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ABSTRACT

This thesis explores the relationship between diet, gut microbiota, and metabolic health,
with a particular focus on their association with non-communicable metabolic diseases (NCDs) such
as obesity and type 2 diabetes (T2D).

The aim of the first study is to assess compositional and metabolic differences in gut microbiota
between healthy lean long-term vegans and omnivores. The study reveals that while the gut
microbiota composition is not significantly different between the two groups, there are significant
differences in the fecal, serum and urinary metabolome. These differences may be attributed
to the different availability of substrates in the diet, as the vegan diet is associated with a shift
from a proteolytic to a saccharolytic fermentation program. Our results support the hypothesis
of both resilience and metabolic flexibility of the adult gut microbiota.

In addition to taxonomic analyses, this dissertation also includes metabolomics to evaluate
the functional manifestations of the gut microbiota. We introduce a novel method to assess the ability
of the gut microbiota to produce beneficial metabolites with a specific focus on butyrate synthesis
using gPCR quantification of bacterial butyryl-CoA:acetate CoA-transferase. In silico, we identified
bacteria among the human gut microbiota that possess the but gene, designed and validated six sets
of degenerate primers covering all selected bacteria and developed a method to normalize gene
abundance in human fecal DNA. We validated this method in subjects with opposite dietary habits
and metabolic phenotypes - lean vegans (VG) and healthy obese omnivores (OB) - with known fecal
microbiota and metabolome composition.

Furthermore, the effects of inulin treatment on glucose homeostasis in pre/diabetic patients were
investigated. A three-month intervention with inulin under clinical trial conditions was associated with
an overall improvement in glycemic indices, although the response was highly variable, with a shift
in microbial composition towards a more favorable profile and an increase in serum butyric
and propionic acid concentrations. Using multi-omics analysis, we identified biomarkers that predict
treatment success. If further validated, these predictors could improve the estimation of outcomes
of inulin interventions and contribute to personalized dietary management in early-stage diabetes.

Finally, the fourth study investigates the therapeutic potential of fecal microbial transfer (FMT) using
vegan microbiota to treat non-infectious diseases. It uses a humanized mouse model to examine
the effect of a Western-type diet (WD) and inulin supplementation on obesity, hepatic steatosis,
and glucose metabolism. We found that vegan microbiota alone did not protect against the adverse
effects of WD and inulin supplementation reversed steatosis and normalized glucose metabolism. This
phenomenon was related to a change in microbiota composition and an increase in saccharolytic
fermentation at the expense of proteolytic fermentation. Our results highlighted that the success
of fecal microbiota transfer in the treatment of metabolic noninfectious diseases depends not only
on the microbiota transfer itself but also on subsequent dietary interventions involving inulin or other
fiber and/or dietary changes.

This dissertation provides some new insights into the relationship between diet and the gut
microbiome, particularly in relation to the therapeutic potential of targeted manipulation of the gut
microbiota in the treatment of obesity and T2D. The study highlights the importance of dietary



interventions, such as inulin or fiber supplementation, and emphasizes personalized dietary
approaches to modify gut microbiota and improve metabolic health.

Key words:

Gut microbiome, metabolome, metabolic diseases, vegan diet, western type diet, animal models,
type 2 diabetes, OMICS data



ABSTRAKT V CESTINE

Tato dizertacni prace zkouma vztah mezi stravou, stfevni mikrobiotou a metabolickym zdravim.
Konkrétné se zaméruje na vztah mezi sloZzenim stfevni mikrobioty a nepfenosnymi metabolickymi
chorobami, jako je obezita a diabetes 2. typu (T2D).

Cilem prvni studie je posoudit rozdily ve slozeni a metabolismu stfevni mikrobioty mezi zdravymi
Stihlymi dlouhodobymi vegany a omnivory. Studie ukazuje, ze zatimco slozeni stfevni mikrobioty se
mezi obéma skupinami vyznamné nelisi, jsou zde vyznamné rozdily ve fekdInim, sérovém a mocovém
metabolomu. Tyto rozdily Ize pficist odlisSné dostupnosti substratll ve stravé, protoze veganska strava
je spojena s prechodem od proteolytického k sacharolytickému fermentacnimu programu. Nase
vysledky podporuji hypotézu o odolnosti i metabolické flexibilité stfevni mikrobioty u dospélych
jedinc(.

Kromé taxonomickych analyz zahrnuje tato disertacni prace také metabolomiku pro vyhodnoceni
funkénich projevd stfevni mikrobioty. Zavadime novou metodu hodnoceni schopnosti stfevni
mikrobioty produkovat prospésné metabolity se specifickym zaméfenim na syntézu butyrdtu pomoci
gPCR kvantifikace bakteridlni butyryl-CoA:acetdt CoA-transferdzy. In silico jsme identifikovali lidské
stfevni bakterie, které jsou vybaveny but genem, navrhli jsme a ovéfili Sest sad degenerovanych
primerQ pokryvajicich vsechny vybrané bakterie a vyvinuli metodu normalizace mnoZstvi tohoto genu
v lidské fekalni DNA. Tuto metodu jsme ovéfili u osob s opacnymi stravovacimi ndvyky a metabolickymi
fenotypy — u Stihlych vegan( (VG) a zdravych obéznich omnivort (OB) — se znamym sloZzenim fekalni
mikrobioty a metabolomu.

Déle jsme zkoumali ucinky Ié¢by inulinem na homeostazu glukdézy u pre/diabetik(. Byla provedena
klinicka studie zahrnuijici tfimési¢ni inulinovou intervenci, ktera byla asociovana s celkovym zlepsenim
glykemickych parametrd, ackoli individudini odpovéd byla velmi variabilni, s posunem mikrobialniho
slozeni smérem k ptiznivéjSimu profilu a se zvySenim sérovych koncentraci kyseliny mdaselné
a propionové. Pomoci multi-omické analyzy jsme identifikovali biomarkery, které predikuji Uspéch
|éCby. Pokud budou tyto prediktory dale validovany, mohly by zlepsit odhad vysledk( inulinovych
intervenci a pfispét k personalizovanému dietnimu managementu v ¢asném stadiu diabetu.

A konecné ctvrta studie zkouma terapeuticky potencial fekdlniho mikrobidlniho transferu (FMT)
s vyuZitim veganské mikrobioty k [éCbé neprenosnych metabolickych onemocnéni. Pomoci
humanizovaného mysiho modelu jsme sledovali vliv diety zapadniho typu (WD) a podavani inulinu
na obezitu, jaterni steatézu a metabolismus glukdzy. Zjistili jsme, Ze samotna veganska mikrobiota
nechrani pred neptiznivymi ucinky WD, ale naopak pfidavek inulinu zvratil steatézu a normalizoval
metabolismus glukdzy. Tento jev souvisel se zménou slozeni mikrobioty a zvySenim sacharolytické
fermentace na ukor proteolytické fermentace. Nase vysledky zddraznily, Ze Uspésnost prenosu fekalni
mikrobioty pfi |écbé metabolickych onemocnéni zavisi nejen na samotném prenosu mikrobioty, ale
také na naslednych dietnich intervencich zahrnujicich inulin nebo jinou vldkninu a/nebo zmény stravy.

Tato disertacni prace prinasi nékteré nové poznatky o souvislostech mezi stravou a stfevnim
mikrobiomem, zejména ve vztahu k terapeutickému potencidlu cilené manipulace se stfevni
mikrobiotou pfi |écbé obezity a T2D. Studie poukazuje na vyznam dietnich intervenci, jako je
suplementace vlakninou, a zd(razfiuje personalizované dietni pristupy k Upravé stifevni mikrobioty
a zlepseni metabolického zdravi.



Kli¢ova slova:

Stfevni mikrobiom, stfevni a sérovy metabolom, metabolické poruchy, veganska dieta, dieta
zapadniho typu, zvifeci modely, diabetes druhého typu, OMICS data



1 INTRODUCTION
1.1 General preface

,Let food be thy medicine and medicine be thy food.”
,All disease begins in the gut.”
Hippocrates, 460—-370 BC

| want to introduce my dissertation with two statements attributed to the founder of modern
medicine, the Greek physician Hippocrates. Nutrition has always been one of the most important
components of human life. Over the years, its perception has changed and modern medicine now
regards it as a means of influencing the course and development of certain civilization diseases.
Nutrition is also one of the basic factors that influence the composition and functional manifestations
of the gut microbiome, which has been extensively studied in recent years.

During my postgraduate studies, | focused on the relationship between microbial composition
and some non-communicable metabolic diseases, particularly obesity and T2D. In our research, we did
not limit ourselves to describing the taxonomic composition of the microbiota, but also analyzed its
functional manifestations through fecal metabolome analysis. We attempted to place the obtained
results in the broader context of the interaction between microbiome and the host organism by
analyzing serum and urine metabolomes as well as health status indices and nutritional parameters.
Furthermore, we described the microbiome and metabolome of vegan populations, which, according
to numerous epidemiological studies, are metabolically healthier than the general omnivorous
population. We were interested in whether the vegan diet affects the composition of the microbiome
and metabolome and whether any favorable effects of this diet could be explained by their potential
changes.

Targeted modulation of the gut microbiota is discussed as a potentially promising therapeutic strategy
for diseases in which the pathophysiology of gut dysbiosis plays a role. However, the wider use of this
approach is confronted with a lack of knowledge about the functioning of a system as complex as the
gut microbiome and its interaction with the environment and the host. My work has addressed this
issue both in humans (clinical intervention trial) and in an experimental study conducted in ex-GF mice.
In the intervention study, we tested the hypothesis that the success of inulin (dietary fiber)
intervention to improve insulin sensitivity in T2D patients is variable and depends, at least in part,
onthe composition of the microbiome. In line with the hypothesis, we observed significant
inter-individual differences in response to administered fiber and attempted to identify specific
markers that would predict the success of this therapy. In the experimental study, we explored
the potential use of vegan microbiota transfer in treating diet-induced obesity and insulin resistance.

1.2 Microbiome and microbiota in general

A microbiota is a community of microorganisms living in a particular environment and refers to their
taxonomy (each microorganism belongs to a set of taxonomic classification units from kingdom
to species or even strains), which serves as an organizational tool (Parks et al., 2018). The broader
and more recent term microbiome encompasses the set of all microorganisms (bacteria, archaea,
lower and higher eukaryotes and viruses) inhabiting a particular environment and their genomes
and surrounding environmental conditions (Marchesi & Ravel, 2015) and was first defined and highly
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emphasized by professor and Nobel laureate Joshua Lederberg (Lederberg & McCray, 2001).
Nowadays, the two terms are often used interchangeably, although the original definitions should be
kept in mind (Ursell et al., 2012).

1.2.1 Humans as holobionts

In the past few decades, research on the microbiome has been developing at a tremendous pace.
The concept of the so-called "holobiont" was introduced in 1991 by evolutionary theorist and biologist
Lynn Margulis and her graduate student René Fester (Margulis & Fester, 1991), although the concept
itself has existed in nature since the first symbiosis, which is considered an essential part of evolution
and the basis of the first eukaryotic cell, based on a theory proposed by Lynn Margulis in 1967
(Margulis, 1967) and widely accepted by scientists today. Currently, a holobiont is described as an
organism consisting of a host and many microorganisms living in close association with the host
(Bordenstein & Theis, 2015) (Simon et al., 2019). It is noteworthy that, based on currently available
data, the number of bacterial cells present in the average human being is approximately the same
order as the number of human cells, although it has been assumed that microbial cells outnumbered
human cells (Sender et al., 2016b). Based on the estimates by Sender et al., the number of human cells
in the 70 kg “reference” adult human is 3 - 10™ with the major contributors being red blood cells,
platelets, bone marrow cells, lymphocytes and endothelial cells (Sender et al., 2016a) (Sender et al.,
2016b). The estimated number of bacterial cells in the same “reference” human is 3.9 - 103 (Sender
et al., 2016a), but this number do not consider other types of microbes such as viruses and phages
(Gilbert et al., 2018).

The concept of the holobiont has been greatly expanded by the introduction of new techniques that
have enabled much faster and cheaper analysis compared to traditional techniques, one of the most
important of which is a high-throughput next-generation sequencing (NGS). NGS was the foundation
of the Human Genome Project (HGP) which has undoubtedly changed biological research as we know
it (Lander et al., 2001) (Craig Venter et al., 2001). The success of the HGP has been followed by another
groundbreaking project, the Human Microbiome Project (HMP), which aims to characterize the human
microbiome and answer complex questions about microbial diversity, stability and evolution,
i.e. factors that may influence an individual's microbiota, microbial relationship to pathological
conditions, and much more. (Turnbaugh et al., 2007). With the introduction of revolutionary
sequencing methods, scientists are now able to sequence the genome of both the host and its
microorganisms to study their complex relationships. The resulting collective genome can be referred
to as a hologenome, which consists not only of the nuclear genome but also includes organelles and
the microbiome, resulting in a complex gene system (Bordenstein & Theis, 2015). The size of the male
diploid human genome has been estimated at 6.27 - 10° base pairs (Piovesan et al., 2019). If we
consider that the "typical" bacterial genome is 5 - 10° base pairs in size (Land et al., 2015), and then
multiply this by the estimated number of bacteria inhabiting the human gut, we get an estimate of the
genome size of human microbes of approximately 1.95 - 10%°, a huge number compared to the human
genome. Interestingly, the set of gut microbial genes was also found to be 150 times larger than the
entire set of human genes, with 3.3 million unique microbial genes identified compared
to approximately 20,000 human protein-coding genes. (Qin et al., 2010) (Gilbert et al., 2018).

1.2.2 Human niches colonized by microbes

For a long time, the inner body was considered nearly sterile and any presence of microorganisms was
considered as the consequence of “breaking the defense systems” and “wrong”. Now, increasing
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evidence shows that almost every part of our body is populated by microbes. The abundance
of microbes across human niches varies according to the chemical and physical aspects of each site
or organ such as pH, concentration of oxygen, availability of nutrients, temperature, and presence
of antimicrobial compounds or mucus (De Vos et al., 2022) (Milani et al., 2017) (Figure 1).

Figure 1. Main microbial body sites and their environmental characteristics across the human body (De Vos et
al,, 2022) (Mathieu et al., 2018) (Neugent et al, 2020) (Yagi et al., 2021). Created by using
https://www.biorender.com/.
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The gastrointestinal tract (GIT) is the largest reservoir of diversified microbes at any site in the human
body, and gut microbiota is currently the focus of many researchers due to its extensive functions,
which will be discussed in more detail in the following chapters. The second most diverse place
of microbial colonization in humans is the mouth including oral mucosa, saliva, all oral tissues, tongue
and teeth surfaces (Reynoso-Garcia et al., 2022). Each oral niche is unique in its bacterial composition
due to differences in the environment, but all microbes communicate with each other, forming
complex multi-species biofilms, communicating through chemical signals, and are also in symbiosis
and close association with some fungal microbes (X. Li et al., 2022). Another huge microbial ecosystem,
known to be dominated by lactic acid-producing bacteria belonging to the genus Lactobacillus, is found
in the vagina (X. Chen et al., 2021). Under normal conditions, the Lactobacillus-dominated vaginal
microbiota protects this niche against invasion of potentially pathogenic species by producing many
antimicrobial substances including lactic acid creating low pH, bacteriocins and hydrogen peroxide,
which make the environment uninhabitable for other microbes (Hanlon et al., 2013) (S. Wu et al.,
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2022). This phenomenon is called colonization resistance and occurs in various modifications in many
microbial ecosystems associated with humans.

Compared to the microbially rich environment of the gut, mouth or vagina, many environments are
still home to microbes, albeit in smaller densities. Human skin can provide almost 30 m? of microbial
environment and is the largest epithelial surface for microbial interactions (Gallo, 2017). However,
compared to other habitats, this niche contains fewer bacterial taxa and generally lower microbial
biomass (Chaudhari et al., 2020). Interestingly, complex interactions between fungi and bacteria occur
on the skin surface, and these microbes can form dense biofilms together, which are thought
to stabilize the microbial community (Swaney, 2021). Microbes that naturally occur in a healthy human
state can be found even in the strangest of places, such as the eye, ear or the bladder (Reynoso-Garcia
et al., 2022) (Wolfe et al., 2012). In recent years, microbes have also been found in many cancerous
tissues, although studying them is extremely challenging (Y. Chen et al., 2022). Microbes are present
in the blood even in a resting state, when they cannot multiply under normal conditions. During
pathogenic situations, the gut is the origin of these bloodstream microbes, or it's possible for them
to migrate from the oral cavity through translocation (Potgieter et al., 2015). Bacterial communities
also inhabit the healthy lungs and respiratory tract, which have long been considered aseptic (Anand
& Mande, 2018) (Whiteside et al., 2021). Somewhat problematic and controversial is the presence
of microbiota in the placenta or uterus. Chen et. al brought evidence showing the possible presence
of living bacteria in the cervical canal, uterus, fallopian tubes and peritoneal fluid (C. Chen et al., 2017),
the latest study on the other hand suggests that no placental microbiota exists and the previously
observed bacteria were merely the result of contamination (Goffau et al., 2019). Currently, the only
human niche we consider truly sterile is the brain. Some studies suggest that a few bacteria live
harmlessly in it, but this is still not confirmed given that most human brain studies can only be done
post-mortem (Link, 2021). Therefore, more research and new methods are needed to study possible
brain microbial communities.

All these microbes from different niches interacts among themselves and form a complex network
of relationships. Furthermore, they interact with and influence human cells, affecting human
metabolism and health in general. As most studies on the human microbiome have shown, it is
inevitable to understand the mechanism of these interactions between microbes living in the human
environment itself, but also between microbes and the metabolic and biological processes of the host,
in which they undoubtedly play an important role.

1.3 Gut microbiome

The human gut microbiome is currently attracting a great deal of scientific attention. The GIT is home
to complex and diversified microbial communities that influence many processes in our body. These
communities vary greatly throughout the digestive tract due to the different physical and biochemical
conditions in each part of the tract (Figure 2). The stomach has a highly acidic environment with a pH
around two because of hydrochloric acid that is released by the parietal cells in the gastric wall (Boland,
2016). Due to its extreme conditions, it serves as the first defense against pathogenic microbes from
food (Hunt et al., 2015). Contrary to earlier beliefs, a specific bacterial community is found in the
stomach, often dominated by Helicobacter pylori, which is known to be associated with gastric diseases
(Amieva et al., 2016) (Cover & Blaser, 2009). Nevertheless, the gastric bacterial community surprisingly
varies depending on the presence or absence of H. pylori (Maldonado-Contreras et al., 2011).
When this microbe was present in the stomach, subjects had higher relative abundances
of Proteobacteria and Acidobacteria phyla, whereas the negative status of H. pylori was associated
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with the higher relative abundance of Actinobacteria and Firmicutes. In addition, the richness
of bacterial communities did not differ based on H. pylori status (Maldonado-Contreras et al., 2011).

Figure 2. Different physical and chemical properties of each part of the digestive tract determine variations
in the microbiota. Figure adapted from (Najmanova et al., 2022).
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The small intestine is anatomically divided into three parts - the duodenum, jejunum and ileum.
The duodenum, the first 30 centimeters of the small intestine, is an important part where
the environment changes from acidic to neutral. The jejunum and ileum are areas where digestive
enzymes with the help of bile acids break down food components and the absorption of the resulting
products occurs over a large absorptive surface area due to villi and microvilli as part of the intestinal
surface (Boland, 2016). It is important to note that low concentrations of oxygen are always present
in the small intestine, allowing the life of facultative anaerobes. In contrast, many bacteria could not
survive in these conditions, either because of the presence of oxygen, antimicrobial peptides (AMPs)
or bile acids. Lactobacillus, Enterococcus, Prevotella and Streptococcus are the most abundant genera
of the duodenum and jejunum, probably due to their higher tolerance to this specific environment
(Adak & Khan, 2019) (Reynoso-Garcia et al., 2022). The ileum is dominated by Streptococcus,
Escherichia/Shigella and Clostridium, in contrast to its distal part, which is more similar to
the microbiota of the colon (Reynoso-Garcia et al., 2022) (Zoetendal et al., 2012). Colon is the site
of the most diverse microbial community with its anaerobic environment allowing the thriving of the
major gut genera such as Bacteroides, Parabacteroides, Clostridium, Lachnospiraceae,
Faecalibacterium, Escherichia/Shigella and Bilophila (James et al., 2020). The composition of the cecal
microbiota found in the initial part of the colon poses a problem due to sampling difficulties, however,
it has been shown to be different from that of samples obtained from feces resembling the distal part
of the colon (Be et al., 2001). Surprisingly, the human appendix, previously thought to have lost its
function during evolution, turned out to contain diversified microbes with a dominant phylum
Firmicutes (Guinane et al., 2013). Scientists are now reassessing the function of the appendix,
suggesting that it serves as a "safe place" for many bacteria that can enter the gut when needed
(Guinane et al., 2013).



1.3.1 Gut microbiome development during ontogeny

The human gut microbiota is not stable throughout the whole life but changes during human ontogeny
(Figure 3). Microbial colonization of the GIT begins during labor when the composition
of the microbiota depends on the mode of delivery. It has been shown that vaginally born infants
appeared to have microbial communities very similar to their own mother's vaginal microbiota with
a predominance of Lactobacillus and Prevotella, whereas infants born by cesarean section acquired
a community that resembled microbes found on the skin surface of their mothers with predominant
taxa such as Staphylococcus and Corynebacterium (Dominguez-Bello et al., 2010). There are other
factors that can affect the microbial communities in the gut of infants, such as the type of feeding,
the term of the delivery, hospitalization, and the possible use of antibiotics (Ottman et al., 2012)
(Vandenplas et al., 2020). Environmental factors such as geographical location, and the presence
of siblings or pets in the households also play a key role in the development of the microbiome
at an early age (Stewart et al., 2018).

