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Abstract: Future space-based gravitational-wave detectors will require highly ac-
curate gravitational wave templates for detecting extreme mass ratio inspirals
and estimating their parameters. These templates must include the postadia-
batic effects like the spin of the secondary body. Therefore, we investigate the
influence of the secondary spin on the motion around a Kerr black hole, calcu-
late the corresponding gravitational-wave fluxes to produce flux-driven inspirals
and reveal the shifts of the gravitational-wave phases induced by the secondary’s
spin. In particular, this study begins by considering eccentric equatorial or-
bits, where we obtain the constants of motion and fundamental frequencies using
the Mathisson-Papapetrou-Dixon equations. Next, we derive the linear-in-spin
parts of these quantities. We introduce a new Teukolsky equation solver in the
frequency domain to calculate the energy and angular momentum fluxes from
these trajectories. We use the obtained fluxes to adiabatically evolve the or-
bital parameters and to find the spin-induced phase shifts. For off-equatorial
orbits, a frequency-domain approach is employed to determine the trajectories
in the linear-in-spin regime and to compute the respective fluxes. The agree-
ment between the frequency-domain fluxes and those acquired using an existing
time-domain solver verifies our findings.
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Introduction

Gravitational waves (GWs) generated by an inspiral and a subsequent merge of
two black holes (BHs) were first detected in 2015 by the LIGO/Virgo collabora-
tion [I]. Subsequently, LIGO/Virgo, joined by KAGRA in later runs, observed
many other compact binary inspirals and coalescences [2] 3, 4] including an inspi-
ral of two neutron stars (NSs) [5 6], a coalescence of two objects with asymmetric
masses [7, [§] and a NS-BH coalescence [9]. These detections provided an oppor-
tunity to test general relativity and estimate the parameters of such systems with
unprecedented precision. While the detectors mentioned above operate in the kHz
regime, GWs with nHz frequencies can be detected with pulsar timing arrays. Re-
cently, several collaborations found an evidence of a stochastic GW background
[10, 11, 12, 13]. Although the origin of this background has not been verified,
one of the prominent candidates are overlapping signals from supermassive black
hole binaries. As a result of these detections, a new era of GW astronomy has
begun with more GW detectors projects in preparation.

One particular type of in preparation detectors are the space-based detectors
like LISA [14], TianQin [I5] and Taiji [I6]. These detectors will operate in the
mHz regime, which lies between the previously mentioned bands. Among the
promising sources for the space-based detectors are the extreme mass ratio inspi-
rals (EMRIs) [I7]. These systems consist of a stelar-mass compact object such
as a BH or a NS orbiting in a close vicinity of a massive BH. The mass ratio
q = p/M of such binary system, where M is the mass of the the large (primary)
BH and p is the mass of the smaller (secondary) body, lies between 107 and
1074

In an EMRI, the secondary body is slowly inspiraling towards the primary
because of gravitational radiation reaction. Energy and angular momentum are
slowly carried away in the form of GWs in the 1 mHz band. Because the secondary
body is expected to complete between 10* and 10° densely nested inspiraling
orbits in the strong gravity regime, the detection of such GWs will give us a unique
opportunity to map the strong-field spacetime around massive BHs. Furthermore,
these detections will have an astrophysical impact by allowing us to study the
population of massive BHs and a cosmological one by allowing us to determine
the expansion history of the Universe through measuring the Hubble constant
[17].

To achieve the aforementioned goals, the parameters of each EMRI system
must be estimated with high precision. LISA and other similar GW detectors are
expected to simultaneously receive many signals from EMRIs and other sources.
Since these signals will overlap, matched filtering will be employed to accurately
discern them. This method relies on comparing the combined signal with many
waveform templates of the expected sources. Although for the detection of strong
EMRI signals it might be possible to use simpler kludge models [I8], for the
detection of weaker signals and for the parameter estimation the templates must
be modeled with high accuracy. Because the GW phase accumulates to O(g™')
during the inspiral, to achieve subradian accuracy, the phase must be modeled to
subleading order.

The fact that the mass ratio ¢ of an EMRI is very small allows us to employ



perturbation theory to describe it [19]. In this framework, the spacetime can be
expanded around the background spacetime of the primary in powers of the mass
ratio. Having this in mind, we can study the motion of the secondary body on the
background spacetime. While orbiting around the primary body, the secondary
is perturbing the background spacetime. Without this perturbation, the motion
would be governed by the geodesic equation for a nonspinning secondary and
by the Mathisson-Papapetrou-Dixon (MPD) equations for a spinning secondary.
When the perturbation is present, it creates a force called the self-force which
drives the body away from the zeroth-order nonperturbed trajectory. This force
has a dissipative part which causes the decay of the orbit, but also a conservative
part; it can be expanded in the mass ratio to first-order and second-order self-
force.

Because this self-force is of the order of the mass ratio and, thus, the inspiral
is slow, we can describe the system as a body moving on an orbit parametrized
by given orbital parameters which are slowly evolving on the inspiral timescale,
that is much longer than the orbital timescale. This is known as the two timescale
approzimation. Using this approximation, it was proven in [20] that the leading
“adiabatic” term of the GW phase can be calculated from the average of the
dissipative part of the first-order self-force, while the subleading “postadiabatic”
term is composed of three parts: the oscillating piece of the dissipative part of
the first-order self-force, the conservative part of the first-order self-force and the
average of the dissipative part of the second-order self-force. To achieve subradian
accuracy, the postadiabatic term must be taken into account since the adiabatic
and postadiabatic terms are O(¢~!) and O(q°), respectively.

It was proven for a nonspinning secondary [21] that, due to the fluz-balance
laws, the rate of change of the energy and angular momentum of the system is
equal to the energy and angular momentum GW flux. In particular, the rate
of change of each of these quantities is equal to minus the sum of their flux to
infinity and their flux to the horizon of the central BH. Thus, the adiabatic term
can be calculated by adiabatically evolving the obits using the fluxes without the
need of the full perturbation and the self-force. This fact was also proven for a
spinning secondary [22] 23]. Because the spin of the secondary o is of the order
of the mass ratio, the relative spin correction to the fluxes is of O(q). During the
inspiral, this accumulates to O(q°) correction to the phases, because the duration
is proportional to O(¢!). Therefore, this phase shift is of the same order as the
rest of the postadiabatic terms mentioned above and the spin of the secondary
must be taken into account to achieve the subradian accuracy.

The computation of fluxes for EMRIs has been widely studied in different
setups since the 1990s. Table [I|summarizes works calculating GW fluxes and flux-
driven inspirals of various orbital configurations. For brevity, only fully relativistic
fluxes are mentioned, i.e. works calculating the fluxes as a post-Newtonian (PN)
expansion are omitted. In this thesis we present the calculation of GW fluxes
from eccentric equatorial orbits of spinning particles in the Kerr spacetime with
aligned spins as introduced in Ref. [39] that is attached in Appendix [A.1] along
with their linearization in the secondary spin and calculation of the respective
adiabatic inspirals as introduced in Ref. [40] that is attached in Appendix
Furthermore, we present the calculation of GW fluxes from generic orbits of
spinning particles in the Kerr spacetime as introduced in Ref. [41] attached in
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Table 1: A summary of works calculating GW fluxes from an EMRI. The simplest
cases of work concern circular orbits around a Schwarzschild BH, i.e., the Kerr
parameter a and the eccentricity e are zero. While for a primary Kerr BH, the
orbits can span from an equatorial one to an inclined one. In this table the second
column indicates whether the central BH is spinning (@ # 0) or not; the third
column indicates if the orbits are eccentric (e # 0); the fourth column indicates
if the orbits are inclined with respect to the equatorial plane (I # 0); the fifth
column indicates whether the secondary body is spinning (¢ # 0) or not. This
table extends Table I of Ref. [31] by including later works.

Appendix [A.3]

The rest of the thesis is organized as follows. In Chapter [If the motion of
spinning bodies is described with focus given on equatorial and generic orbits
in the Kerr spacetime. Chapter [2| deals with the black hole perturbation theory
and self-force. In particular, it describes the calculation of the GW fluxes from
orbits calculated in the previous chapter. Chapter [3|presents the equations for the
adiabatic evolution using these fluxes and the phase shifts due to the secondary
spin. Finally, Chapter {4] discusses the numerical methods for the calculation of:
equatorial and generic trajectories of spinning particles, the GW fluxes generated
by these trajectories and the adiabatic inspirals in the equatorial plane while
presenting the respective results.

Notation

Throughout this work, geometric units are used, where the speed of light and
the gravitational constant are set to unity as ¢ = G = 1. Spacetime indices are
denoted by greek letters and run from 0 to 4, whereas tetrad indices are denoted
with latin letters from the beginning of the alphabet. A partial derivative is
denoted by a comma, like 9,U, = U, ,, while a covariant derivative is denoted
by semicolon, like V,U, = U,,,. The Riemann tensor is defined as R* .\ =
P = THyn + TP 0 = T# 07, and the sign of the Levi-Civita tensor Sl
is defined as €"'*® = 1/,/=g. The signature of the metric is (—, +, +, +).






1. Dynamics of spinning bodies
in curved spacetimes

EMRIs can be modeled as compact spinning bodies moving on a BH background
spacetime. For such modeling, we take into account that an isolated extended
body can be described by its multipolar expansion given by the Mathisson’s
gravitational skeleton approach [42] [43]. If the body is compact, i.e., its stress-
energy tensor 7" has a small support in comparison with the characteristic length
of the background spacetime, the multipole moments can be defined as [44]

/0 TH 6t . batny/—g P (1.1)
xY=const

where dz® = x® — 2® is a deviation from some representative worldline z%(7) and
g is the determinant of the background metric.

For compact bodies like BHs and NSs, the expansion can be truncated at the
dipole level leaving only for the approximation the monopole and dipole terms.
These multipoles are represented by the linear momentum P* and the spin tensor
S* which are defined as [44]

SH = /O (T”%x“ — T“Oéx”)\/—gd% : (1.2a)
zY=const
P
pr— / T g Ty S (1.2b)
zY=const v

where I'* ,; is the Christoffel symbol, v* = dz*/dr is the four-velocity of the rep-
resentative worldline, and 7 is the proper time. We use the adapted coordinates
of Kyrian and Semerdk [44] where §2° = 0. For covariant derivation see [45].

The stress-energy tensor in this pole-dipole approrimation can be written as
46, 7]

i _ / dT( Pliyy) 54(96"\/—__2”(7)) v, <Sp(uvu) 64(550\/—__,20(7)))) )

The linear momentum P* and the spin tensor S*” can be reconstructed from the
covariant form of the surface integrals and the stress-energy tensor
[48]. This form of the stress energy tensor has been derived from the field outside
the body using matched asymptotics [49] and, apart from material bodies, holds
for BHs and exotic bodies.

1.1 Mathisson-Papapetrou-Dixon equations

From the conservation law of the stress-energy tensor (1.3) 7%, = 0 the MPD
equations can be derived in the form

DP* 1
d,7_ = —iRuyaﬁvysaﬁ 9 (14&)
DSH
dS = Ply” — ot PV (1.4D)
T



where RM,,3 is the Riemann tensor. These are the evolution equations for the
four-momentum P* and the spin tensor S*”.

However, this system of equations is insufficient to fully describe the evolution
since only 10 equations are available for 14 variables (z#, P*, S‘“’)H This issue is
related to the observer-dependence of the center of mass in general relativity. To
close the system, a so called spin supplementary condition (SSC)

SV, =0 (1.5)

must be imposed, where V* is a timelike vector. For the reference vector V# the
center of mass coincides with the representative worldline. Eq. consists of
three linearly independent equations. The fourth constraint in our work comes
from imposing the normalization of the four-velocity

vh, = —1. (1.6)

Several SSCs have been suggested [50, 51, 52, [44]. In this work we use the
Tulczyjew-Dixon SSC [52, 3]
Stp,=0. (1.7)

Under this SSC the mass of the spinning body p and the magnitude of its spin

S defined as
[SHS .,
/,L:\/—PII‘P#, S: TM (18)

are conserved along the evolution.
Once we set the SSC using Eq. ([1.7)), the four-velocity can be expressed using
the four-momentum and spin tensor as [54) [55]

1 Quv P QRA
o= Dy 2,2 5" RS (1.9)
7] 1+ ﬁwaSaﬂSw ’

where m = —P*v,, is the mass of the particle with respect to the four-velocity
which can be determined from the four-velocity normalization (1.6)) and u* is
specific four-momentum defined as

pr
ut = (1.10)
1
It is convenient to define the spin four-vector S* as
S, = L v Sre SH = Py, S 1.11
nw _§€;wpau ) =€ up g - ( : )

It can be proven that S = /S~S,. From the antisymmetry of €,,,, and Eq. (L.11])

it holds that S*u, = 0, while contracting Eq. (1.9) with S* leads to S*v, = 0.
From Egs. (1.4) and (1.11)) the spin vector follows the evolution equation

DSH 1 . N
P _EU“RQB%S vPur S (1.12)

'Note that the tensor S** is skew-symmetric and, thus, has 6 independent components.



where )
apys = 5Has™ €uns (1.13)
is the right dual of the Riemann tensor.

For the spin magnitude it is convenient to define a dimensionless spin param-
eter

_ 5
- =5

When the small body is an extremal Kerr BH, the spin magnitude is S = pu?
and, therefore, 0 = ¢g. Because of this, for an EMRI it holds ¢ = O(q) and
any spin effects of the secondary are suppressed by the first power of the mass
ratio. Hence, the motion is often linearized in o and all the contributions O(o?)
can be discarded. This justifies why in our calculations for spinning bodies the
spin-induced quadrupole moment is neglected.

After linearizing in o, the four-momentum and four-velocity are parallel, i.e.,
Pt =yt and the MPD equations take the form

(1.14)

g

Dp# 1

L (1.15a)

.

DSHv

f -0 (1.15b)
.

with the equation for the spin four-vector

DSk
dr

0. (1.16)

1.2 Constants of motion

When the background spacetime is equipped with a Killing vector field &# satis-
fying &,y = 0, for every such Killing vector there exist a constant of motion in
the form [53]

1
C = E"Py = SEuS™ . (1.17)

This constant of motion is conserved even in the nonlinear case. To prove the
conservation of C, one can use the identity V,V.&5 = £ Rsaqs.

In axisymmetric and stationary spacetimes such as the Kerr spacetime there
exist two Killing vectors, a timelike oneﬂ and a spacelike one. The constants
of motion that arise from these symmetries are the energy and the component
of the total angular momentum parallel to the symmetry axis. However, it was
proven that under Tulczyjew-Dixon SSC this system has five degrees of freedom
[56] and, thus, two more constants of motion are needed on top of the energy,
angular momentum and mass of the body to make the system integrable. No such
constants of motion exist in the fully nonlinear case and, therefore, the system
is non-integrable. It has been shown numerically that the effect of the non-
integrability is driven by quadratic-in-spin terms in the Schwarzschild spacetime
[57], which is the nonrotating spherically symmetric limit of the Kerr spacetime.

2With the exception of a region called ergoregion near the horizon where both vectors are
spacelike.



Ridiger [58, 59] found two additional quantities which are conserved up to lin-
ear order in spin when the spacetime admits a Killing-Yano tensor which satisfies
Yy = 0 and Y,,,,) = 0. These quantities can be written as

Cy =Y, P"S", (1.18)
Kp=Y,.Y,"P'P" +2uZ,5" + 21~ 'Y, P* S5, P (1.19)

where Z = Y,{)\Yﬂye“’\“” /8 and &, is the timelike Killing vector. For these quasi-
conserved quantities it holds

ddC;Y _ (9<02> 7 d(i}z _ O<O_2). (1.20)

Therefore, the system is nearly integrable when linearized in o.

1.3 Motion in the Kerr spacetime

An EMRI can be described as a small body moving in a Kerr BH spacetime
background, which is described by the following metric tensor written in rational
polynomial coordinates

.2
ds? = _(1 _ M)dt2 _ ZWT(;Z)dtdqg

by
L Sae, E . (@ -@Al-2)0-)

2
X o - d¢?, (1.21)

where

Y =r’+a2”,
A=7r%>—2Mr+a*,

w2:7"2+a2.

These coordinates are related to the standard Boyer-Lindquist coordinates with
2z = cosf.

This metric tensor has two parameters, namely the mass M and the specific
angular momentum a, also known as the Kerr parameter. It describes a rotating
BH in vacuum with an outer and an inner horizon located at

re =M+VM?—a?. (1.22)
It is equipped with two Killing vectors, one timelike
§(tyOu = O (1.23)
related to the stationarirty and one spacelike
{’f‘d))ﬁu = 0y (1.24)

related to the axisymmetry. These vectors satisfy the Killing equation ,.,) = 0.
On top of that, there exist a Killing-Yano tensor

Y da Ada” = azdr A (dt — a(1 — 2%)dg) +rdz A (adt — w?dg) . (1.25)

10



From this tensor, a Killing tensor K,, = Y,,Y,” can be defined, which satisfies
Kuw) = 0 and K, = 0.
Thanks to these symmetries, the following quantities are conserved:

1 v 1 174
E = _gé)uu + @fg)ysl‘ = —u + ﬂgtu,usu s (126)
1 1
B Ty o () N v
Je = &gy ZM@;,,S” = Ug 2M9¢u,u5“ : (1.27)
Cy = u 'Y, uts" | (1.28)
Kr = Kyu'v” + 20 Z ,5" + 207 Yl S5 EDu” | (1.29)

where Z = arz. They can be respectively interpreted as the total specific energy
measured at infinity, component of the total specific angular momentum parallel
to the symmetry axis measured at infinity, projection of the specific spin vector
to the total orbital angular momentum and Carter-like constant. Note that the
last two quantities are conserved up to linear order in o.

1.3.1 DMotion in the equatorial plane

Because of the reflection symmetry around the equatorial plane in the Kerr space-
time, equatorial orbits can be found much more easily than the generic ones as is
shown in this Section. If the particle is confined to the equatorial plane, it must
hold z = 0 and v* = 0. From the ortoghonality S*v, = 0, all components of the
spin vector except the z component must be zero, i.e.,

Su = 5.0, . (1.30)

From the normalization of the spin vector, it holds S, = S, where the sign is
chosen such that for the spin aligned with the symmetry axis S > 0 and for
antialigned spin S < dﬂ

Using Eq. the nonzero components of the spin tensor can be found as
[60]

St = gt = —S% , (1.31a)

Sté — _got — S% , (1.31h)

§ro = _gor — _gUt (1.31¢)
T

From Egs. (1.26]), (1.27) and (1.31]), we can express u; and u, in terms of E, J,

and o in the form [60]

—E+4 22 (], —aE)
U = 1 - o2 M3 ’ (1.32)
— =5
J.—oME — a?(J, — uF)
Uy = T a2TM3 . (1.33)
r3
3The sign of Sy is opposite if we use Boyer-Lindquist coordinates since df/dz ’z:O =-—1.

11



Finally, using the four-velocity relation (1.9) and the normalization of the four-
momentum, the equations of motion can be reformulated as [61], [39]

EJAUji - r:vt , (1.34a)
E(,A,,j: - ir:\/m , (1.34b)
ZUAij - r:w , (1.34c)
where
5, = r2<1 - 02;;43) :

302 a
? =1 —P
v <+7’EU>I+A 7
Pg:ZUE—<a+U>x,
T

r=J,—(a+oM)E .

It is convenient to switch the parametrization of the equations from proper time
T to a parameter A similar to the Carter-Mino time defined as

dr  pdsA, o2 M3 o2M?3
= —T\J<1 e )( 1+2A, — (2 A(,)Tg>. (1.35)

In this work we are interested in bound orbits which are confined to a region
between their turning points ro < r < ry. It is convenient to parametrize the
orbit with semi-latus rectum p and eccentricity e, which are defined using the
aforementioned turning points as

pM pM
= = 1.36
T e T e (1.36)
with the inverse relation reading
21179 r1— 179
= e = ) 1.37
M(Tl—I—TQ) T1+T2 ( )

Then it is possible to find the constants of motion E and J, as functions of these
orbital parameters. To do this, in [39] we used a similar approach to the one used

12



for geodesic motion in Ref. [62]. At the turning points the radial velocity from

Eq. (1.34b]) must vanish, i.e.
Rg(’f‘l) =0 s RO—(TQ) =0. (138)

This is a set of quadratic equations for £ and .J, which can be solved as

/ip+20(e—sgnj \/m)

1.39a

p? + 4nG ( )
—2m7—|—p(e—sgn JZ\/€2+I€C> L 30h

. (0 +4no)E ’ (1:35b)

where the coefficients &, p, 7, €, ¢, and 7 are functions of a, p, e, and o as defined
in Egs. (33), (36), and (37) in [39]. The sign of J, is positive for prograde orbits
and negative for retrograde orbits.

Using Eqs. (1.34)) it is possible to find the orbital frequencies. To achieve this,
we reparametrize the orbits using the relativistic anomaly v, defined as

M
r=—22 (1.40)
1+ ecos x,
Then, the equations of motion for ¢t and ¢ in the Darwin parametrization read,

respectively,

dt . 1—e? N
A GO Py et (1.41a)

where J(x,) is defined in Eq. (B8) in Ref. [40].

The motion from the pericenter to the apocenter and back to the pericenter
corresponds to Yy, going from 0 to 27w. Therefore, the time and the azimuthal
phase accumulated between two successive passages through the pericenter reads,
respectively,

- m

(1.42a)

[y
/\/7)

where we used the fact that the integrand is even around y, = m. Then, the
coordinate-time frequencies can be expressed as

2 A
0, =" Q, =22 (1.43a)
T,
The evolution of the coordinate time and the azimuthal coordinate can be
expressed as a linearly growing part plus an oscillating part as

Aé = 2\/1 —e?

(1.42Db)

) = 50 + 3 fusinfn,) (1.44a)
n=1
A
P(xr) = 2(er + Z G sin(nx,) , (1.44b)
n=1

13



where the Fourier coefficients can be found using the cosine transform as

\/1—(32

tn / cos (nx,)dx, , 1.45a
™np / J(xr) ( )

/1 — 2
€ cos (nx,)dx, - (1.45b)

On = ™mp / \/7

Here we assume that the particle starts at the pericenter. For generic initial
phases x,o and ¢g the relations read

t(xr) = H(xr + Xr0) — £(xr0) . (1.46a)
r(xr) =T + Xr0) (1.46b)
d(xr) = do + S(xr + Xr0) — D(xr0) - (1.46¢)

The check mark denotes the fiducial trajectory with zero initial phases.

Linearization in the secondary spin

As was stated earlier, it is reasonable to linearize the system in o. There are sev-
eral options how to do this linearization which depend on the reference geodesic.
Any geodesics can be used as a reference, however, there are few choices that are
more convenient for our calculations.

The first method, on which we focus, relies on fixing the orbital parameters p
and e and expanding various quantities as

f(p.e,0) =p®(p,e) + o 3f| (pe)+0(0?), (1.47)
p,e
where
@ of
f (p7€) :f(p7670> ) 5f (pve> - 87 (148)
p,e g o=0
The orbital frequencies are then linearized as
Q(p,e,0) = Q9 (p,e) + od%(p, €) + (’)(02) : (1.49)

The advantage of this method is that the quantities such as the frequencies or
constants of motion are often formulated as functions of p, e, and o.

However, for other quantities such a energy and angular momentum fluxes, it
is convenient to linearize them with respect to a geodesic with the same frequen-
cies. Formally, we can write

f( Qo) = fO(0) +06f| (Q)+0(0%), (1.50)
where
FO@) = f@n0). o @)=Y (1.51)
Qi do o=0
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The linear parts o f |pe and §f |Ql are in general different and it is possible to
calculate one from the other. To find the relation between them, we linearize the
orbital parameters as

p(Q,0) = p® () + oop() + O(0?) (1.52a)
e(,0) = e® () + ade() + O(o?) . (1.52b)

However, the dependence of p and e on 2; is not known in general. To find the
linear parts, one can use the relations [40]

89;‘%) 89(3)
0€), — =642
Sp = —2e fe 2% (1.53a)
@
o0® 90
— 00, + =602
e = — o o 70 (1.53b)
T

where the Jacobian determinant is

00® 00 saE 0% -
~ 9p or  Or Op (1.54)

and 6€); are from Eq. . op and de calculated from Eq. are functions
of p and e and they can be interpreted as shift in p and e when a geodesic with
orbital parameters p and e is perturbed by the spin, while keeping the frequencies
fixed.

Linear parts of other quantities such as energy or angular momentum with
fixed frequencies can be calculated as

T

O fe)
+ / op +
pe dp

(8)
of de . (1.55)

of Ode

(p,e) =4f

i

This is again a function of p and e which can be understood as the orbital pa-
rameters of the reference geodesics.

To calculate the linear part of the coordinate time and the azimuthal coordi-
nate as functions of y,., the formulas can be linearized. The linear part of
the radial coordinate with fixed frequencies reads

5r(x) opM pMde cos x; (1.56)
r(xr) = - : :
X 1+ecosy, (1+ecosy,)?

1.3.2 Offequatorial motion

The off-equatorial motion is much more involved and, so far, in the linear-in-
spin regime it has been solved only by Witzany using Hamilton-Jacobi equation
[63] and by Drummond and Hughes in the frequency domain [64] [65]. Here we
describe the latter approach.

When the system is linearized in the secondary spin, Eq. can be written

as
ds»
T I gu®S? = 0. (1.57)
-
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Since the vector S* is proportional to o, we can neglect the linear-in-spin contri-
bution to I'*,5 and u” and take their geodesic values. Then, Eq. describes
a vector S* parallely transported on a geodesic. This topic was studied by Marck
in Ref. [66]. It is convenient to describe the parallel transport in tetrad formal-
ism, where some of the tetrad legs are parallel transported. The zeroth leg can
be constructed from the geodesic velocity "

di az .
eoudat = —Edt + dA—* dr + ﬁ dz+ L. d¢ (1.58a)

which is parallel transported from the definition. The hat denotes quantities
related to the reference geodesicsﬂ. Another leg can be defined as the normalized
total orbital angular momentum [* = Y, #4"” which is parallel transported because
of the properties of the Killing-Yano tensor. The components of this tetrad leg
read

1 d 4 pdb °F —al,
ez dat = \/T (ard/\ ; “ax dt — az%dr
K
=B —L. . a1 2% 4 s
o ’j)_“ZQ g: - 7 Z)Zd T aas) . (158D)

The remaining legs ¢}’ and ¢4 are chosen such that they are orthogonal to ef and
ek. Their components are

1 [—Erd yoadt 2B —al,

erpda = —= ( 7’/\; = /\dt+5rw Aa dr
VK
az (1 —2%)aF — L, Er(l—22)% — 22 &
= T dz+a 5 do |, (1.58¢)
E (1 -22)(w?F —al,) = dp
€2ydl"u = <_E + =y dt + Zad’f’
1 dz (1 -2))w2((1 — 2¥)ak — L.)
—d =L, do ,
=122\ ( = ¢
(1.58d)
where

A

K —a222

K+r2 '

(1]
Il
—
=
(@)
©
~—

and they are not parallel transported.
In this tetrad the solution takes a simple form

St = S| (cospel + sinteh) + S)ef (1.60)

“Note that, to keep the notation similar with the original papers, we denote the geodesic part
of equatorial quantities with superscript (g) and of offequatorial quantities with a hat. Linear-
in-spin parts are denoted with ¢ for equatorial quantities and with subscript or superscript S
for offequatorial quantities.
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where 1, is a function of time and S, and S| are constants which satisfy Sﬁ +
S? = S%. The spin vector can be interpreted as a vector precessing around the
total orbital angular momentum with precession phase v, satisfying the evolution
equation

de), —((r?+aE—al, L,—a(l- 22)E>
W _ VK ¢ ta , 1.61
dA ( K +r? K — a222 (1.61)

where A is the Carter-Mino time satisfying d7/dA\ = X. The average rate of
change of ¢, can be interpreted as the (Carter-Mino time) frequency Y,. Analytic
solution for Ty and ,(\) was found by van de Meent in [67].

The constant S| represents the projection of the spin vector to the orbital

angular momentum and is related to the Riidiger’s constant as Cy = y/ K S

Description in the frequency domain

Drummond and Hughes [64], 65] found a procedure to numerically calculate the
linear correction to the trajectory in frequency domain with respect to a reference
geodesic with the same orbital parameters p, e and I, where p and e are defined
in Eqgs. and [ is defined from the polar turning point z; as sinl = z;.
Because in the generic case the radial turning point depends on z and the polar
turning point depends on r, the orbit is parametrized as follows

r= M
1+ecos(ToA+6%,.(N) + 65 (V)
z= sin[cos(Tz)\ + 0%, (\) + (5xf()\)) +3°(\), (1.62b)

+ 5\, (1.62a)

where t¥()\) and 3°()\) represent the corrections to the turning points and they
average to zero.
The radial and polar frequencies with respect to the Carter-Mino time are

T, =7, +71, (1.62¢)
T.="T.+75. (1.62d)
Corrections to the four-velocity are parametrized as
u = —E+ul(\), (1.62¢)
ug = L. +uj(N) . (1.62f)

In these equations the hat denotes geodesic quantities and the superscript S
denotes the linear-in-spin parts.

Quantities in Egs. (1.62)) can be decomposed into Fourier modes as

Upy = D Upgprje " ITIIATITA (1.63a)
n,k,j

oxP =" oxS,e A (1.63b)
n#0

PEEDY 5X§,k€_i“z/\ ; (1.63c)
k£0
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tS — Z tnkje—znTr)\—szz)\—‘rz]Ts)\ 7 (163d)
n7k7j

S _ —in T A=tk T A+ij T s A
30 =D dnkse JTA (1.63e)
n,k,j

where n and k are summed from —oo to 400 and j from —1 to 1. In Eq.
k and j cannot be simultaneously zero and in Eq. @ n and j cannot be
simultaneously zero. After expanding Eqs. and to linear order in o,
the Fourier coefficients in Eqgs. with the corrections to the frequencies can
be found as a solution to a system of linear equations.

Because the frequencies of a trajectory of a spinning particle are different
from the geodetic frequencies, when the deviation of the coordinates is calcu-
lated, it contains a secularly growing part [64) [65]. Therefore, it is convenient to
parametrize the orbit with phases defined as

wy, =T\ (1.64a)
ws = T\ . (1.64c)
Then we can find the corrections to the coordinates as r = #(w,.) + 7 (w,, w,, w)

and z = 2(w.) + 2°(w,, w., w,), where

s peMéx? (w,)sin(w, + 6%, (w,))
(1 +ecos(w, + 0%, (w,)))?
2% = —sin I6x 5 (w,) sin(w, + 0%, (w.)) + 3 (wy, w., wy) . (1.65b)

+ ¥ (wy, w,, wy) | (1.65a)

To find the corrections to the frequencies I' and T4, one has to calculate the
linear part of the four-velocity with respect to Carter-Mino time

Ut =yut =0" + U (1.66)

and calculate the average of U§?, i.e., the Fourier component Ug’vﬁoo. Then, the
coordinate frequencies can be found as

¢ S
Q, - ?*fg , (1.67a)
+
T, + 75
Q. = FJFFS , (1.67h)
_l’_
T, + 715
+

Similarly, from the four-velocity U*, the coordinate time ¢(\) and the az-
imuthal coordinate ¢(\) can be calculated. As in the geodesic case, they can be
written as a secularly growing part and an oscillating part as

t(A) = TA+ At(T, A, TN, TN (1.68)
d(N) = Tod + AL, TN TN (1.69)

where the linear corrections to the oscillating parts can be found using Eq. (35)
in Ref. [41].
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2. Perturbation theory and the
self-force

Because it is not possible to calculate the dynamical spacetime describing an
EMRI analytically or by numerically evolving the Einstein equations, perturba-
tion theory is often used instead [68,[19]. In the perturbation framework the exact
spacetime gfj,m which captures both the fields of the primary and the secondary
along with the gravitational radiation, can be expanded in the mass ratio as

gZ’;aCt =g + ehﬁy) + e2hg,) + O(€3> = 9w + huw , (2.1)

where g, is the unperturbed background spacetime of the primary BH, h/(j},) is the
n-th order perturbation and e is a bookkeeping parameter counting the powers
of the mass ratio and it can be later set to 1. The series is often truncated at
second order in € since such approximation is sufficient for EMRI modelling [20].
The stress-energy tensor of the secondary body is expanded in the mass ratio
as well as T = €If}) + 2T (2y- Terms proportional to the secondary spin are
present in T(‘;')’ since S = O(e?). After expanding the Einstein’s field equations,
the zeroth order corresponds to vacuum Einstein’s equations whose solution is
the Kerr spacetime. The next two orders read

G [hWV] =TS (2.2a)
6G W] = T2 — 6°G . [nM, B V] (2.2b)

where 6G,, and 52GW are the first and second order terms in the expansion of
the Einstein tensor and their form can be found in Egs. (3)-(6) in [19]. In this
work we discard the second term on the right hand side of Eq. and solve
the equations aq]|

0G [hY + B =T, (2.3)

with the unexpanded skeleton source from Eq. and h®% denoting the term
linear in S. This approach is justified because we take into account only the
terms linear in the mass of the particle ;1 and in the secondary spin S, i.e., we
neglect the quadratic term which can be treated separately [23].

The perturbation h,, can be split into a singular field hiu and a regular field
hfy, ie. hy = hfy + hfl,. The regular field satisfies the homogeneous Einstein’s
equations and the singular field, which is derived using matched asymptotics
method [69, [70], captures the local behavior of the spacetime around the sec-
ondary body. It has been proven that according to the generalized equivalence
principle the motion of the secondary body with any multipole structure can be
described as a motion of a particle in an effective metric given by g, = g, + hfy
[71]. In order to find the equations of motion for a spinning secondary in the
background spacetime g,,,, the MPD equations are expanded in the mass
ratio. After the expansion of the covariant derivative and the Riemann tensor to
first order in o and € and correcting the proper time using Eq. (36) that can be

Instead of these equation, we use Teukolsky formalism described in Section
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found in Ref. [72], we obtain

D2z# 1 1
— _ipe et (1 = LhR e
4 2R vapU’s ( 2hpau u >
1 v R R o R R o af
— §P“ ((2h,/p;o — hpa;,/)u”u - (Zhy(a;a)ﬁ — haawﬁ)u s ) . (2.4a)
Ds™ ,
— = w s g (R, + 1y — ) (2.4b)

where z# is the position of the particle, s = S* /. is the specific spin tensor, and
P = g + utu” is orthogonal projector to the four-velocity. The first term in
Eq. can be interpreted as the spin-curvature force with a correction to the
proper time. The first term in the parentheses on the second line reduces to the
MiSaTaQuWa force [73] [74] for zero spin and the second term in the parentheses
represents correction to the spin-curvature force induced by the metric pertur-
bation. Egs. can be interpreted as the MPD equations in the background
spacetime with additional terms which we call the self-force and self-torque. In
general, the force terms can be split into terms proportional to € which are called
first-order self-force and terms proportional to €? called second-order self-force.
Egs. are identical to Egs. (6) in [23] with some second-order terms neglected.

To solve the whole inspiral directly from the field equations and the equa-
tions of motion is a difficult task since they are coupled and both systems
of equations must be solved simultaneously. Therefore, several approximations
must be used. One of these, the two timescale approxzimation [20], relies on the
separation of the orbital and radiation-reaction timescales. Since the loss of en-
ergy and angular momentum is of the order of the mass ratio, these parameters
evolve on much slower timescale than is the orbital timescale. The governing
equations can be separated into equations for variables evolving in the fast (or-
bital) timescale and for those evolving in the slow (radiation-reaction) timescale.
Therefore, the evolution can be interpreted as an orbit with slowly evolving pa-
rameters, which would be constant without the presence of the self-force. When
the system is described with action-angle variables, the evolution of the angles
YH can be expressed as

v = = (0h(a) + av (at) + O()) (2.5)

where the terms in the parentheses are respectively called the adiabatic and posta-
diabatic term. To find the adiabatic term, only the time average of the dissipative
(time-antisymmetric) part of the first-order self-force is needed, as was first proven
by Mino [2I]. For the postadiabatic term, the rest of the first order self-force,
i.e. the oscillating dissipative part and the conservative (time-symmetric) part,
is needed along with the time average of the dissipative part of the second order
self-force.

The angle variables are directly related to the GW phases. Thus,
Eq. shows that during the inspiral, O(¢!) radians are accumulated in the
leading term before the plunge. In order to accurately model the waveform with
subradian precision, the postadiabatic term must be taken into account as well.

Thanks to the flux-balance laws [2I] [75], the adiabatic term can be found
using asymptotic fluxes to infinity and through the horizon of the central BH.
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Thus, one can avoid the local calculation of the self-force and its regularization.
For an EMRI with spinning secondary it was proven [22], 23] from Egs. that
the asymptotic fluxes of energy and angular momentum are equal to the rate of
change of energy and angular momentum of the system defined in Egs. and
(L.27)). Since the spin contribution to the fluxes is O(0) = O(q), it influences the
phase at the postadiabatic order. This suggest that only the spin contribution
to the fluxes is needed without the calculation of the spin-dependence of the
local self-force, at least in the equatorial plane, where only energy and angular
momentum are needed to parametrize the orbits. Thus, the rest of this Chapter
describes the calculation of the asymptotic GW fluxes from orbits of spinning
particles in the Kerr spacetime.

2.1 Gravitational-wave fluxes

To calculate the GW fluxes in a Kerr background, we employ the Newmann-
Penrose formalism in which all tensorial quantities are projected into a null tetrad
", n*, mt, and m*, where the bar denotes a complex conjugate. We use the
Kinnersley tetrad [76]

2

w a
l”@u = Kat + & + Z% y (26&)
2
i, = o - 2o+ Lo, (2.6b)

2% 227" 20
V1= 22
(V2
where ¢ = 7 +iaz. The GW fluxes to infinity and through the horizon of the BH

are encoded in the perturbation of the Weyl scalars

Uy = —Copysl®mPl'm? | (2.7a)
Uy = —Clpysn®m’nim’ (2.7b)

(mat 0.+ — a¢> (2.6¢)

m"o, =

where Cyp4s is the Weyl tensor. At large radius the dominant components of the
metric perturbation in the radiation gauge are h,,, and hgs; = h = hy — thy,
where I is the strain and hy . are the polarizations. From Eq. the strain
at infinity is related to ¥, as

1d%h

2.1.1 Teukolsky equation

Teukolsky found a decoupled master equation [77]

(7’2+a2)2_ 2 2 0% 4Mar 0% a 1 0?1
( A 0= 32 ¥ A awe T\A 1205

9 o\ @ iz \ 8.
A m(“m)‘az(“— ) (A 1_Z2>a¢

— 95 (M —r = iaz> Sw < — 3) s =4Ar¥XT  (2.9)

l\z

A ot
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for a linear perturbation of the Kerr metric expressed by the spin-weighted vari-
able ¢ describing different field perturbations. In particular, for s = 0 we have
a scalar field, for s = £1 an electromagnetic field, and for s = 42 a gravitational
one. In the latter case, the field variables are

2 = Vo , (2.10a)
o) =My (2.10Db)
The source term T is defined in Table I and Eq. (2.15) in [77] and it is constructed

from the stress-energy tensor.

