]. The authors also performed evolutionary attacks
together with the tiling trick for the dimensions reduction, but they used different
fitness functions. We chose one of them, which minimizes the logarithm of the
probability of the true class. Even though the authors utilize evolution strategies,
we test their fitness function with our best setting. We only used nearest-neighbor
interpolation which was also used by the authors. Also, this interpolation gives
lowest ∆ values. The authors did their tests with τ = 0.05, but we used also
τ = 0.1 due to its better success rate. We performed this experiments on 50
images selected previously.

τ Success ∆min ∆avg ∆max Hadv

0.05 72 % 0.61 1.22 1.65 0.44
0.1 96 % 0.78 1.23 1.64 0.32

Table 4.13: Inception-v3. Results of the evolutionary attack with the fitness
function used by Meunier et al. [2019].

Table 4.13 shows, that even though the resulting adversarial images have lower
entropy, they have significantly higher values of ∆. This leads to higher detection
rates, which shows Table 4.14.

51

FPR
Detection Rate

τ = 0.05 τ = 0.1
Original Ours Original Ours

0.1 8 % 24 % 14 % 40 %
0.2 22 % 66 % 28 % 74 %

Table 4.14: Detection rates of of the evolutionary attack with the fitness function
used by Meunier et al. [2019].

4.3 ResNet-101
This section describes the experiments we performed on ResNet-101 architecture.
We start with the attacks utilizing random tiled noise and then continue with our
evolutionary attacks and analysis of the results.

4.3.1 Noisy attacks
The noisy attacks were performed as before. The success of the attacks are plotted
in Figure 4.11. We see that the attacks with 14 tiles per image side achieve the
best results. It is also clear that attacks against ResNet-101 are more effective
then attacks against Inception-v3, which is the same result mentioned by Meunier
et al. [2019].

Figure 4.11: Our results of the random tiled attack against ResNet-101. Tested
numbers of tiles per image side are 3, 7, 14, 28, 56, 112 and 224.

The detection of noisy images against ResNet-101 is not very powerful, as wee
see from Table 4.15. The highest detection rates are around 10 % for 10 % FPR
and maximally 30 % for 20 % FPR. Detection with our thresholds gives mostly
worse results, probably due to more benevolent T∆. Stricter TK did not help.

4.3.2 Evolutionary attacks
We see that ResNet-101 is easier to deceive and also harder to defend due to the
higher values of ∆ as well as Kt of the original images. Therefore, we have not
tested our evolutionary attack against a single image as with Inception-v3, but
we immediately start attacking 450 different images.

52

FPR Tile Size
Detection Rate

τ = 0.01 τ = 0.05 τ = 0.1
Original Ours Original Ours Original Ours

10 %

3 14 % 14 % 4 % 0 % 7 % 0 %
7 0 % 0 % 4 % 1 % 9 % 2 %
14 11 % 0 % 7 % 1 % 7 % 3 %
28 0 % 0 % 3 % 0 % 4 % 2 %
56 0 % 0 % 4 % 2 % 4 % 1 %
112 0 % 0 % 3 % 5 % 5 % 8 %
224 0 % 0 % 0 % 8 % 6 % 12 %

20 %

3 29 % 14 % 10 % 0 % 21 % 2 %
7 25 % 0 % 16 % 3 % 24 % 3 %
14 22 % 0 % 20 % 4 % 26 % 6 %
28 8 % 0 % 9 % 3 % 18 % 7 %
56 0 % 0 % 11 % 5 % 10 % 6 %
112 0 % 0 % 8 % 10 % 8 % 13 %
224 0 % 0 % 8 % 12 % 13 % 19 %

Table 4.15: Detection rates of noisy attack against ResNet-101 based on the
original and our thresholds.

Tiles per Side τ Success ∆min ∆avg ∆max Hadv

7

0.05

82 % 0.61 0.79 1.00 1.86
14 88 % 0.70 0.88 1.08 2.17
28 74 % 0.69 0.89 1.09 2.07
56 58 % 0.62 0.85 1.08 2.07
112 44 % 0.55 0.81 1.1 2.2

no tiles 26 % 0.52 0.78 1.18 1.7
7

0.1

98 % 0.49 0.68 0.93 2.47
14 98 % 0.63 0.77 0.97 2.86
28 96 % 0.56 0.76 1.02 2.61
56 92 % 0.47 0.71 1.00 2.36
112 76 % 0.59 0.82 1.1 2.87

no tiles 44 % 0.46 0.78 1.09 2.54

Table 4.16: ResNet-101. Results of the third fitness function with weight A in
Algorithm 7 set to 10 on 50 different images from ImageNet.

We started our experiments by testing the third fitness function with two
values of weight A in Algorithm 7. Values of differential evolution parameters
were set to CR = 0.25, F = 0.8 and we stopped the evolution after 30 generations
without fitness improvement. Results with the lower weight are in Table 4.16,
results with the higher weight are in Table 4.17. We see that the higher weight for
the probability of adversarial class significantly lowers the entropy of adversarial
images Hadv. Values of ∆ are way below the thresholds and the attacks with L∞
bound τ set to 0.1 have success rate very close to 100%. As with Inception-v3,
the attacks with larger tiles are more successful.

53

Tiles per Side τ Success ∆min ∆avg ∆max Hadv

7
0.05

82 % 0.64 0.83 1.03 1.68
14 90 % 0.73 0.93 1.12 1.85
28 66 % 0.58 0.87 1.11 1.67
7

0.1
100 % 0.49 0.65 0.85 1.75

14 98 % 0.68 0.85 1.10 2.09
28 94 % 0.49 0.74 1.00 2.07

Table 4.17: ResNet-101. Results of the third fitness function with weight A in
Algorithm 7 set to 100 on 50 different images from ImageNet.

