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Abstract: Future space-based gravitational-wave detectors will require highly ac-
curate gravitational wave templates for detecting extreme mass ratio inspirals
and estimating their parameters. These templates must include the postadia-
batic effects like the spin of the secondary body. Therefore, we investigate the
influence of the secondary spin on the motion around a Kerr black hole, calcu-
late the corresponding gravitational-wave fluxes to produce flux-driven inspirals
and reveal the shifts of the gravitational-wave phases induced by the secondary’s
spin. In particular, this study begins by considering eccentric equatorial or-
bits, where we obtain the constants of motion and fundamental frequencies using
the Mathisson-Papapetrou-Dixon equations. Next, we derive the linear-in-spin
parts of these quantities. We introduce a new Teukolsky equation solver in the
frequency domain to calculate the energy and angular momentum fluxes from
these trajectories. We use the obtained fluxes to adiabatically evolve the or-
bital parameters and to find the spin-induced phase shifts. For off-equatorial
orbits, a frequency-domain approach is employed to determine the trajectories
in the linear-in-spin regime and to compute the respective fluxes. The agree-
ment between the frequency-domain fluxes and those acquired using an existing
time-domain solver verifies our findings.
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Introduction
Gravitational waves (GWs) generated by an inspiral and a subsequent merge of
two black holes (BHs) were first detected in 2015 by the LIGO/Virgo collabora-
tion [1]. Subsequently, LIGO/Virgo, joined by KAGRA in later runs, observed
many other compact binary inspirals and coalescences [2, 3, 4] including an inspi-
ral of two neutron stars (NSs) [5, 6], a coalescence of two objects with asymmetric
masses [7, 8] and a NS-BH coalescence [9]. These detections provided an oppor-
tunity to test general relativity and estimate the parameters of such systems with
unprecedented precision. While the detectors mentioned above operate in the kHz
regime, GWs with nHz frequencies can be detected with pulsar timing arrays. Re-
cently, several collaborations found an evidence of a stochastic GW background
[10, 11, 12, 13]. Although the origin of this background has not been verified,
one of the prominent candidates are overlapping signals from supermassive black
hole binaries. As a result of these detections, a new era of GW astronomy has
begun with more GW detectors projects in preparation.

One particular type of in preparation detectors are the space-based detectors
like LISA [14], TianQin [15] and Taiji [16]. These detectors will operate in the
mHz regime, which lies between the previously mentioned bands. Among the
promising sources for the space-based detectors are the extreme mass ratio inspi-
rals (EMRIs) [17]. These systems consist of a stelar-mass compact object such
as a BH or a NS orbiting in a close vicinity of a massive BH. The mass ratio
q = µ/M of such binary system, where M is the mass of the the large (primary)
BH and µ is the mass of the smaller (secondary) body, lies between 10−7 and
10−4.

In an EMRI, the secondary body is slowly inspiraling towards the primary
because of gravitational radiation reaction. Energy and angular momentum are
slowly carried away in the form of GWs in the 1 mHz band. Because the secondary
body is expected to complete between 104 and 105 densely nested inspiraling
orbits in the strong gravity regime, the detection of such GWs will give us a unique
opportunity to map the strong-field spacetime around massive BHs. Furthermore,
these detections will have an astrophysical impact by allowing us to study the
population of massive BHs and a cosmological one by allowing us to determine
the expansion history of the Universe through measuring the Hubble constant
[17].

To achieve the aforementioned goals, the parameters of each EMRI system
must be estimated with high precision. LISA and other similar GW detectors are
expected to simultaneously receive many signals from EMRIs and other sources.
Since these signals will overlap, matched filtering will be employed to accurately
discern them. This method relies on comparing the combined signal with many
waveform templates of the expected sources. Although for the detection of strong
EMRI signals it might be possible to use simpler kludge models [18], for the
detection of weaker signals and for the parameter estimation the templates must
be modeled with high accuracy. Because the GW phase accumulates to O(q−1)
during the inspiral, to achieve subradian accuracy, the phase must be modeled to
subleading order.

The fact that the mass ratio q of an EMRI is very small allows us to employ
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perturbation theory to describe it [19]. In this framework, the spacetime can be
expanded around the background spacetime of the primary in powers of the mass
ratio. Having this in mind, we can study the motion of the secondary body on the
background spacetime. While orbiting around the primary body, the secondary
is perturbing the background spacetime. Without this perturbation, the motion
would be governed by the geodesic equation for a nonspinning secondary and
by the Mathisson-Papapetrou-Dixon (MPD) equations for a spinning secondary.
When the perturbation is present, it creates a force called the self-force which
drives the body away from the zeroth-order nonperturbed trajectory. This force
has a dissipative part which causes the decay of the orbit, but also a conservative
part; it can be expanded in the mass ratio to first-order and second-order self-
force.

Because this self-force is of the order of the mass ratio and, thus, the inspiral
is slow, we can describe the system as a body moving on an orbit parametrized
by given orbital parameters which are slowly evolving on the inspiral timescale,
that is much longer than the orbital timescale. This is known as the two timescale
approximation. Using this approximation, it was proven in [20] that the leading
“adiabatic” term of the GW phase can be calculated from the average of the
dissipative part of the first-order self-force, while the subleading “postadiabatic”
term is composed of three parts: the oscillating piece of the dissipative part of
the first-order self-force, the conservative part of the first-order self-force and the
average of the dissipative part of the second-order self-force. To achieve subradian
accuracy, the postadiabatic term must be taken into account since the adiabatic
and postadiabatic terms are O(q−1) and O(q0), respectively.

It was proven for a nonspinning secondary [21] that, due to the flux-balance
laws, the rate of change of the energy and angular momentum of the system is
equal to the energy and angular momentum GW flux. In particular, the rate
of change of each of these quantities is equal to minus the sum of their flux to
infinity and their flux to the horizon of the central BH. Thus, the adiabatic term
can be calculated by adiabatically evolving the obits using the fluxes without the
need of the full perturbation and the self-force. This fact was also proven for a
spinning secondary [22, 23]. Because the spin of the secondary σ is of the order
of the mass ratio, the relative spin correction to the fluxes is of O(q). During the
inspiral, this accumulates to O(q0) correction to the phases, because the duration
is proportional to O(q−1). Therefore, this phase shift is of the same order as the
rest of the postadiabatic terms mentioned above and the spin of the secondary
must be taken into account to achieve the subradian accuracy.

The computation of fluxes for EMRIs has been widely studied in different
setups since the 1990s. Table 1 summarizes works calculating GW fluxes and flux-
driven inspirals of various orbital configurations. For brevity, only fully relativistic
fluxes are mentioned, i.e. works calculating the fluxes as a post-Newtonian (PN)
expansion are omitted. In this thesis we present the calculation of GW fluxes
from eccentric equatorial orbits of spinning particles in the Kerr spacetime with
aligned spins as introduced in Ref. [39] that is attached in Appendix A.1, along
with their linearization in the secondary spin and calculation of the respective
adiabatic inspirals as introduced in Ref. [40] that is attached in Appendix A.2.
Furthermore, we present the calculation of GW fluxes from generic orbits of
spinning particles in the Kerr spacetime as introduced in Ref. [41] attached in
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Authors, Ref. a e I σ inspirals
Shibata [24], Hughes [25] ✓ ✓

Cutler et al. [26] ✓ ✓
Shibata [27], Glampedakis and Kennefick [28] ✓ ✓

Finn and Thorne [29] ✓ ✓
Hughes [30] ✓ ✓ ✓

Drasco and Hughes [31] ✓ ✓ ✓
Han [32], Harms et al. [33] ✓ ✓

Nagar et al. [34], Akcay et al. [22] ✓
Piovano et al. [35, 36] ✓ ✓ ✓
Fujita and Shibata [37] ✓ ✓ ✓

Hughes et al. [38] ✓ ✓ ✓ ✓
Skoupý and Lukes-Gerakopoulos [39] ✓ ✓ ✓
Skoupý and Lukes-Gerakopoulos [40] ✓ ✓ ✓ ✓

Skoupý et al. [41] ✓ ✓ ✓ ✓

Table 1: A summary of works calculating GW fluxes from an EMRI. The simplest
cases of work concern circular orbits around a Schwarzschild BH, i.e., the Kerr
parameter a and the eccentricity e are zero. While for a primary Kerr BH, the
orbits can span from an equatorial one to an inclined one. In this table the second
column indicates whether the central BH is spinning (a ̸= 0) or not; the third
column indicates if the orbits are eccentric (e ̸= 0); the fourth column indicates
if the orbits are inclined with respect to the equatorial plane (I ̸= 0); the fifth
column indicates whether the secondary body is spinning (σ ̸= 0) or not. This
table extends Table I of Ref. [31] by including later works.

Appendix A.3.
The rest of the thesis is organized as follows. In Chapter 1 the motion of

spinning bodies is described with focus given on equatorial and generic orbits
in the Kerr spacetime. Chapter 2 deals with the black hole perturbation theory
and self-force. In particular, it describes the calculation of the GW fluxes from
orbits calculated in the previous chapter. Chapter 3 presents the equations for the
adiabatic evolution using these fluxes and the phase shifts due to the secondary
spin. Finally, Chapter 4 discusses the numerical methods for the calculation of:
equatorial and generic trajectories of spinning particles, the GW fluxes generated
by these trajectories and the adiabatic inspirals in the equatorial plane while
presenting the respective results.

Notation
Throughout this work, geometric units are used, where the speed of light and
the gravitational constant are set to unity as c = G = 1. Spacetime indices are
denoted by greek letters and run from 0 to 4, whereas tetrad indices are denoted
with latin letters from the beginning of the alphabet. A partial derivative is
denoted by a comma, like ∂µUν = Uν,µ, while a covariant derivative is denoted
by semicolon, like ∇µUν = Uν;µ. The Riemann tensor is defined as Rµ

νκλ =
Γµ

νλ,κ − Γµ
νκλ + Γµ

ρκΓρ
νλ − Γµ

ρλΓρ
νκ and the sign of the Levi-Civita tensor ϵαβγδ

is defined as ϵ0123 = 1/√−g. The signature of the metric is (−,+,+,+).

5



6



1. Dynamics of spinning bodies
in curved spacetimes
EMRIs can be modeled as compact spinning bodies moving on a BH background
spacetime. For such modeling, we take into account that an isolated extended
body can be described by its multipolar expansion given by the Mathisson’s
gravitational skeleton approach [42, 43]. If the body is compact, i.e., its stress-
energy tensor T µν has a small support in comparison with the characteristic length
of the background spacetime, the multipole moments can be defined as [44]∫︂

x0=const
T µνδxα1 . . . δxαn

√
−g d3x , (1.1)

where δxα = xα − zα is a deviation from some representative worldline zα(τ) and
g is the determinant of the background metric.

For compact bodies like BHs and NSs, the expansion can be truncated at the
dipole level leaving only for the approximation the monopole and dipole terms.
These multipoles are represented by the linear momentum P µ and the spin tensor
Sµν which are defined as [44]

Sµν =
∫︂

x0=const

(︂
T ν0δxµ − T µ0δxν

)︂√
−gd3x , (1.2a)

P µ =
∫︂

x0=const
T µ0√−gd3x+ Γµ

ρσ
vρ

v0S
σ0 , (1.2b)

where Γµ
ρσ is the Christoffel symbol, vµ = dzµ/dτ is the four-velocity of the rep-

resentative worldline, and τ is the proper time. We use the adapted coordinates
of Kyrian and Semerák [44] where δx0 = 0. For covariant derivation see [45].

The stress-energy tensor in this pole-dipole approximation can be written as
[46, 47]

T µν =
∫︂

dτ
(︄
P (µvν) δ

4(xσ − zσ(τ))√
−g

− ∇ρ

(︄
Sρ(µvν) δ

4(xσ − zσ(τ))√
−g

)︄)︄
. (1.3)

The linear momentum P µ and the spin tensor Sµν can be reconstructed from the
covariant form of the surface integrals (1.2) and the stress-energy tensor (1.3)
[48]. This form of the stress energy tensor has been derived from the field outside
the body using matched asymptotics [49] and, apart from material bodies, holds
for BHs and exotic bodies.

1.1 Mathisson-Papapetrou-Dixon equations
From the conservation law of the stress-energy tensor (1.3) T µν

;ν = 0 the MPD
equations can be derived in the form

DP µ

dτ = −1
2R

µ
ναβv

νSαβ , (1.4a)
DSµν

dτ = P µvν − vµP ν , (1.4b)
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where Rµ
ναβ is the Riemann tensor. These are the evolution equations for the

four-momentum P µ and the spin tensor Sµν .
However, this system of equations is insufficient to fully describe the evolution

since only 10 equations are available for 14 variables (zµ, P µ, Sµν)1. This issue is
related to the observer-dependence of the center of mass in general relativity. To
close the system, a so called spin supplementary condition (SSC)

SµνVν = 0 (1.5)

must be imposed, where V µ is a timelike vector. For the reference vector V µ the
center of mass coincides with the representative worldline. Eq. (1.5) consists of
three linearly independent equations. The fourth constraint in our work comes
from imposing the normalization of the four-velocity

vµvµ = −1 . (1.6)

Several SSCs have been suggested [50, 51, 52, 44]. In this work we use the
Tulczyjew-Dixon SSC [52, 53]

SµνPν = 0 . (1.7)

Under this SSC the mass of the spinning body µ and the magnitude of its spin
S defined as

µ =
√︂

−P µPµ , S =
√︄
SµνSµν

2 (1.8)

are conserved along the evolution.
Once we set the SSC using Eq. (1.7), the four-velocity can be expressed using

the four-momentum and spin tensor as [54, 55]

vµ = m
µ

⎛⎝uµ +
1

2µ2S
µνRνρκλu

ρSκλ

1 + 1
4µ2RαβγδSαβSγδ

⎞⎠ , (1.9)

where m ≡ −P µvµ is the mass of the particle with respect to the four-velocity
which can be determined from the four-velocity normalization (1.6) and uµ is
specific four-momentum defined as

uµ = P µ

µ
. (1.10)

It is convenient to define the spin four-vector Sµ as

Sµ = −1
2ϵµνρσu

νSρσ , Sµν = ϵµνρσuρSσ . (1.11)

It can be proven that S =
√︂
SµSµ. From the antisymmetry of ϵµνρσ and Eq. (1.11)

it holds that Sµuµ = 0, while contracting Eq. (1.9) with Sµ leads to Sµvµ = 0.
From Eqs. (1.4) and (1.11) the spin vector follows the evolution equation

DSµ

dτ = − 1
µ
uµR∗

αβγδS
αvβuγSδ , (1.12)

1Note that the tensor Sµν is skew-symmetric and, thus, has 6 independent components.
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where
R∗

αβγδ = 1
2Rαβ

µνϵµνγδ (1.13)

is the right dual of the Riemann tensor.
For the spin magnitude it is convenient to define a dimensionless spin param-

eter
σ = S

µM
. (1.14)

When the small body is an extremal Kerr BH, the spin magnitude is S = µ2

and, therefore, σ = q. Because of this, for an EMRI it holds σ = O(q) and
any spin effects of the secondary are suppressed by the first power of the mass
ratio. Hence, the motion is often linearized in σ and all the contributions O(σ2)
can be discarded. This justifies why in our calculations for spinning bodies the
spin-induced quadrupole moment is neglected.

