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ABSTRACT 

This thesis explores the relationship between diet, gut microbiota, and metabolic health, 

with a particular focus on their association with non-communicable metabolic diseases (NCDs) such 

as obesity and type 2 diabetes (T2D). 

The aim of the first study is to assess compositional and metabolic differences in gut microbiota 

between healthy lean long-term vegans and omnivores. The study reveals that while the gut 

microbiota composition is not significantly different between the two groups, there are significant 

differences in the fecal, serum and urinary metabolome. These differences may be attributed 

to the different availability of substrates in the diet, as the vegan diet is associated with a shift 

from a proteolytic to a saccharolytic fermentation program.   Our results support the hypothesis 

of both resilience and metabolic flexibility of the adult gut microbiota. 

In addition to taxonomic analyses, this dissertation also includes metabolomics to evaluate 

the functional manifestations of the gut microbiota. We introduce a novel method to assess the ability 

of the gut microbiota to produce beneficial metabolites with a specific focus on butyrate synthesis 

using qPCR quantification of bacterial butyryl-CoA:acetate CoA-transferase. In silico, we identified 

bacteria among the human gut microbiota that possess the but gene, designed and validated six sets 

of degenerate primers covering all selected bacteria and developed a method to normalize gene 

abundance in human fecal DNA. We validated this method in subjects with opposite dietary habits 

and metabolic phenotypes - lean vegans (VG) and healthy obese omnivores (OB) - with known fecal 

microbiota and metabolome composition. 

Furthermore, the effects of inulin treatment on glucose homeostasis in pre/diabetic patients were 

investigated. A three-month intervention with inulin under clinical trial conditions was associated with 

an overall improvement in glycemic indices, although the response was highly variable, with a shift 

in microbial composition towards a more favorable profile and an increase in serum butyric 

and propionic acid concentrations. Using multi-omics analysis, we identified biomarkers that predict 

treatment success. If further validated, these predictors could improve the estimation of outcomes 

of inulin interventions and contribute to personalized dietary management in early-stage diabetes.  

Finally, the fourth study investigates the therapeutic potential of fecal microbial transfer (FMT) using 

vegan microbiota to treat non-infectious diseases. It uses a humanized mouse model to examine 

the effect of a Western-type diet (WD) and inulin supplementation on obesity, hepatic steatosis, 

and glucose metabolism. We found that vegan microbiota alone did not protect against the adverse 

effects of WD and inulin supplementation reversed steatosis and normalized glucose metabolism. This 

phenomenon was related to a change in microbiota composition and an increase in saccharolytic 

fermentation at the expense of proteolytic fermentation. Our results highlighted that the success 

of fecal microbiota transfer in the treatment of metabolic noninfectious diseases depends not only 

on the microbiota transfer itself but also on subsequent dietary interventions involving inulin or other 

fiber and/or dietary changes. 

This dissertation provides some new insights into the relationship between diet and the gut 

microbiome, particularly in relation to the therapeutic potential of targeted manipulation of the gut 

microbiota in the treatment of obesity and T2D. The study highlights the importance of dietary 
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interventions, such as inulin or fiber supplementation, and emphasizes personalized dietary 

approaches to modify gut microbiota and improve metabolic health. 

  

Key words:  

Gut microbiome, metabolome, metabolic diseases, vegan diet, western type diet, animal models, 

type 2 diabetes, OMICS data  
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ABSTRAKT V ČEŠTINĚ 

Tato dizertační práce zkoumá vztah mezi stravou, střevní mikrobiotou a metabolickým zdravím. 

Konkrétně se zaměřuje na vztah mezi složením střevní mikrobioty a nepřenosnými metabolickými 

chorobami, jako je obezita a diabetes 2. typu (T2D). 

Cílem první studie je posoudit rozdíly ve složení a metabolismu střevní mikrobioty mezi zdravými 

štíhlými dlouhodobými vegany a omnivory. Studie ukazuje, že zatímco složení střevní mikrobioty se 

mezi oběma skupinami významně neliší, jsou zde významné rozdíly ve fekálním, sérovém a močovém 

metabolomu. Tyto rozdíly lze přičíst odlišné dostupnosti substrátů ve stravě, protože veganská strava 

je spojena s přechodem od proteolytického k sacharolytickému fermentačnímu programu. Naše 

výsledky podporují hypotézu o odolnosti i metabolické flexibilitě střevní mikrobioty u dospělých 

jedinců. 

Kromě taxonomických analýz zahrnuje tato disertační práce také metabolomiku pro vyhodnocení 

funkčních projevů střevní mikrobioty. Zavádíme novou metodu hodnocení schopnosti střevní 

mikrobioty produkovat prospěšné metabolity se specifickým zaměřením na syntézu butyrátu pomocí 

qPCR kvantifikace bakteriální butyryl-CoA:acetát CoA-transferázy. In silico jsme identifikovali lidské 

střevní bakterie, které jsou vybaveny but genem, navrhli jsme a ověřili šest sad degenerovaných 

primerů pokrývajících všechny vybrané bakterie a vyvinuli metodu normalizace množství tohoto genu 

v lidské fekální DNA. Tuto metodu jsme ověřili u osob s opačnými stravovacími návyky a metabolickými 

fenotypy – u štíhlých veganů (VG) a zdravých obézních omnivorů (OB) – se známým složením fekální 

mikrobioty a metabolomu. 

Dále jsme zkoumali účinky léčby inulinem na homeostázu glukózy u pre/diabetiků. Byla provedena 

klinická studie zahrnující tříměsíční inulinovou intervenci, která byla asociována s celkovým zlepšením 

glykemických parametrů, ačkoli individuální odpověď byla velmi variabilní, s posunem mikrobiálního 

složení směrem k příznivějšímu profilu a se zvýšením sérových koncentrací kyseliny máselné 

a propionové. Pomocí multi-omické analýzy jsme identifikovali biomarkery, které predikují úspěch 

léčby. Pokud budou tyto prediktory dále validovány, mohly by zlepšit odhad výsledků inulinových 

intervencí a přispět k personalizovanému dietnímu managementu v časném stadiu diabetu.  

A konečně čtvrtá studie zkoumá terapeutický potenciál fekálního mikrobiálního transferu (FMT) 

s využitím veganské mikrobioty k léčbě nepřenosných metabolických onemocnění. Pomocí 

humanizovaného myšího modelu jsme sledovali vliv diety západního typu (WD) a podávání inulinu 

na obezitu, jaterní steatózu a metabolismus glukózy. Zjistili jsme, že samotná veganská mikrobiota 

nechrání před nepříznivými účinky WD, ale naopak přídavek inulinu zvrátil steatózu a normalizoval 

metabolismus glukózy. Tento jev souvisel se změnou složení mikrobioty a zvýšením sacharolytické 

fermentace na úkor proteolytické fermentace. Naše výsledky zdůraznily, že úspěšnost přenosu fekální 

mikrobioty při léčbě metabolických onemocnění závisí nejen na samotném přenosu mikrobioty, ale 

také na následných dietních intervencích zahrnujících inulin nebo jinou vlákninu a/nebo změny stravy. 

Tato disertační práce přináší některé nové poznatky o souvislostech mezi stravou a střevním 

mikrobiomem, zejména ve vztahu k terapeutickému potenciálu cílené manipulace se střevní 

mikrobiotou při léčbě obezity a T2D. Studie poukazuje na význam dietních intervencí, jako je 

suplementace vlákninou, a zdůrazňuje personalizované dietní přístupy k úpravě střevní mikrobioty 

a zlepšení metabolického zdraví. 
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1 INTRODUCTION 

1.1 General preface 

„Let food be thy medicine and medicine be thy food.“  

„All disease begins in the gut.“ 

Hippocrates, 460–370 BC 

I want to introduce my dissertation with two statements attributed to the founder of modern 

medicine, the Greek physician Hippocrates. Nutrition has always been one of the most important 

components of human life. Over the years, its perception has changed and modern medicine now 

regards it as a means of influencing the course and development of certain civilization diseases. 

Nutrition is also one of the basic factors that influence the composition and functional manifestations 

of the gut microbiome, which has been extensively studied in recent years. 

During my postgraduate studies, I focused on the relationship between microbial composition 

and some non-communicable metabolic diseases, particularly obesity and T2D. In our research, we did 

not limit ourselves to describing the taxonomic composition of the microbiota, but also analyzed its 

functional manifestations through fecal metabolome analysis. We attempted to place the obtained 

results in the broader context of the interaction between microbiome and the host organism by 

analyzing serum and urine metabolomes as well as health status indices and nutritional parameters. 

Furthermore, we described the microbiome and metabolome of vegan populations, which, according 

to numerous epidemiological studies, are metabolically healthier than the general omnivorous 

population. We were interested in whether the vegan diet affects the composition of the microbiome 

and metabolome and whether any favorable effects of this diet could be explained by their potential 

changes. 

Targeted modulation of the gut microbiota is discussed as a potentially promising therapeutic strategy 

for diseases in which the pathophysiology of gut dysbiosis plays a role. However, the wider use of this 

approach is confronted with a lack of knowledge about the functioning of a system as complex as the 

gut microbiome and its interaction with the environment and the host. My work has addressed this 

issue both in humans (clinical intervention trial) and in an experimental study conducted in ex-GF mice. 

In the intervention study, we tested the hypothesis that the success of inulin (dietary fiber) 

intervention to improve insulin sensitivity in T2D patients is variable and depends, at least in part, 

on the composition of the microbiome. In line with the hypothesis, we observed significant 

inter-individual differences in response to administered fiber and attempted to identify specific 

markers that would predict the success of this therapy. In the experimental study, we explored 

the potential use of vegan microbiota transfer in treating diet-induced obesity and insulin resistance. 

1.2 Microbiome and microbiota in general 

A microbiota is a community of microorganisms living in a particular environment and refers to their 

taxonomy (each microorganism belongs to a set of taxonomic classification units from kingdom 

to species or even strains), which serves as an organizational tool (Parks et al., 2018).  The broader 

and more recent term microbiome encompasses the set of all microorganisms (bacteria, archaea, 

lower and higher eukaryotes and viruses) inhabiting a particular environment and their genomes 

and surrounding environmental conditions (Marchesi & Ravel, 2015) and was first defined and highly 
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emphasized by professor and Nobel laureate Joshua Lederberg (Lederberg & McCray, 2001). 

Nowadays, the two terms are often used interchangeably, although the original definitions should be 

kept in mind (Ursell et al., 2012). 

1.2.1 Humans as holobionts 

In the past few decades, research on the microbiome has been developing at a tremendous pace. 

The concept of the so-called "holobiont" was introduced in 1991 by evolutionary theorist and biologist 

Lynn Margulis and her graduate student René Fester (Margulis & Fester, 1991), although the concept 

itself has existed in nature since the first symbiosis, which is considered an essential part of evolution 

and the basis of the first eukaryotic cell, based on a theory proposed by Lynn Margulis in 1967 

(Margulis, 1967) and widely accepted by scientists today. Currently, a holobiont is described as an 

organism consisting of a host and many microorganisms living in close association with the host 

(Bordenstein & Theis, 2015) (Simon et al., 2019). It is noteworthy that, based on currently available 

data, the number of bacterial cells present in the average human being is approximately the same 

order as the number of human cells, although it has been assumed that microbial cells outnumbered 

human cells (Sender et al., 2016b). Based on the estimates by Sender et al., the number of human cells 

in the 70 kg “reference” adult human is 3 ∙ 1013 with the major contributors being red blood cells, 

platelets, bone marrow cells, lymphocytes and endothelial cells (Sender et al., 2016a) (Sender et al., 

2016b). The estimated number of bacterial cells in the same “reference” human is 3.9 ∙ 1013 (Sender 

et al., 2016a), but this number do not consider other types of microbes such as viruses and phages 

(Gilbert et al., 2018). 

The concept of the holobiont has been greatly expanded by the introduction of new techniques that 

have enabled much faster and cheaper analysis compared to traditional techniques, one of the most 

important of which is a high-throughput next-generation sequencing (NGS). NGS was the foundation 

of the Human Genome Project (HGP) which has undoubtedly changed biological research as we know 

it (Lander et al., 2001) (Craig Venter et al., 2001). The success of the HGP has been followed by another 

groundbreaking project, the Human Microbiome Project (HMP), which aims to characterize the human 

microbiome and answer complex questions about microbial diversity, stability and evolution, 

i.e. factors that may influence an individual's microbiota, microbial relationship to pathological 

conditions, and much more. (Turnbaugh et al., 2007). With the introduction of revolutionary 

sequencing methods, scientists are now able to sequence the genome of both the host and its 

microorganisms to study their complex relationships. The resulting collective genome can be referred 

to as a hologenome, which consists not only of the nuclear genome but also includes organelles and 

the microbiome, resulting in a complex gene system (Bordenstein & Theis, 2015). The size of the male 

diploid human genome has been estimated at 6.27 ∙ 109 base pairs (Piovesan et al., 2019). If we 

consider that the "typical" bacterial genome is 5 ∙ 106 base pairs in size (Land et al., 2015), and then 

multiply this by the estimated number of bacteria inhabiting the human gut, we get an estimate of the 

genome size of human microbes of approximately 1.95 ∙ 1020, a huge number compared to the human 

genome. Interestingly, the set of gut microbial genes was also found to be 150 times larger than the 

entire set of human genes, with 3.3 million unique microbial genes identified compared 

to approximately 20,000 human protein-coding genes. (Qin et al., 2010) (Gilbert et al., 2018).  

1.2.2 Human niches colonized by microbes 

For a long time, the inner body was considered nearly sterile and any presence of microorganisms was 

considered as the consequence of “breaking the defense systems” and “wrong”. Now, increasing 
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evidence shows that almost every part of our body is populated by microbes. The abundance 

of microbes across human niches varies according to the chemical and physical aspects of each site 

or organ such as pH, concentration of oxygen, availability of nutrients, temperature, and presence 

of antimicrobial compounds or mucus (De Vos et al., 2022) (Milani et al., 2017) (Figure 1). 

Figure 1. Main microbial body sites and their environmental characteristics across the human body (De Vos et 
al., 2022) (Mathieu et al., 2018) (Neugent et al., 2020) (Yagi et al., 2021). Created by using 
https://www.biorender.com/. 

 

The gastrointestinal tract (GIT) is the largest reservoir of diversified microbes at any site in the human 

body, and gut microbiota is currently the focus of many researchers due to its extensive functions, 

which will be discussed in more detail in the following chapters. The second most diverse place 

of microbial colonization in humans is the mouth including oral mucosa, saliva, all oral tissues, tongue 

and teeth surfaces (Reynoso-García et al., 2022). Each oral niche is unique in its bacterial composition 

due to differences in the environment, but all microbes communicate with each other, forming 

complex multi-species biofilms, communicating through chemical signals, and are also in symbiosis 

and close association with some fungal microbes (X. Li et al., 2022). Another huge microbial ecosystem, 

known to be dominated by lactic acid-producing bacteria belonging to the genus Lactobacillus, is found 

in the vagina (X. Chen et al., 2021). Under normal conditions, the Lactobacillus-dominated vaginal 

microbiota protects this niche against invasion of potentially pathogenic species by producing many 

antimicrobial substances including lactic acid creating low pH, bacteriocins and hydrogen peroxide, 

which make the environment uninhabitable for other microbes (Hanlon et al., 2013) (S. Wu et al., 

https://www.biorender.com/
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2022). This phenomenon is called colonization resistance and occurs in various modifications in many 

microbial ecosystems associated with humans. 

Compared to the microbially rich environment of the gut, mouth or vagina, many environments are 

still home to microbes, albeit in smaller densities. Human skin can provide almost 30 m2 of microbial 

environment and is the largest epithelial surface for microbial interactions (Gallo, 2017). However, 

compared to other habitats, this niche contains fewer bacterial taxa and generally lower microbial 

biomass (Chaudhari et al., 2020). Interestingly, complex interactions between fungi and bacteria occur 

on the skin surface, and these microbes can form dense biofilms together, which are thought 

to stabilize the microbial community (Swaney, 2021). Microbes that naturally occur in a healthy human 

state can be found even in the strangest of places, such as the eye, ear or the bladder (Reynoso-García 

et al., 2022) (Wolfe et al., 2012). In recent years, microbes have also been found in many cancerous 

tissues, although studying them is extremely challenging (Y. Chen et al., 2022). Microbes are present 

in the blood even in a resting state, when they cannot multiply under normal conditions. During 

pathogenic situations, the gut is the origin of these bloodstream microbes, or it's possible for them 

to migrate from the oral cavity through translocation (Potgieter et al., 2015). Bacterial communities 

also inhabit the healthy lungs and respiratory tract, which have long been considered aseptic (Anand 

& Mande, 2018) (Whiteside et al., 2021). Somewhat problematic and controversial is the presence 

of microbiota in the placenta or uterus. Chen et. al brought evidence showing the possible presence 

of living bacteria in the cervical canal, uterus, fallopian tubes and peritoneal fluid (C. Chen et al., 2017), 

the latest study on the other hand suggests that no placental microbiota exists and the previously 

observed bacteria were merely the result of contamination (Goffau et al., 2019). Currently, the only 

human niche we consider truly sterile is the brain. Some studies suggest that a few bacteria live 

harmlessly in it, but this is still not confirmed given that most human brain studies can only be done 

post-mortem (Link, 2021). Therefore, more research and new methods are needed to study possible 

brain microbial communities.  

All these microbes from different niches interacts among themselves and form a complex network 

of relationships. Furthermore, they interact with and influence human cells, affecting human 

metabolism and health in general. As most studies on the human microbiome have shown, it is 

inevitable to understand the mechanism of these interactions between microbes living in the human 

environment itself, but also between microbes and the metabolic and biological processes of the host, 

in which they undoubtedly play an important role. 

1.3 Gut microbiome 

The human gut microbiome is currently attracting a great deal of scientific attention. The GIT is home 

to complex and diversified microbial communities that influence many processes in our body. These 

communities vary greatly throughout the digestive tract due to the different physical and biochemical 

conditions in each part of the tract (Figure 2). The stomach has a highly acidic environment with a pH 

around two because of hydrochloric acid that is released by the parietal cells in the gastric wall (Boland, 

2016). Due to its extreme conditions, it serves as the first defense against pathogenic microbes from 

food (Hunt et al., 2015). Contrary to earlier beliefs, a specific bacterial community is found in the 

stomach, often dominated by Helicobacter pylori, which is known to be associated with gastric diseases 

(Amieva et al., 2016) (Cover & Blaser, 2009). Nevertheless, the gastric bacterial community surprisingly 

varies depending on the presence or absence of H. pylori (Maldonado-Contreras et al., 2011). 

When this microbe was present in the stomach, subjects had higher relative abundances 

of Proteobacteria and Acidobacteria phyla, whereas the negative status of H. pylori was associated 
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with the higher relative abundance of Actinobacteria and Firmicutes. In addition, the richness 

of bacterial communities did not differ based on H. pylori status (Maldonado-Contreras et al., 2011). 

Figure 2. Different physical and chemical properties of each part of the digestive tract determine variations 
in the microbiota. Figure adapted from (Najmanová et al., 2022). 

 

The small intestine is anatomically divided into three parts - the duodenum, jejunum and ileum. 

