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Introduction
Consider a dynamical system that we would like to describe by means of a stochas-
tic differential equation. Formally, we have a physical model

v̇(t) = f(t, v(t)) + ξ(t, v(t)),

where f represents the underlying physical law and ξ represents some noise. Thus,
both f and ξ need to be specified and it is the modeller’s task to convert their
knowledge about the system into properties of both f and ξ. After doing so an
obvious question arises: how do our model assumptions play together? Necessar-
ily, our equation should have a solution. In the second step, we should also be
interested in the solution’s properties as we might reject our model if it does not
encode the modeller’s a priori assumptions.

Some of the key model properties relate to the long-time behavior of a solution.
We shall be interested only in systems that are stable in some sense: either the
solution does not grow unboundedly in some sense, it possess an equilibrium point
represented by a stationary solution (or invariant measure) or we might even want
the solution to converge to a single point.

It is in the famous work Lyapunov [1907] where methods for determining the
stability properties of deterministic systems where proposed. Since then similar
techniques have proved useful for stochastic systems as well and those have been
referred to as Lyapunov techniques in many important works. In this Thesis
we make advantage of the fact that Lyapunov methods help us to answer many
questions on the growth of solution, existence of invariant measure and a conver-
gence to a single point even when the particular shape of the solution is unknown.
Therefore, also non-linear systems can be considered.

In this work we bring new results in the setting of stochastic differential equa-
tions with jumps represented by Lévy noise. The novelty lies in the fact that we
are able to cover non-linear systems where no assumptions on the existence of
moments of the noise are needed. We arrive at conditions fully specified in terms
of the coefficients of the model and interpret them geometrically. The results can
be divided into two parts.

Firstly, we investigate a stability property that may be called “boundedness
of solutions in probability in the mean” which together with the Feller prop-
erty verifies the existence of an invariant measure by means of the well-known
Krylov–Bogolyubov Theorem. In particular, we are interested in some situations
when the equation is “stabilized” in the above sense by noise. This phenomenon
is well understood in the case of Gaussian noise (as discussed already in the
classical Khasminskii’s monograph Khasminskii [1980], for infinite-dimensional
systems Leha et al. [1999]) and we focus on contribution of the stochastic jump
terms. Stochastic differential equations driven by Lévy noise have been exten-
sively studied in recent years. Important fundamental results in this field are
presented, for instance, in the monograph Applebaum [2009] from which we take
the basic setting of the problem.

The topic addressed is related to the problems of stability (and stabiliza-
tion) of trivial solution to Lévy-driven stochastic equation which was recently

2



studied in several papers. In Applebaum and Siakalli [2010], asymptotic a.s. sta-
bility is shown in the linear case (under conditions analogous to those in this
work if restricted to such case). In Applebaum and Siakalli [2009], asymptotic
stability in probability, in the mean and the moment stability is studied. The
paper Nane and Ni [2017] deals with boundedness in probability and the moment
boundedness, for a time-changed Lévy noise, an analogous problem in the case of
Gaussian noise is also investigated in Nane and Ni [2017]. Some related results
can be also found in Grigoriu [1996], Li et al. [2002] and an analogous problem
for equations driven by discontinuous semimartingales are studied in Mao and
Rodkina [1995]. Reference Mao [2008] presents a general treatise on stochastic
stability. Existence of stationary distributions has been addressed in Bhan et al.
[2012] and Jurek [1982]. In the latter paper, the existence is shown by means of
Lyapunov method but the effect of stabilization by noise is not considered (the
noise has to be “small enough”). In Albeverio et al. [2016], a class of invariant
measures is described in general terms by means of Fokker–Planck equation. For
infinite-dimensional systems, existence of invariant measure has been studied, for
example, in Applebaum [2015] or Kumar and Riedle [2021]. A related problem of
existence of random attractors for equations with two-sided Lévy noise has been
treated in Zhang et al. [2019].

Secondly, criterions for convergence of a solution to a single point by means
of Lyapunov methods are applied in the context of stochastic approximation
procedures.

Stochastic approximation algorithms originally proposed as a tool for find-
ing a root of a function (the Robbins–Monro procedure) or its minimum (the
Kiefer–Wolfowitz procedure), these algorithms found various applications in op-
timization and machine learning. See, e.g., the books Bhatnagar et al. [2013],
Borkar [2008], Browder [1963], Chen [2002], Kushner and Clark [1978], Kush-
ner and Yin [2003] for a thorough discussion of various aspects of stochastic
approximation algorithms and their use. (Let us mention also [Gwinner et al.,
2022, Chapter 8] for very recent applications to variational inequalities with ran-
dom data.) Nevel’son and Khas’minskii developed a continuous-time approach
to stochastic approximation, which in the case of the Robbins–Monro-type pro-
cedure leads to a stochastic differential equation

dYt = α(t) (R(Yt) + σ(t, Yt)dYt) (0.0.1)

driven by a Wiener process W. Having advanced tools of stochastic analysis at
their disposal—in particular the Lyapunov functions method from the stability
theory of stochastic differential equations—they showed that sufficient conditions
on coefficients of (0.0.1) implying convergence of its solutions almost surely as
t → ∞ to the (unique) root of the drift R may be found and proved in a straight-
forward and transparent way. See their book Nevel’son and Khas’minskĭı [1972]
for a systematic development of these ideas and, for example, the papers Chen
[1994], Komarov and Krasulina [1999], Pflug [1979] and the book Korostelev
[1984] for further results on continuous-time stochastic approximation.

As discrete-time systems indicate, it is reasonable to consider more general
driving noises in Eq. (0.0.1). Stochastic recursive procedures described by equa-
tions driven by semimartingales were considered by Mel’nikov [1989] and Lazrieva
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et al. [1997], Lazrieva et al. [2003], Lazrieva et al. [2008], Lazrieva and Toron-
jadze [2010]. Precise statements of their results are rather technical, but roughly
speaking, the martingale part of the driving noise is a locally square integrable
martingale or a random measure like a compensated Poisson random measure;
proofs in these papers are based on results on convergence of semimartingales.
A number of results concerning equations driven by square integrable processes
with independent increments are stated in the book Korostelev [1984]; proofs, us-
ing Lyapunov functions techniques, are given, however, only in the discrete-time
case.

The Thesis is divided into three chapters.
The first Chapter consists of 5 sections where basic definitions and standard

results are stated. Exposition to the theory of Lévy processes, stochastic inte-
gration with respect to them and stochastic differential equations with jumps are
mostly based on Applebaum [2009]. Sections introducing the topics of stochastic
approximation procedures and invariant measures for Markov processes are also
included.

The second Chapter is based on Maslowski and Týbl [2022] and is devoted
to boundedness in probability in the mean and existence of invariant measures.
First, the problem is posed and some preliminary standard results are recalled
then results are presented in four following sections.

In Section 2.1 general Lyapunov criterion for boundedness in probability in
the mean is presented. In principle, for the most general formulation of the stabil-
ity theorem we only need local boundedness of the coefficients besides existence
and uniqueness of solutions. However, we also present some standard conditions
(Lipschitz and linear growth conditions) which verify this basic assumption and
which are also helpful in more specific cases.

The general theorem from Section 2.1 is applied to the equation containing
the drift, diffusion and compensated integral terms in Section 2.2. The main
result (Theorem 2.2.1) is formulated for locally bounded coefficients and then
specified in the linear growth case (Corollary 2.2.1). This result allows us to
discuss stabilizing roles of particular terms in the equation and their mutual
influence. The Section is closed by an example where such interplay of particular
terms in the equation is demonstrated and also, relation to moment stability of
solutions is discussed.

In Section 2.3, the general statement from Section 2.1 is applied to the equa-
tion with uncompensated integral term, drift and diffusion. Theorem 2.3.1 is
analogous to Theorem 2.2.1 from the previous section. In Theorem 2.3.2, a dif-
ferent approach is adopted and a stability criterion is found which is expressed
directly in terms of jumps. Section 2.3 is closed by two examples: In the first one,
the linear equation is studied. In the second one, the influence of the parameter
dividing small and big jumps is discussed.

Section 4 summarizes consequences of the previous parts for the existence of
invariant measure (stationary solution) if the equation defines a Feller Markov
process, which may be viewed as the main result.

In the last Chapter results on approxistochasticmation procedures are pre-
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sented based on Seidler and Týbl [2023]. First, we introduce the equation we
deal with precisely and we state the Itô formula in a form required in our proofs.

In Section 3.1, the main results are proved: Theorem 3.1.1 giving general suf-
ficient conditions for convergence of solutions to a stochastic differential equation
driven by a Lévy process to a singleton and its Corollary 3.1.1 concerning the
Robbins–Monro procedure.

In Section 3.2, we show how to apply these results to particular systems.
Compared with the available results, we admit a non-compensated Poisson pro-
cess as a driving noise and essentially no hypotheses of the L2-integrability type
are needed. Employing the Lyapunov functions approach, we generalize results on
convergence of the Robbins–Monro procedure from Nevel’son and Khas’minskĭı
[1972]. It may look odd that the noise in (3.0.1) is not centered since then the
last term on the right-hand side influences the drift R (e.g., if c is changed) and
hence also its roots. Indeed, it may happen that solutions of (3.0.1) converge to
a given point which, however, is not a root of R. Nevertheless, a nontrivial class
of coefficients H and K exists such that solutions to (3.0.1) converge to the root
of R under conditions weaker than those used in the diffusion case (0.0.1) as no
monotonicity-type hypotheses are needed. Moreover, in the case of a drift with
multiple roots, by choosing K in a suitable way we may select a unique root of
R the solutions will converge to. Again, in the diffusion case the behavior is dif-
ferent. In Remark 3.2.1, we discuss the differences between behavior of solutions
to (0.0.1) and (3.0.1) in detail.

ACKNOWLEDGEMENTS This research was partially supported by Czech
Science Foundation (GAČR) Grant no. 22-12790S, the SVV Grant No. 260580
and the Grant schemes at Charles University, Project No. CZ.02.2.690.00.019
073/0016935.
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1. Theory review

1.1 Lévy processes
In this Section we briefly recall what is a Lévy process together with its relation to
infinite divisibility, Lévy-Itô formula and present some examples. The exposition
follows Applebaum [2009].

Definition 1.1.1. Let n ∈ N and (Ω, F , (Ft)t≥0,P ) be a stochastic basis with a
normal filtration (Ft)t≥0. An Rn-valued (Ft)-progressively measurable stochastic
process L is called an (Ft)-Lévy process if

• L0 = 0, a.s.,

• L has stationary and independent increments,

• L is stochastically continuous, that is

P (|Lt+h − Lt| > ϵ) → 0, h → 0

for every t ∈ R≥0 and ϵ ∈ R>0 (with limit from the right only if t = 0),

• L has almost surely càdlàg paths.

If the normal filtration (Ft) is clear from the context we speak about Lévy
processes for short.

The concept of Lévy processes is closely related to the notion of infinite di-
visibility. To describe this relation we also recall what is a weakly continuous
convolution semigroup. Recall that if x ∈ Rn, n ∈ N then δx denotes the dirac
measure at x.

Definition 1.1.2. A family (pt, t ∈ R≥0) of probability measures in Rn, n ∈ N is
said to be a weakly continuous convolution semigroup if

• p0 = δ0,

• we have

ps+t = ps ∗ pt, s, t ∈ R≥0,

where ∗ denotes the convolution operator,

• we have

pt → δ0 weakly

as t → 0+1.

1In our case this congergence simply means that
∫︁
Rn f(y)dpt(y) → f(0) as t → 0+ for every

continuous and bounded function f : Rn → R.
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Remark 1.1.1.
It is easy to see that the marginal distribution of a Lévy process at any fixed time
is infinitely divisible. Indeed, if L is a Lévy process and t ≥ 0 then we shall write

Lt =
k∑︂

j=1

(︂
L j

n
t − L j−1

k
t

)︂
for any k ∈ N. So with k ∈ N given setting Yj = L j

n
t − L j−1

k
t, j = 1, . . . k we have

shown that

Lt =
k∑︂

j=1
Yj

for Yj, j = 1, . . . , k independent and identically distributed (by the independence
and stationarity of the increments of L), which shows infinite divisibility of the
distribution of Lt.
On the other hand, if we are given an infinitely divisible probability distribution µ
on Rn, n ∈ N, then we can construct a Lévy process L with µ being the distribu-
tion of L1 as follows: First, by the celebrated Lévy-Khnintchine formula (see e.g.
[Sato, 1999, Thmeorem 8.1]) the characteristic function of µ is of the exponential
form u ↦→ eη(u) for a suitable complex function η. By simple arguments one can
show that the family of characteristic functions(︂

etη, t ∈ R≥0
)︂

corresponds to some family (pt, t ∈ R≥0) of weakly continuous convolution prob-
ability measures on Rn. Now a canonical process of projections

L̃t(ω) := ω(t), ω ∈ Ω, t ∈ R≥0

on the set Ω of functions on R≥0 with values in Rn starting from 0 is constructed.
We equip Ω with the cylinder σ-algebra F , filtration generated by L̃ and a
probability measure P given by the condition

P ({ω ∈ Ω : ω(t1) ∈ A1, . . . , ω(tn) ∈ An}) :=∫︂
Rn

· · ·
∫︂
Rn

1A1(y1) . . . 1An(y1 + · · · + yn)pt1(dy1) . . . ptn(dyn)

for every A1, . . . , An ∈ B(Rn), t1, . . . , tn ∈ R≥0, which is justified by Kol-
mogorov’s extension theorem. Using standard arguments one can show that L̃
is a process starting at 0 of stationary and independent increments and that L̃
is stochastically continuous. The construction is completed by taking a càdlàg
modification L of L̃ that exists and is again a Lévy process as shown in [Apple-
baum, 2009, Theorem 2.1.7] and taking the augmented canonical filtration which
satisfies the normality conditions by [Applebaum, 2009, Theorem 2.1.9]. For more
details of this construction see Applebaum [2009].

We have seen that there is one-to-one correspondence between Lévy processes
and infinitely divisible distributions. Let us now present some key examples.

Example 1.1.1. The following processes are Lévy processes:
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• any linear deterministic function t ↦→ bt for some b ∈ Rn,

• Q-Wiener process, that is an Rn-valued process W with continuous paths
starting from zero with independent increments and such that Wt − Ws has
centered Normal distribution with covariance (t − s)Q for some positive
semi-definite and symmetric matrix Q ∈ Rn×n for any 0 ≤ s < t < ∞,

• Poisson process, that is a càdlàg R-valued process N with independent
increments and such that

P (Nt = n) = (λt)n

n! e−λt, n ∈ N

for any t ∈ R≥0 and some λ ∈ R>0 (which is called the intensity of N),

• compensated Poisson process, that is the process of the form

Ñ t = Nt − λt,

where N is the Poisson process with intensity λ ∈ R>0,

• compound Poisson process, that is if N is a Poisson process independent
of sequence of i.i.d. Rn-valued variables Y1, Y2, . . . then we consider the
process

Nt∑︂
j=1

Yj,

• α-stable process, that is a Lévy process for which any marginal distribution
is (strictly) α-stable with some common stability parameter α ∈ (0, 2].
We note that this is the only example of a self-similar Lévy process as
shown e.g. in [Sato, 1999, Proposition 13.5]. We recall that a stochastic
process X is self-similar if there exists so-called Hurst index H ∈ R>0 such
that (Xat, t ∈ R≥0) and

(︂
aHXt, t ∈ R≥0

)︂
have the same finite-dimensional

distributions for any a ∈ R≥0. In this case we have H = 1/α.

It is easily checked that a sum of independent Lévy processes is again a Lévy
process. It is due to the famous Lévy-Itô formula that we can decompose any Lévy
process into the sum of four independent processes of simple form. The above-
mentioned examples: linear deterministic function, Q-Wiener process, compen-
sated Poisson process and compound Poisson process are the key building blocks.
However, before stating this result we need to introduce some notation. For
more detailed exposition the reader may consult with [Jacod and Shiryaev, 2003,
Chapter II.] where even more general case is treated.

First, we define the jump measure for an (Ft)-Lévy process L as follows: we
denote

N(t, A) :=
∑︂

0≤s≤t

1A (∆Ls) , t ∈ R≥0, A ∈ B(Rn), (1.1.1)

where

∆Ls := Ls − lim
u→s+

Lu
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denotes the jump of L at a given time s. One can show that N defines so-called
(Ft)-Poisson random measure on R+ × (Rn \ {0}) with some intensity measure
dtν(dy) (see [Jacod and Shiryaev, 2003, Chapter II.] or [Applebaum, 2009, Chap-
ter 2.3] for the details).

As directly follows from the path regularity of a Lévy process we have that
if A ∈ B(Rn) is such that its closure does not contain the zero element 0 ∈ Rn

then there are only finitely many jumps ∆Ls with ∆Ls ∈ A on any finite interval
s ∈ [0, t] almost surely. Thus, the integral process∫︂

A
yN(t, dy) :=

∫︂
[0,t]×A

yN(dt, dy) =
∑︂

0≤s≤t

(1A(∆Ls)∆Ls) , t ∈ R≥0 (1.1.2)

which represents the sum of all jumps of L with values in A up to a given time
is a piecewise constant process. In fact it is a compound Poisson process (see
Example 1.1.1). On the other hand, if A ∈ B(Rn) is bounded (but its closure
may contain the zero element) the limit∫︂

A
yÑ(t, dy) := lim

ϵ→0+

(︄∫︂
A∩|y|≥ϵ

yN(t, dy) − t
∫︂

A∩|y|≥ϵ
yν(dy)

)︄
, t ∈ R≥0 (1.1.3)

in L2(Ω,Rn) defines (up to taking the càdlàg modification) an (Ft)-Lévy process.
Now we are ready to formulate the Lévy-Itô formula and provide some remarks

on its applicability.

Theorem 1.1.1. Any (Ft)-Lévy process L in Rn can be decomposed as

Lt = bt + Wt +
∫︂

{|y|<c}
yÑ(t, dy) +

∫︂
{|y|≥c}

yN(t, dy), t ∈ R≥0 (1.1.4)

almost surely, where c ∈ R>0, b ∈ Rn, W is an (Ft)-Wiener process with co-
variance Q with values in Rn which is independent to an (Ft)-Poisson random
measure N on R+ × (Rn \ {0}) with intensity measure dtν(dy), where ν is a Lévy
measure on Rn \ {0}, that is∫︂

Rn\{0}

(︂
|y|2 ∧ 1

)︂
ν(dy) < ∞ (1.1.5)

Proof. See [Sato, 1999, Theorem 19.2].

