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1. Uvod

1.1 Historie poznani

Podavani ZluCovych kyselin ve formé medvédi Zlu€i bylo soucasti tradi¢ni Cinské
(a pozdéji i korejské a japonské) mediciny jiz pfed mnoha staletimi. Medvédi zlu¢ byla
doporucovana pro detoxikaci organismu, pfi zanétu jater, ale také na snizeni bolesti,
horecky ¢&i pfi hemeroidech (Feng et al., 2009). V té dobé se ale nevédélo, ze hlavni
ucinnou slozkou medvédi ZIuc€i je kyselina ursodeoxycholova, tu zapadni medicina
objevila az v osmdesatych letech 20. stoleti (Podda et al., 1989; Salen, 1988).

Védecky se jako prvni zlu¢ovymi kyselinami zabyval Adolph Strecker. Tento vyznamny
chemik 19. stoleti kromé jiného zkoumal slozeni volské a praseci Zlu€i. V roce 1848
popsal izolaci kyseliny cholové a zaroven spravné urcil jeji sumarni vzorec C24H4005
(Strecker, 1848; Zeisel, 2012). Strukturu této kyseliny jako prvni popsal Heinrich Otto
Wieland, za coz ziskal Nobelovu cenu za rok 1927 (The Nobel Prize in Chemistry
1927). Jim popsana struktura v8ak nebyla zcela spravna, Wieland nespravné urdil
druhy kruh jako cyklopentan a nespravné umistil i postranni Fetézec (Obrazek 1).
Skute€nou chemickou strukturu ZluCovych kyselin popsal az O. Rosenheim

v roce 1932 (Rosenheim & King, 1932).
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Obrazek 1: Struktura Zlucové kyseliny navrzena H.Wielandem Upraveno z: (Wieland, 1924)



Rosenheim popsal strukturu jako redukovany fenantren, ke kterému je pfipojen Ctvrty
cyklopentanovy kruh s postrannim fetézcem na C17, tedy nikoliv na C10, jak
predpokladal Wieland (Obrazek 2) (Rosenheim & King, 1932).

Rosenheim k vyzkumu ZluCovych kyselin pfispél jesté jednim objevem, kdy spravné
lokalizoval druhou hydroxylovou skupinu kyseliny deoxycholové na C12 (Rosenheim
& King, 1932). Jeji struktura byla objevena jako posledni z majoritnich lidskych
ZluCovych kyselin.

Heinrich Wieland popsal i izolaci kyseliny cholové z volské ZluCe (Wieland, 1924).
Nasledné presvédCil manzela své sestfenice Alberta Boehringera, ktery vlastnil
farmacetickou spole€nost, aby zacala kyselinu cholovou vyrabét komeréné podle jeho
postupu. V té dobé se véfilo, ze kyselina cholova podporuje funkci jater a funguje jako
laxativum. Nebylo to vSak podloZené zadnou studii, vyzkum Zlu€ovych kyselin byl v té
dobé spiSe na okraji zajmu. Ve 40. letech 20. stoleti zacala byt ve velkém vyrabéna
i kyselina deoxycholova, ta v8ak jako prekurzor kortisonu (Hofmann & Hagey, 2014).

AZ po druhé svétoveé valce se skupina z laboratofe Sune Bergstroma zacala zabyvat
metabolismem Zlu€ovych kyselin v riznych organismech (Bergstrom et al., 1960;
Bergstrom et al., 1959; Gustafsson et al., 1957). Z této skupiny pochazel i Jan Sjovall,
ktery popsal metody stanoveni Zlu€ovych kyselin pomoci plynové chromatografie (GC)
s hmotnostni detekci (MS) (Eneroth et al., 1966). Tuto metodu vyuzil k fadé objev
béhem nasledujicich 40 let, mimo jiné k odliseni ZluCovych kyselin na primarni
a sekundarni (Norman & Sjovall, 1958). Historie poznani by vSak jist¢ nebyla
kompletni bez Alana Fredericka Hofmanna, ktery cely svdj profesni zivot zasvétil
vyzkumu Zlu€ovych kyselin a jehoz objevy se daji jen téZko shrnout do jedné véty.

Namatkou popsal fylogenezi ZluCovych kyselin, enterohepatalni obéh nebo vyuziti



ZluCovych kyselin pfi rozpousténi Zlu¢ovych kamenu (Hofmann, 2009), citace jeho

publikaci se prolinaji celou disertacni praci.

1.2 Struktura zlu€ovych kyselin

Zludové kyseliny se skladaji zjadra a postranniho fetézce. Jadro tvofi jeden
cyklopentanovy a tfi cyklohexanové kruhy, postranni fetézec je pak tvofen alifatickym

uhlovodikem s karboxylovou skupinou (Obrazek 2). Jednotlivé ZluCové kyseliny

0 kyselina R1 R2 R3
21, H 2 24 AlloCA* allocholova 7a 120
> OH CA cholova 7a 12a
CDCA | chenodeoxycholova 7a
DCA deoxycholova 120
HCA hyocholova 60 70
HDCA hyodeoxycholova 6a
LCA lithocholova
MDCA | murideoxycholova 6P
UDCA ursodeoxycholova 7a
a-MCA a-muricholova 6B 7a
B-MCA B-muricholova 6B 7a
w-MCA w-muricholovd 60 70

Obrazek 2. Struktura Zlu¢ové kyseliny. Tabulka popisuje pozici hydroxylovych skupin pro jednotlivé Zlucové Kyseliny.
V pozicich, které jsou volné je na pfislusny uhlik navazan vodik, pro prehlednost je vdak neuvadim. Déale v textu
pouzivam vySe uvedené zkratky, v pfipadé konjugace (viz déle) pouzivam pred zkratkou Zlu¢ové kyseliny G pro
glycin a T pro taurin.

*Na obrazku je znazornéna konformace cis. Pfedpona allo se pouziva pro Zlucové kyseliny v pozici trans.

se mohou liSit jak délkou postranniho fetézce, tak substituenty na ném
i na jadfe (Hofmann & Roda, 1984). VSechny ZzZluCové kyseliny vSak obsahuji
hydroxylovou skupinu na C3 v pozici a, na rozdil od cholesterolu, ktery ji ma v pozici
B. U lidi se postranni fetézec neméni, lidské ZluCové kyseliny tvofi vzdy 24 uhlikata
kostra. LiSit se mohou tedy konjugaci na postrannim fetézci (viz dale) a pocCtem
hydroxylovych skupin (Hofmann et al.,, 2010). Majoritnimi lidskymi Zlu€ovymi

kyselinami jsou kyselina cholova (CA), kyselina chenodeoxcholova (CDCA), kyselina



deoxcholova (DCA) a kyselina lithocholova (LCA). Strukturu téchto (i dalSich zlu€ovych
kyselin pouzitych v naSi praci) znazoriuje (Obrazek 2).

Pokud se podivame na stereochemii molekuly, kruhy A a B mohou zaujimat jak pozici
cis, tak trans, coz je dano postavenim vodiku na C5. VétSina v pfirodé se vyskytujicich
ZluCovych kyselin zaujima pozici cis. Pro ZluCové kyseliny s kruhy A/B v pozici trans

byla zavedena predpona allo (Fieser & Fieser, 1959; Hofmann & Hagey, 2014).

1.3 Fyzikalne-chemické vlastnosti zluCovych kyselin

Zludové kyseliny jsou planarni amfipatické molekuly. Skladaji se z hydrofobni
(steroidni jadro) a hydrofilni (hydroxylové a karboxylové skupiny) &asti (Hofmann,

2009) (Obrazek 3). Obecné je rozpustnost pfirozené se vyskytujicich C24 Zlu€ovych
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Obrazek 3: Usporadani molekuly kyseliny cholové. [Upraveno z:(Hofmann & Hagey, 2014)]



kyselin ve vodé velmi mala, pro zakladni lidské ZluCové kyseliny se pohybuje od
0,05 ymol/l (LCA) pres 28 umol/l (CDCA a DCA) po 273 pmol/l (CA) (Roda & Fini,
1984).

V roztoku se mohou ZluCové kyseliny vyskytovat v protonované formé, zaroven jako
slabé kyseliny v roztoku CasteCné disociuji a tvofi soli zejména s kationty vapniku
nebo sodiku (Hofmann & Mysels, 1992). Pokud koncentrace zlu€ovych kyselin
dosahne tzv. kritické micelarni koncentrace, anionty zZlu€ovych kyselin se samovolné
spojuji a tvofi agregaty obsahujici od 4 do 40 molekul (Cabral, 1989). Hodnota kritické
micelarni koncentrace se odviji zejména od poctu hydroxylovych skupin ZluCovych
kyselin, dale od jejich pozice a orientace. Také se méni s pfitomnosti kationtl
nebo dalSich lipofilnich latek, a to i v zavislosti na koncentraci (Hofmann & Mysels,
1992). Napfiklad v séru se Zlu€oveé kyseliny vyskytuji pod svou micelarni koncentraci,
shlukuji se pak s polarnimi lipidy a tvofi micely slozené (Hofmann, 2009; Natalini et al.,
2014; Tamesue & Juniper, 1967). Pfedpoklada se, ze ve ZluCi se zluCové kyseliny
vyskytuji ve vSech formach, tedy ve formé& monomerd, jednoduchych i slozenych micel

(Hofmann & Hagey, 2014).

1.4 Biosyntéza zlucovych kyselin

Na syntéze zluCovych kyselin se podili pfes 17 enzym(, které jsou lokalizovany
v cytosolu, endoplasmatickém retikulu, mitochondriich a peroxisomech. U lidi probiha
zejména dvéma drahami: prvni nazyvame klasickou (téz neutralni), druhou pak
alternativni (kyselou) (Russell, 2003; Vaz & Ferdinandusse, 2017). Zlugové kyseliny
vzniklé biosyntézou nazyvame jako primarni. Klasickou cestou vznika zejména

kyselina cholova, na konci té alternativni je pak kyselina chenodeoxycholova. U obou
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téchto drah je vychozi molekulou cholesterol. Dochazi ke zkraceni postranniho
fetézce, oxidaci na karboxylovou kyselinu, zméné pozice 3B hydroxylové skupiny
na 3a a k hydroxylaci C7, pfipadné C12 (Chiang, 1998; Vaz & Ferdinandusse, 2017).
Jednotlivé kroky obou drah viz (Obrazek 4)Chyba! Nenalezen zdroj odkazu.. Kazdy den
se v jatrech pfeméni na Zlu€ové kyseliny asi 500 mg cholesterolu (Russell, 2003).
Kromé toho byly popsany dvé dalSi drahy, nazyvaji se Yamasakiho a 25-hydroxylaéni.
Tyto drahy sdileji vétSinu reakci i enzym0 s drahami uvedenymi vySe, kombinuji
reakce téchto dvou drah i jejich pofadi (vice Duane et al., 1988; Setchell et al., 1988).
U vSech vySe uvedenych drah neni dodnes znam piesny pocet meziproduktl, vdechny

enzymy ani lokalizace vSech reakci (Sarenac & Mikov, 2018).
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Klasicka (neutralni) cesta Alternativni (kysela) cesta
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Obréazek 4: Biosyntéza Zlucovych kyselin
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1.5 Biotransformace zluéovych kyselin

K biotransformaci zlu€ovych kyselin dochazi jak endogenné v jatrech, tak Cinnosti
stfevnich bakterii. Endogenni modifikace zlepSuji detergentni vlastnosti ZluCovych
kyselin (konjugace) ¢i usnadiuji jejich vyluCovani z organismu (sulfatace,
glukuronidace). Bakterie zase Casti ZluCovych kyselin vyuzivaji ke své potfebé i je
modifikuji s cilem sniZzit jejich toxicitu (Hofmann & Hagey, 2014; Pedersen et al., 2022;

Philipp, 2011).
1.5.1 Konjugace

Konjugaci se v pfipadé ZluCovych kyselin rozumi N-acyl amidace. Jedna se o |l. fazi
biotransformace, pfi které dochazi ke vzniku kovalentni vazby mezi karboxylovou
skupinou Zlu€ové kyseliny a glycinem nebo taurinem (Hofmann & Hagey, 2014).
Konjugace ZIuCovych kyselin stémito aminokyselinami snizuje jejich pKa.
Nekojugované Zlucové kyseliny jsou tak nejslabsi kyselinou (pKa= 5), nasleduji
glykokonjugaty (pKa= 4) a nakonec taurokonjugaty (pKa= 2) (Fini & Roda, 1987).
V lumen tenkého stfeva se uvadi pH kolem 6,5. To znamena, Ze nekonjugované
kyseliny nejhife disociuji a jsou tedy nejméné rozpustné ve vodé (Hofmann, 1963).
Proces konjugace probiha jak v hepatocytech, tak v cholangiocytech, nicméné
konjugace v hepatocytech vyrazné prevazuje (Hylemon et al., 1990). KliCovym
enzymem je Bile acid-CoA:amino-acid N-acyltransferase (BAAT, EC: 2.3.1.65), ktera
je lokalizovana v peroxisomech i cytosolu. Podle poslednich praci vSak dochazi
ke konjugaci pouze v peroxisomech, kde se konjuguji jak nové vzniklé ZluCove
kyseliny, tak ty pfichazejicich portalni zilou (Styles et al., 2007, Rembacz et al., 2010).
Konjugace probiha ve dvou zakladnich krocich, v prvnim dochazi ke vzniku thioesteru,

ve druhém je pfipojen taurin nebo glycin (Obrazek 5).
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AMP +

Obrazek 5: Pri konjugaci dochazi ke vzniku thioesteru z postranniho retézce Zlu¢ové kyseliny a koenzymu A v
pfitomnosti enzymu BAL (Bile acid CoA ligase, EC 6.2.1.7). V druhé fazi BAAT od$tépi koenzym A a misto néj je

na acylovy zbytek kovalentné pripojen taurin nebo glycin (Kirilenko et al., 2019; Sfakianos et al., 2002).

BAAT na ZluCové kyseliny pfenasi vyhradné taurin nebo glycin, a tak jsou u vysSich
obratlovcl i pres variabilitu aminokyselin syntetizovany vyhradné glyko nebo
taurokonjugaty. In vitro experimenty ukazuji, Ze BAAT upfednostfiuje konjugaci
s taurinem. Tomu odpovida i fakt, ze taurokonjugaty u vétSiny vysSich obratlovct
dominuji (Killenberg & Jordan, 1978). V Zivocidné FiSi existuje vSak nékolik vyjimek,
kde prevazuji glykokonjugaty, mezi né patfi i homo sapiens. U lidi se pomér
glyko : tauro konjugatiim standardné uvadi asi 3:1. Tento pomeér je vSak znacné zavisly
na dostupnosti taurinu, pfi jeho podavani se podil taurokonjugatl dramaticky

zvySuje (Sjovall, 1959). Naopak  vySsi pomér se poji  napfiklad
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s vegetarianskou/veganskou stravou, coz je dano nedostatkem taurinu (Hardison,
1978; Trefflich et al., 2020).

Duvody proc¢ lidska BAAT konjuguje ZluCové kyseliny vyhradné s glycinem nebo
taurinem zkoumal A. Hofmann ve své praci (Huijghebaert & Hofmann, 1986). V té se
zabyvali stabilitou synteticky pfipravenych konjugati s ostatnimi aminokyselinami
a zjistili, ze pakreaticka stava (izolovana od pacientl) $tépi amidovou vazbu se vSemi
aminokyselinami kromé praveé glycinu a taurinu. Nabizi se otazka: ProC? Existuji dvé
hlavni karboxypeptidasy: karboxypeptidasa B, ktera S$tépi peptidovou vazbu
na C-konci bazickych L-a-aminokyselin, a karboxypeptidasa A. Ta Stépi neutraini
L-a-aminokyseliny, nicméné témér nestépi peptidovou vazbu, které se ucastni glycin
(Ambler, 1972). V pfipadé taurinu je pak popisovana nizka afinita karboxypeptidas
k B-aminokyselinam (Snoke & Neurath, 1949). Konjugaty taurinu a glycinu jsou tak
jako jediné zneutralnich a bazickych aminokyselin rezistentni ke Stépeni
pankreatickymi (A) i sérovymi (B) karboxypeptidasami. Konjugace znemoziuje pasivni
difuzi a absence transportérli zplUsobuje, Ze konjugaty glycinu a taurinu se
nevstiebavaji pfilis brzy, konkrétné uz v proximalni ¢asti tenkého stfeva (Huijghebaert

& Hofmann, 1986).

1.5.2 Sulfatace

Sulfatace zluCovych kyselin je katalyzovana skupinou enzymu, které nazyvame
sulfotransferasy (Glatt, 2000), a spocliva v pFfenosu sulfonové skupiny
z 3'fosfoadenosin 5fosfosulfatu (PAPS) na hydroxylovou, amino nebo karboxylovou
skupinu. Pfidanim sulfoskupiny, ktera nese negativni naboj (pKa < 1), se zvySuje

rozpustnost ZluCovych kyselin ve vodé (Glatt, 2000) a zaroven se sniZuje jejich
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vstiebavani ze stfeva. Sulfatované ZluCové kyseliny jsou tak méné toxické a snadnéji

se vylucuji modi i stolici (Alnouti, 2009).

Za fyziologickych podminek je sulfatovanych 40-70 % zluCovych kyselin vylou€enych

moci. Mnozstvi ZluCovych kyselin vylou€enych mocCi je vSak menSi nez 1 pmol

za den. Zastoupeni sulfatovanych ZluCovych kyselin vséru je u zdravych lidi

pravdépodobné velmi variabilni, v literatufe se uvadi hodnoty mezi 5-32 % (Alnouti,

2009). Ve Zluci je jejich zastoupeni zanedbatelné (0 az 4 % ze vSech ZluCovych

kyselin). Intenzita sulfatace se méni s po¢tem hydroxylovych skupin, LCA se vyskytuje

o)

0
HO_ /

S
// \O\\
(0]

Obrazek 6: LCA-S (kyselina 3-sulfolitocholova)

témér vyhradné v sulfatované formé,
naopak CA spiSe vyjimecCné.
Divodem je snaha organismu
eliminovat toxické ZluCové kyseliny
zejména pravé LCA (Obrazek 6).
Vyznam sulfatace vzrista

pfi cholestatickych a hepatobiliarnich

onemocnénich, kdy vyluCovani sulfatovanych Zlu€ovych kyselin moci vzrista

az 100krat a stava se tak jednou z hlavnich cest eliminace zlu€ovych kyselin (Alnouti,

2009; Stiehl et al., 1985).

16



1.5.3 Glukuronidace

Glukuronidace je u lidi jednou z hlavnich cest zvySeni polarity molekul. V pfipadé
ZluCovych kyselin ji u lidi poprvé prokazali Alme
a Sjovall (Alme et al., 1978). Ti u své pacientky

popsali, ze 20 % ZluCovych kyselin vylouéenych

moci je glukuronidovano, pficemz 90 % puvodné
Ho neslo hydroxylovou skupinu na C6 (zcela majoritni

OH

Obrézek 7 - Glukuronidovand HDCA je kyselina hyodeoxycholova) (Alme et al., 1978).
Pozdéji bylo popsano, Ze glukuronidace je hlavni
cestou eliminace exogenné podavané HDCA (Obrazek 7) (Radominska-Pyrek et al.,
1987; Sacquet et al., 1983). Dnes vime, Ze u lidi mize byt glukuronidovana vétSina
ZluCovych kyselin (CA, CDCA, LCA, DCA, HCA a HDCA) (Barbier et al., 2009).
Glukuronidované ZluCové kyseliny tvofi u zdravych jedinci 12-36 % celkovych
Zlu€ovych kyselin vylou€¢enych moci (Alme & Sjovall, 1980). Vyznam glukoronidace
stoupa pfi cholestaze, kdy se stava dualezitou eliminacni cestou a glukuronidované
ZluCové kyseliny tvofi az 2/3 zZlu€ovych kyselin vylou¢enych moci (Perreault et al.,
2013).
Zajimaveé je, ze glukuronidace zlu€ovych kyselin nebyla popsana u jiného Zivocisného

druhu nez u ¢lovéka (Hofmann & Hagey, 2014).

1.5.4 Bakterialni transformace

P¥i prachodu travicim traktem podléhaji Zlu€ové kyseliny fadé chemickych modifikaci,
jako je dekonjugace, dehydroxylace, oxidace, epimerace a rekonjugace. Ke viem

témto modifikacim dochazi Cinnosti bakterialnich enzymu (Pedersen et al., 2022).
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Transformaci ZluCovych kyselin se bakterie brani pfed jejich toxickym pusobenim.
Se zvyS8ujici se koncentraci ZluCovych kyselin dochazi u bakterii k solubilizaci
membran, disociaci integralnich membranovych proteind a unikani obsahu
z bunék (Dunne et al., 2001; Kumar et al., 2006; Ridlon et al., 2016).

Zludové kyseliny bakterie zarover vyuZivaji jako akceptor elektrond vzniklych

fermentaci (Philipp, 2011).
1.5.4.1 Dekonjugace

Dekonjugace je vlibec nejcastéjsi bakterialni transformaci. To ilustruje fakt, Ze Zlu¢ové
kyseliny vylou€ené stolici jsou téméf vyhradné nekonjugované (Ridlon et al., 2006).
Dekonjugace je zprostfedkovana mikrobialnimi hydrolasami Zlu€ovych soli (BSH,
EC 3.5.1.24). BSH jsou Siroce rozSifené u grampozitivnich bakterii, byly popsany
u Clostridii, Enterokoku, Bifidobacterii i Lactobacillti, naproti tomu u gramnegativnich
bakterii se pravdépodobné vyskytuji jen u rodu Bacteroides (Ridlon et al., 2016). Jejich
vnéjSi membrana tvofi pfirozenou ochranu pred pusobenim detergentl, a tak
gramnegativni koliformni bakterie enzymovou ochranu nepotfebuji (Kramer et al.,
1980).

Neni vS8ak zcela jasné, proC bakterie ZluCové kyseliny dekonjuguji. BSH jsou
lokalizovany intracelularné&, k dekonjugaci tedy dochazi uvniti bunék. Zlucové kyseliny
zpusobuiji uvnitf bunék acidifikaci, coz pro bakterie pfedstavuje energetickou zatéz (De
Smet et al., 1995). Nicméné dekonjugované a dehydroxylované Zlucové kyseliny
ve stfevé precipituji, coZ by mohla byt hlavni vyhoda, protoZe tim se ZluCové kyseliny
stavaji pro bakterie neSkodné (De Boever & Verstraete, 1999).

Zaroven se zda, Ze nékteré bakterie dokazou vyuzit odstépené aminokyseliny ke své
potfebé (Huijghebaert & Eyssen, 1982; Van Eldere et al., 1996). Pro nékteré je
dokonce tento zdroj zcela zasadni (Devkota et al., 2012).
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1.5.4.2 Dehydroxylace

DalsSi charakteristickou modifikaci zlu€ovych kyselin zprostfedkovanou bakterialnimi
enzymy je dehydroxylace. Zlugové kyseliny vzniklé &innosti bakterii nazyvame jako
sekundarni, vétSinou jsou v8ak za sekundarni povazovany pouze ty vzniklé
7a-dehydroxylaci. | dehydroxylace vede ke zvySeni hydrofobicity Zlu€ovych kyselin,
coz zpusobuje jejich precipitaci (De Boever & Verstraete, 1999; Ridlon et al., 2016;
Schubert et al., 1983). AC u Clovéka sekundarni ZluCové kyseliny tvofi vétSinu
ZluCovych kyselin ve stolici, byla tato draha popsana jen u asi 0,0001 % vSech

stfevnich bakterii, a to zejména rodu Clostridium (Ridlon et al., 2006).
1.5.4.3 Epimerace

Epimerace hydroxyskupiny zZlu€ovych kyselin je reverzibilni stereochemickou zménou
konfigurace z a na B (Ci vice versa), pfi které dochazi i k tvorbé stabilniho meziproduktu
oxo ZluCové kyseliny. Epimerace vyzaduje soucinnost dvou polohové specifickych,
ale stereochemicky odliSnych hydroxysteroiddehydrogenas (HSD) vnitrodruhového
nebo mezidruhového puvodu (Sutherland & Macdonald, 1982). Tato schopnost byla
popsana napfi¢ vSemi hlavnimi kmeny tedy Firmicutes, Bacteroidetes, Actinobacter,

Proteobacter a také metanogennich archaei (Doden et al., 2021).