The duodenum, the first 30 centimeters of the small intestine, is an important part where 

the environment changes from acidic to neutral. The jejunum and ileum are areas where digestive 

enzymes with the help of bile acids break down food components and the absorption of the resulting 

products occurs over a large absorptive surface area due to villi and microvilli as part of the intestinal 

surface (Boland, 2016). It is important to note that low concentrations of oxygen are always present 

in the small intestine, allowing the life of facultative anaerobes. In contrast, many bacteria could not 

survive in these conditions, either because of the presence of oxygen, antimicrobial peptides (AMPs) 

or bile acids. Lactobacillus, Enterococcus, Prevotella and Streptococcus are the most abundant genera 

of the duodenum and jejunum, probably due to their higher tolerance to this specific environment 

(Adak & Khan, 2019) (Reynoso-García et al., 2022). The ileum is dominated by Streptococcus, 

Escherichia/Shigella and Clostridium, in contrast to its distal part, which is more similar to 

the microbiota of the colon (Reynoso-García et al., 2022) (Zoetendal et al., 2012). Colon is the site 

of the most diverse microbial community with its anaerobic environment allowing the thriving of the 

major gut genera such as Bacteroides, Parabacteroides, Clostridium, Lachnospiraceae, 

Faecalibacterium, Escherichia/Shigella and Bilophila (James et al., 2020). The composition of the cecal 

microbiota found in the initial part of the colon poses a problem due to sampling difficulties, however, 

it has been shown to be different from that of samples obtained from feces resembling the distal part 

of the colon (Be et al., 2001). Surprisingly, the human appendix, previously thought to have lost its 

function during evolution, turned out to contain diversified microbes with a dominant phylum 

Firmicutes (Guinane et al., 2013). Scientists are now reassessing the function of the appendix, 

suggesting that it serves as a "safe place" for many bacteria that can enter the gut when needed 

(Guinane et al., 2013). 
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1.3.1 Gut microbiome development during ontogeny 

The human gut microbiota is not stable throughout the whole life but changes during human ontogeny 

(Figure 3). Microbial colonization of the GIT begins during labor when the composition 

of the microbiota depends on the mode of delivery. It has been shown that vaginally born infants 

appeared to have microbial communities very similar to their own mother's vaginal microbiota with 

a predominance of Lactobacillus and Prevotella, whereas infants born by cesarean section acquired 

a community that resembled microbes found on the skin surface of their mothers with predominant 

taxa such as Staphylococcus and Corynebacterium (Dominguez-Bello et al., 2010). There are other 

factors that can affect the microbial communities in the gut of infants, such as the type of feeding, 

the term of the delivery, hospitalization, and the possible use of antibiotics (Ottman et al., 2012) 

(Vandenplas et al., 2020). Environmental factors such as geographical location, and the presence 

of siblings or pets in the households also play a key role in the development of the microbiome 

at an early age (Stewart et al., 2018). 

Figure 3. Changes in microbial diversity and abundance during human development from the prenatal stage 
to adulthood. The late relatively stable microbiome is thought to be established around 3 years of age. In the 
elderly, microbial diversity is reduced compared to adults. Figure adapted from (Reynoso-García et al., 2022). 

 

Human milk is undoubtedly a key source of nutrition for newborns and, due to its probiotic 

and prebiotic function, it also plays a key role in determining the microbial composition of the infant's 

gut with increased diversity and functionality of its microbiome (Kundu et al., 2017) (Vatanen et al., 

2018). Significant differences in the composition of the gut microbiota were found in infants who were 

breastfed, in contrast to infants fed an artificial diet, where Bifidobacterium predominated in the gut 

of breastfed children, while the proportion of Bifidobacterium and Bacteroides was the same 

in children that were formula fed (Harmsen et al., 2000). This is mainly due to the fact that human milk 

is composed of a perfect mixture of nutrients that supports the development of the infant. It contains 

lactose, many lipids, and also human milk oligosaccharides (HMOs), which are considered to be milk 

prebiotics that shape the microbial composition of the infant's gut, specifically in favor 
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of Bifidobacterium taxa (Milani et al., 2017). The next stage of gut microbiome development occurs 

with the introduction of solid food instead of milk or formula when a more complex and mature 

community replaces the infant one. This transition is also related to the further maturation 

of the immune system and gut-brain axis (Kundu et al., 2017).  

After the period of relative stability during adulthood, changes in the composition and activity of the 

intestinal microbiota also occur in old age, with a strong dependence on lifestyle, diet or inflammatory 

diseases (Ottman et al., 2012). As in the neonatal period, the intestinal microbiota of the elderly is 

again unstable and its changes are often related to dysbiosis partly caused by the natural senescence 

of the gastrointestinal tract, which is characterized by increased oxidative stress and inflammation. 

Although the observed changes have high interindividual characteristics, some common features 

and trends were found throughout the elderly population, including reduced microbial diversity, 

a decrease in total short-chain fatty acids (SCFAs), a decrease in bacterial genera considered beneficial 

such as Bifidobacteria or Faecalibacterium, or an increase in facultative anaerobes (Salazar et al., 

2019). Interestingly, reduced microbial diversity appears to be increasing again in populations 

with extreme longevity, where some new microbes have also been observed (Biagi et al., 2016). 

1.3.2 The variability of human gut microbiota 

Typical aspect of the human gut microbiota that has not been mentioned so far is its interindividual 

variability, which is strongly related to environmental factors. Each human individual has distinct gut 

microbiota, even identical monozygotic twins do not have the same composition of gut microbes. 

Although some studies suggest that heritable taxa exist and are thought to play a role in shaping 

microbial diversity (Goodrich et al., 2016), there are other opinions  suggesting that the environment 

is still a major driving factor with little genetic influence (Turnbaugh, Hamady, et al., 2009). It is 

important to mention that the Turnbaugh group's research had a smaller number of cases available 

for the proposed study.  

Although much of the individual variability remains unexplained, the main sources are thought to be 

mostly environmental, including diet, geography, lifestyle or antibiotic use, but also include host 

genetics, age, and early microbial exposure (Gilbert et al., 2018) (Pasolli et al., 2019) (Rothschild et al., 

2018) (The Human Microbiome Project Consortium, 2012). Diet has been extensively studied 

in relation to the composition of the gut microbiota, and indeed there is evidence that it is essential 

in modulating the gut microbial community (De Filippo et al., 2010) (Ley et al., 2008) (Muegge et al., 

2011). Exercise has been shown to be associated with higher microbial diversity (Clarke et al., 2014), 

but the relationship between exercise and gut microbiota is quite complex and may very well reflect 

the fact that people with higher physical activity generally have healthier lifestyle habits, which 

influence gut microbes as well. Another lifestyle habit that has an impact on microbial communities is 

smoking. Compositional differences between smokers and non-smokers were observed in the oral 

cavity and also in the gut (Gomaa, 2020). Antibiotics are known to be beneficial when needed to defeat 

a bacterial infection, but also harmful to the rest of the microbial community. It is therefore not 

surprising that their use can affect the gut microbiota, specifically negatively by disrupting the balance 

of the community, reducing its diversity, and also creating an environment in which antibiotic-resistant 

strains can over-grow (Patangia et al., 2022).  

Studies are being conducted to explore and understand the variability in microbial communities 

in relation to geography. For example, differences in microbiota characteristics and functional genes 

have been observed in infants, children, and adults in the United States of America, Venezuela, 

and Malawi (Yatsunenko et al., 2012). Another study performed in Russia in cohorts living in different 
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environmental conditions confirmed that in comparison with the global large-scale studies, dominant 

gut bacteria were similar, but some unique taxonomic and functional properties were found in the 

Russian population (Tyakht et al., 2013). Any observed differences in microbiota may not just reflect 

geographical differences, but may also include differences in the diet, lifestyle and environment 

of these locations. Nevertheless, given these results, emphasis should be placed on sampling a wider 

range of people in terms of dietary habits, geography, ethnicity and age to identify microbiota 

associated with disease or health. 

As far as the microbiota of a healthy adult is concerned, there seems to be a so-called core microbiota 

that is similar between individuals. The core gut microbiota refers to a set of similar microbial 

characteristics that can be observed in all adults, but the task of identifying the core microbiome is 

quite complex, and in recent years attention has shifted from examining the mere taxonomy of the 

common microbiota to the functional potential of the core microbiome (Sharon et al., 2022). The logic 

of this shift is that several different taxa can perform the same function (Lozupone et al., 2012). 

For example, Turnbaugh's group indeed suggested that idea of the core microbiota at the level 

of commonly shared abundant taxa is incorrect and we should focus more on the core microbiome 

at  the level of metabolic function (Turnbaugh, Hamady, et al., 2009). The problem with the core 

microbiome is also encoded in the limitations of the studies, with most microbiome studies being 

conducted on Western populations, even though microbial composition can vary depending 

on geographic location, environment and lifestyle, and few of these studies access both microbial 

composition (what type of microbes are present) and their functional potential (what these microbes 

do). The next layer of uncertainty is the bioinformatic analysis, as there is no universal bioinformatical 

pipeline for data processing despite the known fact that different ways of data processing result 

in different outcomes (Sharon et al., 2022).  

Clearly, given the large variability of gut microbiota in individuals in any population, studying 

the microbiome and its potential causal links to disease and overall health is a complex task. Exact 

matching of possible confounding factors between patients and controls and sufficient power is much 

needed in these types of studies (Vujkovic-Cvijin et al., 2020). However, microbial variability observed 

between individuals also suggests that we should focus more on personalized medicine in relation 

to the microbiome, which has enormous metabolic potential compared to our own human cells.  

1.3.3 Functions of gut microbiota 

As mentioned in previous chapters, gut microbes perform many important functions in our bodies 

and are essential for human metabolism and overall health. Scientists are currently using two main 

models to understand the complex relationship between gut microbiota and human health and 

to further investigate the impact of these microbes on our physiology and the possible link between 

microbes and certain diseases. The first method is to use mice after treatment with broad-spectrum 

antibiotics, which results in mice with depleted gut microbes. However, the current gold standard in 

this field is the use of germ-free (GF) mice that are kept in special conditions without exposure to any 

microbes (Kennedy et al., 2018). This GF mouse can be colonized with a defined community 

of microbes to create a gnotobiotic mouse (Rosenbaum et al., 2015), which allows the microbiota to be 

studied in direct relation to specific conditions such as diet, drugs or a particular disease state. Albeit 

mice are by far the most popular animal GF/gnotobiotic model, GF rats and pigs exist as well. 
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1.3.3.1 Energy homeostasis 

Based on the studies performed on GF mice, it was shown that gut microbes play an important role 

in energy homeostasis. After the colonization of GF mice with microbes from conventional mice, these 

colonized mice gained weight even though their daily energy intake was 29% less in comparison to GF 

mice (Bäckhed et al., 2004). This suggests that the microbiota plays a vital role in regulating appetite 

and processing energy from food, which contradicts the widely accepted "calories in versus calories 

out" theory that claims that weight gain is only a result of eating more calories than we burn, but 

obviously, other factors can also influence energy balance.  

Bäckhead's findings were supported and further investigated by Turnbaugh and his group,  

who showed that different composition of the microbiota is associated with the obese and lean 

phenotype. Microbiota inhabiting the gut of obese animals was associated with a greater ability 

to obtain energy from the diet (Turnbaugh et al., 2006). The authors also confirmed that this trait is 

transferable when colonization of GF mice with microbiota derived from genetically obese mice 

resulted in a significant increase in total body fat compared to GF mice colonized with microbes from 

lean conventional mice fed the same diet. They subsequently conducted a similar study with 

humanized GF mice colonized with microbes derived from the fecal contents of a healthy adult, where 

the mice were then fed either a high-fat Western diet or a standard low-fat, high-polysaccharide diet 

(Turnbaugh, et al., 2009). As expected, mice fed a Western diet gained more weight and gut microbial 

community composition and microbial gene expression in both groups was significantly different. 

Furthermore, the obese phenotype was transferable by gut microbiota from obese humanized mice 

to GF lean recipients (Turnbaugh, et al., 2009).  

Quite recently, it has been shown that not only colonic but also upper intestinal microbiota is involved 

in energy extraction and regulation of energy homeostasis. Martinez-Guryn and her colleagues showed 

that GF mice populated with a jejunal microbiota of mice fed a high-fat diet had increased lipid 

absorption even when fed a low-fat diet (Martinez-Guryn et al., 2018). Indeed, further research 

in humans is needed to explore how the gut microbiota is involved in weight control and obesity 

in order to find a sensible solution to the global obesity epidemic. 

1.3.3.2 Biotransformation and formation of fermentation products 

The human intestinal microbiota have a high capacity to produce a number of bioactive substances 

that can directly or indirectly influence host metabolism. One important group of these compounds 

of microbial origin are bile acids, the balance of which is important for the proper functioning of our 

metabolism, and gut microbes are the main mediators of their biotransformation and homeostasis. 

Primary bile acids are synthesized in the liver from cholesterol and are further metabolized by gut 

microbes into secondary bile acids and various other products that greatly increase the diversity of bile 

acids and their biological potential (Guzior & Quinn, 2021). 

In humans, chenodeoxycholic acid (CDCA) and cholic acid (CA) are primary bile acids formed in the liver 

hepatocytes (Ridlon et al., 2016). Before secretion from the liver, these primary bile acids are 

conjugated to amino acids glycine or, to a lesser extent, taurine to increase their solubility (Wahlström 

et al., 2016). After secretion, these conjugated bile acids are deposited in the gallbladder along with 

phosphatidylcholine and cholesterol (Ridlon et al., 2016). The meal intake stimulates the gallbladder 

and its contents are released into the small intestine, where bile salts activate pancreatic lipase and, 

due to their amphipathic properties, help to form micelles composed of cholesterol, monoglycerides, 

fatty acids and fat-soluble vitamins, which can then be absorbed by enterocytes (Ridlon et al., 2016). 

Most of these bile acids are then reabsorbed from the distal ileum via a specific transporter 
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in the enterocyte membrane and then returned to the liver via the bloodstream, where their excretion 

into bile can begin again (Adak & Khan, 2019). 

A small portion of bile acids that escape reabsorption is converted to secondary bile acids by gut 

microbes through 7-α-dehydroxylation or other transformations (De Aguiar Vallim et al., 2013). 

In humans, this group of secondary bile acids includes lithocholic acid (LCA), deoxycholic acid (DCA) 

and ursodeoxycholic acid (UDCA). The essential role of the microbiota in bile acid metabolism has been 

demonstrated in a GF mouse model. In contrast to normal mice, GF mice have a disrupted primary bile 

acid profile with the balance shifted exclusively towards taurine conjugates (Swann et al., 2011) 

and completely lacking secondary bile acids (Sayin et al., 2013).  

In addition to their function in dietary lipid absorption, bile acids also act as signaling molecules 

and regulators of metabolism, primarily through binding and activation of the nuclear farnesoid X 

receptor (FXR) and the plasma membrane G-protein coupled receptor TGR5 (De Aguiar Vallim et al., 

2013) (Yu et al., 2019). By activating these receptors, bile acids are able to control many biological 

processes including their own synthesis, conjugation and transport, as well as lipid, glucose and energy 

metabolism (T. Li & Chiang, 2015). It is also a known fact that bile acids have antimicrobial properties 

and can therefore influence microbial growth rate due to their detergent properties as well as through 

inducing the genes encoding anti-microbial peptides via FXR-dependent signaling (Li & Chiang, 2015) 

(Ridlon et al., 2016) (Yu et al., 2019). However, the gut microbiota has several different mechanisms 

to be resistant to bile salts, and microbes that have such mechanisms will naturally have a higher 

probability of survival. Microbes are believed to have a fundamental defense mechanism that involves 

the transformation of bile acids into less harmful compounds. For instance, primary bile acids are 

deconjugated as an initial step in bile acid biotransformation, which reduces their solubility 

and enables them to be utilized as substrates for further modifications (Ridlon et al., 2016) (Staley et 

al., 2017). This defense mechanism is evidenced by the presence of a bile salt hydrolase (BSH) encoding 

gene in all major bacterial species found in the gut (Jones et al., 2008). Gut microbes are also able 

to regulate bile acids pool composition, which means that a delicate balance between microbiota 

and bile acid composition exists (Ridlon et al., 2006). 

The intestinal microbiota is also important for the biosynthesis of many vitamins. It has been shown 

that intestinal microbiota is, besides dietary intake, an important source of vitamin K, biotin, 

cobalamin, folic acid, riboflavin, and other vitamins of the vitamin B group (Hill, 1997) (LeBlanc et al., 

2013). Microorganisms are also known to affect drug metabolism by biotransformation, and therefore 

different reactions to drugs in different individuals are thought to be at least partially caused 

by different sets of microbes in these individuals (Zimmermann et al., 2019). 

Another important function of gut microbes is the degradation of complex carbohydrates indigestible 

by our own enzymes, such as cellulose, lignin, hemicellulose, pectin or some oligosaccharides, 

into various metabolic products that can positively or negatively affect our health (Gomaa, 2020). 

When the microbiota in our gut is exposed to fiber, microbial fermentation occurs and the resulting 

metabolites include SCFAs, represented by butyric, propionic and acetic acids. SCFAs have a positive 

effect on human physiology serving as important energy sources, immunomodulators and signaling 

molecules and also improving glucose and lipid metabolism (Koh et al., 2016) (Cummings et al., 1987) 

(Kumar et al., 2020) (Morrison & Preston, 2016) (Venegas et al., 2019). It is therefore not surprising 

that the possible positive links of butyrate-forming bacteria to improved human health are now being 

intensively investigated. 
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However, when the fermentable fiber is absent or much less abundant in our diet, bacteria ferment 

less energetically beneficial sources such as proteins or amino acids and the resulting metabolites 

include phenol, indole, p-cresol, ammonia, the branched-chain amino acids (BCAAs) valine, leucine, 

isoleucine and their products, branched-chain fatty acids (BCFAs) isobutyrate, 2-methylbutyrate 

and isovalerate (Mohajeri et al., 2018) (Oliphant & Allen-Vercoe, 2019). Recent evidence showed that 

gut microbiota may be a source of essential amino acids including BCAAs (Gojda & Cahova, 2021). 

Higher concentrations of BCAAs in plasma are associated with obesity and diabetes (Arany & Neinast, 

2018), suggesting that elevated levels of these substances are not desirable, although their deficiency 

is also devastating. Another compound with potential negative effects is trimethylamine of microbial 

origin, derived from choline or L-carnitine found in foods such as red meat, eggs or fish, which can be 

further converted to trimethylamine N-oxide (TMAO) in the liver. TMAO is associated with some 

non-communicable diseases (NCDs) frequent in westernized societies although the causality is yet 

to be proved (Agus et al., 2021). Clearly, the gut microbiota has the ability to switch from making 

metabolites that are beneficial to our health into metabolites that can have harmful effects, and it all 

depends largely on how we feed them.  

1.3.3.3 Protective and immunological properties 

Commensal microbiota inhabiting the intestine protect the host against pathogen invasion 

and substantially contribute to the maturation of the immune system. Several metabolites produced 

by these bacteria have antimicrobial effects including secondary bile acids, bacteriocins and SCFAs 

(Ducarmon et al., 2019). Moreover, the intestinal microbes contribute most to the defense against 

pathogenic microorganisms through colonization resistance, production of toxic substances for some 

pathogens or nutrient competition (Figure 4). The homeostasis of the mucus barrier that covers 

the surface of the epithelial cells inside the intestines is essential for maintaining health. In the colon, 

the mucosal layer is divided into two distinct parts, the outer layer, which provides nutrients, binding 

sites and a home for some gut microbes, and the dense inner layer, which is impenetrable to microbes 

and is attached to epithelial cells keeping them bacteria-free (Johansson et al., 2011). The microbiota 

that lives in the outer part of the mucus layer is called mucus-associated microbes and include genera 

such as Lachnospiraceae, Bifidobacterium, Akkermansia, Faecalibacterium, Clostridium 

and Eubacterium (Ouwerkerk et al., 2013). 

The mucosal layer has special viscoelastic properties due to its main compositional and functional 

building blocks, glycosylated proteins called mucins, which combine with other components such as 

water, lipids, proteins and other substances (Paone & Cani, 2020). Mucins are secreted by the goblet 

cells, which are present throughout the digestive tract and lubricate its inner surface, thus aiding the 

passage of food and protecting epithelial cells against pathogens, toxic substances or digestive 

enzymes (Paone & Cani, 2020). Interestingly, the site with the highest proportion of goblet cells is 

the colon, which is probably related to the presence of commensal microbes that can directly influence 

the thickness of the mucosal layer by various glycosidases and proteases (Kim & Ho, 2010). 

The development of the mucus layer is a very dynamic process with gut microbes being involved 

(Johansson et al., 2015).   
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Figure 4. The schematics of microbially mediated colonization resistance in the gut. Figure adapted 
from (Ducarmon et al., 2019). 