After linearizing in σ, the four-momentum and four-velocity are parallel, i.e.,
P µ = µvµ, and the MPD equations take the form

DP µ

dτ = −1
2R

µ
ναβu

νSαβ , (1.15a)
DSµν

dτ = 0 (1.15b)

with the equation for the spin four-vector

DSµ

dτ = 0 . (1.16)

1.2 Constants of motion
When the background spacetime is equipped with a Killing vector field ξµ satis-
fying ξ(µ;ν) = 0, for every such Killing vector there exist a constant of motion in
the form [53]

C = ξµPµ − 1
2ξµ;νS

µν . (1.17)

This constant of motion is conserved even in the nonlinear case. To prove the
conservation of C, one can use the identity ∇α∇γξβ = ξδRδαγβ.

In axisymmetric and stationary spacetimes such as the Kerr spacetime there
exist two Killing vectors, a timelike one2 and a spacelike one. The constants
of motion that arise from these symmetries are the energy and the component
of the total angular momentum parallel to the symmetry axis. However, it was
proven that under Tulczyjew-Dixon SSC this system has five degrees of freedom
[56] and, thus, two more constants of motion are needed on top of the energy,
angular momentum and mass of the body to make the system integrable. No such
constants of motion exist in the fully nonlinear case and, therefore, the system
is non-integrable. It has been shown numerically that the effect of the non-
integrability is driven by quadratic-in-spin terms in the Schwarzschild spacetime
[57], which is the nonrotating spherically symmetric limit of the Kerr spacetime.

2With the exception of a region called ergoregion near the horizon where both vectors are
spacelike.
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Rüdiger [58, 59] found two additional quantities which are conserved up to lin-
ear order in spin when the spacetime admits a Killing-Yano tensor which satisfies
Y(µν) = 0 and Yµ(ν;ρ) = 0. These quantities can be written as

CY = YµνP
µSν , (1.18)

KR = YµκYν
κP µP ν + 2µZ;µS

µ + 2µ−1YµκP
µSκξνP

ν , (1.19)

where Z = YκλYµνϵ
κλµν/8 and ξν is the timelike Killing vector. For these quasi-

conserved quantities it holds

dCY

dτ = O
(︂
σ2
)︂
,

dKR

dτ = O
(︂
σ2
)︂
. (1.20)

Therefore, the system is nearly integrable when linearized in σ.

1.3 Motion in the Kerr spacetime
An EMRI can be described as a small body moving in a Kerr BH spacetime
background, which is described by the following metric tensor written in rational
polynomial coordinates

ds2 = −
(︃

1 − 2Mr

Σ

)︃
dt2 − 4aMr(1 − z2)

Σ dtdϕ

+ Σ
∆dr2 + Σ

1 − z2 dz2 + (ϖ4 − a2∆(1 − z2))(1 − z2)
Σ dϕ2 , (1.21)

where

Σ = r2 + a2z2 ,

∆ = r2 − 2Mr + a2 ,

ϖ2 = r2 + a2 .

These coordinates are related to the standard Boyer-Lindquist coordinates with
z = cos θ.

This metric tensor has two parameters, namely the mass M and the specific
angular momentum a, also known as the Kerr parameter. It describes a rotating
BH in vacuum with an outer and an inner horizon located at

r± = M ±
√
M2 − a2 . (1.22)

It is equipped with two Killing vectors, one timelike

ξµ
(t)∂µ = ∂t (1.23)

related to the stationarirty and one spacelike

ξµ
(ϕ)∂µ = ∂ϕ (1.24)

related to the axisymmetry. These vectors satisfy the Killing equation ξ(µ;ν) = 0.
On top of that, there exist a Killing-Yano tensor

Yµν dxµ ∧ dxν = az dr ∧
(︂
dt− a(1 − z2)dϕ

)︂
+ r dz ∧

(︂
adt−ϖ2dϕ

)︂
. (1.25)

10



From this tensor, a Killing tensor Kµν = YµρYν
ρ can be defined, which satisfies

K(µν) = 0 and K(µν;ρ) = 0.
Thanks to these symmetries, the following quantities are conserved:

E = −ξµ
(t)uµ + 1

2µξ
(t)
µ;νS

µν = −ut + 1
2µgtµ,νS

µν , (1.26)

Jz = ξµ
(ϕ)uµ − 1

2µξ
(ϕ)
µ;νS

µν = uϕ − 1
2µgϕµ,νS

µν , (1.27)

CY = µ−1Yµνu
µSν , (1.28)

KR = Kµνu
µuν + 2µ−1Z,µS

µ + 2µ−1Yµκu
µSκξ(t)

ν uν , (1.29)

where Z = arz. They can be respectively interpreted as the total specific energy
measured at infinity, component of the total specific angular momentum parallel
to the symmetry axis measured at infinity, projection of the specific spin vector
to the total orbital angular momentum and Carter-like constant. Note that the
last two quantities are conserved up to linear order in σ.

1.3.1 Motion in the equatorial plane
Because of the reflection symmetry around the equatorial plane in the Kerr space-
time, equatorial orbits can be found much more easily than the generic ones as is
shown in this Section. If the particle is confined to the equatorial plane, it must
hold z = 0 and vz = 0. From the ortoghonality Sµvµ = 0, all components of the
spin vector except the z component must be zero, i.e.,

Sµ = Szδ
z
µ . (1.30)

From the normalization of the spin vector, it holds Sz = rS, where the sign is
chosen such that for the spin aligned with the symmetry axis S > 0 and for
antialigned spin S < 03.

Using Eq. (1.11) the nonzero components of the spin tensor can be found as
[60]

Str = −Srt = −Suϕ

r
, (1.31a)

Stϕ = −Sϕt = S
ur

r
, (1.31b)

Srϕ = −Sϕr = −Sut

r
. (1.31c)

From Eqs. (1.26), (1.27) and (1.31), we can express ut and uϕ in terms of E, Jz

and σ in the form [60]

ut =
−E + σM2

r3 (Jz − aE)
1 − σ2M3

r3

, (1.32)

uϕ =
Jz − σME − aσM2

r3 (Jz − aE)
1 − σ2M3

r3

. (1.33)

3The sign of Sθ is opposite if we use Boyer-Lindquist coordinates since dθ/dz
⃓⃓
z=0 = −1.
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Finally, using the four-velocity relation (1.9) and the normalization of the four-
momentum, the equations of motion can be reformulated as [61, 39]

ΣσΛσ
dt
dτ = m

µ
V t , (1.34a)

ΣσΛσ
dr
dτ = ±m

µ

√︂
Rσ(r) , (1.34b)

ΣσΛσ
dϕ
dτ = m

µ
V ϕ , (1.34c)

where

Σσ = r2
(︄

1 − σ2M3

r3

)︄
,

Λσ =
(︄

1 + 1
4µ2RαβγδS

αβSγδ

)︄(︄
1 − σ2M3

r3

)︄−1

= 1 − 3σ2M3rx2

Σ3
σ

,

m
µ

= Λσ

⌜⃓⃓⎷ 1 − σ2M3

r3

−1 + 2Λσ − (2 − Λσ)σ2M3

r3

,

V t = a

(︄
1 + 3σ2

rΣσ

)︄
x+ ϖ2

∆ Pσ ,

Rσ = P 2
σ − ∆

(︄
Σ2

σ

r2 + x2
)︄
,

V ϕ =
(︄

1 + 3σ2

rΣσ

)︄
x+ a

∆Pσ ,

Pσ = ΣσE −
(︃
a+ σ

r

)︃
x ,

x = Jz − (a+ σM)E .

It is convenient to switch the parametrization of the equations from proper time
τ to a parameter λ similar to the Carter-Mino time defined as

dτ
dλ = µΣσΛσ

m = r2

⌜⃓⃓⎷(︄1 − σ2M3

r3

)︄(︄
−1 + 2Λσ − (2 − Λσ)σ

2M3

r3

)︄
. (1.35)

In this work we are interested in bound orbits which are confined to a region
between their turning points r2 ≤ r ≤ r1. It is convenient to parametrize the
orbit with semi-latus rectum p and eccentricity e, which are defined using the
aforementioned turning points as

r1 = pM

1 − e
, r2 = pM

1 + e
(1.36)

with the inverse relation reading

p = 2r1r2

M(r1 + r2) , e = r1 − r2

r1 + r2
. (1.37)

Then it is possible to find the constants of motion E and Jz as functions of these
orbital parameters. To do this, in [39] we used a similar approach to the one used
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for geodesic motion in Ref. [62]. At the turning points the radial velocity from
Eq. (1.34b) must vanish, i.e.

Rσ(r1) = 0 , Rσ(r2) = 0 . (1.38)
This is a set of quadratic equations for E and Jz which can be solved as

E =
κρ+ 2σ̃

(︂
ϵ− sgn Jz

√
ϵ2 + κζ

)︂
ρ2 + 4ησ̃ , (1.39a)

Jz =
−2κη + ρ

(︂
ϵ− sgn Jz

√
ϵ2 + κζ

)︂
(ρ2 + 4ησ̃)E , (1.39b)

where the coefficients κ, ρ, σ̃, ϵ, ζ, and η are functions of a, p, e, and σ as defined
in Eqs. (33), (36), and (37) in [39]. The sign of Jz is positive for prograde orbits
and negative for retrograde orbits.

Using Eqs. (1.34) it is possible to find the orbital frequencies. To achieve this,
we reparametrize the orbits using the relativistic anomaly χr defined as

r = pM

1 + e cosχr

. (1.40)

Then, the equations of motion for t and ϕ in the Darwin parametrization read,
respectively,

dt
dχr

= V t(r(χr))

⌜⃓⃓⎷ 1 − e2

p2J(χr)
, (1.41a)

dϕ
dχr

= V ϕ(r(χr))

⌜⃓⃓⎷ 1 − e2

p2J(χr)
, (1.41b)

where J(χr) is defined in Eq. (B8) in Ref. [40].
The motion from the pericenter to the apocenter and back to the pericenter

corresponds to χr going from 0 to 2π. Therefore, the time and the azimuthal
phase accumulated between two successive passages through the pericenter reads,
respectively,

Tr = 2
√

1 − e2

p

∫︂ π

0

V t(r(χr))√︂
J(χr)

dχr , (1.42a)

∆ϕ = 2
√

1 − e2

p

∫︂ π

0

V ϕ(r(χr))√︂
J(χr)

dχr , (1.42b)

where we used the fact that the integrand is even around χr = π. Then, the
coordinate-time frequencies can be expressed as

Ωr = 2π
Tr

, Ωϕ = ∆ϕ
Tr

. (1.43a)

The evolution of the coordinate time and the azimuthal coordinate can be
expressed as a linearly growing part plus an oscillating part as

t(χr) = Tr

2πχr +
∞∑︂

n=1
tn sin(nχr) , (1.44a)

ϕ(χr) = ∆ϕ
2π χr +

∞∑︂
n=1

ϕn sin(nχr) , (1.44b)
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where the Fourier coefficients can be found using the cosine transform as

tn = 2
√

1 − e2

πnp

∫︂ π

0

V t(r(χr))√︂
J(χr)

cos(nχr)dχr , (1.45a)

ϕn = 2
√

1 − e2

πnp

∫︂ π

0

V ϕ(r(χr))√︂
J(χr)

cos(nχr)dχr . (1.45b)

Here we assume that the particle starts at the pericenter. For generic initial
phases χr0 and ϕ0 the relations read

t(χr) = ť(χr + χr0) − ť(χr0) , (1.46a)
r(χr) = ř(χr + χr0) , (1.46b)
ϕ(χr) = ϕ0 + ϕ̌(χr + χr0) − ϕ̌(χr0) . (1.46c)

The check mark denotes the fiducial trajectory with zero initial phases.

Linearization in the secondary spin

As was stated earlier, it is reasonable to linearize the system in σ. There are sev-
eral options how to do this linearization which depend on the reference geodesic.
Any geodesics can be used as a reference, however, there are few choices that are
more convenient for our calculations.

The first method, on which we focus, relies on fixing the orbital parameters p
and e and expanding various quantities as

f(p, e, σ) = p(g)(p, e) + σ δf
⃓⃓⃓⃓
p,e

(p, e) + O
(︂
σ2
)︂
, (1.47)

where

f (g)(p, e) = f(p, e, 0) , δf
⃓⃓⃓⃓
p,e

(p, e) = ∂f

∂σ

⃓⃓⃓⃓
⃓
σ=0

. (1.48)

The orbital frequencies are then linearized as

Ωi(p, e, σ) = Ω(g)
i (p, e) + σδΩi(p, e) + O

(︂
σ2
)︂
. (1.49)

The advantage of this method is that the quantities such as the frequencies or
constants of motion are often formulated as functions of p, e, and σ.