1.5.4.4 Dalsi moznosti konjugace

V poslednich letech se ukazuje, Ze Cinnosti stfevniho mikrobiomu mohou vznikat i
konjugaty s jinymi aminokyselinami (Quinn et al., 2020). Jako prvni byly ve vyse
zminéné praci popsany konjugaty s leucinem, tyrosinem a phenylalaninem nalezené
v ileu, duodenu a jejunu mysSi se stfevem kolonizovanym kmenem Blautia producta.
Od té doby byly popsany desitky dalSich konjugat produkovanych desitkami riznych
bakterialnich kmenu (zatim byla konjugace popsana u 27 kmenu) (Lucas et al., 2021).
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Vyzkumy naznadluji, Ze tyto konjugaty by mohly byt ligandy receptord Zlu€ovych
kyselin (Ay et al., 2022). Jejich skutecny vliv na stfevni mikrobiom a lidsky organismus

je v8ak zatim spiSe otazkou.

1.6 Enterohepatalni obéh

Konjugované ZluCové Kkyseliny jsou pienaSeny pies kanalikularni membranu
hepatocytu aktivné transportérem BSEP (Bile Salt Export Pump, TCDB: 3.A.1.201.2).
Na této membrané se sice nachazeji i dalSi transportéry schopné pfenaset ZluCové
kyseliny (MRP2, MDR1 a BCRP), ale pfedpoklada se, Ze fyziologicky nehraji
v transportu ZluCovych kyselin vyznamnou roli. Dokazou vS8ak obstarat transport
v pfipadé BSEP deficience (Akita et al., 2001).

Zludové kyseliny se dostavaji do Zluée a jsou koncentrovany ve Zluéniku. Kontrakci
Zluéniku se pak dostavaji do duodena. V celém tenkém stfevé plsobi jako detergenty,
podporuji solubilizaci, traveni a vstfebavani lipidd a vitamind rozpustnych v tucich.
Vysoké koncentrace Zlu€ovych kyselin nalézame v duodenu, jejunu a proximalnim ileu,
pravé zde totiz dochazi k traveni a absorpci tuku (Ridlon et al., 2006). Az 90 %
ZluCovych kyselin je vstfebano v konjugované formé v distalni ¢asti ilea (Hofmann,
1999). Dale je zapotfebi aktivniho transportu, proto je vstup ZluCovych kyselin
do enterocytl zprostiedkovan transportnim proteinem ASBT (Apical sodium-
dependent bile acid transporter, TCDB: 2.A.28.1.2) (Wong et al., 1994). Tento
transportér prfesouva konjugované ZluCové kyseliny z lumen tenkého stfeva pres
apikalni membranu. Dale jsou ZluCové kyseliny transportovany pfes basolateralni
membranu do portalniho obéhu pomoci transportniho proteinu OSTa a OST (Organic

solute transporter a a 3, TCDB: 2.A.82.1.1) (Dawson et al., 2009).
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Portalnim feCiStétm jsou odvadény jak konjugované ZluCové Kkyseliny, tak
nekonjugované ZluCové kyseliny vstiebané pasivnim transportem z tlustého stfeva.
V8echny ZluCové kyseliny jsou ucinné vychytany hepatocyty. Pfedpoklada se, Ze
vétSina Zlu€ovych kyselin je transportovana prostfednictvim NTCP (Na*-taurocholate
cotransporting polypeptide, TCDB: 2.A.28.1.9). Na basolateralni membrané se
vyskytuje cela fada dalSich transportéri schopnych pfenaset ZluCové kyseliny, patfi
sem napfiklad OATP1A2, OATP1B1, OATP1B3 nebo OATP1C1 (TCDB: 2.A.60.1.14,
2.A.60.1.5, 2.A.60.1.12, 2.A.60.1.15). Jejich vyznam v transportu Zlu€ovych kyselin
v8ak neni zcela znam (Hofmann & Hagey, 2014). Fyziologicky jsou pfednostné
vychytavany konjugaty kyseliny cholové. PoloCas jakékoliv plasmatické zluCove
kyseliny je vSak mensi nez 5 minut (Dawson et al., 2009). Schéma enterohepalniho

obéhu znazorfiuje Obrazek 8.

Cea 5 % JK wlouens
stolici

Obrazek 8: Schéma enterohepatalniho obéhu Zlucovych kyselin. PouZity obrazek (Servier Medical Art, Servier,

licence Creative Commons Attribution 3.0), upraven z (Hylemon et al., 2009)
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1.7 Metody stanoveni zlucovych kyselin

Za vubec prvni popsané stanoveni se povazuje dukaz kyseliny cholové sacharézou
v koncentrované  kyseliné sirové. Reakci popsal vroce 1844 Max
von Pettenkoffer (Pettenkofer, 1844). Zludové kyseliny zde davaji rizové zbarveni,
atak je na poCatku dvacatého stoleti vidét snaha tuto reakci vyuzit a méfit je
kolorimetricky. To v8ak narazi na fadu interferenci v analyzovanych matricich, jako
jsou krev a Zlug (Aldrich, 1928). Zlugové kyseliny jsou pomé&rné heterogenni skupinou,
a tak se velice zahy ukazuje, ze pravé separace z matrice bude minimalné stejné

slozitym ukolem jako jejich stanoveni. To zménil az rozvoj chromatografickych metod.
1.7.1 Chromatografické metody

Prvni, kdo pouzil chromatografii k analyze Zlu€ovych kyselin, byl Jan Sjovall, ktery
separoval 9 nekonjugovanych Zlu€ovych kyselin kapalinovou rozdélovaci
chromatografii na reverzni fazi (Sjovall, 1953). V 60. letech zacala byt Siroce dostupna
chromatografie na tenké vrstvé (TLC) diky komercni vyrobé adsorbentl napf. oxidu
hlinittho nebo kyseliny ortokiemicité. V pfipadé Zlu€ovych kyselin nasla TLC Siroké
uplatnéni jako semikvantitatvni metoda pfi separaci jednotlivych skupin konjugatu
i jednotlivych ZluCovych kyselin (Hofmann, 1961; Hofmann & Hagey, 2014).
Do dnedniho dne byla samoziejmé popsana fada modifikaci. Za zlaty standard se
povazuje separace na silikagelu s mobilni fazi n-hexan/ethyl-acetat/methanol/kyselina
octova v poméru 20:20:5:2 s detekci kyselinou sirovou nebo fosfomolybdenovou
(Pyka, 2008). TLC v8ak pozdéji zacaly vytlacovat jiné chromatografické metody s vysSi
ucinnosti a mens&i naro¢nosti na mnozstvi materialu. | dnes ma vSak tato metoda své

misto zejména pro rychlou orientaci.
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1.7.1.1 Plynova chromatografie

Historicky byla plynova chromatografie bezpochyby nejCastéji vyuzivanou metodou
k analyze profilu ZluCovych kyselin. Tuto metodu popsala uz v roce 1953 skupina
kolem Jana Sjovalla (Griffiths & Sjovall, 2010). Jedna se o metodu extrakce
na aniotovém iontoménici, nasledovanou hydrolytickym Stépenim amidové vazby,
derivatizaci diazomethanem a precisténim. K chromatografii byla pouzita fluor-
silikonova (QF-1) kolona a k detekci plamenovy ioniza¢ni detektor (Sandberg et al.,
1965; Sjovall, 1953).

Plynova chromatografie se k méfeni zluCovych kyselin pouziva dodnes. NejCastéji
ve spojeni s hmotnostnim detektorem, ma v8ak fadu nevyhod. Zludové kyseliny jsou
pro tuto metodu teplotné nestabilni a malo volatilni. Proto je nutné je hydrolyzovat
a derivatizovat, k ¢emuz se nejCastéji pouziva prevedeni karboxylové skupiny
na methylester. Proto je tato metoda zdlouhava a zaroven pfichazime o informace

ohledné konjugace (Zhao et al., 2022).

1.7.1.2 Kapalinova chromatografie

HPLC (high-performance liquid chromatography; vysokoucinna kapalinova
chromatografie) byla vyvinuta v 70. letech a velmi zahy byla pouZita k analyze
ZluCovych kyselin. Nevyhodou byl tehdy pouZivany UV detektor. Konjugované Zlu¢ové
kyseliny Ize sice detekovat pfi 205 nm (absorpéni maximum amidové vazby),
ale nekojugované a sulfatované ZluCové kyseliny takto detekovat nelze. Nevyhodou
jsou i vysoké pozadavky na mnozstvi vzorku (Linnet et al., 1984). Dnes se nejCastéji
pouziva chromatografie na reverzni fazi (Griffiths & Sjovall, 2010). Pro kompletni
analyzu profilu ZluCovych kyselin je v sou€asné dobé jedinou mozZznou metodou spojeni

kapalinové chromatografie standemovym hmotnostnim detektorem (Hofmann &
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Hagey, 2014). LC-MS/MS je pro analyzu zZlu€ovych kyselin relativné citliva, nenaro¢na
na mnozstvi materialu i extrakci, coZz umoznuje méfit ZluCové kyseliny v rdznych
matricich jako je sérum, Zlu€ i jaterni tkan. V tomto usporadani Ize méfit konjugovane,
nekonjugované, sulfatované i glukuronidované ZluCové kyseliny (Yang et al., 2017).
Pro vSechny tyto vyhody, spolu se zvétSujici se dostupnosti pfistrojového vybaveni,

zacCina LC-MS/MS vytlaCovat ostatni metody analyzy ZluCovych kyselin.
1.7.2 Enzymatické stanoveni

Tuto metodu popsal jako prvni Iwata (lwata & Yamasaki, 1964), ktery vyuzil
3a-hydroxysteroiddehydrogenasy (EC 1.1.1.50) izolované z Comamonas testosteroni
(dfive Pseudomonas testosteroni). Tento enzym oxiduje 3a-hydroxyskupinu Zlu€ovych
kyselin a je NAD dependentni, dochazi tedy k redukci na NADH. To je pak méfeno
bud pfimo v UV spektru nebo nasleduji sprazené reakce, pfi kterych vznika barevny
produkt (Obrazek 9) (Griffiths & Sjovall, 2010; Hofmann & Hagey, 2014). Takovym
méfenim ziskavame informaci nejen o celkové koncentraci ZluCovych kyselin
s 3a-hydroxyskupinou, ale i ostatnich 3a-hydroxysteroid. Téch jsou v séru nicméné
za fyziologickych podminek zanedbatelné koncentrace. Nevyhodou je, Ze se
nedozvidame nic o profilu Zlu€ovych kyselin, ale jen o jejich celkové sumé. Zaroven
tato metoda neméri ty, u kterych je 3a hydroxylova skupina modifikovana, napfiklad
sulfataci nebo glukuronidaci.

Byly popsany i modifikace sdalSimi enzymy jako napfiklad se
7a-hydroxysteroiddehydrogenasou, ty se vSak pouzivaji velmi zfidka (Zhao et al.,

2022).
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1+ +NADH

Diaphorasa

NADH + NBT » NAD + Formazan

Obrazek 9: Princip enzymatické analyzy Zlucovych kyselin

1.7.3 Imunochemické metody

Metody, které vyuZzivaji imunochemickych reakci, jsou k analyze ZluCovych kyselin
pouzivany velice zfidka. Popsana byla detekce Zlu€ovych kyselin radioimunoanalyzou,
tu popsal v roce 1973 Simmonds. V té dobé byla hlavni vyhodou metody mozZnost méfit
konjugaty ZluCovych kyselin, k tomu se vSak dnes vyuzivaji jiné metody (Simmonds et
al., 1973).

Druhou metodou je ELISA, ale jeji pouZiti neni obvyklé a k analyze Zlu€ovych kyselin
byla pouZita ve 2 % publikaci z celkového poctu 105 sledovanych (Zhao et al., 2022).
Existuje metoda, ktera v jedné analyze dokaze detekovat 5 ZluCovych kyselin CA,
DCA, CDCA, UDCA, HDCA. Pro svou jednoduchost je nékdy pouzivana v rutinnich
provozech u matric, ve kterych neni vhodné pouZiti enzymatického kitu (De Corso et
al., 2007; Liu et al., 2017; Zhao et al., 2022). Takovou matrici by mohly byt napfiklad
sliny, protoze enzymaticka metoda vysledky ve slinach pravdépodobné podhodnocuje

(De Corso et al., 2007).
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1.7.4 Nuklearni magneticka rezonanc¢ni spektroskopie

Tato metoda se zatim v detekci zluCovych kyselin pfilis neuplatiuje. Jeji vyuziti poprvé
popsal Duarte v roce 2009 k analyze slozek zluci. V tomto usporadani vSak nebylo
mozné rozliSit tauro a glykokonjugaty. To se zménilo az s nastupem 2D nuklearni
magnetické rezonance. Zajimavé by mohlo byt uplatnéni této metody k méfeni
ZluCovych kyselin in vivo (Kunnecke et al., 2007; Prescot et al., 2003). Takto by bylo
mozné nuklearni magnetickou rezonanci pouZzit k detekci sloZeni Zlu¢ovych kamen

nebo distribuci zlu€ovych kyselin ve slozenych micelach (Zhao et al., 2022).
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2. Cile prace

v s

LC-MS/MS se v souCasné dobé jevi jako nejpfesnéjSi a nejspolehlivéjsSi metoda
pro méfeni ZluCovych kyselin. pfiemz se nejCastéji pouziva pro vyzkumné ucely.
Pro svou jednoduchost a rychlost ma ale i své zastoupeni enzymaticka metoda
stanoveni celkovych Zlu€ovych kyselin. Cilem mé prace bylo ovéfit, nakolik je tato
metoda spolehliva pro jednotlivé ZluCové kyseliny. Vzhledem k tomu o jak heterogenni
skupinu se jedna, jsme predpokladali, ze by se uc€innost pfemény 3a-HSD mohla pro
jednotlivé ZluCové kyseliny liSit. To by pak mohlo mit vliv na spolehlivost metody
u vzorku s odliSnym spektrem ¢&i u experimentu, kde zmény ve spektru zZluCovych
kyselin oCekavame. Vysledky jsme popsali v publikaci Enzymatic methods may
underestimate the total serum bile acid concentration.

Kvili pochybam o spolehlivosti enzymatické metody, jsem zavedla metodu stanoveni
Zlu€ovych kyselin na LC-MS/MS. Tuto metodu jsme vyuZili k méfeni zluCovych kyselin
pfi pretizeni potkanl Zelezem. Akumulace Zeleza provazi celou fadu genetickych
onemocnéni, jako jsou hereditarni hemochromatdéza nebo B-talasémie. Vznika ale
i sekundarné napfiklad po opakovanych krevnich transfuzich. U takového pretizeni
bylo popsano, Ze se méni metabolismus cholesterolu. Jaky vlivto ma na metabolismus
ZluCovych kyselin, v8ak dosud popsano nebylo. My jsme to popsali v praci Iron
overload reduces synthesis and elimination of bile acids in rat liver.

Stfevni bakterie modifikuji Zlu¢ové kyseliny mnoha cestami a vytvafi tim i selekCni tlak
mezi sebou. Konkrétné bakterie Eggerthella lenta zmirfiuje toxické ucinky nékterych
ZluCovych kyselin pro ostatni bakterie. Postihnout tyto zmény pomoci LC-MS/MS jsme
se pokusili v praci Eggerthella lenta DSM 2243 alleviates bile acid stress response

in Clostridium ramosum and Anaerostipes caccae by transformation of bile
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acids. Nasi hypotézou bylo, Zze Eggerthella lenta pfeménuje tyto zluCoveé kyseliny na
jejich méné toxické varianty a jejich identifikace byla pfedmétem nasi prace. Zaroven
jsme chtéli ovéfit, zda E. lenta disponuje enzymy schopnymi vytvafet amidovou vazbu
mezi ZluCovymi kyselinami a jinymi aminokyselinami, nez je taurin nebo glycin. Jak se
zminuji v kapitole "DalSi moznosti konjugace”, v roce 2020 bylo popsano, Ze stfevni
bakterie mohou tuto amidovou vazbu tvofit.

Pro metabolismus Zlu€ovych kyselin je samoziejmé kliova i jejich biosyntéza. Jako
marker jeji aktivity se pouziva jeden z meziproduktl této drahy, a to 7-alpha-hydroxy-
4-cholesten-3-on (C4). Pro jeho méfeni na LC-MS/MS je potieba jej nejprve izolovat
ze séra. K tomu se pouziva fada metod. Cilem naS$i prace bylo popsané metody
porovnat. Tedy jak jsou dané metody schopny odstranit proteiny, fosfolipidy, s jakou
ucinnosti izoluji samotny C4, ale i jakou maji ¢asovou naro¢nost. To jsme popsali v
praci Comparison of simple extraction procedures in liquid chromatography-
mass spectrometry based determination of serum 7alpha-hydroxy-4-cholesten-
3-one, a surrogate marker of bile acid synthesis.

Poslednim bodem mé disertaCni prace bylo vyuziti ZluCovych kyselin jako klinického
markeru. Konkrétné oveéfit hypotézu, zda by sérové koncentrace ZluCovych kyselin
nemohly odrazet hodnoty portalniho tlaku u nemocnych s cirh6zou jater. Pfi portalni
hypertenzi dochazi ke vzniku porto-systémovych spojek. Proto nas zajimalo, zda by
pomér krve obchazejici jatra mohl odpovidat vySi portalni hypertenze, s ohledem
k vysokému first-pass efektu ZluCovych kyselin. O tom pojednava prace Serum
concentration of taurochenodeoxycholic acid predicts clinically significant

portal hypertension.
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4. Diskuse

Ke stanoveni ZluCovych kyselin se pouziva fada metod, jednou z nich je enzymaticka
metoda. V literatufe, ktera tuto metodu pouziva, se Casto objevuje tvrzeni, zZe
enzymatickd metoda stanoveni pravdépodobné neni stejné ucinna pro vSechny
ZluCové Kkyseliny. Tedy Ze enzym 3a-hydroxysteroiddehydrogenasa nereaguje
s jednotlivymi zlu€ovymi kyselinami se stejnou rychlosti (lwata & Yamasaki, 1964;
Mashige et al., 1981). Této problematice jsme se vénovali v praci Enzymatic methods
may underestimate the total serum bile acid concentration (Zizalova et al., 2020).
V té jsme popsali, Ze uc€innost tohoto enzymu se opravdu znacné liSi od nejlépe
reagujici kyseliny glykocholové po nejhufe reagujici a-muricholovou, které enzym
pfeméni jen pétinu za stejnou €asovou jednotku oproti GCDCA. NaSe zjisténi jsou
v souladu s dfive publikovanymi daty pro hlavni lidské ZluCové kyseliny CA > CDCA >
DCA > LCA (Engert & Turner, 1973).

Z nasich dat dale vyplyva, Ze u jednotlivych Zlu€ovych kyselin se liS§i zejména rychlost
reakce katalyzovana 3a-hydroxysteroiddehydrogenasou. S prodlouzenim ¢asu reakce
se rozdil mezi GCA a a-MCA zmenSuje, nicméné nikdy se zcela nevyrovna.
Enzymaticka metoda stanoveni Zlu€¢ovych kyselin je hojné vyuzZivanou metodou, jedna
se 0 metodu rychlou, jednoduchou a nenaro¢nou na vybaveni. Ve svétle téchto
odliSnosti je v8ak jasné, Ze se musi liSit vysledky podle toho na jakou Zlu€ovou kyselinu
je kalibrujeme. Tim se zabyvali ve své praci Danese a spolupracovnici (Danese et al.,
2017). Zde méfili stejné vzorky tfemi riGznymi komercénimi kity a LC-MS jako referenéni
metodou. Vysledky se ve vSech tfech pfipadech signifikantné liSi. Vyrobci vSak slozeni
kalibratord nedeklaruji. Problematické mohou byt rovnéz vzorky, u kterych
predpokladame zmeény ve spektru ZluGovych kyselin. Na mozné zkresleni vysledku

v multicentrické klinické studii na pacientkach s intrahepatalni cholestazou téhotnych
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(Hague et al., 2021) poukazuje LeniCek (Lenicek, 2021). Ve studii porovnavali
pacientky po podani UDCA nebo rifampicinu se zdravymi kontrolami. V pfipadé obou
téchto terapii dochazi ke dramatické zméné spektra zluCovych kyselin, a ziskavame
tak pravdépodobné podhodnocené vysledky.

| pfes své nedostatky je v klinické praxi enzymaticka metoda stanoveni ZluCovych
kyselin vétSinou dostacujici. Méli bychom si vSak byt jejich limitd védomi. Zaroveri se
z téchto davodl nezda pfilis vhodnou pro vyzkumné ucely.

Pro naSe dalsi méfeni se vhodnéjsi zdala metoda LC-MS/MS. V pfipadé této analyzy
bylo nutné zvolit vhodnou preanalytickou pfipravu. Kromé jiného jsme potfebovali
otestovat extrakci 7-alpha-hydroxy-4-cholesten-3-onu (C4) ze séra. C4 je jednim
z meziproduktd biosyntézy ZluCovych Kkyselin a pouziva se jako jeji marker
(Freudenberg et al., 2013; Lyutakov et al., 2021). K porovnani jsme vybrali 4 metody
popsané vV literatufe a vysledky sepsali do prace Comparison of simple extraction
procedures in liquid chromatography—mass spectrometry based determination
of serum 7a-hydroxy-4-cholesten-3-one, a surrogate marker of bile acid
synthesis (Lenicek et al., 2016). V publikaci jsme porovnavali schopnost
deproteinace, odsoleni, odstranéni fosfolipidll, pfesnost, opakovatelnost a ¢asovou
naroc¢nost. VSechny 4 metody dosahuji pfijatelnych vysledkl ve vSech téchto
parametrech, variaCni koeficient pod 10 %, opakovatelnost mezi 88 a 97 %,
nepritomnost fosfolipidd a zbytkovy protein maximalné 1 %. Metody se ale liSi
ve schopnosti odsoleni a jsou ruzné €asové naro¢né. Z hlediska odsoleni dosahuje
zdaleka nejlepSich vysledki metoda s pouzitim smési chloroform/methanol.
Nejrychlejsi je metoda vyuzivajici k vysrazeni proteint acetonitril. Pravé tuto metodu
jsme se rozhodli pouzivat i pro extrakci C4 i Zlu¢ovych kyselin pfi méfeni na LC-MS.

To, Ze je na to tato metoda vhodna popisuji ve své praci i Tagliacozzi a spolupracovnici
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(Tagliacozzi et al., 2003). Extrakce acetonitrilem se €asto pouziva ve spojeni s SPE
(solid phase extraction) pfi analyze fady hydrofobnich latek, napfiklad steroid (Wang
et al., 2019) nebo perfluorovanych sloucenin (Yeung et al., 2009). Zafazenim SPE
ziskavame Cist8i vzorek, ale v komplexnéjSich analyzach mizeme o nékteré analyty
prichazet. Zaroven tim samoziejmé prodluzujeme dobu analyzy (Gosetti et al., 2013).
Dle naSich zjisténi ziskavame extrakci acetonitrilem dostatecné Cisty vzorek pro
LC-MS analyzu. A fada publikaci, ve kterych SPE krok vynechavaji, to potvrzuje
(Janzen et al., 2011; Thomas et al., 2010; Yang et al., 2017).

Zludové kyseliny byly dlouha léta povazovany za pouhé detergenty, az s rozvojem
molekularné genetickych metod bylo objeveno, Ze ovliviiuji celou fadu nuklearnich
receptorl. Tim vyznamné ovliviiuji metabolismus, a naopak fada latek ma vliv na jejich
expresi i vyluCovani (Vitek & Haluzik, 2016). My jsme se v publikaci Iron overload
reduces synthesis and elimination of bile acids in rat liver (Prasnicka et al., 2019)
zabyvali zménou v obratu Zlu€ovych kyselin u potkanu pfi nadmérném podavani
zeleza. Jak jsme zjistili, u téchto potkanl dochazi pravdépodobné k redukci biosyntézy
ZluCovych kyselin. Pfedavkovani Zelezem vede v jatrech k signifikantnimu snizeni
koncentraci téméf vSech méfenych ZluCovych kyselin s vyjimkou GCA. V plasmé se
vSak neméni spektrum ani koncentrace méfenych zlucovych kyselin. Nase data tedy
ukazuiji, Ze pfedavkovani zelezem vede u potkan( spiSe k potlaeni syntézy Zlu€ovych
kyselin a zaroven ke zvySeni celkového cholesterolu v krevni plasmé. Tomu odpovidaji
i snizené exprese enzymi CYP7A1i CYP8B1, kliCovych enzymu biosyntézy Zlu€ovych
kyselin. Blokada této drahy vorganismu zplUsobuje vySSi koncentrace
cholesterolu (Heubi et al., 2007). V plasmé téchto potkanu je cholesterol skutec¢né
signifikantné zvySeny. Spoluautofi nicméné zméfili, Ze vysoké davky Zeleza maji vliv

i na expresi celé fady transportéri asociovanych se zlu€ovymi kyselinami. Jejich
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zmény odpovidaji zménam v expresi pfi cholestazach, nejblize pak obstrukeni
cholestaze (s vyjimkou BSEP, ktery se neméni) (Geier et al., 2007).