Solutions in the frequency domain

The main advantage of the Teukolsky equation (TE) (2.9)) is the separability in
the frequency domain. The field variable 41 can be decomposed into Fourier and
multipolar modes as

1 > —twt+im
W= g/ AW Pimes (1) s s ()€~ HHHme (2.11)
Im —©

where w is the frequency and m and [ multipolar indices. With this decomposition
it is possible to find separate ordinary differential equations for the radial part
sUimw (1) and the angular part ;57 (z) in the form

K? —2; — MK
A—si <A8+1 ds¢lmw> + < ZS(T’ ) + diswr — s)\lmw> s¢lmw — sﬁmw ,

dr dr A
(2.12)
d o ds S (m+ sz)? ) o
dz<(1 z%) p )—i—( ﬁqL(awz s)°—s(s— 1)+ Al | sSpe
(2.13)

where K = w?w — am and N\, with sAf“ are the separation constants related
as sNimw = s A% + a?w? — 2maw. Although there are no closed-form solutions to
these equatlons, it is much more computationally expensive to find the solution
for the partial differential equation ([2.9).

The solutions to the angular equation s91%(z) are called the spin-
weighted spheroidal harmonics and are normalized as

/ ds / 46 S5 (2, )25 (21 B) = S (2.14)

where ,S% (2, ¢) = 5% (2)e™™?. They reduce to spin-weighted spherical harmon-
ics Vi (z, ¢) as aw — 0 with the eigenvalue behaving as ;A% — (I —s)(I+s+1).
Because the s = 42 cases are related through the Teukolsky-Starobinsky
identities [78, [79], one can be calculated from the other and, thus, we focus on
the s = —2 case, i.e. the U, variable, and drop the s = —2 subscript.
The asymptotic behavior of the radial solution ., can be written as [3§]

77Z)l7’mw(r — OO) C’lmz,u ’ Zw’f ) (215&)
Vi (r — 14) = O} Ne (2.15Db)

mw
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where C’ljfnw are the asymptotic amplitudes, ky = w—am/(2Mr,) is the frequency
at the horizon and 7* is the tortoise coordinate defined as dr*/dr = w?/A. The
amplitudes can be found using the Green function method as

1 oo RE (1) Tome

£ _
C’lmw - W - A2

dr (2.16)

where W = ((&Rfmw)Rfmw — lemaermJ /A is the invariant Wronskian and
R, are homogeneous solutions of radial TE (2.12)) satisfying purely outgoing
boundary conditions at infinity and purely ingoing boundary conditions at the
horizon.

It was proven [35] that the source term can be expressed in the form
o) 1 2m . )
Tino = [ dt [ dz [7dpA?S Tyetome, (2.17)
—o0 -1 0 ab

where we sum over the pairs of tetrad legs ab = nn, nm, mm and

T =3 5 (fan v=9Tw) (2.18)

with I,,, = 0, I, = 1, and I = 2. The functions féz)(r, z) can be found in
Egs. (B4) in [41] and Ty, are projections of the stress-energy tensor (1.3]) which
can be expressed as [4§]

V=T = [ ar((A% + A%)8* - 0,(BG")) . (2.19)

where all quantities are defined in Eqs. (49) in [41]. After substituting this form

of the stress-energy tensor to Eq. (2.18)) and using Eqgs. (2.16)) and (2.17)), the

amplitudes can be expressed as

CcE = OOd—Te

Imw o )y

wt(n)=imo() [ (1), 2(1), ua (1), Sw(7)) (2.20)

where we defined the function 5, (7, 2, u4, Sey) which can be found in Eq. (52)
of [41].

At this point we can use the the discrete Fourier spectrum of the orbits to
show that the frequency spectrum of the fluxes is discrete as well. Following the
approach used in [31] for geodesic fluxes, we calculate the fluxes from orbits of
spinning particles as follows. After changing the parametrization to Carter-Mino
time A, the coordinates r and z, the four-velocities u, and the spin tensor Sy, can
be written as functions of time whose spectrum consists of the frequencies YT,, T,
and T or their combinations. Furhemore, coordinates t and ¢ can be written as
secularly growing part plus an oscillating part . Thus, the amplitudes take
the form

Gt = [ AT (), 2(0), wa(N), Sap(V) , (2:21)
where ' ‘
JE = eWATmASTE (s U, Sap) (2.22)
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is a function of Carter-Mino time with the same frequencies, which can be de-
composed as
JE = Z Jl:rlimkj6finTr)\fik’I‘z)\fist)\ ' (2.23)
nkj
After substituting this expansion into and using properties of the delta
function, the amplitudes can be written as a sum over discrete frequencies

Cl::?nw = Z Cl:fnnkjé(w - wmnkj) ’ (224)

nkj

where wynk; = m8y+n8,+EkQ, 45 and the partial amplitudes can be expressed
s [41]

1 —inw,—tkw; —ijws
Clmnks = W/dwr/dwz/dwse RO it g (W 02, 05
X exXP (1Wnkj At (Wy, W, ws) — IMAG(W,, Wy, ws)) . (2.25)

This is the most general form for off-equatorial orbits with precessing spin. In
simpler configurations like equatorial orbits, this expression can be simplified
since the integration over w, and w; is trivial. After changing the integration
variable to y, as defined in Eq. , expression ([2.25)) reads

Cltn = [ dxr I () expliwnmnt(xe) — imd(x2)),  (2.26)

which is identical to Eq. (49) in [40] up to a normalization factor of I;-, due to
different definitions. Here we dropped the k£ and j indices since the only nonzero

modes are k = j = 0.
The strain at infinity can be expressed from Eqs. (2.8)), (2.10b)), (2.11)) and

BT5a) as
2 Clmnkg

=2y

r Imnkj

Sawmnkj( )e—iwu+im¢ , (227)

wmnk]

where u = t — r* is the retarded coordinate and (r, z, ¢) are the coordinates of
the observer. Such a waveform coming from a conservative orbit is often called
snapshot waveform and consists of multiple “voices” with different frequencies
characterized by the m, n, k, and 7 numbers.

The partial amplitudes C’limkj can be used for the calculation of the averaged
energy and angular momentum fluxes to the future null infinity 7 and through
the future horizon H*. The respective formulas read [79]

(FP7) = 2 |Gl (FPY = 37 iy ‘Clm"’“”‘ (2.284)
Imnkj 47Tw’72nnkj 7 Imnk;j e 4w mnkj ’
. m‘cﬁn“k“ ; M C i ‘
<.7:J J+> = Z%ﬁ W ) <}‘J H+> ln%ﬂ Qlmnk; i mnkj . (2.28b)

where the coeflicient for the horizon fluxes is

256(2Mr ) ke (K3, + 4€*)(k3, + 16
Olnij = @Mr kb 6)(2” o (2.29)

‘ Clmwmnkj
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with € = v M? — a?/(4Mr, ) and the Teukolsky-Starobinsky constant is [78]

|Chm|? = (()\lmw +2)% + daw(m — aw)) ()\%mw + 36aw(m — aw))
— 480w (2A i + 3)(m — 2aw) + 144w* (M? — a?) . (2.30)

The above formulas are summed over all indices I, m,n, k, j. However, since the
j = £1 amplitudes are proportional to the perpendicular component of the spin
o, = O(o), the fluxes from these modes behave as O(c?). Therefore, they can be
neglected in the linear-in-spin approximation and only the j = 0 modes can be
taken into account in the waveform . Furthermore, since the perpendicular
component of the spin is purely oscillating, it does not contribute to the j = 0
mode. Thus, when the fluxes are linearized in o, they depend only on the parallel
component of the spin .

Solutions in the time domain

In some cases, e.g. when the source cannot be decomposed in the frequency
domain, it is convenient to numerically solve the TE in the time domain.
In this work we use the time-domain TE solver called Teukode by E. Harms,
S. Bernuzzi et al. described in [80]. The authors transformed the TE into hy-
perboloidal horizon-penetrating coordinates (7, p, 0, ¢) in which the horizon and
future null infinity lie at finite radial coordinates p, and pg and, therefore, the
fluxes at infinity and the horizon can be easily extracted. Furthermore, because of
the hyperbolicity, the boundary conditions are trivial since the outgoing (ingoing)
radial coordinate velocity vanishes at the horizon (future null infinity).

The field variable is rescaled as ¢ — A~*r~!',) and decomposed into az-
imuthal modes v = 3, ¥ (7, p, 0)e™#. Then, the equation takes the form

(Crr02 + Cr0,0, + Cp02 + Cop; + C0: + Cp0, + Cyyp + Co )t = S,
(2.31)
where the coefficients are functions of p, 8, m, and s while S is the source term.
This equation is solved numerically by the method of lines with finite differences
in space and a 4th order Runge-Kutta scheme in time.

The source term S is constructed from the stress-energy tensor and its
derivatives. Hence, the source term contains up to third derivative of the delta
function. These derivatives must be appropriately represented on the discrete
grid in p and 0 to accurately calculate the GW fluxes. One way is to represent
the delta functions as narrow Gaussian peaks. The advantage is the easy imple-
mentation and calculation of the derivatives. However, this method is slow since
the exponential function must be repeatedly calculated at each grid point.

Another option is to use a discrete representation that satisfies the properties
of delta function and its derivatives. Such representation was used in [81] and is
implemented in the Teukode up to second derivative. However, for the spinning
particle third derivative is needed. Thus, we implemented a piecewise-polynomial
representation described in [82]. The advantage is the rapid calculation, however,
the non-smoothness creates noise in some cases.

The strain at infinity is calculated by numerically integrating Eq. (2.8), while

25



the energy and angular momentum fluxes to infinity are calculated as [80]

FETt _ 12/1 dZ’m ‘2 (2.32a)
C 16w 4 S .
1 L
FlT Wlm{zm/l dz(rhm)(rhm)} : (2.32b)

2.1.2 Linearization of the fluxes

As was mentioned before, for EMRI modelling, it is sufficient to truncate the
fluxes at linear order in the secondary spin, since that order corresponds to the
postadiabatic term. Similarly to the linearization of the trajectory described in
Section [1.3.1], the linearization of the fluxes can be done with different choices of
the reference geodesics.

When linearizing the amplitudes with respect to a geodesic with the same
orbital parameters p, e, and I, the dependence on these parameters can be ex-
pressed as Cit = CiE  (p,e, I,Q(p,e,I,0),0), where we explicitly showed the
dependence on €2;. Then, the linearized expression reads

CiE w(p, e, 1,0) = & (pe, I) + (’)(02> +06CiE L (p,e, 1) (2.33)

Imnk

where

o=0

5Cl:::nnk(p7 €, I) - ( 80’ aQ ao_

However, to calculate the derivative of Ct, , with respect to €2;, one has to find
the derivative of the homogeneous solution of the radial TE R;.,  and the angular
TE Sj along with the eigenvalue A, with respect to the frequency w. This was
done e.g. in [36] for circular orbits.

To avoid the complicated calculations of the derivatives of the homogeneous
solutions with respect to the frequency, we chose a reference geodesics with the
same frequencies. The set of frequencies which are kept fixed depends on the
configuration of the orbit. For circular orbit, the azimuthal frequency (24 can
be fixed while keeping the orbit circular [83]. For eccentric equatorial orbits we
fix the azimuthal and radial frequencies {2, and 4. In this setup the circular
orbits become eccentric when perturbed with the secondary’s spin. For generic
off-equatorial orbits it is convenient to fix all frequencies €2, €2, and (2, however,
the linear part of the fluxes has not yet been calculated in this case. Therefore,
we present the linearization of the equatorial fluxes [40].

For equatorial orbit we can formally write

Clﬁr:nn = Cﬁnn(p(ﬁr,@ J)? G(Qmﬁv U)’ Qmﬁv U) ) (2'35)

The linear part with respect to a geodesic with the same radial and azimuthal
frequency then reads

oCE oCE oCE
5 + — Imn lmn(s ﬂé 2.
Clmn » ao_ + ap p + 06 € ( 36)

where dp and de are defined in Egs. ((1.53)). These linear parts of the amplitudes
can be calculated by linearization of the integrand in Eq. ([2.26)).
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From linearizing the energy and the angular momentum fluxes (2.28) we ob-
tain

S FETt _ Re {50,;“} Re{ClJ,Zm } 1 Im{éCf{nn} Im{q;n }

Imn 5 (2.37)
2mwz,.,

SFE o Re{dC,,, } Re{clﬁ’?}ﬂ;lm{(sol;n} m{C;, 2.38)

SFT = m Re{0Ci} Re{cm;}w;lm{‘;qmn} m{C7. (2.39)

SFIHT = — {wlmn}Re{qmi)z}ﬂ;lm{‘sclmn}Im{qfﬁ)} (2.40)

where § denotes the linear part with fixed frequencies €2, .
Using Eq. (1.55) we can calculate the linear part with fixed p and e from the
linear part with fixed €2, 4 as

SF| =6F

p’e

Se., (2.41)

Q'r,¢> 8p

where F stands for any of the flux and the partial derivatives of the geodesic
fluxes F(® can be found numerically when the fluxes are calculated on a grid and
interpolated, as we describe in Section

27



28



3. Flux-driven inspirals

As was described in the previous section, the leading adiabatic order of the GW
phase from an EMRI together with the secondary-spin correction can be found
from the rate of change of the energy and angular momentum of the system. Due
to the flux-balance laws, the average rate of change of these constants can be
calculated from the asymptotic fluxes as [22] 23]

<ddiz> _ <]_—JZJ+ +]_-J;rt+> =J,, (3.2)

where the dot denotes an average coordinate-time derivative. These fluxes are
sufficient to calculate an adiabatic evolution of equatorial orbits. However, to
evolve generic off-equatorial orbits of spinning bodies, the evolution of the parallel
component of the spin o and of the Carter-like constant Ky is needed as well.
The formula for the latter is, so far, only known in the case with nonspinning
secondary where it reads |75} 3§]

dQ (Lonk + kTo) <’Cl—:nnk“2 + almnk’Cl:nnkf)
<> .y i 33
dt Imnk 27rwmnk

where Q = K — (aE — L.)?,

2

Emnk = Lzm < : > - CLQEwmnlg <22>)\ (34)
A

1 — 22

and the angle brackets with subscript A denote averaging over one period of polar
motion in Carter-Mino time.

3.1 Waveform of an adiabatic inspiral

Since many quantities including the asymptotic GW fluxes are functions of the
orbital parameters p, e and I, it is more convenient to evolve the orbital parame-
ters instead of the constants of motion. In particular, once we have the evolution
of E, J, and Kg, we can calculate the evolution of the orbital parameters p, e
and I from the relation

-1

p oHE 0.E OF E
el =0 0. OrJ. J. |- (3.5)
I 0,Kr 0.Krp O01Kg Kg

Using these equations, the orbital parameters can be evolved from a set of initial
conditions pg, eg and Iy. From this evolution, the waveform can be expressed as
[19]
1 aw. ; 7 . ;
h — _ Z Almnk;](t)slmmnkj (t)(Z)e_Zq)mnk] (t)+zm¢ 7 (36)
r

Imnkj
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where the amplitudes are calculated from the slowly evolving parameters as

20;mkj (p(t), e(t)v I(t>>
A0 == 00,0, 10) 0

The amplitudes le,mkj are calculated from an orbit with zero initial phases w,,
W0, Po, and 1,0. Note that for nonzero initial phases, an additional phase factor
must be included [38]. The phase ®,,,;; is calculated from the slowly evolving
frequency as

t
B i (1) = /O Wiy (D(1), e(t'), T(¢)) . (3.8)

This phase can be split into azimuthal, radial, polar and precession phase
D,k = mPy + P, + kD, + O (3.9)

and they can be calculated separately as

By(t) — /0 (1), e(¥), T())dt | (3.10)

where 1 = ¢, 1, 2, s.

Since for fully generic inspirals with spinning secondary the evolution of the
Carter constant K and of the parallel component of the spin o are still missing
and have to be calculated, in the rest of this section we confine our calculations
to the equatorial plane. We assume that the magnitude of the spin o = o) is
conserved. In that case the system can be parametrized by p and e and only the
fluxes of E and J, are needed for their evolution, which can be calculated as

O-@ e

These formulas can be explicitly written as [40]

dp Gl - 2,

de _
Fri = p(p(t),e(t), o) , (3.12a)
d )
_BJzE+ OE. Jz
T T = é(p(t), e(t), 0) , (3.12b)
dt ‘J(E,Jz)

where the Jacbian between (F,.J,) and (p, e) reads

_0EQJ. 0EOJ.
-~ Op Qe Qe Op

.10 (3.13)

To separate the spin-independent part and the correction due to the secondary
spin, we can linearize the evolving parameters in o as

p(t) = p¥(t) + odp(t) , (3.14)
e(t) = e® (t) 4 ade(t) , (3.15)
where dp and de are functions of time and are not to be confused with the expres-
sions ([I.53). The geodesic parts p® and e® describe the leading adiabatic part
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of the inspiral and are evolved through Egs. (3.14) with geodesic values of the
fluxes and the constants of motion. The quantities dp and de can be calculated
using the evolution equations

dop ( op Op dp

P (22 PPsp) + Lse(t) , (3.16a)
dt do  Op e p(® (£),e(®) (£),0=0

dde 0é  0eé 0é

— = | =+ =—p(t) + 5e(t)> , (3.16b)
dt (80 Op de p(® (£),e(®) (£),0=0

where the derivatives of p and é defined in Eqs. with respect to o are taken
with fixed p and e, i.e., we use the linear parts of the fluxes 5.7-'|p’6 from Eq. .
Explicit expressions of the derivatives of p and é can be found in Appendix C of
[40].

The phases can be expanded in the secondary spin as well as

B, 4= D) (1) + 00D, 4(t) , (3.17)

where the geodesic (adiabatic) part ‘I’f{% is calculated from Eq. (3.10) with o =0
and the linear part can be found as

t . , ,
0P; = / dt’ (an + mlép(t’) + o, 5e(t’)>
0

do  Op de (3.18)

P (1'),(8) (1) ,0=0

After multiplying this phase shift by o, it is O(1) at the end of the inspiral and,
thus, is comparable to the other postadiabatic effects.

3.2 Initial conditions

Different choices of the initial conditions for dp and de lead to different results
in phase shifts, which correspond to distinct pairs of inspirals of a spinning and
nonspinning secondary that are being compared.

The easiest choice is

which corresponds to comparing inspirals which start at the same p and e. How-
ever, since p and e are not observable from the GW signal unlike the frequencies,
it is more convenient to match the initial frequencies instead.

When the initial conditions are set to

p(te) = Sp(pE, el . be(ty) = de(p?, ef)) (3.20)

where we use the formulas on the right hand side, the initial shifts of the
frequency defined from the integrand in Eq. vanish. Therefore, the initial
frequencies of the inspiral of a spinning and a nonspinning secondary are the
same. Note that only the radial and azimuthal frequencies are matched since
the polar frequency is not observable in the equatorial case. Eq. can be
generalized for generic orbits and initial conditions for p, e and I with matched
frequencies €2, 2, and €2,.
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In similar manner for circular orbits, it is convenient to fix only the azimuthal
frequency since other frequencies are not observable. Then, the initial conditions
can be chosen as

op(ty) = — gg;; , de(tg) = 0. (3.21)

This formula is valid even in the eccentric case which will be useful for the com-
parisons of eccentric and quasicircular inspirals.
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4. Numerical results

In this section we describe numerical calculations of spinning particle’s trajecto-
ries and their respective asymptotic GW fluxes as described in previous chapters
both for equatorial and generic cases. We also present the calculation of adiabatic
inspirals on the equatorial plane.

All these calculations have been done in Mathematica or in C using the
Teukode. This work makes use of the Black Hole Perturbation Toolkit (BHPT)
[84].

4.1 Calculation of the trajectories

4.1.1 Equatorial orbits

We start with equatorial trajectories being calculated for given orbital parameters
p and e and a Kerr parameter d] To achieve this, we calculate the constants of
motion from Egs. and the frequencies from Eqs. (1.43), where the latter
are evaluated as a numerical integral of the expressions in Egs. . Since the
integrands are periodic in x,., we employ the midpoint rule to achieve exponential
convergence [85]. The coordinates t(,) and ¢(x,) are calculated from Egs.
with the coefficients found using discrete cosine transform.

On the other hand, to calculate the linear part of the trajectory with fixed
frequencies, we first calculate the geodesic values followed by the linear parts of
the constants of motion calculated with fixed p and e, i.e. JE|, and 6.J.], ., from
Eq. . Then we calculate the derivatives of the frequencies with respect to p,
e and o by numerically integrating the derivatives of the integrands in Egs. (1.42)).
A Mathematica notebook containing the calculation of these derivatives can be
found in the supplemental material of Ref. [40]. Using these derivatives of the
frequencies we calculate dp and de from Eqs. (1.53). Then, using Egs. and
(1.56)) we calculate the linear corrections to the constants of motion and to the
coordinates with fixed frequencies.

In Figure [4.1| we show the dependence of ¢ on x, for an orbit of spinning and
nonspinning particle along with the linear part dt. Because the frequencies are
matched, after one radial period the difference vanishes.

4.1.2 Generic orbits

Generic orbits along with the spin corrections are calculated using the approach
developed by Drummond and Hughes [64], 65]. The orbits are parametrized by p,
e and [ using Egs. . The geodesic part of the orbit is calculated using the
KerrGeodesic package [86] from the BHPT.

First, we calculate the functions R; and R defined in Eqs. (Cba) and (C5b)
in Ref. [41] on a grid in w, and w,. Then, their Fourier coefficients are calculated

'Tf not mentioned otherwise, we set the mass M to 1 because the resulting quantities can
be rescaled accordingly.
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Figure 4.1: Dependence of t on Y, for orbits with spinning and nonspinning
particle. (Note that, following Refs. [39, [40], here the hat denotes dimensionless
quantities. This notation is also used in Figs. [£.4] 14.13] 4.16} and 4.17])

as

ab
where the matrices of discrete Fourier transform read

' 1
F = exp(?\?(l + 2a)>M , (4.2)
b mik 1
= 14 20) | — 4.
c exp(NZ< " >>NZ, (43)

with N, and N, being the numbers of steps in the w, and w, direction. From the
Fourier coefficients the oscillating parts of uts » are calculated by integrating
Eq. (3.24) in Ref. [65] as

s TR bk

= —20 4.4
ut,d),nk TLTT + kTZ ( )

for n # 0 or k # 0.

Then, the remaining Fourier coefficients uy,, “g,oo along with the Fourier
coefficients dx7,, 0x2 . thy, 3o and the frequency corrections Y7 and T? are
found by solving a system of linear equations

M-v+c=0. (4.5)

The vector v contains the unknown quantities, while the matrix M is constructed
from the r and z component of the spin-curvature force along with the equation
for the normalization of the four-velocity. The component of this matrix contain
the Fourier coefficients of the functions F,. ¢, Grros, Hrvos, Zir10.23, Qoss Srro
Trvos Uir1023, Kreoss Mircos, Nipig, which are defined in the supplemental
material of [64] and are calculated analogously to Ry k. Finally, the vector ¢
contains the Fourier coefficients of the functions 7, V and P defined in Egs. (C5)
of Ref. [41].
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Figure 4.2: Fourier coefficients 6)(;% for an orbit with a = 0.9M, p = 15, I = 15°,
and different e.

Because of the reflection symmetry around the equatorial plane, the Fourier
expansions contain only certain £ modes. In particular, uf’(b’nk, 6xf’k and to,
consist of even k modes while 37, consists of odd k& modes. Further, the Fourier
expansion of the radial component of the spin-curvature force and the equation for
the normalization of the four-velocity contain even £ modes and the z component
of the spin-curvature force contains odd k£ modes. This allows us to reduce the
number of columns and rows of the matrix M, which reduces the error originating
from numeric manipulations of large matrices.

With these simplifications, the vector v contains a total of 44210 + 2kmax +
AN maxkmax unknown coefficients, hence, M has this number of columns. The total
number of equations, thus the number of rows of M, is 2 4 3kmax + 4Mmax +
6Kk maxnmax- Lherefore, the system is overconstrained and M is a rectangular
matrix. Thus, we solve the system using the least squares method.

Because of this approximative solution, not all Fourier coefficients are calcu-
lated accurately. In Fig. we show a logarithmic plot of the Fourier coefficients
5)(5,1 for a = 0.9M, p = 15, [ = 15° and different eccentricities. We can see
that after certain value of |n| the Fourier coefficients stop converging. For higher
eccentricities this happens for lower n. The same behavior occurs for (5)(*2 . and
other Fourier coefficients. Therefore, not all Fourier coefficients are reliable and
we must chose very high n,,., or kya.x to have accurate results for high eccentric-
ities or inclinations.

4.2 Calculation of the fluxes

From the trajectories of spinning particles we calculate the GW fluxes, i.e. the
partial amplitudes CjZ, , and the linear-in-spin parts 6C;- =~ for equatorial orbits
and Csi',lmnk for generic orbits.

4.2.1 Equatorial fluxes

In the following paragraphs we first describe the calculation of fluxes from ec-
centric equatorial orbits [39]. The partial amplitudes Clj;m are calculated by
numerically integrating Eq. (2.26). We employ the midpoint rule because it
is exponentially converging for periodic functions. The integration error de-
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Figure 4.3: Real part of exp(i(wmnt(x») — m¢(x,))) for orbits with a = 0.9M,
c=-05p=12,¢e=02,m=2,n=15 (top) and a = 0.9M, 0 = —0.5, p = 12,
e=0.8 m=2,n=4 (bottom). The red dots show points where the function is
evaluated for the numerical integration.

pends on the number of steps which is determined as follows. We assume that
the main oscillating part of the integrand comes from the exponential term
exp(iwmnt(Xr) — im@(x,)). The behavior of this function is depicted in Fig. |4.3
for orbits with different eccentricities and mode numbers. The “frequency” of the
oscillations is higher for higher n and higher eccentricity and can be expressed as

dt d¢ . 1—e?
Wi —— — M = (W Vi(xr) — MV (X = (X 4.6
dx,  dx, ( O) () p*J(xr) &) 19
Thus we choose the number of steps as
max{[8[¢},,, (0)1], 18[¢n., (7)]], 32} (4.7)

to guarantee that each oscillation has at least 4 points. This procedure ensures
that the integrand is evaluated at low number of points while keeping the relative
error below 107% across the parameter space.

The homogeneous radial solutions R, (r) are calculated using the Teukolsky
package [87] of the BHPT, which numerically integrates the TE in hyperboloidal
coordinates with initial conditions calculated with the Mano-Suzuki-Takasugi
method [88]. The spin weighted spheroidal harmonics are calculated using the
Spin WeightedSpheroidalHarmonics package [89] of the BHPT as well with the
Leaver’s method [90].

In Fig. we show the absolute value of the amplitudes ’Clﬁm from eccen-
tric equatorial orbit with a = 0.9M, 0 = —0.5, p = 12, and e = 0.2 for the
dominant m = 2 mode. We can see that the partial amplitudes converge to zero
exponentially with increasing |n| and they decrease with [. Note that for astro-
physical systems the value of the spin is of the same order as the mass ratio, i.e.,
0 < q < 1. However the fluxes can be calculated with spins much higher and
numerically linearized afterwards. Furthermore, high values of spin are chosen to

make the spin contribution visible in the plots.
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Figure 4.4: Partial amplitudes for eccentric equatorial orbit with a = 0.9M,
oc=—-0.5,p=12,e=0.2, and m = 2.
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Table 4.1: Symmetries of the linear part of the trajectory

Linearization in the secondary spin

In the previous section we described the calculation of the nonlinearized partial
amplitudes Cif (p,e, o). For the equatorial case we can calculate the linear-in-
spin part 6Cj,,, separately in the fixed frequency framework using Eq. (2-36).
The linear-in-spin parts §C;° —are calculated similarly to the nonlinearized case
by integrating the derivative of the integrand of Eq. .

To verify the linear-in-spin part of the amplitude, we compare them with nu-
merical derivatives of the nonlinearized amplitudes. The derivative is calculated

as

50inum _ Cl:fnn(p—i_? 6+, U) — Cl::”m(p_7 €, _U)
Ilmn 2%

To ensue that the frequencies of the trajectories of the spinning and nonspinning
particles are the same, for given p® and e® we numerically solve

+0(0?) . (4.8)

O, (p*, e*, o) = QB (p®), c®) | (4.9a)
Qp(pF, €%, £0) = Qg&g) (p®, @) (4.9b)

for p* and e*. In Fig. |4.5| the relative truncation error ‘1 — ¢t/ 5C’ﬁfnn’ is
plotted for different orbital parameters and mode numbers. We can see that the
error behaves as O(0?). Therefore, the linear part is consistent with the nonlinear

result.

4.2.2 Generic fluxes

The generic fluxes with parallel spin are calculated similarly as the equatorial
fluxes by integrating Eq. (2.25) over w, and w, (integration over wy is trivial for
parallel spin). Analogously to the equatorial case, the number of steps in w, and
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Figure 4.5: Dependence of the relative truncation error calculated from the nu-
merical derivative of the nonlinearized amplitudes and the linear part with fixed
frequencies on the value of the spin. The orbital parameters are a = 0.9M,
p® =12, e® = 0.6 (top) and a = 0.9M, p'® = 4, €& = 0.4 (nottom). The
relative truncation error behaves as O(0?) which indicates that the linear part is
correct.

w, 18 chosen as

max{|16[¢.(0) + n] |, [16[, () + n], 32} . (4.10a)
max{[8[¢,(0) + k1|, I8¢, (w/2) + k], 32} , (4.10b)

respectively, where ¢, (w,) = WAty (w,) — mAéy(wy) for y = r,z. Similarly
to [31], we exploit the symmetries of the trajectory to write the integral
as a sum of four integrals over 0 < w, < m and 0 < w, < 7. For the geodesic
quantities, these symmetries read f(2m — w,) = f(w,) for 7#(w,) and 2(w,) and
F@r —w,) = —f(w,) for Al,.(w,.), Ad,.(w,.), U (w,) and U (w,). Similar
symmetries hold for the linear part of the trajectory, namely f(w,,w,) = £f(27r—
Wy, 21 —w,) and f(w,,w,) = +f(w,, w, + ), where the functions and respective
signs are listed in Table The latter symmetry holds thanks to the reflection
symmetry around the equatorial plane.

Because each offequatorial trajectory is calculated up to linear order in o, the
fluxes are accurate up to this order as well. Therefore, if we want to compare the
generic fluxes with non-linearized equatorial or time-domain fluxes, we have to
compare the linear-in-spin parts. These linear parts are extracted using fourth-
order finite difference formula which reads

15— 1:/(=20) = 5f(=0) + 5/(0) = 35(20)

g

(4.11)
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Figure 4.6: Linear-in-spin parts of the energy fluxes from a nearly spherical orbit
with a = 0.9M, p = 10, and I = 30° for m = 1 (left), m = 2 (middle), and m = 3
(right) and for different [ and k.

In this way we calculate the linear-in-spin parts of the amplitudes nglmnk and of

the fluxes ]-"SE "= From the order of the method and the step size, which we set
to o = 0.05, we estimate the error to be of the order 1075,

We plot the linear parts of the energy fluxes from nearly spherical orbits with
e = 0 in Fig. [4.6] for different m, [ and k. We can see that for given [ the maximum
lies at k = [—m. In Fig. 4.7/ we plot the sum over [ of the energy flux from generic
off-equatorial orbit for different m, n and k.

Not all the linear parts of the partial amplitudes can be calculated accurately.
Because the Fourier coefficients of the linear part of the trajectory (5)(57”, (5xf7k,
etc. stop converging after certain |n| and |k|, the linear parts of the partial
amplitudes stop converging as well, this can be seen in Fig. 4.8

To check our calculations, we have verified that the generic fluxes converge to
the equatorial value for decreasing I. Details can be found in Ref. [41] in Figs. 4
and 5.

4.2.3 Comparisons of time-domain and frequency-domain
results

To further verify our frequency-domain results, we compare the m-modes of the
strain rh,, and the energy flux to infinity 727" with time-domain results obtained
with the Teukode.
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Figure 4.7: Linear-in-spin parts of the energy flux from a generic orbit summed
over [ for a =09M, p=12,e=0.2, I =30° and m =1 (left), m = 2 (middle),
and m = 3 (right) for different n and k.

1.x1075 ¢ ) a8 E
5.x107° | 1 T
/7 1047, 4
—= Tx -
S 1.x10} ER r
= -7 its \/
60{ 5.x107" [ 1 9
- -10 |
1.x107 &= Nmax =6 10 ® kmax =8
WX F 3
5x10°EN ) Timax = 12 ] Fmax = 16
0 5 10 15 -10 -5 0 5 10
n k

Figure 4.8: Dependence of the linear-in-spin parts of the partial amplitudes
Cimmp o0 1 for different nya and a = 0.9M, p = 15, e = 0.5, and I = 15°
(left) and on k for different kyay and a = 0.9M, p = 15, e = 0.2, and I = 60°
(right). The linear parts of the partial amplitudes stop converging because of the
finite number of the Fourier coefficients of the linear part of the trajectory as can
be seen in Fig. [4.2

To calculate the time-domain fluxes, the trajectory is needed as a time series.
In the equatorial case we first calculate the initial conditions for given a, o,
p, and e from Eqgs. (1.34). Then, we use them in an implicit Gauss-Runge-
Kutta integrator of MPD equations to find the trajectory. This trajectory
is subsequently used as an input to the Teukode. Because of the discretization
error, we run the Teukode for several resolutions in p and 6 direction, namely,
N, x Ny = 1200 x 100, 1704 x 142, 2400 x 200, 3384 x 282, and 4800 x 400, to
verify that the error decreases with increasing resolution.

The delta function and its derivatives in the source term is approximated with
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12th order piecewise polynomial or Gaussian function. Even if in most cases we
have used the piecewise polynomial, since it is faster and more accurate, how-
ever, in some extreme cases this approximation causes a noise and the Gaussian
approximation must be used instead.

To find the error we calculate the relative difference of the strain calculated
in time domain and frequency domain

td
hm

— 7l (4.12)

it = 1

The strain is extracted at » = oo and € = 7/2 as a function of the retarded
time u. The frequency-domain strain is calculated using Eq. as a sum
over [ and n. We assume that the error of the frequency domain solution is
much lower than the error of the time domain solution. In Fig. [£.9 we show
such relative differences for different m-modes and resolutions. From this plot we
can see that with decreasing step length Ap = (pg — p4)/N, the relative error
decreases, but the noise increases. This noise is caused by the non-smoothness
of the piecewise polynomials. When the delta function is approximated with the
Gaussian function, the amplitude of the noise is lower, however, the accuracy is
lower because the Gaussian approximation is wider and poorly represents a point
particle.

To investigate the convergence of the time-domain solution to the frequency-
domain solution, we calculate the relative difference of the energy flux to infinity
for given m as

EJ+

1 m,td
EJ+

]:m,fd

SFETT — (4.13)

The time-domain energy flux is calculated as an average over two radial periods
from 350 to 350 4 27, of the formula . We plot the result with respect to
the step length in the p direction in Fig. for different values of the secondary
spin. The relative differences decrease with decreasing step length except the
m = 1 case for N, = 4800 where the noise becomes significant. This is caused
by the fact that the value of the flux for m = 1 is small and the noise becomes
significant at this resolution.

In Fig. 4.11| we again plot the convergence of the relative difference for dif-
ferent eccentricities. Similarly to the previous plot, in some cases such as high
eccentricities the noise becomes visible and the relative difference does not con-
verge. This is caused by the fast motion of the particle and the subsequent change
of the shape of the delta function approximated with the piecewise polynomial,
which depends on the position between the grid points. Therefore, we repeat the
calculation in some cases with a Gaussian function in the p direction and a piece-
wise polynomial in the 6 direction or with Gaussian function in both directions.
Then, the relative difference converges.

We also compare nearly spherical and generic fluxes calculated in time domain
and frequency domain. Because, unlike the equatorial fluxes, the generic fluxes
in frequency domain are calculated up to linear order in spin, whereas the time
domain fluxes are nonlinearized, we compare the time domain and frequency
domain linear parts in spin of the energy fluxes at infinity F, 5;7”+ for given m.
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Figure 4.9: Relative difference between time-domain and frequency-domain m-
mode of the strain as a function of time for different resolutions in the p direction
and m = 1,2,3,4 from top to bottom. The orbital parameters are a = 0.9M,
o= —0.5,p=12,and e = 0.2. The delta function is approximated with piecewise
polynomial for all m and resolutions and with Gaussian function for m = 2 and
resolution 4800. The initial noise is caused by the zero initial data in time domain
and decreases around v = 3000/ .
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imated with piecewise polynomial.
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Figure 4.12: Dependence of the relative difference of the time domain and fre-
quency domain energy fluxes on the inclination (left) and on the azimuthal num-
ber m (right) for nearly spherical orbits with a = 0.9M and p = 10. The plot on
the left shows prograde orbits and the plot on the right shows retrograde orbits.

First, using the aforementioned Gauss-Runge-Kuta MPD equations solver we
calculate the trajectory which matches the linearized trajectory obtained in fre-
quency domain as follows. For given a, p, e, and I, the conserved energy E and
angular momentum J, along with r, 6, u”, S”, and S? are calculated using the
frequency-domain approach. These values are used as initial conditions together
with the other components of u* and S* determined by numerically solving the
constraints ({1.7)), , and . These initial conditions ensure that
the frequency-domain and time-domain trajectories agree up to linear order in
0. These trajectories for 0 = —0.1, —0.05,0.05,0.1 are then used as an input to
the Teukode. In this case we used 4800 points in the radial direction and the
Gaussian approximation of the delta function to reduce the noise.