Remark 1.1.2. • The four terms in (1.1.4) represent the drift, diffusion,
small jumps (up to size of c) and large jumps respectively. While the large
jumps can be separated due to the càdlàg property into a finite random
sum, the small jumps are compensated (which can be seen in the formula
(1.1.3)). In more detail, both the terms

t ↦→ bt and t ↦→
∫︂

{|y|≥c}
yN(t, dy)

are processes of finite variation while

t ↦→ Wt and t ↦→
∫︂

{|y|<c}
yÑ(t, dy)

are L2-martingales. We see that any Lévy process is a semimartingale.
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• The decomposition (1.1.4) is unique for a given choice of c ∈ R>0. In fact,
for each choice of c we obtain possibly different decomposition: if b is the
drift term associated with given c then

b +
∫︂

c′≤|y|<c
yν(dy)

is the drift term associated with the choice 0 < c′ < c.

• The marginal distribution of L is determined by a triplet (b, Q, ν), where
b ∈ Rn, Q is a covariance matrix of a Rn-dimensional process and ν is a Lévy
measure if c ∈ R>0 is fixed. Thus, we call this triplet the characteristics
of the Lévy process L. Such definition is consistent with the definition
of characteristics of a semimartingale which possibly depend on the so-
called truncation function which is 1{|y|<c} in our case. The semimartingale
characteristics are time-dependent and random in the general case.

• One can figure out many properties of a Lévy process L from its character-
istics, for example

– We have that E |Lt| < ∞ for some (and hence all) t ∈ R>0 if and only
if ∫︂

{|y|≥c}
|y| ν(dy) < ∞ (1.1.6)

for some (and hence all) c ∈ R>0. In that case

ELt = t

(︄
b +

∫︂
{|y|≥c}

yν(dy)
)︄

.

In fact, finiteness of any moment of Lt is equivalent to the respective
integrability of |·| over {|y| ≥ c} with respect to ν, that is any Lévy
process with bounded jumps has all moments finite. Moreover, if if ν is
a symmetric measure and b = 0 then Lt is centered for every t ∈ R>0.

– L is of bounded variation if and only if∫︂
{|y|<c}

|y| ν(dy) < ∞ and Q = 0

for some (and hence all) c ∈ R>0.
– L is continuous if and only if ν = 0, that is the only continuous Lévy

process is a Wiener process with drift.
– L is a martingale if and only if (1.1.6) holds and

b +
∫︂

{|y|≥c}
yν(dy) = 0

for some (and hence all) c ∈ Rc>0.
– Lt has rotationally invariant distribution for some (and hence all) t ∈

R>0 if and only if Q = αI for some α ∈ R≥0 and ν is rotationally
invariant.
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– L has infinitely many jumps on any time interval almost surely if and
only if ν is infinite.

More details can be found e.g. in [Applebaum, 2009, Chapter 2.4].

• The condition (1.1.5) on the Lévy measure ν is given by the fact that even
though it might be that∑︂

0≤s≤t

|∆Ls| 1|y|≤1 (∆Ls) = ∞ a.s.

for some t ∈ R>0, we always have

E

⎡⎣ ∑︂
0≤s≤t

|∆Ls|2 1|y|≤1 (∆Ls)
⎤⎦ = t

∫︂
|y|≤1

|y|2 dν(y) < ∞, t ∈ R≥0.

Remark 1.1.3. The decomposition (1.1.4) of a Lévy process L is obtained in
several steps which we briefly comment on now. The whole procedure depends
on a parameter c ∈ R>0 that we fix in the sequel of this remark.

• In the first step, we extract the large jump, meaning that we denote

L
{|y|<c}
t :=Lt −

∫︂
{|y|≥c}

yN(t, dy)

=Lt −
∑︂

0≤s≤t

(︂
1{|y|≥c}(∆Ls)∆Ls

)︂
, t ∈ R≥0

(recall the definition of the integral in (1.1.2)). One can show that L{|y|<c}

is again a Lévy process, moreover, it is clear, that the jumps of L{|y|<c} are
bounded by the constant c. As any Lévy process with bounded jumps has
all moments finite we can further define

L̃
{|y|<c}
t :=L

{|y|<c}
t − EL

{|y|<c}
t

=L
{|y|<c}
t − tEL

{|y|<c}
1

=L
{|y|<c}
t − tb

for t ∈ R≥0 where

b = E
[︄
L1 −

∫︂
{|y|≥c}

yN(1, dy)
]︄

.

• In the second step, we show that if all the jumps of L are bounded by c
then

Wt := Lt −
∫︂

{|y|<c}
yÑ(t, dy), t ∈ R≥0

(see (1.1.3) for the definition of the integral on the right-hand-side) is a
Wiener process with some covariance Q. First, one can show that W is
continuous local martingale. Then the result follows by Lévy characterisa-
tion theorem (see e.g. [Ikeda and Watanabe, 1981, Theorem II.6.3]).
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• The previous two steps already show (1.1.4) so it remains to show that the
intensity measure

ν(A) := EN(1, A)

is a Lévy measure which is closely related to the fact that∫︂
{|y|<c}

yÑ(1, dy)

has a finite second moment.

The above described procedure is a particular case of a way how to obtain
the semimartingale characteristics when the underlying process is Lévy, see e.g.
[Jacod and Shiryaev, 2003, Chapter II].

1.2 Stochastic integration
Let L be a Lévy process with the decomposition (1.1.4). Then we formally define
a stochastic integral process with respect to L via (1.1.4) as

∫︂ ·

0
f(t)dLt =

∫︂ ·

0
f(t)d

(︄
bt + Wt +

∫︂
{|y|<c}

yÑ(t, dy) +
∫︂

{|y|≥c}
yN(t, dy)

)︄

=
∫︂ ·

0
f(t)bdt +

∫︂ ·

0
f(t)dWt

+
∫︂ ·

0

∫︂
{|y|<c}

f(t)yÑ(dt, dy) +
∫︂ ·

0

∫︂
{|y|≥c}

f(t)yN(dt, dy)

(1.2.1)

for a suitable Rm×n-valued process f . The first integral on the right-hand side in
(1.2.1) is defined pathwise, while the second one is defined using the standard Itô
theory, cf. Karatzas and Shreve [1991], if f : R≥0 × Ω → Rm×n is progressively
measurable and ∫︂ t

0
|f(s)|2 ds < ∞ a.s.

for every t ∈ R≥0. The aim of this section is to summarize the standard procedure
how to define the last two terms in (1.2.1) following the approach in [Applebaum,
2009, Chapter 4]. In fact, we even define more generally∫︂ ·

0

∫︂
{|y|<c}

H(t, y)Ñ(dt, dy) and
∫︂ ·

0

∫︂
{|y|≥c}

H(t, y)N(dt, dy)

for suitable processes H : R≥0 × Rn × Ω → Rm.
First, we give two definitions.

Definition 1.2.1. Let (Ω, F , (Ft)t≥0,P ) be a stochastic basis and n ∈ N. The
σ-algebra P which is defined as the smallest σ-algebra for which all mappings
F : R≥0 × Rn × Ω → R such that

• (y, ω) ↦→ F (t, y, ω) is B(Rn) ⊗ Ft-measurable for any t ∈ R≥0,
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• t ↦→ F (t, y, ω) is left-continuous for any y ∈ Rn, ω ∈ Ω

are measurable is called predictable σ-algebra. If H : R≥0 × Rn × Ω → R is
P-measurable we say that H is predictable, similarly we may treat also space-
homogeneous mappings H : R≥0 × Ω → R.

Note that any predictable process is progressively measurable, cf. [Cohen and
Elliott, 2015, Remark 7.2.2.].

Definition 1.2.2. Let µ be a σ-finite measure on a measurable space (X, X ).
A family of random variables {N(A), A ∈ X } defined on some probability space
is called Poisson random measure with intensity µ if

• N(A) follows Poisson distribution with intensity rate µ(A) for any A ∈ X
(with N(A) = ∞ almost surely if µ(A) = ∞),

• N(A1), . . . , N(An) are independent if A1, . . . , An ∈ X are disjoint,

• almost surely we have that A ↦→ N(A) defines a measure on (X, X ).

It follows from [Applebaum, 2009, Chapter 2] that the jump measure (1.1.1)
defines a Poisson random measure with intensity µ that satisfies

µ([0, t] × A) = tν(A), t ∈ R≥0, A ∈ B(Rn),

where ν it the Lévy measure from Theorem 1.1.1 (here we take X = R≥0 ×Rn)2.
Thus, we may define the (pathwise) integral∫︂ t

0

∫︂
A

H(s, y)N(ds, dy), t ∈ R≥0, A ∈ B(Rn), 0 /∈ Ā (1.2.2)

for any measurable H : R≥0×Rn×Ω → Rm as a finite random sum due to the fact
that ν(A) < ∞ if A ∈ B(Rn), 0 /∈ Ā. In the case of deterministic integrand such
that H(s, y) = h(s, y) almost surely for every y ∈ Rn and for some measurable
h : R≥0 × Rn → Rm we have

E
[︃∫︂ t

0

∫︂
A

h(s, y)N(ds, dy)
]︃

=
∫︂ t

0

∫︂
A

h(s, y)dsdν(y),

VAR
[︃∫︂ t

0

∫︂
A

h(s, y)N(ds, dy)
]︃

=
∫︂ t

0

∫︂
A

|h(s, y)|2 dsdν(y)

for t ∈ R≥0, A ∈ B(Rn), 0 /∈ Ā and by the construction of N also∫︂ t

0

∫︂
A

h(s, y)N(ds, dy) =
∑︂

0≤s≤t

(1A(∆Ls)H(s, ∆Ls)) , a.s.

which is in compliance with (1.1.2).
We always assume that H in (1.2.2) is predictable to ensure nice properties

of the integral.
More delicate is the case of the integral with respect to the compensated

measure Ñ where the pathwise approach fails and an L2-theory is used instead.
2The jump measure N moreover satisfies that N(t, A) − N(s, A) is independent of Fs if it

is given by an (Ft)-Lévy process for any 0 ≤ s < t < ∞ and A ∈ B(Rn). In such case we talk
about an (Ft)-Poisson process
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Definition 1.2.3. Let (X, X ) be a measurable space, U be an algebra over
X that generates the σ-algebra X and ρ be a σ-finite measure on the prod-
uct space (R≥0 ⊗ X, B(R≥0) ⊗ X ). A family of random variables {M(t, A), t ∈
R≥0, A ∈ U } on a filtered probability space (Ω, F , (Ft)t≥0,P ) with normal fil-
tration (Ft)t≥0 is called an (Ft)-martingale-valued measure on R≥0 × X with
controlling measure ρ if

• almost surely for any t ∈ R≥0 we have that M(t, ·) is a pre-measure on U ,

• the process t ↦→ M(t, A), t ∈ R≥0 is a càdlàg martingale for any A ∈ U ,

• the increment M(t, A) − M(s, A) is independent of Fs for any 0 ≤ s < t <
∞ and A ∈ U ,

• we have

EM(t, A)2 = ρ(t, A), t ∈ R≥0, A ∈ U .

An important example of a martingale-valued measure to which the developed
theory will be applied comes from the jump measure of a Lévy process L. Recall
that we denoted N the jump measure defined by (1.1.1). Then we define the
compensated Poisson measure by

Ñ(t, A) = N(t, A) − tν(A), t ∈ R≥0, A ∈ B(Rn), 0 /∈ Ā, (1.2.3)

where ν is the intensity measure of N(1, ·). Note that Ñ is well defined as ν(A) <
∞ for A ∈ B(Rn), 0 /∈ Ā by the fact that there are only finitely many jumps of
size larger than some fixed constant on any finite interval for the underlying Lévy
process almost surely. One can show that Ñ is a martingale-valued measure on
R≥0 × Rn with controlling measure dtν(dy).

Now let M be as in Definition 1.2.3 and fix T ∈ R>0. Details of the following
construction may be found in [Applebaum, 2009, Chapter 4]. We define H to be
the Hilbert space of equivalence classes of predictable mappings H : [0, T ] ×Rn ×
Ω ↦→ Rm with respect to equality P ⊗ ρ-almost everywhere such that

E
[︄∫︂ T

0

∫︂
Rn

|H(t, y)|2 ρ(dt, dy)
]︄

< ∞

equipped with the scalar product

⟨H1, H2⟩H := E
[︄∫︂ T

0

∫︂
Rn

⟨H1(t, y), H2(t, y)⟩ρ(dt, dy)
]︄

, H1, H2 ∈ H.

Now we define the integral of a simple process against M . By a simple process
we mean a linear combination

H =
m∑︂

j=1

n∑︂
k=1

αkFtj
1(tj ,tj+1]1Ak

(1.2.4)

for some 0 ≤ t1 < t2 < · · · < tm+1 ≤ T α1, . . . αk ∈ R, k ∈ N, Ftj
bounded,(︂

Ftj

)︂
-measurable and Rm-valued random variables and A1, . . . , An ∈ U , n ∈ N.

For a simple process of the form (1.2.4) we set

IT,M(H) :=
m∑︂

j=1

n∑︂
k=1

αkFtj
(M(tj+1, Ak) − M(tj, Ak)) . (1.2.5)

14



If we denote S ⊂ H the linear space of simple processes of the form (1.2.4) then
one can show that

IT,M : S → L2(Ω,Rm)

is a linear isometry. As S is dense in H one can uniquely extend IT,H to H.
Similarly to the classical case of Itô integral we may further extend IT,H to the
linear space P of equivalence classes of predictable mappings H : [0, T ]×Rn×Ω ↦→
Rm with respect to equality P ⊗ ρ-almost everywhere such that∫︂ T

0

∫︂
Rn

|H(t, y)|2 ρ(dt, dy) < ∞, a.s. (1.2.6)

It is due to the fact that S is dense in P if P is equipped with a suitable (and
sufficient for our considerations) topology (see [Applebaum, 2009, Chapter 4.2.2]
for details) and the inequality due to [Gikhman and Skorokhod, 1972, page 20]

P (|IT,M(H)| > ϵ) ≤ K

ϵ2 + P
(︄∫︂ T

0

∫︂
Rn

|H(t, y)|2 ρ(dt, dy) > K

)︄

for any ϵ, K ∈ R>0 and H ∈ S. Finally, one can show that if a predictable
mapping H : [0, T ] ×Rn × Ω ↦→ Rm satisfies (1.2.6) for every T ∈ R>0 then there
exists a modification of the process

{It,M(H), t ∈ R≥0}

that is a càdlàg local martingale. This modification is then denoted as∫︂ ·

0
HdM.

In the special case of a martingale-valued measure Ñ with a control measure
dtdν(dy) associated with a Lévy process we use notation∫︂ ·

0

∫︂
{|y|<c}

H(t, y)Ñ(dt, dy) =
∫︂ ·

0
1{|y|<c}HdÑ

if 1{|y|<c}H ∈ P, that is if∫︂ T

0

∫︂
{|y|<c}

|H(t, y)|2 dtdν(y) < ∞ a.s.

This notation is compatible with the previously adapted notation, that is we have∫︂ t

0

∫︂
{|y|<c}

yÑ(ds, dy) =
∫︂

{|y|<c}
yÑ(t, dy), t ∈ R≥0, a.s.

in the Lévy-Itô decomposition (1.1.4). Moreover, by the fact that IT,H is isometric
between H and L2(Ω,Rm) we obtain the Itô-type isometry

E
[︄∫︂ T

0

∫︂
{|y|<c}

|H(t, y)|2 Ñ(dt, dy)
]︄

= E
[︄∫︂ T

0

∫︂
{|y|<c}

|H(t, y)|2 dtdν(y)
]︄

(1.2.7)

for H ∈ H.
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Remark 1.2.1. Using the above construction we can give a meaning to a process
with the following decomposition∫︂ ·

0
F (s)ds+

∫︂ ·

0
G(s)dWs +

∫︂ ·

0

∫︂
{|y|<c}

H(s, y)Ñ(ds, dy)

+
∫︂ ·

0

∫︂
{|y|≥c}

K(s, y)N(ds, dy)
(1.2.8)

for predictable mappings F : R≥0 × Ω → Rm, G : R≥0 × Ω → Rm×n, H, K :
R≥0 × Rn × Ω → Rm where we assume

∫︂ T

0

(︄
|F (s)| + |G(s)|2 +

∫︂
{|y|<c}

|H(s, y)|2 ν(dy)
)︄

dt < ∞ a.s.

for every T ∈ R>0. Processes of the form (1.2.8) are called Lévy-type process
and are càdlàg semimartingales. For more insight into a further generalisation
of the processes of the form (1.2.8) we recommend [Ikeda and Watanabe, 1981,
Chapter II] (however, a rather interesting fact is that we cannot construct the
process (1.2.8) where W and N would be defined on the same filtered space and
would not be independent at the same time, see [Ikeda and Watanabe, 1981,
Theorem II.6.3]). On the other hand, for some Lévy processes we do not need
to follow the construction leading to a Lévy-type process if we want to define a
stochastic integral process with respect to them. For instance, in the case when
Lα is a symmetric α-stable process with α ∈ (0, 2), that is its decomposition
(1.1.4) satisfies b = 0, Q = 0 and ν has a density

ν(dy) = c
dy

|y|n+α

for some c ∈ R>0, then we may define∫︂ ·

0
fdLα

directly via the usual Riemann sums as a limit in a properly chosen space if
f : R≥0 × Ω → Rm×n is predictable and∫︂ t

0
|f(s)|α ds < ∞ a.s. (1.2.9)

for every t ∈ R≥0. The condition (1.2.9) is different from the condition that one
has to impose in the case of the integral process of the form (1.2.8). The details
can be found in Rosinski and Woyczynski [1986].

We conclude this Section with the Itô formula.