However, for other quantities such a energy and angular momentum fluxes, it
is convenient to linearize them with respect to a geodesic with the same frequen-
cies. Formally, we can write

f(Ωi, σ) = f (g)(Ωi) + σ δf

⃓⃓⃓⃓
Ωi

(Ωi) + O
(︂
σ2
)︂
, (1.50)

where

f (g)(Ωi) = f(Ωi, 0) , δf
⃓⃓⃓⃓
Ωi

(Ωi) = ∂f

∂σ

⃓⃓⃓⃓
⃓
σ=0

. (1.51)
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The linear parts δf |p,e and δf |Ωi
are in general different and it is possible to

calculate one from the other. To find the relation between them, we linearize the
orbital parameters as

p(Ωi, σ) = p(g)(Ωi) + σδp(Ωi) + O
(︂
σ2
)︂
, (1.52a)

e(Ωi, σ) = e(g)(Ωi) + σδe(Ωi) + O
(︂
σ2
)︂
. (1.52b)

However, the dependence of p and e on Ωi is not known in general. To find the
linear parts, one can use the relations [40]

δp =
∂Ω(g)

ϕ

∂e
δΩr − ∂Ω(g)

r

∂e
δΩϕ⃓⃓⃓

J(Ωi)

⃓⃓⃓ , (1.53a)

δe =
−∂Ω(g)

ϕ

∂p
δΩr + ∂Ω(g)

r

∂p
δΩϕ⃓⃓⃓

J(Ωi)

⃓⃓⃓ , (1.53b)

where the Jacobian determinant is

⃓⃓⃓
J(Ωi)

⃓⃓⃓
= ∂Ω(g)

r

∂p

∂Ω(g)
ϕ

∂r
− ∂Ω(g)

r

∂r

∂Ω(g)
ϕ

∂p
(1.54)

and δΩi are from Eq. (1.49). δp and δe calculated from Eq. (1.53) are functions
of p and e and they can be interpreted as shift in p and e when a geodesic with
orbital parameters p and e is perturbed by the spin, while keeping the frequencies
fixed.

Linear parts of other quantities such as energy or angular momentum with
fixed frequencies can be calculated as

δf
⃓⃓⃓⃓
Ωi

(p, e) = δf
⃓⃓⃓⃓
p,e

+ ∂f (g)

∂p
δp+ ∂f (g)

∂e
δe . (1.55)

This is again a function of p and e which can be understood as the orbital pa-
rameters of the reference geodesics.

To calculate the linear part of the coordinate time and the azimuthal coordi-
nate as functions of χr, the formulas (1.45) can be linearized. The linear part of
the radial coordinate with fixed frequencies reads

δr(χr) = δpM

1 + e cosχr

− pMδe cosχr

(1 + e cosχr)2 . (1.56)

1.3.2 Offequatorial motion
The off-equatorial motion is much more involved and, so far, in the linear-in-
spin regime it has been solved only by Witzany using Hamilton-Jacobi equation
[63] and by Drummond and Hughes in the frequency domain [64, 65]. Here we
describe the latter approach.

When the system is linearized in the secondary spin, Eq. (1.16) can be written
as

dSµ

dτ + Γµ
αβu

αSβ = 0 . (1.57)
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Since the vector Sµ is proportional to σ, we can neglect the linear-in-spin contri-
bution to Γµ

αβ and uβ and take their geodesic values. Then, Eq. (1.57) describes
a vector Sµ parallely transported on a geodesic. This topic was studied by Marck
in Ref. [66]. It is convenient to describe the parallel transport in tetrad formal-
ism, where some of the tetrad legs are parallel transported. The zeroth leg can
be constructed from the geodesic velocity ûµ

e0µdxµ = −Ê dt+
dr̂
dλ

∆ dr +
dẑ
dλ

1 − z2 dz + L̂z dϕ (1.58a)

which is parallel transported from the definition. The hat denotes quantities
related to the reference geodesics4. Another leg can be defined as the normalized
total orbital angular momentum lµ = Yν

µûν which is parallel transported because
of the properties of the Killing-Yano tensor. The components of this tetrad leg
read

e3µdxµ = 1√︂
K̂

⎛⎝ar dẑ
dλ

+ z dr̂
dλ

Σ dt− az
ϖ2Ê − aL̂z

∆ dr

− r
(1 − z2)aÊ − L̂z

1 − z2 dz −
a2z(1 − z2) dr̂

dλ
+ rϖ2 dẑ

dλ

Σ dϕ
⎞⎠ . (1.58b)

The remaining legs eµ
1 and eµ

2 are chosen such that they are orthogonal to eµ
0 and

eµ
3 . Their components are

e1µdxµ = 1√︂
K̂

⎛⎝−Ξr dr̂
dλ

+ a2z
Ξ

dẑ
dλ

Σ dt+ Ξrϖ
2Ê − aL̂z

∆ dr

− az

Ξ
(1 − z2)aÊ − L̂z

1 − z2 dz + a
Ξr(1 − z2) dr̂

dλ
− z

Ξϖ
2 dẑ

dλ

Σ dϕ
⎞⎠ , (1.58c)

e2µdxµ =
(︄

−Ê

Ξ + (1 − Ξ2)(ϖ2Ê − aL̂z)
ΞΣ

)︄
dt+ Ξ

∆
dr̂
dλdr

+ 1
Ξ(1 − z2)

dẑ
dλdz +

(︄
ΞL̂z − (1 − Ξ2)ϖ2((1 − z2)aÊ − L̂z)

ΞΣ

)︄
dϕ ,

(1.58d)

where

Ξ =

⌜⃓⃓⎷K̂ − a2z2

K̂ + r2
, (1.59)

and they are not parallel transported.
In this tetrad the solution takes a simple form

Sµ = S⊥(cosψpe
µ
1 + sinψpe

µ
2) + S∥e

µ
3 (1.60)

4Note that, to keep the notation similar with the original papers, we denote the geodesic part
of equatorial quantities with superscript (g) and of offequatorial quantities with a hat. Linear-
in-spin parts are denoted with δ for equatorial quantities and with subscript or superscript S
for offequatorial quantities.

16



where ψp is a function of time and S⊥ and S∥ are constants which satisfy S2
∥ +

S2
⊥ = S2. The spin vector can be interpreted as a vector precessing around the

total orbital angular momentum with precession phase ψp satisfying the evolution
equation

dψp

dλ = −
√︂
K̂

(︄
(r2 + a2)Ê − aL̂z

K̂ + r2
+ a

L̂z − a(1 − z2)Ê
K̂ − a2z2

)︄
, (1.61)

where λ is the Carter-Mino time satisfying dτ/dλ = Σ. The average rate of
change of ψp can be interpreted as the (Carter-Mino time) frequency Υs. Analytic
solution for Υs and ψp(λ) was found by van de Meent in [67].

The constant S∥ represents the projection of the spin vector to the orbital
angular momentum and is related to the Rüdiger’s constant as CY =

√︂
K̂S∥.

Description in the frequency domain

Drummond and Hughes [64, 65] found a procedure to numerically calculate the
linear correction to the trajectory in frequency domain with respect to a reference
geodesic with the same orbital parameters p, e and I, where p and e are defined
in Eqs. (1.37) and I is defined from the polar turning point z1 as sin I = z1.
Because in the generic case the radial turning point depends on z and the polar
turning point depends on r, the orbit is parametrized as follows

r = pM

1 + e cos(Υrλ+ δχ̂r(λ) + δχS
r (λ)) + rS(λ) , (1.62a)

z = sin I cos
(︂
Υzλ+ δχ̂z(λ) + δχS

z (λ)
)︂

+ zS(λ) , (1.62b)

where rS(λ) and zS(λ) represent the corrections to the turning points and they
average to zero.

The radial and polar frequencies with respect to the Carter-Mino time are

Υr = Υ̂r + ΥS
r , (1.62c)

Υz = Υ̂z + ΥS
z . (1.62d)

Corrections to the four-velocity are parametrized as

ut = −Ê + uS
t (λ) , (1.62e)

uϕ = L̂z + uS
ϕ(λ) . (1.62f)

In these equations the hat denotes geodesic quantities and the superscript S
denotes the linear-in-spin parts.

Quantities in Eqs. (1.62) can be decomposed into Fourier modes as

uS
t,ϕ =

∑︂
n,k,j

ut,ϕ,nkje
−inΥrλ−ikΥzλ+ijΥsλ , (1.63a)

δχS
r =

∑︂
n̸=0

δχS
r,ne

−inΥrλ , (1.63b)

δχS
z =

∑︂
k ̸=0

δχS
z,ke

−ikΥzλ , (1.63c)
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rS =
∑︂
n,k,j

rnkje
−inΥrλ−ikΥzλ+ijΥsλ , (1.63d)

zS =
∑︂
n,k,j

znkje
−inΥrλ−ikΥzλ+ijΥsλ , (1.63e)

where n and k are summed from −∞ to +∞ and j from −1 to 1. In Eq. (1.63d)
k and j cannot be simultaneously zero and in Eq. (1.63e) n and j cannot be
simultaneously zero. After expanding Eqs. (1.15a) and (1.6) to linear order in σ,
the Fourier coefficients in Eqs. (1.63) with the corrections to the frequencies can
be found as a solution to a system of linear equations.

Because the frequencies of a trajectory of a spinning particle are different
from the geodetic frequencies, when the deviation of the coordinates is calcu-
lated, it contains a secularly growing part [64, 65]. Therefore, it is convenient to
parametrize the orbit with phases defined as

wr = Υrλ , (1.64a)
wz = Υzλ , (1.64b)
ws = Υsλ . (1.64c)

Then we can find the corrections to the coordinates as r = r̂(wr) + rS(wr, wz, ws)
and z = ẑ(wz) + zS(wr, wz, ws), where

rS = peMδχS
r (wr) sin(wr + δχ̂r(wr))

(1 + e cos(wr + δχ̂r(wr)))2 + rS(wr, wz, ws) , (1.65a)

zS = − sin IδχS
z (wz) sin(wz + δχ̂z(wz)) + zS(wr, wz, ws) . (1.65b)

To find the corrections to the frequencies Γ and Υϕ, one has to calculate the
linear part of the four-velocity with respect to Carter-Mino time

Uµ = Σuµ = Û
µ + Uµ

S (1.66)

and calculate the average of U t,ϕ
S , i.e., the Fourier component U t,ϕ

S,000. Then, the
coordinate frequencies can be found as

Ωr = Υ̂r + ΥS
r

Γ̂ + ΓS
, (1.67a)

Ωz = Υ̂z + ΥS
z

Γ̂ + ΓS
, (1.67b)

Ωs = Υ̂s + ΥS
s

Γ̂ + ΓS
. (1.67c)

Similarly, from the four-velocity Uµ, the coordinate time t(λ) and the az-
imuthal coordinate ϕ(λ) can be calculated. As in the geodesic case, they can be
written as a secularly growing part and an oscillating part as

t(λ) = Γλ+ ∆t(Υrλ,Υzλ,Υsλ) , (1.68)
ϕ(λ) = Υϕλ+ ∆t(Υrλ,Υzλ,Υsλ) , (1.69)

where the linear corrections to the oscillating parts can be found using Eq. (35)
in Ref. [41].
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2. Perturbation theory and the
self-force
Because it is not possible to calculate the dynamical spacetime describing an
EMRI analytically or by numerically evolving the Einstein equations, perturba-
tion theory is often used instead [68, 19]. In the perturbation framework the exact
spacetime gexact

µν which captures both the fields of the primary and the secondary
along with the gravitational radiation, can be expanded in the mass ratio as

gexact
µν = gµν + ϵh(1)

µν + ϵ2h(2)
µν + O

(︂
ϵ3
)︂

= gµν + hµν , (2.1)

where gµν is the unperturbed background spacetime of the primary BH, h(n)
µν is the

n-th order perturbation and ϵ is a bookkeeping parameter counting the powers
of the mass ratio and it can be later set to 1. The series is often truncated at
second order in ϵ since such approximation is sufficient for EMRI modelling [20].
The stress-energy tensor of the secondary body is expanded in the mass ratio
as well as T µν = ϵT µν

(1) + ϵ2T µν
(2) . Terms proportional to the secondary spin are

present in T µν
(2) since S = O(ϵ2). After expanding the Einstein’s field equations,

the zeroth order corresponds to vacuum Einstein’s equations whose solution is
the Kerr spacetime. The next two orders read

δGµν [h(1)] = T (1)
µν , (2.2a)

δGµν [h(2)] = T (2)
µν − δ2Gµν [h(1), h(1)] , (2.2b)

where δGµν and δ2Gµν are the first and second order terms in the expansion of
the Einstein tensor and their form can be found in Eqs. (3)-(6) in [19]. In this
work we discard the second term on the right hand side of Eq. (2.2b) and solve
the equations as1

δGµν [h(1) + h(2)S] = Tµν (2.3)

with the unexpanded skeleton source from Eq. (1.3) and h(2)S denoting the term
linear in S. This approach is justified because we take into account only the
terms linear in the mass of the particle µ and in the secondary spin S, i.e., we
neglect the quadratic term which can be treated separately [23].