 

The immune system in the gut must be highly balanced to tolerate and cooperate with the commensal 

microbiota, but at the same time be able to respond properly to pathogenic microbes. This special 

relationship between microbiota and the immune system is influenced by many factors and probably 

begins to form during pregnancy and follows the first contact of the commensals with the immune 

system during birth (Kalbermatter et al., 2021). The gut is interspersed with a high number of different 

immune cells connected to the epithelium, which together with commensal microbes and mucosal 

barrier protect the host from pathogens and possibly harmful substances. The mucosal layer contains 

several components of the innate immune system, such as defensins, Paneth cells that are capable 

of secreting various AMPs, and plasma cells that produce secretory immunoglobulin type A (sIgA) 

which is now thought to be key in the intestinal humoral immune system (Hamada et al., 2002) 

(Kalbermatter et al., 2021) (Macpherson et al., 2001). After birth, breast milk containing maternal 

antibodies provides protection for the baby and also shapes the developing immune system and gut 

microbial communities; more specifically, mucosal immune memory is transferred to the baby 

via maternal sIgA shaped by the mother's microbiota (Maynard et al., 2012). As a result, microbial 

antigens in conjunction with sIgA will be tolerated by the innate immune system, which will shape the 

overall commensal microbiota and also help in the formation of the regulatory immune system 

(Maynard et al., 2012). 

1.3.3.4 Development and functioning of organ systems  

Thanks to extensive evidence, it is now clear that the gut microbiota can influence the function 

of organs outside the gut mainly through its metabolites. Scientists refer to these relationships by the 

term "axis", which specifies various relationships and pathways between the gut and other organs. 

To allow proper communication between the gut and other organs, microbial signals must be first 

transmitted through epithelial cells in the intestines (Schroeder & Bäckhed, 2016). These 

microbial-derived signals include lipopolysaccharides (LPS), flagellin, peptidoglycan, secondary bile 



22 
 
 

acids, tryptophan metabolites, and SCFA-related signals. As suggested in previous chapters, 

the microbiota plays a key role in the development of the immune system and the protective mucosal 

layer, so it is not so surprising that it extends its influence to other organs and contributes to their 

development and function.  

To be more specific, intestinal microbes are also essential for the development of the digestive tract 

itself, where they interact and influence digestion, immunity, and many other biological processes 

from the beginning of colonization. The intestinal epithelium is known for its remarkable adaptive 

and self-renewal functions, which are mediated mainly by the proliferative activity of intestinal stem 

cells (IECs) located in the epithelial crypts which can differentiate into many types of cells, including 

enterocytes, Paneth cells, goblet cells, tuft cells, enteroendocrine cells, or M-cells (Ye & Rawls, 2021). 

In GF mice, crypt depth is reduced compared to normal mice, but after colonization, crypt depth 

deepens and ISCs proliferation increases (Peck et al., 2017). Similarly, ISCs proliferation is increased 

in wild-type mice after Lactobacillus plantarum supplementation (Lee et al., 2018). The microbiota also 

strongly influences the brush border at the apical luminal surface of enterocytes, where GF animals 

have reduced microvilli thickness (Sommer & Bäckhed, 2013). In addition, the number of Paneth cells 

and goblet cells in GF animals is much lower than in conventional animals (Schoenborn et al., 

2019)(Sharma et al., 1995).  

As outlined in this chapter, gut microbes are involved in countless processes in our bodies, which 

should not be surprising given that humans co-evolved along with the microbes they harbor. 

The extensive functions that microorganisms perform are also supported by the fact that bacteria, 

unlike our own cells, can produce new generations of themselves within an hour, giving themselves 

a great advantage in that they can adapt quickly to changes in the environment. Environmental factors 

such as diet are important for maintaining the positive functions of the gut microbiota and supporting 

the production of potentially beneficial metabolites produced by the microbes. 

1.3.4 Metabolome as a functional readout of the gut microbiota 

Although the interindividual variability of gut microbial communities in terms of taxonomy is 

a well-known phenomenon, the gene composition and functional capacity of intestinal bacteria are 

highly conserved. Many phylogenetically distant bacteria carry similar genes and are therefore able 

to perform similar functions and produce similar metabolites (Tian et al., 2020). These metabolites 

provide an additional level of understanding of the relationship between host and microbiota beyond 

the classical characterization of microbial taxonomy or microbial genes. Metabolomics is therefore 

often involved in microbiome studies and provides a fingerprint of microbial functional status 

(Marcobal et al., 2013). Based on the Twins UK Study published by Zierer et al., the gut microbial 

composition explained approximately 68% of the observed variance of several hundred fecal 

metabolites on average (Zierer et al., 2018). This observation strongly suggests the connection 

between intestinal microbiota and intestinal metabolome. Based on a study performed on GF 

and colonized ex-GF mice, out of 179 identified colonic luminal metabolites, approximately 70% 

of the metabolites were significantly different in amount between the two groups of mice pointing out 

to their microbial origin (Matsumoto et al., 2012). Moreover, differences in fecal and urine 

metabolomes were also observed between GF mice, conventional mice and mice colonized by adult 

human fecal contents (Matsumoto et al., 2012). A surprisingly large influence of gut microbes can be 

observed even in the blood metabolome, where hundreds of metabolites in plasma were unique 

to conventional mice compared to GF mice, and in addition, approximately 10% of all features that 

were common to both groups differed significantly in signal intensity (Wikoff et al., 2009). A more 
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recent study addressed the global impact of microbiota by analyzing both microbial composition 

and metabolome using a total of 768 samples from 96 sampling sites of 29 organs from GF 

and colonized mice. The strongest differences were observed in the GIT; however, unique biochemical 

signatures originating from microbiota were identified in all organs, providing further evidence that 

microbiota affects all organs (Quinn et al., 2020). McHardy et al. conducted a study on human subjects 

and described the connections between the microbiota and metabolome in the cecum and sigmoid 

colon. Their analysis of microbial ecology led to the imputed Kyoto Encyclopedia of Genes 

and Genomes (KEGG) metabolic pathway abundances, which were found to be mostly consistent 

with metabolic data. This indicates a reciprocal relationship between the microbiota and metabolome 

(McHardy et al., 2013). Overall, studies that take into account the structure of microbial communities, 

as well as the identification of metabolites, support the idea that the gut microbiota is indeed involved 

in establishing the biochemical environment in both proximal and distant niches within the human 

body and that the human metabolome can consequently impact the composition of gut microbes (Lee-

Sarwar et al., 2020).  

1.4 Diet as one of the main environmental factors modulating gut microbial 

ecosystem 

It is increasingly recognized that there is no one-size-fits-all diet and each individual responds 

differently to a particular dietary intervention, mainly due to the unique relationships between 

the host and its microbes. However, this connection is bi-directional and the possibility of shaping gut 

microbial communities and their functional potential through diet is emerging. Future studies must 

take into account these complex relationships and focus on the various cornerstones that determine 

personal responses – firstly, the diet of the individual with its essential food components and their vast 

array of products; secondly, the gut microbiota of the host, which consists of hundreds of different 

species that influence a multitude of biological processes; and thirdly, the physiology and metabolism 

of the host itself, which is no easy task given the interdependence of these three key elements 

(Kolodziejczyk et al., 2019). 

1.4.1 Differences between herbivores, omnivores and carnivores 

It is important to note that diet has a greater influence on the formation of microbiome than 

phylogeny, as found in a study examining the distribution of microbial species and their function 

in several mammalian animals belonging to three dietary groups, namely herbivores, omnivores 

and carnivores (Muegge et al., 2011). This study also elucidated the relationships between sets 

of functional genes and dietary habits, showing a clear separation of functional genes by diet. The 

authors suggested that the observed differences in microbiomes between the three dietary groups are 

likely due to differences in functional characteristics, such as having more specific enzymes associated 

with the digestion of substrates from different diets (Muegge et al., 2011). It is logical that herbivores 

need more enzymes associated with the breakdown of complex plant polysaccharides and also need 

specific enzymes involved in amino acid biosynthesis, which was confirmed by the study (Muegge et 

al., 2011). In contrast, a significant increase in enzymes associated with nine amino acid degradation 

pathways was found in carnivores, whereas only the BCAAs degradation pathway involving 

the degradation of valine, leucine and isoleucine was enriched in herbivores (Muegge et al., 2011). 

Thus, it is clear that the functional potential of the microbiota is reversed in herbivores and carnivores, 

with carnivore microbes specializing in the breakdown of proteins from meaty diets and using them as 

the main source of energy, while herbivore microbiota specializes in the synthesis of amino acids as 
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building blocks of proteins (Muegge et al., 2011). This research has helped the scientific community 

to better understand the relationship between host diet and gut microbial communities and their 

functions, as well as to develop new hypotheses focusing on key factors in the coevolution of the gut 

microbiota and its host. 

1.4.2 Differences between “traditional” and “westernized” societies 

Over the past millennia, major advances in medical and hygienic practices, including the use 

of vaccinations or antibiotics, have rapidly reduced the incidence of many infectious diseases (e.g., 

malaria or tuberculosis). On the other hand, this may have led to a loss of ancient microbes in humans 

and to a higher incidence of other diseases found exclusively in developed countries, such as obesity, 

inflammatory diseases or epidemics of methicillin-resistant Streptococcus aureus (MRSA) infections 

(Blaser & Falkow, 2009). Although industrialization and improved healthcare have led to an increase 

in life expectancy, human microbial diversity appears to have declined and many other changes in the 

gut microbiota have come with modernization (Figure 5) (Reynoso-García et al., 2022). Therefore, 

studies need to be conducted on groups of people unaffected by industrialization and urbanization, 

which are now the last image reminiscent of the “ancient” microbiota, to better understand 

which changes have occurred in modern society and how this relates to the new epidemics. 

Figure 5. The differences in gut microbiota resulting from industrialization, urbanization and changes associated 
with modern lifestyle in general. Figure adapted from (Reynoso-García et al., 2022). 

 

For example, the Hadza people in Tanzania, who still live as hunter-gatherers, have been shown 

to have a higher diversity of gut microbiota and a different set of taxa compared to other populations, 

probably as a result of consuming more fiber as opposed to the typical diet in industrialized countries 

(Fragiadakis et al., 2019). Furthermore, Bacteroidaceae has been shown to be the predominant taxon 

across industrialized societies, in contrast to populations with traditional lifestyles including 
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hunter-gatherers or rural farmers, where Prevotellaceae is much more common (Smits et al., 2017). 

Another study on Hadza hunter-gatherers also showed that they had higher bacterial richness 

and diversity compared to an Italian cohort with a modern lifestyle (Schnorr et al., 2014). This study 

also confirmed that the family Prevotellaceae is among the most abundant families in the gut 

microbiota of the Hadza cohort, along with Ruminococcaceae and Lachnospiraceae. An interesting 

finding in this study was that the genus Bifidobacterium was completely absent from the digestive tract 

of all hunter-gatherers (Schnorr et al., 2014).  

It has been shown that European children consuming a modern Western diet and children from the 

African village of Burkina Faso consuming a rural diet rich in fiber have different gut microbiota (De 

Filippo et al., 2010). More specifically, in line with the above studies, a unique occurrence of taxa from 

the Prevotellaceae family, specifically the genera Prevotella and Xylanibacter, which were not present 

in European children, was found in children from rural Africa (De Filippo et al., 2010). A study focusing 

on an isolated Amerindian tribe with no prior contact with Western societies reported the highest 

bacterial and functional diversity ever recorded in human studies, with a high prevalence of taxa in the 

genus Prevotella similar to other findings observed in non-industrialized societies (Clemente et al., 

2015). Interestingly, it is not only bacterial communities that are affected; specifically, the presence 

of Entamoeba and Blastocystis protozoa has been shown to be associated with an increase in overall 

microbial diversity, suggesting that these eukaryotes are likely associated with a "healthy" gut 

microbiota (Audebert et al., 2016) (Morton et al., 2015).  

However, it remained unclear to what extent microbes were changing as a result of geography 

or industrialism itself. Based on a study conducted on four groups of Himalayan societies with different 

levels of traditional lifestyles, it was found that differences in lifestyles correlated strongly 

with differences observed in microbial communities (Jha et al., 2018). Moreover, the microbiota of all 

these traditional societies differed from the microbiota of industrialized societies in America, 

and the Himalayan group with the most advanced level of agriculture has the most similar gut 

microbiomes to Americans (Jha et al., 2018). Overall, the changes in gut microbes that have occurred 

in the modern era are clear, and their cause is probably mainly related to the changes in lifestyle 

and diet that followed the industrial revolution.    

1.4.3 Manipulation of gut microbiome via diet 

Adult human gut microbiota is a relatively stable community under normal conditions, although its 

composition may fluctuate due to environmental factors and especially diet. A well-known study 

on the dynamics of the human gut microbiota induced by diet was conducted by L. A. David and his 

colleagues, who demonstrated that even short-term changes in diet, whether entirely of plant 

or animal origin, alter gut microbial communities. Interestingly, this group also showed that the altered 

microbial communities returned to their original state just a few days after the subjects returned 

to their long-term dietary habits (David et al., 2014).  This study provides evidence of the rapid 

flexibility of the gut microbiota due to the different energy sources provided to it. Despite this rapid 

diet-induced dynamic, long-term dietary habits are the main driving force in the modulation 

of the microbial composition of each individual (Sonnenburg & Bäckhed, 2014). 

Our group recently studied the effect of a plant-based diet on the microbial community, and although 

some small differences were observed in the gut microbiota composition of vegans compared 

with omnivores, the main and significant difference was in metabolic activity, suggesting that the same 

microbiota can adapt to different diets and change their fermentation pathways accordingly 

(Prochazkova et al., 2022). This finding is supported by other studies; for example, it was shown that 
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a long-term high-fiber diet led to an increase in glycan-degrading carbohydrate-active enzymes 

(CAZymes) of microbial origin, although the diversity of the microbiota remained stable (Wastyk et al., 

2021). Plant-based diets have also been associated with the highest abundance of microbial genes 

or proteins related to carbohydrate and protein hydrolyzing enzymes, cell motility, transport 

pathways, and biosynthesis of certain vitamins, essential amino acids, and some other beneficial 

compounds such as SCFAs (De Angelis et al., 2020).  

Based on the results of the American Gut Project, a favorable microbiota also appears to be associated 

with plant-based diet diversity, with consumption of more than 30 different plants per week leading 

to a higher prevalence of Faecalibacterium and Oscillospira genera and a lower prevalence of antibiotic 

resistance genes compared to a diet with less than 10 different plants per week (McDonald et al., 

2018). This suggests that a diet rich in a wide variety of plants is likely to support the growth of more 

bacterial groups (McDonald et al., 2018). Other findings from the American Gut Project recently 

reported an association between fecal microbial diversity and dietary patterns based on dietary 

recommendations, with the Healthy Eating Index (HEI) as a measure of diet quality being associated 

with greater microbial diversity, specifically higher total scores for vegetables, greens and beans, whole 

grains, refined grains, and dairy products (Baldeon et al., 2023). 

Extreme dietary regimes, such as the keto diet, can lead to more significant changes in the gut 

microbiota. For example, the keto diet resulted in a reduction in the number of Bifidobacterium genera 

and also a reduction in the abundance of important butyrate-producing bacterial taxa, leading 

to a reduction in stool SCFAs concentrations (Rew et al., 2022). In their review, Singh et al. described 

that not only dietary fiber but also protein plays a significant role in changes in gut microbiota function 

and diversity (Singh et al., 2017). Consumption of a diet high in beef resulted in a decrease in the 

number of Bifidobacterium genera and an increase in the number of Bacteroides and Clostridia genera 

compared to the group on a meat-free diet (Singh et al., 2017). In mice, a Western-type diet high in fat 

and sugar has been shown to lead to an inflammatory environment in the gut, reduced microbial 

diversity and species richness, an overgrowth of pro-inflammatory Escherichia/Shigella genera 

in the intestinal mucosa, a decrease in the number of protective species, and a decrease in SCFAs 

concentration (Agus et al., 2016). The authors believe that the observed changes in the gut microbiota 

composition increase the host's susceptibility to chronic inflammatory bowel disease. The findings are 

also consistent with studies performed in Western populations and non-industrialized societies 

mentioned above where similar differences have been observed.  

In conclusion, the human gut microbiota is relatively stable under normal conditions, but its 

composition can change rapidly due to dietary perturbations, albeit this shift is only transitional. 

However, a diet rich in a wide variety of plants is likely to support the growth of more bacterial groups, 

i.e., to increase diversity. Extreme dietary changes, such as the keto diet, can lead to significant changes 

in the gut microbiota and affect its function and diversity. The metabolic activity of the gut microbiota 

reflects the diet, i. e. the substrate provided, which is reflected by a change in the spectrum 

of metabolites produced. In summary, the diet plays a significant role in modulating the composition 

of the gut microbiota, and a diverse plant-based diet could be beneficial for promoting healthy 

microbiota and overall health. 

1.5 Challenges of multi-omics data  

So-called "multi-omics" data has revolutionized contemporary exploratory research by integrating 

more than one type of dataset into a single analysis using multiple approaches to understand one 
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particular problem. This approach generates more data and therefore more information 

about a particular research topic can be obtained. This allows scientists to perform deeper analysis, 

see a more complete picture, and generate new insights into one complex biological problem because 

most biological processes are naturally interconnected. However, the biggest challenge is how 

to process this kind of data, which generates thousands of variables measured in a limited number 

of cases, resulting in highly multi-dimensional data. Different data sets need to be combined 

in a standardized way and appropriate computational tools have to be used to extract relevant 

variables that will be used to draw conclusions and generate new hypotheses. Another issue to keep 

in mind is the storage of huge amounts of data generated by multi-omics approach and also the use 

of appropriate statistical tests, which is, as expected, quite complex (Conesa & Beck, 2019). 

Nevertheless, with recent advances in bioinformatics and statistics including machine learning 

and regularization techniques, the analysis of high-dimensional data has been greatly simplified 

and continues to improve. By combining information from several multi-omics disciplines, scientists 

are able to find possible causal influences leading to a particular type of disease and can also use this 

information to search for disease-specific markers and possibly improve prevention (Hasin et al., 

2017). It is no exaggeration to say that multi-omics studies are the future. 

1.5.1 Overview of omics data types 

The addition of the term “omics” means that almost all measurable variables of certain molecular types 

are evaluated in one single procedure or assay (Conesa & Beck, 2019). There are six basic “omics” data 

types – genomics, epigenomics, transcriptomics, proteomics, metabolomics a microbiomics (Hasin et 

al., 2017) as shown in Figure 6. 

Figure 6. Overview of the six main types of omics data displayed as layers. Some of these include genetic 
and environmental influences. Each circle represents one sample. The interaction between layers is obvious 
and there are also interactions within layers. Figure adapted from (Hasin et al., 2017). 
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Genomics is the oldest of the omics fields, having been recognized in the 1970s when scientists 

discovered that differences in the DNA code are the source of most genetic variation between 

individuals (Bustamante et al., 2011). Epigenomics studies the broader associations of DNA 

and histones and all possible epigenetic modifications in the cell. These covalent modifications are 

master regulators of gene transcription and may influence the biological process and disease 

development (Hasin et al., 2017). In the context of genomics and epigenomics, several types of assays 

are currently available, either using DNA microarrays, methods targeting DNA modifications such as 

restriction endonucleases, or NGS methods in general (Shendure et al., 2019).  

The goal of transcriptomics is not just to describe all known transcripts including messenger ribonucleic 

acids (RNAs), small RNAs, and non-coding RNAs but also to examine the level of gene expression under 

different conditions or pathological states and help researchers to deeper understand 

post-transcriptional modification such as alternative splicing variants or different starting sites (Wang 

et al., 2009). Currently, two principles are applied in transcriptomic studies - one is based 

on hybridization using specially designed microarrays, and the other involves a newer approach, RNA 

sequencing. RNA sequencing does not depend on knowledge of the genome sequence as 

the microarray approach does, but it is more expensive (Wang et al., 2009).  

The basis of proteomics is the identification and quantification of proteins and peptides, their 

modifications and interactions. Today, the most frequently used approach for studying proteins is the 

combination of gel- or chromatography-based separation techniques coupled with mass spectrometry 

(MS) analysis and bioinformatic methods (Nikolov et al., 2021). There are two primary methods 

of measuring the mass-to-charge ratio of ionized molecules in the gas phase using MS. The first is 

targeted MS, which involves the use of standard peptides for absolute quantification. The second is 

non-targeted MS, which provides a semi-quantitative readout by measuring the intensity of peptide 

ions (Suhre et al., 2021). At present, the field of proteomics is witnessing a surge of innovative 

techniques that are revolutionizing the way we study biological systems. One of the most promising 

approaches that has gained significant attention in recent times is the integration of single-cell 

proteomics with single-cell RNA sequencing. Metabolomics shares some similarities with proteomics, 

but it concentrates on a broad range of small molecules present in the biological system, with 

an attempt to link these metabolites to biological pathways. In addition to MS-based techniques, 

nuclear magnetic resonance spectroscopy (NMR) is also employed in metabolomics to detect and 

measure small molecules (Martins-de-Souza, 2014). The field of microbiomics investigates 

the composition, functionality, and intricate interrelationships among microbial communities, 

as elaborated in previous sections. 