Figure 3. Changes in microbial diversity and abundance during human development from the prenatal stage
to adulthood. The late relatively stable microbiome is thought to be established around 3 years of age. In the
elderly, microbial diversity is reduced compared to adults. Figure adapted from (Reynoso-Garcia et al., 2022).
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Human milk is undoubtedly a key source of nutrition for newborns and, due to its probiotic
and prebiotic function, it also plays a key role in determining the microbial composition of the infant's
gut with increased diversity and functionality of its microbiome (Kundu et al., 2017) (Vatanen et al.,
2018). Significant differences in the composition of the gut microbiota were found in infants who were
breastfed, in contrast to infants fed an artificial diet, where Bifidobacterium predominated in the gut
of breastfed children, while the proportion of Bifidobacterium and Bacteroides was the same
in children that were formula fed (Harmsen et al., 2000). This is mainly due to the fact that human milk
is composed of a perfect mixture of nutrients that supports the development of the infant. It contains
lactose, many lipids, and also human milk oligosaccharides (HMOs), which are considered to be milk
prebiotics that shape the microbial composition of the infant's gut, specifically in favor
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of Bifidobacterium taxa (Milani et al., 2017). The next stage of gut microbiome development occurs
with the introduction of solid food instead of milk or formula when a more complex and mature
community replaces the infant one. This transition is also related to the further maturation
of the immune system and gut-brain axis (Kundu et al., 2017).

After the period of relative stability during adulthood, changes in the composition and activity of the
intestinal microbiota also occur in old age, with a strong dependence on lifestyle, diet or inflammatory
diseases (Ottman et al., 2012). As in the neonatal period, the intestinal microbiota of the elderly is
again unstable and its changes are often related to dysbiosis partly caused by the natural senescence
of the gastrointestinal tract, which is characterized by increased oxidative stress and inflammation.
Although the observed changes have high interindividual characteristics, some common features
and trends were found throughout the elderly population, including reduced microbial diversity,
a decrease in total short-chain fatty acids (SCFAs), a decrease in bacterial genera considered beneficial
such as Bifidobacteria or Faecalibacterium, or an increase in facultative anaerobes (Salazar et al.,
2019). Interestingly, reduced microbial diversity appears to be increasing again in populations
with extreme longevity, where some new microbes have also been observed (Biagi et al., 2016).

1.3.2 The variability of human gut microbiota

Typical aspect of the human gut microbiota that has not been mentioned so far is its interindividual
variability, which is strongly related to environmental factors. Each human individual has distinct gut
microbiota, even identical monozygotic twins do not have the same composition of gut microbes.
Although some studies suggest that heritable taxa exist and are thought to play a role in shaping
microbial diversity (Goodrich et al., 2016), there are other opinions suggesting that the environment
is still a major driving factor with little genetic influence (Turnbaugh, Hamady, et al., 2009). It is
important to mention that the Turnbaugh group's research had a smaller number of cases available
for the proposed study.

Although much of the individual variability remains unexplained, the main sources are thought to be
mostly environmental, including diet, geography, lifestyle or antibiotic use, but also include host
genetics, age, and early microbial exposure (Gilbert et al., 2018) (Pasolli et al., 2019) (Rothschild et al.,
2018) (The Human Microbiome Project Consortium, 2012). Diet has been extensively studied
in relation to the composition of the gut microbiota, and indeed there is evidence that it is essential
in modulating the gut microbial community (De Filippo et al., 2010) (Ley et al., 2008) (Muegge et al.,
2011). Exercise has been shown to be associated with higher microbial diversity (Clarke et al., 2014),
but the relationship between exercise and gut microbiota is quite complex and may very well reflect
the fact that people with higher physical activity generally have healthier lifestyle habits, which
influence gut microbes as well. Another lifestyle habit that has an impact on microbial communities is
smoking. Compositional differences between smokers and non-smokers were observed in the oral
cavity and also in the gut (Gomaa, 2020). Antibiotics are known to be beneficial when needed to defeat
a bacterial infection, but also harmful to the rest of the microbial community. It is therefore not
surprising that their use can affect the gut microbiota, specifically negatively by disrupting the balance
of the community, reducing its diversity, and also creating an environment in which antibiotic-resistant
strains can over-grow (Patangia et al., 2022).

Studies are being conducted to explore and understand the variability in microbial communities

in relation to geography. For example, differences in microbiota characteristics and functional genes

have been observed in infants, children, and adults in the United States of America, Venezuels,

and Malawi (Yatsunenko et al., 2012). Another study performed in Russia in cohorts living in different
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environmental conditions confirmed that in comparison with the global large-scale studies, dominant
gut bacteria were similar, but some unique taxonomic and functional properties were found in the
Russian population (Tyakht et al., 2013). Any observed differences in microbiota may not just reflect
geographical differences, but may also include differences in the diet, lifestyle and environment
of these locations. Nevertheless, given these results, emphasis should be placed on sampling a wider
range of people in terms of dietary habits, geography, ethnicity and age to identify microbiota
associated with disease or health.

As far as the microbiota of a healthy adult is concerned, there seems to be a so-called core microbiota
that is similar between individuals. The core gut microbiota refers to a set of similar microbial
characteristics that can be observed in all adults, but the task of identifying the core microbiome is
quite complex, and in recent years attention has shifted from examining the mere taxonomy of the
common microbiota to the functional potential of the core microbiome (Sharon et al., 2022). The logic
of this shift is that several different taxa can perform the same function (Lozupone et al., 2012).
For example, Turnbaugh's group indeed suggested that idea of the core microbiota at the level
of commonly shared abundant taxa is incorrect and we should focus more on the core microbiome
at the level of metabolic function (Turnbaugh, Hamady, et al., 2009). The problem with the core
microbiome is also encoded in the limitations of the studies, with most microbiome studies being
conducted on Western populations, even though microbial composition can vary depending
on geographic location, environment and lifestyle, and few of these studies access both microbial
composition (what type of microbes are present) and their functional potential (what these microbes
do). The next layer of uncertainty is the bioinformatic analysis, as there is no universal bioinformatical
pipeline for data processing despite the known fact that different ways of data processing result
in different outcomes (Sharon et al., 2022).

Clearly, given the large variability of gut microbiota in individuals in any population, studying
the microbiome and its potential causal links to disease and overall health is a complex task. Exact
matching of possible confounding factors between patients and controls and sufficient power is much
needed in these types of studies (Vujkovic-Cvijin et al., 2020). However, microbial variability observed
between individuals also suggests that we should focus more on personalized medicine in relation
to the microbiome, which has enormous metabolic potential compared to our own human cells.

1.3.3 Functions of gut microbiota

As mentioned in previous chapters, gut microbes perform many important functions in our bodies
and are essential for human metabolism and overall health. Scientists are currently using two main
models to understand the complex relationship between gut microbiota and human health and
to further investigate the impact of these microbes on our physiology and the possible link between
microbes and certain diseases. The first method is to use mice after treatment with broad-spectrum
antibiotics, which results in mice with depleted gut microbes. However, the current gold standard in
this field is the use of germ-free (GF) mice that are kept in special conditions without exposure to any
microbes (Kennedy et al., 2018). This GF mouse can be colonized with a defined community
of microbes to create a gnotobiotic mouse (Rosenbaum et al., 2015), which allows the microbiota to be
studied in direct relation to specific conditions such as diet, drugs or a particular disease state. Albeit
mice are by far the most popular animal GF/gnotobiotic model, GF rats and pigs exist as well.
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1.3.3.1 Energy homeostasis

Based on the studies performed on GF mice, it was shown that gut microbes play an important role
in energy homeostasis. After the colonization of GF mice with microbes from conventional mice, these
colonized mice gained weight even though their daily energy intake was 29% less in comparison to GF
mice (Backhed et al., 2004). This suggests that the microbiota plays a vital role in regulating appetite
and processing energy from food, which contradicts the widely accepted "calories in versus calories
out" theory that claims that weight gain is only a result of eating more calories than we burn, but
obviously, other factors can also influence energy balance.

Backhead's findings were supported and further investigated by Turnbaugh and his group,
who showed that different composition of the microbiota is associated with the obese and lean
phenotype. Microbiota inhabiting the gut of obese animals was associated with a greater ability
to obtain energy from the diet (Turnbaugh et al., 2006). The authors also confirmed that this trait is
transferable when colonization of GF mice with microbiota derived from genetically obese mice
resulted in a significant increase in total body fat compared to GF mice colonized with microbes from
lean conventional mice fed the same diet. They subsequently conducted a similar study with
humanized GF mice colonized with microbes derived from the fecal contents of a healthy adult, where
the mice were then fed either a high-fat Western diet or a standard low-fat, high-polysaccharide diet
(Turnbaugh, et al., 2009). As expected, mice fed a Western diet gained more weight and gut microbial
community composition and microbial gene expression in both groups was significantly different.
Furthermore, the obese phenotype was transferable by gut microbiota from obese humanized mice
to GF lean recipients (Turnbaugh, et al., 2009).

Quite recently, it has been shown that not only colonic but also upper intestinal microbiota is involved
in energy extraction and regulation of energy homeostasis. Martinez-Guryn and her colleagues showed
that GF mice populated with a jejunal microbiota of mice fed a high-fat diet had increased lipid
absorption even when fed a low-fat diet (Martinez-Guryn et al., 2018). Indeed, further research
in humans is needed to explore how the gut microbiota is involved in weight control and obesity
in order to find a sensible solution to the global obesity epidemic.

1.3.3.2 Biotransformation and formation of fermentation products

The human intestinal microbiota have a high capacity to produce a number of bioactive substances
that can directly or indirectly influence host metabolism. One important group of these compounds
of microbial origin are bile acids, the balance of which is important for the proper functioning of our
metabolism, and gut microbes are the main mediators of their biotransformation and homeostasis.
Primary bile acids are synthesized in the liver from cholesterol and are further metabolized by gut
microbes into secondary bile acids and various other products that greatly increase the diversity of bile
acids and their biological potential (Guzior & Quinn, 2021).

In humans, chenodeoxycholic acid (CDCA) and cholic acid (CA) are primary bile acids formed in the liver
hepatocytes (Ridlon et al., 2016). Before secretion from the liver, these primary bile acids are
conjugated to amino acids glycine or, to a lesser extent, taurine to increase their solubility (Wahlstrom
et al., 2016). After secretion, these conjugated bile acids are deposited in the gallbladder along with
phosphatidylcholine and cholesterol (Ridlon et al., 2016). The meal intake stimulates the gallbladder
and its contents are released into the small intestine, where bile salts activate pancreatic lipase and,
due to their amphipathic properties, help to form micelles composed of cholesterol, monoglycerides,
fatty acids and fat-soluble vitamins, which can then be absorbed by enterocytes (Ridlon et al., 2016).
Most of these bile acids are then reabsorbed from the distal ileum via a specific transporter
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in the enterocyte membrane and then returned to the liver via the bloodstream, where their excretion
into bile can begin again (Adak & Khan, 2019).

A small portion of bile acids that escape reabsorption is converted to secondary bile acids by gut
microbes through 7-a-dehydroxylation or other transformations (De Aguiar Vallim et al., 2013).
In humans, this group of secondary bile acids includes lithocholic acid (LCA), deoxycholic acid (DCA)
and ursodeoxycholic acid (UDCA). The essential role of the microbiota in bile acid metabolism has been
demonstrated in a GF mouse model. In contrast to normal mice, GF mice have a disrupted primary bile
acid profile with the balance shifted exclusively towards taurine conjugates (Swann et al., 2011)
and completely lacking secondary bile acids (Sayin et al., 2013).

In addition to their function in dietary lipid absorption, bile acids also act as signaling molecules
and regulators of metabolism, primarily through binding and activation of the nuclear farnesoid X
receptor (FXR) and the plasma membrane G-protein coupled receptor TGR5 (De Aguiar Vallim et al.,
2013) (Yu et al., 2019). By activating these receptors, bile acids are able to control many biological
processes including their own synthesis, conjugation and transport, as well as lipid, glucose and energy
metabolism (T. Li & Chiang, 2015). It is also a known fact that bile acids have antimicrobial properties
and can therefore influence microbial growth rate due to their detergent properties as well as through
inducing the genes encoding anti-microbial peptides via FXR-dependent signaling (Li & Chiang, 2015)
(Ridlon et al., 2016) (Yu et al., 2019). However, the gut microbiota has several different mechanisms
to be resistant to bile salts, and microbes that have such mechanisms will naturally have a higher
probability of survival. Microbes are believed to have a fundamental defense mechanism that involves
the transformation of bile acids into less harmful compounds. For instance, primary bile acids are
deconjugated as an initial step in bile acid biotransformation, which reduces their solubility
and enables them to be utilized as substrates for further modifications (Ridlon et al., 2016) (Staley et
al., 2017). This defense mechanism is evidenced by the presence of a bile salt hydrolase (BSH) encoding
gene in all major bacterial species found in the gut (Jones et al., 2008). Gut microbes are also able
to regulate bile acids pool composition, which means that a delicate balance between microbiota
and bile acid composition exists (Ridlon et al., 2006).

The intestinal microbiota is also important for the biosynthesis of many vitamins. It has been shown
that intestinal microbiota is, besides dietary intake, an important source of vitamin K, biotin,
cobalamin, folic acid, riboflavin, and other vitamins of the vitamin B group (Hill, 1997) (LeBlanc et al.,
2013). Microorganisms are also known to affect drug metabolism by biotransformation, and therefore
different reactions to drugs in different individuals are thought to be at least partially caused
by different sets of microbes in these individuals (Zimmermann et al., 2019).

Another important function of gut microbes is the degradation of complex carbohydrates indigestible
by our own enzymes, such as cellulose, lignin, hemicellulose, pectin or some oligosaccharides,
into various metabolic products that can positively or negatively affect our health (Gomaa, 2020).
When the microbiota in our gut is exposed to fiber, microbial fermentation occurs and the resulting
metabolites include SCFAs, represented by butyric, propionic and acetic acids. SCFAs have a positive
effect on human physiology serving as important energy sources, immunomodulators and signaling
molecules and also improving glucose and lipid metabolism (Koh et al., 2016) (Cummings et al., 1987)
(Kumar et al., 2020) (Morrison & Preston, 2016) (Venegas et al., 2019). It is therefore not surprising
that the possible positive links of butyrate-forming bacteria to improved human health are now being
intensively investigated.
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However, when the fermentable fiber is absent or much less abundant in our diet, bacteria ferment
less energetically beneficial sources such as proteins or amino acids and the resulting metabolites
include phenol, indole, p-cresol, ammonia, the branched-chain amino acids (BCAAs) valine, leucine,
isoleucine and their products, branched-chain fatty acids (BCFAs) isobutyrate, 2-methylbutyrate
and isovalerate (Mohajeri et al., 2018) (Oliphant & Allen-Vercoe, 2019). Recent evidence showed that
gut microbiota may be a source of essential amino acids including BCAAs (Gojda & Cahova, 2021).
Higher concentrations of BCAAs in plasma are associated with obesity and diabetes (Arany & Neinast,
2018), suggesting that elevated levels of these substances are not desirable, although their deficiency
is also devastating. Another compound with potential negative effects is trimethylamine of microbial
origin, derived from choline or L-carnitine found in foods such as red meat, eggs or fish, which can be
further converted to trimethylamine N-oxide (TMAO) in the liver. TMAO is associated with some
non-communicable diseases (NCDs) frequent in westernized societies although the causality is yet
to be proved (Agus et al., 2021). Clearly, the gut microbiota has the ability to switch from making
metabolites that are beneficial to our health into metabolites that can have harmful effects, and it all
depends largely on how we feed them.

1.3.3.3 Protective and immunological properties

Commensal microbiota inhabiting the intestine protect the host against pathogen invasion
and substantially contribute to the maturation of the immune system. Several metabolites produced
by these bacteria have antimicrobial effects including secondary bile acids, bacteriocins and SCFAs
(Ducarmon et al., 2019). Moreover, the intestinal microbes contribute most to the defense against
pathogenic microorganisms through colonization resistance, production of toxic substances for some
pathogens or nutrient competition (Figure 4). The homeostasis of the mucus barrier that covers
the surface of the epithelial cells inside the intestines is essential for maintaining health. In the colon,
the mucosal layer is divided into two distinct parts, the outer layer, which provides nutrients, binding
sites and a home for some gut microbes, and the dense inner layer, which is impenetrable to microbes
and is attached to epithelial cells keeping them bacteria-free (Johansson et al., 2011). The microbiota
that lives in the outer part of the mucus layer is called mucus-associated microbes and include genera
such as Lachnospiraceae, Bifidobacterium, Akkermansia, Faecalibacterium, Clostridium
and Eubacterium (Ouwerkerk et al., 2013).

The mucosal layer has special viscoelastic properties due to its main compositional and functional
building blocks, glycosylated proteins called mucins, which combine with other components such as
water, lipids, proteins and other substances (Paone & Cani, 2020). Mucins are secreted by the goblet
cells, which are present throughout the digestive tract and lubricate its inner surface, thus aiding the
passage of food and protecting epithelial cells against pathogens, toxic substances or digestive
enzymes (Paone & Cani, 2020). Interestingly, the site with the highest proportion of goblet cells is
the colon, which is probably related to the presence of commensal microbes that can directly influence
the thickness of the mucosal layer by various glycosidases and proteases (Kim & Ho, 2010).
The development of the mucus layer is a very dynamic process with gut microbes being involved
(Johansson et al., 2015).
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Figure 4. The schematics of microbially mediated colonization resistance in the gut. Figure adapted
from (Ducarmon et al., 2019).
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The immune system in the gut must be highly balanced to tolerate and cooperate with the commensal
microbiota, but at the same time be able to respond properly to pathogenic microbes. This special
relationship between microbiota and the immune system is influenced by many factors and probably
begins to form during pregnancy and follows the first contact of the commensals with the immune
system during birth (Kalbermatter et al., 2021). The gut is interspersed with a high number of different
immune cells connected to the epithelium, which together with commensal microbes and mucosal
barrier protect the host from pathogens and possibly harmful substances. The mucosal layer contains
several components of the innate immune system, such as defensins, Paneth cells that are capable
of secreting various AMPs, and plasma cells that produce secretory immunoglobulin type A (slgA)
which is now thought to be key in the intestinal humoral immune system (Hamada et al., 2002)
(Kalbermatter et al., 2021) (Macpherson et al., 2001). After birth, breast milk containing maternal
antibodies provides protection for the baby and also shapes the developing immune system and gut
microbial communities; more specifically, mucosal immune memory is transferred to the baby
via maternal slgA shaped by the mother's microbiota (Maynard et al., 2012). As a result, microbial
antigens in conjunction with slgA will be tolerated by the innate immune system, which will shape the
overall commensal microbiota and also help in the formation of the regulatory immune system
(Maynard et al., 2012).

1.3.3.4 Development and functioning of organ systems

Thanks to extensive evidence, it is now clear that the gut microbiota can influence the function
of organs outside the gut mainly through its metabolites. Scientists refer to these relationships by the
term "axis", which specifies various relationships and pathways between the gut and other organs.
To allow proper communication between the gut and other organs, microbial signals must be first
transmitted through epithelial cells in the intestines (Schroeder & Backhed, 2016). These
microbial-derived signals include lipopolysaccharides (LPS), flagellin, peptidoglycan, secondary bile
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acids, tryptophan metabolites, and SCFA-related signals. As suggested in previous chapters,
the microbiota plays a key role in the development of the immune system and the protective mucosal
layer, so it is not so surprising that it extends its influence to other organs and contributes to their
development and function.

To be more specific, intestinal microbes are also essential for the development of the digestive tract
itself, where they interact and influence digestion, immunity, and many other biological processes
from the beginning of colonization. The intestinal epithelium is known for its remarkable adaptive
and self-renewal functions, which are mediated mainly by the proliferative activity of intestinal stem
cells (IECs) located in the epithelial crypts which can differentiate into many types of cells, including
enterocytes, Paneth cells, goblet cells, tuft cells, enteroendocrine cells, or M-cells (Ye & Rawls, 2021).
In GF mice, crypt depth is reduced compared to normal mice, but after colonization, crypt depth
deepens and ISCs proliferation increases (Peck et al., 2017). Similarly, ISCs proliferation is increased
in wild-type mice after Lactobacillus plantarum supplementation (Lee et al., 2018). The microbiota also
strongly influences the brush border at the apical luminal surface of enterocytes, where GF animals
have reduced microvilli thickness (Sommer & Backhed, 2013). In addition, the number of Paneth cells
and goblet cells in GF animals is much lower than in conventional animals (Schoenborn et al.,
2019)(Sharma et al., 1995).

As outlined in this chapter, gut microbes are involved in countless processes in our bodies, which
should not be surprising given that humans co-evolved along with the microbes they harbor.
The extensive functions that microorganisms perform are also supported by the fact that bacteria,
unlike our own cells, can produce new generations of themselves within an hour, giving themselves
a great advantage in that they can adapt quickly to changes in the environment. Environmental factors
such as diet are important for maintaining the positive functions of the gut microbiota and supporting
the production of potentially beneficial metabolites produced by the microbes.