Theorem 1.2.1. Let X be a process with decomposition (1.2.8). If V ∈ C 2(Rm),
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DV ∈ Cb(Rm;Rm), D2V ∈ Cb(Rm;Rm×m) then we have

V (XT ) =
∫︂ T

0

(︃⟨︂
F (t), DV (Xt)

⟩︂
+ 1

2 Tr
(︂
G(t)T D2V (Xt)G(t)

)︂)︃
dt

+
∫︂ T

0

⟨︂
G(t)T DV (Xt), ·

⟩︂
dWt

+
∫︂ T

0

∫︂
{|y|<c}

[︂
V (Xt− + H(t, y)) − V (Xt−)

]︂
Ñ(dt, dy)

+
∫︂ T

0

∫︂
{|y|<c}

[︂
V (Xt + H(t, y)) − V (Xt)

−
⟨︂
DV (Xt), H(t, y)

⟩︂]︂
ν(dy) dt

+
∫︂ T

0

∫︂
{|y|≥c}

[︂
V (Xt− + K(t, y)) − V (Xt−)

]︂
N(dt, dy).

almost surely for every T ∈ R≥0.

Proof. See Theorem 4.4.7 and Remark below in Applebaum [2009].

1.3 Stochastic differential equations
Similarly as in the previous Section where we exploited the Lévy-Itô decomposi-
tion (1.1.4) to define the integral with respect to a Lévy process L as in (1.2.1)
we now formally consider stochastic differential equations of the form

Xt = x0 +
∫︂ t

0
f(Xs−)dLs

= x0 +
∫︂ t

0
f(Xs−)d

(︄
bs + Ws +

∫︂
{|y|<c}

yÑ(ds, dy) +
∫︂

{|y|<c}
yN(ds, dy)

)︄

= x0 +
∫︂ t

0
f(Xs−)bds +

∫︂ t

0
f(Xs−)dWs

+
∫︂ t

0

∫︂
{|y|<c}

f(Xs−)yÑ(ds, dy) +
∫︂ t

0

∫︂
{|y|<c}

f(Xs−)yN(ds, dy)

(1.3.1)

for a suitable coefficient f : R≥0 × Rm → Rm×n and some initial condition x0.
Having the general form of Lévy-type process from Remark 1.2.1 in mind we arrive
at the following definition of a stochastic differential equation and its solution.

Definition 1.3.1. Let m, n ∈ N, c ∈ R>0 and suppose that Borel functions

f : R≥0 × Rm −→ Rm, g : R≥0 × Rm −→ Rm×n, H : R≥0 × Rm × Rn −→ Rm,

are given. Suppose that
(︂
Ω, F , (Ft)t∈R>0

,P
)︂

is a filtered probability space with
normal filtration, W is an (Ft)-Wiener process with values in Rn which is inde-
pendent to an (Ft)-Poisson random measure N on R≥0 ×(Rn \{0}) with intensity
dtν(dy), where ν is a Lévy measure and Ñ is the compensator of N and x0 is
an F0-measurable Rm-valued random variable. An Rm-valued (Ft)-progresively
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measurable càdlàg process X that satisfies

Xt = x0 +
∫︂ t

0
f(s, Xs) ds +

∫︂ t

0
g(s, Xs) dWs

+
∫︂ t

0

∫︂
{|y|<c}

H(s, Xs−, y) Ñ(ds, dy) +
∫︂ t

0

∫︂
{|y|≥c}

H(s, Xs−, y) N(ds, dy) P -a.s.
(1.3.2)

for all t ∈ R≥0 is said to be a solution to the equation

dXt = f(t, Xt) dt + g(t, Xt) dWt +
∫︂

{|y|<c}
H(t, Xt−, y) Ñ(dt, dy)

+
∫︂

{|y|≥c}
H(t, Xt−, y) N(dt, dy), t ≥ 0

(1.3.3)
with the initial condition x0. We say that the solution to (1.3.3) with the initial
condition x0 is unique if whenever X, Y are solutions to (1.3.3) with the initial
condition x0 then

P (X(t) = Y (t), t ∈ R≥0) = 1.

Denoting

a(t, x, z) = g(t, x) (g(t, y))T , t ∈ R≥0, x, y ∈ Rm

we formulate the standard sufficient conditions for existence of a solution to (1.3.3)
(see Applebaum [2009], Section 6.2).
General Lipschitz condition: There exists measurable and locally bounded func-
tion l1 : R≥0 → R>0 such that

|f(s, x) − f(s, z)|2 ∨ |a(t, x, x) − 2a(t, x, z) + a(t, z, z)|2

∨
∫︂

{|y|<c}
|H(t, x, y) − H(t, z, y)|2 ν(dy) ≤ l1(t) |x − z|2 ,

(1.3.4)
for any x, z ∈ Rm.
General growth condition: There exists measurable and locally bounded function
l2 : R≥0 → R>0

|f(t, x)|2 + |a(t, x, x)| +
∫︂

{|y|<c}
|H(t, x, y)|2 ν(dy) ≤ l2(t)(1 + |x|2), (1.3.5)

for any x ∈ Rm.
Continuity condition: We have

H(·, y) ∈ C (Rm;Rm) (1.3.6)

for all y ∈ {|y| ≥ c}.

Remark 1.3.1. Based on [Applebaum, 2009, Section 6.2] several remarks shall
be made.

• The existence and uniqueness of a solution to (1.3.3) under (1.3.4),(1.3.5)
and (1.3.6) is shown using so-called interlacing. That is, first, we omit the
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integral with respect to N and look for a suitable process X̃ that would be
a solution to

dX̃ t = f(t, X̃ t) dt + g(t, X̃ t) dWt +
∫︂

{|y|<c}
H(t, X̃ t−, y) Ñ(dt, dy), (1.3.7)

for t ≥ 0. Such (unique) process can be found using the standard Itô
isometry for the Wiener integral and the Itô-type isometry (1.2.7) together
with the fact that all the stochastic integrals defining X̃ can be shown to
be L2-martingales and thus the classical Doob’s inequality can be applied
leading to the technique of Picard iterations. If ν({|y| ≥ c}) = 0, that is
there are now jumps of magnitude larger than c, the process X̃ is already
a solution to (1.3.3). In the case ν({|y| ≥ c}) > 0 we construct the Markov
times of big jumps

τ0 = 0, τn = inf{t > τn−1 : N(t, {|y| ≥ c}) = n}, n ∈ N

and we obtain that τn > τn−1 for n ∈ N and τn → ∞ as n → ∞. The
solution X to (1.3.3) is then obtained as

X(t) = X̃0(t), 0 ≤ t < τ1

X(τ1) = lim
s→t+

X̃0(s) + H( lim
s→t+

X̃0(s), ∆P (τ1)), t = τ1

X(t) = X(τ1) + X̃1(t − τ1), τ1 < t < τ2

X(τ2) = . . .

where X̃n is the (unique) solution to (1.3.7) with initial condition X(τn) for
n ∈ N ∪ {0} and

Pt =
∫︂

{|y|≥c}
yN(t, dy), t ∈ R≥0

is the compound Poisson process composed of the large jumps. The unique-
ness of the solution to (1.3.3) follows from the uniqueness for (1.3.7) and
by the above interlacing procedure.

• The interlacing procedure is only one possible way how to show existence of
a solution in our case. For more general semimartingale setting see [Protter,
2005, Chapter 5].

• Generally, the solution to (1.3.3) has discontinuities originating in the in-
tegrals driven by Ñ and N . It can be shown that no jumps occur almost
surely if

ν (y ∈ Rn \ {0} : |H(x, y)| > 0) = 0, (1.3.8)

for x ∈ Rm, which corresponds to the case when (1.3.3) can be rewritten as
a classical equation driven by a Wiener process. The necessary condition for
path-continuity is more delicate as the solution might avoid points x ∈ Rm

for which (1.3.8) fails even if the driving jump processes Ñ and N are
non-degenerate.
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• Similarly to the Wiener case it can be shown that under (1.3.4),(1.3.5) and
(1.3.6) if ν({|y| ≥ c}) = 0 then for every t ∈ R≥0 there exists a constant
l(t) ∈ R>0 such that the second moment of the solution X to (1.3.3) can be
bounded

E |X(t)|2 ≤ l(t)
(︂
1 + E |X(0)|2

)︂
.

That is, whenever we have an L2-integrable initial condition, the whole
solution is L2-integrable (with the second moment possibly growing un-
boundedly). This, however, may fail if the large jumps are present, i.e.
when ν({|y| ≥ c}) > 0 and the solution might not have any positive mo-
ment finite.

• If we replace (1.3.4) and (1.3.5) by its obvious counterparts that are local
in space coordinates x, z ∈ Rm we obtain that there exists a unique local
solution to (1.3.3). That is there exists an (Ft)-progressively measurable
càdlàg process X that satisfies (1.3.2) for all t ∈ R≥0 almost surely on the
set {ω ∈ Ω : t ≤ τ(ω)}, where τ is a suitable almost surely positive Markov
time usually called the explosion time for (1.3.3).

1.4 Stochastic approximation procedures
Let R : Rm → Rm be an unknown function representing regression equations.
Our goal is to find a root of R, a point x0 ∈ Rm such that R(x0) = 0 even though
we are only able to measure the values R(x), x ∈ Rm up to some error. We aim
at providing an appropriate experiment consisting of consecutive measurements
of R at some points xt for which the convergence xt → x0 as t goes to infinity is
guaranteed under only mild assumptions on the behavior of R such as, for exam-
ple, continuity or monotonicity. While several methods such as Newton’s tangent
method work in the case when the measurement error is negligible and provide
rapid convergence to a root x0 under mild assumptions, one must be satisfied with
slower convergence when the measurement error is significant. We briefly sum-
marize basic facts from the theory of stochastic approximation procedures that
tackles the case of significant measurement error which is mostly due to Robbins
and Monro in Robbins and Monro [1951] (see Nevel’son and Khas’minskĭı [1972]
for a comprehensive exposition and source for this Section).

We begin with a discrete-time case, i.e. a situation when R is measured at
points xt for t ∈ N. In this case it is natural to assume that the measurement of
R at a point x at a time t is given as

R(x) + G(t, x) (1.4.1)

for some measurable G : N × Rm × Ω → Rm, where Ω represents a probability
space, such that EG(t, x) = 0 for any t ∈ N and x ∈ Rm. The so-called Robbins-
Monro procedure in this case is given as a sequence Xt for t ∈ N where X0 is some
given initial point and

Xt+1 = Xt + α(t) (R(Xt) + G(t, Xt)) , t ∈ N, (1.4.2)
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for some {α(t)}t∈N ⊂ R>0 such that
∞∑︂

t=1
α(t) = ∞ and

∞∑︂
t=1

α2(t) < ∞. (1.4.3)

One can show that for an L2 convergence

E |Xt − x0|2 → 0, t → ∞,

for any initial condition x0 in the real case, that is m = 1, is is enough that
R is strictly decreasing continuous bounded function and EG2(t, x) is bounded
uniformly in t ∈ N and x ∈ R (cf. Robbins and Monro [1951]).

The imposed condition (1.4.3) forces the sequence of coefficients α(t) to de-
crease to zero under a specific mode, allowing us to take for instance α(t) = 1/t.
It easy to see that if the convergence is too fast, namely if ∑︁∞

t=1 α(t) < ∞ it can’t
be that Xt → x0 even in the case of zero measurement error, G ≡ 0, for any
initial condition X0 as in this case we always have

∞∑︂
t=1

|Xt+1 − Xt| ≤
(︄

sup
x∈R

|R(x)|
)︄ ∞∑︂

t=1
α(t),

where the right-hand-side is finite and does not depend on X0. Therefore, if the
root x0 is sufficiently far from our initial guess X0 we cannot hope for the desired
convergence as the sum of increments Xt+1 −Xt is not allowed to reach any value.

On the other hand, the second condition in (1.4.3) is only sufficient and not
necessary. It can be weakened as in [Nevel’son and Khas’minskĭı, 1972, Theorem
4.5] where it is only assumed that

∞∑︂
t=1

α(t) = ∞ and α(t) → 0, t → ∞.

The continuous-time case, when the measurement of R is given as in (1.4.1)
but now with t ∈ R>0 was considered in Driml and Nedoma [1951], Sakrison
[1964] and Cypkin and Nikolić [1970] where the continuous analog of (1.4.2) is
naturally given as

dXt = α(t) (R(Xt) + σ(t, Xt)dWt) , t ∈ R≥0 (1.4.4)

with initial condition X0 ∈ Rm where we replaced G(t, x) by a stochastic differ-
ential

σ(t, Xt)dWt

for some (possibly unknown) coefficient σ : R≥0 × Rm → Rm×n and Wiener pro-
cess W . Note that in this setting the measurement errors of R are represented
by Gaussian white noise (cf. Section 3 of this work where more general noise is
treated). Using the fact that the set of solutions to (1.4.4) for different (deter-
ministic) initial conditions defines a Markov process with known generator one
can show the following result in the case of one dimension and time-homogeneous
diffusion coefficient:
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Theorem 1.4.1. Assume that x0 ∈ Rm and L ∈ R>0 are such that

R(x)(x − x0) < 0, x ̸= x0,

σ2(x) ≤ L(1 + x2), x ∈ R,∫︂ ∞

0
α(t)dt = ∞ and

∫︂ ∞

0
α2(t)dt < ∞,

then any solution (if it exists) to (1.4.4) satisfies

lim
t→∞

Xt = x0, a.s.

Proof. Follows by [Nevel’son and Khas’minskĭı, 1972, Theorem 3.8.2]

It is easy to see that in the case when x0 is the (unique) root of R Theo-
rem 1.4.1 provides sufficient conditions on the noise coefficient and the unknown
function R such that the stochastic approximation procedure given by (1.4.4)
provides desired convergence.

In the multivariate case, m > 1, the same conclusion as in Theorem 1.4.1 can
be obtained under conditions on R and σ that are typically expressed indirectly
through existence of some type of Lyapunov function V : Rm → R≥0. In one
simple case we shall assume that V is sufficiently smooth and satisfies

V (x) = 0 ⇐⇒ x = x0 and V (x) → ∞, |x| → ∞,

⟨R(x), DV (x)⟩ < 0, x ̸= x0,

Tr
(︂
σ(t, x)T D2V (x)σ(t, x)

)︂
≤ L

(︂
1 + V (x)

)︂
, t ∈ R≥0, x ∈ Rm

for some x0 ∈ Rm and L ∈ R>0, where DV and D2V denote the first and second
Fréchet derivatives of V . These conditions on V can be interpreted geometrically:
under these conditions any solution X to (1.4.4) reaches eventually the surface
{x ∈ Rm : V (x) = c} at some Markov time and afterwards remains in the set
{x ∈ Rm : V (x) < c} which can be formally seen from the inequality

dV (Xt)
dt

= α(t)⟨R(Xt), DV (Xt)⟩ < 0,

(cf. [Nevel’son and Khas’minskĭı, 1972, Section 4.4]). An example of a Lyapunov
function is

V (x) = ⟨C(x − x0), x − x0⟩, x ∈ Rm

for some x0 ∈ Rm and a positive-definite matrix C ∈ Rm. This choice leads to
the following conditions on R and σ

⟨R(x), C(x − x0)⟩ < 0, x ̸= x0

|σ(t, x)| ≤ L
(︂
1 + |x|

)︂
, t ∈ R≥0, x ∈ Rm

for some L ∈ R>0.
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1.5 Invariant measures for Markov processes
In this Section we remind basic notions related to the theory of Markov processes
with emphasis on the relation to stochastic differential equations. We conclude
this Section by stating the celebrated Krylov-Bogolyubov Theorem which is an
example of how the theory of Markov processes can help us when studying prop-
erties of stochastic equations.

Definition 1.5.1. Let m ∈ Rm. Any function P : Rm × B(Rm) → [0, 1] that
satisfies

• P (x, ·) is a Borel probability measure on Rm for any x ∈ Rm,

• P (·, A) is a measurable function for any A ∈ B(Rm)

is called a Markov kernel.

Naturally, any Markov kernel P can be understood as a linear operator on
the space of measurable bounded functions Bb(Rm) by the following relation (this
operator is again denoted as P ):

Pf(x) :=
∫︂
Rm

f(y)P (x, dy), f ∈ Bb(Rm).

One can show that in fact P is then a bounded linear operator on Bb(Rm) and
thus it makes a good sense to talk about a composition of Markov kernels, which
leads us to the following definition.

Definition 1.5.2. A family of Markov kernels P = {Pt}t∈R≥0 is called a (time-
homogeneous) transition semigroup if

Ps+t = PsPt, s, t ∈ R≥0 (1.5.1)

and

P0 is the identity operator on Bb(Rm) (1.5.2)

Remark 1.5.1. • The equality (1.5.1) is called Chapman-Kolmogorov equal-
ity and is closely connected to a Markov property,

• The condition (1.5.2) is not standardized across literature as some authors
do not include it in the definition of transition semigroup and those transi-
tion semigroups that satisfy (1.5.2) are then called normal transition semi-
groups.

Now we can proceed to the definition of a Markov process which is originally
due to Dynkin [1965].

Definition 1.5.3. Let
(︂
Ω, F , (Ft)t∈R≥0

)︂
be a filtered measurable space, X =

{Xt, t ∈ R≥0} be an (Ft)-adapted Rm-valued process and (P x)x∈Rm be a family
of probability measures on (Ω, F ) and P be a transition semigroup such that

P x ({ω ∈ Ω : X0(ω) = x}) = 1
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for any x ∈ Rm and

P x ({ω ∈ Ω : Xt(ω) ∈ A|Fs}) = Pt−s(Xs, A), Px-a.s.

for any x ∈ Rm, 0 ≤ s ≤ t < ∞ and A ∈ B(Rm).
Then the triplet

(︂(︂
Ω, F , (Ft)t∈R≥0

)︂
, X, (P x)x∈Rm

)︂
is called a Markov process

with transition semigroup P .

An important class of Markov processes are so-called Feller Markov processes.

Definition 1.5.4. We say that a Markov process with transition semigroup P is
Feller if

Ptf ∈ Cb(Rm), f ∈ Cb(Rm),

for any t ∈ R≥0.