Because the energy fluxes calculated in time domain are not constant, we need
a procedure to average them. For nearly spherical orbits we average the fluxes
over several polar periods 27 /€2, which are calculated from Eq. using the
frequency-domain approach. However, the generic fluxes are not periodic and
their spectrum contains all the combinations of the radial and polar frequency
n§,. + k€),. Therefore, they cannot be averaged by integrating them over several
periods, instead we successively calculate moving averages as follows. The fre-
quency €2, has the highest amplitude. Hence we first calculate a moving average
with period 27/€,. In the resulting time series, the frequency €2, and its multi-
ples are eliminated. Next, we calculate moving averages with periods 27/, and
27 /(n). + k€2,) until the resulting time series is smooth or too short. The result
is calculated as an average of this final series.

Having obtained a single value for each time-domain calculation, we calculate
the linear part in spin using Eq. and the relative difference

éﬂtd
E o m
A‘FS,W - ‘ f‘Efd

(4.14)

The results for nearly spherical orbits can be seen in Fig. . For all incli-
nations I and azimuthal numbers m, the error is lower than 7 x 1073, which is
approximately the error of the Teukode (cf. Fig. . In Table we list the
values and relative errors of the fluxes from generic orbits for different orbital
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D e I |m fgm A}"gm
10/01]15°] 2| —-2.8259%x10%]1x1073
12102(30°] 1 | —1.1954 x 1077 | 2 x 107°
12102(30°| 2 | —1.0488 x 1076 | 1 x 1073
121021]30°| 3| —14210%x 1077 | 3 x 1073
1210.2160°| 2 | —=8.0550 x 1077 | 5 x 10~*
15105 15°| 2 | —4.2936 x 1077 | 2x 1073

Table 4.2: Values of the energy flux to infinity and the relative error of the
time domain and frequency domain results for generic orbits with given orbital
parameters and azimuthal number m.

parameters and azimuthal number m. In this case the relative difference is below
3 x 1073,

4.2.4 Summation of the fluxes

Here we describe our approach to the calculation of the total fluxes from eccentric
equatorial orbits. In order to get the total equatorial fluxes, they have to be
summed over [, m and n with proper bounds determined according to a given
accuracy.

The error of the geodesic fluxes must be lower than the mass ratio to calculate
the phase to subradian accuracy. Therefore, we set this accuracy to 10~7. The
accuracy of the linear parts in spin can be lower, since these parts contribute only
to the postadiabatic order. Accordingly, we set the accuracy to 1073, However,
since these linear parts are calculated simultaneously with the geodesic part and
the accuracy of the geodesic fluxes is higher, their final error is lower than 1073.

For these calculations we make use of the following symmetry:

ﬂ,—m,—n = _E m,n (415&)
Wemen = —Wmn (4.15b)

where F stands for the energy and angular momentum fluxes or their linear parts.
Therefore, it is possible to sum only the modes with w,,, > 0 and multiply the
result by two to obtain the total fluxes. The computed sums have the following
structure:

F=2 Y Fn, (4.16a)
lII]aX
Fo= Y Fim, (4.16b)
l:lmin
where Muyin = —5, lmin = max{2, |m|} and Nmin max, Mmax and lpax are determined

during the calculation according to a given error €, which determines the accuracy
we wish to achieve.

The procedure starts by calculating F55 mode and summing the [ = m = 2
fluxes over n from ny, = [—mQy /€, | to n = 20. The lower bound corresponds
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to the lowest n for which the frequency is positive. Next, we find the mode with
the maximal flux as Fax = max, Foa,. In all the studied cases the maximal
flux lie within this range. We continue by calculating the fluxes for higher n
until three consecutive modes are decreasing and are lower than F,.c€/10. This
termination condition is used later in the sums over n for other values of [ and
m.

Once we obtain the F5; mode, we continue by summing the m = 2 mode
over [. For | = 3,4,... we first set n to ng = |[10me?]|, which is close to the
maximum of the flux over n. Having set that, we increase n until the termination
condition for n is satisfied. After that, n is decreased until the same termination
condition is satisfied or until we reach the last mode with positive frequency. This
computational procedure is repeated for higher [ until the termination condition
for [ is satisfied. This termination condition reads Fj_ . ., < Faz€.

So far, we have described the computation of the 5 mode. Subsequently, we
calculate other m modes from m,,;,, = —5 by successively summing the modes over
n and [ using the termination conditions described in the previous paragraphs.
The sum over m is truncated when the estimated error is less than €/2 times the
total flux, i.e.

f’m € Mmax
max < — fm , 4 ]_ 7
1 - ‘meax /‘meax_l 2 m:;min ( )

where the error on the left hand side is calculated from the assumption that the
fluxes F,,, decrease exponentially with m. However, for orbits near the separatrix
we truncate the series at m = 20 even when this condition is not satisfied while
knowingly introducing an error. The reason is to save the computational cost. To
efficiently calculate the fluxes in this area of the parameter space, further research
is needed.

4.2.5 Interpolation of the fluxes

Because the calculation of the fluxes at one point in the parameter space is
computationally expensive and can take hours of CPU time, we calculate the
fluxes and their linear-in-spin parts on a grid in the p — e plane and interpolate
them. In particular, first, at each gridpoint we find the geodesic energy and
angular momentum fluxes and their linear-in-spin parts with fixed frequencies
OF ]Q The geodesic fluxes are then interpolated. From the linear-in-spin parts
OF ]Q and the derivatives of the geodesic fluxes with respect to p and e, we
calculate the linear parts with fixed p and e 0F|,, by employing Eq. (2.41)).
Finally, we calculate p, ¢, 0,p, 0,¢, OpD, Opé, Ocp, and O.é on the p — e grid and
interpolate them in order to use them for the calculation of the inspirals.

Prior to the interpolation, we normalize the quantities to factor out the behav-
ior at infinity and near the separatrix. The normalization coefficients are derived
from the Newtonian formulas for the fluxes

32 _ 73, 37
=" e2)3/2(1 5t 96€4> , (4.18)
e ?>52p7/2(1 ST (1 n 262) (4.18b)

and can be found in Eqs. (91) in Ref. [40].
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Figure 4.13: Grid in the p — e plane where the fluxes are interpolated.

Instead of constructing the grid on the p—e plane, we transform these variables
to different set of coordinated x and y. The reason for this transformation is to
make the grid denser near the separatrix and to avoid some regions where the
calculation of the fluxes is difficult. The transformation is defined as follows.
First, the coordinates p and e are transformed to

U= \/(p —11sco)? — (ps(e) — msco)? , (4.19a)
V=e?, (4.19b)
where p,(e) is the separatrix. This transformation regularizes some diverging
quantities for circular orbits (e = 0). Next we transform U as

Cc

Uit g

(4.20)

where ¢ is a parameter controlling the compactness of the grid near the separatrix.
In our calculations we set ¢ = 25. Then, we perform another transformation in
the form

U= (U — Uig+ Uy — Uo1)xy + (Uig — Upo)x + (Uor — Upo)y + Upo ,  (4.21a)
V= (Vi1 = Vor)xy + (Vor — Voo)y (4.21b)

where U,y and V,, are chosen according to given boundaries. We calculate the
grid for a = 0,0.5M,0.9M on Chebyshev nodes in x and y with 15 grid points in
each direction. This grid in the p — e plane is shown for a = 0.9M in Fig. [4.13]
The main advantage of the Chebyshev interpolation is the exponential conver-
gence, which allows us to calculate the fluxes at fewer points while maintaining
high accuracy. The disadvantages are the slow convergence for non-analytical
functions and the propagation of the error at one point across the interpolation
domain. When a function is approximated with Chebyshev polynomials as

fy) =3 e Ti(@)Ti(y) (4.22)

the interpolation error can be estimated as

max |l . (4.23)

1=tmax VJ=Jmax
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Figure 4.14: Relative interpolation error of the energy flux to infinity (violet)
and relative error of the energy flux at individual points (green). The error is
estimated from the 9PN series. The error of the PN series is estimated from the
last term (red) and it diverges near the separatrix.
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Figure 4.15: Adiabatic inspirals in the p — e plane for a = 0 (solid), a = 0.5M
(dashed) and a = 0.9M (dotted). The black curves denote the separatrices.

Using this estimate, the relative errors of the interpolated functions are 10~ for
the geodesic energy and angular momentum fluxes, 10~° for p® and é® and
between 1072 and 1072 for the derivatives of p® and é(®).

The achieved accuracy can be seen in Fig. where we plot the relative
difference between the interpolated energy flux and the 9th order post-Newtonian
(PN) series [91] for @ = 0. This relative difference is around 10~* except for the
region near the separatrix, where the PN series fails. In the same figure is plotted
also the relative difference between the energy flux at individual points and the
PN series, which is around 1077.

4.3 Calculation of the inspirals

Once we have calculated and interpolated the functions p®, ¢® and their deriva-
tives with respect to o, p and e, we can calculate the inspirals, i.e. the evolution

of the functions p'®(t), e®(t), dp(t), and de(t), from Eqs. (3.12) and (3.16). For
this we employ the NDSolve function in Mathematica with adaptive-step 7/8th

order Runge-Kutta method. Having done this, we can find the adiabatic phase
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Figure 4.16: Radial and azimuthal phase shifts for the inspirals with p(()g) =12,
a = 0 (top left), a = 0.5M (top right) and a = 0.9M (bottom) and different
initial eccentricities. The phase shifts are multiplied by ¢ which corresponds to
maximally rotating secondary BH.

and the correction due to spin by numerically integrating Eqgs. (3.10)) and (3.18]).
We have verified the obtained results by comparing them with the circular limit.
This comparison can be found in Ref. [40].

In particular, we calculate the inspirals with matched initial frequencies by
choosing the initial conditions for p and de from Egs. . The inspirals are
calculated for initial semi-latus rectum p = 12, initial eccentricities from e = 0.1
to e = 0.7 and three different values of the Kerr parameter a = 0,0.5M,0.9M.
The adiabatic evolution in the p — e plane can be found in Fig.
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Figure 4.17: Maximal radial phase shifts max 6®, for o = ¢, M = 10M,. The
duration of the inspiral is 1 year. Different mass ratios ¢, initial eccentricities e(()g)
and Kerr parameters a are considered in the above plots. The maximal phase
shift grows with the mass ratio and the Kerr parameter (note the different scales

for each a).

The phase shifts 0@, and 6P, are computed from these inspirals and plotted in
Fig.[4.16] We can see that the azimuthal phase shifts are monotonically increasing
until the particle reaches the separatrix where they diverge. The radial phase
shifts increase at first and after they reach maximal value, they start decreasing
and diverge as well. This divergence is caused by the failing of the two timescale
approximation and of the linearization in the secondary spin.

To further examine the behavior of the phase shifts, we systematically calcu-
late the inspiral for different initial eccentricities and mass ratios, while keeping
the duration of the inspiral fixed at 1 year with the mass of the primary BH
being 10M,. We find the maximum of §®, and plot the result for ¢ = ¢ in
Fig. [4.17 We see that the maximal phase shifts increase with ¢ and a reaching
values between 20 and 30 for ¢ = 107* and @ = 0.9M. The dependence on initial
eccentricity is low, however, to study the degeneracies of the resulting waveforms,
Bayesian analysis must be performed.

The accuracy of the phase shifts is around 5 x 1072 which is determined
from the comparison with the nonlinearized-in-spin inspirals (see Appendix F in
Ref. [40]). In order to use the phase shifts in data analysis, the accuracy must
increase. Therefore, we have increased the number of steps in x to 20 in our next
work in progress.
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Conclusion

The detection of GW signals from EMRIs with LISA and other space-based de-
tectors will allow us to study the strong-field spacetime around massive BHs. To
achieve this, waveform templates that include the postadiabatic term are needed.
This term contains the effect of the secondary spin that can be calculated by
adiabatically evolving the orbital parameters using GW fluxes to infinity and to
the horizon of the primary BH. Therefore, we investigated the motion of spinning
particles in the Kerr spacetime and calculated GW fluxes from the respective or-
bits. Then we used the aforementioned fluxes to adiabatically evolve the orbital
parameters and to find the phase shift due to the secondary spin.

First, we focused on eccentric equatorial orbits. The only possible orientation
of the spin in this setup is such that it is parallel or antiparallel to the symmetry
axis of the central BH. Using the equations of motion derived in Ref. [61], we
derived analytical formulas for the energy and the angular momentum as functions
of the semilatus rectum p and the eccentricity e. Moreover, we found formulas
allowing the numerical calculation of the fundamental frequencies with respect to
the coordinate time and for the coordinates in Darwin parametrization.

Having the nonlinearized formulas for the coordinates, frequencies and con-
stants of motion, we linearized them in the secondary spin, since this order is
sufficient for the first postadiabatic term. We considered two cases with different
reference geodesics. In the first case we found the linear-in-spin parts with respect
to a geodesic with the same p and e. In the second case the reference geodesics
has the same radial and azimuthal frequencies €2, and 2.

Next, we moved to generic off-equatorial orbits. Using the approach from
Refs. [64, 65], we calculated generic trajectories of spinning particles and the
linear-in-spin parts with fixed orbital parameters semi-latus rectum p, eccentricity
e, and inclination angle I.

The calculated trajectories were utilized in the calculation of GW fluxes to
infinity and to the horizon of the primary BH. This was achieved by solving the
Teukolsky equation in the frequency domain with the spinning-particle source
term. Because of the discrete frequency spectrum of the trajectory, the frequency
spectrum of the fluxes is discrete as well allowing us to calculate the total flux
as a sum over multipoles [ and m and harmonic indices n and k. The infinity
and horizon partial amplitudes of each such mode Cj- . are calculated as integral
over the radial and polar phase of a function constructed from the stress-energy
tensor of a spinning particle containing the quantities describing the trajectory
calculated earlier.

Furthermore, for equatorial fluxes, we calculated the linear-in-spin parts of
the amplitudes 501:::7171’9, and fluxes 0F E’JZ‘Q_ with fixed frequencies and found
the formula to transform them to the respecltive linear parts with fixed orbital
parameters 5C’ljfnn’ and §F 5

p?e

p?e
The fact that the fluxes Finnk; are quadratic in the amplitudes C’lﬁmkj and

the amplitudes of the 7 = £1 modes, which correspond to the perpendicular
precessing component of the spin, are proportional to ¢ led us to conclude that
the contribution of the perpendicular component of the spin to the fluxes is O(c?).
Therefore, in the linear-in-spin order only the parallel component is relevant and
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measurable.

To verify the the validity of the frequency-domain fluxes computations, we
compared them to fluxes obtained from a time-domain TE solver called Teukode.
For the latter computations, we implemented a piecewise-polynomial approxi-
mation of the delta function to improve the efficiency and accuracy of Teukode.
For equatorial fluxes, we compared the full non-linearized strain at infinity and
the energy fluxes for different resolutions of the time-domain grid. Assuming
that the error of the frequency-domain result is much lower than the error of the
time-domain result, we calculated the error of the time-domain result as rela-
tive difference of the time-domain and frequency-domain fluxes. We verified that
the relative error decreases with increasing resolution for different values of the
secondary spin and eccentricities.

In the generic and nearly spherical case the fluxes are accurate only up to
linear order in spin and cannot be directly compared to the nonlinearized time-
domain fluxes. Thus, we compared the linear-in-spin parts of the fluxes obtained
by numerical derivatives with respect to o of the frequency domain and time-
domain results. Because of the computational costs, which are higher in the
generic case, we compared the fluxes only for some orbital parameters without
checking the convergence. We found that the frequency-domain and time-domain
energy fluxes agree up to the numerical accuracy of Teukode.

The obtained equatorial GW fluxes were used to adiabatically evolve the or-
bital parameters. Because the calculation of the fluxes at each point of the
parameter space is computationally expensive, we calculated the fluxes and their
linear-in-spin parts on a grid with Chebyshev nodes and interpolated them. Con-
sequently, the grid was used to adiabatically evolve the orbital parameters p, e
and the phases ®,, ®,. Operating in the linear in spin framework allowed us to
obtain the radial and azimuthal phase shifts 6®, and d®, for various parameters
of the system.

The natural extension of this work is to calculate adiabatic evolution of the
orbital parameters for generic orbits of spinning particles and to find the spin-
induced phase shifts. However, for this, the rate of change of the Carter-like
constant K and the parallel spin o) are needed. These fluxes have not been
derived yet. Another direction is to use the equatorial fluxes to generate the
inspirals using the FastEMRIWaveforms framework [92] and perform Bayesian
analysis of the waveforms to analyze the detactability of the secondary spin,
since it was found for quasicircular inspirals [36] that the system is degenerate
and the secondary spin is not measurable. The ultimate goal is to include other
postadiabatic effects and generate accurate enough waveforms for the detection
and parameter analysis of EMRIs.
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Spinning test body orbiting around a Kerr black hole: Eccentric equatorial orbits and

their asymptotic gravitational-wave fluxes

Viktor Skoupy!? and Georgios Lukes-Gerakopoulos’
! Astronomical Institute of the Czech Academy of Sciences,
Boe¢ni II 1401/1a, CZ-141 00 Prague, Czech Republic and

2 Institute of Theoretical Physics, Faculty of Mathematics and Physics,

Charles University, 18000 Prague, Czech Republic

‘We use the frequency and time domain Teukolsky formalism to calculate gravitational-wave fluxes
from a spinning body on a bound eccentric equatorial orbit around a Kerr black hole. The spinning
body is represented as a point particle following the pole-dipole approximation of the Mathisson-
Papapetrou-Dixon equations. Reformulating these equations we are not only able to find the tra-
jectory of a spinning particle in terms of its constants of motion, but also to provide a method to
calculate the azimuthal and the radial frequency of this trajectory. Using these orbital quantities, we
introduce the machinery to calculate through the frequency domain Teukolsky formalism the energy
and the angular momentum fluxes at infinity, and at the horizon, along with the gravitational strain
at infinity. We crosscheck the results obtained from the frequency domain approach with the results
obtained from a time domain Teukolsky equation solver called Teukode.

I. INTRODUCTION

An extreme mass ratio inspiral (EMRI) is one of the
most promising events expected to be detected with fu-
ture space-based gravitational wave (GW) detectors like
Laser Interferometer Space Antenna (LISA) [1]. An
EMRI occurs when a stellar mass compact object such as
a black hole (BH) or a neutron star (secondary object)
is trapped in the vicinity of a supermassive black hole
(SMBH) (primary object). Due to gravitational radia-
tion reaction the secondary is slowly spiralling into the
primary while emitting GWs. From these GWs it is pos-
sible to extract information about the EMRI system such
as the masses of the objects, their spins etc. On a more
fundamental physics level, EMRIs detection are expected
to allow us to probe the strong gravity regime around a
SMBH [2].

Currently in order to extract information from a GW
signal, when it is detected by the terrestrial observato-
ries, it has to be uncovered from a dominating noise back-
ground. To achieve this, matched filtering is employed,
i.e. waveform templates for a wide range of parameters
are matched with the detected time series. It is expected
that we will have to use matched filtering for GW signal
received by LISA as well, but not to uncover the sig-
nal from the noise; in LISA’s case we will use them to
disentangle overlapping GW signals from simultaneously
detected sources. Because of this, accurate models of the
GW waveform templates are planned to be produced for
a wide range of parameters.

To model GWs from an EMRI, first the trajectory of
the secondary object must be reproduced. The standard
way to do this is to apply the two timescale approxi-
mation [3]. In an EMRI the mass ratio ¢ = p/M lies
between 10~7 and 10~%, where p is the secondary mass
and M is the primary mass. The energy changes at rate
E/E = O(q) which is very small. The timescale of the
inspiral is, thus, of the order O(q~!), i.e, ¢! times larger

than the orbital timescale. This allows us to break our
analysis in two timescales, the fast orbital and the slow
adiabatic dissipation in the constants of motion. In the
fast one, the trajectory of the secondary over one or-
bital period is close to a trajectory calculated without a
dissipation. The secondary is actually drifting between
orbits characterized by a set of constants of motion. In
this setup, the azimuthal coordinate of the inspiral can be
expanded as ¢ = ¢~ 100 (qt) + ¢V (gt) + O(q). The first
term of the expansion is of adiabatic order and includes
the contribution from the time-averaged dissipative part
of the first-order self-force. The second term, which is of
the order of radians is called post-adiabatic and contains
contributions from the conservative part of the first-order
self-force, oscillating part of the dissipative part of the
first order self-force as well as the time-averaged dissipa-
tive part of the second-order self-force. The spin of the
secondary contributes to the post-adiabatic term as is of
the order of O(q) [4, 5]. In particular, for the spin magni-
tude S of a secondary compact object, like a Kerr BH or
a neutron star, holds that S < u2, hence the dimension-
less spin parameter defined as ¢ = S/(uM) < q is of the
same order as the mass ratio [6]. The phase ¢ is approx-
imately proportional to the phase of the GW. Hence, to
accurately model the GW fluxes, all the aforementioned
terms must be taken into account.

In this work, we deal with the contribution of the sec-
ondary spin to the post-adiabatic term, in the case of
bounded equatorial orbits around a Kerr BH. The de-
scription of a spinning test body moving on a curved
background was for the first time studied in [7-9]. In
particular, Mathisson [10] managed to write the stress-
energy tensor of an extended test body as a sum of mul-
tipolar moments. When the body is sufficiently small
and compact, then it is sufficient to take into account
only the mass (monopole) and the spin (dipole) leading
to what is known as the pole-dipole approximation, which
essentially reduces the body to a spinning test particle.
Later on Papapetrou [11, 12] was able to employ the con-



servation law of the stress energy tensor V,T"" = 0 to
derive the equations of motion for a spinning particle. Fi-
nally, these equations were rewritten by Tulczyjew [13],
Dixon [14-17] and Wald [18] bringing them to their mod-
ern form. MPD equations have been studied in several
works, see e.g. [6, 19-22]. Particularly, these equations
simplify when the particle is confined into the equatorial
plane of the Kerr spacetime [23]. In this case, the motion
can be determined by the following constants of motion:
the energy F, the component of the total angular mo-
mentum parallel to the axis of the central BH J,, the
mass of the secondary p and the magnitude of its spin S.

In the present work, we rederive the equations of mo-
tion for a spinning particle in the equatorial plane in
a reduced form. This allows us to find analytical for-
mulas for the constants of motion dependence on the
eccentricity and the semi-latus rectum and to provide
a method to numerically calculate the fundamental fre-
quencies. These results are then used to calculate the
GW fluxes. To achieve this, we employ the Teukolsky
formalism and solve the GWs perturbatively. Namely,
we solve the Teukolsky equation (TE) both in the fre-
quency and in the time domain with a spinning-particle
as a source. In the frequency domain, the formulas pro-
viding the energy and the angular momentum fluxes to
infinity and to the horizon from a spinning particle fol-
lowing equatorial trajectories are novel. While, for the
calculations in the time domain, we introduce a new ap-
proach to simulate the spinning source making the com-
putations more efficient. Due to the GW flux balance law
in an EMRI, these fluxes equal to the rate of change of
the constants of motion of an inspiraling spinning particle
[5, 24]. Hence, once these fluxes are obtained, then the
adiabatic term with the spinning-particle contribution to
the post-adiabatic term can be reconstructed.

This paper is organized as follows. Section II briefs
the dynamics of a spinning particle moving in a curved
spacetime. After covering the basics, the equations of
motion of a spinning particle are rederived in a reduced
form appropriate for eccentric equatorial orbits in a Kerr
BH background. Subsequently, the constants of motion
and the frequencies are calculated. Section III reviews
the Teukolsky formalism calculating the GW fluxes both
in the frequency and the time domain. Finally, the fre-
quency domain results are compared with the time do-
main results. To make the main text more readable, we
have concentrated in a list all the dimensionless quanti-
ties we use in Appendix A, Appendix B provides all the
explicit formulas for the frequency domain fluxes, while
in Appendix C our frequency domain results for a non-
spinning object are compared with the ones of [25]. Fi-
nally, Appendix D provides tables from the frequency do-
main calculations aiming to serve as reference for future
works.

Throughout this paper, we use geometrized units
where the speed of light and the gravitational constant
are ¢ = G = 1. The Riemann tensor is defined as
R'ul/;e)\ = Fuuz\,m - F‘uum,)\ + F'up;crpu)\ - F'up)\l—‘pwe where

the comma denotes partial derivative U, , = 9,U,. A co-
variant derivative is denoted by a semicolon U,,,, = V,U,,
and DU*/dr = U*,,dz” /dr. The signature of the metric
is (—,+, 4+, +). Symmetrization of indices is denoted by
round brackets ®(,,) = (@, + P,,,)/2. For some quan-
tities we prefer to use their dimensionless counterparts.
They are denoted by a hat, e.g. energy £ = E/pu, radial
coordinate # = r/M etc (see Appendix A).

II. A POLE-DIPOLE PARTICLE MOVING ON
THE EQUATORIAL PLANE OF A KERR BLACK
HOLE

The motion of a spinning test object in a curved back-
ground is governed by the Mathisson-Papapetrou-Dixon
(MPD) equations [9, 11, 14] which read

DpP* 1

= =5 Rl v 5 (1)
Df“y — PHyY — PYyt ,

T

where P* is the four-momentum of the particle, R, is
the Riemann tensor of the background spacetime, v# =
dz# /dr is the four-velocity, S* is the spin tensor of the
particle and D/dT = v#V, is the covariant derivative
along the worldline parametrized by the proper time 7.
The stress-energy tensor TH¥ for a spinning particle
with its trajectory parametrized by the coordinate time

t reads [26]
(i) &3 aliyy) 53
Py § v, S § C©

where for Boyer-Lindquist (BL) coordinates 4% = §(r —
rp(t))0(0 —0,(t))0(d— dp(2)) is the delta function located
at the particle position (r,(t),8,(t), ¢p(t)) parametrized
by coordinate time. Note that by using the conserva-
tion law T""., = 0, it is possible to retrieve the MPD
equations.

Actually, the MPD system of equations is underdeter-
mined. The physical implication of the latter fact is that
the center of the mass of the spinning object is not de-
fined. To close the system of equations and to define
the centre of the mass, a spin supplementary condition
(SSC) in the form S**V,, = 0 has to be specified, where
V), is a timelike vector field. In this work, we use the
Tulezyjew-Dixon (TD) SSC [13, 15]

TH —

SHP, =0, (3)

Under the TD SSC, the rest mass of the particle with
respect to the four-momentun

p? = —P*P, (4)

and the magnitude of the spin

1
52 = 55"“’5,,,9 (5)



are conserved quantities (see e.g. [19]). The conservation
of the above quantities is independent of the spacetime
background. The symmetries of the spacetime introduce
for each Killing vector " a specific quantity

C =Py = 65", )

which is conserved upon the evolution of the MPD equa-
tions.

Instead of the spin tensor, it is sometimes more conve-
nient to use the spin four-vector

1
S, = fie,wpg u” SP7 | (7
where €, is the Levi-Civita tensor and u” := P¥/pu is
the specific four-momentum. The inverse relation of this
equation reads

SP7 = P0G us . (8)

After substituting Eq. (8) into Eq. (5), we can derive
the relation for the spin magnitude in terms of the spin
four-vector

S2 = §1S, . (9)

The spin four-vector is from the definition (7) orthogonal
to the four-momentum P,S* = 0, while from Eq. (8) one
sees it is orthogonal also to the spin tensor S#¥S, = 0.
Finally, from Eq. (10) it can be shown that it is orthog-
onal to the four-velocity v,S* = 0 as well.

Since the MPD equations do not provide an evolution
equation for the four-velocity, it is convenient that for the
TD SSC exists an explicit relation of the four-velocity in
terms of the four-momentum and the spin tensor [27].
This relation reads

A
ALY PWE 2 S Ry pru S” ) (10)
o 4 + Raﬁwsso‘ﬁﬁwé
where m = —P,v* is the rest mass with respect to the

four-velocity v#. This mass m is not conserved under
the TD SSC, but it is used to conserve the normalization
vy, = —1 during the MPD evolution. This leads to [28]

2
m = \/ﬁ 7 (11)
where
A =4p% + Ryg,550870 (12)
B = 4R R0, PYSM Ry PYS*™ . (13)
h%:iéSW&p. (14)

A. The Kerr spacetime background

Since our work deals with the motion of a spinning in
the Kerr spacetime, let us briefly introduce this space-
time. The Kerr geometry in BL coordinates (t,r,0, ¢) is

described by the metric

ds? = gu dt* +2 g dt dé + gy do?
+ gpr dr? + gog d6? (15)

where the metric coefficients are

2Mr
gtt:_<1_ S5 ) s

_ 2aMr sin? 4
Gio = =5 >
4 27 «in2 0) sin
o — (w*—a A;ln 0) sin” 0 7 (16)
>
gTr*Zv
go9 = X

with
Y =r2+a%cos?0,
A =w?—2Mr,
w? =r?+a*. (17)

The Kerr spacetime is stationary and axisymmetric.
This provides two Killing vector fields, the timelike one
{5) and the spacelike one ff 4)- Due to these Killing vec-
tor fields, Eq. (6) provides two constants of motion. In
particular, thanks to the timelike field, the energy

1
E= 7Pt + igt/t,usuu (18)
is conserved, and thanks to the spacelike field, the com-
ponent of the total angular momentum parallel to the
rotational axis of Kerr (z axis)

1
Jo = Ps = 505" (19)

is conserved. These two conserved quantities can be used
to parametrize the spinning particles orbits as discussed
in Sec. IIC.

B. Equatorial orbits

We are interested in equatorial orbits, where § = /2.
To constrain the body to the equatorial plane, the v?
component of the four-velocity must be always zero. The
orthogonality of the spin four-vector and the four-velocity
v,S#* = 0 implies that in order to achieve v = 0 for
arbitrary equatorial orbit all the components of the spin
four vector should be zero except from S?, i.c.,

S, = Spd? . 20
1 N

The spin is, therefore, parallel to the z axis. From
the orthogonality of the spin four-vector and the four-
momentum P, S* = 0, it holds that P =o.



From Egs. (9) and (20) it can be shown that Sp =
—y/909S where the sign is chosen such that the spin mag-
nitude is positive (negative) when the spin is parallel (an-
tiparallel) to the z axis. Then, from Eq. (8) the only
nonzero components of the spin tensor are

S = 5" = —§ uy ,gﬁ:,w7
g9 r
Gto — gt — g 900 _ Sur
g T

ST = g0 = gy 900 S gy
g T

where g is determinant of the metric. For Kerr spacetime
on equatorial plane, it holds \/—gge/g = 1/r.

Let us recheck the setup for equatorial orbits in a Kerr
background. The total derivative with respect to proper
time of the # component of four-momentum can be ex-
pressed from Eq. (1)

0

ddi; = —% RY o v” 577 —T%,,P0P.  (22)
The right-hand side (rhs) of this equation is equal to zero
on the equatorial plane. Furthermore, Eq. (10) reduces
on the equatorial plane to v? = (m/u?)P?. This implies
that when v? = 0 then Py remains zero as well. Thus, the
particle stays on the equatorial plane by just demanding
that v? = 0.

From Egs. (18), (19) and (21), P, and P, can be ex-
pressed as functions of E and J,. These expressions in
dimensionless quantities read

Ut 02 )
1=
A o ~ a
J.- Z[(-a2+ ) E+al.]
ug = M r 3 (23)
-z

When we restrict the motion to the equatorial plane,
it is possible to reproduce the equations of motion for the
spinning particle from Egs. (10) and (4). In particular,
we can express u” from the normalization (4) as function
of E and J, and thanks to the fact that it holds

1242 Ac2a? .

TV KA __
25" Ry ppauf S" = 5 (24)
we can write the equations of motion as
di  m
Solhg— = —Vi(P), 25¢
Vi) (250)
dr m m
Yoho—=—V"(#) = +— o (7 25b
=) R, (25b)
dp m
Yo A = —Vo(r 2
A G = TV4) (250)

where
~2 a?
Yy =7 (1 - F) (25d)
302722
Ap=1-— S (25¢)
302 w?
t A —_ J—
V7a<1+fEU>I+AP(,, (25f)
2
R,=P?-A ( 5+ x2> (25g)
302 a
ve=1(1 —P, 25h
( + f’Eg> x4+ (25h)
Py =%,E - (a + 7) z, (251)
r=J,—(a+0)E. (25)

The rest mass with respect to v* can be expressed
from (11) as

1-Z
Mm_a, = . (26)
[ 1128, - (2-A)ZD

73

This expression is identical to Eq. (49) in [29]. Equa-
tions (25) are identical to the equations (2.19)-(2.21)
in [23] up to the parametrization with d7/dr = m/p
where 7 is the parametrization used in [23]. By dividing
Egs. (25b) and (25¢) we obtain Eq. (19) in [30]. Hence,
we have checked the validity of the above equations.

To simplify the equations of motion, it is useful to
reparametrize Egs. (25) with a time parameter A which
is similar to the Mino time [24]. Equations (25) and (26)
imply that the relation between 7 and A is

o (1-2) (reon-eoanZ) e

Then it holds d&#/d\ = V* where ## = (£,#,0, ¢) with
V% = 0. V# can be interpreted as dimensionless four-
velocity with respect to A.

C. Constants of motion as orbital parameters

Let us see how we can use the constants of motion
E., J, to parametrize bounded equatorial orbits. To do
that we have to find first the roots of Eq. (25b), which will
lead us to the turning points of an equatorial eccentric or-
bit. The function #*R,(#) is an eighth order polynomial,
hence it has generally 8 roots. At least four of these roots
are real as in the nonspinning case, while four additional
roots, which come from the secondary spin’s terms, can
be complex or real. From these roots the two outermost
ones 0 < 71 < 7y are the candidates for being the turning
points we are seeking. Obviously for these two roots it
has to hold that

RJ(TAI) =0 ) RU(fQ) =0. (28)



To have a bound equatorial orbit between these two
roots, Eq. (25b) implies that R, () > 0 for #; < 7 < 7a.
The latter can be true only if for the derivative of R, ()
with respect to 7 it holds that

Ry (1) >0, R, (72) < 0. (29)
When the conditions (28), (29) are satisfied, then 71 is
the pericenter and 72 is the apocenter of an equatorial
eccentric orbit, and it also holds that £? < 1.

Having found the turning points of an equatorial eccen-
tric orbit, we can parametrize each eccentric equatorial
orbit by its semi-latus rectum p and its eccentricity e,
which relate to the turning points as follows

m:lie, Py= L (30)

The inverse relations read
271 7 Ty — T
p=—n, e=——t. (31)
1+ T2 1+ T2

Equation (28) can be written as two quadratic equa-
tions in terms of £ and .J,. Using the same method as in
Appendix B of [31] we can rearrange the formulas (28)
for energy and angular momentum to arrive at

fiEz - 291Ejz - hljf - dl =0
where f1 = f(71), fo = f(72) etc. and
f(7) =a°(F + 2)F + 7'+
a’c  2a%(a+o)
+o|l—mg +t—7F

i=1,2  (32)

+ 6ar — (7 — 2)%)

a(2a + o)
7

—(F— 3)f> (33)

These functions for ¢ = 0 are identical to the functions
(B.6) — (B.9) in [31] with 2 = 0. By manipulating
Eq. (32) properly, we arrive at

- Kp + 2e0 + 2

(o€ + per — nK?)

E?= 4
P>+ 4dnc (34)
o
= E (35)
where
R = d1h2 - d2h1 5
€ =dig2 — dag1 ,
p = fihs — fah1, (36)

n= fi92 — fag1,
G = gr1ha — gah1

ot

are the determinants appearing in [31]. Thanks to the
identity ep — kn = (¢, where

(=difs—dafr, (37)

we can rearrange Eq. (34) as

B2 Kkp + 266 — 2sgn (J.) 5/ + K (38)

B p? +4dno

Since for @ = o = 0 the determinant & = 0 and the
Eq. (35) is singular, it is better to substitute £? into Eq.
(35) and rearrange it as follows

i ep — 2k —sgn (J.) p\/€ + ¢ ' (39)

(p? +4mo)E

The signs of J, appearing in Egs. (38) and (39) have been
numerically verified for spin values |o| < 1.

The constants of motion E and J, for given p and e
have two solutions corresponding to the corotating or-
bit and the counterrotating orbit. We can choose the
coordinates such that the z axis is parallel to the total
angular momentum, i.e. J. > 0. This convention implies
that a > 0 corresponds to corotating orbits and a < 0 to
counterrotating orbits. The spins of the secondary parti-
cle and of the central black hole are parallel when ao > 0
and antiparallel when ao < 0.

For e = 0, both the numerator and the denominator of
Eq. (38) become zero. This inconvenience can be avoided
by noticing that a coefficient e can be factored out from
the determinants (36) and canceled out in Eq. (38). In
this fashion, the solution (38) is valid even for e = 0.
Actually, this allows us to verify that for e = 0 Egs. (38)
and (39) are identical to Egs. (59) and (60) given in [29)].

There is a limit between the bounded and unbounded
equatorial orbits defined by a separatrix. The term un-
bounded orbits includes orbits escaping to infinity and
orbits plunging to the central black hole. In the case the
separatrix splits plunging and bounded orbits, it holds
that R/ (#1) = 0 and R/ (72) < 0. The orbit with
R/ (#1) = 0 is an unstable circular orbit, while a tra-
jectory originating from 79 with energy and angular mo-
mentum satisfying Eqs. (38) and (39) will asymptotically
approach the circular orbit at 71 either evolved forward
or backward in time.! For a given Kerr parameter @ and
spin o the effective potential R, depends on E(p,e) and
J. (p, €), therefore the separatrices can be plotted on the
p — e plane splitting it into two parts. In one part of the
plane lie the bounded orbits, while in the other part lie
unbounded orbits or initial conditions, which do not cor-
respond to an orbit (Fig. 1). We can see that for given e

! In the limiting case that #1 = 7 the orbit is circular (e = 0)
and marginally stable, since it holds that Ro(f1) = R, (f1) =
R!/(#1) = 0. This orbit is often called the innermost stable cir-
cular orbit (ISCO).



FIG. 1. Separatrices for different Kerr parameters and spins.
Points (p, e) on the depicted lines correspond to orbits asymp-
totically approaching the unstable circular orbit lying at
7 = p/(1 +e). For given e the semi-latus rectum p of the
separatrix decreases with increasing spin. Therefore, for a
spinning particle it is possible to approach the horizon closer
than a nonspinning particle. Note that even though the EMRI
relevant values of the secondary spin are o < g < 1, we use
much higher spin values to make the differences between the
separatrices more prominent and visible. All plots are for
J. > 0.

the semi-latus rectum p of the separatrix decreases with
increasing spin.