V takovém pfipadé bychom vSak ocCekavali zvySené koncentrace zluCovych kyselin
v jatrech pfipadné v séru (Arab et al., 2017), naSe zjiSténi jsou vSak zcela opacna.
Stejné tak jako pfi cholestazach dochazi i zde k vyraznému zvysSeni exprese HMG-
CoA reduktasy (asi 2,5x), kliCového enzymu v biosyntéze cholesterolu (Chisholm et
al., 1999; Kattermann & Creutzfeldt, 1970). Pfedavkovani zZelezem i cholestaza maji
jednoho spole¢ného jmenovatele, a tim je oxidacni stres (Copple et al., 2010; Philippe
et al., 2007). To ostatné potvrzuje i nase prace, ve které jsme pozorovali zvySené
koncentrace glutationu i jeho oxidované formy u potkanut s vysokym pfijmem Zeleza.
Hypercholesterolémie je v souvislosti s vysokymi koncentracemi Zeleza casto
zminovana. Vztah téchto dvou molekul je vSak spiSe nejasny. (Herbert, 1994; Sullivan,
1996). Casto je diskutovan v souvislosti s neurodegerativnimi onemocnénimi,
které jsou spojovany s hypercholestrolémii, oxidacnim stresem i vyS$Simi
koncentracemi Zeleza v mozku (Ong & Halliwell, 2004). Souhrnné Ize fict, ze vysoké
davky Zeleza u potkanu zpUsobi blokadu syntézy zluCovych kyselin, coz vede
k narlstu koncentraci cholesterolu. Zda vysoké koncentrace cholesterolu zpUsobuiji
dalSi oxidacni stres Ci oxidacni stres zpUusobeny vysokymi davkami zeleza zvySuje
koncentrace cholesterolu je vSak otazka dalSiho vyzkumu.

Zlugové kyseliny vyrazné ovliviiuji stfevni mikrobiom a naopak jsou jim vyznamné
ovliviiovany (Collins et al., 2022). Jeho soulasti je i Eggerthella lenta, tato anaerobni
grampozitivni bakterie se bézné vyskytuje v travicim traktu ¢lovéka (Eggerth, 1935).
Disponuje celou fadou enzymu modifikujici zlu€¢ové kyseliny (Hirano & Masuda, 1981).
Jak bylo popsano dfive, kokultivace s touto bakterii poskytuje vyhodu i dalSim

bakteriim (Edenharder & Schneider, 1985). Jak naznaduje naSe prace
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Eggerthella lenta DSM 2243 alleviates bile acid stress response in Clostridium
ramosum and Anaerostipes caccae by transformation of bile acids (Pedersen et
al., 2022), E. lenta by mohla ovliviiovat rist dalSich bakterii cestou zmén ve spektru
Zlu€ovych kyselin. Jak bylo zjisténo, stres zplsobeny vysokymi koncentracemi DCA
inhibuje rust 4 bakterii, a sice B. longum, B. producta, C. butyricum and C. ramosum,
nicméné kokultivace s E. lenta tento stres zmiriuje. Reakce bakterii na tento stres se
daji CasteCné predvidat. Jak je uvedeno v kapitole o bakterialni transformaci,
gramnegativni bakterie (jako je E. coli) disponuji mechanismem, ktery je chrani proti
detergentnimu pusobeni Zlu€ovych kyselin (Ridlon et al., 2016). My se blize zaméfili
na 3 bakterialni druhy, a sice E. coli (nizka stresova reakce), A. caccae (stfedni reakce)
a C. ramosum (vysoka mira stresu). Spoluautofi ur€ovali miru stresu pomoci zeta
potencialu, ktery méfi zmény v permeabilité membran (Ferreyra Maillard et al., 2021).
Méfeni ukazalo u C. ramosum znacné zvySenou permeabilitu membran v pfipadé
kultivace v médiu s DCA. Tento efekt vS§ak zcela mizi v pfipadé kokultivace s E. lenta.
Zajimalo nas, jakym mechanismem toho tato bakterie dosahuje. Jednou z moznosti
by mohla byt transformace ZluCovych kyselin na jiné, méné toxické. Méfenim
ketoderivatl Zlu€ovych kyselin a isomerl zluCovych kyselin jsme zjistili, ze
pfi kokultivaci E. lenta a C. ramosum je vice nez polovina DCA transformovana
na 7keto-LCA a DCA isomery. Ketoderivaty ZluCovych kyselin maji vysSi kritickou
micelarni koncentraci nez jejich hydroxylované ¢i dehydroxylované varianty (Sewell et
bakterialni sténou, a tak vysvétlovat benefity kokultivace s E. lenta pro C. ramosum.
Stejna vlastnost a s tim i souvisejici niZSi toxicita byla popsana u isoDCA (Devlin &

Fischbach, 2015).
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Soucasné jsme testovali, kolik z vySe zminénych bakterialnich druhd je schopnych
konjugovat ZluCové kyseliny, a vytvaret tak konjugaty nejen s taurinem nebo glycinem,
ale také s dalSimi aminokyselinami. Jak je uvedeno v kapitole "DalSi moznosti
amidace®, dlouho se myslelo, ze v lidském téle vznikaji jen konjugaty s glycinem
a taurinem (Huijghebaert & Hofmann, 1986). Az s rozvojem citlivéjSich analytickych
metod (a jejich schopnosti méfit konjugaty ZluCovych kyseliny) se Zzjistilo, Zze Cinnosti
stfevniho mikrobiomu vznika cela fada konjugatl s dalSimi aminokyselinami (Lucas et
al., 2021). V nasi praci jsme zjistili, ze vytvaret amidovou vazbu mezi Kkyselinou
cholovou a tyrosinem, phenylalaninem nebo leucinem dokaze v8ech 8 zkoumanych
bakterialnich druht (s vyjimkou TyrCA u C. ramosum a E. coli). V pfipadé DCA je
situace obdobna, jen jsme nenasli méfitelné hodnoty u E. coli, C. butyricum, ani L.
plantarum. V pfipadé kokultivace vSech 8 bakterii s E. lenta jsme pozorovali spiSe
pokles koncentrace téchto konjugatu, nikoliv vSak signifikantni. Koncentrace téchto
konjugatl se pohybuji v rozmezi od 5 do 200 nmol/L, pravdépodobné tedy nemaiji
na snizeni toxicity DCA vyrazny vliv.

V klinické praxi se stanoveni zluCovych Kkyselin u pacientd pfili§ nepouziva,
v doporucenich Ceské I|ékarské spoleCnosti JEP figuruje pouze k diagnostice
intrahepatalni cholestazy téhotnych (CGPS, 2017). Nejinak je tomu i v doporuéenich
Evropské asociace pro studium jater (Archer et al., 2022). Pfitom diagnosticky
potencial ZluCovych kyselin se zdd mnohem vétSi. Jako endogenni molekuly
s vyraznym first-pass efektem jsou silné ovliviiovany stavem jater (Aldini et al., 1982),
navic jejich spektrum odrazi stav stfevniho mikrobiomu (Ramirez-Perez et al., 2017).
Byla publikovana fada praci, které navrhuji, jak je mozné zméfené koncentrace
ZluCovych kyselin vyuzit v diagnostice. ZvySené koncentrace Zlu€ovych Kkyselin

v cirkulaci jsou silné asociovany napfiklad s tézkym poskozenim jater, jejich
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rakovinou (Farhat et al., 2022) Ci cirh6zou (Mannes et al., 1986). Ve studii, na které
aktualné spolupracuiji, zase pozorujeme potencial k odliSeni NAFLD a NASH pomoci
sérovych koncentraci sulfatované GCDCA. Vjiz publikované praci Serum
concentration of taurochenodeoxycholic acid predicts clinically significant
portal hypertension (Zizalova et al., 2023) jsme chtéli ovéfit hypotézu, zda by sérové
koncentrace ZluCovych kyselin nemohly odrazet hodnoty portalniho tlaku pravé
zduvodu first-pass efektu, ktery je pfi portalni hypertenzi naruseny vznikem
portosystémovych spojek (Moller & Bendtsen, 2018). PouZili jsme explorativni kohortu
21 pacientl, u kterych jsme méli k dispozici jak portalni, tak periferni krev. V obou
téchto vzorcich jsme zméfili 23 Zlu€ovych kyselin na LC-MS/MS. Porovnanim portalni
a periferni krve jsme v8ak zjistili, Ze v pfipadé nasich pacientu je vstfebavani zlu¢ovych
kyselin vazné naruSeno a koncentrace v portalni a periferni krvi se témér nelisi (jen asi
0 10 %). Za fyziologickych podminek by rozdil mezi portalni a periferni krvi by mél byt
mezi 70 % a 90 % (LaRusso et al., 1978; Marin et al., 2015). V pfipadé cirhozy se vSak
nase zjisténi shoduji s literaturou (Lindblad et al., 1977).

Na explorativni kohorté jsme zaroven zjistili, ze s hodnotami portalnich tlaka (HVPG)
koreluji sérové koncentrace 2 ZluCovych kyselin, a to GCDCA a TCDCA. Jako
nejspolehlivéjSi se ukazala jejich schopnost predikovat klinicky vyznamnou portalni
hypertenzi. Za tu jsou povazovany hodnoty vyssi nez 10 mm Hg (Garcia-Tsao, 2016).
Pozorovali jsme i dramatickou zménu v poméru CA a CDCA. Zatimco fyziologicky se
tyto dvé zZluCové kyseliny vyskytuji v poméru 3:1 (Carey, 1958), u naSich pacientd
nalézame pomér 1:3. Schopnost GCDCA a TCDCA predikovat klinicky vyznamnou
portalni hypertenzi jsme nasledné ovéfili na validaéni kohorté 214 pacient(. Na té jsme
potvrdili, Ze obé tyto ZluCové kyseliny jsou schopné odlisit portalni tlak nad 10 mm Hg

s vysokou specifitou a senzitivitou. V dalSi fazi jsme ovérovali, zda by se prediktivni
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schopnost téchto Zlu€ovych kyselin nedala zlepSit pfidanim nékterého z marker(
portalni hypertenze popsanych v literatufe. Konkrétné sérovych koncentraci
albuminu (Harjai et al., 1995), kyseliny hyaluronové (Kropf et al., 1991),
bilirubinu (Park et al., 2009), poméru AST/ALT (Heart Protection Study Collaborative,
2002), kreatininu (Garcia-Pagan et al., 2020), osteopontinu (Bruha et al., 2016)
a prumeéru sleziny (méfeného ultrasonograficky) (Gonzalez-Ojeda et al., 2014).
VSechny tyto parametry, s vyjimkou kreatininu, koreluji s portalnim tlakem i u nasi
validacni kohorty. Na zakladé logistické regrese jsme zjistili, Zze nejvyznamnéjSimi
prediktory (z vySe uvedenych) jsou sérové koncentrace TCDCA, AST/ALT a priimér
sleziny. S pomoci téchto dat jsme se definovali vztah:

Primér sleziny [mm] /42 + 2,3 AST/ALT + 0,6 TCDCA = 6.

Hodnoty vy$Si nebo rovno 6 predikuji klinicky vyznamnou portalni hypertenzi s 95 %
senzitivitou a 76 % specificitou (AUROC 0,93 £ 0,04). Teoreticky bychom tak s timto
modelem mohli z odebrané krve diagnostikovat klinicky vyznamnou portalni hypertenzi
namisto pouzivané katetrizace jaternich zil (de Franchis & Baveno, 2015), coz by
odstranilo zdravotni rizika tohoto vySetfeni a umoznilo intenzivné;jsi sledovani pacient(
s moznosti I[épe reagovat na pfipadné zmény zdravotniho stavu.

Intenzivnéjsi vyzkum v oblasti ZluCovych kyselin probiha az od 50. let 20.stoleti. Od té
doby bylo zjisténo, Ze ZluCové kyseliny v organismu neplni jen svou detergentni funkci,
ale vyraznym zpusobem ovliviuji stfevni mikrobiom a cestou transkrip&nich faktor( i
fadu metabolickych pochodu. Zaroven dnes vime, Ze se jedna o pomérné heterogenni
skupinu, zna¢né se liSici svymi vlastnostmi a tim i pisobenim v organismu (Hofmann
& Hagey, 2014). Vyzkum v této oblasti vSak neni zdaleka u konce, a ani to, co uz vime,
jsme jesté nedokazali v klinické praxi naplno vyuzit. Snad by se to mohlo povést

s rozvojem citlivych analytickych metod a jejich zavedenim do rutinni praxe.
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Bile Salt Export Pump
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kyselina glykoursodeoxycholova

kyselina hyocholova

kyselina hyodeoxycholova
High-performance liquid chromatography
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Abstract

Enzymatic assays based on bacterial 3a-hydroxyste roid dehydrogenase are the method of
choice for guantification of total bile acids (BAs) in serum. Although non-specific, itis gener-
ally considered precise and robust. The aim of this study was to investigate how changes in
the BA spectrum might affect the reliability of the method. We measured standard solutions
of twenty-three human and murine BAs using a commercial enzymatic assay and compared
the measured vs. expected concentrations. Additionally, total BA concentrations in rat and
human cholestatic samples with an abnormal BA spectrum were measured using an enzy-
matic assay, and a more specific LC-MS/MS method. We observed a great variability in the
response of individual BAs in the enzymatic assay. Relative signal intensities ranged from
100% in glycocholic acid (reference) to only 20% in a-muricholic acid. The enzymatic assay
markedly underestimated the BA concentrations in both human and rat cholestatic sera
when compared to the LC-MS/MS assay. Our study indicated that the performance of an
enzymatic assay largely depends on the BA spectrum, and the total concentration of BAs
can be markedly underestimated. Samples with an atypical BA spectrum (viz. in rodents)
should preferably be measured by other metheods.

Introduction

For decades, serum concentrations of bile acids (BAs) have been only considered a marginal
marker in clinical chemistry, reserved predominantly for laboratory diagnosis of intrahepatic
cholestasis of pregnancy as well as in several rare inherited cholestatic diseases [1]. With recent
advances in our understanding of their versatile metabolic, regulatory, and signaling functions
{for review see [2, 3]), BA determination has become indispensable in many clinical and exper-
imental settings.

Due to its great simplicity and availability, enzymatic determination of BAs (described by
Iwata ef al. in 1964 [4]) has represented the predominant analytical method up to the present
day. It 15 based on bacterial 3o-hydroxysteroid dehydrogenase (3o-HSD; EC 1.1.1.50) driven
oxidation of the 3e-hydroxyl group; common for virtually all BAs found in the blood serum.
Substantial differences in the physicochemical properties of BAs suggest that individual BAs
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may vary in their reaction rates with 3o-HSD. Although an altered reaction rate may lead to a
variable response, and consequently to an inaccurate quantification, only a few BAs so far have
actually been tested [4, 5].

Therefore, using the standard enzymatic as well as the liquid chromatography-tandem
mass spectrometry (LC-MS/MS) methods, in our current study we analyzed 23 commercially
available 3ct-hydroxy BAs to find out whether there were significant differences, which may
affect the reliability of the enzymatic method of BA determination.

Materials and methods
Chemicals

Standards of cholic add (CA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA),
deoxycholic acid (DCA}, lithocholic acid (LCA), taurodeoxycholic add (TDCA), glycodeoxy-
cholic acid (GDCA), glycolithocholic acid (GLCA), glycoursodeoxycholic acid (GUDCA),
hyocholic acid (HCA), taurocholic acid (TCA), and ursodeoxycholic add (UDCA) were
acquired from Sigma-Aldrich ($t. Louis, MO, USA); the e-muricholic acid (o- MCA), glyco-
chenodeoxycholic acid (GCDCA), allocholic acid (AlloCA), murideoxycholic acid (MDCA),
B-muricholic acid {-MCA), w-muricholic add (w-MCA), tauro-o-muricholic acid (Tee-
MCA), tauro-B-muricholic acid (TR-MCA), taurochenodeoxycholic acid (TCDCA), and taur-
oursodeoxycholic acid (TUDCA) were from Santa Cruz Biotechnology, Inc. (Dallas, TX,
USA); and the hyodeoxycholic add (HDCA ) was from Supelco (Bellefonte, PA, USA). The
deuterium labeled internal standards (d5-TCA, d5-GCA, d4-GCDCA, and d4-TCDCA) were
purchased from Santa Cruz Biotechnology: the d4-CDCA, d4-LCA, d4-CA, d4-UDCA,
d4-DCA together with ammonium acetate and formic acid (both LC-MS prade) as well as fetal
bovine serum were from Sigma- Aldrich; the acetonitrile (LiChrosolv, isocratic grade) was
from Merck, (Darmstadt, Germany); and the methanol (LC-MS grade) was from Biosolve BV
{Valkenswaard, the Netherlands). A bile acids kit (450-A), for enzymatic determination of
total BAs, was purchased from Trinity Biotech (Wicklow, Treland),

Standards and sera

To prepare standards for an enzymatic assay, the fetal bovine serum (serves as a matrix) was
spiked with a methanolic solution of the appropriate BA in order to reach final concentrations
of 20, 50, or 100 pmolfL, and then sonicated for 10 min. The methanol content was abways
kept below 5%, Fetal bovine serum with 5% methanol was used as the blank. Six rat cholestatic
sera (randomly chosen leftovers from our previous experimental in vive study [6]) and six
anonymaous human cholestatic sera (anonymous leftovers of cholestatic sera, that were deliv-
ered to the clinical part of our laboratory for determination of total BAs concentration) served
as samples with abnormal spectra of BAs. All sera were stored at -80° C until analysis.

Enzymatic assays of BAs

In the first reaction, 3cHSD oxidizes BAs, forming equimolar quantity of NADH, In the subse-
quent reaction diaphorase oxidizes NADH to NAD with concomitant reduction of nitro blue
tetrazolium salt to formazan, that is quantified spectrophotometrically, Samples or standards
were processed in triplicates according to the manufacturer’s instructions, and measured
using an Infinite M200 plate reader (Tecan, Mannedorf, Switzerland ) set to 37" C. Briefly, 50 pl
of the sample was mixed with 125 pl of the test reagent and incubated for 5 min at 37°C. The
reaction was terminated by adding 25 pl of Stop reagent and absorbance was read at 530 nm
after 5 min incubation. Blank reaction (lacking 3¢-HSD) was prepared for each sample to
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eliminate possible interferences. The results were either expressed as a concentration (calcu-
lated using the calibrator provided) or as a relative signal (absorbance of sample divided by
absorbance of GCA at a given concentration). When needed, the incubation times were
extended, as described in the Results section.

LC-MS/MS analysis

Upon addition of the deuterated internal standards and acetonitrile deproteination of serum,
BA were quantified using LC-MS/MS as previously described [7]. The total BA concentration
was nbtained by summing up the concentrations of all the analyzed BAs.

Statistical analyses

Differences between total BA concentrations measured by LC-MS/MS vs enzymatically were
tested using Wilcoxon signed-rank test. Reaction rates of individual BAs relative to GCA were
evaluated using Mann-Whitney rank-sum test. Bonferroni correction was applied to counter-
act multiple testing (For clarity, p-values were corrected rather than the alpha value). Differ-
ences were considered statistically significant when the p-values were <0.05. Analyses were
performed using Prism 8.0.1 software (GraphPad, San Diego, USA),

Results

Enzymatic determination of an individual BAs at the same concentration yielded considerably
different responses. The relative signal intensities in major human BAs ranged from 100% in
GCA (reference) to 60% in GCDCA. The differences were even more pronounced in minor
BAs—the signal obtained from o-MCA, the “weakest” of tested BAs, reached just 20% of the
reference (p<0.0023 for all comparisons, Fig 1),

Such marked differences, together with the fact that the enzymatic kit uses GCA as a cali-
brator, prompted us to test how the total BA concentration (determined enzymatically) would
differ from reality in a serum sample with an abnormal spectrum of BAs. Therefore, we ana-
lyzed six cholestatic rat and six cholestatic human sera, both enzymatically as well as using
LC-MS/MS. The enzymatic kit underestimated the total BA concentration by about 45%
(range 18-74%) in humans, and by 60% (range 46-72%) in rats (p = 0.031 for both groups, Fig
2):

Ag the reaction rates for individual BAs can differ [8], we wondered whether the perfor-
mance of the enzymatic method could be improved by prolonged incubation. Therefore, we
incubated o-MCA for various periods of time in order to see if the signal reached the expected
value. Although the signal markedly increased (almost threefold) when incubation was pro-
longed to 90 min (from the 5 min that is recommended by the manufacturer), it only reached
just about half of the expected value (Fig 3).

Increasing the amount of enzyme (5 times) in the reaction mixture also did not improve
the performance (51 Fig).

Discussion

In the present study, we demonstrated the great variability of response during 30-HSD medi-
ated enzymatic determination of individual BAs. For major human BAs, the relative signals
were within the range of 60-100%. The intensity of the signal decreased in the following order:
cholic acid (CA) > deoxycholic acid (DCA) = lithocholic acid (LCA) > chenodeoxycholic
acid (CDCA), which is similar to the results of previous studies |5, 8]. Free BAs tend to react
faster than their glyco- or tauro-conjugated analogues, except for the most strongly reacting
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Fig 1. Relative signal intensities for individual BAs determined by an enzymatic method. Individual BAs were analyzed using an enzymatic
kit, and the obtained signal was expressed asa % ofthe reference (GUA ). Measurements were performed three times at three concentrations (24,
50, and 100 pmol/L)—each bar thus represents the average of nine values, All values differ significantly from reference: p < 0.0023 (original p-
value of < 0.0001 was adjusted for 23 comparisons using Bonferroni correction).
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GCA. Importantly, we identified a group of poorly reacting BAs (mostly muricholic acids
(MCAs) carrying hydroxyl group in position 6[3), whose signal during enzymatic determina-
tion only reaches about 30% of what is expected. Enzymatic determination would therefore
significantly underestimate the total concentration of BAs in samples rich in weakly reacting
BAs (typically rodent sera). In fact, a severe underestimation was demonstrated in rat chole-
static sera, that contained about 40% of the slowest reacting BAs (MCAg, HDCA); while the
fastest reacting GCA represented less than 10% of total BAs in most animals. In human chole-
static samples, the similarly severe underestimation was mostly due to abundant GCDCA or
GUDCA (the later is likely present due to UDCA administration), that belong to intermediate/
slow reactants (52 Fig).

Although it has been described that prolonged incubation may completely compensate for
the slower reaction rate of some BAs [£], we demonstrated that it was not sufficient for poorly
reacting BAs. In the case of u-MCA, extending the incubation period from 5 to 90 min only
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increased the signal intensity from 20 to 50%. Further increase of the reaction time cannot be
recommended, as the final reaction product is not stable, and the signal intensity decreases
after about 60 min (see GCA, Fig 3).

Taken together, although enzymatic assays for measurement of total BA concentration are
quite simple and straightforward, with good analytical performance [9], results depend greatly
on the BA spectrum in the analyzed sample as well as on the composition of the calibrator.
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Fig 3. Prolonged incubation improves underestimation of poorly reacting BAs. Samples containing 50 pmol/L of either o-MCA or GCA were
measured using an enzymatic kit Incubation time varied from 5 min (recommended] up to %0 min. All measurements were done in triplicates,
the dashed line represents the expected concentration.
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Commercially available calibrators typically contain strongly reacting BAs (GCA, CDCA, or
TDCA) [9]. Therefore, the BA concentration in samples with an “atypical” spectrum of BAs
will more-or-less be underestimated. Although such an atypical spectrum is mainly found in
rodents, under pathological conditions (cholestasis [10, 11], exogenous BAs supplementation,
small intestinal bacterial overgrowth [12], etc.) can be expected even in humans.

In conclusion, the performance of enzymatic assays for total BA determination in human
serum seems to be appropriate for routine clinical use, where semiquantitative determination
is generally sufficient. If the precise concentration is essential (mostly for research purposes),
the results should be interpreted with care. In the rodent samples, enzymatic assays are far

from reliable, and should be replaced by more predse analytical methods.

Supporting information

§1 Fig. Increased amount of enzyme partially improves underestimation of poorly reacting
BAs. Samples containing 50 pmol/L of either o-MCA or GCA were measured using an enzy-
matic kit. Incubation time varied from 5 min (recommended) up to 90 min. The amount of
enzyme was 5 times higher than recommended. All measurements were done in triplicates; the
dashed line represents the expected concentration.