The perturbation hµν can be split into a singular field hS
µν and a regular field

hR
µν , i.e. hµν = hR

µν + hS
µν . The regular field satisfies the homogeneous Einstein’s

equations and the singular field, which is derived using matched asymptotics
method [69, 70], captures the local behavior of the spacetime around the sec-
ondary body. It has been proven that according to the generalized equivalence
principle the motion of the secondary body with any multipole structure can be
described as a motion of a particle in an effective metric given by g̃µν = gµν +hR

µν

[71]. In order to find the equations of motion for a spinning secondary in the
background spacetime gµν , the MPD equations (1.15) are expanded in the mass
ratio. After the expansion of the covariant derivative and the Riemann tensor to
first order in σ and ϵ and correcting the proper time using Eq. (36) that can be

1Instead of these equation, we use Teukolsky formalism described in Section 2.1
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found in Ref. [72], we obtain

D2zµ

dτ 2 = −1
2R

µ
ναβu

νsαβ
(︃

1 − 1
2h

R
ρσu

ρuσ
)︃

− 1
2P

µν
(︂(︂

2hR
νρ;σ − hR

ρσ;ν

)︂
uρuσ −

(︂
2hR

ν(σ;α)β − hR
σα;νβ

)︂
uσsαβ

)︂
, (2.4a)

Dsµν

dτ = uρsσ[µgν]λ
(︂
hR

λρ;σ + hR
λσ;ρ − hR

ρσ;ν

)︂
, (2.4b)

where zµ is the position of the particle, sµν = Sµν/µ is the specific spin tensor, and
P µν = gµν + uµuν is orthogonal projector to the four-velocity. The first term in
Eq. (2.4a) can be interpreted as the spin-curvature force with a correction to the
proper time. The first term in the parentheses on the second line reduces to the
MiSaTaQuWa force [73, 74] for zero spin and the second term in the parentheses
represents correction to the spin-curvature force induced by the metric pertur-
bation. Eqs. (2.4) can be interpreted as the MPD equations in the background
spacetime with additional terms which we call the self-force and self-torque. In
general, the force terms can be split into terms proportional to ϵ which are called
first-order self-force and terms proportional to ϵ2 called second-order self-force.
Eqs. (2.4) are identical to Eqs. (6) in [23] with some second-order terms neglected.

To solve the whole inspiral directly from the field equations (2.2) and the equa-
tions of motion (2.4) is a difficult task since they are coupled and both systems
of equations must be solved simultaneously. Therefore, several approximations
must be used. One of these, the two timescale approximation [20], relies on the
separation of the orbital and radiation-reaction timescales. Since the loss of en-
ergy and angular momentum is of the order of the mass ratio, these parameters
evolve on much slower timescale than is the orbital timescale. The governing
equations can be separated into equations for variables evolving in the fast (or-
bital) timescale and for those evolving in the slow (radiation-reaction) timescale.
Therefore, the evolution can be interpreted as an orbit with slowly evolving pa-
rameters, which would be constant without the presence of the self-force. When
the system is described with action-angle variables, the evolution of the angles
ψµ can be expressed as

ψµ = 1
q

(︂
ψµ

0 (qt) + qψµ
1 (qt) + O

(︂
q2
)︂)︂

, (2.5)

where the terms in the parentheses are respectively called the adiabatic and posta-
diabatic term. To find the adiabatic term, only the time average of the dissipative
(time-antisymmetric) part of the first-order self-force is needed, as was first proven
by Mino [21]. For the postadiabatic term, the rest of the first order self-force,
i.e. the oscillating dissipative part and the conservative (time-symmetric) part,
is needed along with the time average of the dissipative part of the second order
self-force.

The angle variables (2.5) are directly related to the GW phases. Thus,
Eq. (2.5) shows that during the inspiral, O(q−1) radians are accumulated in the
leading term before the plunge. In order to accurately model the waveform with
subradian precision, the postadiabatic term must be taken into account as well.

Thanks to the flux-balance laws [21, 75], the adiabatic term can be found
using asymptotic fluxes to infinity and through the horizon of the central BH.
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Thus, one can avoid the local calculation of the self-force and its regularization.
For an EMRI with spinning secondary it was proven [22, 23] from Eqs. (2.4) that
the asymptotic fluxes of energy and angular momentum are equal to the rate of
change of energy and angular momentum of the system defined in Eqs. (1.26) and
(1.27). Since the spin contribution to the fluxes is O(σ) = O(q), it influences the
phase at the postadiabatic order. This suggest that only the spin contribution
to the fluxes is needed without the calculation of the spin-dependence of the
local self-force, at least in the equatorial plane, where only energy and angular
momentum are needed to parametrize the orbits. Thus, the rest of this Chapter
describes the calculation of the asymptotic GW fluxes from orbits of spinning
particles in the Kerr spacetime.

2.1 Gravitational-wave fluxes
To calculate the GW fluxes in a Kerr background, we employ the Newmann-
Penrose formalism in which all tensorial quantities are projected into a null tetrad
lµ, nµ, mµ, and m̄µ, where the bar denotes a complex conjugate. We use the
Kinnersley tetrad [76]

lµ∂µ = ϖ2

∆ ∂t + ∂r + a

∆∂ϕ , (2.6a)

nµ∂µ = ϖ2

2Σ∂t − ∆
2Σ∂r + a

2σ∂ϕ , (2.6b)

mµ∂µ =
√

1 − z2

ζ̄
√

2

(︃
ia∂t − ∂z + i

1 − z2∂ϕ

)︃
, (2.6c)

where ζ̄ = r+ iaz. The GW fluxes to infinity and through the horizon of the BH
are encoded in the perturbation of the Weyl scalars

Ψ0 = −Cαβγδl
αmβlγmδ , (2.7a)

Ψ4 = −Cαβγδn
αm̄βnγm̄δ , (2.7b)

where Cαβγδ is the Weyl tensor. At large radius the dominant components of the
metric perturbation in the radiation gauge are hmm and hm̄m̄ ≡ h = h+ − ih×,
where h is the strain and h+,× are the polarizations. From Eq. (2.7b) the strain
at infinity is related to Ψ4 as

Ψ4(r → ∞) = −1
2

d2h

dt2 . (2.8)

2.1.1 Teukolsky equation
Teukolsky found a decoupled master equation [77](︄

(r2 + a2)2

∆ − a2(1 − z2)
)︄
∂2

sψ

∂t2
+ 4Mar

∆
∂2

sψ

∂t∂ϕ
+
(︄
a2

∆ − 1
1 − z2

)︄
∂2

sψ

∂ϕ2

− ∆−s ∂

∂r

(︄
∆s+1∂sψ

∂r

)︄
− ∂

∂z

(︄
(1 − z2)∂sψ

∂z

)︄
− 2s

(︄
a(r −M)

∆ + iz

1 − z2

)︄
∂sψ

∂ϕ

− 2s
(︄
M(r2 − a2)

∆ − r − iaz

)︄
∂sψ

∂t
+
(︄
s2z2

1 − z2 − s

)︄
sψ = 4πΣT (2.9)
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for a linear perturbation of the Kerr metric expressed by the spin-weighted vari-
able sψ describing different field perturbations. In particular, for s = 0 we have
a scalar field, for s = ±1 an electromagnetic field, and for s = ±2 a gravitational
one. In the latter case, the field variables are

2ψ = Ψ0 , (2.10a)
−2ψ = ζ4Ψ4 . (2.10b)

The source term T is defined in Table I and Eq. (2.15) in [77] and it is constructed
from the stress-energy tensor.

Solutions in the frequency domain

The main advantage of the Teukolsky equation (TE) (2.9) is the separability in
the frequency domain. The field variable sψ can be decomposed into Fourier and
multipolar modes as

sψ =
∑︂
l,m

1
2π

∫︂ ∞

−∞
dωsψlmω(r)sS

aω
lm(z)e−iωt+imϕ , (2.11)

where ω is the frequency and m and l multipolar indices. With this decomposition
it is possible to find separate ordinary differential equations for the radial part
sψlmω(r) and the angular part sS

aω
lm(z) in the form

∆−s d
dr

(︄
∆s+1 dsψlmω

dr

)︄
+
(︄
K2 − 2is(r −M)K

∆ + 4isωr − sλlmω

)︄
sψlmω = sTlmω ,

(2.12)
d
dz

(︄
(1 − z2)dsS

aω
lm

dz

)︄
+
(︄

−(m+ sz)2

1 − z2 + (aωz − s)2 − s(s− 1) + sA
aω
lm

)︄
sS

aω
lm = 0 ,

(2.13)
where K = ϖ2ω − am and sλlmω with sA

aω
lm are the separation constants related

as sλlmω = sA
aω
lm + a2ω2 − 2maω. Although there are no closed-form solutions to

these equations, it is much more computationally expensive to find the solution
for the partial differential equation (2.9).

The solutions to the angular equation (2.13) sS
aω
lm(z) are called the spin-

weighted spheroidal harmonics and are normalized as∫︂ 1

−1
dz
∫︂ 2π

0
dϕ sS

aω
lm(z, ϕ)sSaω

l′m′(z, ϕ) = δll′δmm′ , (2.14)

where sS
aω
lm(z, ϕ) ≡ sS

aω
lm(z)eimϕ. They reduce to spin-weighted spherical harmon-

ics Ylm(z, ϕ) as aω → 0 with the eigenvalue behaving as sA
aω
lm → (l− s)(l+ s+ 1).

Because the s = ±2 cases are related through the Teukolsky-Starobinsky
identities [78, 79], one can be calculated from the other and, thus, we focus on
the s = −2 case, i.e. the Ψ4 variable, and drop the s = −2 subscript.

The asymptotic behavior of the radial solution ψlmω can be written as [38]

ψlmω(r → ∞) = C+
lmωr

3eiωr∗
, (2.15a)

ψlmω(r → r+) = C−
lmω∆e−ikHr∗

, (2.15b)
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where C±
lmω are the asymptotic amplitudes, kH = ω−am/(2Mr+) is the frequency

at the horizon and r∗ is the tortoise coordinate defined as dr∗/dr = ϖ2/∆. The
amplitudes can be found using the Green function method as

C±
lmω = 1

W

∫︂ ∞

r+

R∓
lmω(r)Tlmω

∆2 dr , (2.16)

where W =
(︂
(∂rR

+
lmω)R−

lmω −R+
lmω∂rR

−
lmω

)︂
/∆ is the invariant Wronskian and

R±
lmω are homogeneous solutions of radial TE (2.12) satisfying purely outgoing

boundary conditions at infinity and purely ingoing boundary conditions at the
horizon.

It was proven [35] that the source term can be expressed in the form

Tlmω =
∫︂ ∞

−∞
dt
∫︂ 1

−1
dz
∫︂ 2π

0
dϕ∆2∑︂

ab

Tabe
iωt−imϕ , (2.17)

where we sum over the pairs of tetrad legs ab = nn, nm̄, m̄m̄ and

Tab =
Iab∑︂
i=0

∂i

∂ri

(︂
f

(i)
ab

√
−gTab

)︂
(2.18)

with Inn = 0, Inm̄ = 1, and Im̄m̄ = 2. The functions f (i)
ab (r, z) can be found in

Eqs. (B4) in [41] and Tab are projections of the stress-energy tensor (1.3) which
can be expressed as [48]

√
−gTab =

∫︂
dτ
(︂
(Am

ab + Ad
ab)δ4 − ∂ρ

(︂
Bρ

abδ
4
)︂)︂

, (2.19)

where all quantities are defined in Eqs. (49) in [41]. After substituting this form
of the stress-energy tensor to Eq. (2.18) and using Eqs. (2.16) and (2.17), the
amplitudes can be expressed as

C±
lmω =

∫︂ ∞

−∞

dτ
Σ eiωt(τ)−imϕ(τ)I±

lmω(r(τ), z(τ), ua(τ), Sab(τ)) , (2.20)

where we defined the function I±
lmω(r, z, ua, Sab) which can be found in Eq. (52)

of [41].
At this point we can use the the discrete Fourier spectrum of the orbits to

show that the frequency spectrum of the fluxes is discrete as well. Following the
approach used in [31] for geodesic fluxes, we calculate the fluxes from orbits of
spinning particles as follows. After changing the parametrization to Carter-Mino
time λ, the coordinates r and z, the four-velocities ua and the spin tensor Sab can
be written as functions of time whose spectrum consists of the frequencies Υr, Υz

and Υs or their combinations. Furhemore, coordinates t and ϕ can be written as
secularly growing part plus an oscillating part (1.68). Thus, the amplitudes take
the form

C±
lmω =

∫︂ ∞

−∞
dλei(ωΓ−mΥϕ)λJ±

lmω(r(λ), z(λ), ua(λ), Sab(λ)) , (2.21)

where
J±

lmω = eiω∆t−im∆ϕI±
lmω(r, z, ua, Sab) (2.22)
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is a function of Carter-Mino time with the same frequencies, which can be de-
composed as

J±
lmω =

∑︂
nkj

J±
lmnkje

−inΥrλ−ikΥzλ−ijΥsλ . (2.23)

After substituting this expansion into (2.21) and using properties of the delta
function, the amplitudes can be written as a sum over discrete frequencies

C±
lmω =

∑︂
nkj

C±
lmnkjδ(ω − ωmnkj) , (2.24)

where ωmnkj = mΩϕ+nΩr+kΩz+jΩs and the partial amplitudes can be expressed
as [41]

C±
lmnkj = 1

(2π)2Γ

∫︂
dwr

∫︂
dwz

∫︂
dws e

−inwr−ikwz−ijwsI±
lmnkj(wr, wz, ws)

× exp(iωmnkj∆t(wr, wz, ws) − im∆ϕ(wr, wz, ws)) . (2.25)

This is the most general form for off-equatorial orbits with precessing spin. In
simpler configurations like equatorial orbits, this expression can be simplified
since the integration over wz and ws is trivial. After changing the integration
variable to χr as defined in Eq. (1.40), expression (2.25) reads

C±
lmn = Ωr

∫︂
dχr

dλ
dχr

I±
lmn(χr) exp(iωmnt(χr) − imϕ(χr)) , (2.26)

which is identical to Eq. (49) in [40] up to a normalization factor of I±
lmn due to

different definitions. Here we dropped the k and j indices since the only nonzero
modes are k = j = 0.

The strain at infinity can be expressed from Eqs. (2.8), (2.10b), (2.11) and
(2.15a) as

h = −2
r

∑︂
lmnkj

C+
lmnkj

ω2
mnkj

S
aωmnkj

lm (z)e−iωu+imϕ , (2.27)

where u = t − r∗ is the retarded coordinate and (r, z, ϕ) are the coordinates of
the observer. Such a waveform coming from a conservative orbit is often called
snapshot waveform and consists of multiple “voices” with different frequencies
characterized by the m, n, k, and j numbers.