1.5.2 Methodology for microbiota determination 

In the field of microbial research, there are currently two predominant approaches 

for the determination of the microbiota composition of a given sample and subsequent bioinformatic 

analysis. These methods are known as 16S ribosomal RNA (rRNA) gene amplicon sequencing and 

shotgun metagenomics. Despite the fact that both of these techniques rely on NGS technologies, they 

differ significantly in terms of their methodology, advantages, and disadvantages (Figure 7). In this 

chapter, the nuances of each of these approaches will be described, their unique features, strengths 

and limitations explored and the various factors that researchers must take into consideration when 

selecting the appropriate method for their specific research question highlighted.  

The 16S rRNA gene is a fundamental component of all bacteria and Archaea and serves as a crucial tool 

in microbiological studies, facilitating a deeper understanding of the complex microbial communities 



29 
 
 

that exist in our world (Janda & Abbott, 2007) (Woese et al., 1990). The gene encodes 

for a transcriptional product called the 16S ribosomal RNA, which constitutes an essential part 

of the small subunit of the ribosome and is thus critical for protein synthesis (Woese & Fox, 1977). 

At a length of approximately 1550 base pairs, the 16S rRNA gene consists of both highly conserved 

regions and nine variable regions (Clarridge, 2004) (Neefs et al., 1993). It is the variability of these 

regions that enables researchers to differentiate between different bacterial taxa usually at the genius 

level by analyzing their unique sequences (Clarridge, 2004). In addition to the ability to distinguish 

between bacterial taxa, one of the major benefits of this method is its relatively low cost, making it 

accessible to a wide range of research laboratories. Moreover, 16S rRNA amplicon sequencing is highly 

sensitive and can detect bacterial populations at very low levels, which is especially useful for analyzing 

environmental samples with low microbial biomass. This has made the 16S rRNA gene a widely used 

target in microbial ecology and taxonomy studies. However, this approach has also its limitations. The 

variable regions within the 16S rRNA gene are inadequate for classifying all microbes at the species 

level, and it is not possible to distinguish strains using this method (Clarridge, 2004). Furthermore, this 

method does not provide information about microbial functionality, so it is recommended to combine 

it with other omics data types such as metabolomics. 

Figure 7. Simplified pipeline schemes for microbial 16S rRNA gene profiling and shotgun metagenomics. Created 
by using https://www.biorender.com/. 

 

One of the most commonly used methods in microbial profiling involves 16S rRNA gene amplicon 

sequencing. This process starts by extracting DNA from a sample and using it to create a DNA library. 

A desired section of the 16S rRNA gene is then amplified through polymerase chain reaction (PCR), 

with PCR primers designed to include sequencing adapters and barcodes (Celis et al., 2022). 

The adapters enable the DNA to be bound to a sequencing machine's flow cell, while barcodes identify 
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each sample's DNA sequences, which is important when analyzing large sets of samples. The amplified 

DNA is cleaned, size-checked, and pooled before quantification and sequencing, where each 

sequencing run results in thousands of "reads" per sample indicating how many times each DNA 

amplicon was sequenced (Slatko et al., 2018). The number of reads of each DNA fragment is 

proportional to its relative abundance in the sequenced mixture, which allows quantitative analysis. 

There are two main approaches commonly used for bioinformatical analysis but there is no universal 

consensus about their usage. Both of them aim to assign taxonomy correctly based on amplicon 

sequences and to obtain relative abundances based on read counts.  

The older method is founded on the concept that similar DNA sequences indicate the same species 

or genera. This method involves clustering the sequences together to form Operational Taxonomic 

Units (OTUs) based on a particular similarity threshold, most commonly at 97% (Caporaso et al., 2011) 

(Chiarello et al., 2022). However, this similarity cut-off creates an external bias that influences the 

entire analysis. Furthermore, the clustering process alone cannot be replicated, and the choice 

of clusters is subjective, resulting in difficulties when comparing results from different laboratories 

or researchers. Therefore, this approach is being gradually replaced by more advanced methods based 

on denoising sequences to create exact sequence variants, such as Amplicon Sequence Variants (ASVs) 

(Callahan et al., 2017). Denoising techniques aim to identify and correct sequencing errors 

by generating an error model for each sequencing run. This method helps in obtaining high-quality 

and biologically relevant sequences, which can be compared between different laboratories 

and studies. In addition to its advantage of providing comparable results, denoising techniques are 

more sensitive in detecting bacterial taxa, as highlighted by Caruso et. al and others (Caruso et al., 

2019) (Prodan et al., 2020) (Xue et al., 2018). 

Shotgun metagenomic sequencing represents an alternative method to cataloging the human gut 

microbiota compared to the 16S rRNA gene microbial profiling mentioned above. In this method, 

instead of targeting a specific gene, all the DNA present in the sample is extracted and fragmented into 

smaller pieces. Then, adapters with tags are usually added to these fragments to enable PCR 

amplification and sequencing (Quince et al., 2017). After size-checking, cleaning and pooling the PCR 

products, the resulting reads are processed using bioinformatic tools to explore both taxonomic and 

functional aspects of the microbiota. One advantage of shotgun metagenomics is that it generates 

much more sequencing data than 16S rRNA profiling, allowing for a more comprehensive and detailed 

analysis of the microbial community. The bioinformatics analysis required for shotgun metagenomics 

is, therefore, more complex and challenging, as it involves either assembling the reads into whole 

or partial genomes of the organisms present in the sample or aligning the reads to reference databases 

to identify functional genes (Quince et al., 2017). By using shotgun metagenomics, researchers can 

obtain a more complete picture of the microbiota's composition and functional potential. This method 

enables not only the identification of microbial species and strains but also the characterization of their 

metabolic potential determined by the coding enzymes. However, it should be noted that shotgun 

metagenomics is more expensive and time-consuming than 16S rRNA profiling, and requires more 

computational resources and expertise. 

In summary, while 16S rRNA profiling and shotgun metagenomics are both valuable tools for studying 

the human gut microbiota, each has its own strengths and limitations. Shotgun metagenomics provides 

a more comprehensive and detailed view of the microbiota, but at a higher cost and with more 

computational challenges. 
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1.5.3 Integration of omics data types 

In the age of big multi-omics data, with technology constantly evolving and datasets growing in size 

and diversity, it is of utmost importance to develop a strong bioinformatics framework that can 

effectively support the potential advantages of personalized medicine by combining data sets of each 

individual. To address this challenge, various computational approaches have been developed 

to integrate and analyze omics data, the state-of-the-art methods being various machine learning 

algorithms and dimension reduction methods (Tebani et al., 2016). Rather than analyzing individual 

types of biological data in isolation, integrating multiple data types can provide a more comprehensive 

and nuanced understanding of complex biological processes (Olivier et al., 2019). While this approach 

does increase the complexity of the bioinformatics analysis required, it has the potential to reveal 

previously unseen relationships and interactions between different biological components. In essence, 

by combining diverse data sources, a more complete picture of the underlying biological mechanisms 

can be achieved. 

At the outset of multi-omics studies, correlation and network analyses are often used as basic methods 

to obtain a broad overview of the data. These methods aim to identify all possible relationships 

between variables from different omics datasets. Such variables can exhibit similar patterns or may be 

in opposition to each other, which can reveal how they interact across multiple omics layers and even 

help to explain certain biological phenomena or formulate hypotheses. Although these techniques are 

relatively simple, they can provide important insights into the complex relationships between different 

omics data types (Hasin et al., 2017). However, the limitations of this approach become evident when 

dealing with complete multi-omics studies, which can involve measuring hundreds of thousands 

of variables, resulting in significant computational memory requirements (Olivier et al., 2019).  

Visual representations of correlations, such as correlation networks, can be a valuable tool in data 

analysis (Figure 8). These networks offer a way to map relationships between variables from multiple 

data sets and can reveal hidden patterns in the flow of information (Jiang et al., 2019).  In a correlation 

network, nodes typically represent various variables, such as bacterial taxa, genes, metabolites, dietary 

features, and other metrics, while edges between the nodes indicate the presence of an interaction, 

often weighted by the strength of that interaction  (Jiang et al., 2019). Positive and negative 

interactions are usually distinguished by color, making it easier to identify complex relationships 

beyond just numerical values. When analyzing a network, one approach is to count the degree 

of the nodes, which refers to the number of edges connected to each node. Nodes with a higher degree 

are likely to have a greater influence on the system being depicted (e.g., a biological process 

or metabolic pathway) as they are more connected to other nodes (variables) in the network  (Jiang et 

al., 2019). Heatmap correlograms with specifically designed annotations can be also a useful graphical 

tool for analyzing high-dimensional data (Figure 9). These correlograms display a heatmap 

of the correlation matrix between variables, with annotations added to highlight possible interactions 

and patterns. These annotations can provide additional insights into the relationships between 

variables, such as identifying clusters of highly correlated variables or patterns of positive and negative 

correlations (Gu et al., 2016). This approach can help to identify underlying structures and relationships 

within complex data sets, making it easier to interpret and draw meaningful conclusions. 
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Figure 8. An example of a correlation network based on clinical parameters. 

 

Figure 9. An example of annotated heatmap correlogram combining several omics data types and some body 
and clinical parameters. 
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It is important to bear in mind that correlations are also susceptible to false positives, and as a result, 

multiple testing corrections must be carried out. To mitigate this challenge, several clustering 

or dimension reduction methods have been developed to complement correlation-based analyses 

(Chong & Xia, 2017). These techniques can help to simplify the analysis and reduce the computational 

burden by grouping or reducing the number of variables while still retaining important information 

about the relationships between different omics data types. These methods are widely used 

in multi-omics data analysis and are typically based on commonly used dimension-reduction 

techniques, such as principal component analysis (PCA) (Figure 10). PCA is an unsupervised method for 

reducing the dimensionality of a data set (Chong & Xia, 2017). It involves creating new variables, called 

principal components, which are linear combinations of the original variables (Park et al., 2020). 

The principal components are designed to capture the maximum amount of variance present within 

the data set (Meng et al., 2016). While PCA is primarily used for dimensionality reduction, another 

popular multivariate technique, Canonical Correlation Analysis (CCA) is used to analyze the relationship 

between two sets of variables (Rodosthenous et al., 2020). PCA aims to capture the maximum variance 

in a single dataset, and CCA seeks to find patterns of covariation between two different datasets.  

Figure 10.An example of PCA visualization. 

 

As computational power continues to increase and artificial intelligence technologies are being 

successfully implemented in various fields, machine learning (ML) is gaining popularity in health 

sciences (Reel et al., 2021). However, one of the challenges in analyzing multi-omics data is the 

problem of multidimensionality, which refers to the presence of more variables than observations 

in the data matrix. Furthermore, this data matrix often contains many correlated features, which can 

mislead results during algorithm training (Reel et al., 2021). Therefore, special care must be taken 

in selecting appropriate ML techniques and preprocessing the data to address these challenges.  

Regularization (penalization) approaches such as elastic net, Least Absolute Shrinkage and Selection 

Operator (LASSO) and Ridge regression are currently popular methods for feature selection, dimension 

reduction and/or classification in multi-omics studies (C. Wu et al., 2019). Regularization methods are 

able to handle the problem of multidimensionality by introducing penalty terms to the model equation 

and shrinking the coefficients of the features resulting in a more predictive model with a lower risk 
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of overfitting (Tibshirani, 1996). In the context of omics studies, feature selection aims to remove noisy 

and redundant features, while retaining only those that contain the most relevant information, 

thereby reducing the total number of features and overall dimensionality of the data (Picard et al., 

2021). This is important because high-dimensional data can result in the overfitting of machine 

learning models, leading to poor performance on new, unseen data (Picard et al., 2021). Therefore, 

selecting the most informative features is crucial for the accurate prediction and interpretation 

of multi-omics data.  

Deep learning methods, also known as deep neural methods, are a group of powerful algorithms that 

are gaining popularity in analyzing big data. These methods fall under the umbrella of machine learning 

and are capable of discovering hidden patterns in complex datasets without relying on mathematical 

formulas (Kang et al., 2022). One of the main advantages of deep learning algorithms is that they are 

self-teaching and can learn from the data without human intervention. However, one disadvantage is 

that they require a large training dataset with many observations to learn across multiple layers; 

otherwise, they are prone to overfitting (Kang et al., 2022). Additionally, deep learning algorithms are 

often considered a black box since their operations are not easily interpretable. Despite these 

limitations, deep learning methods have enormous potential in personalized medicine, such 

as detecting early stages of disease or classifying disease types, predicting drug responses, and 

identifying disease biomarkers. 

In conclusion, integrating and analyzing multi-omics data is a complex and challenging task, but it has 

the potential to provide a more complete understanding of biological systems and the development 

of personalized medicine. Correlation and network analyses, as well as dimension reduction 

techniques, are commonly used to address this challenge. Correlation networks offer a way to map 

relationships between variables from multiple data sets, while dimension reduction techniques such 

as PCA and CCA can help to simplify the analysis and reduce the computational burden. Machine 

learning techniques are also gaining popularity in multi-omics data analysis, but appropriate algorithms 

and preprocessing of data must be used to handle the challenges of multidimensionality and correlated 

features. Overall, by combining diverse data sources, a more comprehensive and nuanced 

understanding of complex biological processes can be achieved, leading to the development 

of precision medicine and improved patient outcomes. 

 

 

  



35 
 
 

2 AIMS AND HYPOTHESES 

The current state of knowledge points to a causal relationship between the composition of the gut 

microbiota and the development of many diseases of apparently different origin. Targeting the gut 

microbiota, either in composition or functional manifestations, could represent an effective 

therapeutic strategy. However, the wide implementation of this approach in therapeutic practice is 

still limited by the lack of knowledge about the behavior of such a complex system like the gut 

microbiome and its interaction with external stimuli and the host organism. The goal of this thesis is 

to enrich the knowledge in this area from several perspectives described below. 

AIM 1:  

To describe the microbiome and metabolome signature associated with a vegan diet.  

Hypothesis 

Long-term adherence to a vegan diet is associated with less incidence of NCDs like obesity, T2D 

or cardiovascular disease. We hypothesize that at least some of the health benefits of a vegan diet 

could be explained by the composition and/or activity of gut microbiota. 

 

AIM 2:  

To develop an alternative tool for the estimation of specific function(s) of gut microbiota. 

Hypothesis 

Real-time quantitative PCR (qPCR) based method may serve as an alternative tool for the quantification 

of the specific gene across the whole bacterial population in the tested sample and therefore provide 

an insight into the functional capacity of the microbiota. 

 

AIM 3:  

To explore the possibilities of the manipulation of the gut microbiota by the dietary fiber inulin 

in the personalized treatment of T2D. 

Hypothesis 

The amount of fiber in the diet is one of the strongest environmental factors shaping the composition 

of gut microbiota but the results of clinical trials evaluating the effects of dietary fiber intervention 

in NCDs treatment are highly individually variable.  We hypothesized that the outcome of the fiber 

intervention depends on the ability of the individual´s microbiota to process it and the potential 

beneficiaries of this treatment could be predicted based on the initial microbiome and metabolome 

characteristics. 

 

AIM 4:  

To assess the protective effect of the vegan microbiota against the influence of the obesogenic diet. 

Hypothesis 

We hypothesized that vegan microbiota may be protective against the effects of a western-type 

obesogenic diet and that its effect could be potentiated by the addition of dietary fiber inulin into the 

diet.  
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3 RESULTS AND COMMENTARY 

3.1 Description of the microbiome and metabolome signature associated with 

a vegan diet 

As highlighted in the introduction, diet is a crucial factor that shapes gut microbiota. On the other 

hand, the gut microbial community is known for its resilience. Plant-based diets belong to nutritional 

trends gaining increasing attention both among the general population and nutrition specialists. These 

diets differ significantly from traditional omnivorous diets in many aspects. Due to their high content 

of microbiota-accessible carbohydrates, plant-based diets may lead to a shift in the composition of the 

gut microbiota towards that seen in traditional societies. Therefore, we performed a cross-sectional 

study comparing healthy vegans' and omnivores' microbiome and metabolome profiles and explored 

how the microbial composition or functional potential of gut microbiota differs between the groups 

with contrasting dietary habits. 

This study compared the subjects of lean and healthy vegans (VG, n = 62) and omnivores (OM, 

n = 33). It involved collecting dietary records and measuring the macronutrient composition and fiber 

content. Stool samples were obtained from the participants for the untargeted metabolomic analysis 

(gas chromatography-mass spectrometry, GC-MS), bile acid spectrum determination, and microbial 

16S rRNA sequencing. The plasma was also analyzed for SCFAs concentrations and untargeted 

metabolomics using liquid chromatography-mass spectrometry (LC-MS) and NMR, respectively. 

Glucose and lipid homeostasis parameters were assessed as well. The level of systemic inflammation 

was estimated according to the serum concentration of C-reactive protein (CRP). These additional 

analyses provide a more comprehensive understanding of the metabolic effects of the diets being 

compared in the study. 

The results of the 3-day prospective dietary records showed that omnivores had a higher daily intake 

of protein and lipids, while vegans had a higher intake of carbohydrates and dietary fiber. Compared 

with omnivores, vegans exhibited more favorable glucose homeostasis parameters, as evidenced 

by a lower concentration of glycated hemoglobin and lower secretion of insulin during the oral glucose 

tolerance test (OGTT). Additionally, vegans had lower serum concentrations of total and low-density 

lipoprotein (LDL) cholesterol. Median serum CRP concentration was lower in vegans, although the 

values remained within the physiological range in both groups. These results suggest that a plant-based 

diet may offer benefits for glucose and lipid metabolism, as well as inflammation, compared 

to an omnivorous diet. 

In terms of the microbial composition, permutational analysis of variance (PERMANOVA) tests 

revealed significant differences in β-diversity between vegans and omnivores at the order, family, 

and genus levels. However, the differences were relatively small, with only 15% of all bacteria being 

affected by diet at the genus level as determined by univariable analysis. When it comes to fecal 

metabolomics, we identified 146 different volatile organic compounds determined by GC-MC. We 

found that the vegan fecal metabolome was enriched in products of polysaccharide fermentation, such 

as SCFAs, while amino acid fermentation products were lower in the VG group. On the other hand, 

amino acid fermentation products such as indole, scatole, and p-cresol were higher in the OM group. 

VG and OM groups did not differ in primary bile acid spectrum composition, but vegans had 

significantly lower fecal content of one secondary bile acid, LCA, in feces compared with omnivores. 
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In the urine metabolome, we found higher concentrations of metabolites related to protein/amino 

acid metabolism in the OM group. The most significant changes between groups were observed 

in serum metabolomics, where we found a clear separation between the vegan and omnivore groups. 

The vegan serum metabolome was characterized by a higher content of SCFAs, dimethyl sulfone, and 

amino acids such as glycine, glutamine, asparagine, proline, and threonine, while the concentrations 

of branched-chain amino acids, their derivatives, and essential amino acid lysine were lower in the VG 

group. 

These findings suggest that the differences in the diets of vegans and omnivores have a significant 

impact on their metabolome profiles, particularly in serum metabolome. The vegan diet was 

associated with a higher occurrence of potentially beneficial metabolites from dietary fiber 

fermentation products and a lower abundance of potentially harmful metabolites from amino acid 

fermentation products.  