(TTF)

52 Fig. BA spectra in cholestatic samples. Serum BA spectra (measured by LC-MS/MS) of
the six cholestatic rats {a) and human patients (b) are provided. BA are grouped according to
their reactivity with 3u-hydroxysteroid dehydrogenase. TLCA-S (taurolithocholic acid 3-sul-
fate) is presented as weakly reacting BA, although it does not react at all (due to the absence of
3u-hydroxy group). BA present in <2% are induded in “other”,

(JPG)

51 Table. Basic characteristics of LC-MS/MS method.
(XLSX)
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OFEN lron overload reduces synthesis and
elimination of bile acids in rat liver
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Aroepted:-20 fme 2019 Excessive iron accumulation in the liver, which accompanies certain genetic or metabolic diseases,
Published online: 03 July 2019 impairs bile acids (BA) synthesis, but the influence of iron on the complex process of BA homeostasis
is unknown. Thus, we evaluated the effect of iron overload (10) on BA turnover in rats. Compared with
control rats, 10 (8 intraperitoneal doses of 100 mg/kg every other day) significantly decreased bile
. flow as a consequence of decreased biliary BA secretion. This decrease was associated with reduced
' expression of Cyp7al, the rate limiting enzyme in the conversion of chelesterol to BA, and decreased
 expression of Bsep, the transporter responsible for BA efflux into bile. However, 10 did not change
net BA content in faecesin response toincreased intestinal conversion of BA into hyodeoxychaolic
acid. In addition, 10 increased plasma cheolesterol concentrations, which corresponded with reduced
Cyp7al expression and increased expression of Hmgcr, the rate-limiting enzyme in de novo cholesterol
synthesis. In summary, this study describes the mechanisms impairing synthesis, biliary secretion
. and intestinal processing of BA during 10. Altered elimination pathways for BA and cholesterol may
" interfere with the pathophysiology of liver damage accompanying liver diseases with excessive iron
. deposition.

Bile production is an essential function of the liver and serves as an irreplaceable excretory pathway for elimina-

o tion of lipophilic endo- and xenobiotics such as cholesterol, BA, bilirubin or drugs’. Moreover, as major compo-
nents of bile, BA are required for micelle formation, intestinal fat digestion, regulation of bacterial growth, and
immune response and production of regulatory mediators released to portal circulation such as fibroblast growth
factor 19 or glucagon-like peptide 1. In addition, BA as the major metabolites of cholesterol, act as hormones

© by agonism at several receptors such as farmesoid X receptor (FXR), the G protein-coupled bile acid receptor 1
(TGRS}, sphingosineg-1-phosphate receptor 2, of pregnane X receptor (PXR), and regulate numerous liver fune-
tions including glucose and triglyceride metabolism®. Stimulation of these receptors demonstrates promising
positive effects in liver diseases such as nonalcoholic steatohepatitis (NASH) or intrahepatic cholestasis®. On
the other hand, BA accumulated during different forms of cholestasis may have a direct toxic effect on liver cells

- and tissues, Regulation of bile production and BA homeostasis are therefore key events in liver physiology and

- pathophysiology.

: Iron is an essential trace element, in particular required to form haem for synthesis of haemoglobin, myoglo-
binor P450 enzymes. As a highly reactive molecule, iron is also involved in the cellular redox balance and gen-
eration of hydroxyl radicals which are necessary for regulation of several intracellular events including response
to stressors or mitochondrial dysfunction®. Excessive concentration of iron in cells induces oxidative stress with
peroxidative decomposition of polyunsaturated fatty acids in membrane phospholipids, thereby altering vital

- organelle integrity and cell function®®. The metabolism of iron is therefore tightly regulated to prevent tissue
darnage. However, 10 can occur in subjects with genetic disorders such as hereditary haemochromatosis and beta
thalassaemia, or secondary to [0 during blood transfusion and haemolysis™, Iron toxicity occurs especially in
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theliver, where the iron is mainly stored, leading to ongoing damape and finally to cirrhosis. Moreover, increased
liver iron stores accompany common metabolic pathologies such as insulin resistance, type 2 diabetes mellitus,
metabolic syndrome, and nonalcoholic fatty liver disease (NAFLDY. It is of note, that these metabolic disorders
produce marked changes in BA metabolism and could be treated by agonists of FXR receptor, which is the most
important BA sensor'®. However, the relationship between 10 and BA liver homeostatic pathways has not been
studied in depth.

Indeed, plasma concentrations of BA during I0 have not been yet measured and only limited evidence sug-
gests that biliary BA excretion may be reduced by dietary 107, This observation may be related to 10-mediated
reduction in the expression of cholesterol 7oo-hydroxylase (CypTal), the rate limiting enzyme for conversion of
cholesterol to BA inrats™ 5 although no association between liver iron concentration and Cyp7al was seen in
this model of 10°%, Reduction in Cyp7al may also explain increased serum cholesterol levelsin iron-administered
rats® 7, However, the effect of liver iron accumuolation on other BA synthetic pathways and on biliary and fae-
cal BA excretion is not known. Therefore, we postulated the hypothesis that iron accumulation in an organism
markedly reduces elimination of BA.

In the present study we evaluated the effect of IO on the mechanisms responsible for BA homeostasis in rat
liver and fleum. We showed that increased iron deposition in ratliver results in decreased bile formation due to
reduced biliary BA secretion through downregulated Bsep and Mrp2 apical transporters. Plasma concentrations
of BA were not significantly affected by IO because reduced biliary BA secretion was accompanied by reduced
liver BA synthesis, intestinal BA processing, and increased basolateral cutput from hepatocytes and reduced
uptake to hepatocytes.

Results

10 causes massive iron deposition in ratlivers. To establish 10 with significant iron liver accumulation
in parenchymal and nonparenchymal cells, we used a validated rat model based on intraperitoneal (Lp.} admin-
istration of 8 doses [ 100mg'ke per dose} ofiron dextran-heptonic acid complex applied every other day*®, This
regimen resulted in massive iron liver deposition without significant hallmarks of hepatocellular or cholestatic
injury as apparent from histological examimtion of haematoxylin-eosin (HE) and Prussian blue iron (PB) stain-
ing of liver sections (Fig. 1A). Massive iron deposition was apparent, especially in periportal zones of the liver
acinus when compared with regions around the central vein as visualized by opalescent structures in HE staining
and blue deposits in PB staining. This corresponds with previously reported data®*. No apparent staining was
presentin the saline-administered animals, Liver weights were not changed by 10 and were 13.5 205 g inthe
saline-treated rats, and 142 £0.5 gin the 10 rats. 10 with excessive Liver accumulation was further confirmed by
increased plasma concentrations of iron and ferritin (Fig. 1C) and by increased liver mBNA expression of key
iron metabolism associated genes such as hepeidin (Hanip ), ferritin (Fil), ferroportin (Slcd0al) and down regu-
lation of transferrin receptor 1 (Trfe) (Fig. 1BL. We also detected significantly reduced levels of iron-responsive
element-binding protein 1 and iron-responsive element-binding protein 2 (IRP1 and IRP2) proteins (Fig. 1D}, a
markers of iron excess in the liver™, IRP1 and 1RP2 were recently demonstrated as a positive regulator of CypZal
transcription'’. These results demonstrated typical histological, biochemical and molecular hallmarks of signifi-
cant iron deposition in the liver of treated animals.

10 causes mild liver injury and oxidative stress. Excessive iron deposition in the liver can induce oxida-
tive liver injury®. To determine liver injury in our 10 model, we analysed the plasma and livers for corresponding
biomarkers. The harmful effect of 10 on liver functions was demonstrated by a mild but significant increase in
aspartate transaminase (AST) activity, and plasma cholesterol and bilinubin concentrations (Fig. 2A ). Induction
of oxidative stress in the liver of 10 rats was confirmed by the increased presence of glutathione in its oxidized
(G550} form (Fig. 2B}, reduced GSH/GSSG ratio (Fig. 2B) and by increased protein expression of stress-response
molecules, haem oxygenase | (Hmox1)and phosphorylated NF-« B p65 subunit (Fig. 2C). These changes did not
trigger acute inflammatory response in the liver, as suggested by the absence of inflammatory cell accumulation
in histology sections (Fig. 1A) and unchanged gene expression of tumour necrosis factor (Tnfo) and interlen-
kin & (116} (Fig. 2D} On the other hand, deposited iron activated Tgf1 production accompanied by increased
expression of Acta2 (encoding o-SMA protein) (Fig. 2D), a marker of activated hepatic stellate cells, which was
alsorecently demonstrated?”.

Bile flow is reduced by 1 in response to reduced biliary secretion of BA.  Reduced biliary secretion
of total BA during 1O was reported previously in a single study™. To elaborate this finding, we performed a bile
collection study with analysis of BA spectra and other major components of bile including BA-independent flow
based mainly on biliary secretion of glutathione. 10 caused significant reduction of net bile flow in rats (Fig. 3A),
accompanied by decreased biliary secretion of BA. Individual BA were proportionally reduced in the presence of
10y (Fig. 3B). Changes in biliary secretion of individual bile acids presents Supplementary Table 3. Biliary secre-
tion of glutathione, cholesterol and phospholipids did not significantly differ between the control and IO rats
(Fig. 3C). Similarly, concentrations of BA and their spectra in plasma and the concentration of cholesterol in liver
were not changed by iron administration (Fig. 3D.E, Supplementary Table 3). Our data indicate that the reduction
of bile production by 10 reflected reduced biliary secretion of BA.

Impact of 10 on liver expression of molecules responsible for BA and cholesterol turnover. In
order to reveal the mechanisms responsible for changes in BA biliary kinetics, we analysed liver expression of
transporting proteins and enzymes with crocial functions in cholesterol and BA uptake, secretion, and metabo-
lism. Evaluating key penes in BA and cholesterol synthesis, 10 significantly reduced mRNA expression of Cypral
and significantly increased gene expression of 3-hydroxy-3 -methyl-glutaryl-coenzyme A reductase (Hmger)
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Figure 1. Excessive concentration of iron in 10 rats administrated i.p. with 8 doses of gleptoferron every 2™
day. (A} Representative liver histology, stained with haematoxylin-eosin staining (HE} and Prussian blue.
Acrrows indicate periportal areas at the periphery of classical liver lobule; VC - vena centralis. Scale bar 100 pm.
(B} mBNA liver expression of hepcidin (Hamyp), ferritin (Ftl), ferroportin (Sled0al) and transferrin receptor
(Trfe) determined by real-time RT-PCR. (C) Concentration of iron and ferritin in plasma. (D) Liver protein
content of IRP1 and IRP2 (fron-responsive element-binding protein 1 and 2} normalized to J-actin. Values are
mean + 50 (n=46 in each group). * = 0.05, **p < 0.01, " **p < 0.001 iron-treated vs. saline-treated rats.

(Fig. €A} Of all apical and basolateral transporters, 10 significantly increased mRNA expression of Abchla/1h,
Abecd and Abcbd, respectively (Fig. 4B). These transcriptional changes were followed by proportional changes in
encoded proteins. We detected downregulation of Cyp7al (Fig. 4Chand up-regulation of Hmger, the rate-limiting
enzyme for cholesterol synthesis (Fig. 4C), Mdrl (Fig. 4D), the major apical transporter for biliary excretion
lipophilic drugs, and Mrp3/Mrp4 (Fig. 410}, the basolateral e flux transporters for conjugated anionic compounds
such as bilirubin glucuronides and BA. However, 10 also down-regulated liver protein levels of Cyp8Dl enzyme
for BA synthesis (Fig. 4C), Nicp, an essential protein for uptake of BA from portal blood to hepatocytes (Fig. 4D
Increased expressions of Abcg8, an apical efflux transporter for cholesterol from liver to canaliculus, was not
followed by a corresponding change in Abcp5, which may imply that the function of this heterodimer was not
increased as also suggested by unchanged cholesterol biliary secretion (Fig. 3C). Previous studies described that
Bsep, the rate limiting transporter for biliary BA secretion, and Mrp2, the rate-limiting transporter for anionic
compounds including conjugates of BA and bilirubin, may be regulated post-transcriptionally by increased
retrieval and degradation from the canalicular membrane®™. Therefore, we performed immunohistochemical
analysis in order to evaluate localization and expression of both proteins. Immunochistochemical staining in the
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Figure 2. 10 induced mild liver injury by activation of oxidative stress. (A} Activity and concentrations of
ALT, AST, bilirubin, cholesterol in plasma. (B} Content of reduced and oxidized glutathione (GS5G) and GSH/
G556 ratio, determined by HPLC measurement. (C) Liver protein content of haem oxygenase (Hmox1)and
phosphorylated NF-«B (p65) normalized to average of 3 -actin and Gapdh. (D) mBNA liver expressions of
proinflammatory markers TNFa, [I-6, Tgf31 and Acta2 (encoding o-SMA protein) determined by real -time
RT-PCR. Values are mean £ 5D (n=6ineach group). "p < 0.05, " p=< 001, *** p= 0001 iron-treated vs.

saline-treated rats,

liver showed strong Mrp2 expression in the canalicular membrane of hepatocytes in the control rats (Fig. SA)
as described in our previous paper™. On the contrary, Mrp2 expression was reduced in the 10 rats (Fig. 5A)
Similarly, Bsep expression was also detected in the canalicular membrane of hepatocytes in the control animals
(Fig. 5A). However, Bsep staining was substantially weaker in the 10 rats (Fig. 5A). Gene expressions of both
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Figure 3. Bile flow was reduced in rats by 10 in response to reduced biliary secretion of BA. (A} Rat bile duct
was cannulated and bile was collected for 120 min. Then the bile flow was cal culated from amount of collected
bile toliver weight. (B,D) The concentrations of total and individual BAs in bile and plasma were measured
by LC-MS analysis. (C,E} Biliary secretions of phospholipids, glutathione, cholesterol and hepatic content

of cholesterol were determined by available commercial kits. Values are mean £ SD (n =6 in each group).

*p < 0.05, **p < 0,01, ***p < 0.001 iron-treated vs, saline-treated rats.

proteins were not changed by 10 (Fig. 5B}, while western blotanalysis confirmed downregulation of both, Bsep
and Mrp2 at protein levels (Fig. 5C). These data indicate significant posttranscriptional down-regulation of Bsep
and Mrp2 by 10

10 changes intestinal BA turnover.  More than 90% of BA is reabsorbed from the ileum into portal blood,
and subsequently reused by hepatocytes for secretion into the bile, In order to study intestinal turnover of BA,
we analysed BA loss through faeces. BA were present in stool only in unconjugated form. In contrast to biliary
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Figure 4. Impactof 10 on liver mRNA and protein expression responsible for BA and cholesterol turnover,
Isolated mRNAs (AB), and proteins (CD) from liver tissue were used to determine the expression of
transporters and enzymes responsible for cholesterol and BAs homeostasis. The expression of these genes was
amalysed by a real-time RT-PCR system and proteins by western blot immunodetection. Values are mean + 51
(n =6 ineach group). *p <2 0.05, **p<0.01, ***p < 0.001 iron-treated vs. saline-treated rats,

secretion, the net faecal excretion of BA was highly variable between individuals; therefore, the tendency for
decreased net faecal excretion of BA in the 10 rats failed to reach statistical significance (Fig. 64, Supplementary
Table 3). This suggests that potential hepatic retention of BA in response to reduced biliary secretion of BA was
compensated for by their reduced ileum reabsorption. Western blot analysis did not confirm significant changes
in protein expression of Asbt, and Ost o3, the major transporters for BA reabsorption at apical and basolateral
membranes of ileum enterocytes, respectively (Fig. 8B ). We therefore focused on faecal content of individual BA.
Liguid chromatography- mass spectrometry (LC-MS) analysis revealed that faecal BA loss was reduced for the
majority of BA in the 10 rats, with the exception of hyodeoxycholic acid (HDCA) (Fig. 6A). HDCA was present
in significant amounts in four out of six 10 rats, and produced such variability in net stool BA content, HDOC A was
absent in the faeces ofall saline-administered rats. Interestingly, concentrations of HDOA in plasma from portal
bloods were 12,4 £7.5pMin controland 13.5£ 5.3 pM in 10 groups, respectively, and they were not stalistically
different (P=0.77}. This indicates that metabolic conversion of BA by gut microbiota may modify reduced biliary
secretion of BA in 10 rats.
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Figure 5. 10 reduced posttranscriptionally the expression of Mrp2 and Bsep transporting proteins, (A)
Immunochistochemical staining was used to detect Mrp2 and Bsep expression (red, whitearrows) in the liver of
saline and 10 treated rats. Bepresentative images of random fields are shown. Nuclei staining in blue (DAPL).
Scale bar 10 pm. Isolated mBNA (B} and proteins (C) from liver tissue were used for evaluation of gene
expression and protein levels. The expression of these genes was analysed by real-time RT-PCR system and
proteins by western blot immunodetection. Values are mean + 8D (n =6 ineach gronp). *p < 0,05, **p < 0.01,
“o o < 0,001 iron-treated vs. saline-treated rats,
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Figure 6. Iron overload changed intestinal BA turnover. (A} The BA were isolated from dried stool after 24
collection. The concentrations of total and individual BA in bile and plasma were measured by LC-MS analysis.
(B} Protein expression of major transporters for BA reabsorption in llewm was determined by western blot
analysis and calculated to average of }-actin and Gapdh. Values are mean =+ SD (n =6 in each group). *p < 0.05,
e 001, ** p 0001 iron-treated vs. saline-reated rats.

Discussion

Alteration of cholesterol homeostasis by IO was reported by several studies, but the collected results indicate dis-
crepancies between different models. While humans and mice™ with genetically determined 10 such as thalassae-
mia or hereditary haemochromatosis develop mostly reduced cholesterol plasma concentrations, rodent models
based on iron administration wsually develop increased plasma® or hepatic cholesterol ™ levels. Animal models
based on excessive iron administration therefore better reflect hepatic iron deposition during dysmetabolic 10
syndrome, the clinical syndrome detected in about one-third of patients with NAFLD or the metabolic syndrome,
and characterized by fron liver deposition and elevated plasma cholesterol =

Research on molecular mechanisms explaining hypercholesterolaemia accom panying increased liver fron
content has not yielded consistent results. Brunet ¢t al.” demonstrated reduced hepatic activities of both Hmger
and Cyp7al in dietary iron loaded rats in association with increased plasma and unchanged liver cholesterol
levels, and reduced biliary excretion of BA and cholesterol. Reduced gene expression of CypZal together with
increased plasma cholesterol concentrations werealso detected in Hie ' DBA/2 mice but not in Hfe™ ' C57BL/6
mice ', In another study, dietary 10 mice showed positive correlation between hepatic iron content and both
mENA expression of Hmger and hepatic cholesterol content, while no relationship was seen with Cyp7al or with
plasma cholesterol concentration®. Indeed, the results of this study demonstrate important new information that
excessive 10 may even lead to a harmiful combination of Cyp7al downregulation coupled with marked induction
of Hmger. We speculate that discrepancies reported by available studies regarding 10-induced changes in both
HMG-CoaA reductase and Cyp7al are related to underlying pathology and different degree and localization of
iron liver accumulation

Liver Hmger is regulated by SREBP-2 transcription factor in response to reduced tissue cholesterol content™.
Thus, unchanged liver cholesterol concentrations in our 10 rats suggest another factor activating SREBP-2.
Indeed, recently it has been described that SREBP-2 may be induced by reactive oxygen species (ROS). ROS
production typically occurs during 10°, Beduced liver GSH/GSSG ratio and induced Hmox 1 expression and
NE- B p65 phosphorylation confirmed marked oxidative stress in the 10 rats. We therefore suggest that induc-
tion of liver ROS-SREBP-2 pathway is responsible for Hmger induction in IO rats, The absence of cholesterol
accumulation in the liver together with its unchanged biliary excretion suggests that increased plasma cholesterol
concentrations are related to its increased output from theliver to the bloodstream in response to increased syn-
thesis by induced Hmger, and reduced metabolism to BA due to reduced Cyp7al. The finding of induced Hmger
also indicates potential therapeutic strategy by stating, the Hmger-blocking drugs which indeed showed beneficial
effects in NASH, a syndrome associated with increased incidence of liver iron deposition®.

The reduction of Cyp7a ] gene expression in 10 rats together with its recently detected induction during iron
depletion™ suggests that iron regulates Cyp7al expression by a transcriptional mechanism. Our recent study
excluded involvement of major pathways regulating Cypfal transcription such as nuclear receptors (e.g. FXR
or PXR} or Egfl15-pERK/pINK signalling in iron depletion- mediated induction of Cyp7al®. On the other hand,
Liang et al."" recently discovered that modulation of Cyp7al mRNA by iron is executed by iron-regulating
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proteins IRP1and IRP2 in mice. In general, when cells are iron-deficient, IRPs bind to iron-responsive elements
(IREs) in untranslated regions (UTRs) of target mRNAs such as divalent metal transporter 1 and transferrin
receptor 1, and increase their expression by stabilizing the mRNAs, while IRPs binding to UTRs of ferritin or
ferroportin | blocks the translation of these m BNAs. When iron is in excess, IRP1 acquires a 4Fe 48 cluster and
creates an aconitase, while IRP2 undergoes degradation so their binding to UTHRs generally declines'' % Liang
et al.'t demonstrated that CypFal has a non-canonical IRE structure inits 3-UTR that can efficiently bind both
IRP1 and IRP2 and increase transcription of this enzyme. Increased liver iron content reduces IRPY and IRP2
and consequently reduces CypT7al expression, while desferrioxamine, an iron chelator, has an inducing effect.
Impairment of the IRE structure in the UTR of Cyp7al gene abolishes the modulating effect of iron. In the pres-
ent study, reduced IRP2 expression and variable changes in liver FXR-SHP and FGF15-p]NK/pERK axes (data
not shown) in IO rats imply iron-IRPs-Cyp7al regulation as a major mechanism of Cyp7al downregulation in
10 rats.

Transporting proteins mediating he patocyte uptake and biliary secretion of BA and bilirubin have not been
previously studied in 10 animals despite the evidence of reduced biliary BA secretion®. We demonstrate for the
first time posttranscriptional down-regulation of Ntcp, Bsep and Mrp2 transporters for BA which resembles
increased retrieval and degradation of these proteins during liver inflam mation®™ % Data from im munohisto-
chemistry indeed confirmed significantly reduced intensity and canalicular localization of both Bsep and Mrp2 in
10 livers when compared with control rats, This pattern of regulation may correspond with significant oxidative
stress induced by 1O, In support, we detected upregulation of Mdrl, which is induced in the liver by binding of
phosphorylated NF-<B to Mdr] promotor’, These changes may, together with reduced BA synthesis, contribute
to reduced biliary BA secretion in 10 rats, and may modify biliary excretion of numerous compounds including
drugs. Furthermore, reduced uptake of BA through reduced Ntcp, and their increased output to bloed through
induced Mrp4 may contribute to unchanged BA plasma concentrations and prevent intracellular BA accumula-
tion due to impaired BA biliary excretion, Downregulation of apical Mrp2, and upregulation of basolateral Mrp3
transporters for bilirubin conjugates together with induced Hmox- 1 may explain increased bilirubin plasma con-
centration in 10 rats dueto its increased synthesis and reversed transport to blood.

The impact of 10 on faecal excretion of BA has been unknown to date. Despite reduced biliary BA secretion
in the 10 rats, the pet BA output by stool remained statistically unaffected. Abst, and Osts, the major transporters
for BA reuptake from the intestine, were not significantly changed by 10, In contrast, analysis of BA spectra in
stool displayed marked but inter-individually variable intestinal conversion of BA into HDCA in the 1O rats, A
previous study showed inefficient absorption of HDCA from the intestinal tract in Wistar rats and proposed
that HDCA formation might be an important mechanism for controlling the body cholesterol pools™ 1n our
study, statistically unchanged concentrations of HDCA in the portal blood confirms limited capacity for HDCA
intestinal reabsorption, which subsequently results in marked increase of HDOA in the stool of some [0 animals,
Therefore, we suggest that the marked but variable metabolism of BA into HDCA by intestinal bacteria®™ of the
IO rats was the reason for statistically unchanged net stool BA excretion in comparison with saline-administered
animals. Potential changes in gut microbiome composition caused by 10 must be further studied. Moreover, we
have detected for the fiest time 2 reduction of liver CypBb1, the crucial enzyme for neutral pathway of BA synthe-
sis, in 10 rats, and analysed BA spectra in these animals. Combined downregulation of Cyp8b 1 and CypTal was
associated with significantly reduced content of faecal DCA, the major representative of neutral pathway of BA
synthesis, in 10 rats. Moreover, we have detected formation of HDCA, the metabolite of muricholic acid, a typical
product of the acidic pathway of BA synthesis.

In conclusion, our data showed that 10 results in a complex effect on BA homeostasis combining reduced
liver BA synthesis, biliary secretion and reabsorption in the intestine, with reduced uptake to hepatocytes and
increased output from hepatocytes to the bloodstream. Complex changes in transporting proteins indicate pos-
sibly dysfunctional elimination of numerous substrates including drugs. We propose that these abnormalities
developed in response to oxidative stress, and IRP2 repression produced by excessive liver iron deposition. 10
markedly influenced faecal excretion of BA, and our data emphasize the necessity for simultaneous evaluation of
biliary BA excretion together with their intestinal processing by transporters and the gut microbiome. The inter-
action between iron and intestinal bacterial colonization requires further study. Finally, we further elaborate the
mechanisms responsible for increased plasma cholesterol and bilirubin concentrations accompanying 10, which
may serveas a potential therapeutic target.