1.3.4 Metabolome as a functional readout of the gut microbiota

Although the interindividual variability of gut microbial communities in terms of taxonomy is
a well-known phenomenon, the gene composition and functional capacity of intestinal bacteria are
highly conserved. Many phylogenetically distant bacteria carry similar genes and are therefore able
to perform similar functions and produce similar metabolites (Tian et al., 2020). These metabolites
provide an additional level of understanding of the relationship between host and microbiota beyond
the classical characterization of microbial taxonomy or microbial genes. Metabolomics is therefore
often involved in microbiome studies and provides a fingerprint of microbial functional status
(Marcobal et al., 2013). Based on the Twins UK Study published by Zierer et al., the gut microbial
composition explained approximately 68% of the observed variance of several hundred fecal
metabolites on average (Zierer et al., 2018). This observation strongly suggests the connection
between intestinal microbiota and intestinal metabolome. Based on astudy performed on GF
and colonized ex-GF mice, out of 179 identified colonic luminal metabolites, approximately 70%
of the metabolites were significantly different in amount between the two groups of mice pointing out
to their microbial origin (Matsumoto et al., 2012). Moreover, differences in fecal and urine
metabolomes were also observed between GF mice, conventional mice and mice colonized by adult
human fecal contents (Matsumoto et al., 2012). A surprisingly large influence of gut microbes can be
observed even in the blood metabolome, where hundreds of metabolites in plasma were unique
to conventional mice compared to GF mice, and in addition, approximately 10% of all features that
were common to both groups differed significantly in signal intensity (Wikoff et al., 2009). A more
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recent study addressed the global impact of microbiota by analyzing both microbial composition
and metabolome using a total of 768 samples from 96 sampling sites of 29 organs from GF
and colonized mice. The strongest differences were observed in the GIT; however, unique biochemical
signatures originating from microbiota were identified in all organs, providing further evidence that
microbiota affects all organs (Quinn et al., 2020). McHardy et al. conducted a study on human subjects
and described the connections between the microbiota and metabolome in the cecum and sigmoid
colon. Their analysis of microbial ecology led to the imputed Kyoto Encyclopedia of Genes
and Genomes (KEGG) metabolic pathway abundances, which were found to be mostly consistent
with metabolic data. This indicates a reciprocal relationship between the microbiota and metabolome
(McHardy et al., 2013). Overall, studies that take into account the structure of microbial communities,
as well as the identification of metabolites, support the idea that the gut microbiota is indeed involved
in establishing the biochemical environment in both proximal and distant niches within the human
body and that the human metabolome can consequently impact the composition of gut microbes (Lee-
Sarwar et al., 2020).

1.4 Diet as one of the main environmental factors modulating gut microbial
ecosystem

It is increasingly recognized that there is no one-size-fits-all diet and each individual responds
differently to a particular dietary intervention, mainly due to the unique relationships between
the host and its microbes. However, this connection is bi-directional and the possibility of shaping gut
microbial communities and their functional potential through diet is emerging. Future studies must
take into account these complex relationships and focus on the various cornerstones that determine
personal responses —firstly, the diet of the individual with its essential food components and their vast
array of products; secondly, the gut microbiota of the host, which consists of hundreds of different
species that influence a multitude of biological processes; and thirdly, the physiology and metabolism
of the host itself, which is no easy task given the interdependence of these three key elements
(Kolodziejczyk et al., 2019).

1.4.1 Differences between herbivores, omnivores and carnivores

It is important to note that diet has a greater influence on the formation of microbiome than
phylogeny, as found in a study examining the distribution of microbial species and their function
in several mammalian animals belonging to three dietary groups, namely herbivores, omnivores
and carnivores (Muegge et al., 2011). This study also elucidated the relationships between sets
of functional genes and dietary habits, showing a clear separation of functional genes by diet. The
authors suggested that the observed differences in microbiomes between the three dietary groups are
likely due to differences in functional characteristics, such as having more specific enzymes associated
with the digestion of substrates from different diets (Muegge et al., 2011). It is logical that herbivores
need more enzymes associated with the breakdown of complex plant polysaccharides and also need
specific enzymes involved in amino acid biosynthesis, which was confirmed by the study (Muegge et
al., 2011). In contrast, a significant increase in enzymes associated with nine amino acid degradation
pathways was found in carnivores, whereas only the BCAAs degradation pathway involving
the degradation of valine, leucine and isoleucine was enriched in herbivores (Muegge et al., 2011).
Thus, it is clear that the functional potential of the microbiota is reversed in herbivores and carnivores,
with carnivore microbes specializing in the breakdown of proteins from meaty diets and using them as
the main source of energy, while herbivore microbiota specializes in the synthesis of amino acids as
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building blocks of proteins (Muegge et al., 2011). This research has helped the scientific community
to better understand the relationship between host diet and gut microbial communities and their
functions, as well as to develop new hypotheses focusing on key factors in the coevolution of the gut
microbiota and its host.

|II

1.4.2 Differences between “traditional” and “westernized” societies

Over the past millennia, major advances in medical and hygienic practices, including the use
of vaccinations or antibiotics, have rapidly reduced the incidence of many infectious diseases (e.g.,
malaria or tuberculosis). On the other hand, this may have led to a loss of ancient microbes in humans
and to a higher incidence of other diseases found exclusively in developed countries, such as obesity,
inflammatory diseases or epidemics of methicillin-resistant Streptococcus aureus (MRSA) infections
(Blaser & Falkow, 2009). Although industrialization and improved healthcare have led to an increase
in life expectancy, human microbial diversity appears to have declined and many other changes in the
gut microbiota have come with modernization (Figure 5) (Reynoso-Garcia et al., 2022). Therefore,
studies need to be conducted on groups of people unaffected by industrialization and urbanization,
which are now the last image reminiscent of the “ancient” microbiota, to better understand
which changes have occurred in modern society and how this relates to the new epidemics.

Figure 5. The differences in gut microbiota resulting from industrialization, urbanization and changes associated
with modern lifestyle in general. Figure adapted from (Reynoso-Garcia et al., 2022).
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For example, the Hadza people in Tanzania, who still live as hunter-gatherers, have been shown
to have a higher diversity of gut microbiota and a different set of taxa compared to other populations,
probably as a result of consuming more fiber as opposed to the typical diet in industrialized countries
(Fragiadakis et al., 2019). Furthermore, Bacteroidaceae has been shown to be the predominant taxon
across industrialized societies, in contrast to populations with traditional lifestyles including
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hunter-gatherers or rural farmers, where Prevotellaceae is much more common (Smits et al., 2017).
Another study on Hadza hunter-gatherers also showed that they had higher bacterial richness
and diversity compared to an ltalian cohort with a modern lifestyle (Schnorr et al., 2014). This study
also confirmed that the family Prevotellaceae is among the most abundant families in the gut
microbiota of the Hadza cohort, along with Ruminococcaceae and Lachnospiraceae. An interesting
finding in this study was that the genus Bifidobacterium was completely absent from the digestive tract
of all hunter-gatherers (Schnorr et al., 2014).

It has been shown that European children consuming a modern Western diet and children from the
African village of Burkina Faso consuming a rural diet rich in fiber have different gut microbiota (De
Filippo et al., 2010). More specifically, in line with the above studies, a unique occurrence of taxa from
the Prevotellaceae family, specifically the genera Prevotella and Xylanibacter, which were not present
in European children, was found in children from rural Africa (De Filippo et al., 2010). A study focusing
on an isolated Amerindian tribe with no prior contact with Western societies reported the highest
bacterial and functional diversity ever recorded in human studies, with a high prevalence of taxa in the
genus Prevotella similar to other findings observed in non-industrialized societies (Clemente et al.,
2015). Interestingly, it is not only bacterial communities that are affected; specifically, the presence
of Entamoeba and Blastocystis protozoa has been shown to be associated with an increase in overall
microbial diversity, suggesting that these eukaryotes are likely associated with a "healthy" gut
microbiota (Audebert et al., 2016) (Morton et al., 2015).

However, it remained unclear to what extent microbes were changing as a result of geography
or industrialism itself. Based on a study conducted on four groups of Himalayan societies with different
levels of traditional lifestyles, it was found that differences in lifestyles correlated strongly
with differences observed in microbial communities (Jha et al., 2018). Moreover, the microbiota of all
these traditional societies differed from the microbiota of industrialized societies in America,
and the Himalayan group with the most advanced level of agriculture has the most similar gut
microbiomes to Americans (Jha et al., 2018). Overall, the changes in gut microbes that have occurred
in the modern era are clear, and their cause is probably mainly related to the changes in lifestyle
and diet that followed the industrial revolution.

1.4.3 Manipulation of gut microbiome via diet

Adult human gut microbiota is a relatively stable community under normal conditions, although its
composition may fluctuate due to environmental factors and especially diet. A well-known study
on the dynamics of the human gut microbiota induced by diet was conducted by L. A. David and his
colleagues, who demonstrated that even short-term changes in diet, whether entirely of plant
or animal origin, alter gut microbial communities. Interestingly, this group also showed that the altered
microbial communities returned to their original state just a few days after the subjects returned
to their long-term dietary habits (David et al.,, 2014). This study provides evidence of the rapid
flexibility of the gut microbiota due to the different energy sources provided to it. Despite this rapid
diet-induced dynamic, long-term dietary habits are the main driving force in the modulation
of the microbial composition of each individual (Sonnenburg & Backhed, 2014).

Our group recently studied the effect of a plant-based diet on the microbial community, and although

some small differences were observed in the gut microbiota composition of vegans compared

with omnivores, the main and significant difference was in metabolic activity, suggesting that the same

microbiota can adapt to different diets and change their fermentation pathways accordingly

(Prochazkova et al., 2022). This finding is supported by other studies; for example, it was shown that
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along-term high-fiber diet led to an increase in glycan-degrading carbohydrate-active enzymes
(CAZymes) of microbial origin, although the diversity of the microbiota remained stable (Wastyk et al.,
2021). Plant-based diets have also been associated with the highest abundance of microbial genes
or proteins related to carbohydrate and protein hydrolyzing enzymes, cell motility, transport
pathways, and biosynthesis of certain vitamins, essential amino acids, and some other beneficial
compounds such as SCFAs (De Angelis et al., 2020).

Based on the results of the American Gut Project, a favorable microbiota also appears to be associated
with plant-based diet diversity, with consumption of more than 30 different plants per week leading
to a higher prevalence of Faecalibacterium and Oscillospira genera and a lower prevalence of antibiotic
resistance genes compared to a diet with less than 10 different plants per week (McDonald et al.,
2018). This suggests that a diet rich in a wide variety of plants is likely to support the growth of more
bacterial groups (McDonald et al., 2018). Other findings from the American Gut Project recently
reported an association between fecal microbial diversity and dietary patterns based on dietary
recommendations, with the Healthy Eating Index (HEI) as a measure of diet quality being associated
with greater microbial diversity, specifically higher total scores for vegetables, greens and beans, whole
grains, refined grains, and dairy products (Baldeon et al., 2023).

Extreme dietary regimes, such as the keto diet, can lead to more significant changes in the gut
microbiota. For example, the keto diet resulted in a reduction in the number of Bifidobacterium genera
and also a reduction in the abundance of important butyrate-producing bacterial taxa, leading
to a reduction in stool SCFAs concentrations (Rew et al., 2022). In their review, Singh et al. described
that not only dietary fiber but also protein plays a significant role in changes in gut microbiota function
and diversity (Singh et al., 2017). Consumption of a diet high in beef resulted in a decrease in the
number of Bifidobacterium genera and an increase in the number of Bacteroides and Clostridia genera
compared to the group on a meat-free diet (Singh et al., 2017). In mice, a Western-type diet high in fat
and sugar has been shown to lead to an inflammatory environment in the gut, reduced microbial
diversity and species richness, an overgrowth of pro-inflammatory Escherichia/Shigella genera
in the intestinal mucosa, a decrease in the number of protective species, and a decrease in SCFAs
concentration (Agus et al., 2016). The authors believe that the observed changes in the gut microbiota
composition increase the host's susceptibility to chronic inflammatory bowel disease. The findings are
also consistent with studies performed in Western populations and non-industrialized societies
mentioned above where similar differences have been observed.

In conclusion, the human gut microbiota is relatively stable under normal conditions, but its
composition can change rapidly due to dietary perturbations, albeit this shift is only transitional.
However, a diet rich in a wide variety of plants is likely to support the growth of more bacterial groups,
i.e., toincrease diversity. Extreme dietary changes, such as the keto diet, can lead to significant changes
in the gut microbiota and affect its function and diversity. The metabolic activity of the gut microbiota
reflects the diet, i. e. the substrate provided, which is reflected by a change in the spectrum
of metabolites produced. In summary, the diet plays a significant role in modulating the composition
of the gut microbiota, and a diverse plant-based diet could be beneficial for promoting healthy
microbiota and overall health.

1.5 Challenges of multi-omics data

So-called "multi-omics" data has revolutionized contemporary exploratory research by integrating
more than one type of dataset into a single analysis using multiple approaches to understand one
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particular problem. This approach generates more data and therefore more information
about a particular research topic can be obtained. This allows scientists to perform deeper analysis,
see a more complete picture, and generate new insights into one complex biological problem because
most biological processes are naturally interconnected. However, the biggest challenge is how
to process this kind of data, which generates thousands of variables measured in a limited number
of cases, resulting in highly multi-dimensional data. Different data sets need to be combined
in a standardized way and appropriate computational tools have to be used to extract relevant
variables that will be used to draw conclusions and generate new hypotheses. Another issue to keep
in mind is the storage of huge amounts of data generated by multi-omics approach and also the use
of appropriate statistical tests, which is, as expected, quite complex (Conesa & Beck, 2019).
Nevertheless, with recent advances in bioinformatics and statistics including machine learning
and regularization techniques, the analysis of high-dimensional data has been greatly simplified
and continues to improve. By combining information from several multi-omics disciplines, scientists
are able to find possible causal influences leading to a particular type of disease and can also use this
information to search for disease-specific markers and possibly improve prevention (Hasin et al.,
2017). It is no exaggeration to say that multi-omics studies are the future.

1.5.1 Overview of omics data types

The addition of the term “omics” means that almost all measurable variables of certain molecular types
are evaluated in one single procedure or assay (Conesa & Beck, 2019). There are six basic “omics” data
types — genomics, epigenomics, transcriptomics, proteomics, metabolomics a microbiomics (Hasin et
al., 2017) as shown in Figure 6.

Figure 6. Overview of the six main types of omics data displayed as layers. Some of these include genetic
and environmental influences. Each circle represents one sample. The interaction between layers is obvious
and there are also interactions within layers. Figure adapted from (Hasin et al., 2017).
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Genomics is the oldest of the omics fields, having been recognized in the 1970s when scientists
discovered that differences in the DNA code are the source of most genetic variation between
individuals (Bustamante et al., 2011). Epigenomics studies the broader associations of DNA
and histones and all possible epigenetic modifications in the cell. These covalent modifications are
master regulators of gene transcription and may influence the biological process and disease
development (Hasin et al., 2017). In the context of genomics and epigenomics, several types of assays
are currently available, either using DNA microarrays, methods targeting DNA modifications such as
restriction endonucleases, or NGS methods in general (Shendure et al., 2019).

The goal of transcriptomics is not just to describe all known transcripts including messenger ribonucleic
acids (RNAs), small RNAs, and non-coding RNAs but also to examine the level of gene expression under
different conditions or pathological states and help researchers to deeper understand
post-transcriptional modification such as alternative splicing variants or different starting sites (Wang
et al., 2009). Currently, two principles are applied in transcriptomic studies - one is based
on hybridization using specially designed microarrays, and the other involves a newer approach, RNA
sequencing. RNA sequencing does not depend on knowledge of the genome sequence as
the microarray approach does, but it is more expensive (Wang et al., 2009).

The basis of proteomics is the identification and quantification of proteins and peptides, their
modifications and interactions. Today, the most frequently used approach for studying proteins is the
combination of gel- or chromatography-based separation techniques coupled with mass spectrometry
(MS) analysis and bioinformatic methods (Nikolov et al., 2021). There are two primary methods
of measuring the mass-to-charge ratio of ionized molecules in the gas phase using MS. The first is
targeted MS, which involves the use of standard peptides for absolute quantification. The second is
non-targeted MS, which provides a semi-quantitative readout by measuring the intensity of peptide
ions (Suhre et al., 2021). At present, the field of proteomics is witnessing a surge of innovative
techniques that are revolutionizing the way we study biological systems. One of the most promising
approaches that has gained significant attention in recent times is the integration of single-cell
proteomics with single-cell RNA sequencing. Metabolomics shares some similarities with proteomics,
but it concentrates on a broad range of small molecules present in the biological system, with
an attempt to link these metabolites to biological pathways. In addition to MS-based techniques,
nuclear magnetic resonance spectroscopy (NMR) is also employed in metabolomics to detect and
measure small molecules (Martins-de-Souza, 2014). The field of microbiomics investigates
the composition, functionality, and intricate interrelationships among microbial communities,
as elaborated in previous sections.

1.5.2 Methodology for microbiota determination

In the field of microbial research, there are currently two predominant approaches
for the determination of the microbiota composition of a given sample and subsequent bioinformatic
analysis. These methods are known as 16S ribosomal RNA (rRNA) gene amplicon sequencing and
shotgun metagenomics. Despite the fact that both of these techniques rely on NGS technologies, they
differ significantly in terms of their methodology, advantages, and disadvantages (Figure 7). In this
chapter, the nuances of each of these approaches will be described, their unique features, strengths
and limitations explored and the various factors that researchers must take into consideration when
selecting the appropriate method for their specific research question highlighted.

The 16S rRNA gene is a fundamental component of all bacteria and Archaea and serves as a crucial tool
in microbiological studies, facilitating a deeper understanding of the complex microbial communities
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that exist in our world (Janda & Abbott, 2007) (Woese et al.,, 1990). The gene encodes
for a transcriptional product called the 16S ribosomal RNA, which constitutes an essential part
of the small subunit of the ribosome and is thus critical for protein synthesis (Woese & Fox, 1977).
At a length of approximately 1550 base pairs, the 16S rRNA gene consists of both highly conserved
regions and nine variable regions (Clarridge, 2004) (Neefs et al., 1993). It is the variability of these
regions that enables researchers to differentiate between different bacterial taxa usually at the genius
level by analyzing their unique sequences (Clarridge, 2004). In addition to the ability to distinguish
between bacterial taxa, one of the major benefits of this method is its relatively low cost, making it
accessible to a wide range of research laboratories. Moreover, 16S rRNA amplicon sequencing is highly
sensitive and can detect bacterial populations at very low levels, which is especially useful for analyzing
environmental samples with low microbial biomass. This has made the 16S rRNA gene a widely used
target in microbial ecology and taxonomy studies. However, this approach has also its limitations. The
variable regions within the 16S rRNA gene are inadequate for classifying all microbes at the species
level, and it is not possible to distinguish strains using this method (Clarridge, 2004). Furthermore, this
method does not provide information about microbial functionality, so it is recommended to combine
it with other omics data types such as metabolomics.

Figure 7. Simplified pipeline schemes for microbial 16S rRNA gene profiling and shotgun metagenomics. Created
by using https://www.biorender.com/.
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One of the most commonly used methods in microbial profiling involves 16S rRNA gene amplicon

sequencing. This process starts by extracting DNA from a sample and using it to create a DNA library.

A desired section of the 16S rRNA gene is then amplified through polymerase chain reaction (PCR),

with PCR primers designed to include sequencing adapters and barcodes (Celis et al., 2022).

The adapters enable the DNA to be bound to a sequencing machine's flow cell, while barcodes identify
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each sample's DNA sequences, which is important when analyzing large sets of samples. The amplified
DNA is cleaned, size-checked, and pooled before quantification and sequencing, where each
sequencing run results in thousands of "reads" per sample indicating how many times each DNA
amplicon was sequenced (Slatko et al., 2018). The number of reads of each DNA fragment is
proportional to its relative abundance in the sequenced mixture, which allows quantitative analysis.

There are two main approaches commonly used for bioinformatical analysis but there is no universal
consensus about their usage. Both of them aim to assign taxonomy correctly based on amplicon
sequences and to obtain relative abundances based on read counts.

The older method is founded on the concept that similar DNA sequences indicate the same species
or genera. This method involves clustering the sequences together to form Operational Taxonomic
Units (OTUs) based on a particular similarity threshold, most commonly at 97% (Caporaso et al., 2011)
(Chiarello et al., 2022). However, this similarity cut-off creates an external bias that influences the
entire analysis. Furthermore, the clustering process alone cannot be replicated, and the choice
of clusters is subjective, resulting in difficulties when comparing results from different laboratories
or researchers. Therefore, this approach is being gradually replaced by more advanced methods based
on denoising sequences to create exact sequence variants, such as Amplicon Sequence Variants (ASVs)
(Callahan et al., 2017). Denoising techniques aim to identify and correct sequencing errors
by generating an error model for each sequencing run. This method helps in obtaining high-quality
and biologically relevant sequences, which can be compared between different laboratories
and studies. In addition to its advantage of providing comparable results, denoising techniques are
more sensitive in detecting bacterial taxa, as highlighted by Caruso et. al and others (Caruso et al.,
2019) (Prodan et al., 2020) (Xue et al., 2018).

Shotgun metagenomic sequencing represents an alternative method to cataloging the human gut
microbiota compared to the 16S rRNA gene microbial profiling mentioned above. In this method,
instead of targeting a specific gene, all the DNA present in the sample is extracted and fragmented into
smaller pieces. Then, adapters with tags are usually added to these fragments to enable PCR
amplification and sequencing (Quince et al., 2017). After size-checking, cleaning and pooling the PCR
products, the resulting reads are processed using bioinformatic tools to explore both taxonomic and
functional aspects of the microbiota. One advantage of shotgun metagenomics is that it generates
much more sequencing data than 16S rRNA profiling, allowing for a more comprehensive and detailed
analysis of the microbial community. The bioinformatics analysis required for shotgun metagenomics
is, therefore, more complex and challenging, as it involves either assembling the reads into whole
or partial genomes of the organisms present in the sample or aligning the reads to reference databases
to identify functional genes (Quince et al., 2017). By using shotgun metagenomics, researchers can
obtain a more complete picture of the microbiota's composition and functional potential. This method
enables not only the identification of microbial species and strains but also the characterization of their
metabolic potential determined by the coding enzymes. However, it should be noted that shotgun
metagenomics is more expensive and time-consuming than 16S rRNA profiling, and requires more
computational resources and expertise.