There is a confusion among authors as some of them prefer to use the space
of compactly supported and continuous functions on Rm instead of the bigger
space Cb(Rm) leading to a stronger definition in our setting (cf. [Schilling, 1998,
Theorem 3.2]). For some results (not needed in our work though) one has to
impose a condition

Ptf ∈ Cb(Rm), f ∈ Bb(Rm),

which corresponds to the definition of strong Feller Markov process.
A particular class of Markov processes is of our interest in this work. Sup-

pose that for any (deterministic) initial condition x ∈ Rm there exists a unique
solution to the equation (1.3.3), which we denote as Xx, where we assume that
all coefficients are time-homogeneous:

f(s, x) = f̃(x), g(s, x) = g̃(x), H(s, x, y) = H̃(x, y)

for all x ∈ Rm, y ∈ Rn for suitable measurable functions f̃ : Rm → Rm, g̃ : Rm →
Rm×n and H̃ : Rm ×Rn → Rm. It can be shown (cf. [Applebaum, 2009, Theorem
6.4.6]) that the collection {Xx, x ∈ Rm} gives rise to a Markov process with some
transition kernel P for which we have a relation

Ptf(x) = E f(Xx
t ), f ∈ Bb(Rm), x ∈ Rm,

for t ∈ R≥0.
Therefore, it is convenient to use results from theory of Markov processes to

study some properties of stochastic differential equations. One example, impor-
tant for this work, is the existence of invariant measure for a stochastic differential
equation.

Definition 1.5.5. We say that Markov process induced by the equation (1.3.3)
with time-homogeneous coefficients possesses an invariant measure if there exists
a Borel probability measure µ∗ on Rm and a solution Y to (1.3.3) such that

E f(Yt) =
∫︂
Rm

f(x)µ∗(dx), f ∈ Bb(Rm).

for every t ∈ R≥0.
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Remark 1.5.2. The notion of invariant measure of a Markov process induced
by a stochastic equation is closely related to existence of a stationary solution,
that is if µ∗ is an invariant measure for (1.3.3) then there exists a solution Y to
(1.3.3) such that

E f(Y0) =
∫︂
Rm

f(x)µ∗(dx), f ∈ Bb(Rm)

and the distribution of Yt is independent of t ∈ R≥0.

Before we state Krylov-Bogolyubov Theorem we need to introduce the follow-
ing definition.

Definition 1.5.6. A measurable stochastic process Y = {Yt, t ∈ R≥0} on a
probability space (Ω, F ,P ) with values in Rd is bounded in probability in the
mean if

lim
R→∞

lim sup
t→∞

1
t

∫︂ t

0
P [|Ys| ≤ R] ds = 1 (1.5.3)

The following statement is a particular case of Krylov-Bogolyubov Theorem.

Theorem 1.5.1 (Krylov-Bogolyubov). Markov process defined by (1.3.3) with
time-homogeneous coefficients possesses an invariant measure, if both

1. it is Feller,

2. there exists a (deterministic) initial condition for which the unique solution
to (1.3.3) is bounded in probability in the mean.

Proof. The proof can be found e.g. in Krylov and Bogolyubov [1937].
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2. Invariant measures and
boundedness in the mean
Let (Ω, F , (Ft)t∈R≥0 ,P ) be a filtered probability space with the normal filtration
(Ft)t∈R≥0 and assume that W is an (Ft)-Wiener process with values in Rn which
is independent to an (Ft)-Poisson random measure N on R+ × (Rn \ {0}). The
Poisson measure N has the intensity measure dtν(dy), where ν is a Lévy measure
on Rn \ {0}. Let Ñ denote the compensator of N .

We study an equation driven by the pair (W, N). More specifically, assume
we are given Borel measurable mappings f : Rm → Rm, g : Rm → Rm×n,
H, K : Rm × Rn → Rm and a constant c ∈ R>0 and consider the equation

dXt = f(Xt−)dt + g(Xt−)dWt+
∫︂

{|y|<c}
H(Xt−, y)Ñ(dt, dy)

+
∫︂

{|y|≥c}
K(Xt−, y)N(dt, dy), t ∈ R≥0. (2.0.1)

Recall the standard requirements on the coefficients in (2.0.1) that are suffi-
cient for existence of an unique global solution for any F0-measurable initial con-
dition (1.3.4), (1.3.5) and (1.3.6). In this Section we deal with time-homogeneous
equation therefore we restate these conditions in our particular case1.
Lipschitz condition: There exists L1 ∈ R>0 such that

|f(x) − f(z)|2 ∨ |g(x) − g(z)|2 ∨
∫︂

{|y|<c}
|H(x, y) − H(z, y)|2ν(dy)

≤L1 |x − z|2 , (LIP)

for any x, z ∈ Rm.
Growth condition: There exists L2 ∈ R>0 such that∫︂

{|y|<c}
|H(x, y)|2 ν(dy) ≤ L2(1 + |x|2), (GRO)

for any x ∈ Rm.
Continuity condition: We have

K(·, y) ∈ C (Rm;Rm) (CON)

for all y ∈ {|y| ≥ c}.
In the following, we may proceed without (LIP), (GRO), (CON), however,

under these assumptions the results can be substantially simplified.
We only assume that for any x ∈ Rm the unique solution to (2.0.1) denoted as

Xx is given and it defines a time-homogeneous Markov process. It is convenient
to assign the Markov process in the usual manner a translation semigroup of
linear operators (St, t ∈ R≥0) acting on Bb(Rm) as

Stf(x) = E f(Xx
t ), f ∈ Bb(Rm), x ∈ Rm, (2.0.2)

1We also impose the conditions on g directly instead of slightly more general setting in
(1.3.4) formulated in terms of ggT .
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for t ∈ R≥0.
In the sequel we consider two concepts of stability of the equation (2.0.1). The

first one, existence of an invariant measure as in Definition 1.5.5, considers the
Markov process induced by (2.0.1), while in the second one can be formulated for
any stochastic process as in Definition 1.5.3.

2.1 General Lyapunov criterion
In this section we investigate general criterion for stability the system (2.0.1) in
terms of boundedness in probability in the mean.

We will deal with a specific Lyapunov function that takes the following form.
For p ∈ (0, 1) denote Vp an arbitrary (but fixed in the sequel) element of C 2(Rm)
satisfying

DVp ∈ Cb(Rm;Rm), D2Vp ∈ Cb(Rm;Rm×m) (V1)
Vp(x) = |x|p , |x| ≥ 1 (V2)

0 ≤ Vp(x) ≤ |x|p , |x| ≤ 1. (V3)

If follows that the derivatives of Vp take the following form

DVp(x) = p |x|p−2 x (2.1.1)
D2Vp(x) = p(p − 2) |x|p−4 xxT + p |x|p−2 I (2.1.2)

for x ∈ Bc
1, where I is the identity in Rm×m.

Using only (V1) the Itô formula may be used to obtain the differential of
Vp(X), where X is a solution to (2.0.1).

Proposition 2.1.1 (Itô formula). Let X be a solution to (2.0.1) and p ∈ (0, 1).
Then

dVp(Xt) =
(︃

⟨f(Xt−), DVp(Xt−)⟩ + 1
2 Tr

(︂
g(Xt−)T D2Vp(Xt−)g(Xt−)

)︂)︃
dt

+DVp(Xt−)T g(Xt−)dWt

+
∫︂

{|y|<c}
Vp(Xt− + H(Xt−, y)) − Vp(Xt−)Ñ(dt, dy)

+
∫︂

{|y|<c}

(︄
Vp(Xt− + H(Xt−, y)) − Vp(Xt−)

− ⟨DVp(Xt−), H(Xt−, y)⟩
)︄

ν(dy)dt

+
∫︂

{|y|≥c}
Vp(Xt− + K(Xt−, y)) − Vp(Xt−)N(dt, dy), (2.1.3)

for t ∈ R≥0.

Proof. Follows directly from Theorem 1.2.1.

The form of Itô formula (2.1.3) motivates us to study the linear operator
L that is given as follows. Denote Dom(L) the linear subspace of C 2(Rm) of
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functions V ∈ C 2(Rm) such that the following prescription

LV (x) =⟨f(x), DV (x)⟩

+1
2 Tr

(︂
g(x)T D2V (x)g(x)

)︂
+
∫︂

{|y|<c}
V (x + H(x, y)) − V (x) − ⟨H(x, y), DV (x)⟩ν(dy)

+
∫︂

{|y|≥c}
V (x + K(x, y)) − V (x)ν(dy), x ∈ Rm, (2.1.4)

defines an element of Bb(Rm). Then define L : Dom(L) → Bb(Rm) by (2.1.4).
In fact, our aim is to rewrite (2.1.3) as

dVp(Xt) = LVp(Xt−)dt + DVp(Xt−)T g(Xt−)dWt

+
∫︂

{|y|<c}
Vp(Xt− + H(Xt−, y)) − Vp(Xt−)Ñ(dt, dy)

+
∫︂

{|y|≥c}
Vp(Xt− + K(Xt−, y)) − Vp(Xt−)N(dt, dy)

−
∫︂

{|y|≥c}
Vp(Xt− + K(Xt−, y)) − Vp(Xt−)ν(dy)dt, (2.1.5)

for t ∈ R≥0 and any p ∈ (0, 1).
We will prove (2.1.5) under some additional conditions on the coefficients.

Assumption 2.1.1. The following mappings

x ↦→ f(x), (2.1.6)
x ↦→ g(x), (2.1.7)

x ↦→
∫︂

{|y|<c}
|H(x, y)|2 ν(dy), (2.1.8)

x ↦→
∫︂

{|y|≥c}
|K(x, y)|p ν(dy) (2.1.9)

are locally bounded on Rm for p ∈ (0, 1).

Note that the following would hold even under weaker assumption of local
boundedness of (2.1.9) only for p ∈ (0, p∗) for some p∗ ∈ R>0.

Lemma 2.1.1. Fix p ∈ (0, 1). Under Assumption 2.1.1 we have that Vp ∈
Dom(L) and the Itô formula (2.1.5) for Vp holds.

Proof. Let p ∈ (0, 1) be given. To show that the first two terms in (2.1.4) are
well defined and locally bounded in x is straightforward. We proceed with the
integral terms in more detail.
The compensated term: We use Taylor’s reminder in the integral form and (V1)
as follows∫︂

{|y|<c}
|Vp(x + H(x, y)) − Vp(x) − ⟨H(x, y), DVp(x)⟩| ν(dy)

=
∫︂

{|y|<c}

⃓⃓⃓⃓∫︂ 1

0
H(x, y)T D2Vp(x + θH(x, y))H(x, y)(1 − θ)dθ

⃓⃓⃓⃓
ν(dy)

≤
⃓⃓⃓
D2Vp

⃓⃓⃓
∞

∫︂
{|y|<c}

|H(x, y)|2 ν(dy),
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for x ∈ Rm. By the Assumption Assumption 2.1.1 local boundedness of the
compensated term now easily follows.
The uncompensated term: We use (V2), (V3) and estimate∫︂

{|y|≥c}
|Vp(x + K(x, y)) − Vp(x)| ν(dy)

≤
∫︂

{|y|≥c}
|Vp(x + K(x, y)) − |x + K(x, y)|p| ν(dy)

+
∫︂

{|y|≥c}
|x + K(x, y)|p + Vp(x)ν(dy)

≤
∫︂

{|y|≥c}
2ν(dy) +

∫︂
{|y|≥c}

|K(x, y)|p + |x|p + Vp(x)ν(dy)

≤ν({|y| ≥ c}) (2 + |x|p + Vp(x)) +
∫︂

{|y|≥c}
|K(x, y)|p ν(dy) (2.1.10)

for x ∈ Rm with the last term being locally bounded by the Assumption 2.1.1.
The formula (2.1.5) is valid as it is just a different form of (2.1.3) provided

that ∫︂
{|y|≥c}

Vp(Xt− + K(Xt−, y) − Vp(Xt−)ν(dy)

is well defined for every t ∈ R≥0 almost surely, which is the case by (2.1.10) and
the almost sure local boundedness of the trajectories of the solution to (2.0.1).

Having Lemma 2.1.1 we will now prove the main criterion for boundedness in
probability in the mean. The proof is an adaptation of work of R. Khasminskii
(cf. Khasminskii [1980]) established for the special case of diffusion processes.
Theorem 2.1.1. Let the Assumption 2.1.1 hold. Then the solution to (2.0.1)
with any deterministic initial condition is bounded in probability in the mean
if there exists p ∈ (0, 1) such that there exists R0 ∈ R>0 such that for all R ∈
(R0, ∞) there exists AR ∈ R>0 with

AR → ∞, R → ∞ (2.1.11)
and

LVp(x) ≤ −AR, |x| ≥ R. (2.1.12)
Proof. Let x ∈ Rm and write shortly X = Xx for the unique solution to (2.0.1)
with the initial condition x. As X is a global solution, the stopping times

τk = inf{t ∈ R≥0, |Xt−| > k},

for k ∈ N, tend to infinity almost surely. Now fix t ∈ R≥0, k ∈ N. By Lemma
2.1.1 the Itô formula (2.1.5) implies

Vp(Xt∧τk
) − V (x) =

=
∫︂ t∧τk

0
LVp(Xs−)ds +

∫︂ t∧τk

0
DVp(Xs−)T g(Xs−)dWs

+
∫︂ t∧τk

0

∫︂
{|y|<c}

Vp(Xs− + H(Xs−, y)) − Vp(Xs−)Ñ(ds, dy)

+
∫︂ t∧τk

0

∫︂
{|y|≥c}

Vp(Xs− + K(Xs−, y)) − Vp(Xs−)N(ds, dy)

−
∫︂ t∧τk

0

∫︂
{|y|≥c}

Vp(Xs− + K(Xs−, y)) − Vp(Xs−)ν(dy)ds. (2.1.13)
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We compute expectations of all the stochastic integrals in (2.1.13).
We have DV T

p g ∈ L∞
loc(Rm) and Xs− is bounded almost surely on (0, τk),

therefore

E
∫︂ t∧τk

0
DVp(Xs−)T g(Xs−)dWs = 0.

Similarly, the compensated integral is centered,

E
∫︂ t∧τk

0

∫︂
{|y|<c}

Vp(Xs− + H(Xs−, y)) − Vp(Xs−)Ñ(ds, dy) = 0

as from Taylor’s expansion and local boundedness of (2.1.8) we have

E
∫︂ t∧τk

0

∫︂
{|y|<c}

|Vp(Xs− + H(Xs−, y)) − Vp(Xs−)|2 ν(dy)ds =

=E
∫︂ t∧τk

0

∫︂
{|y|<c}

⃓⃓⃓⃓∫︂ 1

0
⟨DVp(Xs− + θH(Xs−, y)), H(Xs−, y)⟩(1 − θ)dθ

⃓⃓⃓⃓2
ν(dy)ds

≤1
3 |DVp|2∞ E

∫︂ t∧τk

0
|H(Xs−, y)|2 ν(dy)ds < ∞.

For the uncompensated term by (2.1.10) and local boundedness of (2.1.9) we have

E
∫︂ t∧τk

0

∫︂
{|y|≥c}

|Vp(Xs− + K(Xs−, y)) − Vp(Xs−)| ν(dy)ds

≤E
∫︂ t∧τk

0
ν({|y| ≥ c})(2 + |Xs−|p + Vp(Xs−))ds

+ E
∫︂ t∧τk

0

∫︂
{|y|≥c}

|K(Xs−, y)|p ν(dy)ds < ∞.

Therefore,

E
∫︂ t∧τk

0

∫︂
{|y|≥c}

Vp(Xs− + K(Xs−, y)) − Vp(Xs−)N(ds, dy)

=E
∫︂ t∧τk

0

∫︂
{|y|≥c}

Vp(Xs− + K(Xs−, y)) − Vp(Xs−)ν(dy)ds.

Finally, LVp ∈ L∞
loc(Rm) so

E
∫︂ t∧τk

0
LVp(Xs−)ds.

is well defined. We have shown that

−V (x) ≤ EVp(Xt∧τk
) − V (x) = E

∫︂ t∧τk

0
LVp(Xs−)ds.

For R ∈ (R0, ∞) we have from the assumption (2.1.12) and local boundedness of
LVp that

LVp(x) ≤ − AR1{|x|≥R} +
(︄

sup
|x|<R

LVp(x)
)︄

1{|x|<R}

≤ − AR1{|x|≥R} + sup
x∈Rm

LVp(x) < ∞.
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Denote

κ = sup
x∈Rm

LVp(x) < ∞.

We shall write

−V (x) ≤ E
∫︂ t∧τk

0
−AR1{|Xs−≥R|} + κds.

Now taking the limit as k → ∞. We obtain

−V (x) ≤ −AR

∫︂ t

0
P [|Xs−| ≥ R] ds + κt

with t ∈ R≥0 arbitrary. Finally for t ≥ 1

1
t

∫︂ t

0
P [|Xs−| ≥ R] ds ≤ V (x) + κ

AR

→ 0, R → ∞

by (2.1.11), which already implies (1.5.3). The assertion of the theorem now
follows by the equality Xs− = Xs almost surely for any s ∈ R≥0.

2.2 Stabilization by compensated jumps
Throughout this section we assume Assumption 2.1.1 to hold. We investigate
stabilization properties of compensated jumps. Thus, for simplicity, we put K=0
in (2.0.1) and obtain the equation:

dXt = f(Xt−)dt + g(Xt−)dWt +
∫︂

{|y|<c}
H(Xt−, y)Ñ(dt, dy), t ∈ R≥0. (2.2.1)

The main result of this section is presented in Theorem 2.2.1 and in an im-
portant Corollary 2.2.1 where the conditions are simplified under specific growth
assumptions. First, we prove some technical formulas.

For our purpose it is useful to denote

H(x) = {y ∈ Rn : |y| < c, x + H(x, y) = 0}, (2.2.2)

for x ∈ Rm.
Note that by the relations

|x|2 ν(H(x)) =
∫︂

{|y|<c}∩H(x)
|H(x, y)|2 ν(dy) ≤

∫︂
{|y|<c}

|H(x, y)|2 ν(dy) < ∞

for x ∈ Rm, which are due to Assumption 2.1.1, it follows that

ν(H(x)) < ∞, x ∈ Rm, x ̸= 0. (2.2.3)

First, we prove a technical Lemma.

31



Lemma 2.2.1. For p ∈ (0, 1) we have∫︂
{|y|<c}

Vp(x+H(x, y)) − Vp(x) − ⟨H(x, y), DVp(x)⟩ν(dy)

≤ p |x|p
[︄∫︂

{|y|<c}∩H(x)c
log |x + H(x, y)|

|x|
− ⟨H(x, y), x⟩

|x|2
ν(dy)

+p

2

∫︂
{|y|<c}∩H(x)c

(︄
log |x + H(x, y)|

|x|

)︄2

ν(dy)

−
(︄

1
p

− 1
)︄

ν(H(x))
]︄

< ∞, (2.2.4)

for x ∈ Bc
1.