Figure 2 shows two cases of a separatrix on the J.—E
plane along with a grid of constant p and e lines. Note
that the intersection point between the separatrix and
the line e = 0 lying at the left lower corner of both panels
of Fig. 2 represents ISCO.
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FIG. 2. Separatrices (black thick solid) in the J, — E plane
along with lines of constant semi-latus rectum (grey solid)
and eccentricity (grey dashed) for Kerr parameter ¢ = —0.5
(top panel) and @ = 0.5 (bottom panel). In both case the
secondary spin is o = 0.5. The eccentricity lines start at
e = 0 for lower energies and reach e = 1 when F = 1 with
step 0.1. The semi-latus rectum ranges from p = 10 to p = 20
for @ = —0.5 and from p = 3 to p = 20 for @ = 0.5 with step
1 in both plots. At a separatrix the semi-latus rectum is the
lowest and is increasing with increasing J..

D. Frequencies of eccentric equatorial orbits

The radial motion of a particle in the equatorial plane
parametrized by the time parameter A has a period A,.
This period can be defined as the time needed to go from
the apocenter to the pericenter and back. Hence, A, can
be found by integrating the inversion of Eq. (25b), i.e.,

a1

@ VR o

over the above two branches (first from 71 to 72 and then
from 79 to 71) with respect to the radius 7. However, the
integration over one branch is equal to the integration
over the other. Hence, we can find the A, by integrating
Eq. (25b) over the first branch to obtain the time elapsed
during the first branch and multiply the result by two
[32], i.e.,

(41)

A —o / di
S VR
The radial frequency can be defined as Y, = 27/A,. If
we set the initial radius to (A = 0) = r1, then the radius



r(A) is an even function and can be written as

r(A) =r@ 4 Z ™ cos(nY,\) . (42)

n=1

After substituting Eq. (42) to Egs.
and integrating them, we obtain

i(0) =TA+ Af())
d(A) = ToA + Ag(N) (43)

where I' and T are frequencies with respect to A and
functions AZ(\) and Aé()) are periodic with period A,..
Note that since the function #()) is even, the functions
Vi(#(A\) and V¢(#(\)) are even in A as well. Hence,
after the aforementioned integration and the subtraction
of the linear term T'A or Ty, respectively in Eq. (43), the
functions A#(\) and A@()\) are odd and can be written
as series of sines.

The average rate of change of the azimuthal coordinate
and time with respect to A is

(25a) and (25¢)

Ty= A2 h\y& (44)
A Vi() 7 (45)

A, VR

These integrals can be solved in terms of Lauricella’s
hypergeometric functions [33]. However, for achieving
this, the exact values of the roots of the radial poten-
tial 74 R, (#), which is eighth order polynomial in #, must
be found. This task can be only performed numerically.
Thus, instead the integrals (41), (44) and (45) were calcu-
lated directly numerically. These integrals have singular
points at 71 and 75, but this difficulty can be overcome.
Namely, first we factor out the roots

Ro(7) = (7 = #1)(F2 — F)Q(7) (46)

where 7Q(#) is sixth order polynomial. To remove the
singularities, an angle like coordinate x € [0,7) is used
by applying the transformation

. p
=—\. 47
" 1+ ecosy (47)

Then, the integrals take the form

2¢/1 — €2

A =B [y, (48)
ﬁ

T, 2”*6/ (i) Trdxs @)

1+ ecosy J(x)
2\/176’ / < ) 1 dy, (50)

1+ ecosy J(x)

where
6 k (p)j(f)
= (1+ecosxkz k l (51)
k=0 =

is a polynomial in cos y with coefficients
]ép) —1- EZ ,
J§p) =-2 )

jép) =a% + 2Bz + 22,

3P = —2((1 - B%)0® — Box +2?) ,
i =40’
jép) = —2a0(ao + z(Eo + 2))
i = 0*(1 - E)o —2)(1+ E)o +2)
and

i =1,

O =

(c) =e?+3,

1) = et +10e% 45,

i = 9(e? +3)(3e2 + 1),

]é>166+2164+3562+7.

.7
] *4(6 +1),
J4
Js

The polynomial J(x) for o = 0 is identical to the poly-
nomial (40) in [31] with Carter constant @ = 0 up to the
factor 1 — e? due to a different definition of J() used in
[31].

We can define the frequencies with respect to the co-
ordinate time as

A T, ™
Qr = = — - ,

N e R
. Ty f(f V¢ #(x /\/ x)dx

0, = (53)

r t(#(x))//TO)dx
We have numerlcally verified the above frequency formu-
las by comparing them with frequencies obtained by a
direct integration of the MPD equations for the respec-
tive eccentric orbits. To integrate the MPD equations
an implicit Gauss-Runge-Kutta integrator was used as
described in [34].

The equatorial plane equations of motion (25) given in
t, r and ¢ can be rewritten in A, £ and ¢ parametrized

by x, i.e.

dA 1—e2

P 54
dx P*J(x) &9
a p 1—e? -
dy v (1 + ccosx) p2J(x) (55)
d¢ P 1—e2

L —y® 56
R G N S

These equations will be used later on, when the energy
and angular momentum fluxes are calculated.



III. GRAVITATIONAL WAVE FLUXES
A. Teukolsky formalism

To calculate the GW fluxes we employ the Teukolsky
formalism. The GWs are described perturbatively using
the Weyl curvature scalar

Uy =— agﬂ,an“mﬂwm‘s, (57)

where n# and m" are components of the Kinnersley
tetrad

L 1 2
nt = 75 (w ,—A,O,a) , (58)
— P . . .
m" = — (iasin6,0, —1,icsch) | 59
vl INCEY
where p = —(r —iacos)~1. The Weyl scalar ¥, is zero

for the Kerr spacetime and its perturbation is governed
by the TE

sOsY(t,r,0,¢) = 4rXT (60)

with spin weight s = —2 for _») = p~*¥y in the case of
the GWs [35].

1. Frequency domain approach

This partial differential equation can be separated into
ordinary differential equations after a Fourier transform
int and ¢

>~ q 00 )
=Yg [ e ()-8260.6) (61
Im -

where _257% (6, ¢) is spin weighted spheroidal harmonic
function with spin weight —2 normalized as

[l asize.0l-1. (62)

For simplicity we use the notation S%’(9) = _2.57+(6,0)
for the angular part henceforth. To calculate the angu-
lar function the Black Hole Perturbation Toolkit [36] has
been employed.

After the separation, an ordinary differential equation

Dthimew (T) = Timw (63)

is obtained for the radial part ¢jmw(r), where D is a
differential operator that can be found, e.g., in [35] and
Timew 18 a source term discussed below. The asymptotic
behavior of the homogeneous solutions Ry (r) of Eq.
(63) is discussed in [4, 25]. To satisfy physical boundary
conditions, the solution must be purely outgoing at in-
finity and purely ingoing at the horizon; in other words,
we are dealing with a retarded solution. We will denote
a homogeneous solution satisfying the first condition as

R+

o and a solution satisfying the second condition as
-

2 . . o

imew-— An inhomogeneous solution satisfying boundary
conditions can be found using the Green function formal-
ism as

wlmw (T) = Cl-"—mw (T)Rl-tnw(r) + Cl'_mw (T)Rl_mw(r) ’ (64)
where the amplitudes are

qu:nw (") Time (')

A2(r) dr’ (65)

1 geel
Cimu(r) = 377 / O (r.1")
T+

with the invariant Wronskian

R+ (T‘)arRl_mw (T) — (arRl-tnw(T))Rl_mw(r)

W = Imw A(T) (66)

and the Heaviside step functions defined as
ot(r,r)=0("—r), O (r,r')=0(r—1"). (67)

Since we are interested in GW fluxes at the horizon and at
infinity, we will denote the relevant amplitudes as C},, =
Cir o= ry)and CF = Ct (r — oo) respectively.

Imw
In fact, the amplitudes are constant for r < r; and r > rs.

The source term in (63) can be written as
Tins = [ 444000 83T+ T+ Tom)e™ = (69

where

Tom = £ (r, 00V =9Tn ,
T = On (£ (r, 0)V/=9Tm)
+ 1 (r,0)V =g T (69)
Toree = Orr(fom (7, 0) v/~ g L) +
Or(fo (r, OV =g Torem) + Fo(r, 0) /=g T -

The functions fi? (r,0) can be found in [29]. Projections

(a)

of the stress energy tensor onto a tetrad e, ’ read

1 .
Ty = —= (Cap — C3,) 6°
75 (G = C)
__ b 1y =1 go(tgy1) 53 p(a) o (b)
\/jgap<(v) SPty 6)% ey, (70)
where

Cap = (0) PP efPel))
= ()87 el (71)

The four-vectors P* and v* as well as the spin tensor
S are functions of time, the Christoffel symbols are

2 These functions are often denoted Rpe ., and Rﬁnw or Rl[if;w and
RIn

Imw-*



evaluated at the coordinates of the particle r,(t),0,(¢),
the delta functions are functions of both the space coor-
dinates r, 0, ¢ and the coordinate time ¢ and the square
root of the determinant \/—g, the functions f;? and the

(a) (a)

tetrad legs e, are functions of r and 6. In our case, e;, 7,

P,@ are the Kinnersley tetrad components n,, and m,,.
After integrating Eq. (68) over 6 and ¢ and Eq. (65)
over r using rules for integrating delta function, we obtain

a relation for the amplitudes

Cir = [ atetmanOE o000 (72

where

1 d
I (r,0) = W (Ao — (A1 + 31)5

+(Az2 + B2)£ - Bs(i) Ri,.(r) . (73)

dr2 dr3

The coefficients A; in their general form can be found in
Appendix B.

Up to this point the derivation of GW fluxes holds for a
generic orbit of a spinning particle. In the following part,
we confine it to equatorial orbits with the spin parallel
to the z axis as described in Sec. IIB.

Thanks to the fact that the quantity
IE(rp(t), m/2)ei™st=02(1) is  periodic in  time
with frequency Q, (see eg. [37] for details), we can write
the amplitude as a sum over discrete frequencies

lmw - Z Clmn w 7“""") ’ (74)
Wi = Mg + Nkl . (75)

The partial amplitudes can be calculated as Fourier co-
efficients by integrating over one period T, = 27/,

clzvtnn = QT/ dtIlmwmn (Tp(t)7 7T/2)
0
X exp(iwmnt — ime,(t)) . (76)

However, it is more convenient to integrate over the time
parameter A

l*mniQ /

The integration over the two branches of the motion
(from 71 to ro which correspond to A from 0 to A,/2 and
from 7o to r1 which correspond to A from A,/2 to A;)
differs only by the sign of the radial velocity. Therefore,
we can break the integral to two integrals, the first from 0
to A,/2 and the second from A, to A,./2 (note the reverse

d)\a Imwymn (Tp(t()‘))v 7T/2)

X exp(iwmnt(X) —imep(N)) . (77)

direction of integration). Using the identities (43) we can
write

Wimnt(A) = md(A) = nLr A + win At —mAd.  (78)
From the fact that At and A¢ are series of sines with
period A,, it holds At(A, — X) = —A¢(A\) and A¢(A, —
A) = —A@(N). After changing the integration variable
to x, we can write the integral as a sum over the sign
D, = + of the radial velocity, on which the coefficients
A; depend, i.e.

T dA de
+ +
=Q, dy— E — I ,7/2, D,
Clmn /0 dx dA lmwmn(r(X) / )

me(x))) (79

(54), Il:fnwmn comes

o(x) are calculated from

X eXp(iDr (wmnt(x) -

where dA\/dy comes from Eq.
from Eq. (73) and #(x),
Egs. (55), (56).

The metric perturbation h,, = O(q) which can be de-
fined as g = g + hy + 0(q?), can be calculated
from the Weyl scalar ¥4 [38]. GWs consist of two po-
larizations and the metric perturbation can be written
as h, = hyef, + hxe), where ef, and e, are the po-
larization tensors At infinity, the relation between the
strain h = hy — ih, and the Weyl scalar is

Uy(r — o0) = h/2, (80)

where the dots denote derivative with respect to the BL
coordinate time t. From Egs. (61), (64), (74) and the
asymptotic behavior of R;nw it holds

cr . o
h= - Z lzmn Sﬁ;hn,n,(e)efzwmn(t*'f )+ime , (81)
Imn — MmN
where r* is tortoise coordinate defined as dr*/dr =

w?/A. The stress-energy tensor of the GW can be re-
constructed from the strain which yields the energy and
angular momentum fluxes at infinity

< SRS 'f,:;j;W &

=2 m=—Iln=—o00

> =2 m=—Iln=—00
where the brackets denote time averaging. In the equa-
torial case, the average can be calculated over one period
T,.. Similar derivation can be made for the fluxes at the
horizon [39]

(&)
SR

|Clmn |
drw3,,

(83)

o

l
Z Z almn lmn 5 (84)

2 m=—ln=—00 mn

~ m|C,, ‘
Z Z Xlmn Ar wmn 5 (85)
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where

256(2M 1, )° P(P? 4 4¢2)(P? + 16€?)w3,,
“ ? (86)
Imwmn

with € = VM? —a?/(4Mry), P = wmpn — ma/(2Mry)
and the Teukolsky-Starobinsky constant is

Amn =

‘(gl'mw‘z = (()\lmw + 2)2 + 4(1(4./(7’” — aw))
X (/\lzmw + 36aw(m — aw))
- (2)‘lmw + 3) (48aw(m — Zaw))
+ 144w? (M? — a?) . (87)
The partial amplitudes Cli;nn are proportional to the

secondary mass p and therefore, if we use dimensionless
quantities on the rhs, we obtain

N 2
dE™N\ ) C;""‘ =2 Y FE 88
a —qlmnm:q = imn » (88)

; e ;
dJze o2 m‘cl"m} _ 2 J.o0
o) TME D e = ME D T
lm,n mn lm,n

(89)

where we have defined the dimensionless fluxes FZ>° and
.7-'1{;;’10 that do not depend on the mass ratio q. The hori-
zon fluxes FEH and ]—'lffw}f can be defined in a similar
fashion. We can write the dimensionless energy and an-

gular momentum loss as

dE>
<clf>q2ﬁ€?ﬁ7 (90)

lm,n
dJjz o
< A>—q§jﬁ‘{:m- (91)
de
These fluxes can be used for calculating the evolution

lym,n
of the orbital parameters p and e during an adiabatic
approximation of an inspiral.

2. Time domain approach

To verify the frequency domain calculations, we nu-
merically solved the TE (60) in the time domain. For
this, we have employed the time domain solver Teukode
which is described in [40-42]. Teukode uses the method
of lines, i.e. finite differences in space and Runge-Kutta
for evolution in time. Instead of using Kinnersley tetrad
and BL coordinates, it solves TE using Campanelli tetrad
[43] and hyperboloidal horizon-penetrating (HH) coor-
dinates® (7, p,0, ) (for their definition see Eq. (10) in

3 In this section p denotes the radial HH-coordinate.
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[41]). These coordinates reach future null infinity .+
(“scri”) and horizon at finite radial coordinate pg so no
extrapolation is needed to extract GW fluxes at infinity.
Another advantage is that the coordinate light speed at
the boundaries vanishes, therefore, no numerical bound-
ary condition must be imposed. After the decomposition
into azimuthal m-modes ¢ = >_, Yme™? the equation
in (2 + 1)-dimensional form reads

(Crr02 + Cr 0,0, + Cp02 + Cop03
+C707 + Cp0, + Colp + Co) ¥ = Ss,  (92)

where the coefficients C'r~, C-, ... are functions of p and
0 and S, is the source term for spinning particle discussed
in [30].

The source term consists of derivatives of delta func-
tions up to third order. For accurate results proper rep-
resentation of delta functions must be used. Approxi-
mation as Gaussian function and piecewise polynomials
as described in [44] were implemented to the Teukode.
According to [41], piecewise polynomial approximation
is more accurate for circular equatorial orbits and faster
to calculate than Gaussian approximation, whereas cal-
culations with Gaussian approximation are more stable
when the particle is moving in p or 6 direction. The
third derivative of the delta function, which is needed
for spinning particle, was implemented only as Gaussian
approximation in the previous works. In our work we
introduced to Teukode an approach suggested in [45],
which describes slightly different formulas for piecewise
polynomial approximation to construct delta function
and its derivatives. Teukode has been tested extensively
on circular equatorial orbits of a spinning particle in
[29, 30, 46-48], but in this work it is tested for the first
time on eccentric equatorial orbits of a spinning particle.

B. Numerical results

This Section discusses our numerical calculations of
GW fluxes in the frequency domain (as described in
Sec. IIT A 1) and compare them with time domain results
obtained from the Teukode (Sec. IITA 2).

First we present our approach to calculate quantities
related to an orbit for given parameters a, o, p and e.
These quantities include the energy and the angular mo-
mentum from Egs. (38) and (39) respectively, the orbital
frequencies 2, and ), from Egs. (52) and (53) respec-
tively and the functions #(x) and ¢(x) from Egs. (55)
and (56) respectively. The integrals (52) and (53) were
calculated numerically using methods built-in to Mathe-
matica. We used extended precision to 48 places, because
high precision of the parameters a and w = mQy + nf2,
is needed for the calculation of the radial function lenw.

To calculate the energy and angular momentum fluxes
and the strain at infinity, one has to find the partial
amplitudes CA'lf,m and Eq. (79) implies integration over
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FIG. 3. The real part of exp(iDr(wmnt(x) — me(x))) for
orbital parameters a = 0.9, 0 = —0.5, p = 12, e = 0.2 and
m = 2, n = 15 (top panel) and for orbital parameters a = 0.9,
oc=—-05p=12 e =08 and m = 2, n = 4 (bottom
panel). The red dots indicate the values at which the function
is calculated during the numerical integration.

X- The numerical integration errors depend on the em-
ployed integration method and the number of points at
which the function is enumerated. For our purposes,
a fractional accuracy of the order of 107° is sufficient.
Therefore, we used the midpoint rule inducing an error
of the order O(N~2) to the integration, where N is the
number of points. The advantage of the midpoint rule
is that for given accuracy, this method minimizes the
number of points N needed for the calculation. How-
ever, more complex method can be implemented in the
future to improve the accuracy of this integration. The
main oscillatory part of Eq. (79) is contained in the ex-
ponential term exp(iDy(wmnt(x) — mo(x))). Figure 3
shows the behavior of this oscillatory part for certain
setups. The higher the value of n is, the more the
exponential function oscillates. High frequency oscilla-
tions are present especially around x = 7 in high ec-
centricity cases. The number of the points N needed
for the integration is calculated from the maximum of
the derivative of the function wp,t(x) — me(x) with
respect to x, which in dimensionless quantities reads
(@mn VI (F(x)) = mV?(7(x)) /(1 = €2) [T (X) /p-

The radial functions Rl:tnn were calculated using
the BHPToolkit [36], which employs the Mano-Suzuki-
Takasugi (MST) method [49] or a numerical integra-
tion of the radial TE. The angular functions S were
also calculated using the BHPToolkit which employs the
Leaver’s method [50].

The strain is calculated from Eq. (81) and the fluxes
are calculated from Egs. (88). The range of [ and n for
given m-mode was found in the following way. First we
calculate the coefficient C; ~ for I = max(|m|,2) for a
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FIG. 4. Absolute values of the partial amplitudes |C;"

Imn

for

orbital parameters a = 0.9, 0 = —0.5, p = 12, e = 0.2 and
azimuthal number m = 2

range of n to find the mode with the maximal ‘C‘;;m

Then, we calculate other [ and n modes until the abso-
lute value is less than a chosen accuracy times the maxi-
mal mode. In our calculations, we have chosen accuracy

106, However, in some cases the absolute value ‘Cl:m‘

is not monotonous in n and it drops suddenly for some n.
Because of this, after such a sudden decrease, amplitudes
for more n must be calculated. In Fig. 4, the absolute
| are plotted for an orbit
with @ = 0.9, 0 = —0.5, p = 12, ¢ = 0.2 and azimuthal
number m = 2 for different [ and n. We can see that, for
given accuracy, only limited number of modes is needed
(for I = m = 2 it is 21 n-modes) and the absolute value
of the amplitudes is decreasing exponentially with |n| for
sufficiently high |n|. Note that although the astrophys-
ical relevant value of the spin o is of the same order as
the mass ratio ¢ < 1, it is possible to calculate the GW
fluxes for higher spins and then linearize the result in o
to find the contribution of spin o < 1. We use also these
large values to make any deficiencies in our calculations
prominent. R
In Appendix C we compare our coefficients lerm and
fluxes FE and FEH with that of [25]. A simplified
version of our code calculating GW fluxes from circu-
lar equatorial orbit of a spinning particle around a Kerr
BH was used to independently verify the results of [29].
These results are discussed in detail in [51]. Tables of
the values of the partial amplitudes CA’lfnn for future ref-
erences are in Appendix D.

values of the coefficients ’C‘+

1.  Comparison of frequency domain and time domain

To compare the time domain and the frequency domain
results, we have calculated the coefficients C;nn for some
range of [ and n in the frequency domain for different
values of the spin ¢ and of the eccentricity e. We have
used these coefficients to find the respective strains and



energy fluxes at infinity. Then, these results have served
as reference values in our comparison with the azimuthal
m-mode of the strain at infinity multiplied by the radial
coordinate 7 h,, and the energy fluxes at infinity FZ
obtained in the time domain. Because of the fact that
the space discretization applied in Teukode induces nu-
merical errors to the time domain calculations, we have
run the time domain calculations for several resolutions
and tested the convergence of the code.

To calculate the strains and the fluxes with in the time
domain with Teukode, we need to approximate the delta
functions representing the secondary body in the p and
0 directions. To do that we have used different combina-
tions of Gaussian functions and piecewise polynomials in
these directions. The accuracy appears to be higher when
the piecewise polynomial are used in both p and 0 direc-
tion or Gaussian function in p direction and piecewise
polynomial in @ direction, than in the other two possible
settings, i.e., Gaussian in both directions and Gaussian
in 6 direction with piecewise polynomial in p direction.
When the piecewise polynomial is used in both directions,
calculations are faster and, therefore, we have used this
approximation in most cases. In our calculations, the
strain has been extracted at r = oo and § = /2 and
the energy flux has been averaged over two periods T
starting at the retarded coordinate around w = 350M,
where u =t — r*.

In order to provide a first comparison of the frequency
and the time domain results, we use the relative differ-
ence of the azimuthal mode m of the strain at r = oo
and 0 = /2

td
B,

5hm:‘1—h—fd , (93)

where h'd is the strain calculated using Teukode and
hfg is m-mode of the strain calculated in frequency do-
main using Eq. (81) without the sum over m. Fig-
ure 5 shows the relative difference of the azimuthal modes
m = 1,2, 3,4 of the strain as function of the retarded co-
ordinate . In this plot, the strain calculated in the fre-
quency domain (the denominator of dh,,) remains fixed,
while each time domain calculated evolution of the strain
is performed for different number of points in the p di-
rection N, (resolution). The delta function is approx-
imated by a piecewise polynomial for five resolutions
(N,=1200,1704,2400,3384,4800), while in one case is ap-
proximated by a Gaussian function for N, = 4800. We
can see that the relative difference dh,,, tends to decrease
as the resolution increases, but for the highest resolu-
tion N, = 4800 the numerical noise becomes significant.
Though the Gaussian approximation is less accurate, the
amplitude of its noise is relatively smaller than the am-
plitude of the noise for the piecewise polynomial approx-
imation with the same resolution. We speculate that the
cause of this numerical noise comes from the fact that as
the resolution increases, the approximation becomes less
smooth. Namely, we have used a 12th order approxima-
tion of the delta function, which is 12 points wide, for
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FIG. 5. The relative difference of the strain dh,, from the
m = 1 mode (top panel) to the m = 4 mode (bottom panel) as
a function of the retarded coordinate @ at r = oo and 0 = /2.
Each plotted curve represents a case with different number
of points in the p direction N,. The piecewise polynomial
approximation of the delta function was used for all cases
apart from one, for which the Gaussian approximation with
resolution 4800 was employed. The parameters of the orbit
are a = 0.9, 0 = —0.5, p = 12, e = 0.2. The initial noise is
caused by zero initial data in time domain.

each resolution; therefore, the higher the resolution is,
the narrower and higher is the delta function. Note that
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FIG. 6. The relative difference of the energy flux §FE> of
the I = m = 2 mode as function of the grid length in the p
direction of the time domain calculations. Note that the time
domain calculations have been projected on the Y, basis,
while the frequency domain ones on the Sj,.. Each curve rep-
resents a different value of the secondary spin, while the Kerr
parameter @ = 0.9, semi-latus rectum p = 12 and eccentricity
e = 0.2 remain fixed.

the m = 1-mode has very small value and the noise has
relatively higher amplitude than in m = 2,3,4 modes.
The m = 0-mode, which is not shown here, although
nonzero, has extremely small value allowing the numeri-
cal noise to be dominant.

To further check our results, we have calculated the
relative difference of the energy fluxes

Eoo
]:lm,td

1—
F oo
]:lm,fd

§F i = ; (94)

where ffﬁd is the value calculated using Teukode and

FEo%, is the value calculated with the frequency domain
appfoach summed over n. Figure 6 shows how the time
domain calculations of the dominant [ = m = 2 mode
of the energy fluxes converges to the frequency ones as
the resolution increases. For this plot we have kept
fixed the Kerr parameter a = 0.9, the semi-latus rec-
tum p = 12 and the eccentricity e = 0.2, while we have
used for each curve a different value of the secondary
spin o spanning from —0.5 to 0.5. The relative differ-
ence in the fluxes should converge to zero as the grid
length Ap = (ps — p+)/N, decreases (increasing resolu-
tion). However, the relative differences do not converge
to zero, because in the frequency domain calculations we
use the projection to spin-weighted spheroidal harmonics
Spe and Teukode projects the strain to the spin-weighted
spherical harmonics Y7, = Slom. For the dominant mode
the difference between the projections to these functions
is low because for low aw, the spheroidal functions Sp&
can be approximated by the spherical functions Yj,,.
Because of the aforementioned projection issue, for a
proper comparison of the time and frequency domain re-
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FIG. 7. Comparison of frequency domain and time domain
results. The relative difference 6FE> (top panel), §FE>,
(middle panel) and §FE>; (bottom panel) is plotted for dif-
ferent values of the secondary spins o spanning from —0.5
to 0.5. The Kerr parameter a = 0.9, the semi-latus rectum
p = 12 and the eccentricity 0.2 are kept fixed for all the cases.

sults, we must calculate the sum of the fluxes over [. The
relative difference

Eoo
1 m,td

SFEee =11 - 22, (95)
FER

for m = 1,2,3 has been calculated for different
secondary spins o in the frequency domain and in
time domain we used different resolutions (N, =
1200, 1704, 2400, 3384,4800). We can see in Fig. 7 that
the relative differences converge to zero as we expected.
The lowest step Ap corresponding to the highest resolu-
tion N, = 4800 shows variance in the relative differences.
This is caused by the fact that the noise amplitude is the
highest for the highest resolution, which can be seen in



Fig. 5. Especially in the case m = 1 where the energy
flux is significantly lower than for m = 2, the variance
in the relative differences is clearly visible. For the high-
est resolution, the relative difference is higher for higher
values of spin |o|. This can be caused by the numerical
noise in time domain calculations induced by the non-
smoothness of the piecewise polynomial approximation
of the third derivative of the delta function. Namely, the
term with the third derivative is proportional to the spin
o. For negative o the noise is relatively higher because
the value of energy flux for o < 0 is lower than the flux
for ¢ > 0 and thus the noise is more dominant.

To check the dependence of our calculations on the
value of eccentricity, we have calculated the energy fluxes
for fixed Kerr parameter a = 0.9, secondary spin o = 0.5
and semi-latus rectum p = 12, while the eccentricity e
value spans from 0.2 to 0.8. For each eccentricity we
have calculated the relative difference in the energy fluxes
§FE> for m = 1,2,3. Then, we have compared the
dependence of the relative difference on the resolution
for different eccentricities as in the case with the chang-
ing secondary spin. This comparison is shown in Fig. 8.
First, we have calculated the dominant m = 2 mode in
time domain with piecewise polynomial approximation of
the delta function in both p and 6 direction (p-p), but
for e = 0.8 the noise is increasing with the resolution
and 6F4> does not converge to zero (purple line in the
middle panel of Fig. 8). Therefore, for m = 2 and other
modes, we performed the time domain calculations for
e = 0.8 using the Gaussian approximation in p direction
and the piecewise polynomial approximation in 6 direc-
tion (G-p, red line in all panels of Fig. 8). However, the
m = 1 mode has low amplitude and the noise is therefore
more significant and the p-p approximation for e = 0.6
and the G-p approximation for e = 0.8 fails. Because
of this, for m = 1 mode we repeated the calculation for
e = 0.6 with G-p approximation and for ¢ = 0.8 with
Gaussian approximation in both directions (G-G).

The fact that for the piecewise polynomial approxima-
tion the noise has greater impact on higher eccentricities
can be explained as follows. The shape of the delta func-
tion depends on the distance between the delta function
and the two grid points around it. Since the distance
between these grid points changes rapidly on a highly
eccentric orbit, the shape of the delta function changes
rapidly as well. The greater is the change in the shape,
the greater is the noise. Thus, the piecewise polynomial
approximation is optimal for circular trajectories. More-
over, higher eccentricities imply longer periods of motion
and thus longer runtime, which allows the exponentially
growing noise to reach higher values. For the Gaussian
approximation noise grows more slowly.

Figure 8 indicates that by choosing a proper delta func-
tion approximation the relative difference 6 FE> would
converge to zero for all m-modes and eccentricities e.
This choice currently seems to depend on the orbital pa-
rameters and modes. For example, the piecewise poly-
nomial approximation appears to be in general more effi-
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FIG. 8. Comparison of frequency domain and time domain
results. The relative difference 6FZ>, (top panel), 6FES,
(middle panel) and §F5%% (bottom panel) is plotted for dif-
ferent values of the eccentricity e spanning from 0.2 to 0.8.
The Kerr parameter a = 0.9, the secondary spin ¢ = 0.5
and the semi-latus rectum p = 12 are kept fixed for all the
cases. If not specified, the delta function is approximated by
a piecewise polynomial in both p and € direction. For m =1,
e = 0.6 and m = 2, e = 0.8 the delta function is approximated
as Gaussian function in p direction and piecewise polynomial
in 0 direction. For m = 1, e = 0.8 the delta function is ap-
proximated as Gaussian function in both p and 6 directions.

cient than the Gaussian approximation, however its own
limitation in our example became prominent for high
eccentricities and modes corresponding to small flux or
strain absolute values, i.e. in modes that the numerical
noise is dominant.



IV. SUMMARY

In this work, we have studied the motion of a spinning
particle in the equatorial plane of a Kerr black hole and
the GW fluxes from these orbits. The only possible con-
figuration of the spins in this setup is the spins to be par-
allel or antiparallel. In this framework, we have derived
a reduced set of equations of motion equivalent to the
MPD equations with TD SSC. Taking advantage of the
fact that an orbit can be characterized by its constants
of motion, namely the energy F and the z component
of the total angular momentum J,, we have provided
explicit formulas for the energy and the angular momen-
tum in terms of the eccentricity e and semi-latus rectum
p. Furthermore, through the reduced equations of mo-
tion and by introducing a Mino-like time parameter A,
we were able to find expressions allowing the numerical
calculation of the frequencies of the radial and azimuthal
motion. These expressions provide the frequencies with
respect to A or the BL time.

The orbital findings were then implemented in the cal-
culation of the GW fluxes from the equatorial orbits in
the frequency domain. Namely, this work introduces the
formulas giving the strain h, the energy fluxes and the
angular momentum fluxes at infinity and at the hori-
zon from a spinning secondary moving on the equato-
rial plane of a Kerr black hole. For this purpose, we
have developed a Mathematica code calculating the am-
plitudes lerm on which the frequency domain GW fluxes
depend. We plan to make this code publicly available
through the Black Hole Perturbation Toolkit repository.
The frequency domain results were, then, compared with
time domain results obtained from a TE solver called
Teukode. To improve the efficiency of Teukode, we have
implemented a piecewise polynomial to approximate the
delta functions and its derivatives in the spinning-particle
source term. The comparison has shown good agreement
between the frequency domain results with the time do-
main ones.

To check the discretization error in the time domain
calculations introduced by the piecewise polynomial, we
have calculated the fluxes in time domain for different
resolutions and compared them with the respective fre-
quency domain results. The difference between the re-
sults from these two approaches tend to consistently de-
crease with increasing resolution. However, for the high-
est resolution, which we have implemented, the numeri-
cal noise in the time domain calculations becomes signif-
icant. This behavior occurs for different calculation se-
tups. Namely, we have checked our calculations by vary-
ing the secondary spin while keeping the other parame-
ters fixed and by varying the eccentricities while keeping
the other parameters fixed.

These calculations are part of the on-going effort to
build post-adiabatic gravitational waveforms modelling
gravitational waves emitted by extreme mass ratio inspi-
rals. In a future work, the frequency domain fluxes will
be used to find the adiabatic evolution of the orbit on

the equatorial plane under the influence of radiation re-
action. The influence of the secondary spin on the change
of the orbital parameters and phase of the GW will be
studied.
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Appendix A: List of dimensionless quantities

Throughout this work, we use several quantities both
in their full form and dimensionless form. The dimen-
sionless form is denoted by a hat. Their list with relation
between the full and dimensionless form is in Table I.
Some quantities such as the time parameter A\ or x are
defined only as dimensionless whereas other quantities
are used only in their full form.

TABLE I. List of dimensionless quantities

t=t/M BL time
r=r/M BL radial coordinate
a=a/M Kerr parameter
o=5/(uM) Secondary spin
E=E/u Energy
J.=J./(uM) | Angular momentum
T=7/M Proper time
A=A/M?
& =w?/M?
Q. =0 M Radial BL frequency
Qp =M Orbital BL frequency
w=wM Frequency
é{?b = C,?b/ H
w=Cap/1
Ct =CE  M?/u|Partial amplitudes
u=u/M Retarded coordinate



Appendix B: Formulas for GW fluxes

In this Appendix we derive the coefficients A; =
Ai(T, 9) and BH—I = BH—l(Ta 9), i = 07 1,2, in Eq (73)
for calculation of partial amplitudes of GWs from general
bound orbits of a spinning particle around a Kerr black
hole. Then we list explicit formulas for equatorial orbits
with secondary spin parallel to the z axis.

To find the form of the coefficients A; and B;q in
Eq. (73), the integrals (68) and (65) must be evaluated
using rules for integrating delta functions. We can clas-
sify the parts of the coefficients A; according to term
from which they originate:

Ao= D (MG + Ao+ Auso + Alho) , (B1)
ab=nn,nm,mm

A= Z (Age1 + Aabl + Ay + Aly) (B2)
ab=nm,mm

A AanO + A:nm() + Arnml + Amml (B3)

The terms A%, originate from the first term of the stress-
energy tensor (70) containing the nonspinning part of
T+ and parts containing Christoffel symbols. The terms
Aa‘il originate from the second term of (70) containing
t and ¢ derivative. Similarly, the terms A7, or Aab7
originate from the second term of Eq. (70) containing r
or 6 derivative respectively. The subscripts ab denote the
tetrad legs in Eq. (69).

Agbi can be found by integrating 6 and ¢ after substi-
tuting the first term of Eq. (70) into Eq. (68) by replacing
0 — 0,(t), ¢ — ¢,(t) and then using integration by parts
in Eq. (65), where the derivatives with respect to r in

(69) are shifted to the radial function RE = to obtain
Aoy = (C% — C2) £

where CY; and C9, are defined in Eq. (71).