Methods

Animals. Male Wistar rats (200-250 g} obtained from Velaz (Prague) were used for the experimentation.
The rats were fed a standard diet under controlled environmental conditions: 12-h light-dark cycle; temperature
22 +1°C with free access to food and water. The rats were randomly divided into two groups (n= 6). The control
group (saline ) was administrated Lp. with physiological saline (1 ml'kg) and the 10 group was adm inistrated
Lp. with B doses of gleptoferron (iron-dextran heptonic acid complex, 100mg'kg) every other day as described
previously™, Excessive iron accumulation in this model induces a marked increase in hepeldin production, thus
significant suppression of ferroportin 1-mediated iron intestinal absorption can be expected™. Administration
of the 7* dose was followed by placement of the rats into metabolic cages where the stool was collected for 24 h.
Collected stools were dried for 72h at room temperature and BA were isolated as described previously™ with
slight modifications. One day after the final i.p. dose, the animals were fasted overnight and the next day they
were anaesthetized with sodium pentobarbital (50mg/'kg, Lp.). The common bile duct (for bile collection} and
carotid artery (for plasma collection) were cannulated. The bile was collected in pre-weighted tubes for 120 min
and a blood sample was taken in the middle of this period. Thereafter, samples from portal vein were taken and
the animals were sacrificed by exsanguination through carotid artery, and the livers and ilea were harvested
and weighed. Tissue samples, plasma, bile, and extracted stool were snap frozen in liguid nitrogen and stored at
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—80°C for future analysis. All animals received humane care in accordance with the guidelines set by the insti-
tutional Animal Use and Care Committes of Charles University, Faculty of Medicine in Hradec Kralove, Czech
Republic. The protocol of the experiment was approved by the same committee (No, 18293/2016-2).

Analytical methods. Plasma AST/ALT activities and concentrations of iron, ferritin, cholesterol and bil-
irubin were measured by routine laboratory methods on a Cobas Integra 800 (Roche Diagnostics, Mannheim,
Germany). Biliary concentrations of phospholipids were determined by Phosphatidylcholine Assay kit
{Sigma-Aldrich, St.Louis, USA). Concentrations of reduced (GSH) and oxidized (GS50) glutathione were ana-
lysed separately using the validated HPLC method with fluorescence detection as described previously™. The
liver concentration of cholesterol was assayed by the commercial Cholesterol Assay Kit (Cayman Chemical,
Michigan, USA} and the concentration of cholesterol in bile was measured by the commercial kit Cholesterol
(Erba Lachema, Brno, Czech Republic). BA concentrations in plasma, bile and stool were measured using the
LC-MS method described previeusly™.

Quantitative real time RT-PCR. Gene expression analysis by mRNA guantification was performed
by reverse transcription -polymerase chain reaction (QRT-PCR} on a 7500 HT Fast Real-Time PCR System
{Applied Biosystems, Foster City, USA) as previously detailed™. The primers used for analysis are specified in
Supplementary Table $1. Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) gene was used as a reference for
normalizing the data (Applied Biosystems, Foster City, USA).

Western blot. The procedure was performed as reported previously®®. Briefly, liver lysates were prepared by
homogenization inan ice-cold buffer (25 mM TRIS.HCL pH =76, 0.1% wiw TRITON -X), containing 0.5 pg/ml
benzamidine, aprotinine, leptineand 10pl/ml phosphate inhibitors (Thermo Scientific Prague, Czech Republic),
and supernatant prepared by centrifugation of the lysate was separated using SDS- PAGE. Proteins were blotted
to PVDF membranes, which were then blocked for 1h with 5% non-fat dry milk in Tris-buffered saline con-
taining 0.05% Tween 20, exposed to antibodies and chemiluminescent reagent, followed by quantification of
bands on X-ray films or directly on membranes (Fusion Solo 8, Vilber, France). Antibodies are described in the
Supplementary Table 52. Equal loading of proteins onto the gel was confirmed by immunodetection of Gapdh
and [}-actin.

Histology. The livers were collected immediately after death, fixed in 10% neutral buffered formalin, emlved -
ded in paraffin, and cuot to 4-5 pm thick sections. These were stained with haematoxylin-eosin for assessment of
liver morphological changes and with Prussian blue for the presence of iron. Sections were assessed by the same
person using a BX-51 light microscope (Olympus) at x100 of original magnification. Ten visual fields were ana-
lysed per liver section from each animal.

Immunohistochemistry of Mrp2 and Bsep.  Five slides from each animal from each group were taken for
immunchistochemical analysis. Serial cross-sections (7 pm) were cut ona cryostat and placed on gelatine-coated
slides. Before antigen detection, the slides were incubated with anti-avidin and anti-biotin solutions [ Vector
Laboratories, USA). Thereafter, the slides were incubated with primary antibodies and after that biotinylated
goat anti-rabbit secondary (Jackson ImmunoResearch, USA) (diluted 1: 100 in BSA} and ExtraAvidin red fluoro-
chrome CY3 (Sigma Chemical, USA) were used (diluted 1:300 in BSA) for the detection of either Mrp2 or Bsep.
For nuclear counterstaining the blue-flunrescent DAPI nucleic acid stain (Invitrogen, Czech Republic) was used.
Staining with nonimmune isotype-matched immunoglobuling assessed the specificity of the immunostaining.
Primary antibodies included the following: mouse monoclonal antibody anti-Mrp2 (dilution 1:20, 1 hat RT),
purchased from Enzo Life Sciences (USA), and rabbit polyconal antibody anti-Bsep (dilution 1:50, 1 h at RT),
purchased from Thermo Scientific (USA). Photo documentation and image digitizing from the microscope were
performed with the Olympus AX 70, with a digital VDS Vosskiihler (GmbH, Germany) with Image Analysis
Software NIS [ Laboratory Imaging, Czech Republic). Canalicular localization of Mrp2 was verified in our previ-
ous studies™ using the same antibodies by co-localization with another canalicular protein, Zo-1.

Statistical analysis. Data are presented as mean -+ 5D, Differences between the groups were assessed by a
two-tailed t-test assuming unequal variance. Six animals per group were analysed. Differences were considered
significant at P-value less than 0.05. All analyses were performed using GraphPad Prism 6.0 software (San Diepgo,
USA).
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Abstract: Bile acids are crucial for the uptake of dietary lipids and can shape the gut-microbiome
composition. This latter function is associated with the toxicity of bile acids and can be modulated
by bile acid modifying bacteria such as Eggerthella lenta, but the molecular details of the interaction
of bacteria depending on bile acid modifications are not well understood. In order to unravel the
molecular response to bile acids and their metabolites, we cultivated eig_ht strains from a human
intestinal microbiome model alone and in co-culture with Eggerthielia lenta in the presence of cholic
acid (CA) and deoxycholic acid (DCA). We observed grow th inhibition of particularly gram-positive
strains such as Clostridium ramosum and the gram-variable Anaerostipes cacae by CA and DCA
stress. C. ramosum was alleviated through co-culturing with Eggerthelia lenta. We approached effects
on the membrane by zeta potential and genotoxic and metabolic effects by (metajproteomic and
metabolomic analyses. Co-culturing with Eggerthella lenta decreased both CA and DCA by the
formation of oxidized and epimerized bile acids. Eggerthella lenta also produces microbial bile salt
conjugates in a co-cultured species-specific manner. This study highlights how the interaction with
other bacteria can influence the functionality of bacteria.

Keywords: gut microbiome interaction; bile acids; eggerthella lenta; hydroysteroid dehydrogenase;
metaproteomics; metabolomics

1. Introduction

Owver the past decades, it has become increasingly evident how crucial the gut micro-
biota is in health and disease. The gut microbiome protects from pathogens [1] and plays
a major role in the synthesis of vitamins [2], as well as in the digestion of complex food
components [3]. The metabolites from these processes function not only as nutrients, but
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also as signaling molecules that can mediate the communication between gut and host. Bile
acids are of particular interest in cross-communication due to their widespread systemic
effects [1—7] and their capabilities to directly modulate gut-microbiome composition [8-10].
Their systemic effects are due to their ability to bind to nuclear receptors such as Farnesoid
X receptor (FXR) and transmembrane receptors such a G protein-coupled bile acid receptor
1{TGR-5) [4,11,12]. The direct effect of bile acids shaping the microbiome can, for instance,
be seen in the development of the microbiome in infant animals [13] as well as in defining
the response of the microbiome of patients to the alterations in the gut topology after
bariatric surgery [14]. It was also shown in mice that if bile flow is obstructed, it resulted in
bacterial overgrowth and mucosal injury in the small intestine, which could be reverted in
mice still expressing the FXR receptor, but not in ones lacking [5]. Bile acids are amphiphilic
molecules and their toxicity towards bacteria is related to their hydrophobicity, and it is
known that increasing hydrophobicity leads to increased toxicity [15-15] Bile acids are
synthesized in the liver from cholesterol via two biochemical pathways, which in humans
result in cholic acid (CA) and chenodeoxycholic acid (CDCA), collectively termed primary
bile acids [14]. In the liver, they are conjugated with either glycine or taurine and stored
in the gallbladder until they are released into the duodenum upon stimulation [20]. In
the small intestine, they facilitate the solubilization of lipids and lipid-soluble vitamins,
and as they travel through the small intestine approximately 95% are actively reabsorbed
across the distal small intestinal wall, in a process termed enterchepatic circulation, which
functions as a negative feedback loop that regulates their own biosynthesis [21]. The
remaining 5 % enter the large intestine where they primarily undergo extensive chemical
modifications by bacteria [22]. Once primary bile acids have been modified by bacteria they
are referred to as secondary bile acids, where 7a-dehydroxylation of CA and CDCA results
in the more hydrophobic deoxycholic acid (DCA) and lithocholic acid (LCA) respectively.
Physiological concentrations and compositions vary greatly through the body and also
depend on external factors such as diet [23]. Generally, total bile acid concentration in the
colon is between 200-1000 uM where DCA is estimated to be between 10-200 uM [24-26].
Some of the chemical modification that bile acids will undergo, whilst passing through
the gastro-intestinal tract are deconjugation, dehydroxylation, oxidation, epimerization
and, most recently, reconjugation [26,27]. The most widespread bile acid modification is
the ability to deconjugate bile acids from the amino acid moieties, via microbial bile salt
hydrolases (BSH) [25]. Dehydroxylation is a multistep pathway executed by enzymes that
are encoded in the bile acid inducible (bai) operon, which is not common in commensal
bacteria [29]. Strains that possess the bai operon are members of the Clostridium cluster
XKIVa [30,31]. Another widespread enzymatic function is dehydrogenation (oxidation) via
hydroxysteroid dehydrogenases (HSDHs). HSDHs catalyze oxidation of the hydroxyl
groups at the C-3, C-7 and C-12 position of the steroid core of bile acids [32-34]. Oxidation
of the hydroxyl groups is stereospecific, since there are both a0 and § HSDHs. Hence a
sequential oxidation and reduction of an OH group can result in epimerization at a given
position [35]. Oxidation of the hydroxyl groups is of particular importance due to both
the disruption of the amphiphilic structure of bile acids, but also since it hinders the pos-
sibility for dehydroxylation to occur [31]. Eggerthella lenta (E. lenta) (DSM 2243) is known
to be a potent bile acid modifier expressing a 3, 7 and 12 HSDH [25,32], making it an
interesting strain to co-cultivate with, to understand the significance of how these bile acid
forms influence microbe-microbe interactions. It has recently been discovered that the gut
microbiome is also capable of performing reconjugations of bile acids, forming bonds with
amino acids other than glycine and taurine, which was a previously unknown mechanism.
Initially, phenylalanocholic acid, tyrosocholic acid and leucocholic acid were discovered,
with more than 50 different bile acid modifications currently identified in cultures of human
fecal bacteria [26,36-38]. Structural differences in the cell envelopes of gram-negative and
gram-positive strains influence how sensitive the bacteria are towards bile acids. Due to
the differences in charge as well as gram-negatives possessing two cellular membranes,
gram-positive bacteria are more sensitive towards bile acids [21,39,40]. Hence, with the
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number of secondary bile acids increasing and novel bile acid modifying mechanisms being
discovered, it is of growing importance to know specifically which strains are capable of
performing such modifications, and also what the consequence of such modifications are
both within and between bacteria. In this study, we aim to investigate what the molecular
responses to bile acid stress are, and what the significance is of being co-cultivated with
a known bile acid modifier using metabolomics and proteomics. In order to gain such
insights, we cultivated strains from the simplified intestinal human microbiota extended
(SIHUMIx) [41] and co-cultured the individual strains with E. lenfa.

2. Materials and Methods
2.1, Bacterial Strains

The bacterial strains chosen for this study are from SIHUMIx, a model system of for
the human intestinal microbiota [41], consisting of eight bacterial species Amaerostipes caccae
(DSMZ 14662), Bacteraides thetaiotaomicron (DSMZ 2079), Bifidobacteriunt longunt (NCC 2705),
Blautia producta (DSMZ 2950), Clostridium butyricum (DSMZ 10702), Clostridium ramosum
(DSMZ 1402), Escherichia coli K-12 (MG1655), Lactobacillus plantarum (DSMZ 20174). The
strain used for co-culturing was Eggerthella lenta (DSMZ 2243). Strains were cultivated
as single strains in Yeast-Hemin-Brain-Heart-Infusion (BHI) medium under anaerobic
conditions at 37 °C and 175 rpm shaking, maximum 72 h before bile acid stress assays were
conducted. See Table S1 for BHI composition.

2.2, Bile Acid Stress Assay

At a maximum of 72 h before the assay(s) were conducted, strains were thawed indi-
vidually in BHI media as described above. Shortly before inoculation, the type of anaerobic
culture tubes (hungates) were supplemented with 600 uM CA (Sodium cholate hydrate,
Sigma Aldrich, St. Louis, MO, USA) dissolved in HyO or 200 uM DCA (Deoxycholic acid,
Merck, Kenilworth, NJ, USA) dissolved in 70% EtOH and gassed with pure Nz. Strains
were inoculated into the hungates in replicates of 6, with a start ODo00 = 0.15 if grown as a
single culture or (L075 of each strain when co-cultured. Cultures were measured hourly on
a Nanocolor™ UV /VIS 11, Macherey Nagel at 600 nm. After 6 h of growth, 2 mL bacteria cell
suspension was centrifuged (3200 g; 10 min; 4 °C) supernatant and pellet were separated
and both immediately frozen at —807C.

2.3, Bile Acid Measurentents

For the bile acid determination, the Bile acid Kit from Biocrates (Innsbruck, Austria)
was used. The exact description of the procedure can be found in [42]. All solvents and
chemicals were of UPLC/MS grade. 10 uL of standards and internal standards mixture
were pipetted onto the filter spots suspended in the wells of the Y6-well filter plate. The
filter plate was fixed on the top of a deep-well serving as a receiving plate for the extract
{a combi-plate structure). In addition, quality controls were distributed on the plate. On
the one hand, one QC each was measured with low, medium and high concentrations of
the calibration range and additionally three further medium QC samples were distributed
over the plate. A 7-point calibration curve (concentration range: 10 to 75,000 nmol /L bile
acid specific) was used for calibration. Samples of 10 ul. were pipetted on the spots of the
kit plate, followed by nitrogen drying, Then, 100 uL. methanol was added to the wells,
and the combi-plate was shaken for 20 min. The combi-plate was centrifuged to elute the
methanol extract into the lower receiving deep-well plate, which was then detached from
the upper filter plate. After adding 60 uL. Milli-Q water to the extracts, the samples were
analyzed. 5 uL of each sample were injected using Acquity UPLC System (Waters) (UHPLC
Column from Biocrates P-No 91220052120868). Initial selvent was 65% A (solvent A: 100%
Hz0), containing 10 mmol/ L ammonium acetate), solvent B: 100% acetonitrile containing
10 mmol/L ammonium acetate and 0.1% formic acid (FA) at a flow rate of 0.5 mL/min
at 50 °C. Gradient elution was performed using a Q-Trap 5500 mass spectrometer (Sciex).
Mass spectrometric detection was employed with electrospray ionization in negative ion
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mode (I5—4500 V). Individual bile salts were monitored in MRM windows. Data was
processed using Analyst 1.7.1. All peaks were visually inspected for correct integration
including the internal standards using the quantification software from Analyst. AUC
values were corrected for recovery of the assigned internal standard. Quadratic regression
was used to calculate concentrations from standard curves. Afterwards, a further quality
control was carried out using the Met IDQ software (version Oxygen) provided by the
Biocrates company.

2.4, Zeta Potential Assay and Measurements

Strains were inoculated into hungates containing 10 mL BHI (pH = 7.01) in replicates
of 3, with a start ODgy, = 0.1 either with or without the bile acids already in the media. Once
strains reached an OD600 = 1 they were centrifuged (970 g, 20 °C, 10 min) in the hungates,
hereafter the supernatant was removed. The remaining pellet was washed with 10 mM
KNOCs (pH =7), centrifuged as described before and washed again. After washing, pellets
were resuspended in 500 uL of 10 mM KNO; and from this solution 50 ul. were transferred
into 10 mL of 10 mM KNO: and vortexed well. From this, 1 mL was used to fill up a
capillary cell (DTS1070, Malvern Panalytical Ltd.) and measured at room temperature on
the Zetasizer Ultra (Malvern Panalytical Ltd.) equipped with a He-Ne (633 nm) laser. The
obtained data were analyzed with the ZS XPLORER (version 2.3.1.4) and then extracted into
GraphPad Prism (version 9.4.0 for Windows, GraphPad Software, San Diego, California
USA, www.graphpad.com.) Cell-free BHI controls supplemented with CA or DCA were
also measured, but here ZI" was = () (See Supplementary data). Cell cultures grown without
bile acids were measured and used to calculate the AZP to either CA or DCA cultures.

2.5, Preparation of Proteontic Samples

Subsequently, 2 mL bacterial pellets were harvested at the end of the 6 hbile acid stress
assay and resuspended in CH3OH/H,0 /CHCLs (2:1:1, viviv). Following resuspension,
samples were incubated on ice for 10 min and were then sonicated and centrifuged (1700 g;
10t min; 4 °C). Samples were then dried in a speed vac and resuspended in UT buffer (8 M
Urea; 2 M thiourea). Protein concentration was determined on a NanoDrop 2000¢ (Thermo
Scientific, Rockford, IL, USA) 4 ug of protein in UT-solution was filled with up to 20 uL.
with 20 mM ammonium bicarbonate followed by addition of 2 uL of 25 mM dithiothreitol
solution for disulfide reduction and the samples were incubated via Thermoshaker (60 °C;
1 h; 1400 rpm). This was followed by alkylation, by adding 14 uL of 20 mM ammonium
bicarbonate and 4 ul of 100 mM 2-iodoacetamide and incubation at 37 °C for 30 min at
1400 rpm. Overnight enzymatic digestion was performed with trypsin (Promega, Madison,
WI, USA) at 37 °C. Extracted peptides were purified by SOLA u (Thermo Scientific, Waltham,
MA, USA) as per the manufacturer’s recommendation. After evaporation peptides were
resuspended in 20 uL. (0.1% FA.

2.6, Proteomic Measurentents

For each LC—MS run, 1 ug of peptides was injected into a Nano-HPLC (UltiMate3000,
Dionex, Thermo Fisher Scientific, Waltham, MA, USA). Peptides were trapped for 3 min on
a Cl8-reverse phase trapping column (Acclaim PepMap 100, 75 um x 2 cm, particle size
3 uM, nanoViper, Thermo Fisher Scientific), followed by separation on a Cys-reverse phase
analytical column (Acclaim PepMap10(, 75 um x 25 em, particle size 3 uM, nanoViper,
Thermo Fisher Scientific). A two-step gradient was used with A: (L01% FA in H20 and
B: 80% ACN in H>O and 0.01% FA in mobile phases. The first step of the gradient was
90 min, where B went from 4% to 30%, then 30 min where B went from 30% to 55%. This
was followed by 30 min where B went from 55% back to 4%, with a flow rate of 300 nL./min
and a column temperature of 35 °C. The eluted peptides were ionized by a nano ion
source (Advion Triversa Nanomate, Ithaca, NY, USA) and detected viaa Q Exactive HF-
MS (Thermo Fisher Scientific) with the following settings: Scan range 150-2000 m/z, MS
resolution 120,000, MS automatic gain control {(AGC) target 3,000,000 ions, maximum
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injection time for MS 80 ms, intensity threshold for MS/MS of 17,000 ions, dynamic
exclusion 30 s, TopN = 20, isolation window 1.6 m/z, MS/MS resolution 15,000, MS /MS
AGC target 5{L000 ions, maximum injection time for MS/MS 1200 ms. Mass spectrometric
data processing was performed using Proteome Discoverer (v.2.5, Thermo Fischer Scientific,
Waltham, MA, USA) with SequestHT search engine. The search settings were set to
trypsin (Full), or Asp-N (Full), max. missed cleavage sites 2, precursor mass tolerance
10 ppm, and fragment mass tolerance (105 Da. Carbamidomethylation of cysteines was
specified as a fixed modification. False discovery rates (FDR) were determined using
Percolator. The searches against SequestH T were undertaken with a constructed proteome
database containing the reference proteomes downloaded from Uniprot (www.uniprot.org,
accessed on 10 Octorber 2022). Data from the searches were further processed as previously
described [14]. Protein intensities were converted to relative abundances by dividing the
intensity of the protein with the summed intensities of all proteins from the same species
detected in the sample. Protein functions and pathway assignment were undertaken using
Ghostkoala webapplication from KEGG [43]. Only pathways containing minimum five
proteins and a minimum total coverage of 10% were selected for further analysis.

2.7, Untargeted Metabolontics Measuremeit

Prior to analysis, supernatants from the bile acid stress assay were mixed with five
volumes of MeOH:ACN:H;Oin a 2:3:1 (viviv) ratio, sonicated for 5 min and centrifuged. 550
uL supernatant was then transferred and evaporated, before being resuspended in 100 uL.
0.1% FA and 1% ACN in water. Samples measured in positive and negative ionization mode
were further diluted 1:20 and 1:10, respectively. For measurement, 2 or 5 uL (positive and
negative ionization, resp.) of each extract was injected onto a HPLC system coupled online
with a 6546 UHD Accurate-Mass Q-TOF (Agilent Technologies). Metabolites were separated
with an Agilent Zorbax Eclipse Plus C18 column (2.1 = 100 mm, 1.8 pm) equipped with a
related pre-column (2.1 » 50 mm, 1.8 um). The autosampler was kept at 5 °C and column
oven was set to 45 °C. Separation was achieved using a binary solvent system of A (0.1%
FA in water) and B (0.1% FA in ACN). The gradient was as follows: 0-5.5 min: 1% B;
5-20 min: 1-100% B; 20-22 min: 100% B; 22-22.5: 100-1% B; 22.5-25 min: 1% B. Metabolites
were eluted at a constant flow rate of (1.3 mL /min. Eluted compounds were measured with
the QTOF operated in centroid mode. Full scan data was generated with a scan range of
501K} m /2 in positive and negative ionization mode. Out of the survey scan, the two
most abundant precursor ions with charge state = 1 were subjected to fragmentation. The
dynamic exclusion time after two acquired spectra was set to (1.1 min. Obtained spectral
data (.d files) were imported into Progenesis QI software (Non-Linear Dynamics). Different
ionization modes and microbial strains were analyzed separately. The adductions involved
[M+ H], M+ H — H;O] and [M + H + Na] for positive mode and [M — HJ, [M — H,O — H]
and [M + FA — H] for negative mode, In a generic workflow, chromatogram were aligned
using an automatically chosen reference chromatogram from the dataset. The following
software-guided, peak-picking tool resulted in a data matrix, including the retention time,
mass-to-charge ratio and corresponding normalized peak area. The subsequent automated
database search based on a ChemSpider plug-in was used as identification method with
E. coli metabolome database, fecal metabolome database and KEGG as resources. After
exporting the results regarding compound measurement and putative identifications for
all measured compounds, data was processed, as previously described [14].