Proof. Take p ∈ (0, 1). Now, fix x ∈ Bc
1 and distinguish two cases.

Step I. If y ∈ H(x) then we have

Vp(x + H(x, y)) − Vp(x) − ⟨H(x, y), DVp(x)⟩ = |x|p (p − 1) , (2.2.5)

by (2.1.1).
Hence, (2.2.3) yields∫︂

H(x)
Vp(x + H(x, y)) − Vp(x) − ⟨H(x, y), DVp(x)⟩ν(dy) ≤

≤ p |x|p ν(H(x)(1 − 1
p

).
(2.2.6)

Step II. For the second case, when y ∈ {|y| < c}∩H(x)c, we remind the particular
form of Taylor’s expansion

ap − 1
p

= log a + p̃

2 (log a)2 , (2.2.7)

for p ∈ R>0 and some p̃ ∈ (0, p) with a ∈ R>0 fixed. We now apply (2.2.7) to the
case

a = |x + H(x, y)|
|x|

and use (2.1.1) to compute

Vp(x + H(x, y)) − Vp(x) − ⟨H(x, y), DVp(x)⟩ =

= |x + H(x, y)| − |x|p − p |x|p ⟨H(x, y), x⟩
|x|2

+ (Vp(x + H(x, y)) − |x + H(x, y)|p)

=p |x|p
⎛⎝ |x+H(x,y)|

|x| − 1
p

− ⟨H(x, y), x⟩
|x|2

⎞⎠+ (Vp(x + H(x, y)) − |x + H(x, y)|p)

=p |x|p
⎛⎝log |x + H(x, y)|

|x|
+ p̃

2

(︄
log |x + H(x, y)|

|x|

)︄2

− ⟨H(x, y), x⟩
|x|2

⎞⎠+

+ (Vp(x + H(x, y)) − |x + H(x, y)|p) .
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The term
(Vp(x + H(x, y)) − |x + H(x, y)|p)

is not positive by the definition of Vp (cf. (V3)) and since p̃ < p, we have
Vp(x + H(x, y)) − Vp(x)−⟨H(x, y), DVp(x)⟩ ≤

≤p |x|p
(︄

log |x + H(x, y)|
|x|

− ⟨H(x, y), x⟩
|x|2

)︄

+ p2

2 |x|p
(︄

log |x + H(x, y)|
|x|

)︄2

.
(2.2.8)

Both the terms on the right-hand side of (2.2.8) are integrable over {|y| < c} ∩
H(x) as follows from the fact that log(a) ≤ a − 1 for any a ∈ R>0:

0 ≤
∫︂

{|y|<c}∩H(x)

(︄
log |x + H(x, y)|

|x|

)︄2

ν(dy) ≤

≤
∫︂

{|y|<c}∩H(x)

(︄
|H(x, y)|

|x|

)︄2

ν(dy) < ∞. (2.2.9)

by local boundedness of (2.1.8). Similarly, we estimate from above∫︂
{|y|<c}∩H(x)

log |x + H(x, y)|
|x|

− ⟨H(x, y), x⟩
|x|2

ν(dy)

=1
2

∫︂
{|y|<c}∩H(x)

log |x + H(x, y)|2

|x|2
− 2⟨H(x, y), x⟩

|x|2
ν(dy)

≤1
2

∫︂
{|y|<c}∩H(x)

|x + H(x, y)|2 − |x|2

|x|2
− 2⟨H(x, y), x⟩

|x|2
ν(dy)

=
∫︂

{|y|<c}∩H(x)

(︄
|H(x, y)|

|x|

)︄2

ν(dy) < ∞. (2.2.10)

Estimation from below is not needed as the left-hand side of (2.2.8) is integrable.
Therefore, by (2.2.8) we have∫︂

{|y|<c}∩H(x)
Vp(x + H(x, y)) − Vp(x) − ⟨H(x, y), x⟩ν(dy)

≤p |x|p
(︄∫︂

{|y|<c}∩H(x)
log |x + H(x, y)|

|x|
− ⟨H(x, y), x⟩

|x|2
ν(dy)

+ p

2

∫︂
{|y|<c}∩H(x)

(︄
log |x + H(x, y)|

|x|

)︄2

ν(dy)
⎞⎠ (2.2.11)

Now by (2.2.6) and (2.2.11) we get the desired inequality in (2.3.3).

Now we prove the main result of this section. For this purpose, we assume
that there exists b ∈ R and σ, σ ∈ R>0 and K > 1 such that

⟨f(x), x⟩ ≤ b |x|2 ,

|g(x)| ≤ σ |x| ,

⃓⃓⃓
g(x)T x

⃓⃓⃓
|x|2

≥ σ
(2.2.12)

for x ∈ Bc
K .
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Remark 2.2.1. An important example of coefficient g : Rm ↦→ Rm×n that satis-
fies (2.2.12) is when n = 1 and

g(x) = Gx, x ∈ Rm,

for some G = (gij) ∈ Rm×m positive-definite. Then we may take σ = |G| and we
have ⃓⃓⃓

g(x)T x
⃓⃓⃓
= ⟨Gx, x⟩ ≥ σ |x|2 , x ∈ Rm

for some σ ∈ R>0.
Theorem 2.2.1. Assume that f, g satisfy (2.2.12). Let R0 ∈ (1, ∞) be such that

α := sup
x∈Bc

R0

∫︂
{|y|<c}∩H(x)c

log |x + H(x, y)|
|x|

− ⟨H(x, y), x⟩
|x|2

ν(dy) < ∞, (2.2.13)

and

sup
x∈Bc

R0

∫︂
{|y|<c}∩H(x)c

(︄
log |x + H(x, y)|

|x|

)︄2

ν(dy) < ∞, (2.2.14)

where H(x) is defined in (2.2.2). Then the solution to (2.2.1) with any determin-
istic initial condition is bounded in probability in the mean if

b + 1
2σ2 − σ2 + α < 0. (2.2.15)

Moreover, the condition (2.2.15) need not to be satisfied if ν(H(x)) ∈ R>0 uni-
formly in x ∈ Bc

R0 .
If we assume the growth condition (GRO), then α ≤ L2 < ∞, where L2 is

from (GRO) and α is from (2.2.13) . Moreover, the condition (2.2.14) is satisfied.
We summarize this claim in the following Corollary.
Corollary 2.2.1. Assume (GRO) and (2.2.12). Then the solution to (2.2.1)
with any deterministic initial condition is bounded in probability in the mean if
(2.2.15) holds, where

α := sup
x∈Bc

1

∫︂
{|y|<c}∩H(x)c

log |x + H(x, y)|
|x|

− ⟨H(x, y), x⟩
|x|2

ν(dy). (2.2.16)

Proof. It easily follows by (2.2.9), (2.2.10) and Theorem 2.2.1.

Proof of Theorem 2.2.1. We have to verify that (2.1.12) holds when AR satisfies
(2.1.11).

Let p ∈ (0, 1) be fixed. First, observe that due to (2.2.12), we have K ∈ (1, ∞)
such that

⟨f(x), DVp(x)⟩+1
2 Tr(g(x)T D2Vp(x)g(x)) =

=p |x|p−2 ⟨f(x), x⟩ + 1
2p(p − 2) |x|p−4

⃓⃓⃓
g(x)T x

⃓⃓⃓2
+ 1

2p |x|p−2 |g(x)|2

≤p |x|p
(︃

b + 1
2σ2 + 1

2(p − 1)σ2
)︃

(2.2.17)
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for x ∈ Bc
K .

Combining (2.2.17) with (2.3.3) we obtain

LVp(x) ≤p |x|p
[︃
b + 1

2σ2 + (1
2p − 1)σ2

+
∫︂

{|y|<c}∩H(x)c
log |x + H(x, y)|

|x|
− ⟨H(x, y), x⟩

|x|2
ν(dy)

+p

2

∫︂
{|y|<c}∩H(x)c

(︄
log |x + H(x, y)|

|x|

)︄2

ν(dy)

−
(︄

1
p

− 1
)︄

ν(H(x))
]︄

≤p |x|p
[︃
b + 1

2σ2 + 1
2(p − 1)σ2 + α

+p

2 sup
x∈BR0

∫︂
{|y|<c}∩H(x)c

(︄
log |x + H(x, y)|

|x|

)︄2

ν(dy))
⎤⎦ , (2.2.18)

for x ∈ Bc
R, where R = R0 ∨ K. In (2.2.18) note that 1/p − 1 > 0.

Now taking p ∈ R>0 sufficiently small we get that there exists κ ∈ R>0 such
that

LVp(x) ≤ −κ |x|p , (2.2.19)

for x ∈ Bc
R if (2.2.15) holds.

Moreover, if ν(H(x)) ∈ R>0 uniformly in Bc
R0 , taking into account that

−
(︄

1
p

− 1
)︄

ν(H(x)) → −∞, p → 0+,

uniformly in x ∈ Bc
R, (2.2.18) implies (2.2.19) even if (2.2.15) does not hold.

Finally, (2.2.19) already guarantees (2.1.12) with AR satisfying (2.1.11), which
completes the proof.

We can see that in the condition (2.2.15) the sign of α that comes from
(2.2.13) determines if the compensated integral stabilizes the system. The sign
of α is determined by the interaction of two terms

log |x + H(x, y)|
|x|

and − ⟨H(x, y), x⟩
|x|2

, (2.2.20)

for x, y ∈ Rn fixed. We can interpret the coefficient value H(x, y) as the (vector)
jump of the solution from state point x given that the driving noise attaines value
of y. Moreover, both the terms in (2.2.20) have always opposite sign. The first
one is negative if the jump H(x, y) ”aims towards the origin” while the second
one, coming from the compensation, is negative only when |x + H(x, y)| > |x|.
This can be seen if we rewrite it as

−⟨H(x, y), x⟩
|x|2

= − cos (ϕ(x, y)) |H(x, y)|
|x|

,

where ϕ(x, y) is the angle between H(x, y) and x. The following example quan-
tifies this interplay in the case of simple linear equation.
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Example 2.2.1. Let ν({|y| < c}) < ∞, m = n = 2 and consider the unique
solution to the equation

dXt =
∫︂

{|y|<c}
H(Xt−, y)Ñ(dt, dy), t ∈ R≥0

X0 =x0 ∈ R2, (2.2.21)

where H(x, y) = qRϕx, x, y ∈ R2 for some q ∈ R>0, and rotation matrix Rϕ

Rϕ =
(︄

cos ϕ − sin ϕ
sin ϕ cos ϕ

)︄
,

where ϕ ∈ [0, 2π) and x0 ̸= 0. In this case we can separate jumps and the
compensating drift, so (2.2.21) shall be written as

dXt = − qν({|y| < c})RϕXt−dt + qRϕXt−dPt, t ∈ R≥0

X0 = ∈ R2,

where P = N(·, {|y| < c}) is a Poisson process with intensity ν({|y| < c}).
We can use Corollary 2.2.1 to assess boundedness of X in probability in the

mean. If q = 1 then H(x) = {|y| < c} and X is bounded in probability the mean.
Rewriting (2.2.16) we see that the same holds if

α =
∫︂

{|y|<c}
log |x + qRϕx|

|x|
− ⟨qRϕx, x⟩

|x|2
ν(dy) < 0

for x ∈ R2, x ̸= 0. More specifically,∫︂
{|y|<c}

log |x + qRϕx|
|x|

−⟨qRϕx, x⟩
|x|2

ν(dy) =

= ν({|y| < c})
(︃1

2 log(1 + 2q cos ϕ + q2) − q cos ϕ
)︃

,

for x ∈ R2, x ̸= 0. Therefore, X is bounded in probability in the mean if

log(1 + 2q cos ϕ + q2) < 2q cos ϕ. (2.2.22)

Let us inspect the condition (2.2.22) in more detail.
Denote by

S = {(q, ϕ) ∈ R>0 × [0, 2π) : log(1 + 2q cos ϕ + q2) < 2q cos ϕ}

the set of couples (q, ϕ) ∈ R>0 × [0, 2π) for which (2.2.22) holds. We briefly
inspect the set S by considering three distinct cases
Case 1: If ϕ ∈ [0, π

2 ) ∪ (3π
2 , 2π) then if q ∈ R>0 is big enough, we have (q, ϕ) ∈ S.

This corresponds to the case when the jumps point in the opposite direction to
origin, therefore, the stabilization effect is driven by the compensating drift. The
smaller |cos ϕ| is, the smaller q ∈ R>0 is needed in order to have (ϕ, q) ∈ S and if
ϕ ∈ [0, π

4 ] ∪ [7π
4 , 2π) then (ϕ, q) ∈ S for any q ∈ R>0.

Case 2: If ϕ ∈ [π
2 , 3π

4 ] ∪ [5π
4 , 3π

2 ], then for any q ∈ R>0 we have (ϕ, q) ∈ Sc, where

Sc = {(q, ϕ) ∈ R>0 × [0, 2π) : log(1 + 2q cos ϕ + q2) ≥ 2q cos ϕ}
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and we do not observe the stabilization property of the compensated integral.
This case also covers both the jumps and compensation being orthogonal to the
direction to the origin.
Case 3: If ϕ ∈ (3π

4 , 5π
4 ), then (ϕ, q) ∈ S if q ∈ R>0 is small enough. The larger

|cos ϕ| is, the larger q ∈ R>0 we can take to keep (ϕ, q) ∈ S. For ϕ = π, we can
even take q > 1; then the solution jumps over the origin and still the stabilization
property is obtained. However, q = 3

2 is already too large and (π, 3
2) ∈ Sc,

which means that even though the norm of the process after jump decreases, the
stabilization property is lost. This is due to the compensation term, which drives
the system in the direction opposite to the jumps.

Note that the solution X can be constructed directly using the interlacing
procedure. Denote τk, k ∈ N the arrival times for P . Using the matrix exponen-
tiation, Xt takes the form

Xt = (I + Rϕ)ke−ν({|y|<c})qtRϕx0,

if t ∈ [τk, τk+1), where k ∈ N0. Moreover, for p ∈ R>0, we are able to compute
the moments explicitly

E |Xt|p = |x0|p e−λt(1+pq cos ϕ−|I+qRϕ|p) (2.2.23)

for t ∈ R≥0. Using (2.2.23), it can be shown that, if p ∈ R>0 is sufficiently small,
then

E |Xt|p → 0, t → ∞

if and only if (ϕ, q) ∈ S and

E |Xt|p → ∞, t → ∞

if and only if (ϕ, q) ∈ Sc.
In Corollary 2.2.1 we have seen that (2.2.1) is a sufficient condition for bound-

edness in probability in the mean under some assumptions. This example shows
that in the case of the linear equation, (2.2.1) provides also if and only if condition
for convergence of p-th moment of the solution for sufficiently small p ∈ R>0 in
the infinite time horizon.

2.3 Stabilization by uncompensated jumps
Throughout this section we assume the Assumption 2.1.1 to hold. We investigate
stabilization properties of uncompensated jumps. Thus, we put H=0 in (2.0.1)
for simplicity and obtain the following equation:

dXt = f(Xt−)dt + g(Xt−)dWt +
∫︂

{|y|≥c}
K(Xt−, y)N(dt, dy), t ∈ R≥0. (2.3.1)

The main result of this section is presented in Theorem 2.3.1. Now we proceed
similarly as in the previous section. Set

K(x) = {y ∈ Rn : |y| ≥ c, x + K(x, y) = 0}, (2.3.2)

for x ∈ Rm. We have the following technical Lemma.
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Lemma 2.3.1. For p ∈ (0, 1/2) we have∫︂
{|y|<c}

Vp(x+K(x, y)) − Vp(x)ν(dy)

≤ p |x|p
[︄∫︂

{|y|<c}∩K(x)c
log |x + K(x, y)|

|x|
ν(dy)

+ p

2

∫︂
{|y|<c}∩K(x)c

(︄
log |x + K(x, y)|

|x|

)︄2

ν(dy)

−
(︄

1
p

− 1
)︄

ν(K(x))
]︄

< ∞, (2.3.3)

for x ∈ Bc
1.

Proof. To prove the inequality (2.3.3) the same ideas as when proving the similar
estimate (2.2.4) for the case of compensated integral can be used. This time we
estimate the first integral on the right-hand side of (2.3.3) from above,∫︂

{|y|≥c}∩K(x)
log |x + K(x, y)|

|x|
ν(dy) =1

p

∫︂
{|y|≥c}∩K(x)

log |x + K(x, y)|p

|x|p
ν(dy)

≤1
p

∫︂
{|y|≥c}∩K(x)

|x + K(x, y)|p − |x|p

|x|p
ν(dy)

≤1
p

∫︂
{|y|≥c}∩K(x)

|K(x, y)|p

|x|p
ν(dy) < ∞,

where we used the local boundedness of (2.1.9). For the second integral on the
right-hand side in (2.3.3)

0 ≤
∫︂

{|y|≥c}∩K(x)

(︄
log |x + K(x, y)|

|x|

)︄2

ν(dy) =

= 1
p2

∫︂
{|y|≥c}∩K(x)

(︄
log |x + K(x, y)|p

|x|p
)︄2

ν(dy)

≤ 1
p2

∫︂
{|y|≥c}∩K(x)

(︄
|x + K(x, y)|p − |x|p

|x|p
)︄2

ν(dy)

≤ 1
p2

∫︂
{|y|≥c}∩K(x)

|K(x, y)|2p

|x|2p ν(dy) < ∞,

again using (2.1.9) (here we need p ∈ (0, 1/2)).

Having the estimate (2.3.3) at hand we obtain similar result for uncompen-
sated integral as in the compensated case in Theorem 2.2.1.