CR F Success ∆min ∆avg ∆max Hadv

0.25 0.8 98 % 0.58 0.78 1.03 2.06
0.25 1 98 % 0.64 0.83 1.07 2.10
0.25 1.5 98 % 0.62 0.82 1.04 2.19
0.5 0.8 98 % 0.60 0.81 1.07 2.07
0.5 1 98 % 0.69 0.86 1.10 2.32
0.5 1.5 98 % 0.69 0.91 1.15 2.37
0.75 0.8 98 % 0.59 0.78 1.01 2.24
0.75 1 98 % 0.65 0.83 1.09 2.33
0.75 1.5 98 % 0.67 0.84 1.09 2.20

Table 4.18: ResNet-101. Results of different parameters setting on 50 different
images from ImageNet.

The best setting seems to be 7 tiles per image side, fitness function with the
higher weight for the probability of adversarial class and τ = 0.1. THe best
setting for lower of τ = 0.05 is the same fitness function, but 14 tiles per image
side level. Table 4.16 shows that this setting reaches high success rate with low
values of ∆ and lower Hadv.

We tested different values of parameters CR and F with the vest setting for
τ = 0.1, but with the reduced number of generations for early stopping to 15.
Results are in Table 4.18. Although all settings reach the same success rate, the
original settings has the best values of all monitored metrics.

4.3.3 Effect of Interpolation and Transferability
The last interpolation tests were performed with CR = 0.25, F = 0.8, τ = 0.1, 7
tiles per image side and 15 generations without fitness improvement before early
stopping. The results are in Table 4.19.

We see that although bilinear and bicubic interpolation give images with lower
Hadv values, nearest-neighbor interpolation provides the best transferability. ∆avg

values are similar for all three types, but the success rate is clearly better for
nearest-neighbor. Therefore, we chose this type of interpolation to test the attack
against all images from the sample of 1000, which were correctly classified by
ResNet-101.

First line in Table 4.20 shows the results. We see that the evolutionary attack
achieved high success rate with low detection for all thresholds. The adversarial

54

Interpolation Success ∆min ∆avg ∆max Hadv
Transferability

I-v3 R152 R152adv
nearest 100 % 0.59 0.76 0.98 2.18 28 % 44 % 28 %
bilinear 80 % 0.58 0.78 0.99 1.57 8 % 20 % 28 %
bicubic 88 % 0.60 0.75 0.97 1.59 9 % 20 % 30 %

Table 4.19: ResNet-101. Results for three different interpolations with the best
setting: third fitness function with weight A in Algorithm 7 set to 100, 7 tiles
per image side, CR = 0.25, F = 0.8 and τ = 0.1. 15 generations without fitness
improvement before early stopping.

τ Success ∆min ∆avg ∆max
Transferability Detection

I-v3 R152 R152adv Orig Ours

0.1 97 % 0.63 0.81 1.07 41 % 55 % 36 % 4 % 3 %
36 % 54 % 19 % 8 % 6 %

0.05 77 % 0.78 0.96 1.18 23 % 33 % 32 % 3 % 4 %
16 % 31 % 6 % 7 % 8 %

Table 4.20: ResNet-101. Results for all images with the best setting. Second
row of transferability gives the values after correction. First row of detection is
measured at 10% FPR, second row is at 20% FPR.

images are best transferred to ResNet-152, which is not adversarially trained.
When we compare the attack with random tiled noise, we find that evolution is
better again. The best success rate for L∞ = 0.1 was 74 % with twice as small
tiles. The detection rate was 7 % at 10 % FPR and 26 % at 20 % FPR. These
detection rates are better then white box attacks, but evolution achieves even
better results.

On the other hand, adversarial noise with larger tiles and nearest-neighbor
interpolation is very visible, as we see in Figure 4.12. Based on previous experi-
ments, it is also easier to deceive ResNet architectures. Therefore, we tested one
more attack with a lower level of adversarial noise τ . We chose 14 tiles per image
side based on the results in Table 4.17. The other settings remained the same as
before.

Second line in Table 4.20 shows, that the detection rate is still very low because
∆avg is below the thresholds. However, images with lower level of noise are not as
successful in terms of transferability. This corresponds to an overall lower success
rate. Nonetheless, compared to a random tiled attack, evolution is significantly
more successful as the best result of random attack with this level of noise was
25 % success rate with the same tile size.

When we compare these two attacks in terms of computational efficiency, then
the evolutionary attack with the lower noise level τ is more efficient. Although
it took 36 generations on average to create an image compared to 30 generations
at τ = 0.1, the time required for one adversarial image at τ = 0.05 was about a
quarter less on average.

We can notice another curious thing in Figure 4.12. It concerns the labels
of the adversarial images. We see that the images with a lower level of noise

55

τ = 0.1, tiles 32× 32 pixels

“polar bear” “garden cart, wheelbarrow”
0.68, 1, 1, 1.64 1.38, 1, 1, 1.81

τ = 0.05, tiles 16× 16 pixels

“dugong” “vulture”
0.44, 1, 1, 1.64 0.75, 1, 1, 2.05

Figure 4.12: ResNet-101. Comparison of different levels of adversarial noise.
Labels of images are in quotation marks. The values on the second line are
the change of classification ∆, the number of targeted steps Kt, the number of
untargeted steps Ku, entropy H.

still have labels similar to the original ones. On the other hand, the images with
a higher level of adversarial noise have labels that are visually farther from the
original. However, we can still say that there is a visual similarity between them.