 

This article was published on the 7th of January 2022 in Frontiers in Nutrition, IF = 6.59 
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3.2 Development of an alternative method for the estimation of specific 

function(s) of gut microbiota 

Although 16S rRNA sequencing is widely used to investigate the composition of bacterial communities 

in the gut, it does not provide insight into the functional aspects of these microorganisms 

and taxonomic resolution is in some cases insufficient. This knowledge gap has been addressed by the 

use of shotgun sequencing, which can provide a comprehensive view of the gut microbiota and its 

functional capacity. However, the high cost of this technique and relatively high requirements 

for bioinformatic skills has made it inaccessible to many laboratories. To address this problem, we 

focused on developing a simple and cost-effective method to estimate the functional capacity 

of butyrate synthesis by the gut microbiota. This method focuses on RT-qPCR quantification 

of the bacterial gene encoding butyryl-CoA:acetate CoA-transferase, a key enzyme involved 

in butyrate synthesis. As the importance of butyrate in overall health is increasingly recognized, 

the proposed method may serve as a valuable tool for investigating the role of gut microbiota in health 

and disease. 

As a first step towards developing a simple and inexpensive method to estimate the functional capacity 

of butyrate synthesis by the gut microbiota, we searched for human butyrate-producing gut bacteria 

whose genome contains but gene coding sequences. Thirty-six bacterial genomes containing the but 

gene were selected for further analysis, but due to the large variation in but coding sequences among 

the selected bacteria, it was not possible to design a single primer targeting all sequences at once. 

Therefore, six sets of degenerate primers targeting selected groups of bacteria were designed 

and validated based on bacterial phylogenetic distance and similarity of but gene sequences. All 

primers were validated based on the length of their PCR products, where the predicted and observed 

lengths matched. 

To quantify the qPCR results, a reference (housekeeping) gene had to be selected, which was a difficult 

task given the complexity of human stool. We compared two strategies. First, we used the 16S rRNA 

gene, which is universal to all bacteria and therefore inherently present in any sample. The target gene 

is quantified relative to the copy number of the 16S rRNA gene. The disadvantage of this approach is 

the variable number of 16S rRNA genes per genome in different bacteria, which may influence 

the results. The second strategy was based on a DNA spike whose sequences are not found in humans, 

such as the gene originating from the worm Caenorhabditis elegans. This method should be more 

precise but more demanding on labor and material.  The target gene is quantified relative 

to the amount of spike DNA originating from the C. elegans worm that was added prior to fecal DNA 

isolation. Surprisingly, copy numbers normalized against both the 16S rRNA gene and the C. elegans 

gene were correlated for all primer sets, which was also verified by the Bland-Altman method. 

The developed method was then applied to DNA extracted from stool samples of a cohort of healthy 

lean vegans (VG, n = 63) and healthy obese omnivores (OB, n = 62) with known information about their 

fecal microbiota and metabolome composition. In both groups, the highest abundance of the but gene 

was found when using primers targeting cluster C of selected bacteria. Cluster C included the bacterial 

taxa Faecalibacterium prausnitzii, Clostridium symbiosum, Clostridium sp. M62/1 and three species 

belonging to the genus Eubacterium, and the VG group in this cluster differed significantly in but gene 

abundance from the OB group (Mann-Whitney U-test, p < 0.001). The abundance of the but gene 

determined by qPCR targeting all bacterial clusters correlated with results obtained previously from 

16S rRNA sequencing. In addition, the higher copy number of the but gene in the VG group 

corresponded to the significantly higher amount of butyrate (Mann-Whitney U-test, p = 0.002) 
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in respective fecal samples determined by NMR. Thus, our results support the hypothesis that the but 

gene copy number determination in bacterial DNA reflects its taxonomic composition, especially 

in the case of the more abundant bacteria, as well as a functional readout, in this case, the butyrate 

content of the feces.  

In conclusion, this method may represent a powerful tool for estimating the functional capacity 

of the gut microbiota for butyrate synthesis based on qPCR quantification of bacterial 

butyryl-CoA:acetate CoA-transferase, provides deeper insight into the functional capacity 

of a particular sample, and could be useful for individual estimation of the utility of prebiotic therapy. 

This approach requires only equipment and skills commonly available in diagnostic laboratories and 

does not require advanced bioinformatic data analysis, making it a useful method for rapid screening 

of the specific functional capacity of the gut microbiota. 

 

This article was published on the 2nd of September 2021 in Biomolecules, IF = 4.93 
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3.3 Exploration of the possibilities of the manipulation of gut microbiota by 

the dietary fiber inulin in the personalized treatment of T2D 

Obesity and associated metabolic diseases, such as T2D, are a major global health challenge, 

and the gut microbiota has been suggested to play a critical role in their development. Although many 

studies suggest an association between T2D and gut dysbiosis, results on the composition and function 

of the microbiota are inconsistent and sometimes contradictory. Diet plays an important role 

in shaping the microbiome, and dietary interventions focused on modulating the composition 

and/or performance of the gut microbiota appear to be a promising therapeutic target. This study 

aimed to determine whether the gut microbial composition and metabolome differ in lean healthy, 

obese healthy, and obese diabetic drug-naive T2D patients, whether the effects of inulin on glucose 

tolerance and insulin sensitivity can be explained by the response of the gut microbiota to inulin 

intervention, and whether this response can be predicted from the initial microbiome 

and metabolome signature. 

The observational part of the study involved screening patients with pre/diabetes (DM, n = 49), 

metabolically healthy overweight/obese patients (OB, n = 66) and a lean healthy cohort (LH, n = 32). 

All cohorts had their blood, urine and stool samples collected. An oral glucose tolerance test was 

performed and 3-day prospected dietary records were obtained. The prospective part of the study 

involved 27 DM patients and the effect of inulin supplementation (10 g/day for three months) 

on glucose disposal and insulin sensitivity was investigated. Various outcomes were measured during 

the whole study, including gut microbial composition, SCFAs in plasma, volatile organic compounds 

(VOCs) in feces and metabolites in serum measured by NMR.  

Microbiome and metabolome composition varied across groups. The DM and LH groups represented 

opposite poles of the abundance spectrum, whereas OB was found to be more similar to DM. 

Concerning microbiome composition, multivariable statistics revealed significant differences 

in β-diversity between LH, OB, and DM phenotypes (PERMANOVA test). The univariable analysis 

identified 37 taxa that had significantly different abundance among the groups. A machine learning 

approach (LASSO regression model) was used to discriminate the groups based on microbial 

composition, but the outcome was not satisfactory. When OB and DM data sets were grouped, the 

accuracy of the model increased to 75%. Significant differences were also found in the β-diversity 

of VOCs between the groups, with pairwise analysis confirming significant differences between OB 

and DM groups compared to the LH group. Univariable analysis followed by effect size analysis 

revealed ten VOCs with significantly different abundance between groups. Nonanoic acid was more 

abundant, while all other compounds, including SCFAs esters, were less abundant in the OB and DM 

groups compared to LH controls. The machine learning model achieved only 52% accuracy 

for classifying subjects into three categories but increased to 81% when obese and diabetic subjects 

were combined into one category. The LASSO model based on serum metabolome data was able 

to classify unknown subjects into the categories LH, OB, or DM with an accuracy of 74%. The integrated 

LASSO model, which combined all variables, allowed better classification between groups, 

with an accuracy of 77%. Taken together, our results demonstrate that microbiome and metabolome 

composition differ between lean participants and subjects with obesity, but do not allow 

to discriminate between obese subjects with and without diabetes.  

Inulin supplementation in 27 subjects with obesity and diabetes led to a significant change in their 

microbiota composition (PERMANOVA <0.001). Several bacterial taxa, including butyrate producers 

such as Faecalibacterium, Anaerostipes or Eubacterium halii and other bacteria considered beneficial 
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such as Lactobacillus, Bifidobacterium and Akkermansia, increased after treatment. Conversely, some 

bacterial taxa abundances decreased after supplementation, for example, those known to be 

associated with protein fermentation. After the inulin treatment, there was a significant increase 

in the concentration of butyric acid, propionic acid, and asparagine in the serum, while 

the concentration of glycerol and 2-propanol decreased. Inulin intake also affected markers of glucose 

tolerance and insulin sensitivity, but the individual response varied greatly. Nevertheless, significant 

improvement in glucose tolerance (measured as 120 min OGTT glucose) was observed in the entire 

group that received the intervention, along with a tendency towards a reduction in the area under the 

curve (AUC) for OGTT glucose and fasting glycemia. Linear regression models were fitted with all 

glucose metabolism parameters as outcome variables and all omics and clinical variables as predictors. 

We identified potential predictors of individual response to inulin treatment independently 

on pre-intervention glycemic parameters, such as serum BCAA derivatives, serum 

3-hydroxyisobutyrate, fecal indole and various bacterial taxa (Ruminiclostridium, Lachnoclostridium, 

Eubacterium halii).  

In conclusion, this study provides valuable insights into the role of gut microbiota in the development 

of metabolic diseases and the potential use of dietary interventions to modulate the microbiota 

and improve metabolic health. The findings highlight the complex nature of microbial changes 

underlying the development of TD2 and obesity but also suggest that inulin supplementation can lead 

to significant improvements in glucose tolerance and insulin sensitivity, as well as changes 

in microbiota composition and metabolome. These findings may help personalize treatment options 

and improve outcomes for patients with metabolic diseases who have struggled to achieve success 

through lifestyle changes alone.  

 

This article was published on the 21st of April 2023 in Nutrition & Diabetes, IF = 4.73 
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3.4 Assessment of the protective effect of vegan microbiota against the 

influence of the obesogenic diet 

As described in the introductory section, gut microbiota plays an essential role in energy homeostasis, 

weight control and inflammation, which are all related to NCDs like obesity, T2D or non-alcoholic fatty 

liver disease (NAFLD). Targeted modulation of gut microbiota and its metabolic programming is 

considered a potentially promising therapeutic approach in the NCDs treatment but more research 

on this topic is definitely needed. Fecal microbial transfer (FMT) is gaining more attention due to its 

potential therapeutic properties by altering the entire microbial community. As noted above, vegan 

or plant-based diets are associated with beneficial effects on overall health, suggesting that vegan 

microbiota might be desirable, and subjects adhering to plant-based diets should be explored 

as suitable candidates for FMT donors. However, it remains unclear how the transferred microbiota is 

affected by the host diet and the substrates provided. 

In this study, stool from four vegan donors was used to prepare a mixed VG inoculum used for FMT 

transfer to GF animals. Female GF mice were colonized with VG inoculum and were paired with male 

GF mice. Their offspring were further used for the experiment when ex-GF humanized mice (VG) were 

fed either a Western-type diet (WD) or a standard diet (SD) with or without the addition of inulin (I). 

The same experimental design was used in conventional mice (CV). The objectives of this study were 

to determine whether and how the vegan microbiota may have a protective effect against 

an obesogenic diet, to describe the mechanistic relationships of microbiome and metabolome in these 

mice, and to explore the effect of fiber in enhancing the additional therapeutic potential of the vegan 

microbiota.  

After an eight-week experimental period on specific diets, glucose and lipid homeostasis parameters, 

fecal microbiota composition and serum and fecal metabolome were determined. Western diet caused 

a significant increase in total body weight and liver triacylglycerol content in both mice models 

(Kruskal–Wallis test and Dunn’s post hoc test with the Benjamin–Hochberg correction, p < 0.05). 

Impaired glucose homeostasis caused by the Western diet was observed only in the VG group.  Inulin 

supplementation reversed the liver steatosis and improved glucose homeostasis in the VG group, but 

not in the CV group, so further analyses focused on the VG group only. Regarding microbiota in the VG 

group, pairwise PERMANOVA analysis on the taxonomic level species showed significant differences 

between all dietary groups (SD vs SD + I p = 0.0011, SD vs WD p = 0.0011, SD vs WD + I p = 0.0011, WD 

vs WD + I p = 0.0042). The LASSO machine learning regression model was able to classify bacteria 

at the species level between all pairs of groups with at least 90% accuracy, sensitivity and specificity.  

Untargeted metabolome analysis identified 61 VOCs in cecum content.  Inulin supplementation did not 

lead to an alteration of cecum metabolome in the SD diet group (paired PERMANOVA, p > 0.1), but 

resulted in a significant change in the WD group (paired PERMANOVA, p = 0.005). Interestingly, after 

inulin supplementation, we observed a shift from amino acid fermentative metabolism to saccharolytic 

fermentation described by a decrease of the product of tryptophan fermentation indole (only 

in VG_SD+I group), a decrease of methionine/cysteine fermentation product dimethyl trisulfide 

(in both VG_SD+I and VG_WD+I groups), increase of butyrate (only in VG_SD+I group) and increase 

of acetic acid (in both VG_SD+I and VG_WD+I groups). The serum metabolome assessed by NMR 

spectroscopy was not significantly affected by any of the treatments. Paired PERMANOVA analysis 

revealed no difference between groups (all paired PERMANOVA tests > 0.15). 
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In this animal model, we demonstrated that vegan microbiota alone may not be sufficient 

to counteract the negative metabolic effects of a Western-type diet. However, further 

supplementation by dietary fiber (in this case inulin) can protect from steatosis and impairment 

of glucose metabolism. Notably, this effect was only observed in humanized mice and not 

in conventional mice models. Furthermore, inulin supplementation in humanized mice model led 

to a shift in the cecal microbial community and its metabolic performance. These results suggest that 

the treatment of metabolic disorders by FMT should be also supported by subsequent dietary 

precautions in order for the treatment to be more successful.  

 

This article was published on the 15th of January 2023 in Nutrients, IF = 6.71 
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4 GENERAL DISCUSSION AND FUTURE PERSPECTIVES 

This dissertation thesis addresses the possible modification of the composition of the gut microbiota 

by diet not only from a taxonomic but also from a functional point of view, by incorporating 

metabolomics into the analyses and developing a new method to estimate the ability of the microbiota 

to produce the beneficial metabolite butyrate. The theoretical part of the thesis summarizes the 

importance of gut microbes for human health. In particular, it discusses the immersive functions of gut 

microbiota and its impact on human development and it also summarizes current knowledge 

on manipulating the gut microbiome through diet. It highlights the most reputable research that has 

been conducted in this area. In addition, some of the most commonly used multi-omics methods are 

introduced and their integration is briefly explained. The experimental part of the thesis focuses 

on four monothematic articles that have been published in connection with this work. 

The first study describes the microbiome and metabolome profiles of healthy lean vegans 

and omnivores and explores the impact of plant-based diet on microbial function and to a lesser 

extent, microbial taxonomic composition. The study involved collecting dietary records and analyzing 

stool and plasma samples for various analyses such as metabolomics, bile acid spectrum 

determination, the SCFAs contents measurement, 16S rRNA sequencing, glucose and lipid 

homeostasis, and inflammation parameters. The study found that the vegan diet was associated 

with a higher intake of carbohydrates and dietary fiber, more favorable glucose and lipid metabolism, 

and lower inflammation levels compared to the omnivorous diet. The metabolome profiles differed 

significantly between the groups, with vegans having a higher occurrence of potentially beneficial 

metabolites from dietary fiber fermentation and a lower abundance of potentially harmful metabolites 

from amino acid fermentation products. The study highlights the importance of plant-based diets 

by demonstrating their positive impact on microbial function, metabolic health, and inflammation 

levels compared to omnivorous diets. 

The second study presented a simple and cost-effective method for estimating the functional capacity 

of butyrate synthesis by the gut microbiota, an important process for maintaining overall health. 

The method involves the use of qPCR to quantify the bacterial gene encoding 

butyryl-CoA:acetate CoA-transferase, a key enzyme involved in butyrate synthesis, and was validated 

using six sets of degenerate primers. We compared two strategies for normalizing qPCR results and 

found that copy numbers normalized to the 16S rRNA gene and the C. elegans-derived DNA spike were 

comparable for all primer sets. We then tested the method on stool samples from healthy lean vegans 

and healthy obese omnivores and found that the amount of the but gene in the VG group was 

significantly different from the OB group, corresponding to significantly higher amounts of butyrate 

in the respective stool samples as determined by NMR. Thus, the method may represent a powerful 

tool for estimating the functional capacity of the gut microbiota and could be useful for individual 

assessment of the utility of prebiotic or dietary treatment. 

The third study investigated whether gut microbiota composition and metabolome differ in lean 

healthy, obese healthy, and obese diabetic T2D patients without medication and whether the effects 

of inulin on glucose tolerance and insulin sensitivity can be explained by the response of the gut 

microbiota to inulin intervention and whether this response can be predicted from the initial 

microbiome and metabolome signature. The study found that the composition of microbiome 

and metabolome differed between lean participants and obese subjects, but did not distinguish well 

obese subjects with and without diabetes. Inulin supplementation resulted in a significant change 

in microbiota composition, with an increase in beneficial bacterial taxa and a decrease in potentially 
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harmful ones. Inulin intake also affected markers of glucose tolerance and insulin sensitivity, 

and potential predictors of individual response to inulin treatment were identified. These findings 

highlight the complex character of the gut microbiota and host metabolism response to inulin 

intervention and demonstrated the possibilities of personalized therapeutic microbiota manipulation. 

In the fourth study, stool samples from four vegan donors were used to prepare a mixed inoculum 

for FMT to create humanized ex-GF mice. The aim was to investigate the protective effects of the vegan 

microbiota against the Western-type diet and the role of dietary fiber (inulin) in enhancing its 

therapeutic potential. The study found that the Western diet caused significant weight gain and 

triacylglycerol content in the liver in both humanized and conventional mouse models, but impaired 

glucose homeostasis was observed only in the humanized group. Inulin supplementation reversed liver 

steatosis and improved glucose homeostasis in the humanized mice group but not in the conventional 

mice group. The study suggests that a vegan microbiota alone may not be sufficient to counteract 

the negative metabolic effects of a Western-style diet, but follow-up dietary support may substantially 

enhance the treatment success. 

This thesis concludes by highlighting the importance of gut microbiota for human health 

and the opportunity for dietary interventions that can influence microbial composition and function. 

The first study demonstrated that adherence to a plant-based diet high in carbohydrates and fiber can 

lead to a favorable microbial profile and metabolome associated with improved glucose and lipid 

metabolism and lower levels of inflammation. The second study presented a new method to estimate 

the functional capacity of butyrate synthesis by the gut microbiota. The third study focused on the 

identification of predictors of the therapeutic efficacy of inulin treatment in (pre)diabetes. Finally, 

a fourth study used FMT to investigate the protective effects of vegan microbiota against 

a Western-style diet and found that fiber may enhance the therapeutic potential of FMT. Overall, these 

studies highlight the potential of personalized dietary interventions to modify gut microbiota 

and improve metabolic health, but further research is needed to confirm these findings.  
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5 CONCLUSIONS 

AIM 1: 

We have shown that the composition of the gut microbiota of healthy lean long-term vegans 

and omnivores does not differ dramatically. In contrast, vegans and omnivores significantly differ 

in the composition of the fecal, serum, and urine metabolomes, probably as an effect of different 

availability of dietary substrates. Consequently, the vegan diet was associated with a lower abundance 

of the potentially harmful (protein fermentation products) and a higher occurrence of potentially 

beneficial (dietary fiber fermentation products) metabolites in feces.  

 

AIM 2:  

We developed a method for the assessment of the functional capacity of gut microbiota for butyrate 

synthesis based on the qPCR quantification of bacterial butyryl-CoA:acetate CoA-transferase. This 

method is based on qPCRs using degenerate primers specific for but gene variants and quantification 

of but gene abundance using the selected reference gene (16S rRNA gene or spike UNC-6 gene 

from C. elegans).  

 

AIM 3:  

In patients with newly diagnosed pre/diabetes treated with inulin, we observed considerable 

interindividual variability in the effects of inulin treatment on glucose homeostasis. We identified 

several omics-derived biomarkers that may play a central role in the development 

of obesity-associated metabolic changes and identified several predictors of treatment efficiency. 

 

AIM 4:  

Using the model of ex-GF mice humanized with mixed human vegan microbiota we found that it does 

not protect against the adverse effects of a Western-type diet like obesity, liver steatosis, 

and compromised glucose homeostasis. In contrast, supplementation of the Western diet with inulin 

reversed steatosis and ameliorated glucose metabolism, though it did not affect weight gain in this 

model. Inulin supplementation resulted in a significant change in the gut microbiota composition 

and its metabolic performance, inducing the shift from proteolytic towards saccharolytic fermentation. 