Theorem 2.3.1. Assume that f, g satisfy (2.2.12). Let R0 ∈ (1, ∞) be such that

β := sup
x∈Bc

R0

∫︂
{|y|≥c}∩K(x)c

log |x + K(x, y)|
|x|

ν(dy) < ∞ (2.3.4)

and

sup
x∈Bc

R0

∫︂
{|y|<c}∩K(x)c

(︄
log |x + K(x, y)|

|x|

)︄2

ν(dy) < ∞, (2.3.5)
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where K(x) is defined in (2.3.2). Then the solution to (2.3.1) with any determin-
istic initial condition is bounded in probability in the mean if

b + 1
2σ2 − σ2 + β < 0. (2.3.6)

Moreover, the condition (2.3.6) need not to be satisfied if ν(K(x)) ∈ R>0 uni-
formly in x ∈ Bc

R0 .
Proof. The proof is analogous to the proof of Theorem 2.2.1, we only here use
the estimate (2.3.3) in place of (2.2.4).

We see that the sign of β in (2.3.4) determines if the uncompensated integral
stabilizes the system. Unlike in the case of compensated integral in previous sec-
tion we are able to develop criterion which is determined directly by direction
of the jumps. It turns out that in such case ad hoc computations are more effi-
cient than using general result from Theorem 2.3.1. These computations depend
heavily on the fact that the intensity of jumps ν({|y| ≥ c}) of the uncompensated
integral is finite.
Theorem 2.3.2. Assume that f, g satisfy (2.2.12). Furthermore assume that
there exist γ ∈ R>0, α ∈ [0, 1), L ∈ R>0 and R0 ∈ R>0 such that

|x + K(x, y)| ≤ γ |x|1−α + L (2.3.7)
for x ∈ Bc

R0 and y ∈ {|y| ≥ c}. Then the solution to (2.3.1) is bounded in
probability in the mean for any deterministic initial condition if either

• α ̸= 0,
or

• or (2.3.6) with β = log γ holds, i.e. if

b + 1
2σ2 − σ2 + ν({|y| ≥ c}) log γ < 0. (2.3.8)

Proof. We verify that (1.5.3) holds. Taking arbitrary p ∈ (0, 1), n ∈ N, n ≥ R0
and x ∈ Bc

n, (V2), (V3) and (2.3.7) yield∫︂
{|y|≥c}

Vp(x + K(x, y)) − Vp(x)ν(dy) =

=
∫︂

{|y|≥c}
|x + K(x, y)|p − |x|p + (Vp(x + K(x, y)) − |x + K(x, y)|p) ν(dy)

≤
∫︂

{|y|≥c}
|x + K(x, y)|p − |x|p ν(dy) + 2ν(|y| ≥ c)

≤
∫︂

{|y|≥c}
γp |x|p(1−α) − |x|p ν(dy) + 2ν(|y| ≥ c)

=p |x|p
(︂

γ
|x|α

)︂p
− 1

p
ν(|y| ≥ c) + 2ν(|y| ≥ c)

≤p |x|p
(︂

γ
nα

)︂p
− 1

p
ν(|y| ≥ c) + 2ν(|y| ≥ c)

=p |x|p
(︄

log γ

nα
+ p

2

(︃
log γ

nα
)
)︃2
)︄

+ 2ν({|y| ≥ c})
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Taking into account (2.2.17) and (2.2.12) we have K ∈ R>0 such that

LVp(x) ≤ p |x|p
(︃

b + 1
2σ2 + 1

2(p − 1)σ2 + log γ

nα
+ p

2

(︃
log γ

nα

)︃2
)︄

+ 2ν({|y| ≥ c}) (2.3.9)

for x ∈ Bc
R, where R ≥ R0 ∨ K. For the case α = 0 we further simplify (2.3.9) to

LVp(x) ≤ p |x|p
(︃

b + 1
2σ2 + 1

2(p − 1)σ2 + log γ + p

2 (log γ)2
)︃

+ 2ν({|y| < c}).

If we take p ∈ R>0 sufficiently small, we see that if (2.3.8) holds, there exists
κ ∈ R>0 and R ∈ R>0 such that

LVp(x) ≤ −κ |x|p (2.3.10)

for x ∈ Bc
R.

On the other hand, for α ∈ R>0 the inequality (2.3.10) may be shown for
some κ̃ ∈ R>0 even without assumption (2.3.8) by taking n ∈ N sufficiently large.
Indeed, (2.3.9) shall be rewritten as

LVp(x) ≤ p |x|p (ω − α log n) + ν({|y| ≥ c})

for x ∈ Bc
R, where R ≥ R0 ∨ K and

ω = b + 1
2σ2 + 1

2(p − 1)σ2 + (1 + p

2) log γ.

Remark 2.3.1. Corollary 2.3.2 tells us that the uncompensated term stabilizes
our system if the jumps tend towards the origin and intensity of this stabilization
is proportional to the intensity of the jumps. Indeed, the system may remind
stable in the sense of boundedness in probability in the mean even for jumps in
the direction opposite to the origin. Also, taking α ̸= 0 in Theorem 2.3.2 we see
that if the norm of the process after jump gets small enough, then the system is
stabilized even with arbitrarily small intensity of the jumps.

In the case of the linear system Corollary 2.3.2

Example 2.3.1. Let m = n = 1, ν({|y| ≥ c}) ∈ R>0 and in (2.3.1) we put
f(x) = bx, g(x) = σx, K(x, y) = qx, x ∈ R, y ∈ {|y| ≥ c} for some b, σ, q ∈ R, i.e.
we deal with the equation

dXt =bXt−dt + σXt−dWt + qXt−dPt, t ∈ R≥0,

X0 =x0 (2.3.11)

for some x0 ∈ R where P =
∫︁

{|y|≥c} N(·, {|y| ≥ c}), is a Poisson process with
intensity ν({|y| ≥ c}). In this case we have

|x + K(x, y)| = |x| |1 + q|
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for x ∈ R, y ∈ {|y| ≥ c}. Therefore, if q ̸= −1, we may put γ = |1 + q| , α = L = 0
in (2.3.7) and obtain boundedness in probability in the mean for (2.3.11) provided

b − σ2

2 + ν({|y| ≥ c}) log |1 + q| < 0 (2.3.12)

holds.
Therefore, the uncompensated term stabilizes the considered system when

q ∈ (−2, −1) ∪ (−1, 0). The case q = −1 leads to K(x) = {|y| ≥ c}, x ∈ R, where
K(x) is defined in (2.3.2). Therefore, we may use Theorem 2.3.1 directly and
obtain boundedness in probability in the mean regardless the sign in (2.3.12).

Now we present an example that merges results from Sections 3 and 4. We
compare the stabilization properties of compensated and uncompensated integrals
occuring together and treat the constant c ∈ R>0 as a parameter of the problem.

Example 2.3.2. Consider the equation (2.0.1) with finite Lévy measure ν. For
notational simplicity, set

M(x, y) =
⎧⎨⎩H(x, y) (x, y) ∈ Rm × {|y| < c}

K(x, y) (x, y) ∈ Rm × {|y| ≥ c}.
(2.3.13)

Therefore, (2.0.1) can be writtern as

dXt = f(Xt−)dt + g(Xt−)dWt+
∫︂

{|y|<c}
M(Xt−, y)Ñ(dt, dy)

+
∫︂

{|y|≥c}
M(Xt−, y)N(dt, dy), t ∈ R≥0.

(2.3.14)
Assume that (2.2.12) holds with f locally finite and in compliance with the as-
sumption (2.3.7) of Theorem 2.3.2 let there exist γ ∈ R>0 such that

|x + M(x, y)| ≤ γ |x|

for every x ∈ Bc
1 and y ∈ Rn \ {0}. Furthermore, for simplicity assume that the

solution X does not jump directly to the origin almost surely, i.e.

ν({y ∈ Rn \ {0} : x + M(x, y) = 0}) = 0

for every x ∈ Bc
1.

Then Assumption 2.1.1 is satisfied and (2.3.14) can be rewritten as

dXt =
(︄

f(Xt−) −
∫︂

{|y|<c}
M(Xt−, y)ν(dy)

)︄
dt + g(Xt−)dWt

+
∫︂
Rn\{0}

M(Xt−, y)N(dt, dy)

for t ∈ R≥0. Therefore, we may expect that the parameter c ∈ R>0 influences the
stability properties of our system only through the perturbation of the drift

−
∫︂

{|y|<c}
M(Xt−, y)ν(dy).
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We now combine proofs of Theorems 2.2.1 and 2.3.1 to assess stability in
terms of boundedness in probability in the mean and obtain the condition

(︄
b − inf

x∈Bc
1

∫︂
{|y|<c}

⟨M(x, y), x⟩
|x|2

ν(dy)
)︄

+ 1
2σ2 − σ2 + ν(Rn \ {0}) log γ < 0

We can see that stability properties of (2.3.14) may depend on c ∈ R>0. In the
simple case

M(x, y) = qx, x ∈ Rm, y ∈ Rn \ {0},

for some q ∈ R, q ̸= −1, we get condition

b − qν({|y| < c}) + 1
2σ2 − σ2 + ν(Rn \ {0}) log |1 + q| < 0,

or equivalently

b + 1
2σ2 − σ2

ν(Rn \ {0}) + log |1 + q| < qr(c), (2.3.15)

where

r(c) = ν({|y| < c})
ν(Rn \ {0}) ∈ [0, 1], c ∈ R>0.

The function r : (0, ∞) → [0, 1] is non-decreasing and by (2.3.15) we may conclude
that if q < 0, which corresponds to the case when the solution exhibits jumps
towards origin, the chance that (2.3.15) is satisfied gets smaller with increasing
c. For q ∈ R>0 we get the opposite behavior.
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2.4 Invariant measure
In the final section we formulate the main result of this paper concerning the exis-
tence of the invariant measure for the equation (2.0.1). Due to Krylov-Bogolyubov
Theorem (cf. Theorem 1.5.1), it easily follows by Theorems 2.2.1 and 2.3.1 .

We treat the compensated and uncompensated term simultaneously using the
notation as in (2.3.13) and rewrite (2.0.1) as

dXt = f(Xt−)dt + g(Xt−)dWt+
∫︂

{|y|<c}
M(Xt−, y)Ñ(dt, dy)

+
∫︂

{|y|≥c}
M(Xt−, y)N(dt, dy), t ∈ R≥0.

(2.4.1)
To exclude the cases when the jumps in (2.4.1) aim directly into the origin,

we again adopt the useful notation

M(x) = {y ∈ Rn : x + M(x, y) = 0}

for x ∈ Rm.

Theorem 2.4.1 (Invariant measure). Let Assumption 2.1.1 hold and let the
equation (2.4.1) define Markov process which is Feller. Moreover, let b, σ, σ, γ ∈
R, σ, σ ∈ R>0 be such that there exists R0 ∈ R>0 such that

⟨f(x), x⟩ < b |x|2

|g(x)| < σ |x| ,

⃓⃓⃓
g(x)T x

⃓⃓⃓
|x|2

> σ

∫︂
M(x)c

(︄
log |x + M(x, y)|

|x|
− 1{|y|<c}(y)⟨M(x, y), x⟩

|x|2

)︄
ν(dy) < γ,

for x ∈ Bc
R0 , where 1{|y|<c} denotes the indicator function of the set {|y| < c},

and let

sup
x∈Bc

R0

∫︂
M(x)c

(︄
log |x + M(x, y)|

|x|

)︄2

ν(dy) <∞.

If

b + 1
2σ2 − σ2 + γ < 0,

then the equation (2.4.1) possesses an invariant measure.

Proof. The statement follows directly from Krylov-Bogolyubov Theorem by The-
orem 2.2.1 and Theorem 2.3.1.
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Now recall the standard assumptions (LIP), (GRO) and (CON) (which trans-
late into assumptions on M in an obvious way) under which the existence of
Markov process defined by (2.4.1) is guaranteed. It is known (cf. [Applebaum,
2009, Section 6.6 and 6.7]) that this process is Feller if in place of (GRO) the
following stronger condition is assumed.

Growth condition II : There exist H1 : Rm ↦→ R+, H2 : Rn ↦→ R+ such that

|H(x, y)| ≤ H1(x)H2(y), (GRO II)

x ∈ Rm, y ∈ {|y| < c}, H1 is Lipschitz continuous and
∫︁

{|y|<c} H2(y)2ν(dy) < ∞.

Indeed, in (cf. [Applebaum, 2009, Note after Theorem 6.6.3]) it is shown that
under the assumptions (LIP), (GRO II) and (CON) the equation (2.0.1) defines
Markov process such that the mapping

x ↦→ Xx
t , x ∈ Rm

has an almost surely continuous modification for t ∈ R>0. This already implies
Feller property as in Definition 1.5.4 by the Dominated Convergence Theorem.

Moreover, Theorem 2.4.1 may be simplified as follows.

Theorem 2.4.2 (Invariant measure II). Let Assumption (LIP), (GRO II) and
(CON) hold. Moreover, let b, σ, σ, γ ∈ R, σ, σ ∈ R>0 be such that there exists
R0 ∈ R>0 such that

⟨f(x), x⟩ < b |x|2

|g(x)| < σ |x| ,

⃓⃓⃓
g(x)T x

⃓⃓⃓
|x|2

> σ

∫︂
M(x)c

(︄
log |x + M(x, y)|

|x|
− 1{|y|<c}(y)⟨M(x, y), x⟩

|x|2

)︄
ν(dy) < γ,

for x ∈ Bc
R0 .

If

b + 1
2σ2 − σ2 + γ < 0,

then the equation (2.4.1) possesses an invariant measure.

Proof. It follows directly from Krylov-Bogolyubov Theorem by Corollary 2.2.1
and Corollary 2.3.2 since (2.4.1) defines Feller Markov process.
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3. Stochastic Approximation
Procedures
Let m, n ∈ N and suppose that Borel functions

f : R≥0 × Rm −→ Rm, g : R≥0 × Rm −→ Rm×n, H : R≥0 × Rm × Rn −→ Rm,

and a Borel probability measure µ on Rm are given. We consider the equation

dXt = f(t, Xt) dt + g(t, Xt) dWt +
∫︂

{y∈Rn; |y|<c}

H(t, Xt−, y) Ñ(dt, dy)

+
∫︂

{y∈Rn; |y|≥c}

H(t, Xt−, y) N(dt, dy), t ≥ 0,

X0 ∼ µ,
(3.0.1)

for some c ∈ R>0 and a pair (W, N), where N is a Poisson random measure, Ñ
its compensated counterpart, and W is a Wiener process independent of N , see
e.g. [Applebaum, 2009, Section 2.3.1]. As (in contrast to the previous sections)
we deal with a weak solution to (3.0.1) we recall its definition.

Definition 3.0.1. A triplet ((Ω, F , (Ft)t≥0,P ), (W, N), X) is called a solution
to the equation (3.0.1) provided

i) (Ω, F , (Ft)t≥0,P ) is a stochastic basis with a normal filtration (Ft)t≥0,
ii) W is an (Ft)-Wiener process with values in Rn,
iii) N is an (Ft)-Poisson random measure N on R≥0 × (Rn \ {0}) whose

intensity is dtν(dy) for some Lévy measure ν on Rn\{0} and which is independent
of W ,

iv) Ñ = N − dtν(dy), and
v) X is an Rm-valued (Ft)-progressively measurable càdlàg process such that

the distribution of X0 is µ and

Xt = X0 +
∫︂ t

0
f(s, Xs) ds +

∫︂ t

0
g(s, Xs) dWs

+
∫︂ t

0

∫︂
{|y|<c}

H(s, Xs−, y) Ñ(ds, dy) +
∫︂ t

0

∫︂
{|y|≥c}

H(s, Xs−, y) N(ds, dy) P -a.s.

for all t ∈ R≥0.

In paragraph (v) of Definition 3.0.1 it is supposed implicitly that all integrals
are well defined, that is,∫︂ t

0

{︃
|f(s, Xs)| + |g(s, Xs)|2 +

∫︂
{|y|<c}

|H(s, Xs, y)|2 ν(ds)
}︃

ds < ∞ P-a.s.

for all t ≥ 0.
Throughout the paper, we impose the following assumption:
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Assumption 3.0.1. We shall assume that∫︂
{|y|<c}

|H(t, x, y)|2 ν(dy) < ∞ for all (t, x) ∈ R≥0 × Rm (3.0.2)

and the function
(t, x) ↦−→

∫︂
{|y|≥c}

|H(t, x, y)| ν(dy) (3.0.3)

is locally bounded on R≥0 × Rm.
Now, let us set
V =

{︂
V ∈ C 2(Rm); DV ∈ Cb(Rm;Rm), D2V ∈ Cb(Rm;Rm×m)

}︂
(3.0.4)

and introduce an operator L associated with the equation (3.0.1) that will hence-
forth play a crucial role. For V ∈ V we define
L V : R≥0 × Rm −→ R,

(t, x) ↦−→
⟨︂
f(t, x), DV (x)

⟩︂
+ 1

2 Tr
(︂
g(t, x)T D2V (x)g(t, x)

)︂
+
∫︂
Rn\{0}

[︂
V (x + H(t, x, y)) − V (x) − 1{|y|<c}(y)

⟨︂
H(t, x, y), DV (x)

⟩︂]︂
ν(dy).
(3.0.5)

Using hypotheses (3.0.2) and (3.0.3) we can check easily that the definition of L
is correct, see analogous considerations in the proof of Proposition 3.0.1.
Remark 3.0.1. a) The assumption (3.0.2) can be omitted if we define L V on
the set {(t, x) ∈ R≥0 ×Rm; the right-hand side of (3.0.5) makes sense} only. It is
a direct consequence of the integrability condition in part (v) of Definition 3.0.1.
We only adopted (3.0.2) so that the formulation of our main results may be more
straightforward.

b) On the other hand, (3.0.3) is important and cannot be dispensed with easily.
In a companion paper Maslowski and Týbl [2022] related results on stability of
solutions to (3.0.1) are obtained under a weaker hypothesis that

(t, x) ↦−→
∫︂

{|y|≥c}
|H(t, x, y)|p ν(dy) is locally bounded on R≥0 × Rm (3.0.6)

for some p ∈ (0, 1). The same choice is possible in the present paper. Under
(3.0.6) we have to restrict ourselves to a narrower class of Lyapunov functions than
V , proofs become rather complicated while the gain is not very impressive: the
final criterion for convergence of the Robbins-Monro procedure remains almost
the same. That is why we opted for (3.0.3).