4.3.4 Results analysis
Figure 4.13 compares the values of ∆avg and Kt for the original images, adversarial
images crafted by CW attack and evolutionary images with the two levels of
adversarial noise. We see that, unlike Inception-v3, the adversarial images created
by the gradient attack have lower values of ∆avg than evolutionary attacks. On
the other hand, the evolutionary images have lower values of targeted steps Kt,
even lower than the original images.

56

Figure 4.13: ResNet-101. Comparison of values ∆avg and Kt for the original
images, the images created by evolutionary attack, and the images created by
CW white box attack.

The graphs in Figure 4.14 are plotted only for evolutionary images with the
lower noise level τ because they have greater ratio of unsuccessful images. Trans-
ferability is plotted for the pretrained ResNet-152, which has the highest ratio of
transferred images.

Figure 4.14: ResNet-101. Success of the attack based on entropy of the original
images Horig (left) and transferability to ResNet-152 based on entropy Hadv and
change in classification ∆avg of the adversarial images (right).

57

We see that successful images usually have higher Horig. On the other hand,
transferability of adversarial images does not seem to depend ether on Hadv or
∆avg. These results are the same as for the images created against Inception-v3.

4.4 ResNet-152
We decided to test one more model that is not in the paper by Yu et al. [2019].
It is ResNet-152, which differs from ResNet-101 in the number of layers. We
chose this model because it is pretrained in PyTorch and its adversarially trained
version is available online thanks to Xie et al. [2019]. We did not perform attacks
with random tiled noise as we hypothesized that the results would be the same
as for ResNet-101.

Since we have no comparison with the original paper about the defense we
aim to defeat, we used different approach to select 1000 images from ImageNet.
Instead of choosing images one by one, we selected them at random. In this way,
we have ensured much greater variability in image labels.

We computed adversarial images by utilizing both PGD and CW attacks.
Then, we computed their values of Kt, Ku and ∆. Later we will compare these
values with evolutionary attacks. We also computed new thresholds for the de-
fense based on the values of white box attacks. Table 4.21 shows a comparison
of the original thresholds for ResNet-101, our thresholds for ResNet-101 and our
thresholds for ResNet-152. We see that the threshold T∆ computed specifically
for ResNet-152 is stricter.

FPR T∆ TKt

Orig R-101 R-152 Orig R-101 R-152
0.1 1.90 2.00 1.73 35 20 85
0.2 1.77 1.98 1.31 22 14 85

Table 4.21: The comparison of thresholds at different levels of FPR.

4.4.1 Evolutionary attacks, Interpolation, Transferability
We only tested attacks with larger tiles. We also did not test the parameters of
differential evolution and used the best setting of CR and F from the experiments
with ResNet-101. Table 4.22 shows results with different levels of adversarial
noise τ . We see that the best tile size is the same as for ResNet-101. We then
experimented with interpolation types. Table 4.23 shows that nearest-neighbor
interpolation is again the most successful.

Based on the results, we can see that the evolutionary attack successfully
deceives the defense because ∆max values are below the lowest T∆ = 1.31. Trans-
ferability to other models seems reasonable, but based on previous experiments,
we can assume that a great proportion of adversarial images that deceive adver-
sarially trained ResNet-152 have already been misclassified at the outset. There-
fore, our last experiments test the fitness function described by Algorithm 8.
This fitness function adds a bonus to individuals who confuse both pretrained
and adversarially trained ResNet-152. According to the result from Table 4.24,

58

Tiles per Side τ Weight Success ∆min ∆avg ∆max Hadv

7
0.05 100

82 % 0.64 0.83 1.03 1.68
14 90 % 0.73 0.93 1.12 1.85
28 66 % 0.58 0.87 1.11 1.67
7

0.1 100
100 % 0.49 0.65 0.85 1.75

14 98 % 0.68 0.85 1.10 2.09
28 94 % 0.49 0.74 1.00 2.07
7

0.1 10
98 % 0.59 0.73 0.96 2.05

14 100 % 0.61 0.74 0.97 2.03
28 90 % 0.58 0.77 0.99 2.76

Table 4.22: ResNet-152. Results of third fitness function on 50 different images
from ImageNet. The column Weight denotes the value of weight A in Algorithm
7.

Interpolation Success ∆min ∆avg ∆max Hadv
Transferability

I-v3 R101 R152adv
nearest 92 % 0.69 0.82 1.01 1.84 43 % 50 % 41 %
bilinear 68 % 0.46 0.65 0.96 1.65 29 % 41 % 50 %
bicubic 76 % 0.41 0.64 0.92 1.45 34 % 39 % 50 %

Table 4.23: ResNet-152. Results for three different interpolations with the best
setting: third fitness function with weight A in Algorithm 7 set to 100, 7 tiles
per image side, CR = 0.25, F = 0.8 and τ = 0.1. 15 generations without fitness
improvement before early stopping.

Interpolation Success ∆min ∆avg ∆max Hadv
Transferability

I-v3 R101 R152adv
nearest 94 % 0.66 0.85 1.08 1.74 49 % 43 % 68 %
bilinear 68 % 0.42 0.62 0.92 1.58 35 % 35 % 71 %
bicubic 76 % 0.41 0.61 0.87 1.53 29 % 47 % 68 %

Table 4.24: ResNet-152. Results for three different interpolations with the last
fitness function described by Algorithm 8.

we see that it has improved the success rate against the adversarially trained
ResNet-152, but the transferability to other models is mostly worse.