The partial amplitudes C±
lmnkj can be used for the calculation of the averaged

energy and angular momentum fluxes to the future null infinity J + and through
the future horizon H+. The respective formulas read [79]

⟨︂
FEJ +⟩︂ =

∑︂
lmnkj

⃓⃓⃓
C+

lmnkj

⃓⃓⃓
4πω2

mnkj

,
⟨︂
FEH+⟩︂ =

∑︂
lmnkj

αlmnkj

⃓⃓⃓
C−

lmnkj

⃓⃓⃓
4πω2

mnkj

, (2.28a)

⟨︂
FJzJ +⟩︂ =

∑︂
lmnkj

m
⃓⃓⃓
C+

lmnkj

⃓⃓⃓
4πω3

mnkj

,
⟨︂
FJzH+⟩︂ =

∑︂
lmnkj

αlmnkj

m
⃓⃓⃓
C−

lmnkj

⃓⃓⃓
4πω3

mnkj

, (2.28b)

where the coefficient for the horizon fluxes is

αlmnkj =
256(2Mr+)5kH(k2

H + 4ϵ2)(k2
H + 16ϵ2)ω3

mnkj⃓⃓⃓
Clmωmnkj

⃓⃓⃓2 (2.29)
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with ϵ =
√
M2 − a2/(4Mr+) and the Teukolsky-Starobinsky constant is [78]

|Clmω|2 =
(︂
(λlmω + 2)2 + 4aω(m− aω)

)︂(︂
λ2

lmω + 36aω(m− aω)
)︂

− 48aω(2λlmω + 3)(m− 2aω) + 144ω2
(︂
M2 − a2

)︂
. (2.30)

The above formulas are summed over all indices l,m, n, k, j. However, since the
j = ±1 amplitudes are proportional to the perpendicular component of the spin
σ⊥ = O(σ), the fluxes from these modes behave as O(σ2). Therefore, they can be
neglected in the linear-in-spin approximation and only the j = 0 modes can be
taken into account in the waveform (2.27). Furthermore, since the perpendicular
component of the spin is purely oscillating, it does not contribute to the j = 0
mode. Thus, when the fluxes are linearized in σ, they depend only on the parallel
component of the spin σ∥.

Solutions in the time domain

In some cases, e.g. when the source cannot be decomposed in the frequency
domain, it is convenient to numerically solve the TE (2.9) in the time domain.
In this work we use the time-domain TE solver called Teukode by E. Harms,
S. Bernuzzi et al. described in [80]. The authors transformed the TE into hy-
perboloidal horizon-penetrating coordinates (τ, ρ, θ, φ) in which the horizon and
future null infinity lie at finite radial coordinates ρ+ and ρS and, therefore, the
fluxes at infinity and the horizon can be easily extracted. Furthermore, because of
the hyperbolicity, the boundary conditions are trivial since the outgoing (ingoing)
radial coordinate velocity vanishes at the horizon (future null infinity).

The field variable is rescaled as ψ ↦→ ∆−sr−1
sψ and decomposed into az-

imuthal modes ψ = ∑︁
m ψm(τ, ρ, θ)eimφ. Then, the equation takes the form

(︂
Cττ∂

2
τ + Cτρ∂τ∂ρ + Cρρ∂

2
ρ + Cθθ∂

2
θ + Cτ∂τ + Cρ∂ρ + Cθ∂θ + C0

)︂
ψm = Ss ,

(2.31)
where the coefficients are functions of ρ, θ, m, and s while Ss is the source term.
This equation is solved numerically by the method of lines with finite differences
in space and a 4th order Runge-Kutta scheme in time.

The source term Ss is constructed from the stress-energy tensor (1.3) and its
derivatives. Hence, the source term contains up to third derivative of the delta
function. These derivatives must be appropriately represented on the discrete
grid in ρ and θ to accurately calculate the GW fluxes. One way is to represent
the delta functions as narrow Gaussian peaks. The advantage is the easy imple-
mentation and calculation of the derivatives. However, this method is slow since
the exponential function must be repeatedly calculated at each grid point.

Another option is to use a discrete representation that satisfies the properties
of delta function and its derivatives. Such representation was used in [81] and is
implemented in the Teukode up to second derivative. However, for the spinning
particle third derivative is needed. Thus, we implemented a piecewise-polynomial
representation described in [82]. The advantage is the rapid calculation, however,
the non-smoothness creates noise in some cases.

The strain at infinity is calculated by numerically integrating Eq. (2.8), while
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the energy and angular momentum fluxes to infinity are calculated as [80]

FEJ + = 1
16π

∑︂
m

∫︂ 1

−1
dz
⃓⃓⃓
rḣm

⃓⃓⃓2
, (2.32a)

FJzJ + = 1
16π Im

{︄∑︂
m

m
∫︂ 1

−1
dz(rḣm)(rhm)

}︄
. (2.32b)

2.1.2 Linearization of the fluxes
As was mentioned before, for EMRI modelling, it is sufficient to truncate the
fluxes at linear order in the secondary spin, since that order corresponds to the
postadiabatic term. Similarly to the linearization of the trajectory described in
Section 1.3.1, the linearization of the fluxes can be done with different choices of
the reference geodesics.

When linearizing the amplitudes with respect to a geodesic with the same
orbital parameters p, e, and I, the dependence on these parameters can be ex-
pressed as C±

lmnk = C±
lmnk(p, e, I,Ωi(p, e, I, σ), σ), where we explicitly showed the

dependence on Ωi. Then, the linearized expression reads

C±
lmnk(p, e, I, σ) = C

±(g)
lmnk(p, e, I) + O

(︂
σ2
)︂

+ σδC±
lmnk(p, e, I) (2.33)

where
δC±

lmnk(p, e, I) =
(︄
∂C±

lmnk

∂σ
+ ∂C±

lmnk

∂Ωi

∂Ωi

∂σ

)︄⃓⃓⃓⃓
⃓
σ=0

. (2.34)

However, to calculate the derivative of C±
lmnk with respect to Ωi, one has to find

the derivative of the homogeneous solution of the radial TE R±
lmω and the angular

TE Saω
lm along with the eigenvalue λlmω with respect to the frequency ω. This was

done e.g. in [36] for circular orbits.
To avoid the complicated calculations of the derivatives of the homogeneous

solutions with respect to the frequency, we chose a reference geodesics with the
same frequencies. The set of frequencies which are kept fixed depends on the
configuration of the orbit. For circular orbit, the azimuthal frequency Ωϕ can
be fixed while keeping the orbit circular [83]. For eccentric equatorial orbits we
fix the azimuthal and radial frequencies Ωr and Ωϕ. In this setup the circular
orbits become eccentric when perturbed with the secondary’s spin. For generic
off-equatorial orbits it is convenient to fix all frequencies Ωr, Ωz and Ωϕ, however,
the linear part of the fluxes has not yet been calculated in this case. Therefore,
we present the linearization of the equatorial fluxes [40].

For equatorial orbit we can formally write

C±
lmn = C±

lmn(p(Ωr,ϕ, σ), e(Ωr,ϕ, σ),Ωr,ϕ, σ) , (2.35)

The linear part with respect to a geodesic with the same radial and azimuthal
frequency then reads

δC±
lmn

⃓⃓⃓⃓
Ωr,ϕ

= ∂C±
lmn

∂σ
+ ∂C±

lmn

∂p
δp+ ∂C±

lmn

∂e
δe (2.36)

where δp and δe are defined in Eqs. (1.53). These linear parts of the amplitudes
can be calculated by linearization of the integrand in Eq. (2.26).
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From linearizing the energy and the angular momentum fluxes (2.28) we ob-
tain

δFEJ +

lmn =
Re
{︂
δC+

lmn

}︂
Re
{︂
C

+(g)
lmn

}︂
+ Im

{︂
δC+

lmn

}︂
Im
{︂
C

+(g)
lmn

}︂
2πω2

mn

(2.37)

δFEH+

lmn = αlmn

Re
{︂
δC−

lmn

}︂
Re
{︂
C

−(g)
lmn

}︂
+ Im

{︂
δC−

lmn

}︂
Im
{︂
C

−(g)
lmn

}︂
2πω2

mn

(2.38)

δFJzJ +

lmn = m
Re
{︂
δC+

lmn

}︂
Re
{︂
C

+(g)
lmn

}︂
+ Im

{︂
δC+

lmn

}︂
Im
{︂
C

+(g)
lmn

}︂
2πω3

mn

(2.39)

δFJzH+

lmn = αlmnm
Re
{︂
δC−

lmn

}︂
Re
{︂
C

−(g)
lmn

}︂
+ Im

{︂
δC−

lmn

}︂
Im
{︂
C

−(g)
lmn

}︂
2πω3

mn

(2.40)

where δ denotes the linear part with fixed frequencies Ωr,ϕ.
Using Eq. (1.55) we can calculate the linear part with fixed p and e from the

linear part with fixed Ωr,ϕ as

δF
⃓⃓⃓⃓
p,e

= δF
⃓⃓⃓⃓
Ωr,ϕ

− ∂F (g)

∂p
δp− ∂F (g)

∂e
δe , (2.41)

where F stands for any of the flux 2.28 and the partial derivatives of the geodesic
fluxes F (g) can be found numerically when the fluxes are calculated on a grid and
interpolated, as we describe in Section 4.2.5.
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3. Flux-driven inspirals
As was described in the previous section, the leading adiabatic order of the GW
phase from an EMRI together with the secondary-spin correction can be found
from the rate of change of the energy and angular momentum of the system. Due
to the flux-balance laws, the average rate of change of these constants can be
calculated from the asymptotic fluxes as [22, 23]⟨︄

dE
dt

⟩︄
= −

⟨︂
FEJ + + FEH+⟩︂ ≡ Ė , (3.1)⟨︄

dJz

dt

⟩︄
= −

⟨︂
FJzJ + + FJzH+⟩︂ ≡ Jż , (3.2)

where the dot denotes an average coordinate-time derivative. These fluxes are
sufficient to calculate an adiabatic evolution of equatorial orbits. However, to
evolve generic off-equatorial orbits of spinning bodies, the evolution of the parallel
component of the spin σ∥ and of the Carter-like constant KR is needed as well.
The formula for the latter is, so far, only known in the case with nonspinning
secondary where it reads [75, 38]

⟨︄
dQ
dt

⟩︄
= −

∑︂
lmnk

(Lmnk + kΥθ)
(︃⃓⃓⃓
C+

lmnk

⃓⃓⃓2
+ αlmnk

⃓⃓⃓
C−

lmnk

⃓⃓⃓2)︃
2πω3

mnk

, (3.3)

where Q = K − (aE − Lz)2,

Lmnk = Lzm

⟨︄
z2

1 − z2

⟩︄
λ

− a2Eωmnk

⟨︂
z2
⟩︂

λ
(3.4)

and the angle brackets with subscript λ denote averaging over one period of polar
motion in Carter-Mino time.

3.1 Waveform of an adiabatic inspiral
Since many quantities including the asymptotic GW fluxes are functions of the
orbital parameters p, e and I, it is more convenient to evolve the orbital parame-
ters instead of the constants of motion. In particular, once we have the evolution
of E, Jz and KR, we can calculate the evolution of the orbital parameters p, e
and I from the relation⎛⎜⎝ṗė

İ

⎞⎟⎠ =

⎛⎜⎝ ∂pE ∂eE ∂IE
∂pJz ∂eJz ∂IJz

∂pKR ∂eKR ∂IKR

⎞⎟⎠
−1⎛⎜⎝ Ė

Jż

KR
̇

⎞⎟⎠ . (3.5)

Using these equations, the orbital parameters can be evolved from a set of initial
conditions p0, e0 and I0. From this evolution, the waveform can be expressed as
[19]

h = 1
r

∑︂
lmnkj

Almnkj(t)S
aωmnkj(t)
lm (z)e−iΦmnkj(t)+imϕ , (3.6)
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where the amplitudes are calculated from the slowly evolving parameters as

Almnkj(t) = −
2C+

lmnkj(p(t), e(t), I(t))
ω2

mnkj(p(t), e(t), I(t)) . (3.7)

The amplitudes C+
lmnkj are calculated from an orbit with zero initial phases wr0,

wz0, ϕ0, and ψp0. Note that for nonzero initial phases, an additional phase factor
must be included [38]. The phase Φmnkj is calculated from the slowly evolving
frequency as

Φmnkj(t) =
∫︂ t

0
ωmnkj(p(t′), e(t′), I(t′))dt′ . (3.8)

This phase can be split into azimuthal, radial, polar and precession phase

Φmnkj = mΦϕ + nΦr + kΦz + jΦs (3.9)

and they can be calculated separately as

Φi(t) =
∫︂ t

0
Ωi(p(t′), e(t′), I(t′))dt′ , (3.10)

where i = ϕ, r, z, s.
Since for fully generic inspirals with spinning secondary the evolution of the

Carter constant KR and of the parallel component of the spin σ∥ are still missing
and have to be calculated, in the rest of this section we confine our calculations
to the equatorial plane. We assume that the magnitude of the spin σ = σ∥ is
conserved. In that case the system can be parametrized by p and e and only the
fluxes of E and Jz are needed for their evolution, which can be calculated as(︄

ṗ
ė

)︄
=
(︄
∂pE ∂eE
∂pJz ∂eJz

)︄−1(︄
Ė
Jż

)︄
. (3.11)

These formulas can be explicitly written as [40]

dp
dt =

∂Jz

∂e
Ė − ∂Ez

∂e
Jż⃓⃓⃓

J(E,Jz)

⃓⃓⃓ ≡ ṗ(p(t), e(t), σ) , (3.12a)

de
dt =

−∂Jz

∂p
Ė + ∂Ez

∂p
Jż⃓⃓⃓

J(E,Jz)

⃓⃓⃓ ≡ ė(p(t), e(t), σ) , (3.12b)

where the Jacbian between (E, Jz) and (p, e) reads
⃓⃓⃓
J(E,Lz)

⃓⃓⃓
= ∂E

∂p

∂Jz

∂e
− ∂E

∂e

∂Jz

∂p
. (3.13)

To separate the spin-independent part and the correction due to the secondary
spin, we can linearize the evolving parameters in σ as

p(t) = p(g)(t) + σδp(t) , (3.14)
e(t) = e(g)(t) + σδe(t) , (3.15)

where δp and δe are functions of time and are not to be confused with the expres-
sions (1.53). The geodesic parts p(g) and e(g) describe the leading adiabatic part
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of the inspiral and are evolved through Eqs. (3.14) with geodesic values of the
fluxes and the constants of motion. The quantities δp and δe can be calculated
using the evolution equations

dδp
dt =

(︄
∂ṗ

∂σ
+ ∂ṗ

∂p
δp(t) + ∂ṗ

∂e
δe(t)

)︄⃓⃓⃓⃓
⃓
p(g)(t),e(g)(t),σ=0

, (3.16a)

dδe
dt =

(︄
∂ė

∂σ
+ ∂ė

∂p
δp(t) + ∂ė

∂e
δe(t)

)︄⃓⃓⃓⃓
⃓
p(g)(t),e(g)(t),σ=0

, (3.16b)

where the derivatives of ṗ and ė defined in Eqs. (3.12) with respect to σ are taken
with fixed p and e, i.e., we use the linear parts of the fluxes δF|p,e from Eq. (2.41).
Explicit expressions of the derivatives of ṗ and ė can be found in Appendix C of
[40].