Using the operator L we can state the Itô formula for smooth functions of
solutions to (3.0.1) in a suitable form.
Proposition 3.0.1. Assume that V ∈ V and X solves (3.0.1), then

dV (Xt) = L V (t, Xt)dt +
⟨︂
g(t, Xt)T DV (Xt), ·

⟩︂
dWt

+
∫︂

{|y|<c}

[︂
V (Xt− + H(t, Xt−, y)) − V (Xt−)

]︂
Ñ(dt, dy)

+
∫︂

{|y|≥c}

[︂
V (Xt− + H(t, Xt−, y)) − V (Xt−)

]︂
N(dt, dy)

−
∫︂

{|y|≥c}

[︂
V (Xt + H(t, Xt, y)) − V (Xt)

]︂
ν(dy) dt.

(3.0.7)
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Proof. By Theorem 1.2.1 we have

dV (Xt) =
(︃⟨︂

f(t, Xt), DV (Xt)
⟩︂

+ 1
2 Tr

(︂
g(t, Xt)T D2V (Xt)g(t, Xt)

)︂)︃
dt

+
⟨︂
g(t, Xt)T DV (Xt), ·

⟩︂
dWt

+
∫︂

{|y|<c}

[︂
V (Xt− + H(t, Xt−, y)) − V (Xt−)

]︂
Ñ(dt, dy)

+
∫︂

{|y|<c}

[︂
V (Xt + H(t, Xt, y)) − V (Xt)

−
⟨︂
DV (Xt), H(t, Xt, y)

⟩︂]︂
ν(dy) dt

+
∫︂

{|y|≥c}

[︂
V (Xt− + H(t, Xt−, y)) − V (Xt−)

]︂
N(dt, dy).

(3.0.8)

Now adding and subtracting∫︂ t

0

∫︂
{|y|≥c}

[︂
V (Xs + H(s, Xs, y)) − V (Xs)

]︂
ν(dy) ds, (3.0.9)

to the right-hand side of (3.0.8) we obtain the formula (3.0.7) provided (3.0.9)
is well-defined for every t ≥ 0 P -almost surely. However, realizing that θ ↦−→
V (x+θH(s, x, y)) is a smooth function on [0, 1] and invoking boundedness of DV
we get ∫︂

{|y|≥c}

⃓⃓⃓
V (x + H(s, x, y)) − V (x)

⃓⃓⃓
ν(dy)

=
∫︂

{|y|≥c}

⃓⃓⃓⃓
⃓
∫︂ 1

0

⟨︂
DV (x + θH(s, x, y)), H(s, x, y)

⟩︂
dθ

⃓⃓⃓⃓
⃓ ν(dy)

≤ |DV |∞
∫︂

{|y|≥c}

⃓⃓⃓
H(s, x, y)

⃓⃓⃓
ν(dy)

for all x ∈ Rm and s ∈ R≥0. Hence∫︂ t

0

∫︂
{|y|≥c}

⃓⃓⃓
V (Xs + H(s, Xs, y)) − V (Xs)

⃓⃓⃓
ν(dy) ds < ∞ P -a.s.

follows by (3.0.3) since the paths of X are locally bounded.

3.1 Main results
In this Section, we first state a criterion based on Lyapunov functions for a
solution to (3.0.1) to converge to a given point of the state space Rm. The follow-
ing theorem and its corollary generalize results from Nevel’son and Khas’minskĭı
[1972] to equations driven by Lévy processes.
Theorem 3.1.1. Let the Assumption 3.0.1 be satisfied and let there exist x0 ∈
Rm, a measurable function φ : Rm −→ R≥0, a function V ∈ V , and measurable
functions α, γ : R≥0 −→ R>0 such that
(H1) either

inf
|x−x0|≥ε

φ(x) > 0 for all ε > 0 (3.1.1)

or

lim
|x|→∞

V (x) = +∞ and inf
ϱ≥|x−x0|≥ε

φ(x) > 0 for all ϱ > ε > 0, (3.1.2)
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(H2) V (x0) = 0, V ∈ L1(µ) and
inf

|x−x0|≥ε
V (x) > 0 (3.1.3)

for any ε > 0,

(H3) α ∈ L1
loc(R≥0) \ L1(R≥0), γ ∈ L1(R≥0) ∩ C (R≥0) and

L V (t, x) ≤ −α(t)φ(x) + γ(t)(1 + V (x)) (3.1.4)
for all t ≥ 0 and x ∈ Rm.

Then any solution (Ω, F , (Ft), (W, N), X) to (3.0.1) satisfies
lim
t→∞

Xt = x0 P -a.s. (3.1.5)

Proof. Let us set

ξ(t) = exp
(︃∫︂ ∞

t
γ(r)dr

)︃
, t ∈ R≥0,

and

U(t, x) = ξ(t)(1 + V (x)) = exp
(︃∫︂ ∞

t
γ(r)dr

)︃
(1 + V (x)) , (t, x) ∈ R≥0 × Rm.

Step 1: We establish convergence of V (Xt) as t → ∞. To this end, we first show
that (U(t, Xt))t≥0 is a supermartingale. Define

τ 1
n = inf{t ≥ 0 : |Xt| > n},

τ 2
n = inf

{︃
t ≥ 0 :

∫︂ t

0
|g(s, Xs)|2 ds > n

}︃
,

τ 3
n = inf

{︃
t ≥ 0 :

∫︂ t

0

∫︂
{|y|<c}

|H(s, Xs, y)|2 ν(dy) ds > n
}︃

,

τn = τ 1
n ∧ τ 2

n ∧ τ 3
n

(3.1.6)

for n ∈ N. Obviously, τn’s are stopping times and τn → ∞ P -almost surely as
n → ∞.

By the product rule for semimartingales we get
dU(t, Xt) = (1 + V (Xt)) dξ(t) + ξ(t) dV (Xt), t ∈ R≥0. (3.1.7)

Hence combining (3.0.7) and (3.1.7) we obtain for any n ∈ N and t ∈ R≥0 (fixed
but arbitrary)

U(τn ∧ t,Xτn∧t) − U(0, X0)

=
∫︂ τn∧t

0

[︂
(1 + V (Xs))ξ′(s) + ξ(s)L V (s, Xs)

]︂
ds

+
∫︂ τn∧t

0
ξ(s)

⟨︂
g(s, Xs)T DV (Xs), ·

⟩︂
dWs

+
∫︂ τn∧t

0

∫︂
{|y|<c}

ξ(s)
[︂
V (Xs− + H(s, Xs−, y)) − V (Xs−)

]︂
Ñ(ds, dy)

+
∫︂ τn∧t

0

∫︂
{|y|≥c}

ξ(s)
[︂
V (Xs− + H(s, Xs−, y)) − V (Xs−)

]︂
N(ds, dy)

−
∫︂ τn∧t

0

∫︂
{|y|≥c}

ξ(s)
[︂
V (Xs + H(t, Xs, y)) − V (Xs)

]︂
ν(dy) ds.

(3.1.8)
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By the hypothesis (H3) we may estimate∫︂ τn∧t

0

[︂
(1 + V (Xs))ξ′(s) + ξ(s)L V (s, Xs)

]︂
ds

=
∫︂ τn∧t

0
ξ(s)

{︂
−γ(s)(1 + V (Xs)) + L (s, Xs)

}︂
ds

≤ −
∫︂ τn∧t

0
ξ(s)α(s)φ(Xs) ds

≤ 0

(3.1.9)

as α and φ are non-negative. Therefore, from (3.1.8) we get

U(τn ∧ t, Xτn∧t) − U(0, X0)

≤
∫︂ τn∧t

0
ξ(s)

⟨︂
g(s, Xs)T DV (Xs), ·

⟩︂
dWs

+
∫︂ τn∧t

0

∫︂
{|y|<c}

ξ(s)
[︂
V (Xs− + H(s, Xs−, y)) − V (Xs−)

]︂
Ñ(ds, dy)

+
∫︂ τn∧t

0

∫︂
{|y|≥c}

ξ(s)
[︂
V (Xs− + H(s, Xs−, y)) − V (Xs−)

]︂
N(ds, dy)

−
∫︂ τn∧t

0

∫︂
{|y|≥c}

ξ(s)
[︂
V (Xs + H(t, Xs, y)) − V (Xs)

]︂
ν(dy) ds.

(3.1.10)
We aim at showing that the right-hand side of (3.1.10) is a martingale for any
n ∈ N. This having been established we find that

E
[︂
U(t ∧ τn, Xt∧τn) − U(0, X0)

]︂
≤ 0,

so we may apply the Fatou lemma and arrive at

EU(t, Xt) = E lim
n→∞

U(t ∧ τn, Xt∧τn) ≤ lim inf
n→∞

EU(t ∧ τn, Xt∧τn)

≤ EU(0, X0)
= e∥γ∥L1EV (X0) < ∞

for every t ∈ R≥0, as V ∈ L1(µ). Using the Fatou lemma for conditional ex-
pectations we get in a completely analogous way that (U(t, Xt), t ∈ R≥0) is a
supermartingale, we skip the details.

Hence now we fix n ∈ N and we shall proceed with the terms on the right-hand
side of (3.1.10) separately.

First, since DV ∈ Cb(Rm;Rm) by assumption we get

E
∫︂ t∧τn

0

⃓⃓⃓
ξ(s)

⟨︂
g(s, Xs)T DV (Xs), ·

⟩︂⃓⃓⃓2
ds ≤ e2∥γ∥L1 ∥DV ∥2

∞ nt < ∞

for all t ∈ R≥0 due to the definition of τ 2
n , so the stochastic integral∫︂ ·∧τn

0
ξ(s)

⟨︂
g(s, Xs)T DV (Xs), ·

⟩︂
dWs

is a martingale.
Similarly, the compensated integral∫︂ ·∧τn

0

∫︂
{|y|<c}

ξ(s)
(︂
V (Xs− + H(s, Xs−, y)) − V (Xs−)

)︂
Ñ(ds, dy)
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is a martingale, since proceeding as in the proof of Proposition 3.0.1 and invoking
the definition of τ 3

n we get

E
∫︂ t∧τn

0

∫︂
{|y|<c}

⃓⃓⃓
ξ(s)

(︂
V (Xs + H(s, Xs, y)) − V (Xs)

)︂⃓⃓⃓2
ν(dy) ds

= E
∫︂ t∧τn

0

∫︂
{|y|<c}

⃓⃓⃓⃓
⃓
∫︂ 1

0
ξ(s)

⟨︂
DV (Xs + θH(s, Xs, y)), H(s, Xs, y)

⟩︂
dθ

⃓⃓⃓⃓
⃓
2

ν(dy) ds

≤ e2∥γ∥L1 |DV |2∞ E
∫︂ t∧τn

0

∫︂
{|y|<c}

|H(s, Xs, y)|2 ν(dy) ds

≤ e2∥γ∥L1 |DV |2∞ nt

< ∞

for every t ∈ R≥0.
Finally,

E
∫︂ t∧τn

0

∫︂
{|y|≥c}

⃓⃓⃓
ξ(s)

(︂
V (Xs + H(s, Xs, y)) − V (Xs)

)︂⃓⃓⃓
ν(dy) ds

= E
∫︂ t∧τn

0

∫︂
{|y|≥c}

⃓⃓⃓⃓
⃓
∫︂ 1

0
ξ(s)

⟨︂
DV (Xs + θH(s, Xs, y)), H(s, Xs, y)

⟩︂
dθ

⃓⃓⃓⃓
⃓ ν(dy) ds

≤ e∥γ∥L1 |DV |∞ E
∫︂ t∧τn

0

∫︂
{|y|≥c}

|H(s, Xs, y)| ν(dy) ds

< ∞

for all t ∈ R≥0 owing to (3.0.3). Therefore, by the same argument as in [Ikeda and
Watanabe, 1981, Lemma II.3.1] (see the proof of formula (3.8) on page 62 therein)
or by modifying slightly the definition of τn’s and using [Jacod and Shiryaev, 2003,
Theorem II.1.8] we have that∫︂ ·∧τn

0

∫︂
{|y|≥c}

ξ(s)
(︂
V (Xs− + H(s, Xs−, y)) − V (Xs−)

)︂
N(ds, dy)

−
∫︂ ·∧τn

0

∫︂
{|y|≥c}

ξ(s)
(︂
V (Xs + H(s, Xs, y)) − V (Xs)

)︂
ν(dy) ds

is again a martingale.
Hence the proof that (U(t, Xt)) is a supermartingale is completed. Since

U(t, Xt) it plainly non-negative and right-continuous, the martingale convergence
theorem implies that there exists an integrable random variable U∞ ∈ L1(P ) such
that limt→∞ U(t, Xt) = U∞ P -a.s., whence it follows that

lim
t→∞

V (Xt) = lim
t→∞

exp
(︃

−
∫︂ ∞

t
γ(r) dr

)︃
U(t, Xt) − 1 = U∞ − 1 =: V∞ (3.1.11)

P -almost surely.
Step 2: Now we show that

lim inf
t→∞

⃓⃓⃓
Xt − x0

⃓⃓⃓
= 0 P -a.s. (3.1.12)

Let ω ∈ Ω be such that ⃓⃓⃓
Xt(ω) − x0

⃓⃓⃓
≥ ε
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for some t0 ∈ R≥0 and ε > 0 and all t ≥ t0. If (3.1.1) is satisfied then clearly a
δ > 0 may be found such that

φ(Xt(ω)) ≥ δ for all t ≥ t0. (3.1.13)

If (3.1.2) is satisfied then note that by (3.1.11) we may assume that V (Xt(ω))
converges to a finite limit as t → ∞, so by the first part of (3.1.2) there exists a
constant ζ = ζ(ω) such that

sup
t≥0

|Xt(ω)| ≤ ζ.

Hence the second part of (3.1.2) implies that

φ(Xt(ω)) ≥ inf
ζ≥|x|≥ε

φ(x) ≥ δ

for some δ > 0 and all t ≥ t0, that is, (3.1.13) again holds. Thus we have∫︂ ∞

t0
α(s)φ(Xs(ω)) ds = ∞,

because α ∈ L1
loc(R≥0) \ L1(R≥0). Therefore, (3.1.12) is established provided we

show that ∫︂ ∞

0
α(s)φ(Xs) ds < ∞ P -a.s. (3.1.14)

As ξ ≥ 1 we have∫︂ t∧τn

0
α(s)φ(Xs) ds ≤ −

∫︂ t∧τn

0

[︂
(1 + V (Xs))ξ′(s) + ξ(s)L V (s, Xs)

]︂
ds

for all t ∈ R≥0 and n ∈ N by (3.1.9). Using (3.1.8) together with the fact that
the stochastic integrals in (3.1.8) are centered and U ≥ 0 we obtain

E
∫︂ t∧τn

0
α(s)φ(Xs) ds ≤ −E

∫︂ t∧τn

0

[︂
(1 + V (Xs))ξ′(s) + ξ(s)L V (s, Xs)

]︂
ds

= E
{︂
U(0, X0) − U(t ∧ τn, Xt∧τn)

}︂
≤ EU(0, X0)

for all t ∈ R≥0 and n ∈ N, thus passing first n → ∞ and then t → ∞ and
applying the monotone convergence theorem twice, we find the estimate

E
∫︂ ∞

0
α(s)φ(Xs) ds ≤ EU(0, X0) = e∥γ∥L1EV (X0)

the right-hand side of which is finite by (H2). We see that (3.1.14) holds true.
Step 3: It remains to show that

lim
t→∞

Xt = x0 P -a.s. (3.1.15)

Suppose that ω ∈ Ω is such that⃓⃓⃓
Xtn(ω) − x0

⃓⃓⃓
≥ ε
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for some ε > 0 and a sequence tn ↗ ∞. By the hypothesis (H2) of Theorem
3.1.1, an η > 0 may be found for which

V (Xtn(ω)) ≥ η (3.1.16)

for every n ∈ N. We shall show that then either

lim
t→∞

V (Xt(ω)) = V∞(ω) (3.1.17)

or

lim inf
t→∞

⃓⃓⃓
Xt(ω) − x0

⃓⃓⃓
= 0 (3.1.18)

does not hold, where V∞ is defined by (3.1.11). Indeed, (3.1.16) together with
(3.1.17) imply that V∞(ω) ≥ η. On the other hand, if (3.1.18) is satisfied then
there exists a sequence rn ↗ ∞ such that

lim
n→∞

Xrn(ω) = x0,

hence, again by (3.1.17) and (H2),

V∞(ω) = lim
n→∞

V (Xrn(ω)) = V (x0) = 0,

which is a contradiction. However, we have already shown that both (3.1.17)
and (3.1.18) hold for P -almost all ω ∈ Ω, which concludes the proof of Theorem
3.1.1.

Now we focus on a particular case of the equation (3.0.1) corresponding to the
continuous-time stochastic approximation procedure of Robbins-Monro type with
a general Lévy noise. Recall that in this setting we are looking for a stochastic
differential equation such that its solutions converge to a root of the drift R for
a class of noise coeffients as wide as possible. Namely, we consider the equation

dXt = α(t)
(︃

R(Xt) dt + σ(t, Xt) dWt +
∫︂

{|y|<c}
K(Xt−, y) Ñ(dt, dy)

+
∫︂

{|y|≥c}
K(Xt−, y) N(dt, dy)

)︃
, t ≥ 0

X0 ∼ µ,
(3.1.19)

with Borel coefficients

α : R≥0 −→ R>0, R : Rm −→ Rm, σ : R≥0 ×Rm −→ Rm×n, K : Rm ×Rn −→ Rm

and a Borel probability measure µ on Rm. The driving noise (W, N) is the same
as in (3.0.1). Since the function K is independent of time now, Assumption 3.0.1
takes the following form:

Assumption 3.1.1. We shall assume that∫︂
{|y|<c}

|K(x, y)|2 ν(dy) < ∞ for all x ∈ Rm

and the function ∫︂
{|y|≥c}

⃓⃓⃓
K(·, y)

⃓⃓⃓
ν(dy)

is locally bounded on Rm.

52



Let us state a result which one obtains applying Theorem 3.1.1 to (3.1.19).