Finally, we test the evolutionary attack with the last fitness function and the
best setting against all images from the sample of 1000, which were correctly
classified by ResNet-152. As before, we tested evolutionary attacks with two
levels of adversarial noise τ . The setting for the attacks was the same as for
ResNet-101. The results are in Table 4.25.

We see that the adversarial images created against ResNet-152 and the images
created against ResNet-101 have very similar values of ∆. The transferability of
the images with the higher level of adversarial noise τ to Inception-v3 and ResNet-
101 is also similar, but the success rate against adversarially trained ResNet-152
is significantly higher due to modified fitness function. The transferability of the

59

τ Success ∆min ∆avg ∆max
Transferability DetectionI-v3 R101 R152-adv

0.1 93 % 0.68 0.85 1.07 48 % 56 % 72 % 7 %
41 % 53 % 56 % 22 %

0.05 74 % 0.77 0.95 1.15 39 % 41 % 53 % 7 %
28 % 36 % 17 % 18%

Table 4.25: ResNet-152. Results for all images with the best setting. Second
row of transferability gives the values after correction. First row of detection is
measured at 10% FPR, second row is at 20% FPR.

images with the lower τ is higher even for Inception-v3. When we compare the
transferability with the images created by the white box attacks (Table 4.26),
we see that the evolutionary attack has higher success rate against adversarially
trained ResNet-152 at both levels of τ . On the other hand, the images created
by both white box attacks are more successful with other two models.

Attack I-v3 R101 R152-adv
CW 53 % 69 % 39 %
PGD 50 % 69 % 39 %

Table 4.26: Transferability of adversarial samples created against ResNet-152 by
the white box attacks, without correction.

4.4.2 Results analysis
Figure 4.15 shows the distribution of ∆ and Kt values for the evolutionary and
the white box adversarial images and for the real images. We see that evolution
creates images with lower values of ∆ then the white box attack and also lower
values of Kt then both the white box and the original images. We see that
proportion of the evolutionary images with ∆avg ≤ T∆ is similar to the proportion
of the real images with the same property. Therefore, to detect 10 % or 20 % of
adversarial images created by evolution, we have to sacrifice the same proportion
of the real images. We would need to lower T∆ to the value around 1 to increase
TPR at significantly lower FPR.

Figure 4.16 shows an example of the differently perturbed image. ResNet-152
predicts true label of the real image with the probability of 56 % and the entropy
of the original vector of probabilities is Horig = 1.03. We can see that although
the probability of the true class is relatively low and the entropy is distinctly
higher for the real image, the value Kt is contrariwise quite high. Nevertheless,
we can observe interesting behavior of the adversarial images. Three of four
attacks created the image with the adversary class very similar to the original
one. But, the difference between the white box and the evolutionary attacks is in
the values of ∆ and Kt. Evolution created images with significantly lower values
of ∆, even lower then the original image has. The same is true for the entropy
H. We can see that CW attacks created the image with similarly low values of
Kt as evolution, with even lower Hadv, but the value of ∆ is very large. Both

60

Figure 4.15: ResNet-152. Comparison of values of the change in classification
∆ and the number of targeted steps Kt for original images, images created by
evolutionary attack, and images created by CW white box attack.

adversarial images created by the white box attacks would be therefore detected
by the defense. The evolutionary images would deceive the defense because their
values are “more real” in sense of the hypotheses by Yu et al. [2019] that the
original image has.

61

(a) τ = 0.05 (b) τ = 0.1
“digital watch” “digital watch”
0.12, 11, 1, 0.73 0.17, 7, 1, 0.38

(c) CW attack (d) PGD attack
“steel drum” “digital watch”

1.85, 8, 1, 0.02 1.77, 19, 1, 5.03

(e) Original image
“stopwatch”

0.26, 20, 1, 1.03

Figure 4.16: ResNet-152. Comparison of different attacks. Labels of images are
in quotation marks. The values on the second line are the change of classification
∆, the number of targeted steps Kt, the number of untargeted steps Ku, entropy
H.

62

Conclusion
The goal of this thesis was to propose a method of creating adversarial examples
which would defeat the modern defenses. We decided to focus on adversarial
examples in image classification due to the fact, that it is a very current and
fascinating topic. The state of the art deep learning models are capable to clas-
sify images at even a better level than humans can, yet these models can be
fundamentally confused by adding imperceptible noise to the images.

We summarized adversarial attacks as well as defenses to acquire knowledge
about the past and current techniques used in this field. Since the discovery
of adversarial examples in image processing in 2014, researchers have tried to
find a way how to defend the models against these malicious attacks. One of
the first suggested defenses was to adjust the technique of training deep learning
models and by that decrease their propensity to misclassify the adversarially
perturbed inputs. The adversarial training truly helps to defend the models, but
at the same time it reduces their accuracy. In 2019 was published new interesting
defense which instead of changing the training process, it verifies hypothesized
properties of real images and rejects images that do not pass as adversarial. The
defense was proposed against the white box attacks with the justification that
other attacks are even easier to detect. We decided to deceive this defense, but
with a black box attack by utilizing evolutionary algorithms.

Our attack exploits differential evolution alongside the tiling trick for the
dimensionality reduction. We were successful in both creating adversarial im-
ages capable of fooling the network but also deceiving the chosen defense. We
compared our evolutionary attack to the attack which utilizes only random tiled
noise and discovered that the evolutionary attacks are better then the random
one. This conclusion made also Su et al. [2019] with their evolutionary One Pixel
attack. Furthermore, we compared our evolutionary attack with the attack by
Meunier et al. [2019], which also exploited the tiling trick, but used different fit-
ness function. We discovered that our attack has similar success rate in creating
adversarial images, but significantly lower detection rate of created images by the
defense mechanism.