In summary, while 16S rRNA profiling and shotgun metagenomics are both valuable tools for studying
the human gut microbiota, each has its own strengths and limitations. Shotgun metagenomics provides
a more comprehensive and detailed view of the microbiota, but at a higher cost and with more
computational challenges.
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1.5.3 Integration of omics data types

In the age of big multi-omics data, with technology constantly evolving and datasets growing in size
and diversity, it is of utmost importance to develop a strong bioinformatics framework that can
effectively support the potential advantages of personalized medicine by combining data sets of each
individual. To address this challenge, various computational approaches have been developed
to integrate and analyze omics data, the state-of-the-art methods being various machine learning
algorithms and dimension reduction methods (Tebani et al., 2016). Rather than analyzing individual
types of biological data in isolation, integrating multiple data types can provide a more comprehensive
and nuanced understanding of complex biological processes (Olivier et al., 2019). While this approach
does increase the complexity of the bioinformatics analysis required, it has the potential to reveal
previously unseen relationships and interactions between different biological components. In essence,
by combining diverse data sources, a more complete picture of the underlying biological mechanisms
can be achieved.

At the outset of multi-omics studies, correlation and network analyses are often used as basic methods
to obtain a broad overview of the data. These methods aim to identify all possible relationships
between variables from different omics datasets. Such variables can exhibit similar patterns or may be
in opposition to each other, which can reveal how they interact across multiple omics layers and even
help to explain certain biological phenomena or formulate hypotheses. Although these techniques are
relatively simple, they can provide important insights into the complex relationships between different
omics data types (Hasin et al., 2017). However, the limitations of this approach become evident when
dealing with complete multi-omics studies, which can involve measuring hundreds of thousands
of variables, resulting in significant computational memory requirements (Olivier et al., 2019).

Visual representations of correlations, such as correlation networks, can be a valuable tool in data
analysis (Figure 8). These networks offer a way to map relationships between variables from multiple
data sets and can reveal hidden patterns in the flow of information (Jiang et al., 2019). In a correlation
network, nodes typically represent various variables, such as bacterial taxa, genes, metabolites, dietary
features, and other metrics, while edges between the nodes indicate the presence of an interaction,
often weighted by the strength of that interaction (Jiang et al., 2019). Positive and negative
interactions are usually distinguished by color, making it easier to identify complex relationships
beyond just numerical values. When analyzing a network, one approach is to count the degree
of the nodes, which refers to the number of edges connected to each node. Nodes with a higher degree
are likely to have a greater influence on the system being depicted (e.g., a biological process
or metabolic pathway) as they are more connected to other nodes (variables) in the network (Jiang et
al., 2019). Heatmap correlograms with specifically designed annotations can be also a useful graphical
tool for analyzing high-dimensional data (Figure 9). These correlograms display a heatmap
of the correlation matrix between variables, with annotations added to highlight possible interactions
and patterns. These annotations can provide additional insights into the relationships between
variables, such as identifying clusters of highly correlated variables or patterns of positive and negative
correlations (Gu et al., 2016). This approach can help to identify underlying structures and relationships
within complex data sets, making it easier to interpret and draw meaningful conclusions.
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Figure 8. An example of a correlation network based on clinical parameters.
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Figure 9. An example of annotated heatmap correlogram combining several omics data types and some body
and clinical parameters.
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It is important to bear in mind that correlations are also susceptible to false positives, and as a result,
multiple testing corrections must be carried out. To mitigate this challenge, several clustering
or dimension reduction methods have been developed to complement correlation-based analyses
(Chong & Xia, 2017). These techniques can help to simplify the analysis and reduce the computational
burden by grouping or reducing the number of variables while still retaining important information
about the relationships between different omics data types. These methods are widely used
in multi-omics data analysis and are typically based on commonly used dimension-reduction
techniques, such as principal component analysis (PCA) (Figure 10). PCA is an unsupervised method for
reducing the dimensionality of a data set (Chong & Xia, 2017). It involves creating new variables, called
principal components, which are linear combinations of the original variables (Park et al., 2020).
The principal components are designed to capture the maximum amount of variance present within
the data set (Meng et al., 2016). While PCA is primarily used for dimensionality reduction, another
popular multivariate technique, Canonical Correlation Analysis (CCA) is used to analyze the relationship
between two sets of variables (Rodosthenous et al., 2020). PCA aims to capture the maximum variance
in a single dataset, and CCA seeks to find patterns of covariation between two different datasets.

Figure 10.An example of PCA visualization.
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As computational power continues to increase and artificial intelligence technologies are being
successfully implemented in various fields, machine learning (ML) is gaining popularity in health
sciences (Reel et al., 2021). However, one of the challenges in analyzing multi-omics data is the
problem of multidimensionality, which refers to the presence of more variables than observations
in the data matrix. Furthermore, this data matrix often contains many correlated features, which can
mislead results during algorithm training (Reel et al., 2021). Therefore, special care must be taken
in selecting appropriate ML techniques and preprocessing the data to address these challenges.

Regularization (penalization) approaches such as elastic net, Least Absolute Shrinkage and Selection
Operator (LASSO) and Ridge regression are currently popular methods for feature selection, dimension
reduction and/or classification in multi-omics studies (C. Wu et al., 2019). Regularization methods are
able to handle the problem of multidimensionality by introducing penalty terms to the model equation
and shrinking the coefficients of the features resulting in a more predictive model with a lower risk
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of overfitting (Tibshirani, 1996). In the context of omics studies, feature selection aims to remove noisy
and redundant features, while retaining only those that contain the most relevant information,
thereby reducing the total number of features and overall dimensionality of the data (Picard et al.,
2021). This is important because high-dimensional data can result in the overfitting of machine
learning models, leading to poor performance on new, unseen data (Picard et al., 2021). Therefore,
selecting the most informative features is crucial for the accurate prediction and interpretation
of multi-omics data.

Deep learning methods, also known as deep neural methods, are a group of powerful algorithms that
are gaining popularity in analyzing big data. These methods fall under the umbrella of machine learning
and are capable of discovering hidden patterns in complex datasets without relying on mathematical
formulas (Kang et al., 2022). One of the main advantages of deep learning algorithms is that they are
self-teaching and can learn from the data without human intervention. However, one disadvantage is
that they require a large training dataset with many observations to learn across multiple layers;
otherwise, they are prone to overfitting (Kang et al., 2022). Additionally, deep learning algorithms are
often considered a black box since their operations are not easily interpretable. Despite these
limitations, deep learning methods have enormous potential in personalized medicine, such
as detecting early stages of disease or classifying disease types, predicting drug responses, and
identifying disease biomarkers.

In conclusion, integrating and analyzing multi-omics data is a complex and challenging task, but it has
the potential to provide a more complete understanding of biological systems and the development
of personalized medicine. Correlation and network analyses, as well as dimension reduction
techniques, are commonly used to address this challenge. Correlation networks offer a way to map
relationships between variables from multiple data sets, while dimension reduction techniques such
as PCA and CCA can help to simplify the analysis and reduce the computational burden. Machine
learning techniques are also gaining popularity in multi-omics data analysis, but appropriate algorithms
and preprocessing of data must be used to handle the challenges of multidimensionality and correlated
features. Overall, by combining diverse data sources, a more comprehensive and nuanced
understanding of complex biological processes can be achieved, leading to the development
of precision medicine and improved patient outcomes.
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2 AIMS AND HYPOTHESES

The current state of knowledge points to a causal relationship between the composition of the gut
microbiota and the development of many diseases of apparently different origin. Targeting the gut
microbiota, either in composition or functional manifestations, could represent an effective
therapeutic strategy. However, the wide implementation of this approach in therapeutic practice is
still limited by the lack of knowledge about the behavior of such a complex system like the gut
microbiome and its interaction with external stimuli and the host organism. The goal of this thesis is
to enrich the knowledge in this area from several perspectives described below.

AIM 1:
To describe the microbiome and metabolome signature associated with a vegan diet.

Hypothesis

Long-term adherence to a vegan diet is associated with less incidence of NCDs like obesity, T2D
or cardiovascular disease. We hypothesize that at least some of the health benefits of a vegan diet
could be explained by the composition and/or activity of gut microbiota.

AlM 2:
To develop an alternative tool for the estimation of specific function(s) of gut microbiota.
Hypothesis

Real-time quantitative PCR (qPCR) based method may serve as an alternative tool for the quantification
of the specific gene across the whole bacterial population in the tested sample and therefore provide
an insight into the functional capacity of the microbiota.

AIM 3:

To explore the possibilities of the manipulation of the gut microbiota by the dietary fiber inulin
in the personalized treatment of T2D.

Hypothesis

The amount of fiber in the diet is one of the strongest environmental factors shaping the composition
of gut microbiota but the results of clinical trials evaluating the effects of dietary fiber intervention
in NCDs treatment are highly individually variable. We hypothesized that the outcome of the fiber
intervention depends on the ability of the individual’s microbiota to process it and the potential
beneficiaries of this treatment could be predicted based on the initial microbiome and metabolome
characteristics.

AIM 4:
To assess the protective effect of the vegan microbiota against the influence of the obesogenic diet.
Hypothesis

We hypothesized that vegan microbiota may be protective against the effects of a western-type
obesogenic diet and that its effect could be potentiated by the addition of dietary fiber inulin into the
diet.
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3 RESULTS AND COMMENTARY

3.1 Description of the microbiome and metabolome signature associated with
a vegan diet

As highlighted in the introduction, diet is a crucial factor that shapes gut microbiota. On the other
hand, the gut microbial community is known for its resilience. Plant-based diets belong to nutritional
trends gaining increasing attention both among the general population and nutrition specialists. These
diets differ significantly from traditional omnivorous diets in many aspects. Due to their high content
of microbiota-accessible carbohydrates, plant-based diets may lead to a shift in the composition of the
gut microbiota towards that seen in traditional societies. Therefore, we performed a cross-sectional
study comparing healthy vegans' and omnivores' microbiome and metabolome profiles and explored
how the microbial composition or functional potential of gut microbiota differs between the groups
with contrasting dietary habits.

This study compared the subjects of lean and healthy vegans (VG, n = 62) and omnivores (OM,
n = 33). It involved collecting dietary records and measuring the macronutrient composition and fiber
content. Stool samples were obtained from the participants for the untargeted metabolomic analysis
(gas chromatography-mass spectrometry, GC-MS), bile acid spectrum determination, and microbial
16S rRNA sequencing. The plasma was also analyzed for SCFAs concentrations and untargeted
metabolomics using liquid chromatography-mass spectrometry (LC-MS) and NMR, respectively.
Glucose and lipid homeostasis parameters were assessed as well. The level of systemic inflammation
was estimated according to the serum concentration of C-reactive protein (CRP). These additional
analyses provide a more comprehensive understanding of the metabolic effects of the diets being
compared in the study.

The results of the 3-day prospective dietary records showed that omnivores had a higher daily intake
of protein and lipids, while vegans had a higher intake of carbohydrates and dietary fiber. Compared
with omnivores, vegans exhibited more favorable glucose homeostasis parameters, as evidenced
by a lower concentration of glycated hemoglobin and lower secretion of insulin during the oral glucose
tolerance test (OGTT). Additionally, vegans had lower serum concentrations of total and low-density
lipoprotein (LDL) cholesterol. Median serum CRP concentration was lower in vegans, although the
values remained within the physiological range in both groups. These results suggest that a plant-based
diet may offer benefits for glucose and lipid metabolism, as well as inflammation, compared
to an omnivorous diet.

In terms of the microbial composition, permutational analysis of variance (PERMANOVA) tests
revealed significant differences in B-diversity between vegans and omnivores at the order, family,
and genus levels. However, the differences were relatively small, with only 15% of all bacteria being
affected by diet at the genus level as determined by univariable analysis. When it comes to fecal
metabolomics, we identified 146 different volatile organic compounds determined by GC-MC. We
found that the vegan fecal metabolome was enriched in products of polysaccharide fermentation, such
as SCFAs, while amino acid fermentation products were lower in the VG group. On the other hand,
amino acid fermentation products such as indole, scatole, and p-cresol were higher in the OM group.
VG and OM groups did not differ in primary bile acid spectrum composition, but vegans had
significantly lower fecal content of one secondary bile acid, LCA, in feces compared with omnivores.
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In the urine metabolome, we found higher concentrations of metabolites related to protein/amino
acid metabolism in the OM group. The most significant changes between groups were observed
in serum metabolomics, where we found a clear separation between the vegan and omnivore groups.
The vegan serum metabolome was characterized by a higher content of SCFAs, dimethyl sulfone, and
amino acids such as glycine, glutamine, asparagine, proline, and threonine, while the concentrations
of branched-chain amino acids, their derivatives, and essential amino acid lysine were lower in the VG
group.

These findings suggest that the differences in the diets of vegans and omnivores have a significant
impact on their metabolome profiles, particularly in serum metabolome. The vegan diet was
associated with a higher occurrence of potentially beneficial metabolites from dietary fiber
fermentation products and a lower abundance of potentially harmful metabolites from amino acid
fermentation products.

This article was published on the 7" of January 2022 in Frontiers in Nutrition, IF = 6.59
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Background and Aim: Plant-based diets are associated with potential health benefits,
but the contribution of gut microbiota remains to be clarified. We aimed to identify
differences in key features of microbiome composition and function with relevance to
metabolic health in individuals adhering to a vegan vs. omnivore diet.

Methods: This cross-sectional study involved lean, healthy vegans (0 = 62) and
omnivore (n = 33) subjects. We assessed their glucose and lipid metabolism and
employed an integrated multi-omics approach (16S rBNA sequencing, metabolomics
profiling) to compare dietary intake, metabolic health, gut microbiome, and fecal, serum,
and urine metabolomes.

Results: The vegans had more favorable glucose and lipid homeostasis profiles than
the omnivores. Long-term reported adherence to a vegan diet affected only 14.8%
of all detected bacterial genera in fecal microbiome. However, significant differences
in vegan and omnivore metabolomes were observed. In feces, 43.3% of all identified
metabolites were significantly different between the vegans and omnivores, such as
amino acid fermentation products p-cresol, scatole, indole, methional (lower in the
vegans), and polysaccharide fermentation product short- and medium-chain fatty acids
(SCFAs, MCFAs), and their derivatives (higher in the vegans). Vegan serum metabolome
differed markedly from the omnivores (55.8% of all metabolites), especially in amino acid
composition, such as low BCAAs, high SCFAs (formic-, acetic-, propionic-, butyric acids),
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and dimethylsulfone, the latter two being potential host microbiome co-metabolites.
Using a machine-learning approach, we tested the discriminative power of each dataset.
Best results were obtained for serum metabolome (accuracy rate 91.6%).

Conclusion: While only small differences in the gut microbiota were found between
the groups, their metabolic activity differed substantially. In particular, we observed a
significantly different abundance of fermentation products associated with protein and
carbohydrate intakes in the vegans. Vegans had significantly lower abundances of
potentially harmful (such as p-cresol, lithocholic acid, BCAAs, aromatic compounds, etc.)
and higher occurrence of potentially beneficial metabolites (SCFAs and their derivatives).

Keywords: vegan diet, omics signature, protein fermentation, short-chain fatty acids (SCFAs), metabolic health

INTRODUCTION

Recent studies suggest that the composition and function of the
gut microbiome play a fundamental role in the development of
non-communicable diseases (1). Diet is a key determinant of
the relationship between humans and their microbial residents,
as it affects the composition of gut microbial ecosystem, which,
in turn, impacts on human physiology via direct interaction
with the immune system and metabolic outputs (2). Adherence
to plant-based diets (vegetarian or vegan) was shown to be
associated with potential health benefits (3). Epidemiological
studies show a lower incidence of several chronic diseases, such as
type 2 diabetes (T2D), cardiovascular diseases, and cancer (4-7).
When compared to lacto-ovo-vegetarian diets, vegan diets may
lower the risk of obesity, hypertension, T2D, and cardiovascular
mortality. Moreover, with respect to certain cancers, a strict
vegan diet may be more beneficial than a lacto-ovo-vegetarian
one, although further studies are needed (8, 9). Intervention
studies comparing vegan or vegetarian diets vs. omnivorous diets
have shown beneficial effects of these diets on cardiometabolic
risk factors (10), T2D (11), and obesity (12).

Whether the beneficial effects of plant-based diets can be
attributed to their nutritional composition alone or whether
they are mediated, at least partly, by different microbiota
and their metabolites remains to be clarified. There is no
clear consensus concerning the effect of a profound dietary
switch to a strict plant-based diet on gut microbiota, microbial
fermentation products, and their impact on host metabolism.
This issue gains in importance with the increasing interest in
microbiota manipulation in the therapy of noncommunicable
diseases, and with the simultaneous trend for plant-based
diets (13).

Given the association among diet, gut
microbiome/metabolome (MIME), and metabolic health,
we hypothesized that there are specific compositional and
functional characteristics of MIME that link different eating
habits to metabolic phenotype. To this end, we explored
two metabolically healthy groups defined by distinct dietary
habits, i.e., lean healthy long-term vegans (ie., those who
have been adhering to a vegan diet for at least 3 years) and
lean healthy omnivores. Our aim was to analyze the fecal
microbiome as well as serum, urine, and fecal metabolomes
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of these groups in order to identify key features associated
with the different diets and provide potential functional links
among them.

MATERIALS AND METHODS
Study Population

Sixty-two self-reported vegans (VGs) and 33 omnivores (Os)
were screened and enrolled between October 2018 and October
2019 for cross-sectional comparison. The VGs strictly avoided
all animal products for at least 3 years, and the omnivore
group comprised subjects without any dietary restrictions who
consumed meat and other animal products on a daily basis.
In both groups, the exclusion criteria were age under 18
years, obesity defined as BMI > 30, chronic diseases related to
metabolism, diseases of the digestive tract, antibiotic therapy in
the past 3 months, pregnancy, any chronic medication (excluding
hormonal contraception), and regular alcohol consumption
defined as any alcoholic drink on a daily basis. A clinical visit was
scheduled after enrollment. After 12-h overnight fast, blood and
urine were sampled, and clinical examination was performed.
Afterward, oral glucose tolerance test (OGT'L, 75g glucose) was
performed with blood sampling at 0, 30, 60, 90, and 120 min.
All blood samples were immediately centrifuged and snap frozen
at —80°C before analyses. Glucose homeostasis indices were
derived from serum glucose and insulin changes in OGTT: AUCs
for glucose and insulin using trapezoid rule, Matsuda index of
insulin sensitivity as described elsewhere (14).

Study Approval

All the participants signed informed consent prior to enrollment.
The research protocol was approved by the Ethics Committee of
the Third Faculty of Medicine of the Charles University and the
Ethics Committee of University Hospital Kralovske Vinohrady
(EK-VP/26/0/2017) in accordance with the Declaration
of Helsinki.

Dietary Intake Assessment

Dietary records and stool samples were obtained no longer
than a week after the clinical visit. A 3-day prospective
record supervised by a trained dietitian was used to assess
the macronutrient composition and fiber content of the diet.
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Each participant filled in a prospective record, where dietary
data from 3 typical days were collected (2 working days, 1
weekend day). The volunteers were educated. Instructions were
given for portion size estimation and recording of foods in
sufficient detail to obtain an accurate estimate of consumed
portions, and a portion estimation guide was given as a reference.
Moreover, examples of complete and incomplete diaries were
explained to show how to appropriately record the intake.
After collection, the records were retrospectively checked by
an independent researcher. The USDA database was used for
assessment of food composition, NutriServis PROFI, and CR,
and a program was used for dietary intake calculations. Daily
intake of carbohydrates, lipids, proteins, and dietary fiber was
calculated separately.

Fecal Sample Collection, Storage, and
Processing

Fecal samples collected at home had been immediately stored
at —20°C until transported in the frozen state to the laboratory
within 7 days of collection. Once thawed on ice, the samples were
homogenized using stomacher (BioPro, Czechia); one aliquot
was used for DNA extraction, one aliquot was used for dry mass
estimation, and the rest was aliquoted and stored at —50°C. For
metabolome analyses, the aliquots were thawed and diluted with
sterile water to 1% dry mass equivalent. For bile acid composition
analyses, the samples were lyophilized.

Gut Microbiome Analysis

DNA from the fecal samples was isolated with QIAmp
PowerFecal DNA Kit (Qiagen, Germany), and the V4 region
of the bacterial 165 rRNA gene was amplified by PCR. A
library was prepared according to the Illumina 16S Metagenomic
sequencing Library Preparation protocol with some deviations
described below. Each PCR was performed with an EMP primer
pair consisting of Illumina overhang nucleotide sequences,
an inner tag, and gene-specific sequences. The sequences of
EMP primers, overhang, and tag sequences are shown in
Supplementary Table 1. The Illumina overhang served to ligate
the Illumina index and adapter. Each inner tag, i.e., a unique
sequence of 7-9 bp, was designed to differentiate the samples
into groups. The total reaction volume of PCR was 30 pl, and
cycling parameters included initial denaturation at 98°C for
30s, followed by 30 cycles of 10s denaturation at 98°C, 15s
annealing at 55°C and 30-s extension at 72°C, followed by final
extension at 72°C for 2 min. Samples with different inner tags
were equimolarly pooled, and pools were used as a template
for second PCR with Nextera XT (Illumina, United States)
indexes. Differently indexed samples were equimolarly pooled.
The final library was diluted to a concentration of 8 pM,
and 20% of PhiX DNA (Illumina, United States) was added.
Sequencing was performed with the Miseq reagent kit V2 using a
MiSeq instrument according to the manufacturer’s instructions
(Illumina, Hayward, CA, United States). Raw sequences were
processed using an in-house pipeline based on a DADA2
amplicon denoiser (15), and a standard bioinformatic procedures
within the QIIME 1.9.1 package (16).
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Availability of Materials

Sequencing data are available in the European Nucleotide
Archive database under the accession number PRJEB43938.
Publication of our dietary data, as well metabolomics data,
was not possible, as it was not covered by the participants’
informed consent used for the study. However, pseudonomized
data will be made available by the corresponding authors upon
reasonable request.