2.8, Measurentents of Keto and Iso Forns of Bile Acids/MSBCs

Bile acids and their oxidized forms were measured as previously described [44].
The data is semiquantitative since there were no standards available for all the different
modifications at the time. Hence, the data is given as a percentage compared to the
peak area of the parent bile acid. Furthermore, this lack of standards also refrains from
distinguishing between the different keto and iso forms; hence, CA isoforms will be referred
to as isoCA 1-3, and the single keto forms as monoketoCA 1-3. Likewise, keto forms of
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DCA will be referred to as monoketoDCA 1-3. For measurement of microbial bile salt
conjugates (MBSC)s, 50 uL of the medium was mixed with 10 uL of internal standard
(d4GCDCA), deproteinized by three volumes of 2-propanol/ acetonitrile (1:2), vortexed,
and centrifuged at 13,000 g for 15 min at room temperature. The supematant was dried
at 65 “C under nitrogen, dissolved in 50 uL. of 50% methanol and analyzed. Gradient for
MBSC assay was slightly modified (methanol concentrations were as follows: (-1 min 50%;
1.0-10.0 min 95 %; 10-14 min 95 %); 14—18 min 50%). Following in-house prepared standards
were used: Leu-CDCA, Leu-CA, Phe-CDCA, Phe-CA, L-Tyr-CDCA, D-Tyr-CDCA, L-Tyr-
CA, D-Tyr-CA, 3,7-diketo CA, 3,12-diketo DCA, 3,7 12-triketo CA. For qualitative use,
standards of 3-ketoBA and 7-ketoBA were prepared from individual BA using either 3a-
hydroxysteroid dehydrogenase (Reagent B: Bile acids kit 450-A, Trinity Biotech (Wicklow,
Ireland) or 7a-hydroxysteroid dehydrogenase (in-house prepared recombinant HdhA from
E. coli GC-10). CDCA conjugates {with Leucine, Phenylalanine and Tyrosine) were used to
tune mass spectrometer parameters for detection of respective DCA derivatives. Media
blanks containing either CA or DCA were averaged and subtracted from their respective
categories within each strain.

2.9, Omiics-Data Statistical Analysis

The statistics for proteomics and untargeted metabolomics were as previously de-
scribed [14]. Principal component analyses (PCA) were conducted using the VEGAN
package [45]. For single variables, Student’s t test were preformed and where appropriate
(number of tests > 20}, p-values were corrected for multi-testing by the Benjamini-Hochberg
method [46], and all other figures were constructed using the R package ggplots2 [47].

3. Results
3.1, Growth in the Presence of Bile Acids in Single Species Culture and Co-Cultures with E. Lenta

Growth curves from the bile acid stress experiments are displayed in Figure 1; the
ranking is organized according to increased inhibition of growth caused by DCA. Amounts
of 600 uM of CA and 200 uM DCA was selected since these are physiologically relevant
concentrations encountered in the colon [19,24,45] and previous experiments suggested
these concentrations to be fiting (Supplementary Figure 51). For growth curves of CA
stress, see Supplementary Figure 52 and for growth data please, see Supplementary data.

When cultures were stressed with CA, there is no inhibition of growth in any strain;
in the case of E. lenta, it even suggests that it grows slightly better. There are also no clear
effects of co-culturing under CA stress, other than a slightly elevated final OD. When
considering DCA stress, again L. lenfa seems to feature an increased growth, whereas
A. caccae, B. longum, B. producta, C. butyricim and C. ramosum are significantly inhibited.
In the cases of B, longum, B. producta, C. buturicum and C, ramosum co-culturing seems to
alleviate stress from DCA. These results suggest that the presence of E. lenia alleviates the
bile acid toxicity, in particular for gram-positive strains, such as C. ramesum. For further
analysis, E. coli, A. caccae and C. ramosum were selected as they showed a low, middle
and pronounced stress response to DCA and co-culture. Furthermore, bile stress response
in bacteria strongly depends on their type of membrane, where E. coli is gram- negative,
A, caccae is gram-variable [49] and C. ranrosunt is gram-positive,
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Figure 1. Growth of SIHUMIx species in single and co-culture with E. lenta with treatment 200 pM
DCA. For each experiment, six replicates were analyzed and the line represents the mean. Strains are
ranked according to increasing inhibition of grow th when stressed with DCA. Error hars are standard
deviations. Statistical sig:ni ficance was determined using AMNOVA ana]ysis, *p <005 ™ p<001,
=+ p < 0005, p<0.001.
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3.2, Concentrations of CA and DCA in Single Species Culture and Co-Cultures with E. lenta

In order to verify the concentrations of CA and DCA at the end of bile acid stress
assays, supernatants from these cultures were measured and concentrations determined.

As seen in Figure 2, all single cultures are capable of transforming CA to a slight extent,
but this significantly increases when co-cultured with E. lenta. On average single cultures of
E. coli and C. rantosunt the concentration decreased by 90.8 & 43.3 uM and 65 4 309 uM re-
spectively, whereas co-cultures decreased concentrations by 281.2 4+ 228 uM and
202 + 22.9 uM. In the case of E. coli, the co-culture decreases the concentration more than E,
lenta on its own. In the case of DCA the only single culture that could significantly decrease
concentration was E. celi that on average decreased it by 20.3 £ 3.8 uM. In all other cases
co-culturing significantly, decreased concentrations compared to their respective single
culture, with an average of 61.5 £ 7.2 uM for E. coli co-cultures, 54.5 £ 7.7 uM for A, caccae
co-cultures, and 64.7 & 16.1 uM for C. ramosum co-cultures. Interestingly, single cultures
of E. lenta outcompeted all co-cultures in decreasing DCA concentration, with an average
decrease of 157.7 4+ 5.4 uM.
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6001 —=5m, P=0.00096 P=0.00074
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4001 [ * =
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Figure 2. Determination of bile acid concentrations in single and co-culture after 6 h of incubation.
For every sample, five replicates were measured and the bars represent the mean value. Group
statistics were calculated by ANOVA with post-hoc pairwise Students t-test. (* p <0.05, " p < 0.01,
e < (001 and **** p< 00001).

With the indication that bile acid concentrations decrease in particular in the presence of
E. lenta, and the alleviation of growth inhibition, we investigated the membrane integrity. The
remaining bile acids covered in the biocrates kit, can be seen in Supplementary Figure 53.
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3.3, Assessment of Mewibrane bitegrity by Zeta-Potential of E. coli, A. caccae, and C. ramosunt in
Single Species Culture and Co-Cultures with E. lenta

Zeta potential (ZP) measurements were performed to approach the effects of bile acids
on the membrane. ZP is an electrochemical property that represents the potential at the
shear plan of an electrical double layer encompassing a cell in an ionic solution. It provides
critical information about cell-surface characteristics [50] and can reflect the physiological
status of cells after, e.g., exposure to chemicals and nanoparticles [51,52]. Hence, ZP is
being more frequently used to approach cell membrane integrity [53,54]. ZP values can be
seen in Supplementary data and examples of full chromatograms of the ZP measurements
can be seen in Supplementary Figure 54.

The change in ZP compared to their respective blanks of bacterial cultures stressed
with CA or DCA can be seen in Figure 3. In this study, the average ZI for untreated cultures
were found tobe —51 (SD 0.81 +/—) and —54 (5D 01.14 +/—) mV for E. coli single and
co-culture, —32 (SD093 +/—)and —31 (SD0.04 +/—} mV for A. caccae single and coculture
and —19{SD0.73 +/—) and —20 (5D 1.27 + /) for C. ramosum single and co-culture (See
Supplementary data). It can be observed that the gram-negative strain E. coli has the most
negative ZP, the ZP of A. caccae the gram-variable is slightly less negative than E. coli and
that the gram-positive strain C. ramosunt has the least negative ZP. This is expected due
to gram-negative bacteria possess the negatively charged LPS layer. As evident, neither
bile acid nor co-culturing have any significant effect on either E. coli or A. caccae. When the
single culture of C. ranesunr is observed, it suggests that CA does not affect the ZF, whereas
DCA on average decreases the ZP by —26 mV. Coculturing reverts this decrease of ZP seen
from single cultures to levels comparable with the blank.

Hence, A. caccae and E. coli show no significant changes in ZP from either bile acid,
whereas C. ramosum again shows a clear protective effect when cocultured. These results
support the finding from the growth experiments that the presence of E. lenta alleviates bile
acid toxicity for gram-positive bacteria in particular, and that E. coli and A. caccae seems
unaffected on their membrane. This led us to conduct deeper functional investigations of
the selected strains.

3.4. Proteomics Reveals Specific Responses to DCA Depending on Membrane Charecteristics and
the Presence of E. lenta

The growth curves indicated that gram-positive strains are more susceptible to the ef-
fects of DCA than gram-negative species. Secondly, this growth inhibition can be alleviated
in the presence of E, lenfa. With respect to growth, there is only a slight effect detectable
in the gram-variable A, caccae. After estimating the extent of membrane-associated effects
by assessing the ZI we wondered how the selected strains remodeled their structure
and metabolism when stressed with CA and DCA and, therefore, analyzed the effects of
co-culturing by (meta)proteomics (Figures 4 and 5). Pathways depicted on Figures 4 and 5
represent fold changes within the represented bacterium, where the direction of the change
is colorcoded, with red indicating an increase, blue indicating a decrease in the fold change
in the co-culture. Pellets from the end of the bile acid stress assays were analyzed. The
protecmic analysis yielded only very few, significantly altered, affected pathways in E. coli
due to co-culturing, consistent with no effect on either growth or ZP. For C. ramosum, we
detected 16 significantly altered pathways (Figure 4) and 55 for A, caccae (Figure 5). Only
pathways containing a minimum of five proteins and a minimum total coverage of 10%
were selected for further analysis. For relative species abundance and PCAs of proteomic
data, please see Supplementary Figures 55 and 56.
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Figure 3. Relative change in zeta potential of cells in log phase exposed to bile acids. The change in
ZF is compared to their respective blanks and is shown in mV. For all analyses, three replicates were
analyzed and bars represent the mean value. Samples were harvested when ODggg = 1.0 Errors bars
are standard deviations. Statistical significance was determined using a Student's f-test, **** p < 0.001.
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Figure 4. Molecular response of C. ramosum towards CAand DCA in co-culture with E. lenta vs.
single culture, Depicted are the significantly altered KEGG metabolic pathways based on the relative
abundance of proteins detected. The proteins stem from the bacterial pellet harvested from the end
of the bile acid stress assays. The direction of the change is color-coded, red indicates an increase,
blue a decrease in the fold change in the co-culture.
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Figure 5. Molecular response of A. cocare towards CA and DCA in co-culture with E. fenta vs. ng!e
culture. Depicted are the significantly altered KEGG metabolic pathways based on the relative
abundance ofpznheins detected. The ptrm:ins stem from the hacterial pellel harvested form the end
of the bile acid stress assays. The direction of the change is color-coded, red indicates an increase,
blue a decrease in the fold change in the co-culture.
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Although there is a clear increase in growth in the presence of E. [eita, only a limited
number of pathways are changed significantly in C. ramosum. For DCA the pathways
of “glycine, serine and threonine metabolism”, “phenylalanine, tyrosine and tryptophan
metabolism”, and “alanine, aspartate and glutamate metabolism” are downregulated in
the coculture. The same is true for the pathway of “Glycolysis” being down-regulated
in the co-culture under DCA stress. The increased growth of C. ranosunt in co-culture is
reflected in the increase in the “ribosome pathway”,

For CA, the decrease in the pathways “Base excision repair” and "RNA degradation”
points to the alleviation of the genotoxic effects of bile acids in co-culture. The effects on
the other pathways, except for induction of “thiamine metabolism” were not overly strong,
and this is in line with the non-significant changes with respect to growth.

Interestingly, we found more affected pathways A. caccae (Figure 5), which showed a
DCA-dependent but not a coculture dependent effect in growth.

For both DCA and CA, we found a strong decrease for pathways such as “mismatch
repair”, “homologous recombination” and “nuclectide excision repair” that are linked to
genotoxic effects that mightbe alleviated in the presence of E. lesnta.

Even though we see only slight effects on grow th, many pathways were elevated that
are linked to increased growth such as carbon fixation, propanoate metabolism, butanoate
metabolism, and fatty acid biosynthesis. In DCA, more pathways related to the synthesis
of amino acids are affected. These results indicate that mechanisms related to growth are
increased under these conditions, in combination with a decreased need to produce amino
acids. The effect of coculture, in the presence of both CA and DCA is especially strong on
upregulated “Terpenocid backbone synthesis”,

3.5, Metabolomics Reveals Metabolites Related to Altered Pathways Detected in Proteomics

The proteomic response to bile acid stress was validated by untargeted metabolic
analyses of the supernatant from the end of the bile acid stress assays, in order to defect
metabolites that potentially play a role in the interaction between the co-cultured species.
The effects of CA and DCA in single and co-culture with E. lenta are depicted in Figure .
For PCAs of these measurements, please see Supplementary Figure 57,

Similar to the proteomic results, the changes are least prominent in E. celi, more
abundant in C. ramesum and strongest in A. caccae. Thus, we focus here on the effects
in C. ramosum and A. caccae. A common feature for all co-cultures is the decrease of a
metabolite, which might be L-Arginine (metabolite no 1). This could be related to an
increased uptake by E. leuta, since it was reported that arginine leads to increased growth
in E. lenta [55]. Another consistently decreased metabolite in co-cultures is metabolite no. 2,
which we could putatively identify as 12a-Hydroxyamoorstatin, which is a rare metabolite
but linked to the bile acid structure and thus is potentially indicating to an increased
transformation of bile acids by E. lenta. In contrast, there is also one metabolite that is
consistently increased in coculture, which could be identified as L-ornithine (metabolite no,
3). L-Ornithine is involved in the synthesis of arginine and an increased uptake of arginine
might result in a decrease of orithine produced and secreted by E. lenta. Interestingly,
we detected metabaolites significantly altered in abundance between the co-culturing with
E. lenta and single culturing for A. caccae and C. ramosunt, which might be nucleosides.
In both mentioned species, for DCA and for CA, we observed a significant increase in
the co-culture of metabolite no. 6, which was putatively identify as inosine, Inosine is a
degradation product of adenosine. We also observed a decrease in metabolite no. 7, which
we putatively identified as adenine, a further degradation product of adenosine, in the
co~culture of C. ramosin with DCA.
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Figure 6. Change in relative abundance of metabolites detected in the medium as calculated by
co-culture vs. single culture. Volcano Plot of metabolite Logs fold-change in metabolite abundances
plotted against Benjamini-Hochberg adjusted p-values. Measurements are from the medium super-
natants of cultures grown in the bile acid stress assays. Significant metabolites are color coded by
compound class, Dashed blue line indicates p = 005

In A, caccae metabolite no. 4, which was suggested to be 6-hydroxyhexanoic acid, was
consistently elevated in co-cultures both in the presence of CA and DCA. 6-hydroxyhexanoic
acid is part of the bacterial degradation pathway of bile acids [56]. Furthermore, metabolite
no. 5, which is suspected to be 12-epideoxycholic acid, was seen to be elevated in A. caccae
during coculturing and DCA stress. 12-epideoxycholic acid is an epimer of the C-120H
group of DCA,

3.6. Detection of Oxidized and Eperimized Bile Acids in Single Culture vs. Co-Culture

Based on the finding of elevated levels of 12-epideoxycholic in the supernatant of
co-culture and the extended repertoire of bile acid modifying enzymes in E, lenta [25,32],
we tested more comprehensively for bile acid oxidation and epimerization. Figure 7 shows
semiquantitative abundances of the iso- (i.e,, 3 epimers) and oxo (ie., keto) forms of
CA and DCA from the bile acid stress experiments depicted in Figure 1. The data is
semiquantitative since there were no standards available at the time for all the different
modifications; hence, the data is given as a%, compared to the peak of its original bile acid.
For our definition of nomenclature, see Method secton 2.8 Measurements of oxo and
iso forms of bile acids/MSBCs". Keto /iso figure for all § SIHUMIx strains can be seen in
Supplementary Figure 58.

79



Microargmnisns 2022, 10, X025

14of 22

E.coli
a0

30

% S
gm =1}

£ =
1 10

| | I-I I 1 alm I

o

TG S

s

A. caccae
40
304
30 5
3 4 0 zp|
ES ®
10 I 10
L1, |

X
% W

C. ramosum

40

30

20

% CA

10

40

=
]

% DCA
» 8. 8 8 &

I | 1l
VP I r P P P

i Single culture =8 Co-culure

Figure 7. Epimerization and oxidization of CA and DCA in single and co-cultures, The bars represent
the mean of three hiological replicates and the abundances are ratios compared to the peaks of the
original added bile acids due to lack of standard for the different iso and keto forms. Blue is single
culture and red is co-culture,

When single cultures of E. coli are exposed to CA stress, only one modification is
observed, namely 7-ketoCA. This is line with the fact that E. coli expresses a 7a-HSDH
(WP_000483353.1, [57]). The corresponding co-culture shows a different pattern with signals
for isoCA-2 and 3 as well as monoketoCA 1. 3-ketoCA and 7-ketoCA are also observed.
Likewise, A. caccae single culture also only shows formation of 7-ketoCA, and indeed a
7a-HSDH homologue (WP_054335312.1, E value = 3 » 0=+ identity 32.74%) was found
by homology searching using NCBI's blastp tool against the 7o-HSDH described previously
in E. coli (See Supplementary Table 52 for HSDH enzyme accession numbers). Co-culturing
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again results in formation of isoCA 3 and monoketoCA 1-3. Single cultures of C. ramosum
do notseem to form any iso or keto form of CA. Co-cultures have a different pattern in this
case, with isoCA 3 and monoketoCA 1 being the dominant forms. Cultures in the presence
of DCA show a more unambiguous trend, since no single culture produces any epimerized
or oxidized form with an abundance exceeding 1%. For E. coli and C. ramosum co-cultures,
3-ketoDCA is readably observed, whereas A, caccae co-cultures seem more prone to form
isoDCA. It is tempting to speculate that this iso form corresponds to 12-epideoxycholic
acid identified in our metabolomic screen, although it cannot be ruled out that it concerns
3p-DCA. The latter would be in line with higher formation of especially 3-ketoDCA helps
to explain the reduced toxicity as it potentially reaches 35% of DCA converted. This finding
is accordance with the expression of 3o, 3p, 7o, and 1200 HSDHs by E. lenta [25,32,55]. A
novel 12 HSDH was also recently identified, completing the epi-bile acid pathway [59]
where homology searching using blastp for this enzyme (WP_027099077.1) against E.
lesta shows a candidate (WP_114518444.1, E value =1 x 10-H, 36.5% identity). Taken
together, these results indicate that the oxidation and epimerization of bile acids is largely
dependent on E. lenta, and provides a mechanistic framework for reduced bile acid toxicity,
in particular, with DCA as a substrate. E, coli and A, caccae seem to be capable of forming
7-ketoCA on their own, but all other oxidized and epimerized forms are only formed when
co-cultured with E. lenta. With these results indicating that E. lenta seems to be important
in the formation of epimerized and oxidized forms of bile acids, we sought to investigate a
recently discovered new class of bile acids, namely the MBSCs.

3.7. Detection of Microbial Bile Salt Conjugates in Single Culture ws. Co-Cultiure

MBSCs are a novel class of bile acids that are formed by microbial reconjugation of
deconjugated /unconjugated bile acids with typically non-canonical amino acids, although
host-resembling glycine conjugates can also be generated by microbes [27,36,57], This novel
reaction type was previously not suspected to be in the repertoire of bile acid modifications,
but has opened the door to discovering new bile acids. Figure 5 shows the concentrations
(nmol/L) of MBSCs from supernatant from the bacterial cultures. Due to the lack of a
standard, DCA conjugates are to be considered semi-juantitative since their abundance is
based ona L-Leu-CDCA standard. MBSC figure for all 8 SIHUMIx strains can be seen on
Supplementary Figure 8%, Media blanks containing either CA or DCA were averaged and
subtracted from their respective categories within each strain,

Comparing E. coli single and co-cultures, statistically significant differences are seen for
Leu-CA and Tyr-DCA. For Len-CA, coculturing increases the concentration, whereas the
single culture seems to have a higher abundance of Tyr-DCA compared to co-culture (not
detected). A. caccae cultures have no significant differences between single and co-culture,
s0 A. caccae seems to be capable of producing detectable levels of most of the tested MBSCs
by itself. For C. ramosunt, Leu-CA is again significantly increased in the co-culture and Tyr-
DCA is more abundant in the single culture. Leu-DCA and Phe-DCA are also significantly
increased in the co-culture since there was no signal in the single cultures. Taken together,
these results point towards the capacity of all strains to reconjugate bile acids with Leucine,
Phenylalanine and Tyrosine, but that the presence of E. lenta in particular elevates levels of
Leu-CA. These observations add the studied strains of E. coli, A. caccae, C. ramosum and E
lenta to the range of bacteria capable of non-canonical bile salt conjugation [37].
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strandard deviation and statistical significance was determined using a two tailed Student’s t-test,
*p < 005, p< 0005 ***p <0.001.