Results of our experiments also identified an important property of adversarial
images created by the black box evolutionary attack. The authors of the chosen
defense claims that adversarial images are either sensitive to random Gaussian
noise, which significantly changes their classification, or are far from the decision
boundary in sense of gradient steps. We found out that this is not the case
of adversarial images created by evolution as it is hard to get far away from
the decision boundary without knowing the direction in the form of gradients.
Our evolutionary attack also created adversarial samples with lower values of the
change in classification after the addition of random noise than white box attacks.

Our experiment further suggests, that the properties described by Yu et al.
[2019] depends not only on images themselves, but also on the type of architecture
used for the image classification as we saw significant differences between results
of experiments performed against different architectures. We saw, that ResNet-
101 is easier to deceive and also more complicated to defend. On the other
hand, Inception-v3 is more resistant to tiled noise due to its blocks of parallel

63

convolutions with different filter sizes.
Last but not least, we tested the transferability of our created adversarial ex-

amples to other models, one of which was adversarially trained. The results again
depended on the tested architecture. Our adversarial images against Inception-v3
were more transferable to other models then adversarial images created by white
box attacks. For ResNet-152 it was the opposite. We further discovered that we
can deceive more models at once by focusing on all of their outcomes during the
attack. By this way, we were also able to increase the success rate of our attacks
against adversarially trained ResNet-152. On the other hand, if we focused our
fitness function more on adversarially trained network it did not help with the
transferability to other models. We also identified that the transferability be-
tween models does not necessarily depend on the entropy of the output vector
of primarily deceived model or the distance between the original and adversarial
input, but rather on the level of adversarial noise in the image.

The goals of this work were met. As for the future research, we suggest to
combine evolutionary attacks with a smart mutation, which would utilizes the
gradients. This could lead to adversarial images that combine the advantages of
both approaches or reveal other interesting properties of the created images.

64

Bibliography
Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui

Hsieh, and Mani B. Srivastava. Genattack: practical black-box attacks with
gradient-free optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2019, pages 1111–1119, 2019. URL https:
//doi.org/10.1145/3321707.3321749.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversar-
ial attacks: Reliable attacks against black-box machine learning models. In
6th International Conference on Learning Representations, ICLR 2018, 2018.
URL https://openreview.net/forum?id=SyZI0GWCZ.

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of
neural networks. In IEEE Symposium on Security and Privacy, SP 2017, pages
39–57. IEEE Computer Society, 2017. URL https://doi.org/10.1109/SP.
2017.49.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. ZOO:
zeroth order optimization based black-box attacks to deep neural networks
without training substitute models. In Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, AISec@CCS 2017, pages 15–26, 2017.
URL https://doi.org/10.1145/3128572.3140448.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 248–255, 2009.
URL http://www.image-net.org/papers/imagenet_cvpr09.pdf.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. Boosting adversarial attacks with momentum. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2018, pages 9185–
9193, 2018. URL http://openaccess.thecvf.com/content_cvpr_2018/
html/Dong_Boosting_Adversarial_Attacks_CVPR_2018_paper.html.

A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing.
Springer Publishing Company, Incorporated, 2nd edition, 2015. ISBN 978-
3-662-44873-1.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. In 3rd International Conference on Learning
Representations, ICLR 2015, 2015. URL http://arxiv.org/abs/1412.6572.

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. URL https://doi.org/10.1109/
CVPR.2016.90.

65

https://doi.org/10.1145/3321707.3321749
https://doi.org/10.1145/3321707.3321749
https://openreview.net/forum?id=SyZI0GWCZ
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1145/3128572.3140448
http://www.image-net.org/papers/imagenet_cvpr09.pdf
http://openaccess.thecvf.com/content_cvpr_2018/html/Dong_Boosting_Adversarial_Attacks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Dong_Boosting_Adversarial_Attacks_CVPR_2018_paper.html
http://arxiv.org/abs/1412.6572
http://www.deeplearningbook.org
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box ad-
versarial attacks with limited queries and information. In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, volume 80
of Proceedings of Machine Learning Research, pages 2142–2151, 2018. URL
http://proceedings.mlr.press/v80/ilyas18a.html.

Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions:
Black-box adversarial attacks with bandits and priors. In 7th International
Conference on Learning Representations, ICLR 2019, 2019. URL https:
//openreview.net/forum?id=BkMiWhR5K7.

Malhar Jere, Briland Hitaj, Gabriela F. Ciocarlie, and Farinaz Koushanfar.
Scratch that! an evolution-based adversarial attack against neural networks.
CoRR, abs/1912.02316, 2019. URL http://arxiv.org/abs/1912.02316.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representations, ICLR 2015,
2015. URL http://arxiv.org/abs/1412.6980.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian insti-
tute for advanced research), 2009. URL http://www.cs.toronto.edu/˜kriz/
cifar.html. [Online; accessed December 10, 2020].

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learn-
ing at scale. In 5th International Conference on Learning Representations,
ICLR 2017, 2017. URL https://openreview.net/forum?id=BJm4T4Kgx.

Y. LeCun and C. Cortes. MNIST handwritten digit database, 1999. URL http:
//yann.lecun.com/exdb/mnist/. [Online; accessed December 10, 2020].

Erin LeDell. Image of a mlp network, 2016. URL https://github.com/ledell/
sldm4-h2o/blob/master/mlp_network.png. [Online; accessed December 2,
2020].

Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Black-box adversarial sample
generation based on differential evolution. CoRR, abs/2007.15310, 2020. URL
https://arxiv.org/abs/2007.15310.

Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT
Numerical Mathematics, 16:146–160, 1976. URL https://doi.org/10.1007/
BF01931367.