Determination of But Gene Expression

The abundance of butyryl-CoA:acetate CoA-transferase (but)
gene in the DNA isolated from stool samples was determined,
as described in Daskova et al. (17) Briefly, bacteria containing
the but gene in their genome were identified using FunGene
Database. The selection was narrowed only to bacteria already
found in human gut microbiota. The sequence of buf gene
coding for butyryl-CoA:acetate CoA-transferase is highly
variable among gut butyrate producers;, therefore, degenerate
primers targeting different variants of the but gene were
designed. Even when degenerate primers were used, six
different primer pairs had to be designed in order to cover
all but gene sequences (17) (Supplementary Table 2). The
copy number of but gene in the DNA isolated from the
stool samples was determined by quantitative PCR (qPCR)
and normalized to spike DNA (C. elegans UNC-6 gene;
forward primer GAAGAGCAAGATCAGTGTTC,
primer CTTGCAAATGACACCTTG).

Short-Chain Fatty Acid in Plasma
Short-chained fatty acids (SCFAs) were analyzed in the
plasma by LC-MS according to a method described before
(18). Standards for SCFAs used were: formic acid (C1)
(Scharlau, Spain), acetic acid (C2) (Honeywell, United States),
propionic acid (C3) (Alfa Aesar, United States), butyric
acid (C4) (Sigma Aldrich, United States), isobutyric
acid (C4) (Alfa Aesar, United States), succinic acid (C4)
(Acros, United States), isovaleric acid (C5) (Sigma Aldrich,
United States), valeric acid (C5) (Alfa Aesar, United States), and
caproic acid (C6) (Sigma Aldrich, United States). Analytical
reagent-grade 3-nitrophenylhydrazine (3NPH)-HCI (97%),
2-nitrophenylhydrazine N-(3-dimethylaminopropyl)-N0-
ethylcarbodiimide (EDC) HCI, quinic acid, HPLC-grade
pyridine, and Lichrosol reagent-grade MeOH and water were
obtained from Sigma-Aldrich. Acetonitrile Optima LCMS Grade
was obtained from Thermo Fisher Scientific (United States).
13C6-3NPH-HCI was custom synthesized to us by IsoSciences
Inc. (King of Prussia, PA, United States) (catalouge 13309). This
custom-synthesized compound was structurally confirmed by
IH NMR spectroscopy and by MS/MS on a triple-quadruple
mass spectrometer.

reverse

Volatile Compound (VOC) Analysis on
Feces

Volatile fingerprinting of the fecal samples was performed using
an Agilent 7890B (Agilent Technologies, United States) gas
chromatograph coupled to a Pegasus 4D (LECO, United States)
time of flight mass spectrometer. Volatiles were collected
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using a solid-phase microextraction (SPME) fiber with
divinylbenzene/carboxen/polydimethylsiloxane coating from
Supelco (United States). Data acquisition and initial data
processing were carried out using instrumental SW ChtomaTOF
by LECO (United States).

NMR Analyses

Analyses were performed on fecal extracts prepared from
homogenized stool aliquot corresponding to 1% of dry
mass. All the samples were measured on a 600 MHz
Bruker Avance III (Bruker BioSpin, Rheinstetten, Germany)
spectrometer equipped with a 5-mm TCI cryogenic probe
head. 1D-NOESY, CPMG, and J-resolved experiments were
performed using standard manufacturers’ software Topspin
3.5. Concentrations of individual metabolites, identified by
comparison of proton and carbon chemical shift with HMDB
database, were expressed as PQN-normalized intensities of
corresponding signals in 1D-NOESY (urine), CPMG (serum
extracts), and 1D projections of J-resolved (fecal extracts) spectra.
The list of quantified metabolites in the urine, serum, and fecal
extracts with corresponding 'H and '3C chemical shifts is given
in Supplementary Table 3. The representative 'H NMR spectra
are shown in Supplementary Figures 1-3.

Bile Acid Analysis on Feces

Methanol prepared from lyophilized fecal
homogenate (1 ml of 1% homogenate). Liquid chromatography
separation of the extracts was performed using 1290 Infinity
LC (Agilent Technologies, United States) followed by mass
spectrometry using 6550 iFunnel LCQ- TOF-MS (Agilent
Technologies, United States) equipped with a Dual AJS ESI
probe in negative-ion mode. System control and data acquisition
were performed with Agilent MassHunter Quadrupole Time
of Flight Acquisition Software (B.06) with Qualitative Analysis
(B.07 SP2) Software.

extract was

Statistics

Statistical analyses were performed in R software packages
and in-house scripts (19). For individual tasks, the following
R packages were used: composition (clr transformation),
zCompositions (zero multiplicative replacement) vegan
(PERMANOVA), ropls (PLS-DA metrics), mixOmics (VIP
identification, 2D score plot PLS-DA), effsize (Cliffs delta),
and caret (machine learning library). Clinical characteristics
of the observational sample were compared by standard tests.
The microbiome and VOCs data were treated as compositional
(proportions of total read count in each sample, non-rarefied
or proportion of total area under curve), and prior to all
the statistical analyses were transformed by centered log-
ratio (clr) transformation, and zero values were handled
using count using R package zCompositions. According to
their abundance and prevalence, the bacteria were classified
as “core microbial taxa® when they fulfilled the following
conditions, i.e,, abundance > 0.1% and prevalence > 75% at
least in one experimental group. Other microbial taxa were
classified as rare. NMR data were normalized by probabilistic
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quotient normalization (PQN). All the data were scaled (z-
score) before applying PERMANOVA, PCA, PLS-DA, or
random forest method. The genera were filtered by minimal
prevalence, ie., present at least in three samples per cohort,
with minimum of nine reads each. Principal component
analysis (PCA) was performed to investigate possible sample
clustering in each dataset. For each data type, multivariable
statistics (PERMANOVA) were applied to test the differences
between the groups; for gut microbiome, PERMANOVA was
performed on each of the five taxonomy levels (phylum, class,
order, family, and genus) separately. Univariable statistical
analyses were performed by Mann-Whitney-Wilcoxon test.
The results were adjusted for multiple-hypothesis testing
by Benjamini-Hochberg procedure with a cut-off level of
false discovery rate equal to 0.1. A multivariable statistic
evaluation was performed by partial least square discriminant
analysis (PLS-DA). We analyzed the discriminating power
of each omics dataset using machine learning; specifically,
we used a random forest method. The wvalidity of a model
was verified by permutation test with 300 repetitions.
Correlation networks based on Spearman’s correlation
coefficient were used to assess the correlation between the
studied variables.

All methods are described in detail in Supplemental
Experimental Procedures.

RESULTS
Subject Characteristics

Clinical characteristics of the study participants are given
in Tablel. Dietary consumption quantified using 3-day
prospective dietary records showed no significant difference in
total energy intake between the groups. In the omnivores,
higher daily intake of protein and lipids was recorded,
while the vegans’ diet consisted of more carbohydrates
and dietary fiber. We observed more favorable indices of
glucose homeostasis, i.e., lower concentration of glycated
hemoglobin and lower secretion of insulin during OGTT
in the vegans. Regarding lipid metabolism, the vegans had
lower plasma levels of total as well as LDL- and HDL-
cholesterol. Serum CRP, which serves as an inflammatory
marker, was significantly lower in the vegans, albeit in both
groups it remained within physiological range. Fecal pH was
significantly lower in the vegans, whose stool samples contained
more water.

Fecal Microbiome Composition

Ninety fecal samples were available for microbiome analysis
(57 from Os; 33 from VGs). In all the 90 samples, we
identified 62,683 amplicon sequence variants (ASVs). Median
sequencing coverage was 22,957 ASVs per sample (min 7,385;
max 38,528). We detected 10 phyla, 19 classes, 24 orders,
44 families, and 144 genera; 55 of the genera belong to
the core microbiome. For the purpose of this study, the
core microbiome was defined as taxa (genus level) that
meet the following criteria: median abundance of 0.1% and
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TABLE 1 | Group characteristics for vegans and omnivores.
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Omnivore Vegan p-value
General characteristics
Sex [F/M] 17/16 25/37
Weight [kg] 73.0(24.4) 67.9(16.6) n.s.
Age [years] 31.3(11.2) 30.9 (10.5) n.s.
BMI [kg/m2) 22.8 (4.4) 21.6(3.6) n.s.
WHR 0.8(0.1) 0.8(0.1) n.s.
Body composition
Fat [kg] 13.9(5.8) 11.6(9.3) n.s.
FFM [kg] 54.2 (23.4) 57.1(19.9) n.s.
TBW [kg] 39.7 (17.1) 41.8(14.1) s
Macronutrients intake
Total energy [kcal/day] 2 100 (683) 2072 (706) n.s.
Proteins [g/day] 81 (29) 69 (38) 0.020
Lipids [g/day] 83 (49) 70.0 (35) 0.030
Carbohydrates [g/day| 232 (98) 250 (109) 0.030
Dietary fiber [g/day] 18 (10) 33 (20) <0.001
Glucose metabolism
Fasting glucose [mmol/1] 4.81(0.3) 4.7(0.4) n.s.
2h OGTT glucose [mmol] 5.9(1.49) 5.5(1.3) 0.070
AUC for OGTT glucose
[mmol/l x 120min—"] 255 (137) 184 (159) n.s.
AUC for OGTT insulin
[mIUA x 120min~=T] 4,416 (1938) 3,143 (2603) 0.004
Insulin [mIU/) 3.9(2.7) 3.4(1.7) n.s.
C-peptide [pmol/] 232 (103) 229 (79) n.s.
HbA1c [mmal/mol] 32.0(2.5) 30.0 (4.0 0.010
Matsuda index 10.2 (6.6) 9.9(5.2) n.s.
Lipid metabolism
Total cholestercl [mmol/l] 4.3(1.1) 3.3(0.8) <0.001
HDL-C [mmol/l 1.7(0.7) 1.4 (0.4) <0.001
LDL-C [mmolA] 2.4(1.2) 1.7(0.8) <0.001
Triacylglycerols [mmol/] 0.7 (0.5) 0.7 (0.4) n.s.
Inflammatory markers
CRP (mg/l) 0.074 (0.087) 0.045 (0.028) <0.001
Stool characteristics
pH in feces 7.3(0.7) 6.9(0.8) 0.005
dry mass (%) 25.1(9.9) 20.3 (8.8) 0.002

Data are given as median (interquartile range). BMI, body mass index; WHR, waist-hip ratio; FFM, fat-free mass; TBW, total body water; OGTT, oral glucose tolerance test;
AUC, area under the curve during oral glucose tolerance test; CRF, C-reactive protein; HbATc, glycaled hemoglobin; HDOL-C, high-densily lipoprotein-cholesterol, LDL-C,

low-density lipoprotein-cholesterol.

prevalence >75% at least in one group. The normalized a-
diversity of the gut microbiota was estimated using indexes
measuring richness (observed species) and evenness (Chaol,
Shannon, Simpson, Pielou). In all the parameters, diversity
was higher in the omnivore group (Supplementary Table 4).
We identified 10 phyla dominated by Firmicutes (median
abundance 46 and 52% in the vegans and omnivores,
respectively) and Bacferoidetes (median abundance 44 and
41%) followed by much less abundant Proteobacteria (median
abundance 1.6 and 1.6%), Actinobacteria (median abundance
1.8 and 4.2%), and Verrucomicrobia (median abundance 0.2
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and 0.4%). The abundance of other phyla was below 0.01%.
Multivariable statistics (PERMANOVA) revealed significant
differences in B-diversity at the level of order (p = 0.023),
family (p = 0.013), and genus (p > 0.001) between the
groups. The separation of vegans and omnivores at the genus
level is visualized in Figures 1A,C using unsupervised (PCA)
and supervised (PLS-DA) methods, respectively. Univariable
differential abundance analysis followed by effect size analysis
(Cliff s delta) identified 34 genera with significantly different
abundance between the groups (FDR = 0.1) (Figure 1B,
Supplementary Table 5). As next step, we employed a PLS-DA
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model in order to address mutual relationships among
the variables. According to this model, characterized by
R2Y = 0.719 (goodness of fit) and Q2Y = 0.27 (goodness
of prediction) metrics, we selected 55 genera with VIP
value >1 (Supplementary Table5). The combined set of
variables selected by both approaches comprised 58 genera,
representing 14.8% of total bacteria detected in both the
vegans and omnivores. Ten of them belong to the core
microbiome; three being enriched (Lachnospira, Lachnospiraceae
NK4A136 group, and Ruminiclostridium) and seven (Alistipes,
Bifidobacterium, Blautia, Fusicatenibacter, Dorea, Anaerostipes,
and Ruminococcaceae_uncultured) being depleted in the vegans
compared with the omnivores. The remaining genera belong to
the low abundant (0.1%) and very low abundant (0.01%) and
rare taxa; the former being enriched rather in the omnivores,
while the latter mostly in the vegans. To explore whether we
could discriminate between vegans and omnivores according
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to microbiome composition, we employed a machine learning
approach, specifically, a random forest algorithm. As we had
only 90 subjects, we adopted 10-fold cross-validation to avoid
reporting insignificant results for an overfitted model (the
same method was used for the calculation of Q2Y metrics
for PLS-DA). For fecal microbiome, we reached 83% accuracy
of discrimination between vegans and omnivores, p < 0.01,
obtained by permutation test. Nevertheless, this model tended
to misclassify the vegans as controls with a false positive rate
of 36.7%.

Functional Capacity of the Gut Microbiota:
But Gene Abundance

Having in mind the limitations of 168 rRNA gene sequencing
regarding resolution power, we tried to characterize gut
microbiota independently on taxonomic classification by
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TABLE 2 | Normalized but gene copy number.

Cluster Copy number p-value FDR Cliff’s delta
Omnivore Vegan

A 4.0 (2.3) 3.5(2.0) 0.056 0.337 -0.3

B 0.20 (2.25) 0.44 (5.09) 0135 0404 -0.2

c 190 (310) 211 (243) 0.289 0432 -0.1

D 31 (111) 63(118) 0.360 0.432 0.1

E 0.48 (0.55) 0.28 (0.48) 0.269 0432 0.1

F 22 (40) 12 (25) 0.647 0.647 0.1

Data are given as median (interquartile range). The copy number of the but gene was
normalized to spike DINA (C. elegans UNC-6 gene) and calculated using the ACt method.
Clusters represent groups of bacteria sharing sufficient but gene similarity allowing for the
use of one degenerate primer pair. Bacteria belonging to individual clusters are listed in
Supplementary Table 9.

searching for markers of its functional capacity. We determined
the abundance of butyryl-CoA:acetate CoA-transferase (but)
gene, encoding the key enzyme of butyrate synthesis. We
employed the QPCR method based on degenerate primers that
allow for covering a wide spectrum of but gene variants. As
shown in Table 2, we did not identify any difference in but gene
abundance in gut microbiome in the vegan and omnivore groups.

Fecal Metabolome

We analyzed the fecal metabolome using two approaches, each
of them covering a different spectrum of metabolites. By SPME-
GC-TOF-MS, we identified 146 different VOCs, of which 80 were
very low abundant (>0.1%), 52 were low abundant (0.1-1%), 10
were medium abundant (1-5%), and 4 (p-cresol, indole, scatole,
ethyl butyrate) were highly abundant compounds (=5 %). The
NMR spectrum comprised 34 quantified analytes. Only two
compounds, i.e., butyric acid/butyrate and valeric acid/valerate,
were identified by both approaches, and in both cases the
values obtained by different methods correlated. For further
statistical analysis, both datasets were combined and analyzed
together. The separation of vegans and omnivores is visualized
in Figure 2A. Multivariable statistics (PERMANOVA) revealed
significant differences in PB-diversity (p = 0.0045) between
the groups. Univariable analysis revealed that abundances of
32 analytes differed significantly between the vegan and the
omnivore groups (Figure 2B), and that the PLS-DA model
(R2Y = 0.698; Q2Y = 0.403) selected 70 compounds (Figure 2C,
Supplementary Table 6). The set of variables identified by both
approaches comprised 77 compounds, representing 43.3% of
all the fecal metabolites detected in both the vegans and
omnivores, Vegan fecal metabolome was enriched by products of
polysaccharide fermentation, i.e., short-chain fatty acids (SCFAs),
such as butyrate and acetate and their derivatives (n = 18),
medium-chain fatty acids (MCFAs) and their derivatives (n = 5),
and further by methanol, monosaccharides, and several other
compounds. In contrast, amino acid fermentation products, such
as three most abundant metabolites (p-cresol, indole, and scatole)
were approximately 50% lower in the vegans. The vegan fecal
metabolome was also characterized by lower content of aromatic
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compounds benzacetaldehyde or 2-pentyl thiophene, medium-
or long-chain alcohols, ketones, and aldehydes. The classification
accuracy of the random forest model reached 76.2% (p < 0.01,
obtained by permutation test). The false positive rate was 43.3%.

Bile Acid Profile in Feces

By targeted LCQ-TOF-MS, we identified 11 bile acids.
PERMANOVA analysis did not provide significant differences
between the vegans and omnivores. Univariable analysis
revealed significantly lower lithocholic acid (LCA) content in the
samples of vegans. LCA was also the most abundant bile acid
(Supplementary Table 7).

Serum/Plasma Metabolome

To identify the composition of serum metabolome, we employed
an untargeted NMR approach and LC-MS analysis allowing for
the exact determination of SCFA concentration in the plasma.
Altogether, we identified 34 quantified analytes by NMR and nine
SCFAs by LC-MS, and only acetate/acetic acid was identified by
both methods. For further statistical analysis, both datasets were
combined and analyzed together. PCA shows clear separation
of vegan and omnivore serum metabolome (Figure 3A), which
was confirmed by PERMANOVA (p > 0.001). Univariable
analysis identified 24 metabolites (of which 15 were amino
acids or their derivatives and five were SCFAs) significantly
differentially abundant between the groups (Figure3B). The
PLS-DA model (R2Y = 0.726, Q2Y = 0.573) selected 15
metabolites with VIP > 1 (Figure 3C, Supplementary Table 8).
The set of variables selected by both approaches comprised
24 compounds, representing 55.8% of all the detected serum
metabolites. Vegan serum metabolome is characterized by higher
content of SCFAs (formic, acetic, propionic, and butyric acids),
dimethylsulfone, and amino acids glycine, glutamine, asparagine,
proline, and threonine, while the concentrations of branched-
chain amino acids (BCAAs), their derivatives, and essential
amino acid lysine were lower. Some of these metabolites, i.e.,
SCFAs, dimethylsulfone, and BCAA derivatives are potential co-
metabolites of host and bacterial metabolism. The classification
accuracy of the random forest model built on serum metabolome
data reached 91.6% (p < 0.001, obtained by permutation test);
false positive rate was 18.2%.

Urine Metabolome

Urine metabolome, determined by untargeted NMR analysis,
comprised 18 quantified metabolites and significantly differed
between the groups (PERMANOVA, p > 0.001). The distribution
of vegans and omnivores is shown in Figure 4A. Univariable
analysis identified 10 metabolites that differed in abundance in
the vegan and omnivore groups (Figure 4B), while the PLS-DA
model (R2Y = 0.476, Q2Y = 0.309) selected seven discriminatory
compounds (Figure 4C, Supplementary Table 9). The list of
variables selected by both approaches comprised 12 compounds,
representing 66.7% of all the detected metabolites. Ten of these
compounds were depleted in the vegan urine metabolome, and
all of them were related to proteinfamino acid metabolism.
Only glycine and trigonelline were higher in the vegans. The
discrimination power of the random forest algorithm was 78.3%
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FIGURE 2 | Fecal metabolome composition. (A) 2D PCA analysis score plot with the explained variance of each component. (B) Biomarker metabolites generated
from univariable discrimination analysis (FDR =0.1), effect size estimated by Cliff's delta. (C) 2D score plots of PLS-DA. R2Y fit goodness, Q2Y predictive power.
tmetabolites identified by GC-MS; *metabolites identified by NMR. Effect sizes, FDR values and VIP values can be found in Supplementary Table 4. Volatile
compound (VOC) abundances are presented as compositional after clr transformation, NMR data were normalized by probabilistic quotient normalization (PQN).

(p < 0.01, obtained by permutation test); false positive rate
was 46.7%.

Network Analysis

Finally, we looked for possible relationships between microbiome
composition and metabolomic biomarkers, pooling data from
both groups to gain contrast and power. Looking at the
relationships between fecal microbiome and metabolome
(Figure 5), we identified several motifs. First, the dominant
tyrosine metabolites p-cresol and scatole positively correlated
with Anaerotruncus, Alistipes, Family XIIT AD3011 group, and
Ruminococcaceae UCG-002. These metabolites further negatively
correlated with methanol and several SCFA esters. Second,
amino acids, such as BCAAs, lysine, tyrosine, phenylalanine,
and methionine, positively correlated with Bactreoides, Blautia,
Dorea, Lachnoclostridium, and Fusicatenibacter. With the
exception of Bacteroides, all these bacteria were enriched in the
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omnivores. Third, a cluster of rare genera more represented in
the vegan microbiome (Tyzzerella, Succinivibrio, Shuttleworthia,
etc.) positively correlated with SCFAs (acetic, propionic, and
butyric acids).