Corollary 3.1.1. Let Assumption 3.1.1 be satisfied. Let there exist x0 ∈ Rm, a
function V ∈ V ∩ L1(µ) with V (x0) = 0 and a measurable function φ : Rm −→
R≥0 such that

inf
ϱ≥|x−x0|≥ε

φ(x) > 0 for all ϱ > ε > 0 (3.1.20)

and
lim

|x|→∞
V (x) = +∞, inf

|x−x0|≥ε
V (x) > 0 for all ε > 0. (3.1.21)

Assume further that α ∈ C (R≥0,R>0) satisfies∫︂ ∞

0
α(r) dr = ∞,

∫︂ ∞

0
α2(r) dr < ∞. (3.1.22)

Let there exist a constant Kσ ∈ R≥0 and a function β ∈ C (R≥0) ∩ L1(R≥0) such
that ⟨︃

R(x) +
∫︂

{|y|≥c}
K(x, y) ν(dy), DV (x)

⟩︃
≤ −φ(x), (3.1.23)

Tr
(︂
σ(t, x)T D2V (x)σ(t, x)

)︂
≤ Kσ

(︂
1 + V (x)

)︂
(3.1.24)

and∫︂
Rn\{0}

[︂
V (x + α(t)K(x, y)) − V (x) − α(t)

⟨︂
K(x, y), DV (x)

⟩︂]︂
ν(dy)

≤ β(t)
(︂
1 + V (x)

)︂
(3.1.25)

for all x ∈ Rm and t ∈ R≥0.
If (Ω, F , (Ft), (W, N), X) is a solution to (3.1.19) then

lim
t→∞

Xt = x0 P-a.s. (3.1.26)

Proof. To see that Corollary 3.1.1 follows immediately from Theorem 3.1.1 it
suffices to check that the hypothesis (H3) is satisfied. However, the operator L
associated with (3.1.19) takes the form

L V (t, x) = α(t)
⟨︂
R(x), DV (x)

⟩︂
+ α2(t)

2 Tr
(︂
σ(t, x)T D2V (x)σ(t, x)

)︂
+
∫︂
Rn\{0}

[︂
V (x + α(t)K(x, y)) − V (x)

− α(t)1{|y|<c}(y)
⟨︂
K(x, y), DV (x)

⟩︂]︂
ν(dy)

= α(t)
⟨︃

R(x) +
∫︂

{|y|≥c}
K(x, y)ν(dy), DV (x)

⟩︃

+ α2(t)
2 Tr

(︂
σ(t, x)T D2V (x)σ(t, x)

)︂
+
∫︂
Rn\{0}

[︂
V (x + α(t)K(x, y)) − V (x) − α(t)

⟨︂
K(x, y), DV (x)

⟩︂]︂
ν(dy)
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for any x ∈ Rm and t ∈ R>0; the last term on the right-hand side is well-defined
owing to Assumption 3.1.1. The assumptions of Corollary 3.1.1 thus imply that

L V (t, x) ≤ −α(t)φ(x) + 1
2
(︂
Kσα2(t) + 2β(t)

)︂(︂
1 + V (x)

)︂
.

Since (Kσα2 + 2β) ∈ L1(R≥0) ∩ C (R≥0) the proof is completed.

Remark 3.1.1. (a) As in Theorem 3.1.1 we may replace (3.1.20) and (3.1.21)
with

inf
|x−x0|≥ε

(︂
V (x) ∧ φ(x)

)︂
> 0 for any ε > 0. (3.1.27)

(b) If the function

x ↦−→
⟨︃

R(x) +
∫︂

{|y|≥c}
K(x, y) ν(dy), DV (x)

⟩︃
is continuous on Rm and⟨︃

R(x) +
∫︂

{|y|≥c}
K(x, y) ν(dy), DV (x)

⟩︃
< 0 for x ̸= x0

we may set

φ(x) = −
⟨︃

R(x) +
∫︂

{|y|≥c}
K(x, y) ν(dy), DV (x)

⟩︃
, x ∈ Rm,

then both (3.1.20) and (3.1.23) are satisfied.

If H = 0 and K = 0 then Theorem 3.1.1 and Corollary 3.1.1 correspond
essentially to Nevel’son and Khas’minskĭı [1972], Theorems 3.8.1 and 4.4.1, re-
spectively.

3.2 Applications
Sufficient conditions for convergence of a solution X of (3.1.19) to a point are
given in Corollary 3.1.1 in terms of a Lyapunov function V . Choosing a particular
Lyapunov function we get more applicable criteria in terms of the coefficients of
(3.1.19). If K = 0 then V = | ·−x0|2 is a standard choice, however, in the general
case we must proceed in a different way since we need a Lyapunov function
belonging to the system V .

Example 3.2.1. Let x0 ∈ Rm and let us set

V : Rm −→ R≥0, x ↦−→ log
(︂
1 + |x − x0|2

)︂
.

Obviously, the Fréchet derivatives of V are given by

DV (x) = 2 x − x0

1 + |x − x0|2
,

D2V (x) = 2
1 + |x − x0|2

I − 4(︂
1 + |x − x0|2

)︂2 (x − x0)(x − x0)T ,
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for all x ∈ Rm and thus V ∈ V , furthermore, V (x) → +∞ as |x| → ∞.
Let Assumption 3.1.1 be satisfied and suppose that the coefficients σ and K

of (3.1.19) satisfy the linear growth condition: there exists a constant L ∈ R≥0
such that

|σ(t, x)|2 +
∫︂
Rn\{0}

|K(x, y)|2 ν(dy) ≤ L
(︂
1 + |x|2

)︂
(3.2.1)

for all x ∈ Rm and t ≥ 0. Denote by k the function

k : Rm −→ R, x ↦−→
⟨︃

R(x) +
∫︂

{|y|≥c}
K(x, y) ν(dy), x − x0

⟩︃
.

Since ⟨︃
R(x) +

∫︂
{|y|≥c}

K(x, y) ν(dy), DV (x)
⟩︃

= 2
1 + |x − x0|2

k(x) (3.2.2)

for all x ∈ Rm, (3.1.23) is satisfied with the choice

φ : x ↦−→ − 2k(x)
1 + |x − x0|2

. (3.2.3)

The function φ defined by (3.2.3) surely satisfies (3.1.20) if k is continuous and

k(x) < 0 for all x ̸= x0. (3.2.4)

If k is not continuous, it may be difificult to check (3.1.20) and a more feasible
way may be to strengthen (3.2.4) assuming that there exists η > 0 such that

k(x) ≤ −η|x − x0|2 for all x ∈ Rm. (3.2.5)

In this case we may set
φ : x ↦−→ 2η|x − x0|2

1 + |x − x0|2

obtaining a function that clearly satisfies (3.1.20). We claim that the other hy-
potheses of Corollary 3.1.1 (in the version of Remark 3.1.1) are also satisfied.

For any x ∈ Rm we may compute using (3.2.1)

Tr
(︂
σ(t, x)T D2V (x)σ(t, x)

)︂
= 2

1 + |x − x0|2
|σ(t, x)|2 − 4(︂

1 + |x − x0|2
)︂2

⃓⃓⃓
σ(t, x)T (x − x0)

⃓⃓⃓2

≤ 2
1 + |x − x0|2

|σ(t, x)|2

≤2L
1 + |x|2

1 + |x − x0|2

=4L
(︃

1 + |x0|2

1 + |x − x0|2
)︃

≤4L
(︂
1 + |x0|2

)︂(︂
1 + V (x)

)︂
(3.2.6)

55



and (3.1.24) follows. Finally, we verify that (3.1.25) holds with the choice β =
2α2L(1 + |x0|2). Using that log(y) ≤ y − 1 for all y > 0 plainly and the definition
of V we obtain∫︂

Rn\{0}

[︂
V (x + α(t)K(x, y)) − V (x) − α(t)

⟨︂
K(x, y), DV (x)

⟩︂]︂
ν(dy)

=
∫︂
Rn\{0}

[︃
log
(︃1 + |x + α(t)K(x, y) − x0|2

1 + |x − x0|2
)︃

− 2α(t)
1 + |x − x0|2

⟨︂
K(x, y), x − x0

⟩︂]︃
ν(dy)

≤ 1
1 + |x − x0|2

∫︂
Rn\{0}

[︂
|x − x0 + α(t)K(x, y)|2 − |x − x0|2

− 2α(t)
⟨︂
K(x, y), x − x0

⟩︂]︂
ν(dy)

= α2(t)
1 + |x − x0|2

∫︂
Rn\{0}

|K(x, y)|2 ν(dy)

≤ α2(t)L 1 + |x|2

1 + |x − x0|2

≤ 2α2(t)L
(︂
1 + |x0|2

)︂(︂
1 + V (x)

)︂

(3.2.7)

for all t ∈ R≥0 and x ∈ Rm. Note also that Assumption 3.1.1 clearly follows from
(3.2.1).

Therefore, whenever α ∈ C (R≥0,R>0) obeys (3.1.22) and ((W, N), X) is a
solution to (3.1.19) then X converges almost surely to x0 as t → ∞.

Remark 3.2.1. It should be stressed that under the hypotheses of Example 3.2.1
the point x0 ∈ Rm the solution of (3.1.19) converges to need not be a root of the
drift R, therefore, a priori it might be misleading to speak about a Robbins-
Monro stochastic approximation procedure. Let us discuss this problem more
carefully: Our main positive results are illustrated in paragraphs (d) and (f),
while (c) contains a counterexample. In (a), (b) and (e) particular cases related
to hitherto available results are treated.

(a) Assume that K = 0. Then (3.2.4) reduces to

⟨R(x), x − x0⟩ < 0 for all x ̸= x0. (3.2.8)

Hence if R is continuous (which is a rather natural assumption) we have R(x0) = 0
(as it is well known from the theory of monotone mappings, see e.g. [Browder,
1963, Lemma 1] for a much more general result) and plainly x0 is the unique root
of R. If σ satisfies the linear growth condition and R is a continuous function
such that (3.2.8) holds, then

lim
t→∞

Xt = x0 P -almost surely (3.2.9)

for any solution of the equation

dXt = α(t)
(︃

R(Xt) dt + σ(t, Xt) dWt

)︃
, X0 ∼ µ. (3.2.10)

This is a classical result going back to Nevel’son and Khas’minskĭı [1972].
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(b) If the driving Lévy noise has a purely discontinuous component, but there
are no large jumps, that is, ν{|x| ≥ a} = 0 for some a ∈ (0, ∞) then the results
are virtually the same as in the diffusion case. Indeed, if R is continuous, obeys
(3.2.8), and σ and K have at most linear growth then (3.2.9) holds for any solution
of

dXt = α(t)
(︃

R(Xt) dt + σ(t, Xt) dWt +
∫︂

{|y|<a}
K(Xt−, y)Ñ(dt, dy)

)︃
, X0 ∼ µ.

(3.2.11)
Again, x0 is the unique root of R. Related results, obtained by different methods,
may be found in Mel’nikov [1989], Lazrieva et al. [1997].

(c) In the general case K ̸= 0 and ν{|y| ≥ c} > 0 the situation changes
considerably. This should not be surprising: the last term on the right-hand side
of (3.1.19), that is, the process∫︂ ·

0

∫︂
{|y|≥c}

K(Xt−, y) N(dt, dy) (3.2.12)

is not centered in general. Moreover, if we would like to keep the driving Lévy
noise in (3.0.1) but to use a representation with a different c it results in a change
of the drift (and, a fortiori, of the roots of the drift). Hence Corollary 3.1.1 need
not be applicable to the Robbins-Monro procedure, as it implies convergence to
a point x0 such that R(x0) ̸= 0. Indeed, if in the setting of Example 3.2.1 the
function k is continuous and satisfies (3.2.4) then we only know that

R(x0) +
∫︂

{|y|≥c}
K(x0, y) ν(dy) = 0

The following simple example illustrates this phenomenon. Define the coefficients
R and K by

R : x ↦−→ A(x − a), K : (x, y) ↦−→ B(x − b)
for some a, b ∈ Rm and matrices A, B ∈ Rm×m such that A + B is invertible and
negative definite, and A(x0 − a) ̸= 0 where we set x0 = (A + B)−1(Aa + Bb). We
can assume for simplicity that ν{|y| ≥ c} = 1. Then

k(x) =
⟨︃

A(x − a) +
∫︂

{|y|≥c}
B(x − b) ν(dy), x − x0

⟩︃
=
⟨︂
(A + B)x − (Aa + Bb), x − x0

⟩︂
=
⟨︂
(A + B)(x − x0), x − x0

⟩︂
≤ −η|x − x0|2

for some η > 0 and all x ̸= x0, however, R(x0) ̸= 0.
(d) Therefore, in the general case of (3.1.19) we must add the assumption

R(x0) = 0 if Corollary 3.1.1 is to be applied to stochastic approximation; for
equations (3.2.10) and (3.2.11) this is redundant. On the other hand, by choosing
K in an approprite way we may obtain (3.2.9) under rather mild hypotheses on
R. Let us assume that R(x0) = 0 and R is Lipschitz continuous, denote by Lip(R)
its Lipschitz constant. If K satisfies, still in the setting of Example 3.2.1,⟨︃∫︂

{|y|≥c}
K(x, y) ν(dy), x − x0

⟩︃
≤ −(Lip(R) + 1)|x − x0|2 for all x ∈ Rm,
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then Corollary 3.1.1 is applicable. In the diffusion case (3.2.10) the mere Lips-
chitz continuity of R need not be sufficient for the convergence of the stochastic
approximation procedure. (Indeed, consider (3.2.10) with the choice m = n = 1,
R(x) = σ(t, x) = x for (t, x) ∈ R≥0 × R, V = | · |2, and α(t) = (1 + t)−1 for
t ≥ 0, then all assumptions of Corollary 3.1.1 are satisfied except the hypothe-
sis (3.1.23), R is plainly globally Lipschitz continuous having 0 as its only root,
nevertheless, a simple direct calculation shows that Xt → ∞ almost surely as
t → ∞.)

(e) If ∫︂
{|y|≥c}

K(x, y) ν(dy) = 0 for all x ∈ Rm

then the process (3.2.12) is centered and we see that any solution X to (3.1.19)
converges to the unique root of R under the hypothesis that R is a continuous
function satisfying (3.2.8) (and σ and K has at most linear growth). This result
may be compared with theorems stated in Korostelev [1984] where equations
driven by centered square integrable processes with independent increments are
dealt with. We do not need L2-integrability, on the other hand sharper asymptotic
results than mere convergence almost surely are extablished in Korostelev [1984]
at the price of more restrictive assumptions on noise coefficients and the cumulant
process of the driving Lévy process.

(f) Finally, note that the hypotheses of Example 3.2.1 may be satisfied even if
R has multiple roots. The coefficient K then “selects” a root of R which a solution
to (3.1.19) converges to. This may happen only if a noncentered uncompensated
Poisson process is allowed as a driving noise. As we have already indicated above,
large jumps of the Lévy process virtually change the drift and, consequently, it
is possible that a solution to (3.1.19) no longer converges to some (or all) of its
roots. Again, in the diffusion case or for the equation (3.2.11) the situation is
completely different, see e.g. [Nevel’son and Khas’minskĭı, 1972, Chapter 5]. For
example, let m = 1 and let σ and K satisfy (3.2.1) and

x ·
∫︂

{|y|≥c}
K(x, y) ν(dy) ≤ −2|x|2 for all x ∈ R.

Then any solution to

dXt = α(t)
(︃

sin Xt dt + σ(t, Xt) dWt +
∫︂

{|y|<c}
K(Xt−, y) Ñ(dt, dy)

+
∫︂

{|y|≥c}
K(Xt−, y) N(dt, dy)

)︃
, t ≥ 0

X0 ∼ µ,

satisfies
lim
t→∞

Xt = 0 P -a.s.

(g) It is possible to allow coefficients K depending on time, i.e. defined on
R≥0 × Rm × Rn. If equation (3.2.11) is considered, that is, there are no large
jumps, this change results in a trivial modification of the assumptions. In the
general case, however, the hypotheses become cumbersome and thus we content
ourselves with time independent K’s.
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driven SDEs and their explicit invariant measures. Potential Analysis, 45:229–
259, 2016.
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List of abbreviations
Measure theory

Ac complement of the set A
B(X) the Borel σ-algebra over a topological space X
A ⊗ B product of σ-algebras A , B
µ ∗ ν convolution of probability measures µ, ν
1A indicator function of a set A
{|y| < c} {y ∈ Rn : |y| ≤ c} for c > 0
{|y| ≥ c} {y ∈ Rn : |y| > c} for c > 0

Euclidean and other spaces
AT transposition of a matrix A
Tr A trace of a matrix X
|·| the Euclidean norm (or the Frobenius norm in the case

of matrices)
⟨·, ·⟩ the scalar product in the Euclidean space
R≥0 {t ∈ R : t ≥ 0}
R>0 {t ∈ R : t > 0}
C (X, Y ) the space of continuous functions g : X ↦→ Y with the

supremal norm
|f |∞ the supremal norm of a bounded function f
Lp(Ω), Lp(µ) the Lebesgue spaces of equivalence classes of integrable

functions
Lp

loc(Ω), Lp
loc(µ) the Lebesgue spaces of equivalence classes of locally in-

tegrable functions
Bb(X) space of bounded measurable functions on X
DV, D2V the first (resp. the second) Fréchet derivative

Probability theory
X ∼ µ the random variable X has a distribution µ
E expectation of a random variable
VAR variance of a random variable
a.s. equality P -almost surely
L generator of a Markov semigroup associated with an

SDE
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List of publications
Maslowski, B. and Ondřej Týbl. Invariant measures and boundedness in the
mean for stochastic equations driven by Lévy noise. Stochastics and Dynamics,
22.03:2240019, 2022.

Existence of invariant measures and average stability in the mean are studied
for stochastic differential equations driven by Lévy process. In particular, some
natural conditions are found that verify stabilization of the equation (in the sense
of the existence of invariant measures) by jump noise terms. These conditions
are verified in several examples.

Seidler, J. and Ondřej Týbl. Stochastic Approximation Procedures for Lévy-
Driven SDEs. Journal of Optimization Theory and Applications, 197.2:817-837,
2023.

We consider a continuous-time Robbins–Monro-type stochastic approximation
procedure for a system described by a (multidimensional) stochastic differential
equation driven by a general Lévy process, and we find sufficient conditions for
its convergence in terms of Lyapunov functions. While the jump part of the noise
may spoil convergence to the root of the drift in some cases, we show that by a
suitable choice of noise coefficients we obtain convergence under hypotheses on
the drift weaker than those used in the diffusion case or convergence to a selected
root in the case of multiple roots of the drift.
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