Xiaolei Liu, Teng Hu, Kangyi Ding, Yang Bai, Weina Niu, and Jiazhong Lu. A
black-box attack on neural networks based on swarm evolutionary algorithm.
In Information Security and Privacy - 25th Australasian Conference, ACISP
2020, volume 12248 of Lecture Notes in Computer Science, pages 268–284,
2020. URL https://doi.org/10.1007/978-3-030-55304-3_14.

YiGui Luo, RuiJia Yang, Wei Sha, WeiYi Ding, YouTeng Sun, and YiSi Wang.
Evolution attack on neural networks. CoRR, abs/1906.09072, 2019. URL
http://arxiv.org/abs/1906.09072.

66

http://proceedings.mlr.press/v80/ilyas18a.html
https://openreview.net/forum?id=BkMiWhR5K7
https://openreview.net/forum?id=BkMiWhR5K7
http://arxiv.org/abs/1912.02316
http://arxiv.org/abs/1412.6980
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://openreview.net/forum?id=BJm4T4Kgx
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/ledell/sldm4-h2o/blob/master/mlp_network.png
https://github.com/ledell/sldm4-h2o/blob/master/mlp_network.png
https://arxiv.org/abs/2007.15310
https://doi.org/10.1007/BF01931367
https://doi.org/10.1007/BF01931367
https://doi.org/10.1007/978-3-030-55304-3_14
http://arxiv.org/abs/1906.09072

Laurent Meunier, Jamal Atif, and Olivier Teytaud. Yet another but more ef-
ficient black-box adversarial attack: tiling and evolution strategies. CoRR,
abs/1910.02244, 2019. URL http://arxiv.org/abs/1910.02244.

Seungyong Moon, Gaon An, and Hyun Oh Song. Parsimonious black-box ad-
versarial attacks via efficient combinatorial optimization. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, volume 97
of Proceedings of Machine Learning Research, pages 4636–4645, 2019. URL
http://proceedings.mlr.press/v97/moon19a.html.

Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple black-box adversar-
ial attacks on deep neural networks. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops, CVPR 2017, pages 1310–1318, 2017. URL
https://doi.org/10.1109/CVPRW.2017.172.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, pages
427–436, 2015. URL https://doi.org/10.1109/CVPR.2015.7298640.

Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. The limitations of deep learning in adversarial
settings. In IEEE European Symposium on Security and Privacy, EuroS&P
2016, pages 372–387, 2016a. URL https://doi.org/10.1109/EuroSP.2016.
36.

Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a defense to adversarial perturbations against deep
neural networks. In IEEE Symposium on Security and Privacy, SP 2016, pages
582–597. IEEE Computer Society, 2016b. URL https://doi.org/10.1109/
SP.2016.41.

Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, AsiaCCS 2017, pages 506–519, 2017. URL https:
//doi.org/10.1145/3052973.3053009.

Martin Pilát. Evolučńı algoritmy - úvod, 2020. URL https://martinpilat.com/
cs/prirodou-inspirovane-algoritmy/evolucni-algoritmy-uvod. [Online;
accessed December 12, 2020].

J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform.
https://GitHub.com/FacebookResearch/Nevergrad, 2018.

Raúl Rojas. Neural Networks - A Systematic Introduction. Springer, 1996. https:
//page.mi.fu-berlin.de/rojas/neural/neuron.pdf.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408, 1958. URL
https://doi.org/10.1037/h0042519.

67

http://arxiv.org/abs/1910.02244
http://proceedings.mlr.press/v97/moon19a.html
https://doi.org/10.1109/CVPRW.2017.172
https://doi.org/10.1109/CVPR.2015.7298640
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://martinpilat.com/cs/prirodou-inspirovane-algoritmy/evolucni-algoritmy-uvod
https://martinpilat.com/cs/prirodou-inspirovane-algoritmy/evolucni-algoritmy-uvod
https://GitHub.com/FacebookResearch/Nevergrad
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
https://doi.org/10.1037/h0042519

Andras Rozsa, Ethan M. Rudd, and Terrance E. Boult. Adversarial diversity and
hard positive generation. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition Workshops, CVPR Workshops 2016, pages 410–417, 2016.
URL https://doi.org/10.1109/CVPRW.2016.58.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. In David E. Rumelhart and
James L. Mcclelland, editors, Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Volume 1: Foundations, pages 318–362. MIT
Press, 1986.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In 3rd International Conference on Learning
Representations, ICLR 2015, 2015. URL http://arxiv.org/abs/1409.1556.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
In Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on
Learning Representations, ICLR 2014, 2014. URL http://arxiv.org/abs/
1312.6034.

Milan Straka. Deep learning, lecture 4 - convolutional net-
works, 2018. URL https://slideslive.com/38906635/
deep-learning-lecture-4-convolutional-networks. [Online; accessed
December 7, 2020].

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack
for fooling deep neural networks. IEEE Trans. Evol. Comput., 23(5):828–841,
2019. URL https://doi.org/10.1109/TEVC.2019.2890858.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural net-
works. In 2nd International Conference on Learning Representations, ICLR
2014, 2014. URL http://arxiv.org/abs/1312.6199.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2818–2826, 2016. URL http://arxiv.org/abs/1512.00567.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan
Boneh, and Patrick D. McDaniel. Ensemble adversarial training: Attacks and
defenses. In 6th International Conference on Learning Representations, ICLR
2018, 2018.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He.
Feature denoising for improving adversarial robustness. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019. URL
https://arxiv.org/pdf/1812.03411.pdf.