Examination of the relationships between fecal bile acids
and microbiota identified LCA as the dominant compound
at the interface of both datasets. LCA concentration in feces
positively correlated with the abundance of Ruminococcaceae
UCG-002 and Family XIII AD3011 group, both of them also
correlated positively with protein fermentation products. In
contrast, LCA negatively correlated with the abundance of nine
bacteria enriched in the vegans, with two of them (Lachnospira,
Ruminiclostridium) belonging to the core microbiota (Figure 6).

The network analysis further unraveled the central role
of dietary fiber in the modulation of gut microbiome and
metabolome. As expected, fiber positively correlated with many
bacteria enriched in the vegan microbiome and negatively with
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some of those typical for the omnivores (Figure 7). Interestingly,
negative associations with omnivore-characteristic bacteria were
less frequent than positive associations with vegan-characteristic
bacteria. Dietary protein correlated positively with Streptococcus
and dietary fat with Peptococcaceae. Dietary fiber correlated
negatively with numerous products of protein fermentation, and
positively with methanol, acetate, butyrate, and SCFA esters
(Figure 8).

Because some of the serum metabolites contributing
to the separation of vegans and omnivores may be of
microbial origin, we further looked for associations between
gut microbiome and serum metabolome (Figure9). The

main findings may be summarized as follows: first, BCAAs
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FIGURE 3 | Serum metabolome composition. (A) 2D PCA analysis score plot with the explained variance of each component. (B) Biomarker metabolites generated
from univariable discrimination analysis (FDR = 0.1), effect size estimated by Cliff’s delta. (C) 2D score plots of PLS-DA. R2Y fit goodness, Q2Y predictive power.
#metaboalites identified by LC-MS; *metabolites identified by NMR. Effect sizes, FDR values, and VIP values can be found in Supplementary Table 6. NMR data

and their derivatives positively correlated with bacteria
enriched in the omnivore microbiome (Family XIII UCG-001,
Erysipelotrichaceae  UCG-003,  Streptococcus,  Eubacterium
hallii group, Dorea, and Blautia) and negatively with vegan-
characteristic  bacteria  Lachnospiraceae  NC2004  group.
Second, tryptophan positively correlated with Streptococcus,
Ruminclostridium 6, and the Ruminococcus gauvreauii group,
all of which were higher in the omnivores. Third, proline
positively vegan-characteristic
microbes and negatively with the Family XIII AD3001 group,
omnivore-characteristic bacteria. Fourth, we found positive
correlations between serum SCFAs and some of the vegan-
characteristic bacteria, particularly propionate/Ruminococcaceae

correlated with numerous
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FIGURE 4 | Urine metabolome composition. (A) 2D PCA analysis score plot with the explained variance of each component; (B) Biomarker metabolites generated
from univariable discrimination analysis (FDR > 0.1), effect size estimated by Cliff's delta. (C) 2D score plots of PLS-DA. R2Y fit goodness, Q2Y predictive power.
*metabolites identified by NMR. Effect sizes, FDR values, and VIP values can be found in Supplementary Table 7. NMR data were normalized by PQN.

UCG-003
UCG-005.
correlated

and butyrate/Haemophilus, and Lachnospiraceae
Dorea (omnivore-characteristic bacteria) negatively
with acetate. Finally, dimethylsulfone negatively
correlated with omnivore-characteristic genera (Escherichia-
Shigella, and Lachnoclostridium) and  positively — with
vegan-characteristic  bacteria ~ Ruminococcaceae  UCG-014
and Oxalobacter.

Taken together, our findings indicate not only relationships
among diet, fecal metabolome, and fecal microbiome but
also more far-reached links connecting gut microbiota with
metabolites in the serum.

DISCUSSION

To fill knowledge gaps in mechanisms linking the effects
of diet and intestinal microbiota, we explored differences in
the intestinal microbiota and related metabolites in a model
population of vegans vs. omnivores. The groups clearly differ
in their eating habits. The major finding of this study is
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that dietary composition relates to distinct gut microbiota
metabolic performance and metabolomic features despite highly
similar established proxies of metabolic health across the
groups. Our finding of slightly greater alpha-diversity of
gut microbiota among the non-vegans was unexpected but
may be related to the fact that the control group consisted
of younger volunteers with a rather favorable pattern of
lifestyle factors.

Vegan Diet and Microbiome Composition

The vegan diet is characterized by a different nutrient
composition when compared to the omnivore diet, i.e., lower
amounts of fat and protein, different patterns of amino acids,
and higher amounts of dietary fiber. All of these features
have a potential to promote important alterations of the gut
microbiota (20) but available studies, recently reviewed in detail
by Trefflich (21) and Losno (22), reported variable outcomes
regarding changes in the overall composition of the microbiome
associated with adherence to a vegan diet. The most reported
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groups affected by the vegan diet were Bacteroidetes and
Firmicutes at the phylum level and Bacteroides, Prevotella,
and Bifidobacterium at the genus level (22). In our study,
we found only modest differences in microbiome composition
associated with a vegan vs. omnivore diet, as only 14.8%
of all the identified bacteria were affected by the diet, and
the machine-learning algorithm based on microbiome data
was quite inefficient in discriminating between vegans and
omnivores. Nevertheless, it is important to mention that our
results, as well as majority of other studies focused on vegan
microbiota, are based on 165 rRNA hypervariable amplicon
sequencing. Compared to shotgun sequencing, this method
does not allow for more detailed taxonomy classification at the
level of species and strain. We definitely cannot exclude the
possibility that there are substantial differences between both
groups at these levels. De Filippis et al. (23) demonstrated that
different oligotypes within the same genus showed distinctive
correlation patterns with dietary components and metabolome.
Prevotella is a typical representative of plant-based diet-
associated microorganism, while Bactreoides is linked to animal-
based nutrients. Nevertheless, within both genera, oligotypes
exist that associate with the opposite dietary component than
the majority. Therefore, the diet/microbiome associations based
only on genus-level taxonomy may be oversimplified and may
not catch more subtle relationships.
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On the other hand, taxonomic assignment only has limited
ability to describe the functional capacity of the microbiota
community. In addition to the non-optimal resolution of 16S
rRNA sequencing, even well-assigned bacteria may possess
unexpected characteristics because of the horizontal gene transfer
that readily occurs among bacteria. Shotgun sequencing is
the gold-standard method for the identification of full set of
genes present in the bacterial community, but it is also costly
and demanding for bioinformatics capacity. We developed an
alternative approach based on qPCR quantification of gene
of interest in stool DNA. In this study, we quantified the
abundance of the but gene coding a key enzyme of butyrate
synthesis. We chose this gene, as butyrate synthesis is one of
the potential final steps of fiber fermentation, and butyrate is
an important fermentation product with a significant impact
on host health. We speculated that it could be a good
readout of the effect of a diet rich or poor in fiber on
microbiota composition. Somewhat surprisingly, we did not
prove a significant difference in but abundance in the vegan
and omnivore groups. This finding supports the results of
taxonomic analysis.

Alpha diversity was higher in the omnivores than in the
vegans, which is in disagreement with previously published
results that showed no difference (24, 25) or higher diversity
in vegans (26) but in line with a recent report comparing
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vegan and omnivore cohorts in Germany (27). The lack
of significant effects of a long-term vegan diet or diet
with high amounts of dietary fiber from cereals on gut
microbiome composition observed by us and others (25, 28)
is in contrast with significant differences that have been
demonstrated between people from traditional agrarian societies
dependent on mostly plant-based diets and Westernized societies
consuming low-fiber high-protein diets (29, 30). Nevertheless,
this observation still does not contradict the profound effect
of diet on microbiota composition. Evaluation of archaic
native American coprolith remains suggests that pre-agricultural
fiber intake exceeded 100 g/day (31). This corresponds to
estimated daily intake of fiber in surviving traditional societies
still sticking to hunter-gatherer way of life, which is 80-
150g/day (32, 33). In contrast to it, the median fiber intake
in our vegan cohort was 33 g/day, and the value 100 g/day
was exceptional. Furthermore, recent research indicates that
microbiome composition is established in early childhood (34)
and is relatively stable during adulthood. None of the vegans
included into our study has been vegan since childhood,
so the formation period of her/his microbiota occurred in
omnivore setting. Taking into account all these circumstances,
our findings support the hypothesis that the core gut microbiota
(abundance > 0.1%, prevalence > 75%), at least at the
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genus level, are stable and resilient to compositional change,
even during a long-term dietary shift in adulthood. However,
we cannot rule out that compositional differences between
the vegans and non-vegans would become apparent at the
metagenomics level.

Vegan Diet and Fecal Metabolome

Although  DNA-based fingerprint procedures provide
information about the composition of the microbial community,
they do not reflect the metabolic activity of the populations
(35). In contrast, fecal metabolome has been proposed as a
functional readout of the human microbiome (36), reflective of
microbiome-host interactions with immediate impact on host
health. Bacterial genome often encodes genes for alternative
metabolic pathways allowing for high metabolic flexibility.
Bacteria are able to switch among different metabolic programs
depending on available substrate in order to reach maximal
energy extraction efficacy. The same bacteria are, therefore,
capable to produce a very different spectrum of metabolites.
Thus, we performed untargeted fecal metabolome analyses as
a functional readout. Among the important characteristics of
vegan fecal metabolome was significantly lower content of amino
acid fermentation products p-cresol, indole, scatole, and some
aromatic compounds that were consistently identified by two
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independent statistical methods. These metabolites also belong
to the most abundant components of fecal metabolome. The
second group of compounds discriminating between vegans and
omnivores are SCFA and SCFA-derived esters. Most bacteria
possess multiple metabolic programs that may be switched on
and off according to the available substrate and environmental
conditions. The composition of the fecal metabolome, therefore,
reflects the preferential carbohydrate fermentation in vegans
and shift to protein fermentation in omnivores because of the
different diet macronutrient composition of their diets. The
vegan diet contains less protein but more fiber than the omnivore
one. Amino acids are less efficient as energy source for human
gut microbes; therefore, gut microbiota preferentially consume
carbohydrates over proteins (37). This shift in fecal metabolome
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composition has implications for human health, as products
of protein fermentation, like p-cresol, have considerable health
effects. It is associated with adverse effects such as genotoxicity,
oxidative stress, compromised integrity of the gut epithelium,
and decreased viability as well as proliferation of intestinal
epithelial cells (37). Our study clearly demonstrated that a
vegan dietary pattern is associated with distinct metabolomic
profiles compared to a meat-containing diet, even when
comparing vegan vs. non-vegan individuals with otherwise
similar characteristics, e.g., regarding age and BMI. However,
whether the observed differences underlie potential long-term
health benefits of a vegan diet needs to be further investigated,
for example, by comprehensive metabolomics assessments in
epidemiological long-term studies.
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Gut Microbiota and Fecal Metabolome
Several potentially interesting associations between bacterial
abundances and metabolites were revealed in this study. Alistipes,
the Family XIITAD3011 group, and Anaerotruncus, all higher
in omnivores, positively correlate with p-cresol and scatole.
Three other bacteria significantly higher in omnivores (Dorea,
Blautia, and Fusicatenibacter) positively correlate with amino
acids tyrosine, BCAAs, methionine, lysine, phenylalanine, and
valine. The association of these bacteria with metabolically
adverse phenotypes was reported (38, 39). Not surprisingly,
dietary fiber correlated (both positively and negatively) with
most of bacteria differently represented in both groups.
Accordingly, we found positive correlations between dietary
fiber and SCFAs and their derivatives, as well as negative
correlations between dietary fiber and protein fermentation
products. Nevertheless, the fecal metabolome still did not
discriminate well between both groups, probably because
of factors such as metabolic cross-feeding between different
bacterial groups, utilization of bacterial metabolites by the host,
and technical issues concerning the difficult normalization of
fecal metabolite concentration.
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Gut Microbiota and Fecal Bile Acids

Primary bile acids secreted from the liver to the intestine are
subjects of extensive microbial transformation within the gut,
and the spectrum of secondary bile acids reflects the composition
and metabolic performance of gut microbiota. In our study,
we did not observe any difference between the VG and O
groups in the fecal concentration of primary bile acids and
their derivatives but significantly lower concentration of one
secondary bile acid, LCA, in VGs than in Os. Secondary bile
acids are solely the product of microbial transformation of
deconjugated primary bile acids (40); therefore, the significant
difference in LCA concentration between vegans and omnivores
with comparable primary BA synthesis may indicate different
microbial activity. Recent research revealed the important role
of bile acids as signals in the regulation of lipid and glucose
metabolism (41) or in cancerogenesis (42). Type 2 diabetes is
associated with higher plasma levels of LCA (43), and with
significantly altered bile acid signature in feces (44). Our study
only comprised metabolically healthy omnivores and vegans, so
we cannot draw any strong conclusions regarding LCA fecal
content and metabolic health, but even within physiological
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limits, the vegans had more favorable glucose metabolism-related ~ Nevertheless, Wang et al. proved that the BCAA degradation
parameters than the omnivores. Further research is needed to  pathway is upregulated in gut microbiota of vegans and
confirm or deny the hypothesis that microbial metabolism of bile ~ vegetarians compared to those of omnivores (45). Therefore,
acids contributes to the impairment of glucose homeostasis of  upregulated BCAA degradation in the gut may contribute to

a host. the observed lower serum BCAA concentrations in vegans.

The reduction of circulating BCAA may represent one of
Gut-To-Circulation Crosstalk the microbiome-related mechanism contributing to the health-
The composition of serum/plasma metabolome is the most  promoting effects of plant-based diet, as it has been repeatedly
discriminative characteristic between vegans and omnivores, ~ shown that increased circulating BCAA decline in metabolic

Our data indicate that it reflects both dietary pattern and  health and diabetes development (47). We identified a less

gut microbiota activity. Without a doubt, the macronutrient, favorable metabolic phenotype of omnivores despite the fact that

particularly protein intake and amino acid composition, both groups in this study comprised volunteers with healthy

is different in vegans and omnivores. The different diet  normal weightand normal glucose tolerance.

composition has a direct effect on physiology, and absorption Short-chained fatty acids (SCFAs) are products of bacterial

of nutrients in the upper gastrointestinal tract, therefore, had  fermentation of fiber in the gut, and while demonstrating their

a limited impact on colonic microbiota. However, some of  higher concentration in vegan fecal as well as serum metabolome

the metabolites differently abundant in vegan and omnivore  We provide a direct link connecting microbiome activity in the

serum are co-metabolites formed both by the host and gut  gutand circulating metabolome.

microbiota advocating direct gut-to-circulation crosstalk. This is

the case for dimethylsulfone, a product of microbial metabolism Strengths and Limitations

of methionine as well as BCAAs and SCFAs. Our aim was to perform rigorous matching of participant
Reduced circulating BCAA in vegans has been observed  characteristics across vegans and omnivores, and to focus on

previously (25, 45) and may relate to lower BCAA intake (46).  young and healthy population to minimize the risk of potential
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confounders influencing metabolic health. The main limitation
of our study is that the results were obtained on rather
small vegan and omnivore groups, and that the outcomes
were not validated in an independent cohort. However, the
results were internally validated through permutation tests.
Thus, the main purpose of the methods employed was to
demonstrate that certain domains of the metabolome provide
better discrimination of vegans and omnivores, and possibly a
better picture of differential functional consequences of the diets,
compared to bacterial abundances alone. The outcomes deserve
further validation in independent well-matched cohorts. Another
potentially limiting aspect that must be taken into consideration
is the methodology used for the characterization of microbiota
composition. We based our analysis on the sequencing of the V4
region of 16S rRNA gene, which provides lower resolution than
shotgun sequencing. This may lead to the underestimation of
the effect imposed by vegan diet on gut microbiota composition
especially at the sub-genus level. Finally, the diet of both groups
was analyzed only at the macronutrient level, as the aim of
this study was comparative analysis of microbiome composition
and metabolomic footprints of vegans and non-vegans. While
our analyses strongly suggest that omitting animal foods has a
distinct effect on the metabolome, further studies are needed
on the potential mediating role of nutrient intakes, which may
underlie the observed metabolic differences between vegans and
non-vegans, beyond macronutrient and fiber intake.

CONCLUSION

We showed that the composition of gut microbiota of long-
term vegans and omnivores is not dramatically different. In
contrast, vegans and omnivores significantly differ in the
composition of the fecal, serum, and urine metabolomes as
an effect of different availability of substrates (dietary fiber
vs. protein). Consequently, the vegan diet was associated
with a lower abundance of the potentially harmful (protein
fermentation products) and a higher occurrence of potentially
beneficial (dietary fiber fermentation products) metabolites.
While our study suggests that a shift toward a vegan diet
may be an avenue to personalized manipulation of microbiome
function, targeting metabolites with health implications such
as indole or cresole (48), we acknowledge that our study
was observational and that proof-of-concept RCTs are needed
to investigate the potential of dietary interventions in this
context. In general, while our study had the purpose of
identifying metabolites that are differentially abundant between
vegans and non-vegans, the clinical utility of the measured
biomarkers for risk prediction or clinical monitoring is yet to
be proven.
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3.2 Development of an alternative method for the estimation of specific
function(s) of gut microbiota

Although 16S rRNA sequencing is widely used to investigate the composition of bacterial communities
in the gut, it does not provide insight into the functional aspects of these microorganisms
and taxonomic resolution is in some cases insufficient. This knowledge gap has been addressed by the
use of shotgun sequencing, which can provide a comprehensive view of the gut microbiota and its
functional capacity. However, the high cost of this technique and relatively high requirements
for bioinformatic skills has made it inaccessible to many laboratories. To address this problem, we
focused on developing a simple and cost-effective method to estimate the functional capacity
of butyrate synthesis by the gut microbiota. This method focuses on RT-gPCR quantification
of the bacterial gene encoding butyryl-CoA:acetate CoA-transferase, a key enzyme involved
in butyrate synthesis. As the importance of butyrate in overall health is increasingly recognized,
the proposed method may serve as a valuable tool for investigating the role of gut microbiota in health
and disease.

As afirst step towards developing a simple and inexpensive method to estimate the functional capacity
of butyrate synthesis by the gut microbiota, we searched for human butyrate-producing gut bacteria
whose genome contains but gene coding sequences. Thirty-six bacterial genomes containing the but
gene were selected for further analysis, but due to the large variation in but coding sequences among
the selected bacteria, it was not possible to design a single primer targeting all sequences at once.
Therefore, six sets of degenerate primers targeting selected groups of bacteria were designed
and validated based on bacterial phylogenetic distance and similarity of but gene sequences. All
primers were validated based on the length of their PCR products, where the predicted and observed
lengths matched.

To quantify the gPCR results, a reference (housekeeping) gene had to be selected, which was a difficult
task given the complexity of human stool. We compared two strategies. First, we used the 16S rRNA
gene, which is universal to all bacteria and therefore inherently present in any sample. The target gene
is quantified relative to the copy number of the 16S rRNA gene. The disadvantage of this approach is
the variable number of 16S rRNA genes per genome in different bacteria, which may influence
the results. The second strategy was based on a DNA spike whose sequences are not found in humans,
such as the gene originating from the worm Caenorhabditis elegans. This method should be more
precise but more demanding on labor and material. The target gene is quantified relative
to the amount of spike DNA originating from the C. elegans worm that was added prior to fecal DNA
isolation. Surprisingly, copy numbers normalized against both the 16S rRNA gene and the C. elegans
gene were correlated for all primer sets, which was also verified by the Bland-Altman method.

The developed method was then applied to DNA extracted from stool samples of a cohort of healthy
lean vegans (VG, n = 63) and healthy obese omnivores (OB, n = 62) with known information about their
fecal microbiota and metabolome composition. In both groups, the highest abundance of the but gene
was found when using primers targeting cluster C of selected bacteria. Cluster C included the bacterial
taxa Faecalibacterium prausnitzii, Clostridium symbiosum, Clostridium sp. M62/1 and three species
belonging to the genus Eubacterium, and the VG group in this cluster differed significantly in but gene
abundance from the OB group (Mann-Whitney U-test, p < 0.001). The abundance of the but gene
determined by gPCR targeting all bacterial clusters correlated with results obtained previously from
16S rRNA sequencing. In addition, the higher copy number of the but gene in the VG group
corresponded to the significantly higher amount of butyrate (Mann-Whitney U-test, p = 0.002)
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in respective fecal samples determined by NMR. Thus, our results support the hypothesis that the but
gene copy number determination in bacterial DNA reflects its taxonomic composition, especially
in the case of the more abundant bacteria, as well as a functional readout, in this case, the butyrate
content of the feces.

In conclusion, this method may represent a powerful tool for estimating the functional capacity
of the gut microbiota for butyrate synthesis based on gPCR quantification of bacterial
butyryl-CoA:acetate CoA-transferase, provides deeper insight into the functional capacity
of a particular sample, and could be useful for individual estimation of the utility of prebiotic therapy.
This approach requires only equipment and skills commonly available in diagnostic laboratories and
does not require advanced bioinformatic data analysis, making it a useful method for rapid screening
of the specific functional capacity of the gut microbiota.

This article was published on the 2" of September 2021 in Biomolecules, IF = 4.93

57



ﬁ biomolecules

Article

Determination of Butyrate Synthesis Capacity in Gut
Microbiota: Quantification of but Gene Abundance by qPCR in

Fecal Samples

Nikola Daskova 1-2*{), Marie Heczkova !, Istvan Modos !, Petra Videnska 3, Petra Splichalova 3,

Helena Pelantova , Marek Kuzma %, Jan Gojda ®

check for

updates
Citation: Daskova, N.; Heczkova, M.;
Modos, L; Videnska, P.; Splichalova,
P; Pelantova, H.; Kuzma, M.,; Gojda,
].; Cahova, M. Determination of
Butyrate Synthesis Capacity in Gut
Microbiota: Quantification of but
Gene Abundance by qPCR in Fecal
Samples. Biomolecules 2021, 11, 1303.
https:/ /doi.org/10.3390 /
biom11091303

Academic Editor: Piotr Ceranowicz

Received: 28 July 2021
Accepted: 1 September 2021
Published: 2 September 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/ licenses /by /
4.0/).

and Monika Cahova !