To find the form of Aaln7 we must perform integration
by parts in Eq. (68) where the ¢ or ¢ derivative in the
second term of Eq. (70) are shifted to exp(iw — ime)
because no other functions depend on ¢t and ¢. From
this, we get terms multiplied by iw and —ime¢. After
that, an integration over r of Eq. (65) is done similarly
as in the previous case and we obtain

lmn

(B4)

dr . . v (a) (b
Ay = g iwS™ —imSyo¥e(i)ell) 1) (B5)
The term Agbz is derived in similar way. The derivative

with respect to 6 in the second term in (70) is shifted to
the functions f{g;)) and the tetrad legs. The boundary
term vanishes because féz) (r,0) = (5? (r,m) = 0. The
final term has the form

A8

abi =

S 57000 120y (e el?)

d f
+ dfzsg(“vl’)eff)el(,b)agfig . (B6)
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Now let us focus on the term containing the r deriva-
tive in Eq. (70). After substituting the stress-energy ten-
sor (70) into Eq. (69), the derivative of the delta function

can be shifted to the function f [52) and the tetrad legs. For
example, from the first term of 7,7 we obtain

or (f'%("’ 0y, my, 0y ((vt)’lsT("v”)ai")) =
a; (f,(f%(r, 0)n,mm, (vh) "L Y 53)
— o (6" (f'("lﬁ)l(r’ H)numl,) (Ut)_lsr(”v”)ﬁ) (B7)

After substituting Eq. (68) into Eq. (65) we can change
the order of the t and r integrals and integrate by parts.
From the second term in Eq. (B7) we obtain a term with

derivatives with respect to r of f;? and the tetrad legs
A, = grugy) (g (oo )y
abi — dt v ab ¥T 6;L €y

dr . i
+ ES’(“U”)eL“)ef,b)arfé? . (B8)
From the second term in Eq. (B7) we obtain terms Wlth
one order higher derivatives of the radial function lew,
of which the integration by parts we can perform to ob-
tain the coefficients

Bi= > Ban. (B9)
ab=nn,nm,mm
Bo= 3. Ban, (B10)
ab=nm,mm
Bs = Brms (B11)
where
Bapiiv1) = f—srw el@el) fm (B12)

The functions f(ii) = f{g? (r,0) in the equatorial plane
are given by

(0) (r 5) = A2 (XTXT - @ZT> Sim (9)’ ’

(B13
- (5 Y,

(B14)
o (n D) = 22 50, (B15)
9 (5) - (w»(i) g+ ) 5 (5)

(B16)
D)) o
D) - (7). oo
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where with respect to A and use the fact that V! = dif/d)\7
V7 = d#/d\ and V¢ = d¢/d\. From Egs. (23) and (25)
K = (r* +a*)w —am, (B19)  we obtain
L =08y —mecesch + awsin +ncot . (B20)
A0 d\ V2
Up to this point the analysis holds for generic orbits of nn = ErE S (B21)
a spinning particle. When we constrain the particle on A ViV 973 9
equatorial orbits with its spin set parallel to the z axis, Cco_ = ﬁw (B22)
then S%* = 0 for all i and, therefore, A%,, = 0. For the ) dt 2%, (73 +202)
presentation of the equatorial case, we prefer to use the A0 d\ V2
] 11 3 i Ci = i,\Aim 5 (323)
dimensionless quantities. T 4E (73 + 202)
In the definition of C%, and CZ, (71) we can replace
the derivative with respect to 7 in v* with derivative
e AN o s A +207)
Cnn = Em < V TV nT + (a — T')V N (324)
A d\ o a?—7 2 a2 -7 3ao A@ 4 202 ).
o =W (LT (2V,$+ v )— v+ 2 Y — eV + 2 B25
di 2v27%, ( A v A : STl (B25)
A d\ o a 2 i
o 27 (2 (zvf F VLV (VT ) + 20, + V7 Vm> , B26
= B (- % (2 )+ ) (B20)
[
where t = stm(/) _ 7i07,%,vA2Vr 7 (B35)
6T _ P,(7)+ V" M V243,
Vo=V, +Vn, +V -, (B27 1 10 Py (P
t M 2 (B27) M= —— (=S 4 ST,) = — @ " (B36)
ey in (420 uat V2%,
Vm=V'my+V . B28 N 1 icaV"
M V25, (B28) §¢ = — =St = — (B37)
% V2A%,
We can rewrite the expressions for Aab“ Ary., and

Bgp(i41) into dimensionless quantities as

dA A & A T
cth N P - @ (a7
Ay = s (%wS (a — imS (a) Voy fap (""7 2) >
(B29)
. dX 4 ar DN
abi = E(S (37"“1‘/b> +5 (bvafa))féb) (7,7 E)
dA & RONONG
+ AS (a‘/b)avf <T7§> ) (B?’O)
. d i
Ba(itn) = = 5@V oy ( ) (B31)

where we used the dimensionless projections of S#* into
the tetrad

o (z@? - 2aV,)

- 1

to_ tr rd _
§'n = g (87 +5n,) T ,

(B32)

ar 1 tr ) U‘TA

n N]W (—=S"ng + 8"ny) = “ory, (B33)
A i — 2
Sd)n —— (_Stqbnt _ STqbnr) _ U(CLCU Vn) (B34)

L 2%y,

The quantities V., and S'T@Tfa, can be understood as
dimensionless projections on the differentiated tetrad
Oy e(a)

Oy
Voun = M <vta,n,, F VO, + vd’%)

A2 a P.(7
Gt LU (B38)
T
Voo = M (Vo1 + ve 2o
orm — t M

Vim V24P, (7)

>

i e (B39)
ar 1 tr T 0’(&2 — T‘A)JZ
S pm = ; (7Sf arnt + S ¢0Tn¢) = fQZa '
(B40)
A 1
S om = - (=S o, m; + ST00,1my)
i0(2ax + Py(7))
=2 B4l
TSR (B41)
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FIG. 9. Differences between our frequency domain results
and the results obtained in [25]. Top panel: the difference
SFES between the fluxes normalized by max |E€n°§|
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Bottom panel: the difference 6C;%  between the coefficients

lmn
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normalized by max [
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where the covariant components of the tetrad are

1

ny, = 22( A,-%,0,aAsin’0) , (B42)
m, = 7% (iasing,0,%, —iw’sinf) . (B43)

Appendix C: Comparison with [Phys. Rev. D 73,
024027 (2006)]

This section compares our frequency domain calcula-
tions for a nonspinning particle with results obtained in
[25]. In that work, the GW fluxes were calculated from
generic orbits of a nonspinning particle moving around
a Kerr black hole using Teukolsky formalism with the
fraciéional accuracy of the energy flux [, m-modes set to
107°.

We have compared our data with theirs for an equa-
torial orbit around a Kerr black hole with a = 0.3,
p = 8.463649 = 1.771sco and e = 0.3. In particular, we
have compared our energy fluxes ]-'lmn, ]-'lmn and ampli-

tudes C’lmn with their data. In the top panel of Fig. 9,
we plot the difference between our calculated fluxes 7 E°°

and the fluxes F{Z°% . calculated in [25] normallzed by

107
1078

1071
SFFH

Imn

107"2
107"

107"

107
107°
107

- 107
6C/ mn
107

107°

10710

FIG. 10. Differences between our frequency domain results

and the results obtained in [25]. Top panel: the difference

SFER between the fluxes normalized by max |.7:Z’fn}i|
Nmi

in SM<Nmax

Bottom panel: the difference 66’;m between the coefficients
normalized by max C’l;nn .

Tmin SMS<Mmax

the maximum of F£% over n for each Im-mode

lmnDH
Foo *
Imn

7
§F iy = o
max
Tomin SN <Mmax

(€1)

We can see that for each Imn-mode the error is less than
107% of the maximal value for given [ and m. In a similar

way, we have compared the coefficients Cz using the
quantity
‘ tmn — Cin DH‘
00y = = "”i+ (c2)
i)
nminrsrlna%(nmax tmn

The result of this comparison is shown in the bottom
panel of Fig. 9. The normalized difference for the coeffi-
cients Cf;m is higher than in the flux comparison, because
the flux is calculated from the second power of C’lmn

the error is thus relatively smaller. Similar comparison
was calculated for the horizon fluxes ]-'lmn and C’ﬁnn
The result is shown in Fig. 10. Although the accuracy is
less than 10~° for some modes, the contribution from the
horizon fluxes is smaller than from the fluxes to infinity
and the overall accuracy remains higher.



Appendix D: Data tables

In this appendix we present data tables of the partial
amplitudes Cjt, (Tables II to V) for an orbit with or-
bital parameters a = 0.9, 0 = —0.5, p = 12, e = 0.2.
The constants of motion and the fundamental frequen-
cies calculated from the Eqgs. (38), (39), (53) and (52)
are

E = 0.961918749642517680134729458401233368989 . . .
J. = 3.322244358788816670183960181110056686457 . . .
Q¢ = 0.022671787375747548523093927931917807
), = 0.017744448092313388568850328609190010
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Only modes with !Cltnn‘ > 1072 are listed for 1 < m <
4. The accuracy of the dominant modes should be at
six significant digits, but for lower modes, the accuracy
drops. This accuracy depends mostly on the accuracy of
the radial function R ~and the coordinates t(x) and

Imn
P(x)-
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TABLE II. List of partial amplitudes Cﬁn

for an orbit with orbital parameters ¢ = 0.9, 0 = —0.5, p =12, e = 0.2.

lim|n

Re{C}} .

m{C}

Re{Cypn}

Im{C},,}

no
[

-6

5.167891x10~1°

-1.467715x107°

4.763386x107°

7.282975x107

5

1.335467x10~7

-4.271458x10~°

9.287132x107°

3.018417x10~ "

-4

2.722364x107°

-1.043309x 10~

-5.859804x 10710

1.237186x10~°

-3

3.539058x 1077

-1.824696 x 10~

-1.435506x 1077

5.014982x10~°

2

1.292175x107°

-1.244299x107°

-1.084857x107°

2.011327x10~°

-1

2.025147x10~ 0

4.098935%x 1077

-6.110857x10~°

7.974254%107°

0

-8.063520x 10"

-5.100353x10~°

-4.159829x107°

4.294392x10~2

-1.456843x107°

-6.201949x107°

-3.035062x 10"

2.643207x10~ T

-1.100808x10~°

-3.735099x107°
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1.150093x10~7
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| O U = W N =
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1.272727x10°¢%
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|
W~
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]
w
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TABLE III. List of partial amplitudes Cfgn for the same orbit as in Table II.

m|n Re{C} . m{C}} Re{C,..} Im{C,,..}
-4]-1.646357x10~° [-2.613368x10~ 0] 2.350051x10~° | 1.728856x10~°
-3[-5.171809% 1077 [-3.499305%x 10~ ™| 1.187803x 10" | 1.441103x10~°
-2[ 1.563190x10~7 [-1.253110x10~° | 2.380182x10~° | 3.978260x10~ "
-1[-4.066035x10~° | 6.801245%x10~° [-9.742181x10~° [-2.076711x10~>
0] 3.858210x10~* [-8.824264x10~° | 5.307355x10~* | 1.379732x10~*
1] 3.970205%x 10~ [-1.089118x10~% | 4.287891x10~* | 1.314682x10~*
2] 2.406528x10~% [-7.404687x10~" | 2.175548x10~* | 7.698517x10~°
3] 1.138352x10~7 [-3.764006x10~" | 8.960040x10~° | 3.602218x10~°
4] 4.644175x107° [-1.599176x10° | 3.266409x10~° | 1.474535x10~°
5 1.715753x10~° [-5.997531x10~° | 1.098058x10° | 5.516737x10°
6] 5.901325x107° [-2.047506x107° | 3.482534x107° | 1.934221x107°
7] 1.922706x10~°% [-6.480880x 10" | 1.056831x10~° | 6.456290x10~ "
8] 6.002221x10~7 [-1.923652x10~7 | 3.097499x10~" | 2.073768x 10"
9] 1.810496x10~" [-5.403652x10~° | 8.825836x10° | 6.461080x10~°
10] 5.321319x10°° [-1.460369x10~° | 2.456752x10"° | 1.967628x10°
11] 1.545017x10~° [-3.880442x10~7 | 6.695307x10° | 5.913216x10°
12| 4.635476x10° |-9.455299x10~ 17| 1.752615x10~ 7 | 1.779985x10~°
13] 1.168229x1077 [-1.713718x10~19] 4.702090x 10~ 17| 4.920492x10~1°
-1[-2.396250x 10~ | 5.060581x10~° | 1.890430x 10~ [-9.847625x10~ "
0] 3.649975x107° [-1.111405x10~° | 3.187469x10~° [-1.653879x10~°

4.889631x10°°

-1.883465x10°°

3.015258x107"

-1.566972x10~°

3.536010x10~°

-1.615521x107°

1.793053x107"

-9.383274x107°

1.888741x10°°

-9.843758x 1077

8.495665x 10~ °

-4.500460x107°

8.370027x 10"

-4.845333x10~"

3.503785x 10~ °

-1.888329x10°°

3.260656x 10"

-2.055320x10~7

1.314468x107°

-7.241796x1077

1.154284x10~7

-7.798475x10™

4.601592x10~ 7

-2.603261x10~"7

3.790759x 10~

-2.708873x10™

1.527743x10~7

-8.912589x 108

1.170216x10™

-8.743846x10 7

4.863519x10~

-2.937305x10™

3.415775%x107°

-2.649605x10°

1.496262x 10~

-9.389021x107°

[

9.324112x10~ 10

-7.609938x10~ 10

4.474358%107°

-2.926757x107°

-4.819515%x 10~

1.102927x10~

1.244599x10~ "

-4.205354x10~ "

1.025155x10°°

-3.437785x 10"

1.114267x107°

-4.056764x10~°

3.046028 %10~

-1.313240x10~7

9.753818x 10"

-3.881701x107°

-1.647969x 10~

8.570891x10~

5.323946x 10~ "

-2.357344x107°

-2.043076x10~ "

1.234177x10~ 7

2.267391x10~ "

-1.142665x10~°
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2.005378 %1077

2.389387x10~ 10

-7.319933x107°

7.342146x107°

-2.652971x107°

-9.489133x10™

-1.219765x 107

1.759299x 1077

-8.273581x10~ 10

-1.010641x10~"

-1.194663x 107

-3.657312x10

2.102053%x107°

-7.026352x10™

-7.612572x10™

-4.181570x107°

2.831232x107°

-3.875359x10~

-3.833430x 10~

-2.657863x107°

2.069513x10~°

-1.841952x10™

-1.655902x10~°
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TABLE IV. List of partial amplitudes

C’fgn for the same orbit as in Table II.

3
3

Re{C} .

m{C} .

Re{C},,}

m{Cy,,,, }

!
w

-1.004997x 1077

-7.760638x10~°

3.558851x 1072

1.588115x10™

|
[}

4.716853x10~"

2.003985x10~°

-3.882412x10°"

-1.922022x10°°

-1.300363x10~°

-4.030524x107°

4.310309%x10°°

2.366988x10~°

5.305191x 10>

1.331426 %1071

-9.633994x10°

-5.865711x10~°

8.900651x 10>

1.911136x10~7

-1.135235x10~°

-7.650771x10~°

7.612663x10°

1.447861x10~ %

-7.199807x10~°

-5.358218x107°

4.744130x107°

8.189333x107°°

-3.482019x107°

-2.851315x107°

2.434203%x10~°

3.884905x10~°

-1.438478x107°

-1.289482x10~°

1.092213x10°°

1.635785x107°

-5.363338%x10~ "

-5.227212x10°°

4.438184x10~°

6.316315x107°

-1.863735x10~ 7

-1.957612x10~°

1.670164x10~°

2.283624x10°°

-6.164127x10™

-6.902951x10~ "

O~ U x| W[ N =[O =

5.909836x 10~ "

7.840535%x10° 7

-1.969217x10™

-2.321446x10~ 7

©

1.988825x 10~

2.581659x 10~ "

-6.141824x107°

-7.513658x10~°

10

6.409344% 10~

8.217920x10™

-1.884840x107°

-2.356231x10™

11

2.020696x 10~

2.531856x10~°

-5.716907x10~ 10

-7.198380x10~°

12

6.131692x10~°

7.692513%x10~°

-1.717137x10~ 10

-2.149742x107°

13

1.679868x10~°

2.245018 <107

-5.246898x 10~ 11

-6.287407x10" °

-2

2.685489% 107

1.028336x10~

-2.488432x10™

-2.373154x10™

'
Ju

-1.147948x 107"

-3.145041x10~7

1.950153x10~7

1.857823x10~ 7

(=]

6.392598x 10"

1.390373x10°°

-2.124982x10°°

-2.014665x10~°

1.316270x10°°

2.399175x 10~ °

-2.891155x10~°

-2.717792x107°

1.323400x10~°

2.090102x10~°

-2.242899x107°

-2.082785x10~°

9.395536x 10~ "

1.315492x10°°

-1.324312x107°

-1.210354x107°

5.364249x 10"

6.771760x 10"

-6.609932x 10"

-5.923846x10 "

2.629183% 107

3.032417x10° 7

-2.939162x10~"7

-2.573399x10~"

1.149548 x 10~ "

1.224621x10~7

-1.200513x10~ "7

-1.023073x 10"

4.595850x 10~

4.564687x10~°

-4.593515x10~

-3.795772x10~ %

1.708722x10~

1.595567x10~

-1.668689x 10~

-1.331898x10~°

5.977998x 107

5.284213x107°

-5.810556x10~°

-4.462024x107°

OO 00| || U x| W DO =

[

1.986521x10~°

1.675756x107°

-1.953240x107°

-1.437145x107°

|
[N}

7.907117x10~

2.853014%107°

-6.478361x10 7

-3.587094x 10~ 10

-4.398249x10™

-1.123248x10~"

1.317613x10™

5.278265x 10~ '°

3.218695%x 10~ 7

6.453677x10~"7

-3.389273x 1077

-7.785256x 1070

3.455801x 10~ "

5.738309%x 10~ "

-4.536955x10~ 7

-1.859315x107°

1.711208x 10~ "

2.430505%x 10~

-3.512562x10~"

5.820222x 1077

3.896109x 10~

4.837181x10™

-2.071569x10~"

8.090550%x 107

-1.094717x107¢

-1.206677x10~

-1.031213x10~ "7

6.536982x 1077

-1.726012x10~°

-1.709111x10™

-4.563110x 10~

4.089656x 107

-1.143495x 10~

-1.026788x10~

-1.850203x10™

2.179864x10~°

-5.747543x107°

-4.714943x1077

-7.009564x 1077

1.037791x107°

-2.468744x107°

-1.860621x10~°

-2.514576x107°

4.537261x10~1°

-9.509418x 10~ 10

-6.710533x10~ 10

-8.623420x10~ 10

1.854954x 10~ 10

2.515496x 10~

4.721206x107°

-8.984566x 107

9.229790x 1077

3.001379x1077

4.619049x1077

-1.151088x10™

1.262076x10°

1.275195x107°

1.660290x10~°

-9.081402x107°

1.067007x10™
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-7.155788x10~ 10
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TABLE V. List of partial amplitudes

Cﬁn for the same orbit as in Table II.

lim|n Re{C} . m{C}} Re{C,..} Im{C,,..}

4] 4]-3] 1.030232x10~" [-2.987138x10~° | 2.594938x10~° |-1.364431x10°
4] 4]-2]-3.167459x107° | 1.235891x10~° [-5.564356x10~ " | 2.832212x10~ "
4| 4]-1] 2.493681x1077 [-1.203041x10~° | 3.475072x 10~ % [-1.718247x10~°
4] 4] 0]-3.730632x107° | 2.123841x107° |-4.314063x10~° | 2.079650x10~°
4] 4] 1]-8.092430x107° | 5.277164x107° [-9.355450x10~° | 4.413471x10~°
4] 4] 2[-7.619630x107° | 5.574275x10~° |-8.650047x10~° | 4.008745x10~°
4] 4| 3[-5.089773x107° | 4.112353x10~" |-5.704990x10~° | 2.607445x10~°
4] 4] 4]-2.773635x107° | 2.444478x107° |-3.087320x10~° | 1.397110x10~°
4] 4] 5]-1.316378x107° | 1.252512x107° |-1.461746x10-° | 6.575647x 10"
4] 4] 6]-5.647802x10~° | 5.750074x10~° [-6.277339x10~ " | 2.818301x10~ "
4] 4] 7]-2.243064x107° | 2.424266x10~° [-2.501089x10~" | 1.125120x10~ "
4] 4] 8]-8.381942x10~" | 9.546192x10~" |-9.388208x10° | 4.248119x10°
4] 4] 9]-2.980940x10~7 | 3.554223x10~" [-3.356380x10~° | 1.533473x10~°
4| 4]10]-1.020168x10~7 | 1.261960x10~ " [-1.152115x10~° | 5.334443x10~°
4] 4]11]-3.378335x10™° | 4.299271x10"° [-3.820558x10 7 | 1.799074x10
4] 4]12]-1.082123x10~° | 1.416903x10~° [-1.229874x10~7 | 5.909993x 10~ °
4] 4]13]-2.922436x107° | 4.787284x10~° [-3.860830x10 0| 1.899575x10~ 0
4] 4|14[-1.034014x1077 | 1.406801x10~° [-1.182908x10~ 7| 5.976449x 10~ 1T
5] 4]-2[-1.875445x10~% | 7.933698x10~7 [-3.023775x10~7 | 5.361340x10~°
5] 4]-1] 1.928140x10~" [-1.021033x10~" | 3.348964x10~° [-5.960966x 10~
5] 4] 0[-3.581359x10 " | 2.267803x10 * |-1.071155x10 " | 1.920896x10 "
5[ 4] 1]-8.885218x1077 | 6.538335x10 " |-2.097613x10~ " | 3.803623x10~ "
5 4] 2[-9.357029x10~7 | 7.847094x10~" |-2.025645x10~" | 3.727819x10~ "
5] 4] 3[-6.840485x10" | 6.445750x10 " |-1.413811x10~ " | 2.650546x10~ "
5[ 4] 4]-4.007050x10~7 | 4.196831x10~" |-8.077376x10~° | 1.548634x10~"
5[ 4] 5[-2.013663x10~" | 2.324005x10~" |-4.013179x10~° | 7.900370x10— "
5] 4] 6]-9.029619x10~° | 1.140120x10~" [-1.795737x10~° | 3.645112x10~°
5] 4] 7[-3.705473x10~° | 5.087027x10~° |-7.399921x10~° | 1.555748x10~
5] 4] 8]-1.416211x10~% | 2.102079x10~° [-2.851190x10~7 | 6.238100x10~°
5] 4] 9]-5.102297x1077 | 8.148365x10~7 [-1.038250x10~7 | 2.376195x10~°
5] 4]10]-1.757070x10~7 | 2.997933x10~7 [-3.601133x10~'°[ 8.670269x10~1°
5] 4]11]-5.830642x 10~ 0] 1.054002x10~7 [-1.196530x10~ 7| 3.049759x10~1°
6] 4]-2]-8.666245x107° | 3.877093x10~7 | 1.065444x10~ 0| 7.051137x 10~ 0
6] 4]-1] 1.052404x10~7 [-5.945050x10~% [-9.799602x10~1°|-5.966157 x 10~°
6] 4] 0[-2.657233x10~" | 1.812153x10~ " | 4.508872x10~° | 2.519233x10~
6] 4] 1]-3.867479x107 | 3.097707x10~" | 9.373712x10~° | 4.799473x10~
6| 4] 2[-2.693825x1077 | 2.488393x10~ 7 | 9.932362x10° | 4.656984x10°
6] 4] 3]-1.291963x10~7 | 1.359028x10~" | 7.665334x10~7 | 3.290682x10~°
6| 4] 4[-4.680907x10~° | 5.556090x10~° | 4.860330x10° | 1.910878x10~
6| 4] 5[-1.257609x107° | 1.673105x10~° | 2.686650x10~° | 9.678828x10~°
6] 4] 6]-1.863538x1077 | 2.764762x10~7 | 1.340226x10~7 | 4.427345x10~°
6] 4] 7| 4.381872x1071V|-7.223455x 10~ 1| 6.169229x 10~ 1| 1.870247x10~°
6] 4] 8] 5.248114x10710[-9.583384x 10~ 7| 2.660845x10~ 0| 7.408825x 10~ 17
7] 4] 0]-1.681887x1077 | 1.221218x1077 | 8.419294x10~1°] 6.223333x 10~ 1°
7] 4] 1]-2.629027x1077 | 2.263383x1077 | 1.494752x10~7 | 1.045267x10~°
7] 4] 2]-1.825947x1077 | 1.832837x10~7 | 1.524851x10~° | 1.004491x10~°
7] 4] 3]-7.525698x 10~ 10| 8.711420x 10~ °| 1.156468x10~7 | 7.142646x 10~ 1°
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A.2 Adiabatic equatorial inspirals of a spinning
body into a Kerr black hole

This Attachment contains the paper Adiabatic equatorial inspirals of a spinning
body into a Kerr black hole [40] published in Physical Review D. This version
corrects some typos in the published version.
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Adiabatic equatorial inspirals of a spinning body into a Kerr black hole

Viktor Skoupy'? and Georgios Lukes-Gerakopoulos?
L Astronomical Institute of the Czech Academy of Sciences,
Boe¢ni II 1401/1a, CZ-141 00 Prague, Czech Republic and
2 Institute of Theoretical Physics, Faculty of Mathematics and Physics,
Charles University, CZ-180 00 Prague, Czech Republic

The detection of gravitational waves from extreme mass ratio inspirals (EMRIs) by the future
space-based gravitational-wave detectors demands the generation of accurate enough waveform tem-
plates. Since the spin of the smaller secondary body cannot be neglected for the detection and
parameter estimation of EMRIs, we study its influence on the phase of the gravitational waves
from EMRIs with a spinning secondary. We focus on generic eccentric equatorial orbits around
a Kerr black hole. To model the spinning secondary object, we use the Mathisson-Papapetrou-
Dixon equations in the pole-dipole approximation. Furthermore, we linearize in spin the orbital
variables and the gravitational-wave fluxes from the respective orbits. We obtain these fluxes by
using the Teukolsky formalism in the frequency domain. We derive the evolution equations for the
spin-induced corrections to the adiabatic evolution of an inspiral. Finally, through their numeri-
cal integration we find the gravitational-wave phase shift between an inspiral of a spinning and a

nonspinning body.

I. INTRODUCTION

Extreme mass ratio inspirals (EMRIs) are promising
sources for future space-based gravitational-wave (GW)
detectors such as the Laser Interferometer Space Antenna
(LISA) [1, 2]. These systems consist of a primary super-
massive black hole and a secondary, much lighter com-
pact object such as a neutron star or a black hole. In
an EMRI, the mass ratio ¢ = u/M of the secondary
mass p and the primary mass M is expected to lie be-
tween 10~7 and 10~%. Because of the gravitational radi-
ation reaction, the secondary object is slowly inspiraling
into the primary while it radiates gravitational waves.
The detection of EMRIs will provide the opportunity
to study strong gravitational fields around supermassive
black holes lying at the center of galaxies and to test
general relativity.

The millihertz GW bandwidth that EMRIs are emit-
ting is expected to be rich in GW sources. To overcome
the fact that signals from various sources will overlap dur-
ing their detection by LISA, matched filtering is planned
to be employed; i.e., the detected signal will be compared
with a large number of GW templates covering the es-
timated parameter space [1]. The use of templates will
not only allow the detection of EMRI signals, but it will
also be employed for the parameter estimation of these
systems. To get these estimations adequately enough, we
need to generate waveform templates whose phases are
accurate up to fractions of radians.

To achieve such accuracy, a series of techniques can be
employed. The backbone of them is that the system is
treated as the motion of a secondary object in the back-
ground spacetime of the primary object. Hence, to model
the GW phase, we need first to find the trajectory of the
secondary z*. The secondary is perturbing the back-
ground spacetime, and the gravitational self-force drives
the secondary away from the trajectory which it would

follow without this perturbation.! To find this self-force,
perturbation theory is used. Namely, the exact metric is
expanded in the terms of the mass ratio as

It = g + his) + hiE) + O(d°) (1)

where g, is the background metric, which in our case
is the Kerr one, hE}V) = O(q) is the first-order perturba-
tion and h,(ﬁ,) = O(g)” is the second-order perturbation.
hEﬁ,) are found by expanding the Einstein equations in
the mass ratio with the source constructed from the sec-
ondary body and solving order by order [3, 4]. The parts
of the metric perturbation are then used to construct the
first- and second-order self-force

D22+

P Qf(ul) + qu(“g) + 0(03) ) (2)

where 7 is the proper time and f(ul) is constructed from

h,(}J and the secondary’s spin-curvature coupling, while
f(‘;) is constructed from hftz,,) [4-6].

Because the radiation reaction is of the order O(q), its
effects act on a much larger timescale than is the orbital
timescale. Actually, the secondary makes O(q_l) cycles
around the primary due to the radiation reaction, before
it plunges into the primary. Thanks to this timescale dif-
ference, we can use the so-called two-timescale approzi-
mation [7]. In this approximation, the coordinates are
transformed to anglelike variables g,,, which can be ex-

1 This unperturbed trajectory is a geodesic orbit for a nonspinning
secondary, while for a spinning secondary, the trajectory can be
provided by the Mathisson-Papapetrou-Dixon equations.



panded in the mass ratio as?
1
qu(t) = Eqﬁo) (qt) +qP(qt) + O(q), (3)

where ¢ is the evolution parameter. The first term

qLO)(q t) is called the adiabatic term and can be calculated
only from the time-averaged dissipative part of the first-
order self-force. The second term qfll) (gt), which is called
the first-order postadiabatic term, is constructed from
the oscillating dissipative and conservative parts of the
first-order self-force, the averaged dissipative part of the
second-order self-force and the contribution from the spin
of the secondary body. These angle variables are directly
related to the phases of the GW. The adiabatic term
for generic orbits around a Kerr black hole was calcu-
lated only recently [8-11], and, so far, the postadiabatic
term with the first-order self-force was calculated for a
spinning secondary only for quasicircular orbits in the
Schwarzschild spacetime [12] and for a nonspinning sec-
ondary for equatorial orbits in the Schwarzschild [13] and
Kerr [14] spacetime, while the full first- and second-order
self-force for quasicircular orbits in the Schwarzschild
spacetime was calculated in Ref. [15].

The error in the adiabatic term must be less than the
mass ratio to obtain subradian precision. It has been
proven for a nonspinning secondary [16, 17], but also for
a spinning secondary [18], that the time-averaged dissi-
pative part of the self-force can be reconstructed from
the time-averaged energy and angular momentum fluxes
calculated at infinity and at the horizon of the primary
black hole. Therefore, for the calculations in the adia-
batic order, we do not need to calculate the perturbation

hLlV) in the vicinity of the secondary body, but we need
only to find the aforementioned GW fluxes. These fluxes
were calculated for generic orbits of non-spining bodies
around a Kerr black hole in Ref. [19], for circular orbits
of spinning bodies around a Schwarzschild and a Kerr
black hole in Refs. [18, 20-24], and, finally, for eccen-
tric equatorial orbits of spinning particles around a Kerr
black hole [25].

A postadiabatic term is of the order of radians and,
thus, cannot be neglected. Hence, since the spin of the
secondary contributes to the postadiabatic term, we have
to take it into account. In the case of compact objects,
like black holes and neutron stars, a pole-dipole approx-
imation is considered to be sufficient, and all the higher
multipoles of the body can be ignored. The scalars de-
scribing a pole-dipole secondary are its mass p and the
measure of its spin S. In the EMRI framework, instead of
S we can gain more insight about the contribution of the
secondary spin by defining its dimensionless counterpart
o = S/(uM). For example, if we consider the secondary

2 In fact, the expansion contains also a term proportional to ¢—1/2
caused by the orbital resonances, but here we neglect it for sim-

plicity.

black hole as an extreme Kerr black hole, we have that
S = p? leading to o = ¢, which suggests that o is of the
order of the mass ratio, i.e., 0 < ¢ < 1. This fact, actu-
ally, allows us to ignore all the terms with higher powers
in o and focus on the linearized in spin contributions to
the inspiral.® Additionally, it is easier to fill the param-
eter space with precomputed EMRI waveform templates
by linearizing in spin, since the spin contribution appears
in this case as o times a coefficient independent of the
exact value of the spin. This implies that we avoid the
calculation of each quantity for several values of the spin.
Moreover, there are evidence [27, 28] suggesting that the
pole-dipole approximation breaks down for higher than
the quadratic order in spin.

Hence, this work focuses on the influence of the sec-
ondary spin on the evolution of an inspiral moving on
the equatorial plane of a Kerr black hole, when the cal-
culations are restricted to the linear order in spin. Having
confined our study on the equatorial plane of a Kerr black
hole allows us to parametrize the orbital evolution by the
energy F and the z component of the angular momentum
J. of the system. The energy and the angular momen-
tum fluxes, which reach infinity and the horizon, were
already derived in Ref. [25]. In this work, we linearize
these fluxes to calculate the adiabatic inspiral and the
linear in spin part of the GW phase, i.e., the phase shift
between the adiabatic inspiral of a spinning secondary
and a nonspinning secondary. In particular, this phase
shift §®,, can be found by linearizing in spin of the phase,
ie.,

3, = é@;@ + %5@,4 +0(c?/q) . (4)

Note that in this work we neglect the other postadiabatic
terms, the evolution of the primary mass and its spin due
to the absorption of the GWs through the horizon as well
as the evolution of the spin magnitude o.

The rest of this paper is organized as follows. Section
IT describes the dynamics of a spinning body in a Kerr
spacetime and introduces the orbital variables linearized
in the spin of the secondary. Section III focuses on GW
fluxes from spinning bodies moving on eccentric equa-
torial orbits around a Kerr black hole with these fluxes
linearized in spin. Section IV presents the equations driv-
ing the adiabatic evolution of the orbital parameters and
the phases. By linearization in spin, this section provides
the equations governing the phase shifts. Section V first
discusses the numerical methods and then provides the
respective results. Finally, Section VI summarizes the
main findings of our work.

3 This reasoning holds away from the resonances, since the reso-
nances are governed by the (9(52) [26], which implies a contri-
bution to the phase of order of radians.



A. Notation

In this work, we use geometrized units where ¢ =
G = 1. A partial derivative is denoted with a comma
as Uy, = 0,Uy,, whereas a covariant derivative is de-
noted by a semicolon as Uy, = V,U,. The Riemann
tensor is defined as R¥ ), x\ = I 5 n—TH o x+TH 0 TP un—
I'#,2I'*,,;, and the signature of the metric is (—, +, +, +).
For convenience, we use some quantities in their dimen-
sionless form, which is denoted by a hat. A list with
these quantities and their dimensionless counterparts can
be found in Appendix A.

II. MOTION OF A SPINNING PARTICLE

Following Mathisson’s gravitational skeleton approach
[29, 30] and truncating the expansion up to the second
term, the stress-energy tensor of a spinning test body in
a curved spacetime can be written as

Plugyy) 83 Soluyy) 53
_ P v, (fv ) . 6)
v v—9 v Van')

where P* is the four-momentum, v* = dz*/dr is the
four-velocity, 5% is the spin tensor, §* = 6%(a" — z1(t))
is the Dirac delta function located at the particle posi-
tion :cf)(t) parametrized by the coordinate time ¢ and g
is the determinant of the metric. In this so-called pole-
dipole approximation the stress-energy tensor consists of
a monopole (first term) and a dipole (second term).
Applying the stress-energy conservation law T+, =
0 on the stress-energy tensor (5), the Mathisson-
Papapetrou-Dixon (MPD) equations [30-32]

i

DpPH 1

=3 RH, 6 v 5P, (6a)
DSsHv

Fra PHyY — PVt (6b)

can be derived, where R¥,,, is the Riemann tensor and
7 is the proper time.

The MPD system of equations is underdetermined, be-
cause for the 14 independent components (z#, P*, S*)
only ten independent equations are available. This am-
biguity is related to the freedom we have to choose the
center of mass of the spinning body. Thus, additional
conditions must be imposed to fix the center of mass and
close the system. One such condition is the Tulczyjew-
Dixon spin supplementary condition (TD SSC) [33, 34]

SWP, =0, (7)

which introduces three independent constraints to the
system. The fourth constraint comes from the fact we
have chosen the proper time as the evolution parameter
in Eq. (6) and, hence,

vt = —1. (8)

Note that, in order to follow the evolution of the body,
we actually track the worldline along the center of the
mass, which is the reason why a spinning body is often
called a spinning particle. We will use both terms inter-
changeably throughout the rest of the paper.

Under the TD SSC, the mass of the spinning particle
with respect to the four-momentum

j=/~PrP, (9)

and the magnitude of the particle’s spin

s:,/% (10)

are conserved along the trajectory. Often, it is convenient
to use the dimensionless spin parameter o

S

= —, 11
TN (11)
instead of the spin magnitude S and the spin four-vector
1
S, = —5€uvpo u” SP7 (12)

instead of the spin tensor, where u* = P*/u. It can be
checked then that the spin magnitude can be expressed
as S = /SHS,.

Thanks to the TD SSC, it is possible to derive a rela-
tion between the four-momentum and the four-velocity

[35]:
o =1 (u“’ +
I

where m = —p*v,, is the rest mass with respect to the
four-velocity. The value of this mass is not conserved
under TD SSC; however, it is constrained by Eq. (8).
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A. Motion on a Kerr background

We are interested in the motion of a spinning particle in
Kerr spacetime background. This spacetime describes a
spinning black hole at vacuum. The nonzero components
of the Kerr metric in Boyer-Lindquist (BL) coordinates

ds® = gu dt* +2 gyp dt dd + ggp d¢”

+ Grr d7'2 + 9ee d92 (14)
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with
Y =72+ acos?h,
A =w?—2Mr,
w? =7r? +a?, (16)
where M is the mass of the black hole and a is the Kerr
parameter.

The outer horizon of a Kerr black hole is located at
ry = M++/M? — a? and the spacetime is equipped with
two killing vectors, one timelike f&) = 4} and one space-
like ﬁf 6 = 8. The existence of these Killing vectors
provides the conservation of two additional quantities,
namely, of the energy measured at infinity:

1
E= 7Pt + §gtu,usuu (17)

and of the total angular momentum projected onto the
symmetry axis of the black hole measured at infinity:

1 v
Jz = P¢ — igw’l,S“ . (18)

B. Equatorial motion

In our work we focus on the equatorial motion; hence,
v? = 0. It can be shown that in this case the particle
stays in the equatorial plane [25] and it holds that p? =0
and

Sy =-rSs. (19)

Bounded equatorial orbits can be characterized by their
semilatus rectum p and their eccentricity e, which are
defined as
Pg — T
e=-2—1 (20)
T+ T2
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where 71 is the pericenter and 75 is the apocenter. For the
orbital description, we introduce dimensionless counter-
parts of the involved quantities (for details, see Table I).

The radial coordinate of the particle periodically os-
cillates between 71 and 75. Because of this fact, we can
change the parametrization of the trajectory from proper
time 7 to the anglelike relativistic anomaly y defined as

N p
- r 21
"1y ecos(X + Xxo) (1)

where xo determines the initial radial position. For
X + xo = 0 and 27 the particle is at the pericenter, and
for x + xo = 7 the particle is at the apocenter. The
equations of motion for ¢ and ¢ in this so-called Darwin
parametrization then read

di P 1-¢
— = Vt ( ) ) 22a
dy 1+ ecos(x + xo) p2J(x + xo0) (222)

1—e2
p2J(x + xo0)

R
dy v 1+ ecos(x + xo0) » (220)
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where the functions Vt, V?, and J can be found in Ap-
pendix B.
By integrating over x, the functions ¢(x) and ¢(x) read

i) = /0 Xj—;mdxm (23)
600 = do + (f%(x’)dxh (23b)

respectively, where we set the initial time ¢(0) = 0.

Since it is possible to express the energy and the angu-
lar momentum as E'(p, e, o) and JAZ(p7 e,0), i.e., as func-
tions of p, e, and o * [25] (see Appendix B), to uniquely
identify a trajectory, one needs four parameters p, e, xo,
and ¢g. However, many quantities are independent of the
initial angles xo and ¢g. Therefore, we can define a fidu-
cial trajectory with xo = 0 and ¢9 = 0. The coordinates
of this trajectory as well as all the quantities calculated
from it are denoted with a check mark as #(x), #(x), and
é(x). After the substitution x = v — xo0, Eq. (23a) can
be written as

X+Xo £ . .
i(x) = / %(v)dv:f(w)m)*f()m), (24)

where dl?/dx comes from Eq. (22a) when yo = 0. An

analogous relation holds for ¢(x), and, therefore, a gen-
eral trajectory can be expressed using a fiducial trajec-
tory as

£() = t(x + x0) — t(x0) , (25a)
P(x) = #(x + X0) » (25b)
#(x) = do + d(x + x0) — (x0) - (25¢)

Trajectory-dependent quantities such as the frequencies
or the GW fluxes, which are independent of xo and ¢y,
can be calculated using the fiducial trajectory.