The phases can be expanded in the secondary spin as well as

Φr,ϕ = Φ(g)
r,ϕ(t) + σδΦr,ϕ(t) , (3.17)

where the geodesic (adiabatic) part Φ(g)
r,ϕ is calculated from Eq. (3.10) with σ = 0

and the linear part can be found as

δΦi =
∫︂ t

0
dt′

(︄
∂Ωi

∂σ
+ ∂Ωi

∂p
δp(t′) + ∂Ωi

∂e
δe(t′)

)︄⃓⃓⃓⃓
⃓
p(g)(t′),e(g)(t′),σ=0

. (3.18)

After multiplying this phase shift by σ, it is O(1) at the end of the inspiral and,
thus, is comparable to the other postadiabatic effects.

3.2 Initial conditions
Different choices of the initial conditions for δp and δe lead to different results
in phase shifts, which correspond to distinct pairs of inspirals of a spinning and
nonspinning secondary that are being compared.

The easiest choice is

δp(t0) = 0 , δe(t0) = 0 , (3.19)

which corresponds to comparing inspirals which start at the same p and e. How-
ever, since p and e are not observable from the GW signal unlike the frequencies,
it is more convenient to match the initial frequencies instead.

When the initial conditions are set to

δp(t0) = δp(p(g)
0 , e

(g)
0 ) , δe(t0) = δe(p(g)

0 , e
(g)
0 ) , (3.20)

where we use the formulas (1.53) on the right hand side, the initial shifts of the
frequency defined from the integrand in Eq. (3.18) vanish. Therefore, the initial
frequencies of the inspiral of a spinning and a nonspinning secondary are the
same. Note that only the radial and azimuthal frequencies are matched since
the polar frequency is not observable in the equatorial case. Eq. (3.20) can be
generalized for generic orbits and initial conditions for p, e and I with matched
frequencies Ωϕ, Ωr and Ωz.
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In similar manner for circular orbits, it is convenient to fix only the azimuthal
frequency since other frequencies are not observable. Then, the initial conditions
can be chosen as

δp(t0) = −
∂Ωϕ

∂σ
∂Ωϕ

∂p

, δe(t0) = 0 . (3.21)

This formula is valid even in the eccentric case which will be useful for the com-
parisons of eccentric and quasicircular inspirals.
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4. Numerical results
In this section we describe numerical calculations of spinning particle’s trajecto-
ries and their respective asymptotic GW fluxes as described in previous chapters
both for equatorial and generic cases. We also present the calculation of adiabatic
inspirals on the equatorial plane.

All these calculations have been done in Mathematica or in C using the
Teukode. This work makes use of the Black Hole Perturbation Toolkit (BHPT)
[84].

4.1 Calculation of the trajectories

4.1.1 Equatorial orbits

We start with equatorial trajectories being calculated for given orbital parameters
p and e and a Kerr parameter a1. To achieve this, we calculate the constants of
motion from Eqs. (1.39) and the frequencies from Eqs. (1.43), where the latter
are evaluated as a numerical integral of the expressions in Eqs. (1.42). Since the
integrands are periodic in χr, we employ the midpoint rule to achieve exponential
convergence [85]. The coordinates t(χr) and ϕ(χr) are calculated from Eqs. (1.44)
with the coefficients found using discrete cosine transform.

On the other hand, to calculate the linear part of the trajectory with fixed
frequencies, we first calculate the geodesic values followed by the linear parts of
the constants of motion calculated with fixed p and e, i.e. δE|p,e and δJz|p,e, from
Eq. (1.47). Then we calculate the derivatives of the frequencies with respect to p,
e and σ by numerically integrating the derivatives of the integrands in Eqs. (1.42).
A Mathematica notebook containing the calculation of these derivatives can be
found in the supplemental material of Ref. [40]. Using these derivatives of the
frequencies we calculate δp and δe from Eqs. (1.53). Then, using Eqs. (1.55) and
(1.56) we calculate the linear corrections to the constants of motion and to the
coordinates with fixed frequencies.

In Figure 4.1 we show the dependence of t on χr for an orbit of spinning and
nonspinning particle along with the linear part δt. Because the frequencies are
matched, after one radial period the difference vanishes.

4.1.2 Generic orbits

Generic orbits along with the spin corrections are calculated using the approach
developed by Drummond and Hughes [64, 65]. The orbits are parametrized by p,
e and I using Eqs. (1.62). The geodesic part of the orbit is calculated using the
KerrGeodesic package [86] from the BHPT.

First, we calculate the functions Rt and Rϕ defined in Eqs. (C5a) and (C5b)
in Ref. [41] on a grid in wr and wz. Then, their Fourier coefficients are calculated

1If not mentioned otherwise, we set the mass M to 1 because the resulting quantities can
be rescaled accordingly.
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Figure 4.1: Dependence of t on χr for orbits with spinning and nonspinning
particle. (Note that, following Refs. [39, 40], here the hat denotes dimensionless
quantities. This notation is also used in Figs. 4.4, 4.9, 4.13, 4.16, and 4.17.)

as
Rt,ϕ,nk =

∑︂
ab

Rt,ϕ(wa
r , w

b
z)F a

nG
b
k , (4.1)

where the matrices of discrete Fourier transform read

F a
n = exp

(︃
πin

Nr

(1 + 2a)
)︃ 1
Nr

, (4.2)

Gb
k = exp

(︄
πik

Nz

(1 + 2b)
)︄

1
Nz

, (4.3)

with Nr and Nz being the numbers of steps in the wr and wz direction. From the
Fourier coefficients (4.1) the oscillating parts of uS

t,ϕ are calculated by integrating
Eq. (3.24) in Ref. [65] as

uS
t,ϕ,nk = iRt,ϕ,nk

nΥr + kΥz

(4.4)

for n ̸= 0 or k ̸= 0.
Then, the remaining Fourier coefficients uS

t,00, uS
ϕ,00 along with the Fourier

coefficients δχS
r,n, δχS

z,k, rS
nk, zS

nk and the frequency corrections ΥS
r and ΥS

z are
found by solving a system of linear equations

M · v + c = 0 . (4.5)

The vector v contains the unknown quantities, while the matrix M is constructed
from the r and z component of the spin-curvature force along with the equation
for the normalization of the four-velocity. The component of this matrix contain
the Fourier coefficients of the functions Fr,r, Gr,r,θ,z, Hr,r,θ,z, I1r,1θ,2,3, Qθ,z, Sr,r,θ,z,
Tr,r,θ,z, U1r,1θ,2,3, Kr,r,θ,z, Mr,r,θ,z, N1r,1θ, which are defined in the supplemental
material of [64] and are calculated analogously to Rt,ϕ,nk. Finally, the vector c
contains the Fourier coefficients of the functions J , V and P defined in Eqs. (C5)
of Ref. [41].
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Figure 4.2: Fourier coefficients δχS
r,n for an orbit with a = 0.9M , p = 15, I = 15◦,

and different e.

Because of the reflection symmetry around the equatorial plane, the Fourier
expansions contain only certain k modes. In particular, uS

t,ϕ,nk, δχS
z,k and rS

nk

consist of even k modes while zS
nk consists of odd k modes. Further, the Fourier

expansion of the radial component of the spin-curvature force and the equation for
the normalization of the four-velocity contain even k modes and the z component
of the spin-curvature force contains odd k modes. This allows us to reduce the
number of columns and rows of the matrix M, which reduces the error originating
from numeric manipulations of large matrices.

With these simplifications, the vector v contains a total of 4+2nmax +2kmax +
4nmaxkmax unknown coefficients, hence, M has this number of columns. The total
number of equations, thus the number of rows of M, is 2 + 3kmax + 4nmax +
6kmaxnmax. Therefore, the system is overconstrained and M is a rectangular
matrix. Thus, we solve the system using the least squares method.

Because of this approximative solution, not all Fourier coefficients are calcu-
lated accurately. In Fig. 4.2 we show a logarithmic plot of the Fourier coefficients
δχS

r,n for a = 0.9M , p = 15, I = 15◦ and different eccentricities. We can see
that after certain value of |n| the Fourier coefficients stop converging. For higher
eccentricities this happens for lower n. The same behavior occurs for δχS

z,k and
other Fourier coefficients. Therefore, not all Fourier coefficients are reliable and
we must chose very high nmax or kmax to have accurate results for high eccentric-
ities or inclinations.

4.2 Calculation of the fluxes
From the trajectories of spinning particles we calculate the GW fluxes, i.e. the
partial amplitudes C±

lmnk and the linear-in-spin parts δC±
lmn for equatorial orbits

and C±
S,lmnk for generic orbits.

4.2.1 Equatorial fluxes
In the following paragraphs we first describe the calculation of fluxes from ec-
centric equatorial orbits [39]. The partial amplitudes C±

lmn are calculated by
numerically integrating Eq. (2.26). We employ the midpoint rule because it
is exponentially converging for periodic functions. The integration error de-
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Figure 4.3: Real part of exp(i(ωmnt(χr) −mϕ(χr))) for orbits with a = 0.9M ,
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e = 0.8, m = 2, n = 4 (bottom). The red dots show points where the function is
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pends on the number of steps which is determined as follows. We assume that
the main oscillating part of the integrand comes from the exponential term
exp(iωmnt(χr) − imϕ(χr)). The behavior of this function is depicted in Fig. 4.3
for orbits with different eccentricities and mode numbers. The “frequency” of the
oscillations is higher for higher n and higher eccentricity and can be expressed as

ωmn
dt

dχr

−m
dϕ
dχr

=
(︂
ωmnV

t(χr) −mV ϕ(χr)
)︂⌜⃓⃓⎷ 1 − e2

p2J(χr)
≡ φ′

mn(χ) (4.6)

Thus we choose the number of steps as

max{|8⌈φ′
mn(0)⌉|, |8⌈φ′

mn(π)⌉|, 32} (4.7)

to guarantee that each oscillation has at least 4 points. This procedure ensures
that the integrand is evaluated at low number of points while keeping the relative
error below 10−6 across the parameter space.

The homogeneous radial solutions R±
lmω(r) are calculated using the Teukolsky

package [87] of the BHPT, which numerically integrates the TE in hyperboloidal
coordinates with initial conditions calculated with the Mano-Suzuki-Takasugi
method [88]. The spin weighted spheroidal harmonics are calculated using the
SpinWeightedSpheroidalHarmonics package [89] of the BHPT as well with the
Leaver’s method [90].

In Fig. 4.4 we show the absolute value of the amplitudes
⃓⃓⃓
C+

lmn

⃓⃓⃓
from eccen-

tric equatorial orbit with a = 0.9M , σ = −0.5, p = 12, and e = 0.2 for the
dominant m = 2 mode. We can see that the partial amplitudes converge to zero
exponentially with increasing |n| and they decrease with l. Note that for astro-
physical systems the value of the spin is of the same order as the mass ratio, i.e.,
σ ≤ q ≪ 1. However the fluxes can be calculated with spins much higher and
numerically linearized afterwards. Furthermore, high values of spin are chosen to
make the spin contribution visible in the plots.
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Figure 4.4: Partial amplitudes for eccentric equatorial orbit with a = 0.9M ,
σ = −0.5, p = 12, e = 0.2, and m = 2.

f(wr, wz) rS zS U r
S U z

S ∆tS ∆ϕS

f(2π − wr, 2π − wz) + + − − − −
f(wr, wz + π) + − + − + +

Table 4.1: Symmetries of the linear part of the trajectory

Linearization in the secondary spin

In the previous section we described the calculation of the nonlinearized partial
amplitudes C±

lmn(p, e, σ). For the equatorial case we can calculate the linear-in-
spin part δC±

lmn separately in the fixed frequency framework using Eq. (2.36).
The linear-in-spin parts δC+

lmn are calculated similarly to the nonlinearized case
by integrating the derivative of the integrand of Eq. (2.26).

To verify the linear-in-spin part of the amplitude, we compare them with nu-
merical derivatives of the nonlinearized amplitudes. The derivative is calculated
as

δC±num
lmn = C±

lmn(p+, e+, σ) − C±
lmn(p−, e−,−σ)

2σ + O
(︂
σ2
)︂
. (4.8)

To ensue that the frequencies of the trajectories of the spinning and nonspinning
particles are the same, for given p(g) and e(g) we numerically solve

Ωr(p±, e±,±σ) = Ω(g)
r (p(g), e(g)) , (4.9a)

Ωϕ(p±, e±,±σ) = Ω(g)
ϕ (p(g), e(g)) (4.9b)

for p± and e±. In Fig. 4.5 the relative truncation error
⃓⃓⃓
1 − δC±num

lmn /δC±
lmn

⃓⃓⃓
is

plotted for different orbital parameters and mode numbers. We can see that the
error behaves as O(σ2). Therefore, the linear part is consistent with the nonlinear
result.