Institute for Clinical and Experimental Medicine, Videnska 1958, 140 21 Prague 4, Czech Republic;

mahz@ikem.cz (M.H.); modi@ikem.cz (1.M.); moca@ikem.cz (M.C.)

2 First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic

3 RECETOX, Faculty of Science Masaryk University, Kamenice 753, 625 00 Brno, Czech Republic;
petra.videnska@recetox. muni.cz (P.V.); splichalova@recetox.muni.cz (P.5.)

4 TInstitute of Microbiology, AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic;

pelantova@biomed.cas.cz (H.P.); kuzma@biomed.cas.cz (M.K.)

Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 1192/12,

779 00 Olomouc, Czech Republic

Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine,

Charles University, Srobarova 1150, 100 34 Prague 10, Czech Republic; jan.gojda@If3.cuni.cz

*  Correspondence: daon@ikem.cz

w

Abstract: Butyrate is formed in the gut during bacterial fermentation of dietary fiber and is attributed
numerous beneficial effects on the host metabolism. We aimed to develop a methed for the assessment
of functional capacity of gut microbiota butyrate synthesis based on the gqPCR quantification of
bacterial gene coding butyryl-CoA:acetate CoA-transferase, the key enzyme of butyrate synthesis.
In silico, we identified bacteria possessing but gene among human gut microbiota by searching buif
coding sequences in available databases. We designed and validated six sets of degenerate primers
covering all selected bacteria, based on their phylogenetic nearness and sequence similarity, and
developed a method for gene abundance normalization in human fecal DNA. We determined buf
gene abundance in fecal DNA of subjects with opposing dietary patterns and metabolic phenotypes—
lean vegans (VG) and healthy obese omnivores (OB) with known fecal microbiota and metabolome
composition. We found higher but gene copy number in VG compared with OB, in line with higher
fecal butyrate content in VG group. We further found a positive correlation between the relative
abundance of target bacterial genera identified by next-generation sequencing and groups of buf
gene-containing bacteria determined by specific primers. In conclusion, this approach represents a
simple and feasible tool for estimation of microbial functional capacity.

Keywords: gut microbiota; butyrate; functional capacity

1. Introduction

The gut microbiota is now recognized as a “new organ”, and its role in health and
disease has become widely acknowledged. Emerging evidence supports the hypothesis
that gut microbiota dysbiosis is closely related to the development of non-communicable
diseases, including cardiovascular diseases, colorectal cancer, obesity, or type 2 diabetes
(T2D) [1-5]. Host—microbiome interactions are heterogeneous and multifaceted, some of
them being mediated by microbial fermentation products.

Short-chain fatty acids (SCFA), acetate, butyrate, and propionate, are primary products
of microbial fermentation of dietary fiber [6-8] in the colon. Acetate is the most abundant
product of fiber fermentation and serves as a suppressor of adipocyte lipolysis. It has been
proposed to stimulate leptin secretion in adipocytes [9] and may also regulate appetite
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and satiety [10]. Propionate is metabolized in the liver, where it seems to be the inhibitor
of de novo lipogenesis as well as synthesis of cholesterol [11]. Major attention is focused
on butyrate. In contrast to propionate and acetate, which are transported to systemic
circulation, butyrate is predominantly used by colonocytes, where it serves as a major
source of energy. In addition to this trophic function, it exerts several other beneficial
effects. It helps to control malignant transformation of colonocytes; in healthy cells, it
promotes proliferation, while in transformed cells, it induces apoptosis [6,9,12-14]. Butyrate
ameliorates inflammation as it binds GPR109a receptor on dendritic cells associated with
intestinal mucosa and stimulates production of IL-10 and subsequent activation of anti-
inflammatory Treg cells [15]. Activation of GPR109a receptor also suppresses production
of pro-inflammatory cytokines TNFa and IL-6 [16]. Butyrate, as well as other SCFAs,
stimulates endocrine L-cells to release GLP-2, which regulates the expression of tight
junction proteins essential for maintaining intestinal barrier integrity [17]. Furthermore,
butyrate stimulates MUC2 gene expression and affects mucus production [18]. Butyrate
and propionate contribute to the regulation of energy homeostasis and eating behavior of
the host via binding to GRP41/43 receptors, which, in turn, stimulates the production of
GLP-1 and peptide YY [19].

The knowledge of functional capacity of gut microbiota is essential for personal-
ized medicine, allowing for efficient targeted treatment tailored to a particular patient’s
needs. For example, dietary fiber is often recommended due to its potential to stimulate
production of SCFAs. Nevertheless, very high variability in individual response to fiber
supplementation exists [20]. This variability could be explained, at least partly, by the
different representation of key species of microorganisms and/or absence of the whole
functional microbial communities responsible for fiber fermentation [21]. Therefore, the
quantitative assessment of gut microbiota functional capacity is of great interest not only in
a research context but also in terms of personalized medicine and nutrition.

The current microbiome research was enabled by the development of next genera-
tion sequencing (NGS) methods that allow sequencing of a wide variety of samples in
a short time and for a reasonable price. At present, there are two main approaches to
the microbiome composition determination—165 rRNA gene sequencing and shotgun
sequencing [22,23]. Both methods face some limitations. Shotgun sequencing provides full
information about the DNA sequence of the tested sample, i.e., DNA isolated from feces,
and it is possible to derive full information about the bacteria functional capacity from the
data. On the other hand, the routine implementation of this method is prevented by still
relatively high costs and by high demands on bicinformatics capacity.

The analysis of variable regions of 16S ribosomal RNA gene (165 rRNA gene sequenc-
ing) is the most popular method for determination of microbial communities originating
from various niches. At the end of July 2021, there were 63,875 results in PubMed search en-
gine [24] for key word “165 rRNA sequencing”. This method is widely available and able to
provide results quickly and for a reasonable price, but its main disadvantage is insufficient
taxonomic resolution, which can be problematic if a deep evaluation of species or strains is
needed. It is inevitable that some species are overlooked or wrongly identified, which may
significantly compromise the prediction of microbiota functional capacity and result in the
disagreement with conclusions derived from metatranscriptomic or metabolomic analyses.

In this study, we focused on the development of a method for the assessment of
functional capacity of a selected process, in our case, butyrate synthesis in gut microbiota.
Gut microbes produce butyrate through two main pathways, the butyryl-CoA:acetate
CoA-transferase pathway (but) and the butyrate kinase (buk) [25,26]. Using the collection of
colonic isolates obtained from healthy individuals, Louis et al. (2004) [27] demonstrated that
conversion of butyryl-CoA to butyrate catalyzed by butyryl-CoA:acetate CoA-transferase
(but) is a dominant route for butyrate formation in the human colonic ecosystem while
butyrate kinase/phosphotransbutyrylase pathway was present only in a minor portion of
isolates. Therefore, we developed a method based on the real-time qPCR quantification
of the bacterial gene coding butyryl-CoA:acetate CoA-transferase in DNA isolated from
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human feces. We further show the application of this method on populations with different
metabolic phenotypes, i.e., vegans and obese omnivores. Each participant signed an
informed consent to the study.

2. Materials and Methods
2.1. Description of the Study Population

In this study, we used fecal samples obtained from self-reported vegans (VG, nn = 63)
who avoided all animal products for at least three years and healthy obese omnivores (OB,
n = 62) without any dietary restrictions. In VG group, median BMI was 21.6 (min 17.6;
max 32.5), in OB group, median BMI was 30.9 (min 23.3; max 55.1). VG group was
comprised of younger subjects (median 31; min 18; max 58 years) compared to OB group
(median 51; min 21; max 66 years). In both groups, the exclusion criteria were: age under
18 years, chronic diseases related to glucose metabolism, diseases of the digestive tract,
antibiotic therapy in the past three months, pregnancy, any chronic medication (excluding
hormonal contraception), and regular alcohol consumption. All data were obtained within
an observational study TRIEMA supported by grant no. NV18-01-00040 MH CR. The
research protocol was approved by the Ethics Committee of the Third Faculty of Medicine
of the Charles University and the Ethics Committee of University Hospital Kralovske
Vinohrady (EK-VP/26/0/2017) in accordance with the Declaration of Helsinki.

2.2. Fecal Samples Handling and Storage

Fecal samples collected at home were immediately stored at —20 °C until transported
in the frozen state (<0 °C) to the laboratory within 7 days from collection. The samples
were stored at —50 °C until processed. Once thawed on ice, 5-10 g of the samples were
diluted in sterile water (1:4) and then homogenized using stomacher (BioPro, Prague,
Czech Republic). One aliquot was used for DNA extraction, one aliquot was used for dry
mass estimation, and the rest was aliquoted and stored at —50 °C.

2.3. DNA Isolation from Fecal Samples

DNA isolation was performed immediately after thawing and homogenization of the
sample using QIAmp PowerFecal DNA Kit (Qiagen, Hilden, Germany). For each sample,
two DNA isolations (each using 600 uL of the homogenate) were performed and DNA
yields were combined. Then, DNA from every fecal sample was diluted to 10 ng/uL and
used further on.

2.4. Preparation of Spike DNA

Caenorhabditis elegans worms were grown on agar plates that were covered with
Escherichia coli and harvested as described in [28]. DNA was extracted as described above.
Primers for UNC-6 gene (“inner primer”) and a wider region of C. elegans DNA containing
fragment transcribed from UNC-6 (referred to as “outer primer”) were designed in Primer
3 software [29]. The preparation of spike DNA fragment is shown on Figure 1. Sequences
for both primer pairs are shown in Table 1. Using Nucleotide BLAST tool [30], we confirmed
that UNC-6 gene target sequence is unique and was not found in any organism other than
C. elegans. Using the outer primer pair, we amplified the DNA fragment containing UNC-6
sequence and separated it by gel electrophoresis. The resulting fragment was eluted using
Gel Extraction Kit (Qiagen, Hilden, Germany). We obtained a fragment of C. elegans DNA
allowing for the “inner” UNC-6 primers annealing. C. elegans DNA was diluted to 2ng/uL,
and after optimization, the fragment was used further on as a spike to our samples (sample
DNA was mixed with C. elegans DNA).

60



Biomolecules 2021, 11, 1303 4o0f17

outer primer F inner primer F
5 3
C. elegans DNA H H
inner primer R outer primer R
PCR product from inner primers
used as quantity control
purified PCR product from outer primers
used as spike DNA

Figure 1. Graphical representation of spike DNA preparation.
Table 1. Sequences of inner and outer primer pairs used in spike preparation.

Primer Name Primer Sequence (5’ to 3')
inner primer forward GAAGAGCAAGATCAGTGTTC
inner primer reverse CTTGCAAATGACACCTTG
outer primer forward GTAATCGTTGTGCCAAAGG
outer primer reverse TCCTCCCATTCCACCAATAC

2.5. Design of the Degenerate Primers for but Gene and Analysis of PCR Products

Degenerate primers targeting but gene were designed as described in Section 3. The
resulting products were analyzed on Fragment Analyzer 5200 (Agilent, Santa Clara, CA,
USA) using Agilent dsDNA 910 reagent Kit (35-1500 bp). The results were processed and
checked in PROSize software (version 4.0.1.4).

2.6. qPCR

The copy number of but gene in DNA isolated from stool samples was determined
by quantitative PCR (qPCR). qPCR reaction was performed with Syber Green master mix
solution (Quanti-Tect, Qiagen, Hilden, Germany) in a volume of 20 pL with primer con-
centration varying from 200 nM to 1 uM (according to degeneracy number of each primer
pair). Final concentration of stool DNA was 0.5 ng/uL and C. elegans DNA 0.1 ng/uL
in the reaction mixture. Reaction was run on ViiA7 Real-Time PCR System with 96-well
plates (Applied Biosystems, Waltham, MA, USA) according to the following protocol: (i)
initial denaturation: 95 °C, 12 min; (ii) propagation (40 cycles): denaturation 95 °C, 15 s;
annealing 60 °C, 30 s; elongation 72 °C, 20 s. The results were analyzed by SDS software
version 2.3 (Applied Biosystems, Waltham, MA, USA). The copy number of genes of in-
terest was normalized to spike DNA (C. elegans UNC-6 gene) or to the 165 rRNA gene
(forward primer ACACTGACGACATGGTTCTACAGAGTTGATCNTGGCTCAG, reverse
primer TACGGTAGCAGAGACTTGGTCTGTNTTANGCGGCKGCTG) and calculated us-
ing ACt method.

2.7. Gut Microbiome Taxonomic Analysis

DNA from fecal samples was isolated as mentioned before and V4 region of the
bacterial 165 rRINA gene was amplified by PCR [31]. Sequencing analysis was performed
on MiSeq (Illumina, Hayward, CA, USA) as described previously [32]. Raw sequences
were processed using an in-house pipeline based on DADA2 amplicon denoiser [33]. Raw
sequences were processed using standard bioinformatic procedures within the QIIME 1.9.1
package [34].
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2.8. Quantification of Butyrate in Fecal Samples by NMR Spectroscopy

Fecal extracts for NMR analysis were prepared from homogenized stool aliquots
corresponding to 1.5% of dry mass. NMR experiments (1D-NOESY and J-resolved with
presaturation) were performed on a Bruker AVANCE III 600 MHz spectrometer (Bruker,
Billerica, MA, USA) at 25 °C according to the standard protocols [35]. Butyrate signals were
identified by the comparison of proton chemical shifts with HMDB database. Butyrate was
quantified from 1D projections of J-resolved spectra to overcome the problem of signal
overlap. The concentration was expressed as PON normalized intensity of butyrate signal
at 0.90 ppm.

2.9. Statistical Evaluation

All statistical analyses were performed using R software version 4.1.0 with in-house
scripts [36]. The normality of distribution of the but gene abundance was tested by the
Shapiro-Wilk test for normality using the shapiro.test function from the stats package
(on each phylogenetically related bacteria and subject group), where the null hypothesis
corresponds to data normality. Because the normal data distribution was not confirmed
(p < 0.05), univariate statistical analyses were performed by Mann-Whitney-Wilcoxon
test using the wilcox.test function from the stats package with significance of 0.05. The
microbiome data were treated as compositional (proportions of total read count in each
sample, nonrarefied) and, prior to all statistical analyses, were transformed using centered
log-ratio transformation [37]; zero values were handled using count zero multiplicative
replacement (using the cmultRepl function from the zCompositions package). The corre-
lation between variables was assessed by using Spearman’s rank correlation coefficient
utilizing cor and corrplot functions. Bland-Altman plots were used to analyze the differ-
ence between the two qPCR normalization methods (using the blandr.draw function from
the blandr package).

3. Results
3.1. Identification of the Target Bacteria

As the first step, we identified bacteria containing the but gene (coding the enzyme
butyryl-CoA:acetate CoA-transferase) in their genome using FunGene Database [38]. Ev-
ery bacterium possessing this gene according to the FunGene database was searched for
individually through available literature. If the bacterium was found in human gut mi-
crobiota and if it was previously confirmed as a butyrate producer [7,26,39,40], we used
the bacterium further on. Every other bacterium was disregarded. In total, we identified
thirty-six bacterial genomes possessing the but gene and meeting criteria mentioned above.
Next, the specific gene sequence, as well as the amino acid sequence of the enzyme in a
particular genome, was cross checked in National Centre for Biotechnology Information
(INCBI) database and used further on (Table 2).

3.2. Design of the Degenerate Primers for but Gene

The sequence of but gene coding for butyryl-CoA:acetate CoA-transferase is highly
variable among gut butyrate producers, and therefore, it is not possible to design one
primer fitting all target species [39,41]. Before designing any primer, the CLUSTALW
tool [42] was used for a multiple sequence alignment. The diversity of the but coding
sequence did not allow us to design one, even degenerate, primer. Therefore, we grouped
the bacteria according to their phylogenetic distance, aiming to obtain groups of more
similar target sequences. We used the bioinformatic web service Phylogeny.fr [43] and
obtained a phylogenetic tree of closely related bacteria (Figure 2). We used the following
tools: (i) MUSCLE 3.8.31 for the alignment, (ii) Gblocks 0.19b for the alignment refinement,
(iii) PhyML 3.1/3.0 aLRTFor for utilizing the phylogeny analysis itself, and (iv) TreeDyn
198.3 to display the tree.
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Table 2. Butyrate producers in human gut microbiota possessing the but gene. A total of thirty-six
but gene nucleotide and protein sequences were identified (stated as an NCBI accession numbers).

Nucleotide Sequence
Accession Number

Protein Sequence

Taxonomy (including the Strain) T m—

Anqerostipes caccae DSM 14662 ABAX03000012 WP_006566634
Anaerobutyricum hallii DSM 3353 ACEP01000025 EEG37758
Anaerostipes hadrus DSM 3319 AMEY01000089 EKY19441
Clostridiales bacterium KA00134 LTAF01000006 KX016903
Clostridium sp. JN-9 CP035280 QAT39812
Clostridium sp. M62/1 ACFX02000051 EFE10856
Clostridium sp. SS2/1 ABGC03000034 EDS21983
[Clostridium] propionicum DSM 1682 FQUAO01000004 SHEG65336
[Clostridium] symbiosum ATCC 14940 AWSU01000039 ERI80067
[Clostridiun] symbiosim WAL-14673 ADLR01000107 EGB17928
Coprococcus eutactus 27895TDY5608829 CYYZ01000002 CUN77211
Coprococcus eutactus 2789STDY5608843 CYY]J01000005 CUO17024
 Coprococcus eutactus 2789STDY5608888 CYYE01000001 CUN69525
Coprococcus eutactus 2789STDY5834963 CYXU01000007 CUNO05838
Eubacterium callanderi FD FRBP01000012 SHM18802
Eubacterium limosum ATCC 8486 CP019962 ARD67787
Eubacterium limosum SA11 CP011914 ALU15403
Eubacterium maltosivorans Y1 CP029487 QCT73558
Eubacterium sp. 14-2 ASS501000012 EOT23498
Faecalibacterium prausnitzii 942 /30-2 CP026548 AXA81262
EEZ‘Z;”_”&;Z’;;”’ PP A8 CP022479 ATO98751
;fg‘;’;f;fgggj’l‘gg’mi 2150 ACOP02000044 EEU96797
Faecalibacterium prausnilzii APC918/95b CP030777 AXB28579
Faecalibacterium prausnitzii Indica CP023819 ATL89114
Faecalibacterium prausnitzii KLE1255 AECU01000083 EFQ07628
Flavonifractor plautii 2789STDY5834892 CZAS01000006 CUP57950
Flavonifractor plautii 2789STDY5834932 CZBD01000023 CUQ37563
Lachnospiraceae bacterium 3-1 ASST01000018 EOS23550
Lachnospiraceae bacterium 3-1 ASST01000032 EOS21051
Lachnospiraceae bacterium A2 ASSX01000004 EOS548506
Lachnospiraceae bacterium A4 ASSR01000007 EOS36856
Lachnospiraceae bacterium MD335 ASSW01000016 EOS51721
Lachnospiraceae bacterium TF01-11 LLKB01000001 KQC86641
Pseudoflavonifractor capillosus ATCC 29799 AAXG02000004 EDN01706
Roseburia intestinglis 1.1-82 ABYJ02000099 EEV00989
Roseburia inulinivorans DSM 16841 ACFY01000152 EEG92587
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| Flavonifractor plautii strain 2789ST

| Flavonifractor plautii strain 27895 Cluster A
Pseudofiavonifractor capillosus ATCC
R R @stﬁiﬁuﬁp@ioﬁcuHDs_M 1682 g_
Coprococcus eutactus strain 2789S
Coprococcus eutactus strain 27895TD
Coprococcus eutactus strain 2789STDY5 Cluster B
Coprococcus eutactus strain 2789STD
Lachnospiraceae bacterium MD335
___ __ 7L lLachnospiraceae bacterium A4 acPFC
Faecalibacterium prausnitzii A2-165
Faecalibacterium prausnitzii strain A21
Faecalibacterium prausnitzii strain Ind
Faecalibacterium prausnitzii strain 942
Faecalibacterium cf. prausnitzii K
Faecalibacterium prausnitzii
Clostridium sp. M62/1 Cluster C
Clostridium symbiosum WAL-14673
Clostridium symbiosum ATCC 14940
Eubacterium maltosivorans strain Yl ¢
Eubacterium limosum strain SA11 comp
Eubacterium limosum strain ATCC 8486
Eubacterium callanderi strain FD g
Lachnospiraceae bacterium 3-1 acPFp
Lachnospiraceae bacterium A2 acPFL-s
Eubacterium sp. 14-2 acPFD
Lachnospiraceae bacterium 3-1 acPFp-s
Roseburia intestinalis L1-82
Roseburia inulivorans DSM 16841
Lachnospiraceae bacterium TFO1-11
Clostridiales bacterium KA00134 HMPR Cluster E
Anaerobutyricum hallii DSM 3353
Anaerostipes caccae DSM 14662
Anaerostipes hadrus DSM 3319
Clostridium sp. $52/1 Cluster F
Clostridium sp. IN-9

Cluster D

Figure 2. Results obtained from phylogenetic analysis. Six clusters were constructed (cluster A-F) based on phylogenetic

distance. For each cluster, one pair of degenerate primers was designed.