82



Microargmnisns 2022, 10, X025

17 of 22

4. Discussion

From the growth curves, it was seen that DCA inhibited growth for A. caccae and, in
particular, C. ramosunt, where co-culturing with E, lestta could alleviate some of this inhibi-
tion for C. ramosunt, but not for A. caccae. This effect was also found to be bile acid specific
with a stronger effect of the more hydrophobic DCA compared to CA. Bile acid sensitivity
relates to the differences in cellularenvelope composition between gram-negative and
gram-positive bacteria. [21]. The slight effect on A, caccae was interesting, since nothing
was known about the bile acid sensitivity of gram-variable bacteria such as A. caccae. This
species is described to be gram-positive in the lag phase and becoming more gram-negative
during log phase [49]. Hence, it would be interesting to investigate how the proteome
of A, aiccar changes during cultivation, and investigate if there are certain transporters
or other mechanisms to deal with bile acid stress. We did not see any response from bile
acid stress in E. celi and it is also known that gram-negative strains are more bile acid
resistant where E, coli is known for having mechanisms to cope with bile acid stress [21,60].
In regard to the experimental setup, the harvesting point could have been optimized for
the individual stains, since they were all harvested after 6 h. This makes the intre-strain
comparison less applicable; for instance, if selected strains are compared, it can be observed
that E. coli has been in the stationary phase for approximately 4 h, whereas A, caccae and
C. ramosum has just started to reach stationary phase. To gain insights into the specific
molecular responses to bile acid stress, earlier time points should have been included as
well. An interesting finding was that it seemed that E. lenta grew better under bile acid
stress conditions. Normally, bacterial growth is inhibited by bile acids, but there are cases
where certain strains grow better. Akkermansia muciniphila has previously been described
to grow better under sodium deoxycholate conditions and actually be more inhibited by
oxo-bile acids [61]. Via bile acid measurements, we suggested that co-culturing contributed
to a significant decrease in concentration of both CA and DCA across all three strains, This
speaks in favor of E. lenta being the main driver of bile acid transformations. It should,
however, be considered that this decrease could also be caused by an uptake of bile acids
into the cells or binding to the cell membranes or envelopes. Our results from ZI” measure-
ments indicated that C. ramoswm had a shift towards a more negative ZP when stressed
with DCA. Studies on the effects of antimicrobial peptides on E. coli suggest a correlation
of ZP shifts towards neutral charge and increased permeability of cell membranes and
decreased cell viability resp [53]. This difference could, however, be due to the difference in
stressor exposure. For our bile acid assays, the bile acids were already in the media upon
inoculation, whereas the antimicrobial peptide studies typically inject them at a certain
point of growth. Other studies determined that bacteria exposed to bile acid stress caused
drastic changes in cell morphology, having a shrunken appearance and displaying leakage.
It could be hypothesized that the decrease in ZP here should be interpreted as a shrunken
membrane that has been leaking [62]. Other studies also analyzed the effects of DCA on
membrane integrity, but rather use markers such as DiBAC4 (bis-(1,3-dibutylbarbituric
acid) trimethine oxonol), where it was also determined that DCA indeed is membrane
disruptive in gram-positive bacteria [17]. The proteomic analyses also provide further
hints for membrane disruption by the abundance pattern of the mevalonate pathway. This
pathway leads to the production of farnesyl diphosphate, whichis required for adding lipid
anchors to protein-bound proteins and the pathway is downregulated in the co-culture.
Bile acids cause genotoxicity and the DNA damage is reported to be caused by reactive
oxygen species (ROS) [60]. Thus, our finding of downregulated proteins related to DNA
repair in the co-culture seems to confirm that the membrane, indeed, is less permeable and
hence leads to less damage to the DNA via ROS or other stressors. Beside the classical
pathways for bile acid tolerance, we identified in A. caccae at least two more, namely, the
terpencid and the thamnose pathway. Both became only detectable after in-detail scrutiny
of other involved pathways. The strongly affected terpenoid pathway mightbe affected but
the proteins detected in this study are the more generally related to it. Namely, the ACAT
acetyl-CoA C-acetyltransferase [EC:2.3.19] and the dxs—1-deoxy-D-xylulose-5-phosphate
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synthase [EC:2.2.1.7]. The more specific ones for the terpenoid backbone synthesis such
as ispf 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase [EC:4.6.1.12], the FDPS—
farnesyl diphosphate synthase [EC:2.5.1.1 2.5.1.10] and the GGPS1—geranylgeranyl diphos-
phate synthase [EC:25.1.1 2.5.1.10 25.129]. The decreased abundance in the presence
in E. lenta indicates that the lipid anchored proteins are of specific importance when the
bile stress on the membrane is more pronounced and after reduced membrane stress the
abundance is downregulated. Another putative resilience mechanism was found within
the proteins that led to the detection of the Streptomycin und Carbapenem pathway. Since
these antibiotics are known to be synthesized by fungi, we checked the involved proteins
identified in this study in more detail. It turned out that three out of the three proteins,
namely, inrfbA (glucose-1-phosphate thymidylyltransferase [EC2.7.7.24]), ofbB (dTDP-
glucose 4,6-dehydratase [EC:4.2.1.46]) and rfbC (dTDP4-dehydrorhamnose 3 5-epimerase
[EC:51.3.13]), are also part of the biosynthesis of thamnose, a deoxysugar critical for mem-
brane integrity. The last one, proA (glutamate-5-semialdehyde dehydrogenase [EC:1.2.1.41]
that leads to the production of L-proline is also an upregulated metabolite for both CA and
DCA stress. When considering the results from untargeted metabolomics, we, in particular,
putatively identified upregulated metabolites that were related to nuclectide metabolism,
namely inosine and adenine, in particular for A, caccae and C. ramwousm. These finding are
somewhat in contrast to what can be observed in the literature. Studies in the gram-positive
strain Ruminococcus bromii suggests that metabolites related to carbohydrate and nucleotide
metabolism to be downregulated during stress with DCA and LCA [17]. However, metabo-
lites were detected in intracellularly and it could, hence, be hypothesized that both are
true, although strains and methodologies are different so such comparisons should be
undertaken cautiously. 12-epideoxycholic acid is a metabolite of DCA as a consequence
of sequential oxidation and epimerization via 12a and 123 HSDH, and this metabolite
was upregulated in A, cacare cocultures. Additionally, we do see a high formation of
is0DCA from the measurements of oxidized and epimerized bile acids, but we could not
say which isoform it was. It could be hypothesized that with 12-epideoxycholic acid being
an upregulated metabolite, and given that we do detect isoDCA in A. caccae co-cultures,
that this isoform indeed is 12-epideoxycholic acid. Since this metabolite is only significantly
detected in A. caccae it could be expected that some combination of 12a and 12 HSDH
is present in this co-culture. Both A, caccae and E lenta carry high scoring homologues
to the recently annotated 12 HSDH, so determining whether one or both carry such an
enzyme remains to be studied [59]. The increased levels of inosine and adenine stem
from the degradation of adenosine, which was also reduced in co-cultures. The reduced
levels of adenosine in co-culture can be interpreted as an indication of less genotoxicity
in co-cultures, since these metabolites relates to the “Purine metabolism” pathway. There
have also been investigations into how Clostridiodies difficile (C. difficile) responds to bile
acid stress using proteomics and scanning electron microscopy (SEM). These investigations
revealed that CA induced changes in different pathways compared to CDCA, DCA and
LCA. Furthermore, it was also suggested that pathways related to butyrate fermentation
and Stickland fermentation of leucine were affected, as well as changes in morphology, such
as loss of flagella [63]. If these cbservations are considered in the context of our findings,
there is some overlap when considering changes in metabolic pathways and how bile acid
response is specific to the bile acid. The formation of oxidized and epimerized forms of CA
and DCA helps explain the reduced toxicity seen in strains such as C. ramosun. What drives
bile acid toxicity is their amphiphilic nature and their hydrophobicity, and it has previously
been described that iso forms of bile acids are less toxic [25,64]. The formation of 3-ketoDCA
could, thereby, help explain the differences seen in both growth and ZP of C. ramasuni, since
our data also suggests that E. lenta rather rapidly forms the keto and iso forms. We could
detect them after only & h of growth, whereas other studies have used 24 or 48 h [32,37,59].
Onxidized and epimerized bile acids are less likely to undergo dehydroxylation [32] and
performing these transformations may, thereby, further help bacteria reduce stress from
bile acids, both via formation of less toxic species and inhibition of formation or more toxic
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ones such as DCA and LCA. Specifically, what the influence of oxidized and epimerized
bile acids are remains to be elucidated, but it has been suggested that isoDCA increased
Foxp3 by acting on dendritic cells to diminish their immunostimulatory properties, with
3-oxoDCA exhibiting similar effects but to a lesser extent [65]. 3-ketoLCA has also been
shown to be a potent agonist for the Vitamin D Receptor [66]. It was only recently that
MBSCs were discovered and this finding (revolutionized the bile acid community since it)
brought light a new mode of action by the gut microbiota, namely re~conjugating bile acids
with novel amino acid residues [36]. Unconjugated bile acids are more toxic compared to
their conjugated counterparts [22,67]. Hence, the formation of MBSCs could be expected to
reduce toxicity. In our study we detect MBSCs in all cultures, see Supplementary Figure
59), where in particular Leu-C A seems to increase when co-cultured with E. lenta. However,
in our analyses the concentration of MBSCs in the medium supernatant is mostly in the
5-40 nM range even though the starting concentration was 600 uM for CA. With such
concentrations of MBSCs, it is not likely to reduce toxicity significantly. It remains to be
determined whether E. lenta facilitates formation of MBSCs or produces them by itself and
exactly by which means bacteria re-conjugate bile acids. The in vivo implications of MBSCs
remain to be elucidated, both locally and systematically,

5. Conclusions

In summary, our study reaffirms that a bacterium'’s response to bile acid stress depends
greatly on both the membrane organization of the bacteria and the hydrophobicity of the
bile acid. Co-culturing with E. lenta alleviated bile acid stress by modifying bile acids into
their oxidized and epimerized forms, which in particular was beneficial for C. rangsuni. An
interesting finding was growth behavior and ZP of the gram-variable strain A. caccae did
not seem to benefit from co-culturing; however, proteomic and metabolomic investigations
did indeed produce pronounced effects. The effects of co-culturing with E. lenta is strain
specific, as reflected in the differences in proteomic and metabolomic analyses between
strains. We found that E. lents is, indeed, a potent bile acid modifier, quickly forming
oxidized and epimerized forms of CA and DCA. Surprisingly, all strains from the SIHUMIx
maodel system seem capable of forming the novel MBSCs. Overall, our study highlights the
importance of conducting in depth molecular investigations, in order to gain insights that
are not immediately apparent. We conclude that the presence of potent bile acid modifiers
has a relevant impact on the microbe—microbe interaction and potentially, also, on the
microbiome-host interaction.

Supplementary Materials: The following supporting information can be downloaded at: hitps:/ /v
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To-Hydroxy -4 holesten-3-one
Bile acids

Cholester| To-hydrox ylase
Mazs spect ometry

The serum concentraton of Ya-hydroxy -4-cholesten-3-one (C4), a marker of cholesterol 7o-hydroxyl ase
activity, has recently become an attract ve diagnostic tool for researchers interested incholesterol andbile
acld metabolism. The rapidly increasing demand of C4 measurement led to the development of various
fast, mostly mass spectrometry-based analytical methods. Our alm was to compare four simple (Le.,
nol requiring solid phase extraction) extraction provedures {two “one-phase”, and two “two-phase”}
in terms of basic analytical performance amd their labouriousness. All methods exhibited comparalle
extraction recoveries (ranging from B8 to 97%) and inlra-assay precision (variation coefficients below
105}, and failed inthe vemoval of phosp holipids. Althoug hmarked differences were observed indesalting
and deproteination, all methods can be considered satisfactory. Simple acetonitrile precipitation can be
recomimended ifa fast extraction amd minimal hands-on time is preferred; while two-phase ammonitin

sulphate:acetoniirile extraction should be chosen when maxi mal de protei nation is required,

& 2016 Elsevier BV All rights reserved.

1. Introduction

Cholesterol 7a-hydroxylase (CYP7AL, EC 1.14.13.17) initiates
the neutral { classic) pathway of bile acid {BA) biosynthesis, which
also represents an important pathway for cholesterol elimination.
As conversion of cholesterol to 7o-hydroxycholesterol { catalyzed
by CYP7A1) is the rate-limiting step in this pathway and is under
negative feedbackregulation of BA, determination of CYP7A1 activ-
ity may not only serve as a marker of cholesternl homeostasis,
but also that of BA synthesis and/or malabsorption. The fact that
a liver hiopsy is needed for direct determination of CYP7A1 dis-
qualifies this parameter from clinical use in humans, and surrogate
markers are being used instead. Serum concentrations of 7o
hydroxy-4-cholesten-3-one {C4, BA synthesis intermediate) were

Abbrevigtions: au, athitrary units; BA. bile acid{ =); b To-hydrosy-4-c holesten-
J-one; CYPTAL cholesterol Ta-hydrosylase; 15, intemal standard; LC-MS. liguid
chromatography-mass spectrometry; MS, mass spect mmetry.

* Corresponding author.
E-mailaddress: mantinlenicekilflcunice (M. Lenidek L
! These authors contributed equally to this wark.

hitp: oo 10U 016 fLich romb 201 608046
1 5700232 /0 2016 Elsevier BV, All rights reserved.
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shown to reflect CYP7A1 activity almost three decades ago [1].
Since then, a wide varety of analytical methods for C4 determi-
nation have been proposed. With the rapid expansion of mass
spectrometry {MS)instrumentationinto clinical laboratories, tradi-
tional high-performance liquid chromatography with UV detection
is being replaced by liguid chromatography-mass spectrometry
(LC-MS) based methods. These offer higher sensitivity and speci-
ficity, allowing less thorough sample purification - solid phase
extraction, an essential step in former sample preparation, is now
often omitted, However, the simplified preparation of the sample
might be redeemed by shortening of the column's { and other hard-
ware) lifetime, signal suppression/enhance ment, and other adverse
effects. During development of the analytical method, an accept-
able compromise between simplicity of sample preparation and its
purity needs to be found. In this work, we compared the perfor-
mance of four simple serum purification procedures suitable for
C4 determination, taking into account the efficacy of removing the
main contaminants | proteins, anorganic salts, and phospholipids),
extraction recovery, and importantly, the ease of the entire proce-
dure. Those methods requining solid phase extraction, or any kind
of derivatization, were not considered,
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2. Materials and methods
2.1. Serum samples

A large pool of anonymous serum leftovers (from over 50 indi-
viduals, referred to the Department of Medical Biochemistry and
Laboratory Diagnostics for dete rmination of serum BA levels) were
collected {"low C4" sample). A "high C4" sample was created by
spiking the "low C4" with synthetic C4 {in methanol, final methanol
concentration below 0. 1% ); with mixtures of "highC4" and "fow C4"
in various ratios used for the preparation of all of the other sera

22 Chemicals

C4 (7o-hydroxy-4-cholesten-3-one) was obtained from Ster-
aloids (Newport, R, USA); deutenum-labeled C4 (d7-7 - hydroxy-
4-cholesten-3-one, internal standard (IS)) was purchased from
Santa Cruz Biotechnology (Dallas, TX, USA): acetic acid, chlo-
roform, methanol, sodium chloride, and ammonium sulfate {all
analytical grade) came from Penta (Prague, Czech Republic);
ammonium acetate (LC-MS grade), and tert-butyl methyl ether
{analytical grade) from Sigma-Aldrich (St Louis, MO, USA); ace-
tonitrile {LiChrosolv, isocratic grade) was obtained from Merck
(Darmstadt, Germany); methanol {LC-M5 grade) from Biosolve
BV (Valkenswaard, The Netherlands); diethylether (HPLC grade),
and heptane (Chromapur grade) from Chromservis (Prague, Czech
Republic): and iodine {resublimed) came from Lachema {Prague,
Czech Republic).

23. Extraction procedures

Sample purifications were performed according to the rele-
vant publications with slight modifications; reagent volumes were
scaled up or down to process 100 pL of serum. Method "A" [2]:
100 L of serum and 40 pL of S were mixed with 320 pL of ace-
tonitrile, vortexed for 1 min, centrifuged for 15 min at 13000g, after
which the supernatant was collected. Method "B [3]: 100pL of
serum and 40 pL of 15 were mixed with 2 mL of methanol:tert-butyl
methyl ether:chloroform mixture {1.33:1:1 by vol), vortexed for
1 min, incubated 30 min at room temperature, vortexed again, and
then centrifuged for 10 min at 3000g; the supematant was then
collected. Method "C" [4]: 100pL of serum and 40pL of IS were
mixed with 500 pL of chloroform:methanol mixture {2:1 by vol),
vortexed for 1 min, and centrifuged for 3 min at 3000g The upper
phase was discarded, 200 p.L of 125 mM NaCl in 50% methanol was
added to the remainder, vortexed, and centrifuged as previously.
The lower phase was collected. Method "D" [5]: 100 pL of serum
and 40 pL of IS were mixed with 350 pL of water, 1 mL of acetoni-

Tahle 1
Analytical performance of various extraction methods.

trile and 1 mL of ammonium sulfate (400g/L), vortexed for 1min,
incubated for 30min, and centrifuged for 25 min at 2100g at 4°C
(rotor brakes were disabled ). The upper phase was evaporated at
45°C under a gentle stream of nitrogen, resuspended in 200 pL of
methanol, vortexed, and incubated for 10 min. Finally, the sample
was centrifuged for 2 minat 11,000g, and the supematant was col-
lected, lsolated samples from all methods were dried at 60 Cunder
nitrogen, resuspended in 80 pL of 75% methanol, and 20 L were
analysed using LC-M5.

24, LC-M5 analysis

The sample was separated on a HPLC system { Dionex Ultimate
3000, Dionex Softron CmbH, Cermany) equipped with a Hypersil
COLD column (150 = 2.1 mm, 3 .um, Thermo Scientific, USA) and
SecurityGuard column {Phenome nex, USA ). The mobile phase con-
sisted of water, methanol, and ammonium acetate; flow rate was
0.3 mL/min, with the column chamber set to 40 C. While ammo-
nium acetate concentration at all times was kept at 0.1 {wiv),
methanol concentrations (v/v) were as follows: 1-8 min 82-90%;
B-10min 90%; 10-12min 99%; 12-17 min 82%. To reduce con-
tamination of the detector, the HPLC flow was allowed to the
detector from 5 to 10.5min only. C4 was detected in a triple
guadrupole mass s pectrometer (TSQ Quantum Access Max with H-
ESI I probe, Thermo Fisher Scientific, Inc., USA) operating in SRM
mode. The heated HESI-II probe for MS detector was run under the
following conditions: spray voltage +3000V, vaporizer tempera-
ture 350°C, sheath gas 38 arbitrary units {au), auxiliary valve flow
Bau, ion sweep gas pressure 1.2 aw, capillary temperature 320 °C.
Tubhe lens voltage was set at 92V, with the skimmer offset voltage
not used. The tuning of MS/MS transitions was performed by the
combined infusionof C4{10mg/L inthe mobile phase, 20 pL/min)
and the mobile phase (400 plfmin); collision gas {Ar) pressure
was set to 1.5mTormr. Monitored transitions (collision energy ) were
as follows: C4 [4014-177.3 (25V); 4014 3836 (18V)], IS
[4084 — 177.3 (25V); 408.4— 390.6 {18V)]. When needed, the
elution of phospholipids were monitored as mz 184 — 184 (7V)
andm/z 104 — 104 {7 V) [6].

2.5, Efficacy of deproteination and desalting

One hundred pL of serum were processed (using the methods
in Section 2.3, above). For protein determination, final evaporates
were dissolved in 100l of phosphate-buffered saline (overnight
at 4 -C) and measured using DC Protein Assay (Bio-Rad, Hercules,
CA USA)according to the manufacturer's instructions, For saltcon-
tent determination, evaporates were dissolved in distilled water,
and conductivity was measured using a conductivity flow cell (Bio-

Residual proteins (X1

Residual conductivity (%4

Extraction recovery (%] Intra-assay precision (as OV

A 027 L0002 BO9B 438
B 102 40,07 B55418
{1 026 4:0.10 084006

I} Q08 L0002 2394049

9545 63%
T2%
33%
o713 215
25%
Tk
L TBY
T2%
a3%
BELT T5%
2%
AB%E

4 Performed in triplicates.
& Performed using six different serum samples (C4 levels within 16-200 pg/LL
Y Analysis in pentaplicates on three C4 levels (28, 120, and 228p.g/1).
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Logic LP System, Bio-Rad, Hercules, CA, USA). All analyses were
performed in triplicate and expressed as a % of the initial content
in the original serum sample.

2.6, Phospholipid analysis

To assess possible differences in phospholipids removal, semi-
guantitative analysis of the phospholipids was employed. A total
of ten samples purified by all extraction methods were analysed.
Samples were dissolved in 40 pL of toluene:methanol mixture (9:1
by vol), separated using thin layer chromatography [stationary
phase: 20 x20cm TLC silica gel 60 plates (Merck KGaA, Damm-
stadt, Germany); mobile phase: heptane-diethylether-acetic acid
(85:15:1 by volume)], detected using iodine sublimation, and visu-
ally inspected. A representative chromatogram is shown in the
Supplementary Figure.

27. Imprecision, extraction recovery

Intra-assay imprecision (calculated as the coefficient of vari-
ance) was based upon 5 measurements of three different serum
samples {with C4 concentrations of 28, 120, and 228 pg/L). To esti-
mate extraction recovery, 100 pL of sample was spiked with 3 ng
of C4, either before or after extraction. It was calculated as: [C4]

s.am.ple.iplIaed.behreexu'amon”c‘ﬂ samplés pikeda Frerextraction using sixdiffer-
ent serum samples {C4 concentration ranging from 16 to 200 pg/L).

2.8. Estimated time requirement

Total and "hands-on” time needed for processing one sample
was estimated by two independent researchers familiar with all
methods. Their estimates were then averaged.

Il Phospholipids

3. Results and discussion

Allmethods proved satisfactory performancein the most impor-
tant sample purification step - deproteination; residual protein
content was reduced below (or to) 1% of the initial protein load
{Table 1). Even though all methods were satisfactory, some of them
were more efficient than the others, Method"D", dueto protein pre-
cipitation in the presence of ammonium sulfate, proved to be by far
the best in this respect - approximately 3 times more potent than
methods "A" or *C", and over ten times better then method "B,

Phospholipid content was not sufficiently reduced by any
extraction procedure { Supplementary Figure) and possible C4 sig-
nal suppression {which can affect accuracy even with the use of
isotopically labeled IS [ 7] ) should be prevented by sufficient spatial
separation. A methanol based mobile phase {rather than acetoni-
trile based) and a higher column temperature would favour early
phospholipid elution [&]. In our case, most of phospholipids were
eluted before C4(Fig. 1).

Not surprisingly, the efficacy of desalting (estimated as conduc-
tivity) was superior in the "two-phase purification” methods (*D”
and"C", were capable of removing about three quarters, and almost
all of the salts, respectively), when compared to "one-phase” purifi-
cation methods ("A” and "B", removing less than one quarter of the
salts ) {Table 1)

On the contrary, one-phase extraction methods exhibited
slightly better extraction recoveries{ Table 1 ). However, the extrac-
tion recovery of even the least efficient method (D", BB%) can be
considered as sufficient. Intra-assay precision was always below
10% at all of the C4 levels tested, which seems to be acceptable tal-
ing into account the fact that inter-injection precision (repeated
injection of the same sample) was 3.1%,

The total estimated time of purification varied from 24 min
(method "C") to 102 min {method "D"). The estimated "hands-on”

mz 1040+ 104.0

Intensity (x1000)

Phospholipids — mix 184,0—+184.0

IS m/z 408 4—300.6

Fig.1. Elution of phos pholipids duning a typical run.

B 10 12 1 16

Timse (min)

The vast majority of phospholipids{ top panels) are eluted before C4 and IS (bottom panels] Sample was purified using method *A”. For better mapping of the elution profile,
Ao was allowed to the detector from 3 to 13 min (in a typical £4 analysis we monitor only 5-10.5minL
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time (much more important, as it increases with the number of
samples) is 2 min with method “A", while the other methods are
maore laborious {5 min for methods "B" and "0", and 7 min for "C").
It should be noted that these are only estimates, and that significant
person to personvanability should be expected.

Taken together, no evident superiority was found for any ofthe
tested methods, All of the methods proved to be sufficiently reli-
able, and a researcher needs to consider the finest details when
choosing the preferred procedure. In the most commaon situation,
when C4 is to be measured in the plasma/serum sample, a smart
method by Camilleri et ab {"D") [5] should be considered due
to analytical performance - specifically excellent deproteination.
However, certain laboriousness and time consumption represent a
clear handicap over simpler "one-phase extraction” methods, Ace-
tonitrile precipitation {referred here as method "A") combines very
good analytical performance withexcellent simplicity, and thus can
be suggested as a method of choice for evervday use (methanol
deproteination, in principle equal to acetonitrile precipitation, was
not tested here as it should vield samples with a higher phospho-
lipid content [B]). Additionally, this extraction method proved to
be reliable for quantification of BA [2|, which offers a great advan-
tage, since the C4 and a BA spectrumare often studied together. The
method by Pellegrino et al. [3] ("B"), exhibiting supenor recovery
of all lipid classes, would be useful specifically in studies focused
onan analysis of the global serum lipidome, where lipid substances
other than €4 are not considered as contaminants,

When C4 is to be measured in matrices with high salt con-
tent (e.g.. NaBr solutions after lipoprotein ultracentrifugation), in
abundant samples with very low C4 concentration, or other "com-
plicated” fluids {e.g., bile), the chloroform:methanol extraction
("C"), seems to be the method of choice due to the almost perfect
desalting and the ease of C4 concentrating into chloroform. For the
most complex matrices (e.g, tissue homogenates or cell cultures),
more thorough purification might be required. In such samples,
a combined chloroform:methanol and solid phase extraction [4]
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givesreliable results (data not shown). [n rare low C4 samples, one
would want to turn to more laborious methods, where derivatiza-
tion ensures very high sensitivity [9].

To conclude, simple acetonitrile precipitation {"A") appears
to be the most appropriate procedure for C4 determination in
serum {ammonium sulfate:acetonitrile extraction (*D") being the
close second ), while methanol:tert-buty | methyl ether: chloroform
extraction (“B") is not the method of choice.
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Abstract

Background & Aims: Severity of portal hypertension is usually quantified by measur-
ing the hepatic venous pressure gradient (HVPG). However, due to its invasiveness,
alternative markers are being sought. Bile acids (BA), being synthesized, metabolized,
and transported by the liver, seem to have the potential to serve as endogenous mark-
ers, The aim of the present study was to determine whether serum BA reflect the
severity of portal hypertension.

Methods: We correlated serum concentrations of individual BA with portal pressure
{as HVPG) in an exploratory cohort of 21 cirrhotic patients with portal hypertension.
The predictive potential of selected candidates was then confirmed inan independent
validation cohart (n = 214). Additionally, nine previously published noninvasive mark-
ers were added to the stepwise logistic regression model to identify the most relevant
ones, which were eventually used to create a prognosticindex of portal hypertension.
Results: Serum levels of taurochenodeoxychalic acid (TCDCA) significantly correlated
with HVPG and showed a high potential to predict clinically significant portal hyper-
tension (HVPG = 10mm Hg: AURCC = 0.97 +0.04), This was canfirmed in the valida-
tion cohort [AUROC = 0.96+ 0.01). The predictive index (constructed based on AST/
ALT, spleen diameter, and TCDCA concentration) was able to distinguish clinically sig-
nificant portal hyper tension with $5% sensitivity and 76% specificity.

Conclusions: TCDCA seems to be a promising noninvasive marker of clinically signifi-
cant portal hypertension. Its predictive potential may be further enhanced when it is
combined with both the AST/ALT ratio and spleen diameter.