4.2.2 Generic fluxes
The generic fluxes with parallel spin are calculated similarly as the equatorial
fluxes by integrating Eq. (2.25) over wr and wz (integration over ws is trivial for
parallel spin). Analogously to the equatorial case, the number of steps in wr and
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Figure 4.5: Dependence of the relative truncation error calculated from the nu-
merical derivative of the nonlinearized amplitudes and the linear part with fixed
frequencies on the value of the spin. The orbital parameters are a = 0.9M ,
p(g) = 12, e(g) = 0.6 (top) and a = 0.9M , p(g) = 4, e(g) = 0.4 (nottom). The
relative truncation error behaves as O(σ2) which indicates that the linear part is
correct.

wz is chosen as

max{|16⌈φ′
r(0) + n⌉|, |16⌈φ′

r(π) + n⌉|, 32} , (4.10a)
max{|8⌈φ′

z(0) + k⌉|, |8⌈φ′
z(π/2) + k⌉|, 32} , (4.10b)

respectively, where φy(wy) = ωmnk∆t̂y(wy) − m∆ϕ̂y(wy) for y = r, z. Similarly
to [31], we exploit the symmetries of the trajectory to write the integral (2.25)
as a sum of four integrals over 0 < wr < π and 0 < wz < π. For the geodesic
quantities, these symmetries read f(2π − wy) = f(wy) for r̂(wr) and ẑ(wz) and
f(2π − wy) = −f(wy) for ∆t̂r,z(wr,z), ∆ϕ̂r,z(wr,z), Û r(wr) and Û

z(wz). Similar
symmetries hold for the linear part of the trajectory, namely f(wr, wz) = ±f(2π−
wr, 2π−wz) and f(wr, wz) = ±f(wr, wz +π), where the functions and respective
signs are listed in Table 4.1. The latter symmetry holds thanks to the reflection
symmetry around the equatorial plane.

Because each offequatorial trajectory is calculated up to linear order in σ, the
fluxes are accurate up to this order as well. Therefore, if we want to compare the
generic fluxes with non-linearized equatorial or time-domain fluxes, we have to
compare the linear-in-spin parts. These linear parts are extracted using fourth-
order finite difference formula which reads

fS =
1
12f(−2σ) − 2

3f(−σ) + 2
3f(σ) − 1

12f(2σ)
σ

. (4.11)
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Figure 4.6: Linear-in-spin parts of the energy fluxes from a nearly spherical orbit
with a = 0.9M , p = 10, and I = 30◦ for m = 1 (left), m = 2 (middle), and m = 3
(right) and for different l and k.

In this way we calculate the linear-in-spin parts of the amplitudes C±
S,lmnk and of

the fluxes FE,Jz

S . From the order of the method and the step size, which we set
to σ = 0.05, we estimate the error to be of the order 10−5.

We plot the linear parts of the energy fluxes from nearly spherical orbits with
e = 0 in Fig. 4.6 for different m, l and k. We can see that for given l the maximum
lies at k = l−m. In Fig. 4.7 we plot the sum over l of the energy flux from generic
off-equatorial orbit for different m, n and k.

Not all the linear parts of the partial amplitudes can be calculated accurately.
Because the Fourier coefficients of the linear part of the trajectory δχS

r,n, δχS
z,k,

etc. stop converging after certain |n| and |k|, the linear parts of the partial
amplitudes stop converging as well, this can be seen in Fig. 4.8.

To check our calculations, we have verified that the generic fluxes converge to
the equatorial value for decreasing I. Details can be found in Ref. [41] in Figs. 4
and 5.

4.2.3 Comparisons of time-domain and frequency-domain
results

To further verify our frequency-domain results, we compare the m-modes of the
strain rhm and the energy flux to infinity FEJ +

m with time-domain results obtained
with the Teukode.
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Figure 4.8: Dependence of the linear-in-spin parts of the partial amplitudes
C+

S,lmnk on n for different nmax and a = 0.9M , p = 15, e = 0.5, and I = 15◦

(left) and on k for different kmax and a = 0.9M , p = 15, e = 0.2, and I = 60◦

(right). The linear parts of the partial amplitudes stop converging because of the
finite number of the Fourier coefficients of the linear part of the trajectory as can
be seen in Fig. 4.2.

To calculate the time-domain fluxes, the trajectory is needed as a time series.
In the equatorial case we first calculate the initial conditions for given a, σ,
p, and e from Eqs. (1.34). Then, we use them in an implicit Gauss-Runge-
Kutta integrator of MPD equations (1.4) to find the trajectory. This trajectory
is subsequently used as an input to the Teukode. Because of the discretization
error, we run the Teukode for several resolutions in ρ and θ direction, namely,
Nρ × Nθ = 1200 × 100, 1704 × 142, 2400 × 200, 3384 × 282, and 4800 × 400, to
verify that the error decreases with increasing resolution.

The delta function and its derivatives in the source term is approximated with
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12th order piecewise polynomial or Gaussian function. Even if in most cases we
have used the piecewise polynomial, since it is faster and more accurate, how-
ever, in some extreme cases this approximation causes a noise and the Gaussian
approximation must be used instead.

To find the error we calculate the relative difference of the strain calculated
in time domain and frequency domain

δhm =
⃓⃓⃓⃓
⃓1 − htd

m

hfd
m

⃓⃓⃓⃓
⃓ . (4.12)

The strain is extracted at r = ∞ and θ = π/2 as a function of the retarded
time u. The frequency-domain strain is calculated using Eq. (2.27) as a sum
over l and n. We assume that the error of the frequency domain solution is
much lower than the error of the time domain solution. In Fig. 4.9 we show
such relative differences for different m-modes and resolutions. From this plot we
can see that with decreasing step length ∆ρ = (ρS − ρ+)/Nρ the relative error
decreases, but the noise increases. This noise is caused by the non-smoothness
of the piecewise polynomials. When the delta function is approximated with the
Gaussian function, the amplitude of the noise is lower, however, the accuracy is
lower because the Gaussian approximation is wider and poorly represents a point
particle.

To investigate the convergence of the time-domain solution to the frequency-
domain solution, we calculate the relative difference of the energy flux to infinity
for given m as

δFEJ +

m =

⃓⃓⃓⃓
⃓⃓1 −

FEJ +

m,td

FEJ +
m,fd

⃓⃓⃓⃓
⃓⃓ . (4.13)

The time-domain energy flux is calculated as an average over two radial periods
from 350 to 350 + 2Tr of the formula (2.32a). We plot the result with respect to
the step length in the ρ direction in Fig. 4.10 for different values of the secondary
spin. The relative differences decrease with decreasing step length except the
m = 1 case for Nρ = 4800 where the noise becomes significant. This is caused
by the fact that the value of the flux for m = 1 is small and the noise becomes
significant at this resolution.

In Fig. 4.11 we again plot the convergence of the relative difference for dif-
ferent eccentricities. Similarly to the previous plot, in some cases such as high
eccentricities the noise becomes visible and the relative difference does not con-
verge. This is caused by the fast motion of the particle and the subsequent change
of the shape of the delta function approximated with the piecewise polynomial,
which depends on the position between the grid points. Therefore, we repeat the
calculation in some cases with a Gaussian function in the ρ direction and a piece-
wise polynomial in the θ direction or with Gaussian function in both directions.
Then, the relative difference converges.

We also compare nearly spherical and generic fluxes calculated in time domain
and frequency domain. Because, unlike the equatorial fluxes, the generic fluxes
in frequency domain are calculated up to linear order in spin, whereas the time
domain fluxes are nonlinearized, we compare the time domain and frequency
domain linear parts in spin of the energy fluxes at infinity FEJ +

S,m for given m.
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Figure 4.9: Relative difference between time-domain and frequency-domain m-
mode of the strain as a function of time for different resolutions in the ρ direction
and m = 1, 2, 3, 4 from top to bottom. The orbital parameters are a = 0.9M ,
σ = −0.5, p = 12, and e = 0.2. The delta function is approximated with piecewise
polynomial for all m and resolutions and with Gaussian function for m = 2 and
resolution 4800. The initial noise is caused by the zero initial data in time domain
and decreases around u = 300M .
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Figure 4.10: Dependence of the relative difference of the time-domain and
frequency-domain energy flux on the step length in the ρ direction for a = 0.9M ,
p = 12, e = 0.2, and different secondary spins σ. The delta function was approx-
imated with piecewise polynomial.
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Figure 4.11: Dependence of the relative difference of the time-domain and
frequency-domain energy flux on the step length in the ρ direction for a = 0.9,
σ = 0.5, p = 12, and different eccentricities e. If not specified otherwise, the delta
function is approximated as piecewise polynomial in both ρ and θ directions. In
some cases we use the Gaussian function in ρ and piecewise polynomial in θ di-
rection (G-p) or Gaussian function in both directions (G-G).
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Figure 4.12: Dependence of the relative difference of the time domain and fre-
quency domain energy fluxes on the inclination (left) and on the azimuthal num-
ber m (right) for nearly spherical orbits with a = 0.9M and p = 10. The plot on
the left shows prograde orbits and the plot on the right shows retrograde orbits.

First, using the aforementioned Gauss-Runge-Kuta MPD equations solver we
calculate the trajectory which matches the linearized trajectory obtained in fre-
quency domain as follows. For given a, p, e, and I, the conserved energy E and
angular momentum Jz along with r, θ, ur, Sr, and Sθ are calculated using the
frequency-domain approach. These values are used as initial conditions together
with the other components of uµ and Sµν determined by numerically solving the
constraints (1.7), (1.8), (1.26) and (1.27). These initial conditions ensure that
the frequency-domain and time-domain trajectories agree up to linear order in
σ. These trajectories for σ = −0.1,−0.05, 0.05, 0.1 are then used as an input to
the Teukode. In this case we used 4800 points in the radial direction and the
Gaussian approximation of the delta function to reduce the noise.

Because the energy fluxes calculated in time domain are not constant, we need
a procedure to average them. For nearly spherical orbits we average the fluxes
over several polar periods 2π/Ωz which are calculated from Eq. (1.67b) using the
frequency-domain approach. However, the generic fluxes are not periodic and
their spectrum contains all the combinations of the radial and polar frequency
nΩr + kΩz. Therefore, they cannot be averaged by integrating them over several
periods, instead we successively calculate moving averages as follows. The fre-
quency Ωr has the highest amplitude. Hence we first calculate a moving average
with period 2π/Ωr. In the resulting time series, the frequency Ωr and its multi-
ples are eliminated. Next, we calculate moving averages with periods 2π/Ωz and
2π/(nΩr + kΩz) until the resulting time series is smooth or too short. The result
is calculated as an average of this final series.

Having obtained a single value for each time-domain calculation, we calculate
the linear part in spin using Eq. (4.11) and the relative difference

∆FE
S,m =

⃓⃓⃓⃓
⃓1 −

FEtd
S,m

FEfd
S,m

⃓⃓⃓⃓
⃓ . (4.14)

The results for nearly spherical orbits can be seen in Fig. (4.12). For all incli-
nations I and azimuthal numbers m, the error is lower than 7 × 10−3, which is
approximately the error of the Teukode (cf. Fig. 4.11). In Table 4.2, we list the
values and relative errors of the fluxes from generic orbits for different orbital
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p e I m FE
S,m ∆FE

S,m

10 0.1 15◦ 2 −2.8259 × 10−6 1 × 10−3

12 0.2 30◦ 1 −1.1954 × 10−7 2 × 10−5

12 0.2 30◦ 2 −1.0488 × 10−6 1 × 10−3

12 0.2 30◦ 3 −1.4210 × 10−7 3 × 10−3

12 0.2 60◦ 2 −8.0550 × 10−7 5 × 10−4

15 0.5 15◦ 2 −4.2936 × 10−7 2 × 10−3

Table 4.2: Values of the energy flux to infinity and the relative error of the
time domain and frequency domain results for generic orbits with given orbital
parameters and azimuthal number m.

parameters and azimuthal number m. In this case the relative difference is below
3 × 10−3.

4.2.4 Summation of the fluxes
Here we describe our approach to the calculation of the total fluxes from eccentric
equatorial orbits. In order to get the total equatorial fluxes, they have to be
summed over l, m and n with proper bounds determined according to a given
accuracy.

The error of the geodesic fluxes must be lower than the mass ratio to calculate
the phase to subradian accuracy. Therefore, we set this accuracy to 10−7. The
accuracy of the linear parts in spin can be lower, since these parts contribute only
to the postadiabatic order. Accordingly, we set the accuracy to 10−3. However,
since these linear parts are calculated simultaneously with the geodesic part and
the accuracy of the geodesic fluxes is higher, their final error is lower than 10−3.

For these calculations we make use of the following symmetry:

Fl,−m,−n = −Fl,m,n , (4.15a)
ω−m,−n = −ωm,n , (4.15b)

where F stands for the energy and angular momentum fluxes or their linear parts.
Therefore, it is possible to sum only the modes with ωmn > 0 and multiply the
result by two to obtain the total fluxes. The computed sums have the following
structure:

F = 2
mmax∑︂

m=mmin

Fm , (4.16a)

Fm =
lmax∑︂

l=lmin

Flm , (4.16b)

Flm =
nmax∑︂

n=nmin

Flmn , (4.16c)

where mmin = −5, lmin = max{2, |m|} and nmin,max, mmax and lmax are determined
during the calculation according to a given error ϵ, which determines the accuracy
we wish to achieve.

The procedure starts by calculating F22 mode and summing the l = m = 2
fluxes over n from nmin = ⌈−mΩϕ/Ωr⌉ to n = 20. The lower bound corresponds
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to the lowest n for which the frequency is positive. Next, we find the mode with
the maximal flux as Fmax = maxn F22n. In all the studied cases the maximal
flux lie within this range. We continue by calculating the fluxes for higher n
until three consecutive modes are decreasing and are lower than Fmaxϵ/10. This
termination condition is used later in the sums over n for other values of l and
m.

Once we obtain the F22 mode, we continue by summing the m = 2 mode
over l. For l = 3, 4, . . . we first set n to n0 = ⌊10me2⌋, which is close to the
maximum of the flux over n. Having set that, we increase n until the termination
condition for n is satisfied. After that, n is decreased until the same termination
condition is satisfied or until we reach the last mode with positive frequency. This
computational procedure is repeated for higher l until the termination condition
for l is satisfied. This termination condition reads Flmaxm < F22ϵ.