The radial period, i.e., the time between two successive
passages through the pericenter can be expressed as

. 172 27 1
n 2 ()
0

1+ ecosy J(x)
Vi—e2 [T
NS / V‘( P ) Ly, (20)
P 0 1+ ecosy J(x)

where we can integrate from 0 to 7, because the integrand
is even around 7. Similarly, the accumulated phase of the
azimuthal coordinate can be written as

Vi—ez [T P ) 1
Ap=2"—"—"—|[ V? .
9=2 P /0 <1+ecosx ](X)dx (27)

4 They also depend on the Kerr parameter a, but we will treat it
only as a parameter.



The frequencies with respect to the BL time can be
then calculated as

A 2w
Q. ==, 28a
7 (28a)

. A¢
Qp = — . 28b
*=F (28b)

C. Linearization in the secondary spin

Because of the fact that the dimensionless spin o is
of the same order as the mass ratio g, i.e., 0 < 1, it is
reasonable to linearize the expressions for the frequencies
(28) in ¢ to obtain

Qui(pye,a) = 0¥ (p,e) + 0 5Q(p,e) + O(02) ,  (29a)

where ¢ = 7, ¢ and

QEP;) (p.e) = Q(p7 e,0=0), (29b)
aoo-(2) . mo
o=0

Note that the index (g) in the above quantities refers to
a geodesic orbit, i.e., for o = 0.

However, for the calculation of GW fluxes it is conve-
nient to linearize the quantities, such as energy and angu-
lar momentum fluxes, with respect to a reference geodesic
with the same orbital frequencies (see Sec. IIT A). In other
words, we must linearize the functions parametrized by
the frequencies, i.e., f(p(€s,0),e(S%,0),0). For this, one
must find the linear part of the functions

p($, 0) = p® () + 0 6p(%) + O(0?) ,
e(S4,0) = e® () + o de () + 0(a?),

(30a)
(30D)

where dp and de correspond to the change of the orbital
parameters after a geodesic with frequencies Q, is per-
turbed by a secondary spin ¢ while keeping the frequen-
cies same. Because the relations p(£2;,0) and e(;, o)
are not known, we cannot simply take the derivative of
p(Q,0) and e(£2;,0) with respect to o to find dp(£;)
and de(€);); instead, we have to use the derivatives of the
implicit functions

QT = Qr(p(ﬁrvQ¢7U)7G(QT7()¢7U)70) ) (318‘)
Qs = Qs (p(Q, g, 0), (O, 04, 0), 0) (31b)

with respect to o to find them. In these functions, the lhs
is constant and the rhs are functions defined in Egs. (28).
After differentiating them with respect to o, substituting
o = 0, and solving for dp = dp/do and de = de/do, we
obtain

a0l 90®
=2 50, — 9% 50y
op = e ’J e , (32a)

ot

0% 90
_T¢6QT+62T 5Q¢
e = P D , (32b)
‘Jm

where all the derivatives are evaluated at ¢ = 0 and the
determinant of the Jacobian matrix is

o0l 02 o0f® 0l
Op Oe Oe Op

Since dp(p, €) and de(p, e) were derived through the above
procedure, they are functions of p and e. Actually, they
can be interpreted as shifts of p and e when a geodesic
originally with semilatus rectum p and eccentricity e is
perturbed by a spin o, while keeping the frequencies con-
stant. Explicit formulas for the calculation of dp, de and
the derivatives of £2; can be found in a Mathematica note-
book in the Supplemental Material [36].

As was proven in Ref. [37] for the Schwarzschild space-
time and in Ref. [38] for the Kerr spacetime, bound
geodesics cannot be uniquely parametrized by the fre-

(33)

‘Jml)

quencies Q§g> and there exists a region of the parame-
ter space near the separatrix with pairs of orbits with
identical frequencies €, and Q4. This implies that there
exists a curve in the p — e plane separating these pairs,
on which the determinant (33) is zero. Therefore quan-
tities linearized with respect to a geodesic with the same
frequencies cannot be calculated on this curve.

The constants of motion E and J, from Egs. (B1) and
(B2) are functions of p, e, and o; hence, the linear part
in o with respect to a geodesic with the same frequencies
can be found using the chain rule as

. oF oL oE®©
ok o % _ Tpﬁp + Wﬁe 5 (34&.)
8. = oJ; 8jz(g)5 + 0J2 de (34b)
lo. 0o dp PT "5 %%
g o=0

where dp and de come from Egs. (32) and the subscript §;
denotes that the quantity is linearized with respect to a
geodesic with the same frequencies. We have, thus, intro-
duced the operator 5f|Q1 acting on a function f(p,e, o)
as

_9f

Q do

af® 5 af®

of ap Pt oe

+

o=0

de. (35)

Using the above linearized quantities, the coordinate
functions (£(x),7(x),#(x)) can be linearized as well.
When an equatorial geodesic parametrized by x with fre-
quencies €; is perturbed by a spin o, the change of the
coordinate time and the azimuthal coordinate can be de-
scribed as

i(x) =@ (x) + o 6t (36a)

(x)+0(a?),
Q;

o(x) =B (1) +0 56| (x)+0(c?),

Q;

(36b)
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FIG. 1. Top: the evolution of i®(x) for a geodesic orbit
with & = 0, O = 0.00577033, and Q¢ = 0.00942436, which
corresponds to p® = 10, e® = 0.8, and t(x) for a trajectory
of a spinning particle with ¢ = 0.5 and the same frequencies
as the geodesic orbit, which corresponds to p = 8.6538 and
e = 0.831688. Bottom: difference di(x) = (i(x) — i® (x))/o.
We can see that if the initial difference is £(0) — £ (0) = 0,
then at the end of the period #(27) —£® (27) = 0 as well. The
spin value has been chosen to be unphysically large to make
the difference visible.

respectoively, where £®(y) and ¢®(y) are_calculated
from Egs. (22) for o = 0 and equations for dt|, (x) and

5¢‘Qv (x) are derived by linearizing Egs. (22) in o with
respect to a geodesic with the same frequencies, i.e.,

@i o (a0 (@Yo @i
dy ~ 9o \dx/|,—o Op\ dx P Be dy ’

(37a)
ds¢ 0 (d¢ 9 [do® o [do'®
a*%(a);a—p(dx P+ e T )

(37h)

For the fiducial trajectory, the initial conditions can be
chosen such that the linear corrections ot and d¢ are zero

at the pericenter, namely 0£(0) = 0 = d¢(0). Thanks
to the frequency matching, it holds that §t(27) = 0 =
8¢(2m), because the radial period and accumulated phase
in ¢ are the same for both the perturbed and the unper-
turbed trajectory. This can be seen in Fig. 1, where we
plot the evolution of #(x) for a geodesic orbit (o = 0)
with p = 10, e = 0.8, and for a trajectory of a spinning
particle with o = 0.5, which frequencies were matched to
the same as the frequencies of the geodesic orbit.

The linear correction to the radial coordinate can be

calculated as

. or or
0r(x) = a—p5p+ &56

op pdecosx

= — . 37
1+ecosxy (14 ecosy)? (87¢)

III. GRAVITATIONAL-WAVE FLUXES

For the calculation of the GW fluxes, we use Teukolsky
formalism where the GWs are treated as perturbations
of the background spacetime. To obtain the GW fluxes
to infinity and to the horizon, we calculate perturbation
of the Weyl curvature scalar

Uy = —CupysnmPnrm® (38)

where C 45 is the Weyl tensor and

o 2 _
n 3 (w , A,O,a) , (39)
1
mt = ———— (iasinf,0,—1,icsch 40
\/§C( ) (40)

are two legs of the Kinnersley null tetrad with
¢ =r—iacosf.

The Weyl scalar is related to the gravitational radia-
tion at infinity as

1d%h

Uy(r — o0) = 242 (41)
where h = hy — ihy is the strain, which is defined as
hyw = h_,_e;rl, + hxe;fl, with the metric perturbation h,,,
and polarization tensors e;r,;x. The Weyl scalar ¥, en-
codes the gravitational radiation emitted to infinity; how-
ever, by using the Teukolsky-Starobinsky identities, it is
possible to infer from W, the fluxes at the horizon as well.
Teukolsky in Ref. [39] introduced the master equation

for the field in the form®
sOs¥(t,r,0,¢) = 4n¥T (42)

where ;O is a second-order partial differential operator
and 7' is a source term calculated as a certain differential
operator acting on projections of the stress-energy tensor
(the interested reader is referred to Ref. [39] for more
details). In the case of GWs, the calculated quantity
from Eq. (42) is _otp = ¢*0y.

5 In this section, the coordinates (,7, 8, ¢) denote an event in the
spacetime in which the field is measured, while the trajectory of
the particle is denoted by (tp, rp, 0p, ¢p)-



In this paper, we use frequency domain solutions of the
Teukolsky equation (TE), for which the field is written
using Fourier modes

.- 1 > —iwt+im.
o= o / Aw i (1) 257 (B) e~ wttime
l,m -

(43)
Having done that, Eq. (42) can be separated into two
ordinary differential equations: one for the radial part
Yimew(r) and one for the angular part _»S7% (), which is
called the spin-weighted spheroidal harmonic.
The asymptotic behavior of the radial part at infinity
and at the horizon can be written as [9]

wlmw(7) C;;nw 3giwr” T — 00, (443,)
/l/}lmw(r) ~ ClmwAeilkHT* r—=Try, (44];))
respectively, where ky = w — mfy is the frequency

at the horizon, QH = a/(2Mry) is the horizon’s angu-
lar velocity and r* is the tortoise coordinate defined as
dr*/dr = w?/A.

The amplitudes Cz
function formalism as

Cho= [ arest =m0 (0.0, (45

can be calculated using Green

with

1 d
T (r,0) = W (Ao — A+ By

d2 a3
Ty Bs—) RE(r). (46)

dr2 dr3

where lew( r) are homogeneous solutions of the radial
equation satisfying boundary conditions at infinity “+”
or at the horizon “—.,” respectively, W is the invariant
Wronskian, and A; and B; are functions of the orbital
quantities. These quantities can be found in Appendix
B in Ref. [25].

After we confine the particle trajectory into the equa-
torial plane, it can be shown, that thanks to the peri-
odicity of the radial motion, the frequency spectrum is
discrete, and the amplitudes can be written as a sum over
individual n modes:

[ee)
Cl:'tmw = Z Cl'jr:nn(;(w - wm”) (47)
n=-—oo
with frequencies
Winn = Mg + 1y, (48)

where n is an integer.
After reparametrization of the orbit with x, the partial
amplitudes can be calculated as

lenn - Q’/ d Z lmn
0

X eXp(ZDr(P'nm(X)) s (49)

(x),7/2, D)

where Ilmn = Ilj7:rbwmn’ Somn(X) = wmntp(x) - m¢p(X)7

and D, is the sign of the radial velocity.

After Egs. (25) are substituted into the above equation
and the integration variable x — x — xo is changed, the
partial amplitudes from an equatorial orbit with x¢ # 0,
¢o # 0 can be expressed using partial amplitudes from

the fiducial trajectory C'lmn and a phase factor as

o* eiemn O1E

Imn — Imn >

(50)
where the phase factor reads

fmn = 7wm'n,tvp(XO) + m(qvbp(XO) - ¢0) . (51)

This factor agrees with Eq. (3.19) in Ref. [9] for equato-
rial motion.

From Egs. (41), (43), and (44a), the strain at infinity
can be expressed as

cr . N
h=—-2 ~lmn Suwmn( )e*lwmn(tfr )+ime . (52)
N

The effective stress energy of a GW can be recon-
structed from the strain. From it, the orbit-averaged
energy and angular momentum fluxes to the future null
infinity J T can be derived as

<fEJ+> i i i )7::; , (53a)
=2 m=—In=—o0 mn
<}‘Jzy+> z; ; Z: Mbi;”” (53b)

respectively, where the brackets denote averaging over
the radial period. Similar relations can be derived for
the fluxes through the future horizon H™:

& 2
) ! [eS) -

(FFY =33 S o li"; . (530)
1= 2m—lfln—7oc X ,

(Frty =3 3 P f’;’" . (53d)
=2 m=—ln=—o0 Winn

where ®mn = Qmaw,,, can be found in Ref. [25]. These
fluxes are defined from the dimensionless quantities in
accordance with [25]. Note that thanks to the absolute
value of the partial amplitudes in Egs. (53), the phase
correction in Eq. (50) is canceled and, thus, the averaged
fluxes can be computed from the fiducial trajectory.

A. Linearization in the secondary spin

The partial amplitudes Clj;nn calculated above depend
on p, e, and o, but, since the formula contains the de-
pendence on the frequencies §2;(p, e, o), the partial am-
plitudes can be written as lenn(p,e,ﬂi(p,e,o),cr). In



this form, they can be linearized in o as

Cit (b6, 0) = Ci9% (p,e) + 0 0C,,

lmn

(pe) +0(%)

p.e
(54)
where
iles acE* o,
6Cl:'tm71, (p’ 6) = al;nn o alénn % ) (55)
p,e o= g

in which we use the convention that all repeated indices
are summed over and |, . denotes that the quantity is
calculated with respect to reference geodesic with fixed p
and e. The partial amplitudes Cl:fnn depend on the fre-
quencies €;, since the functions giving it, like the homo-
geneous solutions Rlimw(r) and S« (6), depend on wyy,.
Thus, for the calculation of 6Cl:frm e (p,e), one needs
the derivatives of Rym(r) and Sf (0) with respect to
w. To find these derivatives, the radial and angular TE
must be differentiated with respect to w, and then this
system of equation must be solved. Rather than develop-
ing a code for finding these derivatives, we were able to
achieve our goal by calculating slightly different quanti-
ties, for which the w derivative of the homogeneous solu-
tions is not needed. In this alternative procedure, we can
use the TE solver implemented in the Black Hole Per-
turbation Toolkit. In particular, we calculate the linear
part of the partial amplitudes with respect to a reference
geodesic with the same frequencies. Formally, the depen-
dence of the partial amplitudes on §2; can be written as
Cl:fm(p(ﬂi, 0),e(4,0),8;,0), which can be linearized as

Citn(Qiy0) = CLELE(Q0) + 0 3CE, | (90)+0(0?)
'L (56)
where
ac aCEE aCEr
5ci Qz — Imn 4 Imn 5p+ lmn Se
Imn o ( ) 80' o 8p 86
(57)

and dp and de are defined in Eqgs. (32). All the above
derivatives are calculated for o = 0, i.e., for a geodesic,
and we can use the fact that Q; = Qgg) (p,e) to obtain
these linear parts as functions of p and e.

The linearized expression for (5Cﬁym(p,e) from Egs.
(49) and (57) reads

scE | = Q,,/ dXZeXp(iDMOmn(X))
Q; 0 D,
. (af;m +I~$miD7»5npnm(X)> (58)
o8
where I;- = dt/dy I} and
domn(X) = Wmndt(x) — mod(x) - (59)

From Egs. (53), we can find the linear in o part of the

fluxes F(Qy,0) = F®(Q;) + 0 6F(Q;) + O(c?), where F

8

stands for .7-'E*7+, ]-'EH+, }'J2‘7+, and F7="". The result
GFCTTHTL =% <Re{ 5CE

1S
re{CiEr}
Qi Ilmn Qi

At
e Vimfeis)) i o
Qi

3
2mWnn

where C stands for E or J, and Bglmn = Omn, ﬂ}' tmn =

My Bgimn = QUmn@mn, and BLZ'mn = amnm. All the
linear parts above are with respect to geodesic with the
same frequencies.

When the geodesic fluxes and their linear corrections
are calculated on a grid in the p—e plane, it is possible to
find the linear part 0.F |p,e from 0F ‘ o and the derivatives

of F(® with respect to p and e. Namely,
dF® s dF@©

1)
F Q; dp P de

= 6F

p.e

de, (61)

where (5]-'|Q is computed using Eq. (60), dp and de are

from Eqs. (?;2)7 and the derivatives with respect to p and
e are understood as

dFe  gFle
dp,e ~ Op,e

AF®@ a0,

a9, dp,e’
although, in our scheme, they are directly calculated nu-
merically on the grid in the p — e plane.

Let us now prove that Eq. (61) holds. The linear part
oF |Q reads

(62)

OF (& OF®)

_OF N
dp P de

i R

de , (63)

o=0

since {;(p, e, o). Replacing the above along with the total
derivatives with respect to p and e (Eq. (62)) into Eq. (61)

reduces Eq. (61) to
(g) A(2) (&)
OF o7 <8Q’ op+ o 5e> (64)

om0 0%

_9r
o Jp de

p.e
By substituting Eqgs. (32) into the latter, it can be proven
that the term in brackets equals to — 9€Y; / Jo, and we,
thus, obtain
oF AF® a0,
= = 4+ ,
e do |,_, o0, Oo
which is the definition of 6]—'|p£ similar to Eq. (55).
Note that, though the linear part 0F ‘Q is singular
for some points on the p — e plane due to a vanishing
|J(Qi) (Eq. (33)), the linear part 5]:|p£ is regular in the
whole parameter space for which the semilatus rectum p

is larger than the separatrix one ps. This is caused by the
cancellation of the diverging terms in 0F !sz , 0p and de

5F (65)

in Eq. (61). However, due to numerical errors arising in
the calculation of dF(®) / dp, e, the result is not reliable
near these diverging points and the error may be high.



IV. ADIABATIC EVOLUTION OF THE ORBITS

During an equatorial inspiral, the orbital parameters
p and e are slowly evolving due to gravitational radia-
tion reaction. Using the adiabatic approximation in the
framework of the two-timescale approximation, thanks to
the balance law, the evolution of an inspiral can be calcu-
lated from the energy and angular momentum fluxes to
infinity and to the horizon [18]. In particular, the evolu-
tion of the constants of motion is related to the averaged
fluxes as

(B)= <(if> = —q((FZZ )+ (FF"")) . (66a)
(= () = (77 ¢ () oo

Using the chain rule, the derivatives of E and J, can
be calculated from the derivatives of p and e as

b OB OE\ /dp
A | = o oe || qt
aJ, 8. aJ. % : (67)
di dp Oe dt

By inverting the Jacobian matrix, we obtain the equa-
tions for p and é in the form

aJ. ;. OF :

E—-—J

d z A

5= 0 =i(.e(i).0) . (68)
’J(E,JZ)

de 788JZEL‘ + gﬂjz

G- =éwdedo),  (68h)
‘J(E,jl)

respectively, where we have omitted the angle brackets
for simplicity and where the Jacobian determinant is
0B8], OEOJ.
T 9p de  Oe Op

|i6.3.) (69)
Thanks to Eq. (68), the evolution of p and e can be com-
puted using the fluxes which, in fact, depend on p and
e.

Once we have the evolution of p(f) and e(f), the wave-
form at infinity can be computed from Eq. (52) as [4]

fh(a) — Z Almn(ﬁ)Sfilm(p(ﬁ)’E(ﬁ)) (e)e—ifbmn(ﬂ)+im¢ ,
lmn
. (70)
where 4 = t — 7* is the retarded coordinate and the am-
plitudes and phases read, respectively,

From Eq. (48), the phase can be written as ®,,, =
m®y4 + nd,., where the particular phases

() = /0 ' Qi (p(@), e(@'))da/ (73)

can be calculated separately. The partial amplitudes
Cit (p(@), e(@)) can be calculated from the fiducial par-
tial amplitude C; ~ and the phase factor &, (p(1), e(@1)),
which evolves over time. This correction changes slowly
and remains at the order of unity [9].

Note that the above amplitudes (71) and phases (72)
are part of the two-timescale expansion in the first-order
perturbation theory [4]. However, with modifications,
this scheme can be used even in the calculations of
second-order perturbations [40].

A. Linearization in the secondary spin

The evolution equations (68) of p and e depend on p,
e, and o. Therefore, the evolution can be linearized in o
as

p(t,0) =p® (i) + 0 5p(t) + O(o?)
e(t,0) = e® (&) + o de(f) + O(0?)

(74a)
(74b)

where p® (f) and e(®(f) describe inspirals with a non-
spinning secondary and §p(f) and de(£) are corrections to
the evolution due to the secondary spin.®

Functions p(® (f) and e(®(f) are calculated from Egs.
(68) for 0 = 0:

dp(g) . . R

5 =p(p'®(f),e®(1),0), (75a)
de(® .

= e0®(0),e(0).0), (75b)

and dp(t) and de(t) are calculated from the linear part of
Egs. (68):

dop _ APl o @5y o® (7Y Sn(D). Seli

= | =00, 90, ) deld) (760
dde de N . . .

== _ = = 5é(p(®) (2)

= G| = 000,900 ae(d) (76

where the total derivatives are defined as

df af af® afe
— = — op +
do oo op Oe

de . (77)

o=0 o=0

More explicit formulas can be found in Appendix C.

6 Note that these quantities are different from the quantities in
Egs. (32), which denote the change in the orbital parameters
when a geodesic is perturbed with secondary spin while keeping
the frequencies constant.



The linear parts of £ and .J, in Egs. (76) are calculated
from the linearized fluxes with respect to geodesic with
the same p and e, i.e., from 5.7-'}{],6, which is computed
from Eq. (61). This equation as well as Egs. (76) contains
derivatives of the geodesic fluxes F(® with respect to p
and e which must be calculated numerically.

After we expand the phase in the secondary spin as

®,(i1,0) = B (@) + 06®;(a) + O(c?),  (78)

we get the leading adiabatic term @gg), which is (Q(qfl)7
and the linear in spin term together with the spin value
0d®;, which is O(c/q) = O(1). Since for LISA data anal-
ysis the GW phase is needed with precision to fractions of
radians, apart from the former dominant term, also the
latter term must be included. In this work, we call o §®;
a phase shift. The linear in spin term can be calculated

by the linearization of Eq. (73) as
(o
b, = v ! 7 ~1 ~1
0P, /0 < 5o op op(a’) + 5 de(d ))du ,
o=0
(79)

where the derivatives of Q; are evaluated at p(® (') and
e (@),

The evolution of the phase factor &,,,(p(%), e()) also
changes when the secondary spin is included. The linear
in spin part of the phase factor,

8§mn aémn

— agVﬂn
0mn = 9% + o op + e de,

a0® a0

+

(80)
o=0
evaluated at p(® (@) and e(® (@) contributes to the phase
as 0 0&mn < 1. This contribution is of the same order
as the second postadiabatic term and can be neglected
in the framework of a first-order postadiabatic analysis.
Note, however, when the inspiral approaches the separa-
trix, our approximation fails because dp and Je diverge
(see Sec. VB), and a different scheme must be employed.

V. NUMERICAL IMPLEMENTATION AND
RESULTS

In this section we discuss how we implemented the re-
sults from the previous sections in order to calculate an
inspiral of a spinning particle into a Kerr black hole in the
linearized in spin approximation. Moreover, we present
the phase shifts 0d®; between the phase of an inspiral
with a spinning secondary and an inspiral with a non-
spinning secondary. All the calculations were done in
Mathematica and we have used the Black Hole Perturba-
tion Toolkit (BHPT) [41].

A. Implementation

Let us now discuss our approach to the numerical cal-
culations of the adiabatic inspirals and of the phase shift
in steps.
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1. For given p and e, we calculate conservative tra-
jectories; i.e., we find E, J., Qu, t(x), #(x), and
P(x);

2. we find the linear in o parts of the trajectory, i.e.,
op, de, OF, 6J,, 6t(x), 67(x), and do(x);

3. we compute the partial amplitudes C’;S?: and

sCt

imn, Over a range of I, m, and n;

4. we repeat the steps 1-3 for many points in the p—e
plane, and then we interpolate the total energy and
angular momentum fluxes;

5. we calculate the evolution of p&) (1), e®(L), op(f),
and de(t) for given initial parameters using the in-
terpolated fluxes;

6. using p®(f), e®(f), op(f), and de(f), we find the
linear parts of the phases 6®;.

The above steps are described in detail in the following
sections.

1. Trajectories

Before we calculate the amplitudes C’ﬁnn, we have to
precompute the orbital quantities. For given a, p, and e,
we calculate the geodesic quantities €, E, J., {(x), #(x),
and @(x) and the linear corrections due to the secondary
spin with respect to this geodesic for the same frequen-
cies. In particular, we obtain dp and de from Egs. (32),
SE and 6J. we get from Egs. (34), and, finally, 6¢(y),
87(x), and 8¢(x) are calculated from Egs. (37). More-
over, the geodesic quantities #(x) and ¢(x) are calculated
through the BHPT, which uses the discrete cosine trans-
form (DCT) [42]. This method numerically transforms
the integrand in Egs. (23) into a series of cosines which
is trivial to integrate. Actually, the linear in spin part
of the trajectory, i.e., 6t(x) and d¢(x), is derived by em-
ploying DCT on 50 points obtained from Egs. (37). With
this number of points, the error is less than 109 for all
the calculated orbital configurations; however, note that
this error is much lower for orbits far from the separatrix
and for orbits with lower eccentricity.

2. Gravitational-wave fluxes

The obtained orbital parameters can now be used for
the calculation of the partial amplitudes. The description
ovf how to calculate the non-linearized in spin amplitudes

CE  can be found in Ref. [25]. In this work, we dis-

Imn
cuss the procedure allowing us to calculate the geodesic

partial amplitude C®* from Eq. (49) for ¢ = 0 and

lmn

the linear in spin part 5C',:fm according to Eq. (58).
MG

In particular, the integral in qu (58) is evaluated using



the midpoint rule, which should have exponential conver-
gence [42], while for the calculation of the homogeneous
solutions Rl:fnw and Sj“ the BHPT has been employed.
More details about the calculation of the partial ampli-
tudes and tests of their validity can be found in Appendix
D.

To obtain an adequately accurate energy or angular
momentum flux, we need to calculate the amplitudes
Fi,m.n for a range of [, m, and n values. Thanks to the
symmetry

]:l,m,n = ]:l,fm,fn ; (81)
":'m,n = —(:},m’,n, (82)

we decided to calculate only the modes with w,,, > 0,
and the total sum F can be found as double of the sum
of calculated modes.” The structure of the summation is

Mmax
F=2 Y Fum, (83a)
M=Mmin
Imax
]:m = Z ]:lm 5 (83b)
I=lmin
Mmax
-}—lm = flmn‘, (83C)
MN=Nmin
where Mmin = —5, lmin = max {2, |m|} and Mmax, lmax,

Nmin, and Nmax are chosen dynamically according to a
given accuracy ¢, i.e., the maximal allowed error. This
error for the geodesic fluxes should be lower than the
mass ratio; otherwise, it will be larger than the contri-
bution from the postadiabatic terms, notably the sec-
ondary spin. In our calculations, we set the accuracy of
the geodesic fluxes to € = 1079 and the accuracy of the
linear corrections to the fluxes to e = 1073,

Our first step in our computation scheme is to calculate
the modes with m =1 = 2, [-mf4/Q,] < n < 20, where
the lower bound corresponds to the mode with minimal
n, for which @,,, > 0. In all the cases we treated, the
mode with maximal flux max; , n Fimn lays in this range.
Then we continue the summation in n until the stopping
condition for mpax is reached. This stopping condition
is that the magnitude of three successive modes drops
below (€¢/10) max Fiy,y. This condition must be satisfied
for three consecutive modes, because the modes are not
monotonic in n, as has been reported already in other
papers [9, 19].

At this point, we have obtained the dominant Fj—2 ,—2
mode. Similarly, we calculate the other Fj ,,—» modes
until the stopping condition for lmax, i-e., Fi,..m < €F2.2,
is satisfied. The magnitude of Fj,, drops quickly with

7 All formulas in this subsection are valid both for the fluxes F
and their linear parts 6. We demonstrate the formulas with F
for brevity.
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[, and usually for given m no more than four [ modes
are needed. In this way, we obtain the dominant F,,—o
mode. After that, we calculate other m modes. For high
m, modes with low n can be neglected. Therefore, we
start the sum over n at ng = |[10me2], which is close
to the maximal value of Fi,, for given | and m as we
found empirically. Then we increase n until the stopping
condition for myax is satisfied. Finally, we decrease n
until the condition for nyiy is satisfied or until we reach
n=[-m8e/Q].

The above procedure is repeated for other values of m.
The stopping condition for myax is

Mmax

Fouwe  _

€
—= Fm, - 84
1- ]:mmax/]:mmaxfl 2 ( )

M=Mmin

If we assume that for high m the modes F,, decrease
exponentially, the lhs of Eq. (84) corresponds to the
terms neglected by the truncation of the sum over m at
Mmax. For orbits with low p around a Kerr black hole
with @ = 0.9 the number of m modes required for an
accuracy € = 1079 is very high, so we truncate the sum at
Mmax = 25 consciously knowing that we lose in accuracy.

The amplitudes were calculated in Mathematica using
extended precision. For lower a, [, and m, the input
parameters are given to 48 places. However, for modes
with higher @ and a, the calculation returns a wrong re-
sult due to the loss of precision during the calculation
of Rﬁ,m. Therefore, we check if the result lays orders of
magnitudes away from the Newtonian amplitudes for cir-
cular orbits in Eq. (B3) in Ref. [23], and, when it does, we
repeat the calculation with higher precision. The maxi-
mal precision is 112 places for higher a, I, m and n, and
lower p.

The calculation of individual modes with low eccen-
tricity and n takes around one second, but for high ec-
centricities and n the computation time can be up to
tens of seconds. All the modes in one grid point are
calculated in around 1 h (1 day) for lower (higher) eccen-
tricity. The calculation of the whole grid takes hundreds
of CPU hours.

3. Interpolation in the p — e plane

Because of the high computational cost, instead of cal-
culating the fluxes during the evolution of the orbital
parameters, they are precalculated on a grid in the p —e
plane and then interpolated. The grid is chosen to re-
flect the behavior near the separatrix and to avoid some
problematic regions. Actually, this grid is not in the p
and e coordinates, but in a new set of variables x and y
which are obtained after several transformations from p
and e.

The first transformation reads

U=+(p—rsco)? — (ps(e) — f1sco)?,  (85)
V=e?, (86)




where pg(e) is the location of the separatrix. The pur-
pose of this transformation is to make the quantities and
their derivatives finite for circular orbits, i.e., for e = 0.
Namely, since the fluxes depend only on even powers of
e, their derivative with respect to e vanishes for ¢ = 0.
The inverse relation of Eq. (85) reads

p="7rsco+ \/02 + (ps(VV) = #15¢0)? - (87)

Next, we transform from U to

c

v=—" s (55)
log <1 +c/U )

to regularize the quantities near the separatrix. c is a
parameter controlling the grid density near the separa-
trix. For higher ¢, the grid points are more dense near
the separatrix, while for ¢ — 0 it holds that U — U. We
have chosen the value ¢ = 25 in our calculations. The
asymptotic behavior of these transformations is

1. U — p, when p — oo, and
2. U — —1/log(p — ps), when p — pq,

which is proportional to the behavior of the radial fre-
quency £, near the separatrix [38, 43].

We made one additional transformation to avoid two
areas with high eccentricity: (a) an area with high p,
for which the total time of the inspiral is very long, and
(b) an area close to the separatrix, for which the inspiral
must start with very high eccentricity. This transforma-
tion to x € (0,1), y € (0,1) is given by

U = (U1 — Uro + Uoo — Uor)xy + (U0 — Ugo)x
+ (Uo1 — Uoo)y + Uno , (89)
V= (Vi1 = Vou)xy + (Vo1 — Voo)y » (90)

where the parameters U,, and V;, are chosen according
to the boundaries described in the following paragraph.

The GW fluxes were calculated on a grid in Chebyshev
nodes in the x, y coordinates. We used 15 grid points in
both directions. The boundaries were chosen for each
value of a separately. In all @ cases, the coordinates of
the lower left corners are (p, e) = (f1sco(a)+0.15,0). For
a = 0, the upper left corner is at (ps(0.6)+0.1,0.6) and at
(ps(0.5)4-0.1,0.5) for @ = 0.5,0.9. The lower right corner
is located at (40,0) or (30,0) for @ = 0 or a = 0.5,0.9,
respectively. The coordinates of the upper right corner
are (20,0.8) for a = 0, (15,0.8) for @ = 0.5 and (15,0.75)
for @ = 0.9. These grids are depicted in Fig. 2.

On the grid, we interpolated the total energy and an-
gular momentum fluxes FZ®) and F7=(®) with their lin-
ear in spin counterparts §F¥ and 6F 7=, respectively, the
time derivatives of the orbital parameters p(® and é(®,
and the derivatives of p and é with respect to o, p, and
e for the calculation of dp and dé using Eq. (76). Each
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FIG. 2. Grids for the interpolation in p — e plane. The grid
points are at Chebyshev nodes in x — y plane.

function was divided by the following normalization fac-
tors to regularize the behavior near the separatrix, for
high p and for low e:

32 o s T3, 3T,
N}-575p (1-¢?) 1+24e +968 , (91a)
32 7
Nyo = Zp772(1- 62)3/2<1 + §62> , (91b)
2
Nsre = 7§p_3/2N]:E;?— (910)

4 U2’



Nsrr. = —i—5p*3/2NIJzﬁ, (91d)
Ny = gp*(l )3+ 762)5—22 , (91e)
Ny = 11—5ep*4(1 —e?)*? (304 + 12162)5—22 . (91f)
No, s %(1— 2)%2 (91g)

1
No,e eﬁ(l 2)3/2 (91h)
Noyy = (1 =e)™?, (011)
No.p eg—iv (913)
No,e e%(l— 2)%/2 (91k)
Noe %. (911)

The behavior of Nze and Nzs. comes from Ref. [44],
where they derived the fluxes from a Keplerian orbit,
which represents the large p limit. On the other hand,
the behavior of Nszr and Nsrs. for large p is derived
from the post-Newtonian GW fluxes of spinning particles
on circular equatorial orbits [45]. The accuracy of the
interpolation is discussed in Appendix E.

4. Evolution of the orbital parameters

Uusing the interpolated functions obtained in the pre-
vious section multiplied by the normalization factors al-
lows the calculation of the evolution of the geodesic or-
bital parameters p®(f) and e®(f) and the respective
corrections 6p(f) and de(f). For given initial parameters

p(()g> and e(()g), we numerically solved Egs. (75) in Mathe-
matica using the 7/8th-order Runge-Kutta method with
adaptive step size. The calculation was terminated when
the orbital parameters reached the boundary at x = 0.

These results were then used to evolve Egs. (76) for
given initial conditions 6pgg) and 6689. These initial con-
ditions specify the trajectory of a spinning particle, which
is then compared with the geodesic starting at p(()g) and
eég). The case dpy = 0 = Jeq corresponds to a trajectory
of a spinning particle compared with a geodesic which
starts at the same p(()g) and eg,g).

However, dpy and dey can be chosen such that we com-
pare a trajectory of a spinning particle with a geodesic
with the same initial orbital frequencies ), and Q4. In
this case, we set dpg and deg to

dpo = Sp(pf ). (92a)
deg = 6e(pgg), eég)) , (92b)

respectively, where the functions dp and de have been
defined in Eq. (32).

13

— =01 — g =04

-q 6,

100 200 300 400 500

days

FIG. 3. The phase shift ¢0®,, = gmdP, of the dominant
'm = 2 mode for properly matched initial azimuthal frequency
Qg4 and eccentricity e. The inspirals of a spinning particle with
1t = 30My into a Kerr black hole with M = 10° M, a = 0.9,

start from p((]g) =10.1.

We have also calculated the case where the trajectory
of a spinning particle is compared with a geodesic with
the same initial eccentricity e and azimuthal frequency
. This choice was used in previous works [24, 46] when
calculating quasicircular inspirals. In this case, we set

22
_ _ 0o
opo = 50 (93a)
“op
eg =0 (93b)

evaluated at p(()g), e(()g), and o = 0.

5. Ewvolution of the phase shifts

After the calculation of the orbital parameters, we cal-
culated the linear parts of the phases 6®; using Eq. (79)
with the default solver NDSolve in Mathematica. The re-
sults were compared with nonlinearized inspiral to verify
them. Details are given in Appendix F.

B. Results
1. Matched eccentricity and azimuthal frequency

When the phase shift ®, is calculated for circular
orbits, the phase from an inspiral with a nonspinning
secondary is compared with an inspiral with a spinning
secondary which has the same initial azimuthal frequency
Q4 and initial eccentricity e = 0 as the inspiral with a
nonspinning secondary. Obviously, the radial frequency
Q,. is not relevant for circular orbits; in fact, the partial
amplitudes CP, . vanish for n # 0, and only the modes
with frequency m{y remain. However, we can extend
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FIG. 4. Phase shifts ¢d®; for different initial conditions. The
inspirals are around a Kerr black hole with a = 0.9 and start
at p® = 10.1 and e{® = 0.2. For matched Q4 and e, 6P,
grows as {2 and 8®, grows as ¢ for low ¢, while for matched
Q, and Q, both 6@, and §®, grow as 2.

this approach to the calculation of the phase shift from
eccentric inspirals by choosing properly the initial condi-
tions as given in Eq. (93). The corresponding numerical
examples are given in Fig. 3, which shows the phase shift
0®4 o for the dominant m = 2 mode. Fig. 3 is consistent
with Fig. 2 from Ref. [46] and Fig. 3 from Ref. [24]. Note
that, since we examine the phase at constant distance
from the central black hole, i.e., at constant 7, we can
use t as the time variable instead of u.

When the initial azimuthal frequency and eccentricity
are properly matched, the phase shift §®, grows as 2,
whereas 6, grows as t for low ¢, as can be seen in Fig. 4.
The reason for this behavior is that the initial value for

a0
Oe

.o, o0®)

Q0.
0€); B . ap op+

de, (94)

which appears in the integral (79), is zero for 6y, but

it is nonzero for 6Q),. Thus, the phase sAhift 0P, grows
linearly in ¢ after the integration for low ¢.