KEYWORDS
bile acids, cirrhiosis, noninvasive markers, portal hypertension, taurochenodeox ycholic acid

Abbr eviations: ALT alaine sminoiransfearase AST, mpariate sminotr ansfer ses AURDC. area under the RO BA_ bile acid{s): CA chafic acid CDCA chenodeasycholic acd; GCOCA

gheadhemodeaxychalic acd; HVPG, hepatic venous pressare gradient ROC, receiver operator characterstic ; TODCA. taurschenadeaxycholic acd
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1 | INTRODUCTION

Portal hypertension is one of the maln conseque nces of cirrhosis and
is responsible for its most severe complications. The severity of por-
tal hypertension 1s useful a5 both a diagnostic and a5 a prognostic
tool, with important therapeutic '|r|".|:a|'|c.'ati1:>n~;.1 Although measure-
ment of the porto-sys temic gradient by cat heterization of the hepatic
veins (hepatic venous pressure gradient, HVPG) is considered the
gold standard, > this minimally invasive procedure is only available
in specialized centers. Therefore, noninvasive surrogate marker{s) of
portal pressure are in the spotlight of current research. Bile acids
[BA) are synthesized in the liver, conjugated with either glycine or
taurine and sent to duodenum as a crucial component of bile. In the
distal ileum, conjugated BA are effectively resorbed, while a small
fraction of BA that spillk over into the colon is deconjugated and
may be further modified and partially resorbed. Resorbed BA return
to the liver via portal vein for re-conjugation and re-secretion. For
more detalled information about BA, we refer the reader to one of
the many review articles available, eg. Refs. [4,5),

Portal hypertension leads to the formation of porto-systemic
collaterals, and diverts portal blood from the lver to the systemic
circulation.® If the amount of blood that bypasses the liver through
these shunts was proportional to the portal pressure, analytes with
a high first-pass effect should markedly increase in the systemic
blood; thus reflecting the portal pressure. BA, endogenous com-
pounds that undergo efficient enterchepatic circulation,” appear
to be logical candidates. Moreover, some BA were described as
vasoactive molecules in animals three decades ago.®” Recently, BA
have been confirmed as an important facter in the pathophysiclogy
of the dynamic component of portal hypertension in both animal
models and in humans. ™ Therefore, the aim of our work was to find
out whether the serum concentrations of some BA may reflect the
portal pressure, and could be used as a surrogate marker of portal
hypertension,

2 | MATERIALS AND METHODS
21 | Study subjects

In the present study, we Investigated cirrhotic patients with por-
tal hypertension, who underwent HVPG measurement at the
4th Department of Internal Medicine, First Faculty of Medicine
and General University Hospital in Prague. Most of the subjects
were already induded In our previous sLud\,l_n The blood samples
from the portal veln were collected during simultaneous hepatic
wvein catheterization and transjugular liver biopsy when the right
branch of the portal vein was punctured. Peripheral blood sam-
ples were taken at the same time as the invasive procedure. Serum,
plasma samples were stored at -BO?C until needed. The study was
approved (No. 126/164) by the Ethics Committee of the General
University Hospital in Prague, and all patients gave thelr written
informed consent.
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Lay summary

To identify a noninvasive surrogate marker of portal hy-
pertension, we correlated HWVPG values with serum con-
centrations of individual BA in an exploratory cohert of 21
cirrhotic patients, We demonstrated that the serum con-
centration of TCDCA can predict clinically significant por-
tal hypertension {HVPG z 10mm Hg} in cirrhotic patients
with high sensitivity. This was further confirmed in an in-
dependent validation cohort of 214 cirrhotic patients. The
predictive power of TCDCA may be further improved by its
combination with the AST/ALT ratio and spleen diameter.

2.2 | Portal pressure measurement

The portal pressure was measured during hepatic vein catheteriza-
tion {as the HVPG) using the classical wedge technigue.™® Briefly,
after an overnight fast, the patient was given local anaesthesia, and
a 7F catheter introducer was placed in the right jupular vein using
the Seldinger technique. HVPG was calculated as the difference be-
tween the wedged hepatic venous pressure and the free he patic ve-
nous pressure that was measured with a 7F balloon-tipped catheter
{B. Braun Melsungen AG, Melkungen, Germany).

2.3 | Ultrasonography of the spleen

All patients had undergone a standard abdominal ultrasound with
a Siemens Acuson 52000 ultrasound system with a 6C1 HD con-
vex ultrasound probe (Siemens, Munich, Germany). The spleen was
measured along its maximal lengitudinal plane, placing its hilum at
the center of the imape during recording of the maximum spleen
diameter.

2.4 | Biochemical analyses

Upon addition of 2 mix of nine deuterium-labelled internal stand-
ards and acetonitrile deproteination, the BA were quantified using
liguid chromatography-tandem mass spectrometry, as previously
deseribed!? The following BA standards were used: cholic acid {CA),
chenodeowycholic acid (CDCA), glycocholic acid, deoxycholic acid,
lithocholic acld, tavrodeoxycholic acld, glycodeoxycholic acid, gly-
colithocholic acid, glycoursodeoxycholic acid, hyochalic acid, tauro-
chelic acid, taurclithocholic acid 3-sulfate, and ursodeoxycholic acid
{all From Sigma-Aldrich, 5t. Louis, MO, USA}L the a-muricholic acid,
glycochencdeoxycholic acld (GCDCA), allechelic acid, murideoxy-
cholic acid, i-muricholic acid, a-murichalic acid, tauro-a-murichalic
acid, tauro-fi-murichelic acid, taurochenodeoxychalic acld (TCDCA),
and tavroursodeoxycholic acid were from Santa Cruz Biote chnology,
Inc. {Dallas, T, USA); and the hyodeoxycholic acid was from Supelco
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{Bellefonte, PA, USA). Some of the deuterium-labelled standards
{d5-taurocholic acid, d5-glycocholic acid, d4-GCDCA, and d4-
TCDCA) were obtained from 5anta Cruz Biotechnology Inc, {Dallas,
TX, USA) and others {dd-chenodeoxycholic acid, dd-lithocholic
add, d4-CA, dd-ursodeoxycholic add, and dd-deoxycholic acid}
were from Sigma-Aldrich (5t. Louks, MO, USA} The osteopaontin
wias guantified using a Human Osteopontin Quantikine ELISA kit
{RED Systems, Minneapolis, MN, USA} according to the manufac-
turer's instructions. Other biochemical parameters: hyaluronic acid
{Hyaluronic Acid LT Assay, Fujifilm, Wako Chemicals Europe}, cre-
atinine (Creatinine Jaffé Gen.2), bilirubin (Bilirubin Total Gen.3), as-
partate aminotransferase (AST, ASTPM), alanine aminotransferase
{ALT, ALTPMY), albumin {ALB2} {all obtained from Roche Diagnostics,
Risch-Rotkreuz, Switzerland) were measured wsing an automatic
Cobas BO00 analyser,

25 | Statistical analyses

To determing the relationship between variables, the Spearman cor-
relation coefficient was used. The Mann-Whitney or Wilcoxon test
was used for comparison of continuous variables of independent or
dependent samples respectively. Fisher exact test was used for dis-
crete variables of independent samples. The Bonferroni correction
wias used to compensate for multiple comparisons. For easier inter-
pretation, the individual p-values were corrected rather than the sig-
nificance threshold. Stepwise {forward) logistic regression was used
to find the relevant predictors for portal pressure above 10mm Hg.
Based on their i estimates, formula for “portal hypertension index”
wias constructed, Analyses were performed using either Prism B0.1
software {GraphPad, San Diego, CA, USA} or JIMP 15.2.0,201% {5AS
Institute Inc., Cary, NC, USA). Receiver operator characteristic (ROC)
analyses were performed using a web based calculator p-values
<05 were considered as significant throughout the study.

3 | RESULTS

3.1 | Baseline clinical characteristics of patients

A total of 4B7 cirrhotic patients underwent the HVPG procedure at
our department between 2007 and 2020, After exclusion of patients
urdergoing ursodeoxychalic acid therapy, those with incomplete
clinical data, hepatocellular cancer, or cholangiocarcinoma, 255 pa-
tients were available for analysis. Most of the patients were men
{65%), median age 58 years {Inte rguartile range 48 -44) with ethylic
aeticlogy (72%). The indication for portal vein catheterization was
either to assess the severity of portal hypertension {78%) or to per-
form simultaneous transjugular liver biopsy and hemodynamic eval-
uation of portal hypertension {22%). Exploratory cohort consisted of
patients {n = 21} from whom both portal and systemic {taken from
the vena caval blood samples were available, while patients from
whom only peripheral blood samples were avallable {ie., lacking
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portal blood sample, n = 214, 20 patients with aetiology of cirrhosis
other than ethylic, hepatitis B, C or NASH were excluded) formed
the validation cohort. See Table 1 and Figure 1 for basic description
of both cohorts and the study flowchart, respectively.

3.2 | BAdifferencesin the portal and
peripheral blood

In an effort to identify the BA with the greatest first-pass effect {a
promising candidate marker for portal hypertension), we measured
23 BA species in the portal and peripheral serum from our explora-
tory cohort. The mean uptake of Individual BA species was anly
11%+0.44 and was virtwally independent of the number of hydroxyl
groups or its conjugation status (Figure 2, Table 2},

3.3 | GCDCA and TCDCA predict HVPG

As the previous analysis did not reveal a clear candidate, we tested
the correlation between the HVPG values and the concentrations
of individual BA in ouwr exploratory cohort. Elght rare BA |(detect-
able in less than 50% of the patients) were not considered, while the
remalning 15 BA species were further analysed, Of these, GCDCA
and TCDCA correlated significantly with HVPG (Table 51, Figure 51).
We used ROC analysis to assess thelr potential to predict clinically
relevant HVPG values {10, 16, and 20mm Mg, reflecting: dinically
significant portal J'l'w:nart|5|'|si|3n‘|,"'“'a a risk of massive bleeding, and a
123 The poertal
pressure of 12mm Hg {as a risk factor for variceal bleeding} could

risk of potentially fatal variceal bleeding, respectively

not be tested, as none of the patients in our exploratory cohort were
within the HVPG 10-12mm Hg range (Table 1) Both BA showed
a high predictive potential to identify patients with HVPGz 10mm
Hg: The area under the ROC curve (AURCC) was 0.97 +0.06 and
0%6+0.07 for TCDCA and GCDCA, respectively {Figure 3). The
predictions for other portal pressure thresholds were weaker.
The AURCCs for TCDCA and GCDCA were as follows: 0.78+0.1
and 075+0.11 for 16mm Hg; and 0.%2+0.0B and 0.66+0.11 for
20mm Hg, respectively. In order to confirm the ability of TCDCA
and GCDCA to identify patients with HVPG = 10mm Hg, we re-
peated the ROC analysis in the Independent validation cohort of 214
subjects. Both BA proved to be strong predictors: the AUROCs for
TCDCA and GCDCA were 0.96 +0.01 and 0.92 +0.03, respectively
{Flgures 3 and 4},

3.4 | TCDCA versus other non-invasive markers

We had wondered whether the predictive potential of BA could
be strengthened by combining them with other previously de-
scribed non-invasive markers. Therefore, we correlated the HVPG
values in our validation cohort with serum albumin®’ hyaluronic
acid,”® bilirubin®® AST/ALT ratio,®® creatinine,** osteopontin® and
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TABLE 1 Basiccharacteristics of exploratory and validation cohorts

Ape [years]
Men
HWPG [mm Hgl
HWPG distribution

<10mm Hg

10-11mm Hg

12-15mm Hg

14-19mm Hg

=20mm Hg
Child-Pugh scare

A

B

c

Unknaown
Astiology of crrhosls

Ettlic

HCY

MASH

HBEY

AlH

Porphyria
Albumin [g/L]
ALT [kt /L]
AST [iskat/L]
AST/ALT H
Bilirubin [lemad /L
Creatinine [iermal /L]
Hyalurenic acid [ug/L
Osteapontin g/l
Spleen diameter [mm]

Exploratory cohort Validation cohort
{n=21) {n = 214)

51 (47-56) 58 149-64)

18 (88%) 147 (6B}

15 {12-19) 16112-20}

5 [24%) 321{15%)
0 {o%) 1% (9%

7{33%) 52 {24%)
5 {24%) 52 {24%)
4 (19%) 5% (263)
41{19%) 108 {50%P
4 {19%) &7 (a1%)
£129%) 31 {14%)°
71{33%) B (4%)

15 [70%) 169 (79%)
1{5%) 20{9.3%)
1{5%) 2019.3%)

2 {10%) 5{2.3%)
1 {5%) =
1{5%) -
28 {25-36.1) 35 4 {29.8-40)
0.5 {0.33- 0.66) 0,57 (0.4-0.84)°
0.78 {0.68-1.12) 0.83 {0.6-1.26)"
189 {15-2.3 1.45{1.1-2)8
398 (219-66.6) 25.3(14.1-43 61"
79.5{56.3-88) 78.5 {65-93)
- 177.6 (77.6-452.3)°
- 102 1{67-170.7

135 {120-150)°

Abbrevistions: ALT, slanine aminotransferase; AST, aspartate aminotransferase; HBV, hepatitis B HCV, hepatitis C; HVYPG, hepatic venous pressure

gradient; MASH, non-alcohalic steatohepatitis.

*No significant dif ferences between cohorts were observed except for bilirubin and Child-Pugh score, which were higher in the explor atory cohort
{uncorrected p= 025 {Mann-Whitneyl and p = .014 (Fisher exact), respactively),

BSome clinical data are not available in the validation cohort. The number of cases is as follows: albumin {n = 193); ALT, AST, ALT/AST |n = 196);
bilirubin {n = 195); ereatinine {n = 194); hyaluronic acid {n = 172); spleen diameter {n = 190). Data presented a5 median {interquartile range) or n (%)

measurement of the spleen diameter (42 patients with incomplete
data were excluded, Figure 1). Apart from creatinine and AST, all the
parameters correlated significantly with the degree of portal hyper-
tension {Table 3). From the parameters described above, the most
important predictors of clinically significant portal hypertension
{HVPGz 10mm Mg} were selected using stepwise logistic regression
analysis based on their p-values (Table 52). Subsequently, the *portal
hypertension Index” was created from the [§ estimates of these three
parameters: AST/ALT, spleen diameter, and TCDCA {Table 531 The
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ROC analysis was used toset up the threshold with a high sensitivity
and an acceptable specificity. As a result, HYPG above 10mm Hg
can be expected in a patient if:

Spleen diameter| mm)| AST
== 23% = + 0.6 % TCDCA|pmol /L] = 6

In this setting, the sensitivity was 5%, and the specificity was 76%
{AURDC = 0.93+0.04).
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FIGURE 1 Study flowchart. o reduce
heteropgeneity of the validation cohort,
patients with rare or unclear aetiology of
cirrhosis were excluded. Rare etiologies
include: autolmmune hepatitis, Wilson's
disease, porphyria, amyloidosis, cardiac
cirrhosis, congenital fibrosis, drug induced
liver injury, hemochromatosis, primary
billary cholangitis, and primary sclerosing
cholangitis. Extended parameters

were those needed for PHI calculation.
HCC-hepatocellular carcinoma; PHI-
portal hypertension index; UDCA-
ursodeoxycholicacid.

PHI cohort

172

o T

4 | DISCUSSION

In the present study we analysed the relationship between serum
concentrations of individual BA species and the portal pressure in
patients with cirrhotic portal hypertension. We found that GCDCA
and TCDCA correlated significantly with the portal pressure {as
measured by HVPG); in fact, even better than most of the previously
described non-invasive markers of portal hypertension {Tables 3 and
51). Importantly, the serum levels of both BA showed a surprisingly
strong predictive power for clinically significant portal hypertension
{HVPGz10mm Hg), with AUROC values above 0.9, which was ako
confirmed In the validation cohort. This seems to be in agreement
with the results of Hayashi et al.** who demonstrated a conside ra-
ble level for prediction of portal hyperte nsion of 200mm H,O {being
roughly equivalent to 15 mm Hgj by total serum BA, determined en-
zymatically. By combining TCDCA, spleen diameter, and the AST/
ALT ratio we created a *portal hypertension index” that can indicate
clinically significant portal hypertension with a high sensitivity and
an acceptable specificity, as well [25% and 76% respectively). Why
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does serum TCDCA increase along with portal hypertension more
than other BA? In theory, In patients with liver disorders leading to
decreased biliary BA secretion, one would expect a relative increase
in the primary over secondary BA {espedally thelr conjugates); for
example, as observed in patients with cirrhosis or non-alcoholic
fatty liver disease.**** Our results {at least partially) Fulfil such an
expectation {Table 1). In fact, conjugates of both primary BA (CA and
CDCA) correlated with portal hypertension in our exploratory co-
hort; although the correlation of those derfved from CA was weaker
and did not pass the strict Bonferroni correction. 5til, the observed
CA:CDCA ratio was approximately 1:3, which is in striking contrast
to the normal ratie of about 3:1.2° Although the relative excess of
CDCA over CA derlvatives seem to be a common feature of liver
cirrhosis {fibrosis)*® 22
the mechanism behind this remains somewhat enigmatic. As the

as well as non-alcoholic fatty liver disease 2

dif ferences in the first pass effect of individual BA were minimal in
our cohort {surprisingly, the Iver uptake of all BA having been much
lower than expected), with either enhanced renal excretion or sup-
pressed synthesis of CA likely being involved. The renal excretion
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100 TABLE 2 BAspectrum in exploratory cohort
Portal vein 'M.ma
504 [pmol/L] [pmol/L}
£ 5 I =21) (n=21)
%: CA, 0.2{0.2-0.5) 0.2{0.1-0.5)
=9 .50 chca 0.4{0.2-1.3) 0.410.2-1.2)
-
v DCA 0.3{0.1-0.6) 0.2 {0.1-006)
001 » GCA 3.2{1.8-59) 29{12-4.3)
-150+ ‘ Gepea 10.6(73-179) 10.3(5-15.1}
20T T T T T T T T T T GDCA 0.2{0-0.6) 0.1 {0-0.4)
0?'0?,{0?'0?'0?'0?0%'?0?0?020?0?0%? GLCA 0.140-0.1) 0.1 1{0-0.1)
AN C @GR GUDCA 0.3{0.2-0.5) 0.4{0.2-06)
LCA 0.1{0.1-0.3) 01{01-0.2)
FIGURE 2 Hepatic uptake of individual BA. The uptake was MDCA 0.210.2-0.3) 0.210.2-0.2)
determined as the relative decrease in the concentration of
individual BA In the vena cava compared to portal Blood. Data {from TCA 0.810.7-2.3) 0.710.5-1.7)
the entire exploratory cohort, n'= 21}are presented as the median, TCDCA 4.1{1.4-8.2) 31.0{0%-57)
interguartile range {box}, and minimum-maximum (whiskers). Only TOCA 0.1(0-0.6) 0.4 (0-0.4)
BA that were at least detectable in 50% of the patients were
TLCA-S 0.4{0.4- 0.6 0.4 {0.4-0.4
analysed. BA, bile acidis); CA, cholic acid; CDCA, chenodecxychalic { 4 \ )
acid; DCA, decxycholic acid: GCA, glycocholic acid: GCDCA, unca 0.1{0-0.1) 0.1{0-0.1)
glycochenodeoxycholic acld; GDCA, glycodeoxycholic adid; Othar 0.2{0-0.4) 0.2{01-0.5)
GLCA, glycolithocholic acid; GUDCA, glycoursodecxychalic Total BA® 32.2(19.5-377) 26,2 (14.1-39.2)
acid; LCA, lithochaolic acid; MDCA, murideoxyeholic acid; TCA, A S i
taurecholic acid: TCDCA, tatrochenodeaxycholic acid; TDCA, 1005 o200
taurodeoxycholic acid; TLCA-S, taurolithocholic acid 3-sulfate; Glyca Tauro 2.9{1.4-5.2) 313{13-44)
UDCA, ursodenxycholic acid. conjugates
Primary/secondary BA  26.5(5.9-34.3) 14.3{5.5-30.6)

of a BA largely depends on its polarity. The more polar trihydroxy
CA binds to serum albumin to a much lesser extent than does dilvy-
droxy CDCA; so its renal clearance is about 3 times higher. On the
other hand, CDCA s preferentially sulfated compared to CA, leading
to faster renal elimination; and the net renal excretion in patients
with liver cirrhosis seems to be balanced or even higher for CDCA *?
There are two cruclal steps in the classical pathway of BA synthe-
sis: 7a hydroxylation {catalysed by cholesterol 7a-monooxygenase,
CYP7A1}is theinitial and key regulatory step; commaon for both pri-
mary BA. On the other hand, the action of sterol 1 2-a-hydroxylase
{CYPBB1) directs synthesis exclusively towards CA, thereby de-
termining the CASCDCA ratio. The lower the CYPBB1 activity,
the lower the proportion of CA. Bath enzymes are under negative
feedback control by BA; however, the mechanisms seem to differ.
CYP7A1 has been shown to be primarily controlled by Intestinal FXR
signalling {via FGF19/FGF15}, while hepatic FXR predominantly sup-
presses CYPEB (via SHPL*? In patients with portal hypertension (or
more penerally in patients with decreased biliary BA output and el-
evated serum BA levels) hepatic FXR signalling should predominate
over intestinal FXR signalling, leading to the suppression of CYPEB1
and lower CA formation. However, it should be noted that this
tissue-specific action has only been studied in mice, and rodent ex-
periments can not always be easily translated to humans, especially
in the case of BA. Basal expression of Cyp7al and Cyp8bl in tissue-
specific Fur knock-out animals also contradicted a later study.m
The recent observation that BA-driven LIX1L overexpression leads
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Note: Datapresented a5 median {interquartile range).

Abbreviations: BA, bile acidisl; CA, cholic acid; CDCA,

chanadeoxy chalic acid; DCA, deaxycholic acid, GCA, glycocholic acid;
GCDCA, glycachenodeoxychalic acld; GDCA, glycodeonycholic scid;
GLCA, glycolithocholic 2cid; GUDCA, glycoursodeoxycholic acid; LCA,
lithoc halic acid; MDCA, murideoxychalic ackd; TCA, tauracholic acd;
TCDCA, taurachenodeaxycholic acid; TDCA, taurcdeoxychelic acid;
TLCA-5, taurolitho cholic acid 3-sulfate; UDCA, ursodeoxycholic acid.
"The sum of all detectable BA species,

PRatio calculated from CA (CDCA) and their conjugates,

to upregulation of both CYPFAL and CYPBBI {with the effect more
pronounced with CYP7A1) may also partially explain the preferential
synthesis of CDCA over that of CAY

There are several limitations in our study. First, the small number
of subjects inthe exploratory cohort {due to the unavailability of the
portal blood sample) may have led to other relevant markers being
overloocked. The uneven distribution of HVYPG values within our co-
horts did not allow us to reliably assess the role of BA in the predic-
tion of portal hypertension other than =z10mm Hg. Mext, the vast
majority of patients in our cohorts had portal hypertension of ethylic
aeticlogy: therefore, perhaps the results can notbe directly inferred
to work with patients with portal hypertension of other etiologies.
Although the predictive performance of TCDCA does not seem to
be aetiology dependent, this remains to be proven in a larger co-
hort study. The high proportion of alcohol-abuse-related portal hy-
pertension subjects in our study may have markedly influenced the
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FIGURE 3 TCDCA and GCDCA as predictorsof clinically significant portal hypertension. ROC analysis showed excellent predictive
power of both TCDCA {panel A}and GCDCA {panel B) for differentiation of cirrhotic patients with HVPG= 10mm Hg. Curves based both on
exploratory cohort(n = 21) as well as validation cohort{n = 214} are shown. AUROC, area under the ROC; GCDCA, glycoche nodeoxycholic
acid; HVPG, hepatic venous pressure gradient; ROC, receiver operating characteristics; TCDCA, taurochenodeoxycholic acid.
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FIGURE 4 Serum concentration of TCDCA and GCDCA
according to portal hypertension severity, The concentration of
TCDCA and GCDCA markedly differs in cirrhotic patients with/
without clinically significant portal hypertension (HVPG=10mm
Hg). Data {from the validation cohort, n= 214} are presented as
the median, interguartile range (box), and minimum-maximum
{whiskers), GCODCA, glycochenodeoxycholic acld; HVPG, hepatic
venous pressure gradlent; TCDCA, taurochenodeoxycholic acid.

proposed *portal hypertension index”, as the AST/ALT ratio (used to
calculate the index) is known to be altered in patients with a pattern
of alcohol abuse,™ Ako, the utility of the index has not been tested
in an indepe ndent validation cohert. Finally, it should be mentioned
that TCDCA itself is seen elevated in multiple liver diseases, and it is
unlikely to be specific for portal hypertension,

In conclusion, the serum concentration of TCDCA can serve as a
minimally invasivemarker of clinically significant portalhype rtension,
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TABLE 3 Correlation of HVPG with other noninvasive markers
in validation cohort

a r g [ o
ALT [pkat/L] 194 -0.229 001 013
AST [phkatsL] 194 0.188 008 ns
AST/ALT[-] 196 0.543 <001 <001
Creatinine [pmol/L] 194 -0u084 252 ns
Hyaluronicacid [ug/L] 172 0.548 <001 <001
Osteopontin [ng/ml] 214 0.282 <001 <001
Albumin [g/L] 214 -(0.480 =001 <001
Spleen diameter [mmj] 190 0244 <001 006
Bilirubin [pmol/L] 195 0.359 <001 <001

Abbreviations: ALT, alanine aminotransferase; AST, aspartate
aminotransferase; HVPG, hepatic venous pressure gradient.

*Mumber of cases is given due to an incomplete dataset.
"Banferrani corrected prvalues.

which can help to dentify those patients who need more detailed
examination. The predictive value can likely be improved by combin-
ing TCDCA with both the AST/ALT ratic and spleen diameter; how-
ever, this needs to be verified in an independent cohort.
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