In the context of the potential use of fecal microbiota transfer with vegan microbiota in the therapy 

of metabolic NCDs, our study points out that it is not only the particular microbiota transfer but also 

the following dietary intervention with inulin or other dietary fiber and/or dietary change that is 

necessary for therapeutic success. 
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6 ABBREVIATIONS 

AMPs     antimicrobial peptides  

ASVs     Amplicon Sequence Variants  

AUC     area under the curve  

BCAAs     branched-chain amino acids  

BCFAs     branched-chain fatty acids  

BSH     bile salt hydrolases  

C. elegans    Caenorhabditis elegans 

CA     cholic acid 

CAZymes    carbohydrate active enzymes  

CCA     Canonical Correlation Analysis  

CDCA     chenodeoxycholic acid  

CRP     C-reactive protein  

DCA     deoxycholic acid  

DNA     deoxyribonucleic acid 

FMT     fecal microbial transfer  

FXR     farnesoid X receptor  

GC-MS     gas chromatography mass spectrometry  

GF     germ-free 

GIT     gastrointestinal tract  

HDL     high-density lipoprotein 

HEI     Healthy Eating Index  

HGP     Human Genome Project  

HMOs     human milk oligosaccharides  

HMP     Human Microbiome Project  

IECs     intestinal stem cells  

KEGG     Kyoto Encyclopedia of Genes and Genomes 

LASSO     Least Absolute Shrinkage and Selection Operator 

LCA     lithocholic acid  

LC-MS     liquid chromatography mass spectrometry  

LDL     low-density lipoprotein 

LPS     lipopolysaccharides  

ML     machine learning  

MRSA     methicillin-resistant Streptococcus aureus  

MS     mass spectrometry  

NAFLD     non-alcoholic fatty liver disease 
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NCDs     non-communicable diseases  

NGS     next-generation sequencing 

NMR     nuclear magnetic resonance spectroscopy  

OGTT     oral glucose tolerance test  

OTUs     Operational Taxonomic Units  

PCA     Principal Component Analysis  

PCR     polymerase chain reaction  

PERMANOVA    Permutational Analysis of Variance  

qPCR     quantitative PCR 

RNA     ribonucleic acid 

rRNA     ribosomal RNA  

SCFAs     short-chain fatty acids 

sIgA     secretory immunoglobulin type A   

TMAO     trimethylamine N-oxide 

T2D     type 2 diabetes 

UDCA     ursodeoxycholic acid  

VOCs     volatile organic compounds 

WD    Western-type diet 

 

 

  



115 
 
 

7 REFERENCES 

Adak, A., & Khan, M. R. (2019). An insight into gut microbiota and its functionalities. Cellular and 
Molecular Life Sciences, 76(3), 473–493. https://doi.org/10.1007/s00018-018-2943-4 

Agus, A., Clément, K., & Sokol, H. (2021). Gut microbiota-derived metabolites as central regulators in 
metabolic disorders. Gut, 70(6), 1174–1182. https://doi.org/10.1136/gutjnl-2020-323071 

Agus, A., Denizot, J., Thévenot, J., Martinez-Medina, M., Massier, S., Sauvanet, P., Bernalier-
Donadille, A., Denis, S., Hofman, P., Bonnet, R., Billard, E., & Barnich, N. (2016). Western diet 
induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli 
infection and intestinal inflammation. Scientific Reports, 6(December 2015), 1–14. 
https://doi.org/10.1038/srep19032 

Amieva, M., Alto, P., & Alto, P. (2016). Pathobiology of Helicobacter pylori-induced Gastric Cancer. 
Gastroenterology, 150(1), 64–78. https://doi.org/10.1053/j.gastro.2015.09.004 

Anand, S., & Mande, S. S. (2018). Diet, microbiota and gut-lung connection. Frontiers in Microbiology, 
9(SEP). https://doi.org/10.3389/fmicb.2018.02147 

Arany, Z., & Neinast, M. (2018). Branched Chain Amino Acids in Metabolic Disease Do Elevations in 
BCAAs Cause Insulin. Current Diabetes Reports, 18(76), 1–8. 

Audebert, C., Even, G., Cian, A., Blastocystis Investigation Group, Loywick, A., Merlin, S., Viscogliosi, 
E., Chabé, M., El Safadi, D., Certad, G., Delhaes, L., Pereira, B., Nourrisson, C., Poirier, P., 
Wawrzyniak, I., Delbac, F., Morelle, C., Bastien, P., Lachaud, L., … Rabodonirina, M. (2016). 
Colonization with the enteric protozoa Blastocystis is associated with increased diversity of 
human gut bacterial microbiota. Scientific Reports, 6(February), 1–11. 
https://doi.org/10.1038/srep25255 

Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Gou, Y. K., Nagy, A., Semenkovich, C. F., & Gordon, J. I. 
(2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of 
the National Academy of Sciences of the United States of America, 101(44), 15718–15723. 
https://doi.org/10.1073/pnas.0407076101 

Baldeon, A. D., McDonald, D., Gonzalez, A., Knight, R., & Holscher, H. D. (2023). Diet Quality and the 
Fecal Microbiota in Adults in the American Gut Project Authors: The Journal of Nutrition. 
https://doi.org/10.1016/j.tjnut.2023.02.018 

Be, C., Marteau, P., Pochart, P., & Inserm, U. (2001). Comparative Study of Bacterial Groups within 
the Human Cecal and Fecal Microbiota. 67(10), 4939–4942. 
https://doi.org/10.1128/AEM.67.10.4939 

Biagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R., Turroni, S., Consolandi, C., Quercia, S., 
Scurti, M., Monti, D., Capri, M., Brigidi, P., & Candela, M. (2016). Gut Microbiota and Extreme 
Longevity. Current Biology, 26(11), 1480–1485. https://doi.org/10.1016/j.cub.2016.04.016 

Blaser, M. J., & Falkow, S. (2009). What are the consequences of the disappearing human 
microbiota? Nature Reviews Microbiology, 7(12), 887–894. 
https://doi.org/10.1038/nrmicro2245 

Boland, M. (2016). Human digestion - a processing perspective. Journal of the Science of Food and 
Agriculture, 96(7), 2275–2283. https://doi.org/10.1002/jsfa.7601 

Bordenstein, S. R., & Theis, K. R. (2015). Host biology in light of the microbiome: Ten principles of 
holobionts and hologenomes. PLoS Biology, 13(8), 1–23. 



116 
 
 

https://doi.org/10.1371/journal.pbio.1002226 

Bustamante, C. D., De La Vega, F. M., & Burchard, E. G. (2011). Genomics for the world. Nature, 
475(7355), 163–165. https://doi.org/10.1038/475163a 

Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace 
operational taxonomic units in marker-gene data analysis. ISME Journal, 11(12), 2639–2643. 
https://doi.org/10.1038/ismej.2017.119 

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, 
N., & Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences 
per sample. Proceedings of the National Academy of Sciences of the United States of America, 
108(SUPPL. 1), 4516–4522. https://doi.org/10.1073/pnas.1000080107 

Caruso, V., Song, X., Asquith, M., & Karstens, L. (2019). Performance of Microbiome Sequence 
Inference Methods in Environments with Varying Biomass. MSystems, 4(1). 
https://doi.org/10.1128/msystems.00163-18 

Celis, A. I., Aranda-Díaz, A., Culver, R., Xue, K., Relman, D., Shi, H., & Huang, K. C. (2022). Optimization 
of the 16S rRNA sequencing analysis pipeline for studying in vitro communities of gut 
commensals. IScience, 25(4). https://doi.org/10.1016/j.isci.2022.103907 

Chaudhari, D. S., Dhotre, D. P., Agarwal, D. M., Gaike, A. H., Bhalerao, D., Jadhav, P., Mongad, D., 
Lubree, H., Sinkar, V. P., Patil, U. K., Salvi, S., Bavdekar, A., Juvekar, S. K., & Shouche, Y. S. (2020). 
Gut, oral and skin microbiome of Indian patrilineal families reveal perceptible association with 
age. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-62195-5 

Chen, C., Song, X., Wei, W., Zhong, H., Dai, J., Lan, Z., Li, F., Yu, X., Feng, Q., Wang, Z., Xie, H., Chen, X., 
Zeng, C., Wen, B., Zeng, L., Du, H., Tang, H., Xu, C., Xia, Y., … Jia, H. (2017). The microbiota 
continuum along the female reproductive tract and its relation to uterine-related diseases. 
Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-00901-0 

Chen, X., Lu, Y., Chen, T., & Li, R. (2021). The Female Vaginal Microbiome in Health and Bacterial 
Vaginosis. Frontiers in Cellular and Infection Microbiology, 11(April), 1–15. 
https://doi.org/10.3389/fcimb.2021.631972 

Chen, Y., Wu, F. H., Wu, P. Q., Xing, H. Y., & Ma, T. (2022). The Role of The Tumor Microbiome in 
Tumor Development and Its Treatment. Frontiers in Immunology, 13(July), 1–15. 
https://doi.org/10.3389/fimmu.2022.935846 

Chiarello, M., McCauley, M., Villéger, S., & Jackson, C. R. (2022). Ranking the biases: The choice of 
OTUs vs. ASVs in 16S rRNA amplicon data analysis has stronger effects on diversity measures 
than rarefaction and OTU identity threshold. PLoS ONE, 17(2 February), 1–19. 
https://doi.org/10.1371/journal.pone.0264443 

Chong, J., & Xia, J. (2017). Computational approaches for integrative analysis of the metabolome and 
microbiome. Metabolites, 7(4). https://doi.org/10.3390/metabo7040062 

Clarke, S. F., Murphy, E. F., Sullivan, O. O., Lucey, A. J., Humphreys, M., Hogan, A., Hayes, P., Reilly, M. 
O., Jeffery, I. B., Wood-martin, R., Kerins, D. M., Quigley, E., Ross, R. P., Toole, P. W. O., Molloy, 
M. G., Falvey, E., Shanahan, F., & Cotter, P. D. (2014). Exercise and associated dietary extremes 
impact on gut microbial diversity. 1913–1920. https://doi.org/10.1136/gutjnl-2013-306541 

Clarridge, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on 
clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 17(4), 840–862. 
https://doi.org/10.1128/CMR.17.4.840-862.2004 



117 
 
 

Clemente, J. C., Pehrsson, E. C., Blaser, M. J., Sandhu, K., Gao, Z., Wang, B., Magris, M., Hidalgo, G., 
Contreras, M., Noya-Alarcón, Ó., Lander, O., McDonald, J., Cox, M., Walter, J., Oh, P. L., Ruiz, J. 
F., Rodriguez, S., Shen, N., Song, S. J., … Dominguez-Bello, M. G. (2015). The microbiome of 
uncontacted Amerindians. Science Advances, 1(3). https://doi.org/10.1126/sciadv.1500183 

Conesa, A., & Beck, S. (2019). Making multi-omics data accessible to researchers. Scientific Data, 6(1), 
4–7. https://doi.org/10.1038/s41597-019-0258-4 

Cover, T. L., & Blaser, M. J. (2009). Helicobacter pylori in health and disease. Gastroenterology, 
136(6), 1863–1873. https://doi.org/10.1053/j.gastro.2009.01.073 

Craig Venter, J., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, 
M., Evans, C. A., Holt, R. A., Gocayne, J. D., Amanatides, P., Ballew, R. M., Huson, D. H., 
Wortman, J. R., Zhang, Q., Kodira, C. D., Zheng, X. H., Chen, L., … Zhu, X. (2001). The sequence of 
the human genome. Science, 291(5507), 1304–1351. https://doi.org/10.1126/science.1058040 

Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E., & MacFarlane, G. T. (1987). Short chain 
fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28, 1221–1227. 
https://doi.org/10.1136/gut.28.10.1221 

David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V, 
Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. 
(2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 
559–563. https://doi.org/10.1038/nature12820 

De Aguiar Vallim, T. Q., Tarling, E. J., & Edwards, P. A. (2013). Pleiotropic roles of bile acids in 
metabolism. Cell Metabolism, 17(5), 657–669. https://doi.org/10.1016/j.cmet.2013.03.013 

De Angelis, M., Ferrocino, I., Calabrese, F. M., De Filippis, F., Cavallo, N., Siragusa, S., Rampelli, S., Di 
Cagno, R., Rantsiou, K., Vannini, L., Pellegrini, N., Lazzi, C., Turroni, S., Lorusso, N., Ventura, M., 
Chieppa, M., Neviani, E., Brigidi, P., O’Toole, P. W., … Cocolin, L. (2020). Diet influences the 
functions of the human intestinal microbiome. Scientific Reports, 10(1), 4247. 
https://doi.org/10.1038/s41598-020-61192-y 

De Filippo, C., Cavalieri, D., Di, M., Ramazzotti, M., & Baptiste, J. (2010). Impact of diet in shaping gut 
microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS, 
107(33), 14691–14696. https://doi.org/10.1073/pnas.1005963107 

De Vos, W. M., Tilg, H., Van Hul, M., & Cani, P. D. (2022). Gut microbiome and health: Mechanistic 
insights. Gut, 1020–1032. https://doi.org/10.1136/gutjnl-2021-326789 

Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. 
(2010). Delivery mode shapes the acquisition and structure of the initial microbiota across 
multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the 
United States of America, 107(26), 11971–11975. https://doi.org/10.1073/pnas.1002601107 

Ducarmon, Q. R., Zwittink, R. D., Hornung, B. V. H., van Schaik, W., Young, V. B., & Kuijper, E. J. 
(2019). Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. 
Microbiology and Molecular Biology Reviews, 83(3), 1–29. 
https://doi.org/10.1128/mmbr.00007-19 

Fragiadakis, G. K., Smits, S. A., Sonnenburg, E. D., Van Treuren, W., Reid, G., Knight, R., Manjurano, A., 
Changalucha, J., Dominguez-Bello, M. G., Leach, J., & Sonnenburg, J. L. (2019). Links between 
environment, diet, and the hunter-gatherer microbiome. Gut Microbes, 10(2), 216–227. 
https://doi.org/10.1080/19490976.2018.1494103 



118 
 
 

Gallo, R. L. (2017). Human Skin Is the Largest Epithelial Surface for Interaction with Microbes. J Invest 
Dermatol., 137(6), 1213–1214. https://doi.org/10.1016/j.jid.2016.11.045 

Gilbert, J., Blaser, M. J., Caporaso, J. G., Jansson, J. K., Lynch, V. S., & Knight, R. (2018). Current 
understanding of the human microbiome. Nat Med., 24(4), 392–400. 
https://doi.org/10.1038/nm.4517 

Goffau, M. C. De, Lager, S., Sovio, U., Gaccioli, F., Peacock, S. J., Parkhill, J., Charnock-jones, D. S., & 
Smith, C. S. (2019). Human placenta has no microbiome but can harbour potential pathogens. 
Nature, 572(7769), 329–334. https://doi.org/10.1038/s41586-019-1451-5 

Gojda, J., & Cahova, M. (2021). Gut microbiota as the link between elevated bcaa serum levels and 
insulin resistance. Biomolecules, 11(10), 1–16. https://doi.org/10.3390/biom11101414 

Gomaa, E. Z. (2020). Human gut microbiota/microbiome in health and diseases: a review. Antonie 
van Leeuwenhoek, International Journal of General and Molecular Microbiology, 113(12), 2019–
2040. https://doi.org/10.1007/s10482-020-01474-7 

Goodrich, J. K., Davenport, E. R., Beaumont, M., Jackson, M. A., Knight, R., Ober, C., Spector, T. D., 
Bell, J. T., Clark, A. G., & Ley, R. E. (2016). Genetic Determinants of the Gut Microbiome in UK 
Twins. Cell Host and Microbe, 19(5), 731–743. https://doi.org/10.1016/j.chom.2016.04.017 

Gu, Z., Eils, R., & Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in 
multidimensional genomic data. Bioinformatics, 32(May), 2847–2849. 
https://doi.org/10.1093/bioinformatics/btw313 

Guinane, M. C., Tadrous, A., Fouhy, F., Ryan, C. A., Dempsey, E. M., Murphy, B., Andrews, E., Cotter, 
P. D., Stanton, C., & Ross, R. P. (2013). Microbial Composition of Human Appendices from 
Patients following. MBio, 4(1), 1–6. https://doi.org/10.1128/mBio.00366-12.Editor 

Guzior, D. V., & Quinn, R. A. (2021). Review: microbial transformations of human bile acids. 
Microbiome, 9(1), 1–13. https://doi.org/10.1186/s40168-021-01101-1 

Hamada, H., Hiroi, T., Nishiyama, Y., Takahashi, H., Masunaga, Y., Hachimura, S., Kaminogawa, S., 
Takahashi-Iwanaga, H., Iwanaga, T., Kiyono, H., Yamamoto, H., & Ishikawa, H. (2002). 
Identification of Multiple Isolated Lymphoid Follicles on the Antimesenteric Wall of the Mouse 
Small Intestine. The Journal of Immunology, 168(1), 57–64. 
https://doi.org/10.4049/jimmunol.168.1.57 

Hanlon, D. E. O., Moench, T. R., & Cone, R. A. (2013). Vaginal pH and Microbicidal Lactic Acid When 
Lactobacilli Dominate the Microbiota. 8(11), 1–8. 
https://doi.org/10.1371/journal.pone.0080074 

Harmsen, H. J. M., Wildeboer-Veloo, A. C. M., Raangs, G. C., Wagendorp, A. A., Klijn, N., Bindels, J. G., 
& Welling, G. W. (2000). Analysis of intestinal flora development in breast-fed and formula-fed 
infants by using molecular identification and detection methods. Journal of Pediatric 
Gastroenterology and Nutrition, 30(1), 61–67. https://doi.org/10.1097/00005176-200001000-
00019 

Hasin, Y., Seldin, M., & Lusis, A. (2017). Multi-omics approaches to disease. Genome Biology, 18(1), 
1–15. https://doi.org/10.1186/s13059-017-1215-1 

Hill, M. J. (1997). Intestinal flora and endogenous vitamin synthesis. In European Journal of Cancer 
Prevention (Vol. 6, pp. S43–S45). https://doi.org/10.1097/00008469-199703001-00009 

Hunt, R. H., Camilleri, M., Crowe, S. E., El-Omar, E. M., Fox, J. G., Kuipers, E. J., Malfertheiner, P., 



119 
 
 

McColl, K. E. L., Pritchard, D. M., Rugge, M., Sonnenberg, A., Sugano, K., & Tack, J. (2015). The 
stomach in health and disease. Gut, 64(10), 1650–1668. https://doi.org/10.1136/gutjnl-2014-
307595 

James, K. R., Gomes, T., Elmentaite, R., Kumar, N., Gulliver, E. L., King, H. W., Stares, M. D., Bareham, 
B. R., Ferdinand, J. R., Velislava, N., Polański, K., Forster, S. C., Jarvis, L. B., Suchanek, O., 
Howlett, S., James, L. K., Jones, J. L., Meyer, K. B., & Menna, R. (2020). Europe PMC Funders 
Group Distinct microbial and immune niches of the human colon. 21(3), 343–353. 
https://doi.org/10.1038/s41590-020-0602-z.Distinct 

Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the 
diagnostic laboratory: Pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45(9), 2761–
2764. https://doi.org/10.1128/JCM.01228-07 

Jha, A. R., Davenport, E. R., Gautam, Y., Bhandari, D., Tandukar, S., Ng, K. M., Fragiadakis, G. K., 
Holmes, S., Gautam, G. P., Leach, J., Sherchand, J. B., Bustamante, C. D., & Sonnenburg, J. L. 
(2018). Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biology, 16(11), 
1–30. https://doi.org/10.1371/journal.pbio.2005396 

Jiang, D., Armour, C. R., Hu, C., Mei, M., & Tian, C. (2019). Microbiome Multi-Omics Network 
Analysis : Statistical Considerations , Limitations , and Opportunities. Frontiers in Genetics, 
10(November), 1–19. https://doi.org/10.3389/fgene.2019.00995 

Johansson, M. E. V., Holmén Larsson, J. M., & Hansson, G. C. (2011). The two mucus layers of colon 
are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial 
interactions. Proceedings of the National Academy of Sciences of the United States of America, 
108(SUPPL. 1), 4659–4665. https://doi.org/10.1073/pnas.1006451107 

Johansson, M. E. V., Jakobsson, H. E., Holmén-Larsson, J., Schütte, A., Ermund, A., Rodríguez-Piñeiro, 
A. M., Arike, L., Wising, C., Svensson, F., Bäckhed, F., & Hansson, G. C. (2015). Normalization of 
host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe, 18(5), 
582–592. https://doi.org/10.1016/j.chom.2015.10.007 

Jones, B. V., Begley, M., Hill, C., Gahan, C. G. M., & Marchesi, J. R. (2008). Functional and comparative 
metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings 
of the National Academy of Sciences of the United States of America, 105(36), 13580–13585. 
https://doi.org/10.1073/pnas.0804437105 

Kalbermatter, C., Fernandez Trigo, N., Christensen, S., & Ganal-Vonarburg, S. C. (2021). Maternal 
Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn. 
Frontiers in Immunology, 12(May), 1–22. https://doi.org/10.3389/fimmu.2021.683022 

Kang, M., Ko, E., & Mersha, T. B. (2022). A roadmap for multi-omics data integration using deep 
learning. Briefings in Bioinformatics, 23(1), 1–16. https://doi.org/10.1093/bib/bbab454 

Kennedy, E. A., King, K. Y., & Baldridge, M. T. (2018). Mouse microbiota models: Comparing germ-
free mice and antibiotics treatment as tools for modifying gut bacteria. Frontiers in Physiology, 
9(OCT), 1–16. https://doi.org/10.3389/fphys.2018.01534 

Kim, Y. S., & Ho, S. B. (2010). Intestinal goblet cells and mucins in health and disease: Recent insights 
and progress. Current Gastroenterology Reports, 12(5), 319–330. 
https://doi.org/10.1007/s11894-010-0131-2 

Koh, A., De Vadder, F., Kovatcheva-Datchary, P., & Bäckhed, F. (2016). From dietary fiber to host 
physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332–1345. 