So far, we have described the computation of the F2 mode. Subsequently, we
calculate othermmodes frommmin = −5 by successively summing the modes over
n and l using the termination conditions described in the previous paragraphs.
The sum over m is truncated when the estimated error is less than ϵ/2 times the
total flux, i.e.

Fmmax

1 − Fmmax/Fmmax−1
<
ϵ

2

mmax∑︂
m=mmin

Fm , (4.17)

where the error on the left hand side is calculated from the assumption that the
fluxes Fm decrease exponentially with m. However, for orbits near the separatrix
we truncate the series at m = 20 even when this condition is not satisfied while
knowingly introducing an error. The reason is to save the computational cost. To
efficiently calculate the fluxes in this area of the parameter space, further research
is needed.

4.2.5 Interpolation of the fluxes
Because the calculation of the fluxes at one point in the parameter space is
computationally expensive and can take hours of CPU time, we calculate the
fluxes and their linear-in-spin parts on a grid in the p − e plane and interpolate
them. In particular, first, at each gridpoint we find the geodesic energy and
angular momentum fluxes and their linear-in-spin parts with fixed frequencies
δF|Ωi

. The geodesic fluxes are then interpolated. From the linear-in-spin parts
δF|Ωi

and the derivatives of the geodesic fluxes with respect to p and e, we
calculate the linear parts with fixed p and e δF|p,e by employing Eq. (2.41).
Finally, we calculate ṗ, ė, ∂σṗ, ∂σė, ∂pṗ, ∂pė, ∂eṗ, and ∂eė on the p − e grid and
interpolate them in order to use them for the calculation of the inspirals.

Prior to the interpolation, we normalize the quantities to factor out the behav-
ior at infinity and near the separatrix. The normalization coefficients are derived
from the Newtonian formulas for the fluxes

FE
N = 32

5 p
−5(1 − e2)3/2

(︃
1 + 73

24e
2 + 37

96e
4
)︃
, (4.18a)

FJz
N = 32

5 p
−7/2(1 − e2)3/2

(︃
1 + 7

8e
2
)︃

(4.18b)

and can be found in Eqs. (91) in Ref. [40].
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Figure 4.13: Grid in the p− e plane where the fluxes are interpolated.

Instead of constructing the grid on the p−e plane, we transform these variables
to different set of coordinated x and y. The reason for this transformation is to
make the grid denser near the separatrix and to avoid some regions where the
calculation of the fluxes is difficult. The transformation is defined as follows.
First, the coordinates p and e are transformed to

Ũ =
√︂

(p− rISCO)2 − (ps(e) − rISCO)2 , (4.19a)
V = e2 , (4.19b)

where ps(e) is the separatrix. This transformation regularizes some diverging
quantities for circular orbits (e = 0). Next we transform Ũ as

U = c

log
(︂
1 + c

Ũ

)︂ , (4.20)

where c is a parameter controlling the compactness of the grid near the separatrix.
In our calculations we set c = 25. Then, we perform another transformation in
the form

U = (U11 − U10 + U00 − U01)xy + (U10 − U00)x + (U01 − U00)y + U00 , (4.21a)
V = (V11 − V01)xy + (V01 − V00)y , (4.21b)

where Uxy and Vxy are chosen according to given boundaries. We calculate the
grid for a = 0, 0.5M, 0.9M on Chebyshev nodes in x and y with 15 grid points in
each direction. This grid in the p− e plane is shown for a = 0.9M in Fig. 4.13.

The main advantage of the Chebyshev interpolation is the exponential conver-
gence, which allows us to calculate the fluxes at fewer points while maintaining
high accuracy. The disadvantages are the slow convergence for non-analytical
functions and the propagation of the error at one point across the interpolation
domain. When a function is approximated with Chebyshev polynomials as

f(x, y) =
∑︂
i,j

cijTi(x)Tj(y) , (4.22)

the interpolation error can be estimated as

max
i=imax∨j=jmax

|cij| . (4.23)
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Figure 4.14: Relative interpolation error of the energy flux to infinity (violet)
and relative error of the energy flux at individual points (green). The error is
estimated from the 9PN series. The error of the PN series is estimated from the
last term (red) and it diverges near the separatrix.
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Figure 4.15: Adiabatic inspirals in the p − e plane for a = 0 (solid), a = 0.5M
(dashed) and a = 0.9M (dotted). The black curves denote the separatrices.

Using this estimate, the relative errors of the interpolated functions are 10−4 for
the geodesic energy and angular momentum fluxes, 10−5 for ṗ(g) and ė(g) and
between 10−3 and 10−2 for the derivatives of ṗ(g) and ė(g).

The achieved accuracy can be seen in Fig. 4.14, where we plot the relative
difference between the interpolated energy flux and the 9th order post-Newtonian
(PN) series [91] for a = 0. This relative difference is around 10−4 except for the
region near the separatrix, where the PN series fails. In the same figure is plotted
also the relative difference between the energy flux at individual points and the
PN series, which is around 10−7.

4.3 Calculation of the inspirals
Once we have calculated and interpolated the functions ṗ(g), ė(g) and their deriva-
tives with respect to σ, p and e, we can calculate the inspirals, i.e. the evolution
of the functions p(g)(t), e(g)(t), δp(t), and δe(t), from Eqs. (3.12) and (3.16). For
this we employ the NDSolve function in Mathematica with adaptive-step 7/8th
order Runge-Kutta method. Having done this, we can find the adiabatic phase
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Figure 4.16: Radial and azimuthal phase shifts for the inspirals with p
(g)
0 = 12,

a = 0 (top left), a = 0.5M (top right) and a = 0.9M (bottom) and different
initial eccentricities. The phase shifts are multiplied by q which corresponds to
maximally rotating secondary BH.

and the correction due to spin by numerically integrating Eqs. (3.10) and (3.18).
We have verified the obtained results by comparing them with the circular limit.
This comparison can be found in Ref. [40].

In particular, we calculate the inspirals with matched initial frequencies by
choosing the initial conditions for δp and δe from Eqs. (3.20). The inspirals are
calculated for initial semi-latus rectum p = 12, initial eccentricities from e = 0.1
to e = 0.7 and three different values of the Kerr parameter a = 0, 0.5M, 0.9M .
The adiabatic evolution in the p− e plane can be found in Fig. 4.15.

50



0.5 1.0 1.5 2.0 2.5

0.1

0.2

0.3

0.4

0.5

0.6

104
q

e
(g
) 0

a

0

2

4

6

8

10

12

0.5 1.0 1.5 2.0 2.5

0.1

0.2

0.3

0.4

0.5

0.6

104
q

e
(g
) 0

a

0.5

5

10

15

20

25

0.5 1.0 1.5 2.0 2.5

0.1

0.2

0.3

0.4

0.5

0.6

104
q

e
(g
) 0

a

0.9

10

20

30

40

50

60

Figure 4.17: Maximal radial phase shifts max δΦr for σ = q, M = 106M⊙. The
duration of the inspiral is 1 year. Different mass ratios q, initial eccentricities e(g)

0
and Kerr parameters a are considered in the above plots. The maximal phase
shift grows with the mass ratio and the Kerr parameter (note the different scales
for each a).

The phase shifts δΦr and δΦϕ are computed from these inspirals and plotted in
Fig. 4.16. We can see that the azimuthal phase shifts are monotonically increasing
until the particle reaches the separatrix where they diverge. The radial phase
shifts increase at first and after they reach maximal value, they start decreasing
and diverge as well. This divergence is caused by the failing of the two timescale
approximation and of the linearization in the secondary spin.

To further examine the behavior of the phase shifts, we systematically calcu-
late the inspiral for different initial eccentricities and mass ratios, while keeping
the duration of the inspiral fixed at 1 year with the mass of the primary BH
being 106M⊙. We find the maximum of δΦr and plot the result for σ = q in
Fig. 4.17. We see that the maximal phase shifts increase with q and a reaching
values between 20 and 30 for q = 10−4 and a = 0.9M . The dependence on initial
eccentricity is low, however, to study the degeneracies of the resulting waveforms,
Bayesian analysis must be performed.

The accuracy of the phase shifts is around 5 × 10−3 which is determined
from the comparison with the nonlinearized-in-spin inspirals (see Appendix F in
Ref. [40]). In order to use the phase shifts in data analysis, the accuracy must
increase. Therefore, we have increased the number of steps in x to 20 in our next
work in progress.
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Conclusion
The detection of GW signals from EMRIs with LISA and other space-based de-
tectors will allow us to study the strong-field spacetime around massive BHs. To
achieve this, waveform templates that include the postadiabatic term are needed.
This term contains the effect of the secondary spin that can be calculated by
adiabatically evolving the orbital parameters using GW fluxes to infinity and to
the horizon of the primary BH. Therefore, we investigated the motion of spinning
particles in the Kerr spacetime and calculated GW fluxes from the respective or-
bits. Then we used the aforementioned fluxes to adiabatically evolve the orbital
parameters and to find the phase shift due to the secondary spin.

First, we focused on eccentric equatorial orbits. The only possible orientation
of the spin in this setup is such that it is parallel or antiparallel to the symmetry
axis of the central BH. Using the equations of motion derived in Ref. [61], we
derived analytical formulas for the energy and the angular momentum as functions
of the semilatus rectum p and the eccentricity e. Moreover, we found formulas
allowing the numerical calculation of the fundamental frequencies with respect to
the coordinate time and for the coordinates in Darwin parametrization.

Having the nonlinearized formulas for the coordinates, frequencies and con-
stants of motion, we linearized them in the secondary spin, since this order is
sufficient for the first postadiabatic term. We considered two cases with different
reference geodesics. In the first case we found the linear-in-spin parts with respect
to a geodesic with the same p and e. In the second case the reference geodesics
has the same radial and azimuthal frequencies Ωr and Ωϕ.

Next, we moved to generic off-equatorial orbits. Using the approach from
Refs. [64, 65], we calculated generic trajectories of spinning particles and the
linear-in-spin parts with fixed orbital parameters semi-latus rectum p, eccentricity
e, and inclination angle I.

The calculated trajectories were utilized in the calculation of GW fluxes to
infinity and to the horizon of the primary BH. This was achieved by solving the
Teukolsky equation in the frequency domain with the spinning-particle source
term. Because of the discrete frequency spectrum of the trajectory, the frequency
spectrum of the fluxes is discrete as well allowing us to calculate the total flux
as a sum over multipoles l and m and harmonic indices n and k. The infinity
and horizon partial amplitudes of each such mode C±

lmnk are calculated as integral
over the radial and polar phase of a function constructed from the stress-energy
tensor of a spinning particle containing the quantities describing the trajectory
calculated earlier.

Furthermore, for equatorial fluxes, we calculated the linear-in-spin parts of
the amplitudes δC±

lmn

⃓⃓⃓
Ωi

and fluxes δFE,Jz

⃓⃓⃓
Ωi

with fixed frequencies and found
the formula to transform them to the respective linear parts with fixed orbital
parameters δC±

lmn

⃓⃓⃓
p,e

and δFE,Jz

⃓⃓⃓
p,e

.
The fact that the fluxes Flmnkj are quadratic in the amplitudes C±

lmnkj and
the amplitudes of the j = ±1 modes, which correspond to the perpendicular
precessing component of the spin, are proportional to σ led us to conclude that
the contribution of the perpendicular component of the spin to the fluxes is O(σ2).
Therefore, in the linear-in-spin order only the parallel component is relevant and
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measurable.
To verify the the validity of the frequency-domain fluxes computations, we

compared them to fluxes obtained from a time-domain TE solver called Teukode.
For the latter computations, we implemented a piecewise-polynomial approxi-
mation of the delta function to improve the efficiency and accuracy of Teukode.
For equatorial fluxes, we compared the full non-linearized strain at infinity and
the energy fluxes for different resolutions of the time-domain grid. Assuming
that the error of the frequency-domain result is much lower than the error of the
time-domain result, we calculated the error of the time-domain result as rela-
tive difference of the time-domain and frequency-domain fluxes. We verified that
the relative error decreases with increasing resolution for different values of the
secondary spin and eccentricities.

In the generic and nearly spherical case the fluxes are accurate only up to
linear order in spin and cannot be directly compared to the nonlinearized time-
domain fluxes. Thus, we compared the linear-in-spin parts of the fluxes obtained
by numerical derivatives with respect to σ of the frequency domain and time-
domain results. Because of the computational costs, which are higher in the
generic case, we compared the fluxes only for some orbital parameters without
checking the convergence. We found that the frequency-domain and time-domain
energy fluxes agree up to the numerical accuracy of Teukode.

The obtained equatorial GW fluxes were used to adiabatically evolve the or-
bital parameters. Because the calculation of the fluxes at each point of the
parameter space is computationally expensive, we calculated the fluxes and their
linear-in-spin parts on a grid with Chebyshev nodes and interpolated them. Con-
sequently, the grid was used to adiabatically evolve the orbital parameters p, e
and the phases Φr, Φϕ. Operating in the linear in spin framework allowed us to
obtain the radial and azimuthal phase shifts δΦr and δΦϕ for various parameters
of the system.

The natural extension of this work is to calculate adiabatic evolution of the
orbital parameters for generic orbits of spinning particles and to find the spin-
induced phase shifts. However, for this, the rate of change of the Carter-like
constant KR and the parallel spin σ∥ are needed. These fluxes have not been
derived yet. Another direction is to use the equatorial fluxes to generate the
inspirals using the FastEMRIWaveforms framework [92] and perform Bayesian
analysis of the waveforms to analyze the detactability of the secondary spin,
since it was found for quasicircular inspirals [36] that the system is degenerate
and the secondary spin is not measurable. The ultimate goal is to include other
postadiabatic effects and generate accurate enough waveforms for the detection
and parameter analysis of EMRIs.
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2. Viktor Skoupý and Georgios Lukes-Gerakopoulos. Adiabatic equatorial in-
spirals of a spinning body into a Kerr black hole. Phys. Rev. D, 105:084033,
April 2022.
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