68

https://doi.org/10.1109/CVPRW.2016.58
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
https://slideslive.com/38906635/deep-learning-lecture-4-convolutional-networks
https://slideslive.com/38906635/deep-learning-lecture-4-convolutional-networks
https://doi.org/10.1109/TEVC.2019.2890858
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1512.00567
https://arxiv.org/pdf/1812.03411.pdf

Tao Yu, Shengyuan Hu, Chuan Guo, Weilun Chao, and Kilian Weinberger. A
new defense against adversarial images: Turning a weakness into a strength.
In Proceedings of the 33rd Conference on Neural Information Processing Sys-
tems (NeurIPS 2019), 2019. URL https://proceedings.neurips.cc/paper/
2019/file/cbb6a3b884f4f88b3a8e3d44c636cbd8-Paper.pdf.

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks
and defenses for deep learning. IEEE Trans. Neural Networks Learn. Syst., 30
(9):2805–2824, 2019. URL https://doi.org/10.1109/TNNLS.2018.2886017.

Jǐŕı. Š́ıma and Roman Neruda. Teoretické otázky neuronových śıt́ı. Vyd. 1. Mat-
fyzpress, Praha, 1996. ISBN 80-85863-18-9.

69

https://proceedings.neurips.cc/paper/2019/file/cbb6a3b884f4f88b3a8e3d44c636cbd8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cbb6a3b884f4f88b3a8e3d44c636cbd8-Paper.pdf
https://doi.org/10.1109/TNNLS.2018.2886017

List of Figures

1.1 An example architecture of a multilayer perceptron by LeDell [2016]. 4
1.2 An example of 2-D convolution by Goodfellow et al. [2016]. 7
1.3 An example of a pooling operation with downsampling by Good-

fellow et al. [2016]. 7
1.4 A building block of ResNet architecture by He et al. [2016]. 8
1.5 A module of Inception architecture by Szegedy et al. [2016]. . . . 9

2.1 Taxonomy of threat models from Papernot et al. [2016a] 15
2.2 Examples of adversarial images created by One Pixel Attack. . . . 22
2.3 Original image and image perturbed by adversarial scratches tech-

nique. 22
2.4 Schema of adversarial pockets near a benign image x. 27

3.1 Correlation matrices of Horig, Kt, Ku and ∆avg of original images
correctly classified by Inception-v3 and ResNet-101. 33

3.2 Values of ∆avg and Horig for the original images correctly classified
by Inception-v3 and ResNet-101. The dashed orange line denotes
the mean of ∆avg for all images. The images are sorted in ascending
order by ∆avg value, thus the x-axis determines the order of the
images according to this value. 34

4.1 Values of a mean change in classification ∆avg for real and ad-
versarial images classified by ResNet-101 and Inception-v3. The
orange lines indicate the thresholds for Inception-v3. Dashed lines
specify the threshold for 10% FPR, dash-dotted lines are for 20%
FPR. 40

4.2 The number of targeted steps Kt for adversarial and real images
classified by ResNet-101 and Inception-v3. The blue lines indicate
the thresholds for ResNet-101. Dashed lines specify the threshold
for 10% FPR, dash-dotted lines are for 20% FPR. 40

4.3 Results of the random tiled attack by Meunier et al. [2019]. 41
4.4 Our results of the random tiled attack against Inception-v3. Tested

numbers of tiles per image side are 3, 7, 14, 28, 56, 112 and 224. . . 41
4.5 Comparison of gradient and evolutionary attacks. Labels of images

are in quotation marks. The values on the third line are the change
of classification ∆, the number of targeted steps Kt, the number
of untargeted steps Ku, entropy H. 44

4.6 Comparison of different types of interpolation. Labels of images
are in quotation marks. The values on the third line are the change
of classification ∆, the number of targeted steps Kt, the number
of untargeted steps Ku, entropy H. 48

4.7 Inception-v3. Comparison of ∆avg values for original images, im-
ages created by evolutionary attack, and images created by CW
white box attack. 49

4.8 Inception-v3. Relationship between ∆avg of adversarial images and
Horig and probability of true class for the original images. 50

70

4.9 Inception-v3. Transferability between models based on the L2 dis-
tance between the original and the adversarial image. 50

4.10 Inception-v3. Transferability between models based on values of
Hadv and ∆avg of the adversarial images. 51

4.11 Our results of the random tiled attack against ResNet-101. Tested
numbers of tiles per image side are 3, 7, 14, 28, 56, 112 and 224. . . 52

4.12 ResNet-101. Comparison of different levels of adversarial noise.
Labels of images are in quotation marks. The values on the second
line are the change of classification ∆, the number of targeted steps
Kt, the number of untargeted steps Ku, entropy H. 56

4.13 ResNet-101. Comparison of values ∆avg and Kt for the original
images, the images created by evolutionary attack, and the images
created by CW white box attack. 57

4.14 ResNet-101. Success of the attack based on entropy of the origi-
nal images Horig (left) and transferability to ResNet-152 based on
entropy Hadv and change in classification ∆avg of the adversarial
images (right). 57

4.15 ResNet-152. Comparison of values of the change in classification
∆ and the number of targeted steps Kt for original images, images
created by evolutionary attack, and images created by CW white
box attack. 61

4.16 ResNet-152. Comparison of different attacks. Labels of images are
in quotation marks. The values on the second line are the change
of classification ∆, the number of targeted steps Kt, the number
of untargeted steps Ku, entropy H. 62

71

List of Tables

2.1 Best and worst detection rates with their relevant learning rates
from the paper. The detection rate depends on the model, attack
and false positive rate. 29