120 
 
 

https://doi.org/10.1016/j.cell.2016.05.041 

Kolodziejczyk, A. A., Zheng, D., & Elinav, E. (2019). Diet–microbiota interactions and personalized 
nutrition. Nature Reviews Microbiology, 17(12), 742–753. https://doi.org/10.1038/s41579-019-
0256-8 

Kumar, J., Rani, K., & Datt, C. (2020). Molecular link between dietary fibre, gut microbiota and health. 
Molecular Biology Reports, 47(8), 6229–6237. https://doi.org/10.1007/s11033-020-05611-3 

Kundu, P., Blacher, E., Elinav, E., & Pettersson, S. (2017). Our Gut Microbiome: The Evolving Inner 
Self. Cell, 171(7), 1481–1493. https://doi.org/10.1016/j.cell.2017.11.024 

Land, M., Hauser, L., Jun, S., Nookaew, I., Leuze, M. R., Ahn, T., Karpinets, T., Lund, O., & Kora, G. 
(2015). Insights from 20 years of bacterial genome sequencing. 141–161. 
https://doi.org/10.1007/s10142-015-0433-4 

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., 
Doyle, M., Fitzhugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., 
Lehoczky, J., Levine, R., McEwan, P., … Chen, Y. J. (2001). Initial sequencing and analysis of the 
human genome. Nature, 412(6846), 565–566. https://doi.org/10.1038/35087627 

LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as 
vitamin suppliers to their host: A gut microbiota perspective. Current Opinion in Biotechnology, 
24(2), 160–168. https://doi.org/10.1016/j.copbio.2012.08.005 

Lederberg, B. J., & McCray, A. T. (2001). ’ Ome Sweet ’ Omics-- A Genealogical Treasury of Words. The 
Scientist, 15(7), 8. 

Lee-Sarwar, K. A., Lasky-Su, J., Kelly, R. S., Litonjua, A. A., & Weiss, S. T. (2020). Metabolome–
microbiome crosstalk and human disease. Metabolites, 10(5), 1–10. 
https://doi.org/10.3390/metabo10050181 

Lee, Y. S., Kim, T. Y., Kim, Y., Lee, S. H., Kim, S., Kang, S. W., Yang, J. Y., Baek, I. J., Sung, Y. H., Park, Y. 
Y., Hwang, S. W., Eunju, O., Kim, K. S., Liu, S., Kamada, N., Gao, N., & Kweon, M. N. (2018). 
Microbiota-Derived Lactate Accelerates Intestinal Stem-Cell-Mediated Epithelial Development. 
Cell Host and Microbe, 24(6), 833-846.e6. https://doi.org/10.1016/j.chom.2018.11.002 

Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P., Roy, R., Bircher, J. S., Schlegel, M. L., Tucker, T. 
A., Mark, D., Knight, R., & Gordon, J. I. (2008). Evolution of mammals and their gut microbes. 
Science, 320(5883), 1647–1651. https://doi.org/10.1126/science.1155725 

Li, T., & Chiang, J. Y. L. (2015). Bile acids as metabolic regulators. Current Opinion in 
Gastroenterology, 31(2), 159–165. https://doi.org/10.1097/MOG.0000000000000156 

Li, X., Liu, Y., Yang, X., Li, C., & Song, Z. (2022). The Oral Microbiota: Community Composition, 
Influencing Factors, Pathogenesis, and Interventions. Frontiers in Microbiology, 13(April), 1–19. 
https://doi.org/10.3389/fmicb.2022.895537 

Link, C. D. (2021). Is There a Brain Microbiome? Neuroscience Insights, 16. 
https://doi.org/10.1177/26331055211018709 

Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability 
and resilience of the human gut microbiota. Nature, 489(7415), 220–230. 
https://doi.org/10.1038/nature11550 

Macpherson, A. J., Hunziker, L., McCoy, K., & Lamarre, A. (2001). IgA responses in the intestinal 
mucosa against pathogenic and non-pathogenic microorganisms. Microbes and Infection, 3(12), 



121 
 
 

1021–1035. https://doi.org/10.1016/S1286-4579(01)01460-5 

Maldonado-Contreras, A., Goldfarb, K. C., Godoy-vitorino, F., Karaoz, U., Blaser, M. J., Brodie, E. L., & 
Dominguez-bello, M. G. (2011). Structure of the human gastric bacterial community in relation 
to Helicobacter pylori status. The ISME Journal, 5, 574–579. 
https://doi.org/10.1038/ismej.2010.149 

Marchesi, J. R., & Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome, 
3(1), 1–3. https://doi.org/10.1186/s40168-015-0094-5 

Marcobal, A., Kashyap, P. C., Nelson, T. A., Aronov, P. A., Donia, M. S., Spormann, A., Fischbach, M. 
A., & Sonnenburg, J. L. (2013). A metabolomic view of how the human gut microbiota impacts 
the host metabolome using humanized and gnotobiotic mice. ISME Journal, 7(10), 1933–1943. 
https://doi.org/10.1038/ismej.2013.89 

Margulis, L. (1967). On the origin of mitosing cells. Journal of Theoretical Biology, 14(3), 255–274. 
http://www.ncbi.nlm.nih.gov/pubmed/11541390 

Margulis, L., & Fester, R. (1991). Symbiosis as a Source of Evolutionary Innovation. The MIT Press. 

Martinez-Guryn, K., Hubert, N., Frazier, K., Urlass, S., Mark, W., Ojeda, P., Pierre, J. F., Miyoshi, J., 
Sontag, T., Cham, C., Reardon, C., Leone, V., & Chang, E. B. (2018). Small intestine microbiota 
regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host and 
Microbe, 23(4), 458–469. https://doi.org/10.1016/j.chom.2018.03.011 

Martins-de-Souza, D. (2014). Proteomics, metabolomics, and protein interactomics in the 
characterization of the molecular features of major depressive disorder. Dialogues in Clinical 
Neuroscience, 16(1), 63–73. https://doi.org/10.31887/dcns.2014.16.1/dmartins 

Mathieu, E., Escribano-Vazquez, U., Descamps, D., Cherbuy, C., Langella, P., Riffault, S., Remot, A., & 
Thomas, M. (2018). Paradigms of lung microbiota functions in health and disease, particularly, 
in asthma. Frontiers in Physiology, 9(AUG), 1–11. https://doi.org/10.3389/fphys.2018.01168 

Matsumoto, M., Kibe, R., Ooga, T., Aiba, Y., Kurihara, S., Sawaki, E., Koga, Y., & Benno, Y. (2012). 
Impact of intestinal microbiota on intestinal luminal metabolome. Scientific Reports, 2, 1–10. 
https://doi.org/10.1038/srep00233 

Maynard, C. L., Elson, C. O., Hatton, R. D., & Weaver, C. T. (2012). Reciprocal interactions of the 
intestinal microbiota and immune system. Nature, 489(7415), 231–241. 
https://doi.org/10.1038/nature11551 

McDonald, D., Hyde, E., Debelius, J. W., Morton, J. T., Gonzalez, A., Ackermann, G., Aksenov, A. A., 
Behsaz, B., Brennan, C., Chen, Y., DeRight Goldasich, L., Dorrestein, P. C., Dunn, R. R., 
Fahimipour, A. K., Gaffney, J., Gilbert, J. A., Gogul, G., Green, J. L., Hugenholtz, P., … Goldasich, 
D. L. (2018). American Gut: an Open Platform for Citizen Science Microbiome Research. 
MSystems, 3(3), 1–28. http://humanfoodproject.com/ 

McHardy, I. H., Goudarzi, M., Tong, M., Ruegger, P. M., Schwager, E., Weger, J. R., Graeber, T. G., 
Sonnenburg, J. L., Horvath, S., Huttenhower, C., Mcgovern, D. P. B., Jr, A. J. F., Borneman, J., & 
Braun, J. (2013). Integrative analysis of the microbiome and metabolome of the human 
intestinal mucosal surface reveals exquisite inter-relationships. Microbiome, 1(17), 1–19. 
https://doi.org/10.1186/2049-2618-1-17 

Meng, C., Zeleznik, O. A., Thallinger, G. G., Kuster, B., Gholami, A. M., & Culhane, A. C. (2016). 
Dimension reduction techniques for the integrative analysis of multi-omics data. Briefings in 
Bioinformatics, 17(4), 628–641. https://doi.org/10.1093/bib/bbv108 



122 
 
 

Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., Belzer, C., Palacio, D., Rodriguez, 
J. M., Bode, L., Vos, W. De, & Gueimonde, M. (2017). The First Microbial Colonizers of the 
Human Gut : Composition , Activities , and Health Implications of the Infant Gut Microbiota. 
Microbiology and Molecular Biology Reviews, 81(4), 1–67. 

Mohajeri, M. H., Brummer, R. J. M., Rastall, R. A., Weersma, R. K., Harmsen, H. J. M., Faas, M., & 
Eggersdorfer, M. (2018). The role of the microbiome for human health: from basic science to 
clinical applications. European Journal of Nutrition, 57(1), 1–14. 
https://doi.org/10.1007/s00394-018-1703-4 

Morrison, D. J., & Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and 
their impact on human metabolism. Gut Microbes, 7(3), 189–200. 
https://doi.org/10.1080/19490976.2015.1134082 

Morton, E. R., Lynch, J., Froment, A., Lafosse, S., Heyer, E., Przeworski, M., Blekhman, R., & Ségurel, L. 
(2015). Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by 
Entamoeba and Subsistence. PLoS Genetics, 11(11), 1–28. 
https://doi.org/10.1371/journal.pgen.1005658 

Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., González, A., Fontana, L., Henrissat, B., 
Knight, R., & Gordon, J. I. (2011). Diet drives convergence in gut microbiome functions across 
mammalian phylogeny and within humans. Science, 332(6032), 970–974. 
https://doi.org/10.1126/science.1198719 

Najmanová, L., Vídeňská, P., & Cahová, M. (2022). Healthy Microbiome – A Mere Idea or a Sound 
Concept? Physiological Research, 71(6), 719–738. https://doi.org/10.33549/physiolres.934967 

Neefs, J., Peer, Y. Van De, Rijk, P. De, Chapelle, S., Wachter, R. De, Biochemie, D., Uia, U. A., & 
Antwerp, B.-. (1993). Compilation of small ribosomal subunit RNA structures. Nucleic Acids 
Research, 21(13), 3025–3049. https://doi.org/10.1093/nar/21.13.3025 

Neugent, M. L., Hulyalkar, N. V., Nguyen, V. H., Zimmern, P. E., & De Nisco, N. J. (2020). Advances in 
understanding the human urinary microbiome and its potential role in urinary tract infection. 
MBio, 11(2), 1–15. https://doi.org/10.1128/mBio.00218-20 

Nikolov, M., Schmidt, C., & Urlaub, H. (2021). Quantitative mass spectrometry-based proteomics: An 
overview. In Quantitative Methods in Proteomics (Vol. 2228, pp. 85–100). 
https://doi.org/10.1007/978-1-61779-885-6_7 

Oliphant, K., & Allen-Vercoe, E. (2019). Macronutrient metabolism by the human gut microbiome: 
Major fermentation by-products and their impact on host health. Microbiome, 7(1), 1–15. 
https://doi.org/10.1186/s40168-019-0704-8 

Olivier, M., Asmis, R., Hawkins, G. A., Howard, T. D., & Cox, L. A. (2019). The need for multi-omics 
biomarker signatures in precision medicine. International Journal of Molecular Sciences, 20(19). 
https://doi.org/10.3390/ijms20194781 

Ottman, N., Smidt, H., de Vos, W. M., & Belzer, C. (2012). The function of our microbiota: who is out 
there and what do they do? Frontiers in Cellular and Infection Microbiology, 2(August), 104. 
https://doi.org/10.3389/fcimb.2012.00104 

Ouwerkerk, J. P., De Vos, W. M., & Belzer, C. (2013). Glycobiome: Bacteria and mucus at the 
epithelial interface. Best Practice and Research: Clinical Gastroenterology, 27(1), 25–38. 
https://doi.org/10.1016/j.bpg.2013.03.001 

Paone, P., & Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: The expected slimy 



123 
 
 

partners? Gut, 69(12), 2232–2243. https://doi.org/10.1136/gutjnl-2020-322260 

Park, M., Kim, D., Moon, K., & Park, T. (2020). Integrative analysis of multi-omics data based on 
blockwise sparse principal components. International Journal of Molecular Sciences, 21(21), 1–
17. https://doi.org/10.3390/ijms21218202 

Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P. A., & Hugenholtz, 
P. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises 
the tree of life. Nature Biotechnology, 36(10), 996. https://doi.org/10.1038/nbt.4229 

Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., Beghini, F., Manghi, P., Tett, A., 
Ghensi, P., Collado, M. C., Rice, B. L., DuLong, C., Morgan, X. C., Golden, C. D., Quince, C., 
Huttenhower, C., & Segata, N. (2019). Extensive Unexplored Human Microbiome Diversity 
Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and 
Lifestyle. Cell, 176(3), 649-662.e20. https://doi.org/10.1016/j.cell.2019.01.001 

Patangia, D. V, Ryan, C. A., Dempsey, E., & Stanton, C. (2022). Impact of antibiotics on the human 
microbiome and consequences for host health. September 2021, 1–23. 
https://doi.org/10.1002/mbo3.1260 

Peck, B. C. E., Mah, A. T., Pitman, W. A., Ding, S., Lund, P. K., & Sethupathy, P. (2017). Functional 
transcriptomics in diverse intestinal epithelial cell types reveals robust MicroRNA sensitivity in 
intestinal stem cells to microbial status. Journal of Biological Chemistry, 292(7), 2586–2600. 
https://doi.org/10.1074/jbc.M116.770099 

Picard, M., Scott-Boyer, M. P., Bodein, A., Périn, O., & Droit, A. (2021). Integration strategies of multi-
omics data for machine learning analysis. Computational and Structural Biotechnology Journal, 
19, 3735–3746. https://doi.org/10.1016/j.csbj.2021.06.030 

Piovesan, A., Pelleri, M. C., Antonaros, F., Strippoli, P., Caracausi, M., & Vitale, L. (2019). On the 
length , weight and GC content of the human genome. BMC Research Notes, 12(106), 1–7. 
https://doi.org/10.1186/s13104-019-4137-z 

Potgieter, M., Bester, J., Kell, D. B., & Pretorius, E. (2015). The dormant blood microbiome in chronic , 
inflammatory diseases. March, 567–591. https://doi.org/10.1093/femsre/fuv013 

Prochazkova, M., Budinska, E., Kuzma, M., Pelantova, H., Hradecky, J., Heczkova, M., Daskova, N., 
Bratova, M., Modos, I., Videnska, P., Splichalova, P., Sowah, S. A., Kralova, M., Henikova, M., 
Selinger, E., Klima, K., Chalupsky, K., Sedlacek, R., Landberg, R., … Cahova, M. (2022). Vegan Diet 
Is Associated With Favorable Effects on the Metabolic Performance of Intestinal Microbiota: A 
Cross-Sectional Multi-Omics Study. Frontiers in Nutrition, 8(January), 1–18. 
https://doi.org/10.3389/fnut.2021.783302 

Prodan, A., Tremaroli, V., Brolin, H., Zwinderman, A. H., Nieuwdorp, M., & Levin, E. (2020). 
Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS ONE, 
15(1), 1–19. https://doi.org/10.1371/journal.pone.0227434 

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., 
Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., … 
Zoetendal, E. (2010). A human gut microbial gene catalogue established by metagenomic 
sequencing. Nature, 464(7285), 59–65. https://doi.org/10.1038/nature08821 

Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J., & Segata, N. (2017). Shotgun metagenomics, 
from sampling to analysis. Nature Biotechnology, 35(9), 833–844. 
https://doi.org/10.1038/nbt.3935 



124 
 
 

Quinn, R. A., Melnik, A. V., Vrbanac, A., Fu, T., Patras, K. A., Christy, M. P., Bodai, Z., Belda-Ferre, P., 
Tripathi, A., Chung, L. K., Downes, M., Welch, R. D., Quinn, M., Humphrey, G., Panitchpakdi, M., 
Weldon, K. C., Aksenov, A., da Silva, R., Avila-Pacheco, J., … Dorrestein, P. C. (2020). Global 
chemical effects of the microbiome include new bile-acid conjugations. Nature, 579(7797), 123–
129. https://doi.org/10.1038/s41586-020-2047-9 

Reel, P. S., Reel, S., Pearson, E., Trucco, E., & Jefferson, E. (2021). Using machine learning approaches 
for multi-omics data analysis: A review. Biotechnology Advances, 49(March), 107739. 
https://doi.org/10.1016/j.biotechadv.2021.107739 

Rew, L., Harris, M. D., & Goldie, J. (2022). The ketogenic diet : its impact on human gut microbiota 
and potential consequent health outcomes : a systematic literature review. Gastroenterol 
Hepatol Bed, 15(4), 326–342. https://doi.org/10.22037/ghfbb.v15i4.2600 

Reynoso-García, J., Miranda-Santiago, A. E., Meléndez-Vázquez, N. M., Acosta-Pagán, K., Sánchez-
Rosado, M., Díaz-Rivera, J., Rosado-Quiñones, A. M., Acevedo-Márquez, L., Cruz-Roldán, L., 
Tosado-Rodríguez, E. L., Figueroa-Gispert, M. D. M., & Godoy-Vitorino, F. (2022). A complete 
guide to human microbiomes: Body niches, transmission, development, dysbiosis, and 
restoration. Frontiers in Systems Biology, 2(951403), 1–22. 
https://doi.org/10.3389/fsysb.2022.951403 

Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D. J., & Hylemon, P. B. (2016). Consequences of bile salt 
biotransformations by intestinal bacteria. Gut Microbes, 7(1), 22–39. 
https://doi.org/10.1080/19490976.2015.1127483 

Ridlon, J. M., Kang, D. J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal 
bacteria. Journal of Lipid Research, 47(2), 241–259. https://doi.org/10.1194/jlr.R500013-JLR200 

Rodosthenous, T., Shahrezaei, V., & Evangelou, M. (2020). Integrating multi-OMICS data through 
sparse canonical correlation analysis for the prediction of complex traits: A comparison study. 
Bioinformatics, 36(17), 4616–4625. https://doi.org/10.1093/bioinformatics/btaa530 

Rosenbaum, M., Knight, R., & Leibel, R. L. (2015). The gut microbiota in human energy homeostasis 
and obesity. Trends Endocrinol Metab., 26(9), 493–501. 
https://doi.org/10.1016/j.tem.2015.07.002 

Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P. I., Godneva, 
A., Kalka, I. N., Bar, N., Shilo, S., Lador, D., Vila, A. V., Zmora, N., Pevsner-Fischer, M., Israeli, D., 
Kosower, N., Malka, G., Wolf, B. C., … Segal, E. (2018). Environment dominates over host 
genetics in shaping human gut microbiota. Nature, 555(7695), 210–215. 
https://doi.org/10.1038/nature25973 

Salazar, N., Gonzalez, S., Nlgacka, A., Rios-covián, D., Arboleya, S., Gueimonde, M., & de Los Reyes-
Gavilán, C. G. (2019). Microbiome: Effects of Ageing and Diets. In Microbiota: current research 
and emerging trends (Vol. 7). https://doi.org/10.21775/9781910190937.01 

Sayin, S. I., Wahlström, A., Felin, J., Jäntti, S., Marschall, H. U., Bamberg, K., Angelin, B., Hyötyläinen, 
T., Orešič, M., & Bäckhed, F. (2013). Gut microbiota regulates bile acid metabolism by reducing 
the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metabolism, 
17(2), 225–235. https://doi.org/10.1016/j.cmet.2013.01.003 

Schnorr, S. L., Candela, M., Rampelli, S., Centanni, M., Consolandi, C., Basaglia, G., Turroni, S., Biagi, 
E., Peano, C., Severgnini, M., Fiori, J., Gotti, R., De Bellis, G., Luiselli, D., Brigidi, P., Mabulla, A., 
Marlowe, F., Henry, A. G., & Crittenden, A. N. (2014). Gut microbiome of the Hadza hunter-
gatherers. Nature Communications, 5. https://doi.org/10.1038/ncomms4654 



125 
 
 

Schoenborn, A. A., von Furstenberg, R. J., Valsaraj, S., Hussain, F. S., Stein, M., Shanahan, M. T., 
Henning, S. J., & Gulati, A. S. (2019). The enteric microbiota regulates jejunal Paneth cell 
number and function without impacting intestinal stem cells. Gut Microbes, 10(1), 45–58. 
https://doi.org/10.1080/19490976.2018.1474321 

Schroeder, B. O., & Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in 
physiology and disease. Nature Medicine, 22(10), 1079–1089. https://doi.org/10.1038/nm.4185 

Sender, R., Fuchs, S., & Milo, R. (2016a). Are We Really Vastly Outnumbered ? Revisiting the Ratio of 
Bacterial to Host Cells in Humans. Cell, 164(3), 337–340. 
https://doi.org/10.1016/j.cell.2016.01.013 

Sender, R., Fuchs, S., & Milo, R. (2016b). Revised Estimates for the Number of Human and Bacteria 
Cells in the Body. PLoS Biology, 14(8), 1–21. https://doi.org/10.1371/journal.pbio.1002533 

Sharma, R., Schumacher, U., Ronaasen, V., & Coates, M. (1995). Rat intestinal mucosal responses to a 
microbial flora and different diets. Gut, 36(2), 209–214. https://doi.org/10.1136/gut.36.2.209 

Sharon, I., Mart, N., Pasolli, E., Fabbrini, M., Vitali, F., Agamennone, V., Dötsch, A., Selberherr, E., 
Grau, H., Meixner, M., Liere, K., Ercolini, D., Filippo, C. De, Caderni, G., Brigidi, P., & Turroni, S. 
(2022). The Core Human Microbiome : Does It Exist and How Can We Find It ? A Critical Review 
of the Concept. 1–25. 

Shendure, J., Findlay M., G., & Snyder W., M. (2019). Genomic medicine - progress, pitfalls, and 
promise. Cell, 177(1), 45–57. https://doi.org/10.1016/j.cell.2019.02.003 

Simon, J. C., Marchesi, J. R., Mougel, C., & Selosse, M. A. (2019). Host-microbiota interactions: From 
holobiont theory to analysis. Microbiome, 7(1), 1–5. https://doi.org/10.1186/s40168-019-0619-
4 

Singh, R. K., Chang, H. W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., 
Nakamura, M., Zhu, T. H., Bhutani, T., & Liao, W. (2017). Influence of diet on the gut 
microbiome and implications for human health. Journal of Translational Medicine, 15(1), 1–17. 
https://doi.org/10.1186/s12967-017-1175-y 

Slatko, B., Gardner, A. F., & Ausubel, F. M. (2018). Overview of Next Generation Sequencing 
Technologies. Curr Protoc Mol Biol., 122(1), 1–15. https://doi.org/10.1002/cpmb.59 

Smits, S. A., Leach, J., Sonnenburg, E. D., Gonzalez, C. G., Lichtman, J. S., Reid, G., Knight, R., 
Manjurano, A., Changalucha, J., Elias, J. E., Dominguez-Bello, M. G., & Sonnenburg, J. L. (2017). 
Seasonal Cycling in the Gut Microbiome of the Hadza Hunter- Gatherers of Tanzania. Science, 
357(6563), 802–806. https://doi.org/10.1126/science.aan4834.Seasonal 

Sommer, F., & Bäckhed, F. (2013). The gut microbiota-masters of host development and physiology. 
Nature Reviews Microbiology, 11(4), 227–238. https://doi.org/10.1038/nrmicro2974 

Sonnenburg, J. L., & Bäckhed, F. (2014). Diet – microbiota interactions as moderators of human 
metabolism. Nature, 535, 56–64. https://doi.org/10.1038/nature18846 

Staley, C., Weingarden, A. R., Khoruts, A., & Sadowsky, M. J. (2017). Interaction of Gut Microbiota 
with Bile Acid Metabolism and its Influence on Disease States. Appl Microbiol Biotechnol., 
101(1), 47–64. https://doi.org/10.1007/s00253-016-8006-6 

Stewart, C. J., Ajami, N. J., O’Brien, J. L., Hutchinson, D. S., Smith, D. P., Wong, M. C., Ross, M. C., 
Lloyd, R. E., Doddapaneni, H. V., Metcalf, G. A., Muzny, D., Gibbs, R. A., Vatanen, T., 
Huttenhower, C., Xavier, R. J., Rewers, M., Hagopian, W., Toppari, J., Ziegler, A. G., … Petrosino, 



126 
 
 

J. F. (2018). Temporal development of the gut microbiome in early childhood from the TEDDY 
study. Nature, 562(7728), 583–588. https://doi.org/10.1038/s41586-018-0617-x 

Suhre, K., McCarthy, M. I., & Schwenk, J. M. (2021). Genetics meets proteomics: perspectives for 
large population-based studies. Nature Reviews Genetics, 22(1), 19–37. 
https://doi.org/10.1038/s41576-020-0268-2 

Swaney, M. H. (2021). Living in Your Skin : Microbes , Molecules , and Mechanisms. January. 

Swann, J. R., Want, E. J., Geier, F. M., Spagou, K., Wilson, I. D., Sidaway, J. E., Nicholson, J. K., & 
Holmes, E. (2011). Systemic gut microbial modulation of bile acid metabolism in host tissue 
compartments. Proceedings of the National Academy of Sciences of the United States of 
America, 108(SUPPL. 1), 4523–4530. https://doi.org/10.1073/pnas.1006734107 

Tebani, A., Afonso, C., Marret, S., & Bekri, S. (2016). Omics-based strategies in precision medicine: 
Toward a paradigm shift in inborn errors of metabolism investigations. International Journal of 
Molecular Sciences, 17(9). https://doi.org/10.3390/ijms17091555 

The Human Microbiome Project Consortium. (2012). Structure , function and diversity of the healthy 
human microbiome. Nature, 486(7402), 207–214. https://doi.org/10.1038/nature11234 

Tian, L., Wang, X. W., Wu, A. K., Fan, Y., Friedman, J., Dahlin, A., Waldor, M. K., Weinstock, G. M., 
Weiss, S. T., & Liu, Y. Y. (2020). Deciphering functional redundancy in the human microbiome. 
Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-19940-1 

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical 
Society, 58(1), 267–288. 

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Ley, R. E., Sogin, M. L., Jones, W. J., Roe, 
B. a, Jason, P., Egholm, M., Henrissat, B., Heath, A. C., Knight, R., Gordon, J. I., Rey, F. E., 
Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., … Gordon, J. I. (2009). A core 
gut microbiome between lean and obesity twins. Nature, 457(7228), 480–484. 
https://doi.org/10.1038/nature07540.A 

Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The 
Human Microbiome Project. Nature, 449(7164), 804–810. https://doi.org/10.1038/nature06244 

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An 
obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 
444(7122), 1027–1031. https://doi.org/10.1038/nature05414 

Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., & Gordon, J. I. (2009). The Effect of 
Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. 
Sci Transl Med., 1(6), 1–19. https://doi.org/10.1126/scitranslmed.3000322 

Tyakht, A. V, Kostryukova, E. S., Popenko, A. S., Belenikin, M. S., Pavlenko, A. V, Larin, A. K., Karpova, 
I. Y., Selezneva, O. V, Semashko, T. A., Ospanova, E. A., Babenko, V. V, Maev, I. V, 
Cheremushkin, S. V, Kucheryavyy, Y. A., Shcherbakov, P. L., Grinevich, V. B., Efimov, O. I., Sas, E. 
I., Abdulkhakov, R. A., … Alexeev, D. G. (2013). Human gut microbiota community structures in 
urban and rural populations in Russia. Nature Communications, 4(2469), 1–9. 
https://doi.org/10.1038/ncomms3469 

Ursell, L. K., Metcalf, J. L., Parfrey Wegener, L., & Knight, R. (2012). Defining the Human Microbiome. 
Nutr Rev., 70(August), 38–44. https://doi.org/10.1111/j.1753-4887.2012.00493.x 

Vandenplas, Y., Carnielli, V. P., Ksiazyk, J., Luna, M. S., Migacheva, N., Mosselmans, J. M., Picaud, J. C., 



127 
 
 

Possner, M., Singhal, A., & Wabitsch, M. (2020). Factors affecting early-life intestinal microbiota 
development. Nutrition, 78, 110812. https://doi.org/10.1016/j.nut.2020.110812 

Vatanen, T., Franzosa, E. A., Schwager, R., Tripathi, S., Arthur, T. D., Vehik, K., Lernmark, Å., Hagopian, 
W. A., Rewers, M. J., She, J. X., Toppari, J., Ziegler, A. G., Akolkar, B., Krischer, J. P., Stewart, C. J., 
Ajami, N. J., Petrosino, J. F., Gevers, D., Lähdesmäki, H., … Xavier, R. J. (2018). The human gut 
microbiome in early-onset type 1 diabetes from the TEDDY study. Nature, 562(7728), 589–594. 
https://doi.org/10.1038/s41586-018-0620-2 

Venegas, D. P., De La Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, 
H. J. M., Faber, K. N., & Hermoso, M. A. (2019). Short chain fatty acids (SCFAs)mediated gut 
epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers 
in Immunology, 10(MAR). https://doi.org/10.3389/fimmu.2019.00277 

Vujkovic-Cvijin, I., Sklar, J., Jiang, L., Natarajan, L., Knight, R., Belkaid, Y., Section, I., Diseases, I., 
Diseases, I., Program, M., Jolla, L., Jolla, L., Jolla, L., Jolla, L., & Jolla, L. (2020). Host variables 
confound gut microbiota studies of human disease. Nature, 587(7834), 448–454. 
https://doi.org/10.1038/s41586-020-2881-9 

Wahlström, A., Sayin, S. I., Marschall, H. U., & Bäckhed, F. (2016). Intestinal Crosstalk between Bile 
Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism, 24(1), 41–50. 
https://doi.org/10.1016/j.cmet.2016.05.005 

Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat 
Rev Genet., 10(1), 57–63. https://doi.org/10.1038/nrg2484.RNA-Seq 

Wastyk, H. C., Fragiadakis, G. K., Perelman, D., Dahan, D., Merrill, B. D., Yu, F. B., Topf, M., Gonzalez, 
C. G., Van Treuren, W., Han, S., Robinson, J. L., Elias, J. E., Sonnenburg, E. D., Gardner, C. D., & 
Sonnenburg, J. L. (2021). Gut-microbiota-targeted diets modulate human immune status. Cell, 
184(16), 4137-4153.e14. https://doi.org/10.1016/j.cell.2021.06.019 

Whiteside, S. A., McGinniss, J. E., & Collman, R. G. (2021). The lung microbiome: Progress and 
promise. Journal of Clinical Investigation, 131(15), 1–10. https://doi.org/10.1172/JCI150473 

Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., & Siuzdak, G. (2009). 
Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. 
Proceedings of the National Academy of Sciences of the United States of America, 106(10), 
3698–3703. https://doi.org/10.1073/pnas.0812874106 

Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain : The primary 
kingdoms. 74(11), 5088–5090. 

Woese, C. R., Kandlert, O., & Wheelis, M. L. (1990). Towards a natural system of organisms : Proposal 
for the domains. 87(June), 4576–4579. 

Wolfe, A. J., Toh, E., Shibata, N., Rong, R., Kenton, K., Fitzgerald, M., Mueller, E. R., Schreckenberger, 
P., Dong, Q., Nelson, D. E., & Brubaker, L. (2012). Evidence of Uncultivated Bacteria in the Adult 
Female Bladder. 1376–1383. https://doi.org/10.1128/JCM.05852-11 

Wu, C., Zhou, F., Ren, J., Li, X., Jiang, Y., & Ma, S. (2019). A selective review of multi-level omics data 
integration using variable selection. High-Throughput, 8(1), 1–25. 
https://doi.org/10.3390/ht8010004 

Wu, S., Hugerth, L. W., & Schuppe-koistinen, I. (2022). The right bug in the right place : opportunities 
for bacterial vaginosis treatment. NPJ Biofilms Microbiomes, 8(1), 1–11. 
https://doi.org/10.1038/s41522-022-00295-y 



128 
 
 

Xue, Z., Kable, M. E., & Marco, M. L. (2018). Impact of DNA Sequencing and Analysis Methods on 16S 
rRNA Gene Bacterial Community Analysis of Dairy Products. MSphere, 3(5), 1–14. 
https://doi.org/10.1128/msphere.00410-18 

Yagi, K., Huffnagle, G. B., Lukacs, N. W., & Asai, N. (2021). The lung microbiome during health and 
disease. International Journal of Molecular Sciences, 22(19), 1–13. 
https://doi.org/10.3390/ijms221910872 

Yatsunenko, T., Rey, F. E., Manary, M. J., & Trehan, I. (2012). Human gut microbiome viewed across 
age and geography Tanya. Nature, 486(7402), 222–227. 
https://doi.org/10.1038/nature11053.Human 

Ye, L., & Rawls, J. F. (2021). Microbial influences on gut development and gut-brain communication. 
Development (Cambridge), 148(21). https://doi.org/10.1242/dev.194936 

Yu, Y., Raka, F., & Adeli, K. (2019). The Role of the Gut Microbiota in Lipid and Lipoprotein 
Metabolism. Journal of Clinical Medicine, 8(12), 2227. https://doi.org/10.3390/jcm8122227 

Zierer, J., Jackson, M. A., Kastenmüller, G., Mangino, M., Long, T., Telenti, A., Mohney, R. P., Small, K. 
S., Bell, J. T., Steves, C. J., Valdes, A. M., Spector, T. D., & Menni, C. (2018). The fecal 
metabolome as a functional readout of the gut microbiome. Nature Genetics, 50(6), 790–795. 
https://doi.org/10.1038/s41588-018-0135-7 

Zimmermann, M., Zimmermann-kogadeeva, M., & Wegmann, R. (2019). Mapping human 
microbiome drug metabolism by gut bacteria and their genes. Nature, 570(7762), 462–467. 
https://doi.org/10.1038/s41586-019-1291-3 

Zoetendal, E. G., Raes, J., Van Den Bogert, B., Arumugam, M., Booijink, C. C., Troost, F. J., Bork, P., 
Wels, M., De Vos, W. M., & Kleerebezem, M. (2012). The human small intestinal microbiota is 
driven by rapid uptake and conversion of simple carbohydrates. ISME Journal, 6(7), 1415–1426. 
https://doi.org/10.1038/ismej.2011.212 

  



129 
 
 

8 LIST OF AUTHOR'S PUBLICATIONS 

Publications with a direct relation with the thesis  

Daskova N., Modos I., Krbcova M., Kuzma M., Pelantova H., Hradecky J., Heczkova M., et al. 2023. 

“Multi-omics signatures in new-onset diabetes predict metabolic response to dietary inulin: findings 

from an observational study followed by an interventional trial.” Nutrition & Diabetes 13 (1): 1–13. 

https://doi.org/10.1038/s41387-023-00235-5. IF (2023) = 4.73 

Daskova N., Heczkova M., Modos I., Hradecky J., Hudcovic T., Kuzma M., Pelantova H., et al. 2023. 

“Protective Effect of Vegan Microbiota on Liver Steatosis Is Conveyed by Dietary Fiber: Implications 

for Fecal Microbiota Transfer Therapy.” Nutrients 15 (454): 1–18. 

https://doi.org/10.3390/nu15020454. IF (2023) = 5.43 

Prochazkova M., Budinska E., Kuzma M., Pelantova H., Hradecky J., Heczkova M., Daskova N., et al. 

2022. “Vegan Diet is Associated with Favorable Effects on the Metabolic Performance of Intestinal 

Microbiota: A Cross-Sectional Multi-Omics Study.” Frontiers in Nutrition 8 (January): 1–18. 

https://doi.org/10.3389/fnut.2021.783302. IF (2022) = 6.59 

Daskova N., Heczkova M., Modos I., Videnska P., Splichalova P., Pelantova H., Kuzma M., Gojda J. and 

Cahova M. 2021. “Determination of Butyrate Synthesis Capacity in Gut Microbiota: Quantification of 

but Gene Abundance by Qpcr in Fecal Samples.” Biomolecules 11 (9). 

https://doi.org/10.3390/biom11091303. IF (2021) = 5.88 

 

Publications with no relation to the thesis 

Fabian O., Bajer L., Drastich P., Harant K., Sticova E., Daskova N., Modos I., et al. 2023. “A Current 

State of Proteomics in Adult and Pediatric Inflammatory Bowel Diseases: A Systematic Search and 

Review.” Int. J. Mol. Sci. 24 (11): 1–28. https://doi.org/10.3390/ijms24119386. IF (2023) = 6.21 

Kosek V., Heczkova M., Novak F., Meisnerova E., Novakova O., Zelenka J., Bechynska K., et al. 2020. 

“The ω-3 Polyunsaturated Fatty Acids and Oxidative Stress in Long-Term Parenteral Nutrition 

Dependent Adult Patients: Functional Lipidomics Approach.” Nutrients 12 (8): 1–15. 

https://doi.org/10.3390/nu12082351. IF (2020) = 5.72 

Bechynska K., Daskova N., Vrzackova N., Harant K., Heczkova M., Podzimkova K., Bratova M., et al. 

2019. “The Effect of ω-3 Polyunsaturated Fatty Acids on the Liver Lipidome, Proteome and Bile Acid 

Profile: Parenteral versus Enteral Administration.” Scientific Reports 9 (1): 1–14. 

https://doi.org/10.1038/s41598-019-54225-8. IF (2019) = 4.16 

Seda O., Cahova M., Mikova I., Sedova L., Dankova H., Heczkova M., Bratova M., et al. 2019. “Hepatic 

Gene Expression Profiles Differentiate Steatotic and Non-Steatotic Grafts in Liver Transplant 

Recipients.” Frontiers in Endocrinology 10 (April). https://doi.org/10.3389/fendo.2019.00270. IF 

(2019) = 3.64 

Cahova M., Dankova H., Heczkova M., Bratova M., Daskova N., Bastova H., Gojda J. and Wohl P. 2019. 
“MicroRNAs as Potential Markers of Parenteral Nutrition-Associated Liver Disease in Adult Patients.” 
Physiological Research 68 (4): 681–88. https://doi.org/10.33549/physiolres.934103.  
IF (2019) = 1.66 
 

https://doi.org/10.1038/s41387-023-00235-5
https://doi.org/10.3390/nu15020454
https://doi.org/10.3389/fnut.2021.783302
https://doi.org/10.3390/biom11091303
https://doi.org/10.3390/ijms24119386
https://doi.org/10.3390/nu12082351
https://doi.org/10.1038/s41598-019-54225-8
https://doi.org/10.3389/fendo.2019.00270
https://doi.org/10.33549/physiolres.934103