2. Matched frequencies

Since for eccentric orbits both frequencies are observ-
able, we prefer to match the initial frequencies according
to Egs. (92) than as discussed in Sec. VB1. For this
initial setting, both 6@, and 6®, grow as 2 for low ¢, as
can be seen in Fig. 4. In the numerical example given in
Fig. 5, we have calculated the inspiral providing the evo-
lution of p®(f) and e®(f) for initial semilatus rectum

pég) = 12 and different initial eccentricities. The respec-
tive phase shifts for @ = 0, @ = 0.5, and a = 0.9 are shown
in Figs. 6-8. The linear in spin part of the azimuthal
phase d®4 is increasing and is positive as opposed to the
case with matched initial 4 and e in Sec. VB 1, where
it is negative (see Fig. 3). The linear part of the radial

o7t
06F
0.5F

04r

&9

03F

02F

01F

0.0F

p©

FIG. 5. Adiabatic evolution of p® and e® for @ = 0 (solid
line), @ = 0.5 (dashed line), and @ = 0.9 (dotted line), while
the respective black lines denote the separatrices, where the
evolution ends.
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FIG. 6. The azimuthal (top) and the radial (bottom) phase
shift for orbits around a Schwarzschild black hole with initial
semilatus rectum pgg) = 12 and different initial eccentricities.
This plot shows the phase shift when the particle has spin
o = gq, i.e., the secondary corresponds to an extremal Kerr
black hole.

phase §®,. is increasing and positive for the majority of
the inspiral; however, right before the trajectory reaches
the separatrix, d®, starts to decrease. Both 0¥, and
6P, diverge when the trajectory is approaching the sep-
aratrix, because both the linearization in spin and the
two-scale approximation break at the separatrix.

In Ref. [47], where they compared eccentric equato-
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rial inspirals of spinning particles into a Schwarzschild
black hole using the osculating geodesics method, they
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FIG. 9. The phase shift for inspirals around a Schwarzschild
black hole with initial eccentricity e(()g) = 0.75 and 0 = gq.
The horizontal axis corresponds to the number of passages
through the pericenter.

found initial parameters for which the difference A¢ =
Go=q — Po=0 between the azimuthal coordinates ¢,—, of
a spinning body and ¢,—¢ of a nonspinning body changes
its sign during the inspiral (Fig. 2 in Ref. [47]). However,
that work included only the MPD force into the equations
of motion and did not take into account the correction to
the self-force caused by the body’s spin. We have calcu-
lated the phase shift ¢d®,, which should correspond to
A¢ when the particle passes the pericenter, for the same
initial parameters as Ref. [47] and found no change in
the sign of A¢ (see Fig. 9). However, note that we have
not included the conservative and oscillating dissipative
parts of the self-force, and, thus, these results are not
directly comparable. Also, the accumulated phase shift
is higher in our Fig. 9, where the secondary’s spin con-
tribution is incorporated to the fluxes, than in Fig. 2 in
Ref. [47], where this contribution has not been taken into
account.

To systematically probe the parameter space, we have
calculated the inspirals for various initial parameters, and
for each inspiral we have found the maximum of the radial
phase shift max gé®,..5 Then we have plotted this max-
imum against the initial eccentricity eég) and the mass
ratio ¢, assuming that the duration of the inspiral is 1 yr
while the mass of the central black hole is M = 106M.

()

At each point in the ¢ — ey’ plane, the inspirals start

at different initial semilatus rectum p(()g). The calcula-

tion was repeated for a = 0,0.5,0.9, and the results are
shown in Fig. 10. We can see that for a higher mass ratio
the maximal phase shift is higher, which corresponds to
higher p(()g). For higher a, the maximal phase shift is al-
most independent of the initial eccentricity, but, to find

8 In Appendix F we verify that the accuracy of the phase shift is
high and the approximations are valid at this point.
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FIG. 10. The maximal radial phase shift max gd®, for dif-
ferent initial eccentricities, mass ratios, and Kerr parameters.
The mass of the central black hole is M = 10°Mg and the
duration of the inspirals is 1 yr. This phase shift corresponds
to a particle with spin o = gq.

the degeneracies in the parameter space and to assess the
detectability of the initial eccentricity or the secondary
spin, proper analysis must be done, which is out of the
scope of the present technical work.

VI. CONCLUSIONS

We studied the influence of the spin o of a secondary
body on the phase of a GW from an EMRI moving on the
equatorial plane of a Kerr black hole. Thanks to the fact
that the spin o is of the same order as the mass ratio ¢, we
worked in the linear order in o, neglecting higher-order
terms. We emphasize that our results are not sufficient
for the generation of the waveform templates for the de-
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tection, since they must be accurately and rapidly gener-
ated in the whole parameter space. The purpose of this
work is to provide the technical background needed to
calculate the secondary’s spin contributions to the wave-
form.

The first step to achieve our goal was to derive the lin-
ear in o parts of the orbital parameters p and e, constants
of motion E and J, and the coordinate functions ¢(x),
r(x), and ¢(x) in the Darwin parametrization. The lin-
earization was done with respect to a reference geodesic
with the same frequencies Q, and ;. Then we used
these quantities to linearize the GW fluxes to infinity
and through the horizon. We provided the linear parts
O0FF and §F7= of the total energy and angular momen-
tum flux using the Teukolsky formalism in the frequency
domain. Again, we calculated the linear part with re-
spect to a geodesic with the same frequencies. We also
found the relation between the latter type of linearization
and the linearization with respect to a geodesic with the
same orbital parameters p and e.

The fluxes were calculated on a grid in the p — e plane
and interpolated, since the calculation at one point is
computationally expensive. Once we have calculated the
energy and angular momentum fluxes linearized in o, we
derived the evolution equations for the orbital parame-
ters p® (t) and e(®(t) for a nonspinning secondary and
for corrections due to the spin dp(t) and de(t). After that,
we have evolved these quantities numerically. From the
evolution of the orbital parameters and their corrections,
we then constructed the evolution of the phase shifts
0P, (t) and 6Py(t), which is the difference between the
GW phase from an inspiral with a spinning and a non-
spinning secondary. We tested the results against non-
linearized evolution obtained from the fluxes, that were
derived in Ref. [25]. We found that the error of the phase
shifts, i.e., the relative difference between linearized and
non-linearized phase shifts, is around 1073.

The phase shifts were computed using two different
types of initial conditions. First we set the initial condi-
tions such that we compared inspirals with a spinning and
a nonspinning secondary which start with the same az-
imuthal frequency €4 and eccentricity e. This was done
to validate the results against quasicircular inspirals. We
have found the expected behavior where the azimuthal
phase shift grows as ¢ for low ¢ and the radial phase shift
grows as t. After that, we set the initial condition such
that we compare inspirals with the same initial radial fre-
quency €2, and azimuthal frequency Q4. We found that
the azimuthal phase shift is positive, as opposed to the
previous choice of initial condition, and that the radial
phase shift is positive and increasing up to a point before
it reaches the separatrix, where it becomes decreasing.
Both the azimuthal and radial phase shift diverge when
the inspiral reaches the separatrix, and, thus, a different
method must be employed for the waveform generation
near the plunge in the future.

To systematically probe the parameter space and find
the general behavior of the phase shifts, we calculated



the maximal value of the radial phase shift for different
initial eccentricities, mass ratios, and Kerr parameters
while fixing the masses of the bodies and the observation
time. We found that the maximal radial phase shift grows
with the mass ratio and the Kerr parameter and almost
does not depend on the eccentricity.

In the future, this work can be extended to off-
equatorial orbits with precessing spin, which is signifi-
cantly more complex since the equations of motion are
not separable, even in the linear in spin order [48]. We are
also planing to generate the waveforms using the FastEM-
RIWaveforms package [11] to find the degeneracies in the
parameter space and to assess the detectability, since in
Ref. [49] it was claimed that for quasicircular orbits the
secondary spin should not be detectable, while in Ref. [50]
it was claimed that effects of spin-induced quadrupolar
deformation, which are of (9(02), are strong enough for
the detection.
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Appendix A: List of dimensionless quantities

In this work, we define some quantities in their dimen-
sionless form. However, since we use these quantities
often in both full and dimensionless form, we present the
respective relations in Table 1.

Note that some quantities such as z or the fluxes F
have been defined solely as dimensionless; quantities de-
rived from others, e.g., by linearization in o, have the
same relation between their dimensionless and full form
as the original quantities.

Appendix B: Eccentric equatorial orbits of spinning
particles

This appendix briefs some formulas describing the mo-
tion of spinning particles on bound eccentric equatorial
orbits around a Kerr black hole. Details regarding these
formulas can be found in Refs. [25, 51].

Bound equatorial orbits of a spinning particle mov-
ing around a Kerr black hole can be parametrized by
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TABLE I. List of dimensionless quantities

o=.8/(uM) |Secondary spin
t=t/M BL time
r=r/M BL radial coordinate
E=E/u Energy
J. = J./(pM) | Angular momentum
a=a/M Kerr parameter
T. =T, /M Radial period
Q. =Q.M Radial BL frequency
Oy =QuM Azimuthal BL frequency
w=wM Frequency
Gk =0CE  M?/u|Partial amplitudes
Af =AF /M |Waveform amplitudes
u=u/M Retarded coordinate
A=A/M?
&? =w? /M?

the eccentricity e and the semilatus rectum p. This
parametrization is in one-to-one correspondence to the
parametrization with respect to the energy E and the z
component of total angular momentum J,. The expres-
sions of F and J, as functions of p and e read

- 26 — 2 J.)5+/e2
2 Kkp + 2€e6 sgn (J,)o+/€ +/€C’ (B1)

p? +4dnc
i = ep—QHn—sgn(.]AZN)pA €2+ K¢ 7 (B2)

(0?2 +4n5)E

respectively, where the coefficients
K = d1h2 - d2h1 5
€ =dige — dag1 ,
p= fiha — fah1,
n= fig2 — fag1 ,
G = griha — g2h1,

(=difa—dafr

are calculated from the functions

f(7) =a>(7 + 2)F + 7+
([1270 N 2a%(a + o)

g(7) =247 + o (2 L aRato) 3)f> ,
h(f) =A - (é+ g>2 ,
d(#) Nﬁgﬂﬁ

at the pericenter fi = f(p/(1+ ¢)) and at the apocenter
fa=F(p/(1—¢)), ete.

The trajectories in Darwin parametrization can then



be calculated from the evolution equations (22) with

302 w?
t—a(14 o+ =P, B
\% a<+f2(,>l+A , (B3)
302 a
ve=1(1 P, B4
< " m) AT BY
_ SN PR =
P=3,E-(a+7)a, (B5)
2
_ a2 g
Yo =17 1—723> , (B6)
r=J,—(a+0)E (B7)
and
6 k ](p)](e)
J(x) =) (1 +ecosy) kZﬁ (B8)
k=0 1= ) Ip
with
~(p) —1_ E2 7
jip) =-2 )
jép) =a%+2aFx + 22,
i = —2((1 = E?)o? — Box +27)
i =10?,
jép) = —2a0 (a0 +z(Eo + 1)),
i = o((1 — E?)o? — 2E0x — 27)
and
i =1,
i =
s =e*+3,

i =4+ 1),

jz(lc) =t 410e2 + 5,

A = 2(e2 +3)(3e2 + 1),
jée) =e® +21e* + 35 + 7.

Appendix C: Linearized evolution of the orbital
parameters

In this appendix we provide formulas for the evolution
of the corrections dp and de in Sec. IV A. The evolution
of the linear parts dp and de is governed by Egs. (76)
where the functions ép and dé are, respectively,

) p ap(g) aﬁ(g)
- Z 1
op 9., ap D+ 90 de , (C1)
d¢é 0¢(8) dee)
b= — > . 2
oe dl . o op + ER de (C2)
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After substitution from Egs. (68), the o derivatives read

0%J, : 0. 92F :  OF _:
@ _ 8@60E Oe ~ 9edo Je - EMZ
oo
aJ, :
- e fe o (C3)
‘J(E J.)
O, x  oJ. PE :  OF _:
. — E- —0J,
9 ool Tt et 5y
do
aJ. 5 OFE ;
— E+ — .
Op + op Iz a‘J(EA,J;)‘ c4
2 (90' ) ( )
)J@,L)
Ol _ 0B 0l 0B P #E 0k 0F o).
do  Opdo Oe Op Oedo  OQedo Op de Opdo
(C5)

where 6E and §.J, are given by the linear parts of the
fluxes

0F = —qoFF (C6)

p.e

6J. =—qdF’ (C7)

p.e

The derivatives of p and é with respect to p and e
are calculated similarly, while the derivatives of the con-
stants of motion with respect to p, e, and o can be cal-
culated from Egs. (B1) and (B2). The exact formulas of
the latter are not presented here, because, even if they
are straightforward to calculate, they have long complex
forms. Interested readers can find them in the Supple-
mental Material [36].

Appendix D: Linearized partial amplitudes

Here, we give more details about the calculation of the
linearized in spin partial amplitudes 6Clmn (Eq. (58)).
The linear part of I from Eq. (46) reads

Imn

i, 1 . d
do = W<5A0— ((5A1+5B()—A06!)5

2 3

(6142 + 582 - A157’) d (5B3 AQJT‘) d

dr2 >lew ’

(D1)

where the coefficients 0 A; and JB; are calculated by the
linearization in spin of the expressions in Egs. (B1)—(B3)
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FIG. 11. The relative truncation errors (D5) for a = 0.9,
p® =12, and e® = 0.6 (top) and a = 0.9, p® =4, and
e® = 0.4 (bottom). These errors tend to zero for sufficiently
small o, and the calculation of §CE is, therefore, correct.

lmn

and (B9)—(B11) of Appendix B in Ref. [25]. Particularly,

the linear part of Agbi is calculated as

(i)
i d
3D = (308, — 6C%) 10+ € Ubsr - (Da)

and the calculation of (5Af;§i, 0A”,., and dB; is trivial,
because these functions are proportional to o.

The linear parts of the partial amplitudes 6lenn are
calculated simultaneously with the geodesic amplitudes
Cﬁ,ﬁfb). We have tested the results against nonlinearized
partial amplitudes Cﬁnn by comparing them with nu-
merical o derivatives of Cﬁm with respect to a reference
geodesic with the same frequencies. To find the orbital
parameters of a trajectory of a spinning particle with the
same frequencies as those of a geodesic with p(® and e(®

we numerically calculated p* and e* satisfying

Q(p*, e*, £0) = Q¥ (p®), c®) (D3)

Then we numerically calculated the derivative
6Clﬁql\1]1um _ Cl:::nn(p-'—v 6+, U) - Cljr:ym(p_: e, _U) (D4)
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and the relative difference
5cdzNum

1 - Jlmn_ D5
sCE (D)
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logygferr)

FIG. 12. The relative error of the interpolated energy flux to
infinity compared to a 9PN series (purple), the relative error
at individual grid points (green), and the relative error of the
9PN series deducted from the last term (red). We can see
that the relative interpolation error is around 10~*. In the
area near the separatrix or with high eccentricity, the 9PN
series loses accuracy.

If the calculation of §CE  from Eq. (58) is correct, then
the relative difference equals the relative truncation error
of second-order finite difference formula and behaves as
0(0?).

We have calculated the relative difference for two or-
bits, namely, with p® = 12, & = 0.6 and p® = 4,
e® = 0.4 for & = 0.9 and for two modes with [ = 2,
m=2,n=0and =11, m = 10, n = 36. The results
are plotted in Fig. 11. We can see that for sufficiently
small o the relative error tends to zero and, therefore,
the linear parts 6le,m are correct.

Appendix E: Accuracy of the interpolation

In this appendix we discus the interpolation error orig-
inated when interpolating the fluxes and other quantities
in the p — e plane in Sec. VA 3.

We use global interpolation on the Chebyshev nodes.
The advantage of this method is that the convergence is
exponential and the interpolation error is bounded and
uniform. The disadvantage is that the convergence is
slow, when the function is not analytical, and the errors
in the evaluation at individual points spread across the
whole domain.

The interpolation error of the Chebyshev interpolation
can be easily estimated. Namely, when a function f is
expanded into the Chebyshev polynomials as

Tmax Jmax

flay) =Y Y euTi@)Ty(y) ,

i=1 j=1

(E1)

where Tj(x) are Chebyshev polynomials and ¢;; are the
coefficients, then the error can be estimated as

max

i=imax VJ=Jmax

(E2)

leijl -



Using this approach, we have found that the relative error
of the interpolated geodesic fluxes F(®) is around 1074,
the relative error of p® and ¢® is around 107, and
the relative error of the derivatives of p and é is between
1073 and 1072, Since the functions §p and dé are cal-
culated from these derivatives, their precision is also be-
tween 1073 and 1072.

To verify the geodesic energy flux to infinity for the
Schwarzschild black hole, we compared the data with
9PN series [41]. Fig. 12 shows both relative difference
between the PN series and the interpolated function and
the value of the flux at individual points. It also shows
the error of the PN series estimated by its last term. We
can see that the interpolation error is dominant for higher
p and lower e, and its value is around 10~%. The error of
the fluxes at individual grid points is between 10~8 and
1077, but the error of the PN series grows with decreas-
ing p and increasing e, and, therefore, the fluxes near the
separatrix cannot be verified using the PN series.

Appendix F: Accuracy of the phase shifts

In this appendix we compare the linearized phase shifts
d®;(t) obtained in Sec. IVA with the phases computed
using nonlinearized formula (73). The purpose of this
section is to test the validity and accuracy of the calcu-
lation.

First, we have computed the nonlinearized fluxes on
a grid in the p — e plane for ¢ = 1072 and a = 0.
The grid is similar to the grid for @ = 0 in Fig. 2, but
the separatrix is located at different position fulfilling
ps(0) = 6 + 2¢ + O(0), ie., around 1073 away from
the geodetic separatrix. The calculation of the nonlin-
earized fluxes was equivalent to the calculation of lin-
earized fluxes in Sec. V A. Because the numerical error
in the non-linearized fluxes is around 10~*, we have cho-
sen such a high value of o to prevent the loss of the spin
contribution in the noise. Note that we tested the lin-
earized results against only the aforementioned value of
the spin in the nonlinearized case, because the calcula-
tion of the fluxes on the whole grid is computationally
expensive.

We have computed the evolution of the orbital param-
eters p(t) and e(t) using Egs. (68), and from p(¢) and
e(t) we calculated the phases (73). The initial orbital

parameters py and ey were chosen to match the initial

frequencies of a geodesic with initial parameters p(()g) and

egg). Similarly, we have calculated the phase for o = 0.

We have compared the phase shift

‘1%(0) — q)l(O' = 0)

g

AD; = (F1)
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with the linear part of the phase §®; as
0P,

- . F2
Ad, (F2)

This relative difference is plotted in Fig. 13 for ini-

tial semilatus rectum p(()g) = 12 and different initial ec-

1

centricities eég) . We can see that the relative differ-
ence is below 5 x 1073 for the majority of the inspi-
ral. Before the particle reaches the separatrix, the rel-
ative difference diverges, because the linearization in o
breaks here. This is caused by the fact that the linear
parts op(t) and de(t) diverge here and the functions as
p(p® (t)+06p(t), e® (t)+ode(t), o) cannot be linearized.
The relative difference diverges also for ¢ = 0, because
both 6®; and A®; are close to zero; i.e., we divide two
very small inaccurate quantities.

Since the quantity A®; is nonlinearized, it contains
O(o) contribution to the phase which should be around
1073, However, since the accuracy of the non-linearized
calculations is around 1073, the relative difference shows
this numerical error.

0.050 T T T T
— 9 =01 —— 9,=05
— g9y =02 — €9,=06
g % — é9%=03 — éd=07
S 0.005 [
k3]
5
°
0.001 +
5.x107 [
0 50 100 150 200 250 300
tq
0.010+
0.005
[0
e
o
2
5 0.001 |
® 510 f
1.x107* £, L
0 50 100 150 200 250 300
tq

FIG. 13. The relative difference between the nonlinearized
phase shift A®; and the linearized phase shift 0®; for i = ¢
(top) and ¢ = r (bottom). It can be seen that the relative
difference is below 5 x 1072 for the majority of the inspiral.
At the end of the inspiral, the relative difference grows rapidly,
because the linearization in o breaks. The black dots show
points where §®, changes from an increasing to a decreasing
function of ¢ and it has maximal value. The error at these
points is below 5 x 1073,
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This work provides gravitational-wave energy and angular momentum asymptotic fluxes from a
spinning body moving on generic orbits in a Kerr spacetime up to linear-in-spin approximation. To
achieve this, we have developed a new frequency-domain Teukolsky equation solver that calculates
asymptotic amplitudes from generic orbits of spinning bodies with their spin aligned with the total
orbital angular momentum. However, the energy and angular momentum fluxes from these orbits in
the linear-in-spin approximation are appropriate for adiabatic models of extreme mass ratio inspirals
even for spins nonaligned to the orbital angular momentum. To check the newly obtained fluxes,
they are compared with already known frequency-domain results for equatorial orbits and with
results from a time-domain Teukolsky equation solver called Teukode for off-equatorial orbits. The
spinning-body framework of our work is based on the Mathisson-Papapetrou-Dixon equations under

the Tulczyjew-Dixon spin supplementary condition.

I. INTRODUCTION

Future space-based gravitational-wave (GW) detec-
tors, like the Laser Interferometer Space Antenna (LISA)
[1], TianQin [2], and Taiji [3], are designed to detect GWs
from sources emitting in the mHz bandwidth like the ex-
treme mass ratio inspirals (EMRI). An EMRI consists
of a primary supermassive black hole and a secondary
compact object, like a stellar-mass black hole or a neu-
tron star, which is orbiting in close vicinity around the
primary. Due to gravitational radiation reaction, the
secondary slowly inspirals into the primary, while the
EMRI system is emitting GWs to infinity. Since signals
from EMRIs are expected to overlap with other systems
concurrently emitting GWs in the mHz bandwidth [1],
matched filtering will be employed for the detection and
parameter estimation of the received GW signals. This
method relies on comparison of the signal with GW wave-
form templates and, thus, these templates must be calcu-
lated in advance and with an accuracy of the GW phases
up to fractions of radians [4]. With this level of accuracy,
it is anticipated that the detection of GWs from EMRIs
will provide an opportunity to probe in detail the strong
gravitational field near a supermassive black hole [4].

Several techniques have been employed to model an
EMRI system and the GWs it is emitting. The back-
bone of these techniques is the perturbation theory [5-7]
in which the secondary body is treated as a point particle
moving in a background spacetime. Such an approach is
justified, because the mass ratio ¢ = u/M between the
mass of the secondary p and the mass of the primary
M lies between 107 and 10~%. The particle acts as a
source to a gravitational perturbation to the background
spacetime and conversely the perturbation exerts a force
on the particle [7]. After the expansion of the pertur-
bation in ¢, the first-order perturbation is the source of
the first-order self-force and both first and second-order

perturbations are sources of the second-order self-force.
These parts of the self-force are expected to be sufficient
to reach the expected accuracy needed to model an EMRI
[6].

Another technique, which is widely used in EMRI mod-
eling, is the two-timescale approzimation [8, 9]. This ap-
proximation relies on the separation between the orbital
timescale and the inspiral timescale. In an EMRI the
rate of energy loss E over the energy F is E/E = O(q),
which implies that the time an inspiral lasts is O(q_l).
Hence, the inspiraling time is much longer than the or-
bital timescale (’)(qo). Moreover, since the mass ratio ¢
is very small, the deviation from the trajectory, which
the secondary body would follow without the self-force,
is very small as well. Hence, an EMRI can be mod-
eled as a secondary body moving on an orbit in a given
spacetime background with slowly changing orbital pa-
rameters; this type of modeling is called the adiabatic
approzimation [10-13].

For a nonspinning body inspiraling into a Kerr black
hole the phases of the GW can be expanded in the mass
ratio [8] as

D, (t) = %@3@) +®(gt) + O(a), (1)

where the first term on the right hand side is called adia-
batic and the second postadiabatic term. The adiabatic
term can be calculated from the averaged dissipative part
of the first-order self-force, while the postadiabatic term
is calculated from several other parts of the self-force.
Namely, from the rest of the first-order self-force, i.e.,
the oscillating dissipative part and the conservative part,
and from the averaged dissipative part of the second-
order self-force [6]. To accurately model the inspiral up
to radians, the postadiabatic term cannot be neglected.

So far we have discussed the case of a nonspinning
secondary body, however, to accurately calculate wave-



forms for an EMRI, one must also include the spin of
the secondary. To understand why, it is useful to nor-
malize the spin magnitude of the secondary S = 0([L2)
as 0 = S/(uM) = O(q) [14]. For example, if the spin-
ning body is set to be an extremal Kerr black hole, i.e.
S = 2, then 0 = ¢. Thus, the contribution of the spin of
the secondary to an EMRI evolution is of postadiabatic
order.

The adiabatic term in the nonspinning case can be
found from the asymptotic GW fluxes to infinity and
to the horizon of the central back hole. This stems
from the flux-balance laws which have been proven for
the evolution of energy, angular momentum and the
Carter constant for nonspinning particle in Ref. [15].
For spinning bodies in the linear-in-spin approximation
the flux-balance laws have been proven just for the en-
ergy and angular momentum fluxes in Refs. [16, 17]. In
the nonlinear-in-spin case the motion of a spinning body
in a Kerr background is non-integrable [14], i.e. there
are more degrees of freedom than constants of motion.
Ref. [18] has been shown that the motion of a spin-
ning particle in a curved spacetime can be expressed
by a Hamiltonian with at least 5 degrees of freedom.
Hence, since this Hamiltonian system is autonomous,
i.e. the Hamiltonian itself is a constant of motion, four
other constants of motion are needed to achieve inte-
grability. In the Kerr case, there is the energy and
the angular momentum along the symmetry axis for the
full equations, while in the linear-in-spin approximation
Ridiger [19, 20] found two quasiconserved constants of
motion [21]. These quasiconserved constants can be in-
terpreted as a projection of the spin to the orbital angular
momentum and a quantity similar to the Carter constant
[22]. If the evolution of these quantities could be calcu-
lated from asymptotic fluxes, then one could calculate
the influence of the secondary spin on the asymptotic
GW fluxes. This, in turn, would allow us to capture
the influence of the secondary spin on the GW phase for
generic inspirals.

Fully relativistic GW fluxes from orbits of nonspinning
particles along with the evolution of the respective inspi-
rals were first calculated in Ref [23] for eccentric orbits
around a Schwarzschild black hole and in Ref. [24] for cir-
cular equatorial orbits around a Kerr black hole. Fluxes
from eccentric orbits in the Kerr spacetime were calcu-
lated in Refs. [25, 26], while the adiabatic evolution of the
inspirals was presented in Ref. [10]. Fully generic fluxes
from a nonspinning body were calculated in Ref. [27] and
were employed in Ref. [11] to adiabatically evolve the in-
spirals. The spin of the secondary was included to the
fluxes in Refs. [16, 28-31] from circular orbits in a black
hole spacetime and to the quasicircular adiabatic evolu-
tion of the orbits in Refs. [32-35]. In Ref. [17] the first-
order self-force was calculated for circular orbits in the
Schwarzschild spacetime. Finally, the fluxes from spin-
ning bodies on eccentric equatorial orbits around a Kerr
black hole were calculated in Ref. [36] and the adiabatic
evolution in linear-in-spin approximation was calculated

in Ref. [12].

In this work, we follow the frequency-domain method
to calculate generic orbits of spinning bodies around a
Kerr black hole developed in Refs. [37, 38] and use it
to find asymptotic GW fluxes from these orbits in the
case when the spin is aligned with the orbital angular
momentum. The results are valid up to linear order in
the secondary spin, since the orbits are calculated only
up to this order.

The rest of our paper is organized as follows. Section II
introduces the motion of spinning test bodies in the Kerr
spacetime and describes the calculation of the linear-in-
spin part of the motion in the frequency domain. Sec-
tion III presents the computation of GW fluxes from the
orbits calculated in Section II. Section IV describes the
numerical techniques we have employed to calculate the
aforementioned orbits and fluxes, and it presents compar-
isons of the new results with previously known equato-
rial limit results and with time domain results for generic
off-equatorial orbits. Finally, Section V summarizes our
work and provides an outlook for possible extensions.

In this work, we use geometrized units where ¢ = G =
1. Spacetime indices are denoted by Greek letters and
go from 0 to 3, null-tetrad indices are denoted by low-
ercase Latin letters a,b,c,... and go from 1 to 4 and
indices of the Marck tetrad are denoted by uppercase
Latin letters A, B,C, ... and go from 0 to 3. A partial
derivative is denoted with a comma as U,, = 9,U,,
whereas a covariant derivative is denoted by a semicolon
as Uy, = V,U,. The Riemann tensor is defined as
R'uufi)\ = F'uu)\,ﬁa - F‘uun,)\ + F“pany)\ - F‘up)\rpww and
the signature of the metric is (—,+,+,+). Levi-Civita
tensor €*#79 is defined as €"'?3 = 1/\/—g for rational
polynomial coordinates®.

II. MOTION OF A SPINNING TEST BODY

The motion of an extended test body in the general
relativity framework was first addressed by Mathisson in
[39, 40] where he introduced the concept of a “gravita-
tional skeleton”, i.e., an expansion of an extended body
using its multipoles. If we wish to describe the motion
of a compact object, like a black hole or a neutron star,
then we can restrict ourselves to the pole-dipole approxi-
mation [14], where the aforementioned expansion is trun-
cated to the dipole term and all the higher multipoles are
ignored. In this way, the extended test body is reduced to
a body with spin and the respective stress-energy tensor

1 Note that for Boyer-Lindquist (BL) coordinates the sign is oppo-
site since the coordinate frame in BL coordinates is right-handed
whereas the coordinate frame in rational polynomial coordinates

is left-handed.



can be written as [41]

v~ [ar <p<#vu> e ()

v, (Su%u) W)) @)

where 7 is the proper time, P* is the four-momentum,
vt = dz#/dr is the four-velocity, S is the spin tensor
and g is the determinant of the metric. Note that z* de-
notes arbitrary point of the spacetime and z*(7) denotes
the position of the body parametrized by the proper time.

From the conservation law T*”,, = 0 the Mathisson-
Papapetrou-Dixon (MPD) equations [40, 42, 43] can be
derived as

DPH 1

= =3 RF, o6 0¥ SP7 (3a)
DSH

e PHyY — PV (3b)

where R*,,, is the Riemann tensor. However, this sys-
tem of equations is underdetermined because one has the
freedom in choosing the centre of mass which is tracked
by the solution of these equations. To close the system,
a so called spin supplementary condition (SSC) must be
specified. In this work we use the Tulczyjew-Dixon (TD)
[43, 44] SSC
SHP,=0. 4)
Under this SSC the mass of the body
pw=\/ PP, 5)

and the magnitude of its spin

S = /55,2 ©6)

are conserved. The relation between the four-velocity
and four-momentum reads [45]

1 v P kA
m SSHMY Ry peauf s
vt = — <U“ + (7)

1% 1+ iRa[gvgso‘BsWS
where
pH Sk
ut = — st = (8)
0 I
are specific momenta and m = —p*v,, is a mass definition

with respect to v, which is not conserved under TD SSC.
Note that having fixed the centre of mass as a reference
point for the body allows us to view it as a particle.
Hence, quite often the term “spinning particle” is used
instead of “spinning body”.

From the spin tensor s*” and the specific four-
momentum u* we can define the specific spin four-vector

Sy = 755111//)(7 u” sP7 (9)

for which the evolution equation

Dsk
% = —u“RZﬂwsavﬁu"*s‘s (10)
holds [46], where the right dual of Riemann tensor has
the form

N 1
afys = iRaﬁweuwé . (11)

Note from Eq. (9) and the properties of €., it is clear
that s, ut = 0.

In the context of an EMRI, it is convenient to define
the dimensionless spin parameter

S
= — 12
o= r (12
since one can show that o is of the order of the mass
ratio ¢ = i [14]. For instance, if the small body is

set to be an extremal Kerr black hole, then S = p? and
hence 0 = ¢. Having established that o < ¢, one sees
that this parameter is very small in the context of EMRI.
Since the adiabatic order is calculated from the geodesic
fluxes [27], every correction to the trajectory and the
fluxes of the order of ¢ influences the first postadiabatic
order and higher order corrections are pushed to second
postadiabatic order and further. By taking into account
that the current consensus is that for the signals observed
by LISA we need an accuracy in the waveforms up to the
first postadiabatic order, it is reasonable to linearize the
MPD equations in the secondary spin and discard all
the terms of the order O(0?) and higher. Note that in
Refs. [37, 38] a different dimensionless spin parameter is
used, which is defined as

s=—. (13)
It is related to o as s = 0/q and its magnitude is bounded

by one.
After the linearization in o the relation (7) reads

vt =kt + 0(32) (14)
and the MPD equations themselves simplify to
Du* 1
— 2 RM,, U’ s 1
o 3 Ry o u” 877, (15a)
Ds/,“/
=0 15b
dr (15b)
and
Ds#
=0. 16
dr (16)

Eq. (16) is the equation of parallel transport along the
trajectory. After rewriting this equation using the total
derivative

ds*

—+ IHpu®s® =0, (17
-




it can be seen that to keep the equation truncated
to O(o), the Christoffel symbol T'*,s and the four-
momentum has to be effectively taken at the geodesic
limit [37]. Thus, the parallel transport of the spin has to
take place along a geodesic.

A. Spinning particles in Kerr spacetime

In this work we treat the binary system as a spinning
body moving on a Kerr background spacetime, which line
element in “rational polynomial” coordinates [47] reads

2M 4aMr(1 — 2>
ast = (1= B ae - G qvag

(W4 — GZA(lg ZQ))(l — Z2)d¢2 + %dr2 + 1.2 dz?
(18)
where
Y =r?4a%?,
A=7r2—92Mr+d?,

w? =r?+a%.
These coordinates are derived from the Boyer-Lindquist
ones with z = cos § and are convenient for manipulations
in an algebraic software such as Mathematica.

A Kerr black hole has its outer horizon located at r =
M + v/ M? — a2, A Kerr spacetime is equipped with two
Killing vectors 5& = 0 and (4) = d%, which are related
respectively to the stationarity and the axisymmetry of
the spacetime. Additionally for the Kerr spacetime, there
is also a Killing-Yano tensor in the form

Y, da* Adz” = azdr A (dt — a(l — 2%)dg)
+rdz A (adt — w’de), (19)

from which a Killing tensor can be defined as
K, =Y,"Y,, . (20)

Thanks to these symmetries, there exist two constants
of motion for the spinning particle in the Kerr back-
ground

1 v
E= —uﬂff‘t) + 5@822/8“ , (21a)
1 v
T =kl — 5 @) s (21b)

which can be interpreted respectively as the specific total
energy measured at infinity and the component of the
specific total angular momentum parallel to the axis of
symmetry of the Kerr black hole measured at infinity.

Apart from the aforementioned constants, there are
also a couple of quasiconserved quantities [19, 20]

Cy =Y, uts”, (21c)
Kr= Klwu“u” — 2utsP? (YM,;NY“U + ngmY"‘u)7
(21d)

for which it holds

dKr — ( 02) , @
dr dr
The existence of these quasiconserved quantities causes
the motion of a spinning particle in a Kerr background
to be nearly-integrable in linear order in o [21]. Actu-
ally, for Schwarzschild background (¢ = 0) it has been
shown that the non-integrability effects appear at 0(02)
[48]. Kg is analog to the geodesic Carter constant K =
K utu” = 1,0* (see Appendix A),where [* =Y, *u” can
be interpreted as the total specific (geodesic) orbital an-
gular momentum. Because of this, Cy can be interpreted
as a scalar product of the spin four-vector with the to-
tal orbital angular momentum. In other words, Cy can
be seen as a projection of the spin on the total orbital
angular momentum.

The four-vector I* was used by Marck [49] and van
de Meent [50] to find a solution to a parallel transport
along a geodesic in the Kerr spacetime, i.e. a solution to
Eq. (16). The resulting s* can be written as

=0(c?). (22)

st = M (o1 (cosypéh + sinepéh) + oyef) (23)

where we introduced o and o, which is a decomposition
of the spin four-vector to a perpendicular component and
to a parallel one, respectively, to the total orbital angular
momentum; while &, & and ef = I*/VK are the legs
of the Marck tetrad [50]. (Note that the zeroth leg of
the tetrad is taken to be along the four-velocity of the
orbiting body: efj = u*. Because s, u” = 0, this tetrad
leg does not appear in s*.) Similarly to [37, 38] we define
el with opposite sign from that [50]. The definition of
Cy implies that o = Cy/\/E.

Eq. (23) describes a vector precessing around e with
precession phase 1, which fulfils the evolution equation

dy, (r?+a?)E —alL, L,—a(l-22)E
ﬁi\/?< K +r? TR e ’

(24)
where M\ is the Carter-Mino time, related to proper time
along the orbit by dA = d7/X. An analytic solution for
1p(A) can be found in [50]. The precession introduces a
new frequency Y, to the system. Since the perpendic-
ular component ¢, is multiplied by sine and cosine of
the precession phase, the contribution of this component
in the linear order is purely oscillating. Therefore, the
constants of motion and the frequencies depend only on
the parallel component o) as well as the GW fluxes of
energy and angular momentum in linear order in spin.
Because of this, we neglect the perpendicular component
and focus on a trajectory of a spinning body with spin
aligned to the total orbital angular momentum.

B. Linearized trajectory in frequency domain

We follow the procedure of Refs. [37, 38|, where the

bounded orbits of a spinning particle were parametrized



in Mino-Carter time as

u=—E+ui(\), (25a)
ug =L, + ug(/\) , (25b)
pM s
- _ A,

Ty ecos(TrA + 0x,(A) + 0x2 (V) + 2 ()
(25¢)
z=sinlcos (LA +0x-(N) + xS (V) + #°(\) (25d)

with

T, =T, +715, (25¢)
T,=7.+7°5 (25f)

where the hatted quantities denote geodesic quantities
and quantities with index S are proportional to .2

This parametrization assumes that the particle oscil-
lates between its radial and polar turning points, but,
unlike in the geodesic case, which is described in Ap-
pendix A the radial turning points depend on z and the
polar turning points depend on 7. This dependence is
encoded in the corrections #° and #°, respectively. T,
and Y, are the radial and polar frequency, but because
of the corrections #° and #°, the radial and polar motion
has also a small contribution from a combination of all
the frequencies nY,. + kY, + jY, where n, k, and j are
integers. This parametrization assumes that a reference
geodesic is given by the parameters: semi-latus rectum
p, eccentricity e and inclination I (see Appendix A for
their definition) and the trajectory of a spinning particle
has the same turning points after averaging.