2.2 Original thresholds for the monitored metrics depending on the
model and false positive rate. 30

4.1 Our achieved accuracy for all three models from the paper. 37
4.2 Our detection rates and accurate false positive rates for all combi-

nations of model, attack and target FPR, using original thresholds. 38
4.3 New thresholds with target FPR equal to accurate FPR and cor-

responding detection rates. 38
4.4 Detection rates of noisy attack against Inception-v3 based on the

original and our thresholds. 42
4.5 Inception-v3. Results of 50 runs on one image with different num-

bers of tiles per image side and two fitness functions. 43
4.6 Inception-v3. Results of the second fitness function on 50 different

images from ImageNet. 45
4.7 Inception-v3. Results of the third fitness function on 50 different

images from ImageNet with weight A in Algorithm 7 set to 10. . . 45
4.8 Inception-v3. Results of the third fitness function on 50 different

images from ImageNet with weight A in Algorithm 7 set to 100. . 46
4.9 Inception-v3. Results of different parameters of differential evolu-

tion on 50 images from ImageNet. 46
4.10 Inception-v3. Results for three different interpolations with the

best setting: third fitness function with weight A in Algorithm
7 set to 100, 28 tiles per image side, CR = 0.75, F = 0.8 and
L∞ = 0.1. 15 generations without fitness improvement before
early stopping. 47

4.11 Inception-v3. Results for all images with the best setting. Second
row of transferability gives the values after correction. First row
of detection is measured at 10 % FPR, second row is at 20 % FPR. 48

4.12 Transferability of adversarial samples created against Inception-v3
by the white box attacks. 49

4.13 Inception-v3. Results of the evolutionary attack with the fitness
function used by Meunier et al. [2019]. 51

4.14 Detection rates of of the evolutionary attack with the fitness func-
tion used by Meunier et al. [2019]. 52

4.15 Detection rates of noisy attack against ResNet-101 based on the
original and our thresholds. 53

4.16 ResNet-101. Results of the third fitness function with weight A in
Algorithm 7 set to 10 on 50 different images from ImageNet. . . . 53

4.17 ResNet-101. Results of the third fitness function with weight A in
Algorithm 7 set to 100 on 50 different images from ImageNet. . . 54

4.18 ResNet-101. Results of different parameters setting on 50 different
images from ImageNet. 54

72

4.19 ResNet-101. Results for three different interpolations with the best
setting: third fitness function with weight A in Algorithm 7 set to
100, 7 tiles per image side, CR = 0.25, F = 0.8 and τ = 0.1. 15
generations without fitness improvement before early stopping. . . 55

4.20 ResNet-101. Results for all images with the best setting. Second
row of transferability gives the values after correction. First row
of detection is measured at 10% FPR, second row is at 20% FPR. 55

4.21 The comparison of thresholds at different levels of FPR. 58
4.22 ResNet-152. Results of third fitness function on 50 different images

from ImageNet. The column Weight denotes the value of weight
A in Algorithm 7. 59

4.23 ResNet-152. Results for three different interpolations with the best
setting: third fitness function with weight A in Algorithm 7 set to
100, 7 tiles per image side, CR = 0.25, F = 0.8 and τ = 0.1. 15
generations without fitness improvement before early stopping. . 59

4.24 ResNet-152. Results for three different interpolations with the last
fitness function described by Algorithm 8. 59

4.25 ResNet-152. Results for all images with the best setting. Second
row of transferability gives the values after correction. First row
of detection is measured at 10% FPR, second row is at 20% FPR. 60

4.26 Transferability of adversarial samples created against ResNet-152
by the white box attacks, without correction. 60

73

A. Attachments

A.1 Digital Content
The attachment contains the created images in .png files and the results of our
experiments in .csv. We also attached our source code for reproducing the
results. Individual scripts in .py files are described in README.

We did not provide original scripts of Yu et al. [2019] as they are available
online in the authors’ Git repository1. We used their three essential scripts, but
we had to make some changes:

attack.py implements L3 loss, L4 loss and creates adversarial examples. We
did some adjustments according to the paper to obtain the setting for the best
authors’ results. We set learning rates for each attack and added λ term in
Equation 2.3, λ = 2 for ImageNet and λ = 3 for CIFAR-10.

detect.py implements functions for adversarial examples detection, which
computes the change in classification after adding random Gaussian noise, de-
noted as ∆, the number of steps towards the boundary for the targeted attack,
denoted as Kt and the number of steps towards the boundary for the untargeted
attack, denoted as Ku.

evaluate.py implements functions for evaluation of the images, either for
one criterion or for all of them combined. There is also a function for tuning the
thresholds.

1https://github.com/s-huu/TurningWeaknessIntoStrength

74

	Introduction
	Theoretical background
	Basics of Neural Networks
	Image Processing with Neural Networks
	Architectures

	Evolutionary Algorithms
	Simple Genetic Algorithm
	Differential Evolution

	Adversarial examples: existing approaches
	Pioneering works
	Attacks
	White box attacks
	Black box attacks
	Evolutionary attacks

	Defenses
	Proactive defenses
	Reactive defenses

	Evolutionary Approach to Creating Adversarial Examples
	Evolutionary Setup
	Experimental Setup

	Results
	Results Replication
	Thresholds computation

	Inception-v3
	Noisy attacks
	Evolutionary attacks
	Effect of Interpolation and Transferability
	Results analysis
	Comparison with the attack by ESTiling

	ResNet-101
	Noisy attacks
	Evolutionary attacks
	Effect of Interpolation and Transferability
	Results analysis

	ResNet-152
	Evolutionary attacks, Interpolation, Transferability
	Results analysis

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Digital Content