With these frequencies at hand, quantities in Eq. (25)
parametrized with respect to A can be expanded in the
frequency domain as

f(A) _ Z fnkje—inTrA—isz)\—ijTSA. (26)

n,k,j

In particular, §x is summed only over positive and neg-
ative n; § Xf is summed only over positive and negative k;
k and j cannot be simultaneously zero for 2% and n and
j cannot be simultaneously zero for #°. In our numerical
calculations we truncate the n and k& sums at £ny,., and
+kmax. These maxima are determined empirically from
the convergence of contributions to the total flux from
each mode, as well as from the mode’s numerical prop-
erties; more details are shown in Sec. IV. The index j is
summed from —1 to 1.
After introducing the phases

wr, =T\, (27a)
w, =T\, (27b)
ws =T\, (27¢)

2 T does not need to be expanded to first order in o because it
appears in terms proportional to o.

ot

we can write the inverse expression for Eq. (26) as

dw,dw,dw, . ) ) -
frnj :/¥j(wr,wz,ws)emw"+’sz+”ws .

(2m)?
(28)
Equations (15a) together with the normalization of the
four-velocity u*u, = —1 are then used to find the quan-

tities (25) in the frequency domain.

The coordinates can then be linearized with fixed
phases as r(wp,w.,ws) = 7(w,) + 75 (we,ws,w,),
2(wp, wy, ws) = 2(w,) + 2° (wy, w,, ws), where the linear-
in-spin parts can be expressed as [37, 38]

s epMéxZsin(w, +0%) g
= . 29
" (1 + ecos(wy + 6xr))? o 29
s

2% = —sin I6x 5 sin(w, + 6%.) + ° . (30)

For the calculation of gravitational-wave fluxes we need
also the coordinate time and azimuthal coordinate. Both
can be expressed as secularly growing part plus purely
oscillating part, i.e.

t=TA+ AHTA TN TN (31)
b =ToA+ Ad(T, A, LN, TN (32)

where the oscillating parts At and A¢ cannot be sepa-
rated, unlike in the geodesic case in Eq. (A6) where they
are broke up in a r and z part [51]. These oscillating parts
can be calculated from the four-velocity with respect to
Carter-Mino time, U* = dz#/d\ = Zu# = Zdz#/dr.
After integrating

nkj

% —Ut = Z Ut e*inTr)\fiszkfijTS)\ , (33)
n,k,j

the n,k,j-mode of A#(\) in the frequency domain
Eq. (26) reads

Uﬁk,;‘
“inY, —ikY, —jT,’

Atpp; = (34)

where U}, k; is the harmonic mode of the four-velocity. By
linearizing in spin the above equation we obtain

AR, — iUfgLnkj B iUf;k]-A(anwtka)
B A - S b 8 (nY, + kT.)?
(35)

The second term is zero for 5 = £1 and Y% is not needed,
since the geodesic motion is independent of Y. The
linear-in-spin part of the ¢ component of the four-velocity
can be expressed as
vt o

vt =2

. vt o avt o
ar

vt g oVt ¢ AVt g
9. -~ aE ™

where V* is given in Eq. (A5a). Similarly for A¢®, we
use U? to get A¢nr; and consequently Ad}fkj, in which
U is as Eq. (36), but instead of V* we use V.



The linear-in-spin parts of I' and ¢ are respectively
U% oo and Ug,ooo [38]. The coordinate-time frequencies
read

oo T )
Q. = le%gsf , (37b)
6= % ; (37¢)
=7 IF S - (37d)

III. GRAVITATIONAL-WAVE FLUXES

In this work we calculate the gravitational waves gen-
erated by a spinning particle moving on a generic or-
bit around a Kerr black hole using the Newman-Penrose
(NP) formalism. We calculate a perturbation of the NP
scalar

U, =— aﬁwgn“mﬁrﬂm‘; (38)
where Cq .5 is the Weyl tensor and n# and m* are part of

the Kinnersley tetrad (A}, A5, A5, A) = (1%, n*, m*, m*)
defined as

r? 4+ a? a
[T 1.0. =
l ( N ,07A), (39a)
1
nt = 75 (@? —A,0,4q) , (39b)
. V1I-22 (. i
mt = NT <za,07 1,1 2) , (39¢)
1_ 22
—u:7VZ< ia,0, —1, —— 2) (39d)
V2¢ 1—2
with
¢(=r—1iaz.

From the NP scalar (38) we can calculate the strain at
infinity using the equation
1d2h
\\J — = ——F, 40
s 00) = 2 5 (10)
where h = hy —ihy is expressed using the two polariza-
tions of the GW. The NP scalar W, can be found using
Teukolsky equation [52]

—20 —210(157 T 0’ ¢) = 4n¥T ’ (41)

where _otp = (*Wy, _,0 is a second order differential
operator and T is the source term defined from TH¥.

We solve the Eq. (41) in frequency domain, where it
can be decomposed as

=Y~ / A Y (1) 2 S0 ()1 Fme
Lm 2m e
(42)
Then, Eq. (41) can be separated into two ordinary dif-
ferential equations, one for the radial part ¥, (r) and
one for the angular part _2S57¢(z), which is called the
spin-weighted spheroidal harmonics and is normalized as

1
1
[ 1easimis = o (43)
-1 ™
The radial equation reads

DimwVime (T) = 77mw 5 (44)

where Dy, is a second order differential operator, which
depends on 7, and T, is the source term which we
describe later. Because the source term is zero around the
horizon and infinity, the function ¢, (r) must satisfy
boundary conditions at these points for the vacuum case
that read [11]

Uimw(T) &~ C’f[ﬂwr?’eiw*

Vimw(r) = C; A"

Imw

(45a)
(45b)

T — 00,
r—=Try,

where ky = w — ma/(2Mr,) is the frequency at the
horizon and 7* = [w@?/Adr is the tortoise coordinate.
The amplitudes at infinity and at the horizon lenw can
be determined using the Green function formalism as

Ci _ i o lenwﬂmu dr
Imw w A2 )

T4

(46)

where R (r) are the solutions of the homogeneous
radial Teukolsky equation satisfying boundary condi-
tions at the horizon and at infinity, respectively, and
W = (((9TR;;M)RZ;W - R;;WQTR;W) /A is the invari-
ant Wronskian.

According to [32], the source term can be written as

,nmw = / dtd9d¢A2 Z']:Ibeiwtfim¢ (47)

ab

where ab = nn, nm, mm and

Tay o
0" i
Tab =Y P (fi?v—gTab) (48)
i=0

with Iy =0, Inm, = 1, Iym = 2. Note that the func-
tions f iz), which are defined in Appendix B, are slightly
different than the definition in [32]. The projection of
the stress-energy tensor into the tetrad can be written as
[53]

V—9Tw = /dT((AffZ + AG,)6" — 8p(35b54)) (49a)



where and the spin coefficients are defined as
Yade = )\a 1 )\MA/? . 50
A% = Praup) (49b) poprdre (50)
Ad, = SCd’U(b’Ya)dc T Sc(a’Yb)chd 7 (49¢) ﬁf.ter substituting ths.d(lllg),f(48),. (49at)1 into E?t (iﬁ)
o _ ap 194 an:t integrating over the delta functions, the amplitudes
By = 5" (ave) (49d) Ol €an be computed as
|
o dqr . )
lenw _ / %ewz(r)ﬂmﬂ-r)lﬁnw (r(7), 2(7), ua(7), San(7)) , (51)
where I, ﬁnw is defined as
T SR 4 (LB o)) £ 0l 0fyy) \ R, 4R,
T = W %7: ;(71) (Aab + A+ Z<wBab - mBab>>fab + By I + BZ, 92 ar + By for g
(52)

Explicit expressions for AT, A4, and B, are given in Appendix B.

ab’ “*a

Following a similar procedure to [27], it can be proven that the amplitudes can be written as a sum over discrete

frequencies

cr o=

Imw
m,n,k,j

The partial amplitudes are given by

> O k0w = Winkg)  With Wik = mQg +nQy + kL. + 5O . (53)

i 1 27 2m 2m "
Clmnkj = (27T)2F /0 dwT/O dwz 0 dws Ilmnk_j (wT'v wszs)

X exXP (1Wmnkj At(Wy, W, ws) — IMAG(Wy, W, Ws) + tnW, + thw, + ijws), (54)

where I*

Imnkj (wr? Wz, ws) = Ii

IMWimnk;j

The strain at infinity can be expressed from Eq. (40)
as

2 Ot i . .

h=—- Z gnnk/ Slmnkj(e)c_zmmn’wu-'—mw5 ) (55)
" mok, Cmnki

where u = t — r* is the retarded coordinate and

AWmnk
Stmnkj(0) = —25,,""" (6).
From the strain A and the stress energy tensor of a
GW, the averaged energy and angular momentum fluxes

can be derived as

(FEYy =" Flhy

lm,n,k,j

<]:Jz > = Z ‘}—l{;nkj

Lm,n,k,j

(56a)

(56D)
with

" 2 B 2
‘Clmnkj ) + QAmnkj ’Clmnk*j ‘

]'—zlfnnkj = ) (56¢)

2
drwz o j

(T(w’f‘7wz7w5)7 Z(wT7 u)Z7w5)7ua(wT7 wz7w5)7 Sab(w'mwu U)S))'

2 2
+ =
m (‘Cl"”mj‘ + Qumnkj ‘Clmnkj ’ )

File i = 56d
Imnkj 4”“;3,”,,1@]' ’ ( )
where
N 256(2M 1)k (K, + 4€%) (K, + 16€%)w) .,
Imnkj —

| (57)

€ =VM? —a?/(4Mr,), and the Teukolsky-Starobinsky
constant is

| Clmw,nk j

|G m]® = ((/\lmw +2) + daw(m — aw))
% (A + 36aw(m — aw))
— (2Nimw + 3) (48aw(m — 2aw))
+ 144w® (M? — a®) . (58)

Since all the terms proportional to the perpendicular
component ¢, are purely oscillating with frequency g,
the only contribution to the fluxes from o) comes from
the modes with j = £1. The amplitudes C’lfymkj for
j = £1 are proportional to o, and, therefore, the fluxes



for j = £1 are quadratic in o ;. We can neglect them in
the linear order in ¢ and sum over [, m, n and k with
7 = 0. In this work we focus on the contribution of
the parallel component o) to the fluxes and, therefore,
calculate only the 7 = 0 modes. For simplicity, we omit
in the rest of the article the j index and write wpnk,
]:lmnk-

Note that since the trajectory is computed up to linear
order in o, the amplitudes or the fluxes are valid up to
O(0) as well.

IV. NUMERICAL IMPLEMENTATION AND
RESULTS

In this section we describe the process of numerically
calculating the orbit and the fluxes described in the pre-
vious sections. If not stated otherwise, all calculations
were done in Mathematica. In some parts of these cal-
culations we used the Black Hole Perturbation Toolkit
(BHPT) [54].

A. Calculating the trajectory

Our approach to calculate the linear-in-spin parts of
the trajectory is the same as the approach described in
[37, 38]. We managed to simplify the equations given in
the latter papers and the respective details are given in
Appendix C. To calculate the geodesic motion we em-
ployed the KerrGeodesics package of the BHPT.

Using the aforementioned simplifications, we first cal-
culated ufnk and Uﬁ,nk as

s Rk s Rk

Uy = e Uy = (59)
nY, + kT, nY, + kY,
for n # 0 or k # 0, where Ry ni and Ry i are Fourier
coefficients of functions given in Egs. (C5). Then, the
Fourier coefficients ufoo, ug’(m, 6xin, 6)(5’,6, Ly Hoy
and the frequencies’ components T3 and Y5 were calcu-
lated as the least squares solution to the system of linear
equations [37]

M-v+ec=0. (60)

In the system of equations (60), the column vector v
contains the unknown coefficients, the column vector c
is given from Fourier expansion components of the func-
tions J, V and P in Egs. (C5) that are not coefficients of
the unknown quantities, while the elements of the ma-
trix M are calculated from the Fourier coefficients of
functions Fr,zv gr,@,ﬂ,m HT,@,O,M 117,19,2,37 QQ,M 87‘7%9,%7
Try00,50 Urr16,2,3, Kr o6, My 26,2, Nir1e, which are
functions of the geodesic quantities and they are given
in the supplemental material of [37].
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FIG. 1. Fourier coefficients 6xin for generic orbits with

a = 0.9M, p =15, I = 15° and different eccentricities. Be-
cause the Fourier series is truncated at nmax = 16 and the
coefficients have been calculated approximately using least
squares, the convergence stops at certain £n.

In particular, the Fourier coefficients are calculated as,
e'g'7

Rew = 3 Ru(F(0l), 5l FSGE  (61)
a,b

where F and G are matrices of a discrete Fourier trans-
form

o Tin 1
Fi = exp( N 1+ Qa)) N (62a)
b ik 1
= —(1+2b) | — 2b
6= e T+ 5 (62b)

and N, (N,) is the number of points along w, (w,). Each
function R; is evaluated at equidistant points along w,

and w, as
o 2m (1
w, = FT (5 + a) s (633)
2m (1
b_ 20
w, = N (2 + b) (63b)

where ¢ = 0,1,...,N, — 1, b = 0,1,...,N, — 1. The
numbers of steps along w, and w, were chosen according
to the orbital parameters, i.e., a higher number of steps
is needed for higher eccentricity and higher inclination.

Actually, not all of the Fourier coefficients can be calcu-
lated accurately enough for highly eccentric and inclined
orbits, as can be seen in Fig. 1, where the coefficients
5x,§ », are plotted for different eccentricities. Fig. 1 shows
that after a certain value of n the coefficients stop de-
creasing. This is caused by the truncation of the series
and by the fact that the system of equations is solved ap-
proximately using least squares. Similar behavior occurs
for 6xf, . and other Fourier series.



B. Gravitational-wave fluxes

After calculating the orbit, the partial amplitudes
le,mk are evaluated by numerically calculating the two-
dimensional integral (54). The integral in Eq. (54) is
computed over one period of w, and of w,; hence, we
employ the midpoint rule, since the convergence is ex-
ponential [55]. The number of steps for the integration
has been chosen as follows. We assume that the main
oscillating part of the integrand comes from the expo-
nential term. The number of oscillations in w, and w. is
respectively n and k. However, because of At and A,
the “frequency” of the oscillations can be higher at the
turning points as can be seen in Fig. 3 in [36]. In order to
have enough steps in each oscillation, the number of steps
in w, is calculated from the frequency of the oscillations
at the pericentre (w, = 0) and apocentre (w, = 7) as

max{[16[¢].(0) + n]|, [16[¢.(7) + n[,32}.  (64)

Similarly, the number of steps in w, comes from the fre-
quency at the turning point (w, = 0,7) and the equato-
rial plane (w, = 7/2) as

max{|8[¢(0) + k1|, 8] (7/2) + k1],32},  (65)

where ¢, (wy) = WnnkAty(w,) — mAG,(wy), y = 7, 2.
The integration over wy is trivial for j = 0, since the
function is independent of wj.

The homogeneous radial Teukolsky equation solutions
Rlimnw have been calculated using the Teukolsky pack-
age of the BHPT. There the radial Teukolsky equation is
numerically integrated in hyperboloidal coordinates [56]
and the initial conditions are calculated by using the
Mano-Sasaki-Takasugi method [57]. On the other hand,
the spin-weighted spheroidal harmonics _» S} have been
calculated using the SpinWeightedSpheroidalHarmonics
package of the BHPT where the Leaver’s method [58] is
employed.

Similarly as in [27], we use the symmetries of the mo-
tion to reduce the integral (54) into a sum of four inte-
grals over 0 < w, < 7, 0 < w, < w. Apart from the
geodesic symmetries §(wy) = §(2m — wy), Azy(w,) =
—Azy (21 — wy), and UY(wy) = —UY(2m — w,), where
r=1t,¢,y=r2 we used also symmetries of the linear-
in-spin parts, which read f(w,,w,) = f(27—w,, 271 —w,)
for 7% and 2° and f(w,,w,) = —f(21 — w,, 27 —w,) for
Ug, Ug, AtS, and A¢®. Thanks to the reflection symme-
try around the equatorial plane, there is also a symmetry
fwr,w,) = flwy,w, +) for v5, UL, At%, and A¢® and
fwr,w,) = —f(wr,w, + ) for 2% and UZ. Combining
these symmetries, it is sufficient to evaluate the linear-
in-spin parts only for 0 < w, < 7, 0 < w, < w, which
reduces the computational costs, since the evaluation of
the Fourier series (26) is slow. After these optimizations,
calculating one mode takes seconds for low eccentrici-
ties, inclinations and mode numbers, while it takes tens
of seconds for high eccentricities, inclinations and mode
numbers.
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FIG. 2. Top: Dependence of the linear-in-spin parts of the
partial amplitudes for £k = 0 and different nmyax for an orbit
with @ = 0.9M, p = 15, e = 0.5, I = 15°. Bottom: Depen-
dence of the linear-in-spin parts of the partial amplitudes on
k for n = 0 different knax for an orbit with a = 0.9M, p = 12,
e =0.2, I =60°. Note that the numbers n and k refer to the
modes C}f . and numax and kmax refer to the trajectory.

To extract the linear-in-spin part of the partial ampli-
tudes or fluxes, i.e. their derivative with respect to o, we
use the fourth-order finite difference formula

5= 15/ (=20) — 3f(=0) + 3 f(0) — 15 f(20) . (66)

g

where f = le,mk, FE or F’: and ¢ = 0.5 in our cal-
culations. This is necessary for comparisons with other
results, since the 0(02) part of the fluxes is invalid due
to the trajectory being linearized in spin.

Because the Fourier series (26) of the linear-in-spin
part of the trajectory is truncated at £nmyax and *knax,
only a finite number of n and k& modes of the amplitudes
Climnk and of the fluxes can be calculated accurately. In
Fig. 2 we show the dependence of the absolute value of

the linear-in-spin parts of the amplitudes ’C; k| ODL T

and k for different nyax and kpax. The top panel shows
amplitudes for an orbit with high eccentricity (e = 0.5).
If the Fourier series in n is truncated at lower npay, the
amplitudes stop being accurate after a certain value of n.
Similarly, for an orbit with higher inclination (I = 60°)
shown in the bottom panel of Fig. 2, when the series is
truncated at lower kpax, the amplitudes stop converg-
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FIG. 3. Dependence of the linear parts of the amplitudes on n
for different nmax (top) and on k for different kmax (bottom)
for orbits near the separatrix. The orbital parameters are
a=09M,p=31,e = 0.5 1=15° (top) and a = 0.9M,
p=4.2,e = 0.2, I = 60° (bottom). Note that at the top
panel the Nmax = 16 and nmax = 24 almost coincide; the
same holds for the kmax = 16 and kmax = 24 at the bottom
panel.

ing with k. Such issues have been already reported for
geodesic fluxes in [59].

Near the separatrix the calculations are difficult be-
cause of the divergence of some quantities as was already
shown in the equatorial case [12]. In Fig. 3 we show

the dependence of ‘C;lmnk‘ on n and k for orbits near

the separatrix ps, namely p — ps = 0.19866 for the top
panel and p — ps = 0.22076 for the bottom panel. We
can see that Figures 2 and 3 are qualitatively the same.
This is because in both cases the dominant source of the
error is the linear part of the trajectory caused by the be-
havior of the Fourier coefficients shown in Fig. 1. Since
the coefficients 6xfm etc. are accurate only for |n| < 3
for nmax = 8, |n| < 6 for nmax = 16 and |n| < 9 for
Nnamx = 24, the linear parts of the amplitudes are un-
reliable outside these bounds. Thus, although the lin-
ear parts of the amplitudes for ny.x = 16 and 24 seem
to coincide and converge to zero, they are not trustwor-
thy. The same argumrents hold for the bottom panel of
Fig. 3. For better analysis the higher frequency modes of
the trajectory must be calculated with higher accuracy.
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FIG. 4. Relative differences of the linear-in-spin part of the
total energy flux F£ between equatorial and nearly equatorial
cases of nearly spherical orbits for a = 0.9M and different
semi-latus rectum p. The dashed gray lines indicate the O(I 2)
behavior.

Because this task is computationally expensive, we leave
it for future work.

C. Comparison with the equatorial limit

To verify our results with the equatorial limit (I — 0),
we have compared the frequency domain results for sev-
eral inclinations with a frequency domain code for equa-
torial orbits [36]. First, we have calculated the sum of
the total energy flux over | and m for nearly spherical
orbits with inclinations I = 0.5°,1°,2°,4°,8°. We plot
the relative difference AFE = |1 - FE)F fj I:0| against
I in logarithmic scale in both axes in Fig. 4. This way,
we have verified that the linear-in-spin part F. _g asymp-
totically approaches the equatorial limit as I — 0 with
an O(I 2) difference convergence.

Similar procedure has been repeated for the eccentric
orbits. We have computed the I, m, n with & = 0
modes of the energy flux F. glmnk for different inclina-

tions I and plot the relative differences A.Fglmnk =
‘1 lmnk/]:S Imnk, I= 0‘ in Fig. 5. We again see that

for all the modes the relative difference in fluxes F¥%, S imnk
follows an O(I 2) convergence as I — 0. This behavior
agrees with the behavior of a Post-Newtonian expansion
of nearly-equatorial geodesic fluxes in Refs. [15, 60], be-
cause the parameters y and Y in these references are

o(r2).

D. Comparison of frequency and time domain
results

To further verify the frequency domain calculation of
the fluxes FZ and F’:, we compared them with fluxes
calculated using time domain Teukolsky equation solver
Teukode [61]. This code solves the (2+1)-dimensional
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FIG. 5. Relative differences of the linear-in-spin part of the
total energy flux F. g’i 1mno between equatorial and nearly equa-
torial eccentric orbits with a = 0.9M, p = 12, e = 0.3. The
top panel shows modes with [ = 2, m = 2 and the bottom
panel shows | = 5, m = 4. The dashed gray lines show the
O(I?) behavior.

Teukolsky equation with spinning-particle source term
in hyperboloidal horizon-penetrating coordinates. The
fluxes of energy and angular momentum are extracted at
the future null infinity. The numerical scheme consists
of a method of lines with sixth order finite difference
formulas in space and fourth order Runge-Kutta scheme
in time.

First, we compare the computation of energy fluxes
to infinity from nearly spherical orbits, i.e. orbits with
e = 0. For details about the time domain calculation of
the trajectory and the fluxes see Appendix D. Since the
time domain outputs m-modes of the flux, we summed
the frequency domain flux over [ and k (for spherical or-
bits, only the n = 0 modes are nonzero). In Fig. 6, we
show the relative difference between the time-domain and
frequency-domain-computed linear-in-spin part of the en-
ergy flux A]-'gm =|1- fg;fbd /]-'SE ;fld for several inclina-
tions I and azimuthal numbers m. The top panel shows
the dependence of the relative difference on I for pro-
grade orbits and the lower panel shows the dependence
on m for retrograde orbits. We can see that the error is at
most 6 x 1072 which is around the reported accuracy of
Teukode in our previous paper [36]. The error of the fre-
quency domain comes from the truncation of the Fourier
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FIG. 6. Relative differences of the linear-in-spin part of the
fluxes F; g‘? m between time domain and frequency domain cal-
culations for different inclinations and m for nearly spherical
orbits with @ = 0.9M and p = 10. The top panel shows pro-
grade orbits and the bottom panel shows retrograde orbits.

plell/?|m| Fén | AFE.
10]0.1] 15 [2]—2.8259 x 10 °[1 x 10~
12102/ 30 |1 |—1.1954 x 107 7|2 x 107°
12/0.2| 30 | 2 |—1.0488 x 107 ¢|1 x 1073
12{0.2] 30 | 3|—1.4210 x 1077|3 x 1073
12{0.2] 60 | 2 |—8.0550 x 1077 |5 x 10~*
15/0.5| 15 | 2 |—4.2936 x 107 7|2 x 1073

TABLE I. Relative differences A]—'SEM of the linear-in-spin
part of the energy flux F, f m between frequency domain and
time domain computations for given orbital parameters and
azimuthal number m. All orbits have a = 0.9M.

expansion to nmax and kpax and from the summation of
the fluxes over [ and k. On top of that, one has to take
into account that based on the order of the method and
the length of the step we estimate that the relative error
of linearization of both the time domain and frequency
domain flux using the fourth-order finite difference for-
mula should be around 10~°. This estimation holds not
only for the nearly spherical orbits, but for the generic
orbits as well.

Next we moved to generic orbits. We have summed
the energy flux over [, n and k for given m and orbital
parameters, in order to calculate the relative difference



between the linear part of frequency domain fluxes and
time domain fluxes AF gm. The results are presented in
Table I. In this case, the relative difference is at most
3x1073.

Appendix E shows plots of linear-in-spin calculations
of the amplitudes and of the fluxes and some reference
data tables.

V. SUMMARY

In this work we provided asymptotic GW fluxes from
off-equatorial orbits of spinning bodies in the Kerr space-
time. In our framework the spin of the small body is
parallel to the orbital angular momentum and the calcu-
lations are valid up to linear order in the spin.

We employed the frequency-domain calculation of the
orbits of spinning particles which was introduced in [37,
38]. In this setup, the linear-in-spin part of the trajectory
is solved in the frequency domain using MPD equations
under TD SSC. We extended this setup to calculate the
corrections to the coordinate time At and the azimuthal
coordinate A¢S.

We calculated GW fluxes from the aforementioned or-
bits using the Teukolsky equation. To do that, we con-
structed the source of the Teukolsky equation for off-
equatorial orbits of spinning particles for spin parallel
to the orbital angular momentum. Then, by using this
source, we developed a new frequency-domain inhomoge-
neous Teukolsky equation solver in Mathematica, which
delivers the GW amplitudes Cl:fnnk at infinity and at the
horizon. Having these amplitudes allowed us to calculate
the total energy and angular momentum fluxes, whose va-
lidity is up to linear order in the spin. Since at the linear
order in spin the fluxes are independent of the precess-
ing perpendicular component of the spin, our approach
to compute the fluxes is sufficient for any linear-in-spin
configuration.

We numerically linearized the fluxes and compared the
results for nearly equatorial orbits with previously known
frequency domain results [36] for equatorial orbits to ver-
ify their validity in the equatorial limit. We found that
the difference of the off-equatorial and equatorial flux
behaves as O(I 2). Furthermore, we compared the off-
equatorial results with time domain results obtained by
time domain Teukolsky equation solver Teukode. For dif-
ferent orbital parameters and azimuthal numbers m the
relative difference is around 1073, which is the current
accuracy of computations produced by Teukode.

This work is a part of an ongoing effort to find the
postadiabatic terms [11, 12, 17, 62-64] needed to model
EMRI waveforms accurately enough for future space-
based gravitational wave observatories like LISA. Our
work can be extended to model adiabatic inspirals of a
spinning body on generic orbits in a Kerr background as
we have done for the equatorial plane case in Ref. [12];
however, to achieve this the flux of the Carter-like con-
stants Kr and the parallel component of the spin Cy
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must be derived first. In the near future, the new
frequency-domain Teukolsky equation solver Mathemat-
ica code is planned to be published in the Black Hole
Perturbation Toolkit repository.
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Appendix A: Geodesic motion in Kerr

In this Appendix we briefly discuss aspects of geodesic
motion in the Kerr spacetime.
The specific energy
and the specific angular momentum along the symmetry
axis
L.=u4 (A2)

are conserved thanks to two respective Killing vectors.
Carter in Ref. [22] found a third constant

K = K u'u”, (A3)
and formulated the equations of motion as
:—f\ =Vi(r,2,E,L,), (Ada)
dr _ +vVR(r,E,L,,K) (A4b)
dA - b b z bl
%fi\/Z( E L, K) (Adc)
a 2y Ly Lz, 5 C
% =Vy(r,z,E, L), (A4d)
where
p_riHad o, 2 2
%4 :T((r +a®)E —alL,) — a®BE(1 - 2%) + aL,,
(Aba)
R=((r*+a®)E —aL.)’ = A(K +1?), (A5b)

Z=—((1-2%aE - Lz)2 +(1- 22)(K —a?2?),



L.

T2 aE, (A5d)
—z

Ve = %((r2 + az)E — a,LZ) +
These equations are parametrized with Carter-Mino time
dr/dX = X. The motion in r oscillates between its radial
turning points r; and ry with frequency Y, and, similarly,
the z-motion oscillates between its polar turning points
42z, with frequency T,. Moreover, the evolution of ¢ and
¢ can be written as

tA) = TA + At (M) + AL (N),
¢()\) = T¢)‘ + A(ZST()\) + Aﬁbz(/\) ’

(A6a)
(A6b)

where I' and T4 are average rates of change of ¢ and
¢; while At, with A¢, are periodic functions with fre-
quency Y., and At, with A¢, are periodic functions with
frequency T ,.

It is convenient to define frequencies with respect to
coordinate (Killing) time as

T,

Q= (ATa)
T.

Qz - ?7 (A7b)
T

Q= 12, (ATC)

SCd'Yndc = Sln(

Scn'Yndfud = Sln(
S m'Ymdcu 7Tul) + Sl’ﬁb (%un -

S (n’Ym)dcu - (Sln
Shr

The tetrad components of the spin tensor for o; = 0
can be expressed as

K —a222
Sin = UHT(iAaZ) 5 Spm = 0| —F7=UmUn ,
KXY VK
(B2a)
¢ iaz(K +12)
Sim = =0 —=wum , Smm = 0|———=——",
VK VKY

(B2b)

while the terms from the partial derivative for the dipole
term have the form

aw(l —2%) —m

i(wSt, —mS?,) =
21— 22)%

iK
— E Sin (B3d)

Y +A) + Snin (=7 + @+ B) + Snm (=7 + &+ B) + Sy (—p + 1)
S%mde = Sin (T + 7) + Spmp + Snm (a4 B) + Sim (=7 +7) + Smm(—a + 8) ,
+ Y)upn + Spwm (@ + B)u, —

nan (—

(Tu

- (:Y - ’Y)Um) + S’VL’ﬁL(ﬁu’VL pup — (EV ﬁ + ﬂ)um
n(_(_a + B)Um) + Slﬁz('Y + '7)”71 -
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but the system is not periodic in coordinate time and
these frequencies should be understood as average fre-
quencies.

The motion is often parametrized by its orbital param-
eters: the semi-latus rectum p, the eccentricity e and the
inclination angle I which are defined from the turning
points as

Mp Mp
T2 = ’
1+e

z1 =sinl (A8)
where 0 < I < m/2 for prograde orbits and /2 < I <7
for retrograde orbits. Analytic expressions for the con-
stants of motion in terms of the orbital parameters can
be found in [27]. Fujita and Hikida gave analytical ex-
pressions for the frequencies and coordinates in [51].

Appendix B: Source term

In this Appendix we present explicit expressions for the
functions appearing in the source term for the calculation
of the partial amplitudes in Eq. (52).

Whereas AT} is entirely given by Eq. (49b) with P, =
pug and v, = u, in the linear order, the terms in Agb
can be expressed with NP spin coefficients as

(Bla)
(B1b)
,U/Um) + Snm((a + B)“n + ,Hufn) 5 (BIC)
(:Y - 'Y)u’ﬁl) - Smﬁz(_(_a + /B)uﬁl) ’ (Bld)
Tl )
mm((a )un Hum))/Q (Ble)
[
Snm St
t ® — nm  Olm
(wS mS?s) zK( A + 22)
aw(l — 2%) — mSmm . (B3b)
2(1—2%)¢
A
ST’VL ESln ) (B3C)
_— A
S"m = —Spm + Eslm ) (B3d)
z _ V 1-— ZQ(SnﬁLC + Snmé)
S* = \/52 ) (B3e)
V1= 228m

SzﬁL =TT = > B3f
VG B30

where K = (r2+a?)w —am. The functions f<b are given
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by Appendix C: Trajectory
2 (i I
90=-2 (£lel - 2ia¢VI=222]) s, (Bda)
2/9¢2 K - In this Appendix we present some formulas we derived
,(L(,);)L = \-[C ( <ZK +¢ M+ ¢ 71) E; to calculate the linear-in-spin contribution to the trajec-
A tory. We use the tetrad from Eqs. (47)—(51) in [50] where
K - - eb and e} have opposite sign to align e with total angu-
a1 2K B4 éh and ef have opp g gn e g
“ N A (C ¢ )>S7 (B4b) lar momentum and to have right-handed system. Then
2V/2(2 B the right hand side of MPD equations can be written as
(1) _ A (cg tia/T—22(C1 = <—1)) s,
(B4c)
2 2
o ¢ (., (K ) K <K )
== |0 | — ) —2i¢C —+ < S, (B4d . 1
¢? ( <A ¢ A A (Bad) Hipp = *56%0A3R300D50D7 (C1)
1 202 (., K
1(?17)71:*672 ¢ 1+1Z S, (B4e)
2
@ =%, (B4f) , '
(2 where Rpocp are components of the Riemann tensor in
the Marck tetrad. Because of the way this tetrad is con-
where structed [21] and the fact that the Riemann tensor has
m—nz a simple form in the Kinnersley tetrad, the components
Lh=—1-22 <0Z g + aw) . (B5)  can be simplified to
—z
|
3\/(K +72)(K — a222)<(a222(f( +72) — (K — a2z2)> I +arz(2K + 12 — a2z2)12>
Rig12 = - , (C2a)
K>?
6arz(K + 2K — a222)] —a222(K 4 12)2 4 12(K — a222)2
Ruota = arz( +7ﬂ)( az)lJr 143 a®z( +1")A+7"( a?z?) L. (C2b)
K2 K>?
Rog13 = 1z, (C2c)
Ri023 = —R3012 + R2013 (C2d)
R3023 = Rio12 (C2e)

and Rag12 = R1013 = R3013 = R2023 = 0, where

_ Mr(r? — 3a%2?)

L = 53 (C3)
Maz(3r? — a?2?)
L=—"g——. (C4)

The functions Ry, J, V, and P from Egs. (3.24),
(4.62), and (4.63) in [38] can be simplified to

Ry =S, (C5a)
Ry = SfYFP, (C5b)
J = =32 flpp + Taduy + Tyduf (C5¢)
V= —S*flipp + Usduy + Uséus (C5d)
P = Nadup + Nzduj (C5e)

where Zp 3, Us 3 and Na3 can be found in the supple-
mental material of [37]. These simplifications make the

calculation of the trajectory significantly faster.

Appendix D: Trajectories and fluxes in time domain

In this Appendix we describe our procedure to calcu-
late trajectories and GW fluxes in the time domain in
order to compare them with the frequency domain re-
sults.

First, we calculate the orbits using the full (non-
linearized in spin) MPD equations (3) in the time do-
main. The initial conditions have been chosen such that
the orbits are at most 0(02) from orbits with given or-
bital parameters in the frequency domain. As initial con-
ditions we choose E, J,, 7, 8, u”, s" and s’ according to
the values computed in the frequency domain. Then, we
find the other initial conditions from Egs. (4), (5), (6)
and (21). For the evolution we used an implicit Gauss-
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FIG. 7. Difference between the time domain calculation of r
with the full MPD equations and linearized in spin frequency
domain calculation of r for a = 0.9M, p = 12.0, e = 0.2,
I =60° and different spins. The difference behaves as O(o?)
and grows linearly in A on average, because of the O(o?)
difference in the frequencies.

Runge-Kutta integrator which is described in [65]. In
Fig. 7 we plot for several spins the difference

Ar = rg(A) — #F(T,A) — 75(T, 0, TN,

where r¢q()) is the evolution computed in time domain.
It can be seen that the difference for o = £0.1 is four
times larger than the difference for o = +0.05, thus it is
indeed (9(02).

This trajectory was then used as an input to Teukode
which numerically solves the Teukolsky equation. The
output is the energy flux at infinity which must be av-
eraged to compare it with the frequency domain result.
For nearly spherical orbits it is straightforward since at
linear order in spin the flux has period 27/Q,. Thus, we
can average the flux over several periods which have been
calculated using the frequency domain approach.

For generic orbits the averaging procedure is more chal-
lenging, since the flux is not strictly periodic and it con-
tains contributions from all the combinations of the fre-
quencies €2, and §2,. This issue was resolved by consec-
utive moving averages with different periods. The main
contribution to the oscillations of the flux comes from
the radial motion between the pericentre and apocentre.
Thus, we first compute the moving average of the time
series with period 27/, to smooth-out the data. Then,
we perform several other moving averages with periods
27/, and combinations 27w/(nQ,. + k). After several
such averages, the time series is too short for another
moving average, so we average all the remaining data-
points. This procedure appears to be reliable, since the
results match the frequency domain calculations.

Appendix E: Plots and data tables

In this Appendix we show several plots of our frequency
domain results and list the values for reference.
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FIG. 8. linear-in-spin parts of the energy fluxes from nearly
spherical orbits with a = 0.9M, p = 10.0, I = 30° for different
l, k modes and m = 1,2, 3.
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FIG. 9. The linear-in-spin parts of the energy fluxes from
generic orbits log;, |Zz fg,zmnk‘ with @ = 0.9M, p = 12.0,
e = 0.2, I = 30° for different n, k modes summed over [ for
m =1 (top left), m = 2 (top right), m = 3 (bottom).
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In Fig. 8 we plot the linear-in-spin part of the total
energy flux from a nearly spherical orbit for different I,
m and k. From these plots we can see that the linear-in-
spin part of the flux has a global maximum at k =1—m
and a local maximum around k£ = —! —m. This behavior
is similar to the behavior of geodesic flux that has been
reported in [59].

In Fig. 9 we plot the m, n and k modes of the linearized
in spin flux summed over [ for a generic orbit. Because of
the computational costs, we calculated only some of the
[, m, n, k modes. We can see that the maximal mode is
atn=1and k=2—-m.

For reference, we list the m modes of the linear-in-spin
part of the energy flux for spherical orbits in Table II
and some of the I, m, n, k modes from generic orbits in
Table III.

1°m|  F&. Fiim

30[1[—2.642 x 1077 [—2.446 x 107°
30|2[—2.702 x 107%| —6.431 x 10~°
30(3|—3.921 x 1077 —1.016 x 107°
60]1|—1.533 x 107%|—1.891 x 1072
60|2[—2.177 x 107%|—5.110 x 10~°
60]3|—2.223 x 1077 | —5.463 x 1076
120{ 1 [—4.175 x 107%| 3.021 x 107°
120|2 |—1.796 x 107¢| 3.597 x 107°
120{ 3 [—-1.730 x 10°7| 4.020 x 10~°
150| 1 |{—2.859 x 107%| 3.280 x 107
150| 2 |—6.930 x 107%| 1.658 x 107>

3

—1.069 x 107%| 2.723 x 107°

TABLE II. linear-in-spin parts of the total energy fluxes and
the angular momentum fluxes from nearly spherical orbits for
given inclination I and azimuthal number m. The fluxes are
summed over [ and k.
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