Based on the phylogenetic distance, we constructed bacterial clusters and tried to
design one degenerate primer for each of the suggested clusters. If we did not succeed, i.e.,
the variability within the group was too high, we stepped down in the phylogenetic tree
to the nearest lower cluster and designed a new set of primers. Finally, we obtained six
clusters (A-F) (Figure 2). For each cluster, one pair of degenerate primers was designed by
using CEMASuite software (version 2.0.9) [44]. Primers were checked with Primer BLAST
tool [45] to avoid any undesired cross reactivity with other gut bacteria or human DNA.
The sequences and expected lengths of the degenerate primers are shown in Table 3.

3.3. Validation and Optimization of Designed Primers

Primers designed in silico were validated and optimized in DNA isolated from human
stool samples. Compared to the conventional primers that perfectly match with the target
sequence, the use of degenerate primers brings specific issues that must be addressed.
First, a degenerate primer represents a mix of possible nucleotide combinations that do
not bind to the target sequence with the same efficiency. The more degenerate the primer
is, the more specific combinations may exist, and the binding efficiency to the particular
target sequence is lower. Second, individual batches of the same primers are not identical,
i.e., the exact combination of possible variants is unique for every single batch. Therefore,
we had to experimentally define the optimal concentration of each primer for every new
batch. In contrast to the usual concentration of a conventional primer (200 nM) the required
concentration of degenerate primers is higher and varied in the range 200 nM-1 pM in
our experiments based on the degeneracy number of each primer pair. The specificity
of primer—target interaction was checked by PCR product analysis. The length of PCR
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products was checked with separation resolution as good as 3 bp. For all products, the
predicted and determined length agreed (Figure 3).

Table 3. Sequences and expected product lengths of each primer set.

Primer Name

Primer Sequence (5’ to 3') Expected Product Length (nt)

but cluster A forward MCTGGGYATYCACACCGAG

but cluster A reverse GGTGGGCGATGGAGATAA .
but cluster B forward GGKCCBATHGARRTTGCAGA

but cluster B reverse TKTCGTCMASCCABTCATAC ol
but cluster C forward GBGACTGGSTRGATTAYG

but cluster C reverse TCVACRTACATYTCSGTGTG 682
but cluster D forward TGGAAYTCMTGGCATATGTC

but cluster D reverse VGMRITGTTRATGGAMATAAA =
but cluster E forward TGHAGSABHTSWTTTTACATGGA

but cluster E reverse SSCTTTGCAATGTCAACAAA 28
but cluster F forward AAATATCCCTCGHTGCYTWG s

but cluster F reverse

ARRTARGCACCYAWAACGAAATC

Primers designed for but gene are divided based on their phylogenetic distances into clusters A—F. nt = nucleotide;
K=GorT;B=CorGorT;H=AorCorT;R=AorGM=AorC;5=GorCGY=CorT;V=AorCorG;
W = A orT (as stated by [UPAC nucleotide code).

negative

165 rRNA
control

UNC-6 cluster cluster cluster cluster cluster cluster 100 bp

C.elegans A B C D E F DNA ladder 1500

643 nt

1000
900

726 nt =
679 nt 682 Nt e—— —l 700

585 nt 600
574 nt 558 nt
- —_—
500

400
228 nt —300

200

35

Figure 3. Results obtained from fragment analysis. Above every band, expected product length (number of nucleotides) is
shown in red. The actual length can be estimated by the DNA ladder on the right.

3.4. Normalization of gPCR Results

Quantification of any target sequence by qPCR depends on the stable and robust
reference (housekeeper) gene. The normalization of gPCR results in stool samples is
challenging as, in this material, no housekeeper gene exists. To solve this problem, we
employed two different strategies. The first is based on the spike DNA, added in a
standard amount to the sample prior the isolation of DNA. To this end, we chose gene
coding of the protein netrin UNC-6 from C. elegans, as there is minimal chance of C. elegans
natural occurrence in the human gut. The second strategy quantifies the target gene in
relation to the number of 165 rRNA gene copies, particularly the conserved sequence in the
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copy number normalized to 16S

copy number normalized to 165

copy number normalized to 16S

V1-V3 region. Despite the differences between the normalization methods, their outcomes
correlate, ranging from 0.4818 to 0.9331 of Spearman’s R values (Figure 4), p < 0.001.
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A R = 0.9331
5 % 6 1 % 3 4

copy number normalized to UNC-6

Cluster F

R=0.8724

0 1 2 o
copy number normalized to UNC-6

Figure 4. Correlation plots (each for cluster A-F) showing two different normalization methods for each cluster. x-axis:
log transformed but copy number normalized to UNC-6 gene from C. elegans. y-axis: log transformed but copy number

normalized to 165 rRNA gene. Spearman’s R correlation values are shown.

Nevertheless, significant correlation between the outcomes of two ways of but gene
abundance normalization does not prove that these two methods are identical. Therefore,
we employed the Bland—-Altman method (Figure 5). The analysis revealed that the ratio
between the normalization methods does not change with the magnitude of the mea-
sured values. The results of correlation and Bland-Altman analyses revealed comparable
outcomes from both normalization methods.
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Cluster A Cluster B

o

0
~1 0 i 2 -5.0 -Z5 0.0 25
Average of the 168 and UNCE normalization methods Average of the 16S and UNC6E normalization methods

Difference between 165 and UNC& normalizalion methods
Difference between 185 and UNC6 normalization methods

Cluster C Cluster D

Difference between 165 and UNC6 normalization methods

(=1

Difference between 163 and UNC8 normalization melhods

0 2 4 -Z5 0.0 25 50
Average of the 165 and UNCE normalization methods Average of the 185 and UNCB normalization methods
Cluster E Cluster F

2-

<2

-

Difference between 165 and UNC8 normalization methods
Difference between 16S and UNC6 normalization methods

_f\verage of the 168-:nd UNCSE norma\iz;;un methods Averagfof the 16S and L?NCS normalizatign methods

Figure 5. The Bland-Altman plots for each cluster that compare normalization methods based on the 165 rRNA or UNC-6
genes (after log-transform). The x-axis is the average copy number obtained by both normalization methods and the y-axis
represents the difference between the outcomes of normalization according to 165 rRNA and UNC-6 genes. The blue region
is the bias with its 95% confidence interval, green region is the upper limit of agreement with its 95% confidence interval,
and the red region is the lower limit of agreement with its 95% confidence interval.
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3.5. Quantification of but Gene in Populations with Contrast Phenotypes

We determined the abundance of the but gene in two experimental groups with dif-
ferent dietary habits and metabolic phenotypes, i.e., lean vegans and obese omnivores.
In both vegans and omnivores, we found the highest abundance of the but gene was
determined by primers specific for cluster C and lowest using those specific for cluster B
(B<E <A <F<D<C). As shown in Table 4, vegans and obese omnivores significantly
differed in the but gene abundance in cluster A (higher in OB) and cluster C (higher in
VG). But gene copy number in cluster D tended to be higher in VG as well, but it did not
reach statistical significance. Cluster A comprises Flavonifractor plautii and Pseudoflavonifrac-
tor capillosus. Cluster C encompasses Faecalibacterium prausnitzii, Clostridium symbiosum,
Clostridium sp. M62/1, and three species belonging to genus Eubacterium. Cluster D is
comprised of three species belonging to genus Lachnospiraceae, Roseburia intestinalis and
Roseburia inulivorans, and one Eubacterium species. For quantification, we used both normal-
ization methods. The results were comparable in terms of abundance of individual clusters
and VG to OB ratio. In absolute values, the obtained numbers were lower using 165 rRNA
gene for normalization due to the high abundance of this gene compared with the gene
of interest (biit). The difference between both normalization methods lies in the unstable
165 rRNA gene copy number per bacterial genome at various bacterial taxa. However, as
shown by the downstream-statistical analysis (Table 4), both normalization methods were
able to detect the same significant or insignificant differences between the subjects.

Table 4. but gene copy number normalized to either UNC-6 gene from C. elegans or to 165 rRNA gene in vegan (VG) and
obese (OB) subjects. Data are given as median (IQR, interquartile range). In each sample, but gene copy number was

determined using all primer pairs in separate qPCR reactions. The similarity of the distribution in VG and OB groups
was tested using Mann-Whitney U test. The results were considered statistically significantly different at p < 0.05 (shown

in bold).
Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F
UNC 165 UNC 165 TUNC 16§ UNC 165 UNC 168 UNC  16S
- 35 008 045 001 211 49 63 11 028 001 125 034
(20 (006) (509 (009 (243) (58  (118)  (24)  (0.48) (0.01) (251) (0.41)
48 010 028 001 18 0.9 032 001 176 038
oB G5 (0100 (@191 (005 0D g OO g6 e  ©01) (09 (070)

p-value 0.004 0.019

0.942 0.438 <0.001  <0.001 0.167 0.225 0.769 0.840 0.680 0.589

Aiming to validate these results, we correlated the abundance of but gene in different
clusters with the microbiome composition of the same samples (Supplementary Table S1)
determined by 165 rRNA gene sequencing (Figure 6). In the cases of clusters B, C, D, E,
and F, the abundance of but gene most significantly correlated with the expected bacterial
taxa (significance level was set to 0.05). Regarding cluster A, we found a trend to the
correlation between the abundance of gene but and Pseudoflavonifractor and, to a lesser
extent, Flavonifractor, but these correlations were not significant on the chosen significance
level. Importantly, our findings, i.e., higher copy number of but gene in vegan group, were
in line with the significantly higher amount of butyrate in vegan fecal samples, p = 0.002
(Figure 7).
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Figure 6. Graphical representation of Spearman’s correlation matrix between but copy number iden-
tified by primers A-F and relative abundance of representative bacteria for every cluster determined
by NGS. The but copy number was normalized to UNC-6 gene. The circle size and color intensity are
proportional to Spearman’s coefficient value. The red color of a circle indicates positive correlation,
the blue color negative correlation. Areas with an asterisk sign inside the circle indicate that the
specific correlation was significant on the significance level of 0.05.
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Figure 7. Butyrate content in feces of VG and OB subjects. Values represent PQN normalized
intensities of butyrate-specific signal in NMR spectra. Data are presented as Tukey box plots with
median and whiskers (1st, 3rd quartile).
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4. Discussion

In this study, we describe the development of a widely accessible method for the
assessment of functional capacity of gut microbiota for butyrate synthesis based on the
qPCR quantification of bacterial butyryl-CoA:acetate CoA-transferase. The workflow
includes: (i) isolation of DNA from the fecal sample; (ii) performing multiple qPCRs
using degenerate primers specific for but gene variants; and (iii) quantification of but gene
abundance using the selected reference gene. We further demonstrate the application of
this method in the assessment of butyrate synthesis capacity in the fecal microbiome of
lean vegans and healthy obese omnivores. Our results show that some but gene variants
are far more abundant than the others; therefore, when the aim is only the approximate
estimation of butyrate synthesis capacity, the method could be further simplified by using
only the primers specific for the most abundant clusters of bacteria.

Quantification of a particular gene of interest (GOI) in the studied microbial population
allows for deeper insight into the real functional capacity of the particular sample. On the
other hand, this approach must cope with another type of limitations. Variability of GOI
sequences among bacteria does not allow for designing one universal primer. This obstacle
could be overcome by employing degenerate primers, but even adopting this approach, it
is usually impossible to design one primer for all target sequences. We propose that the
identification of phylogenetically related groups of bacteria sharing some similarity is the
solution to this problem. Because of the random selection of nucleotides in the degenerate
positions, individual batches of degenerate primers may significantly vary in composition.
This inconvenience could be overcome by preparation of well-defined primer mixtures
where each primer pair is present in the exact concentration. In practice, each primer
pair may be synthesized separately and then all primers mixed in equimolar ratio. This
approach may be more expensive and laborious at the beginning, but it allows for avoiding
the necessity to determine the efficient primer concentration for every new batch.

The qPCR method is comparative in principle. Therefore, the selection of a stable
reference gene is of utmost importance. Unfortunately, feces is quite challenging material
from this point of view. It is extremely heterogeneous and varies greatly in the content
of dry mass, total protein or total DNA. A standardized fecal sample processing and
DNA isolation pipeline during the study is essential, as it turns out in recent years [46,47].
Furthermore, DNA isolated from feces is a mix of host, bacteria, fungi, and virus DNA at
variable ratios. The final readout, i.e., the composition of the fecal microbial community,
is affected by the stabilization and storage strategies used in the process of sampling.
The most important factors are: (i) usage of preservation buffers; (ii) time from sample
production and freezing; (iii) storage temperature, and (iv) aerobic vs. anaerobic conditions
during storage [48]. A standardized fecal sample processing and DNA isolation pipeline
during the study is essential, as it turns out in recent years [46,47]. In our study, we decided
for sample storage without preservation buffers, as their presence makes subsequent
metabolomic analysis impossible. The native samples were immediately frozen in —20 °C
for maximum 7 days; long-term storage occurred at —50 °C. Because the quick-freezing
stops or maximally slows down biological processes, we processed the samples under
aerobic conditions, as it simplifies the sample handling for the study participants.

The most commonly known gene shared by all bacteria and, thus, the potential
housekeeper gene is the gene coding for 165 rRNA. Its advantage as a reference gene is
that it contains conserved sequences common to all bacteria that could serve as target
sequences of primers. The quantification of the 165 rRNA gene allows for the assessment
of the total bacterial “load” in the sample. The limitation of 165 rRNA gene as a reference
is the unequal number of 165 rRNA copies per cell in different bacterial species.

According to Vétrovsky and Baldrian’s in silico study [49], with a total number of
1690 bacterial genomes with 909 species identified, there was an average of 4.2 165 rRNA
gene copies per genome. The copy number of 165 rRNA gene was highly taxonomically
specific (for example, in the Gammaproteobacteria and Fusobacteria, the copy number
varied widely between 1 and 15). In some studies [25], the 165 rRNA gene copy number
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was used for normalization of the but gene but had to be adjusted as an average number of
copies in particular bacteria; in this case, five gene copy numbers were used representing
Firmicutes and Bacteriodetes. Second, the abundance of 165 rRNA gene is an order of
magnitude higher than the abundance of GOI, which results in low absolute values of the
GOI copy number normalized to this reference gene.

An alternative possibility of normalization in this type of material is quantification
to external DNA added to the sample. This approach is independent of microbiome
composition of the sample, and it may serve as a quality control of the whole process as
well. The prerequisite is the choice of sequence that is not present in any organism, which
could be found in the target material, in our case, in human feces. The UNC-6 gene of
C. elegans was a good candidate as we did not find any corresponding sequence when
using Nucleotide BLAST tool [30]. Despite the limitations of both approaches, we observed
high correlation between the but gene copy number normalized to both 165 rRNA and
UNC-6 sequences, and Bland-Altman analysis revealed the similarity of the outcomes
of both normalization methods. Nevertheless, we should be always aware of different
numbers of 165 rRNA gene copies within the bacterial population. Therefore, we prefer
the normalization to external DNA added to the sample; 165 rRNA gene quantification can
be used for the control of equal loading of bacterial DNA to the PCR reaction.

The rationale behind this study was to develop a widely accessible and easily imple-
mentable method that would allow for the assessment of the functional capacity of the gut
microbiota. The utmost readout of metabolic performance of bacteria is the presence and
quantity of the particular metabolite(s). In the case of the but gene, such a readout is the
content of butyrate in feces. Vegans and omnivore subjects represent different phenotypes
in terms of gut microbiota and metabolome composition [23,50-52]. Furthermore, a vegan
diet (as well as other plant-based diets) is associated with a high production of butyrate by
bacteria in the colon [50]. Based on these presumptions, we hypothesized that the but gene
will be more expressed in vegan compared to omnivore microbiota.

Based on the phylogenetic distance, we designed six sets of degenerate primers
(marked as cluster A—cluster F), every primer set targeting a different cluster of bacteria
possessing the but gene. It was confirmed that the buf gene was more expressed in veg-
ans for cluster C, which encompasses abundant genera Faecalibacterium, Clostridium, and
Eubacterium, which belong to the known butyrate producers, and but gene copy number
detected by primers specific for this cluster was highest among all clusters tested. We also
found a trend of higher but gene copy numbers in vegans detected for cluster D. Cluster
D includes rather abundant butyrate producers Lachnospiraceae bacterium, Eubacterium,
Roseburia intestinalis, and Roseburia inulivorans. Based on these results, we predicted higher
butyrate production in vegans, which was confirmed by NMR analysis of butyrate content
in fecal samples. Using two different approaches, the determination of buf gene abundance
in fecal DNA and direct assessment of butyrate content in feces, we confirmed the higher
butyrate production capacity in vegans. This finding supports the feasibility of our method
in predicting the microbial functional capacity.

As we had to employ primers specific to defined groups of bacteria, our method
may provide additional information about microbiota composition. Aiming to verify this
assumption, we calculated the correlation of but gene copy number and microbiota compo-
sition in the same sample determined by 16S rRNA sequencing. For clusters B,C, D,Eand F
we found strong positive correlation between the but gene copy number and the abundance
of the target bacteria. In these clusters, the primer sequences are derived from abundant
and/or highly prevalent bacteria, such as Coprococcus (cluster B), Faecalibacterium (cluster C),
Roseburia (cluster D), Eubacterium/Anaerobutyricum hallii (cluster E), or Anaerostipes (cluster
F). In cluster A, we observed a weak positive correlation (not a significant one) between
but gene copy number and the abundance of target bacteria Pseudoflavonifractor and, to a
lesser extent, Flavonifractor. Both these bacteria were identified in our sample set but with
low abundance and prevalence, which might compromise the outcome of our method.
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5. Conclusions

Taken together, we described a method allowing for the detection of specific bacterial
genes in the gut microbiome. Our data support the presumption that the determination of
but gene copy number on bacterial DNA reflects its taxonomic composition, particularly
in the case of more abundant bacteria, as well as functional readout, in this case fecal
butyrate content. In conclusion, this approach may represent an efficient tool for the
estimation of microbial functional capacity. This method requires only equipment and
skills routinely available in diagnostic laboratories and does not put any demands on
advanced bioinformatics data analysis. Therefore, it may become a feasible tool for rapid
screening of specific functional capacity of gut microbiota, i.e., allowing for personalized
estimation of the usefulness of prebiotic treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11091303 /51, Table S1: title. Microbiome composition of the fecal samples determined by
165 rRNA gene sequencing,.
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3.3 Exploration of the possibilities of the manipulation of gut microbiota by
the dietary fiber inulin in the personalized treatment of T2D

Obesity and associated metabolic diseases, such as T2D, are a major global health challenge,
and the gut microbiota has been suggested to play a critical role in their development. Although many
studies suggest an association between T2D and gut dysbiosis, results on the composition and function
of the microbiota are inconsistent and sometimes contradictory. Diet plays an important role
in shaping the microbiome, and dietary interventions focused on modulating the composition
and/or performance of the gut microbiota appear to be a promising therapeutic target. This study
aimed to determine whether the gut microbial composition and metabolome differ in lean healthy,
obese healthy, and obese diabetic drug-naive T2D patients, whether the effects of inulin on glucose
tolerance and insulin sensitivity can be explained by the response of the gut microbiota to inulin
intervention, and whether this response can be predicted from the initial microbiome
and metabolome signature.

The observational part of the study involved screening patients with pre/diabetes (DM, n = 49),
metabolically healthy overweight/obese patients (OB, n = 66) and a lean healthy cohort (LH, n = 32).
All cohorts had their blood, urine and stool samples collected. An oral glucose tolerance test was
performed and 3-day prospected dietary records were obtained. The prospective part of the study
involved 27 DM patients and the effect of inulin supplementation (10 g/day for three months)
on glucose disposal and insulin sensitivity was investigated. Various outcomes were measured during
the whole study, including gut microbial composition, SCFAs in plasma, volatile organic compounds
(VOCs) in feces and metabolites in serum measured by NMR.

Microbiome and metabolome composition varied across groups. The DM and LH groups represented
opposite poles of the abundance spectrum, whereas OB was found to be more similar to DM.
Concerning microbiome composition, multivariable statistics revealed significant differences
in B-diversity between LH, OB, and DM phenotypes (PERMANOVA test). The univariable analysis
identified 37 taxa that had significantly different abundance among the groups. A machine learning
approach (LASSO regression model) was used to discriminate the groups based on microbial
composition, but the outcome was not satisfactory. When OB and DM data sets were grouped, the
accuracy of the model increased to 75%. Significant differences were also found in the B-diversity
of VOCs between the groups, with pairwise analysis confirming significant differences between OB
and DM groups compared to the LH group. Univariable analysis followed by effect size analysis
revealed ten VOCs with significantly different abundance between groups. Nonanoic acid was more
abundant, while all other compounds, including SCFAs esters, were less abundant in the OB and DM
groups compared to LH controls. The machine learning model achieved only 52% accuracy
for classifying subjects into three categories but increased to 81% when obese and diabetic subjects
were combined into one category. The LASSO model based on serum metabolome data was able
to classify unknown subjects into the categories LH, OB, or DM with an accuracy of 74%. The integrated
LASSO model, which combined all variables, allowed better classification between groups,
with an accuracy of 77%. Taken together, our results demonstrate that microbiome and metabolome
composition differ between lean participants and subjects with obesity, but do not allow
to discriminate between obese subjects with and without diabetes.

Inulin supplementation in 27 subjects with obesity and diabetes led to a significant change in their
microbiota composition (PERMANOVA <0.001). Several bacterial taxa, including butyrate producers
such as Faecalibacterium, Anaerostipes or Eubacterium halii and other bacteria considered beneficial
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such as Lactobacillus, Bifidobacterium and Akkermansia, increased after treatment. Conversely, some
bacterial taxa abundances decreased after supplementation, for example, those known to be
associated with protein fermentation. After the inulin treatment, there was a significant increase
in the concentration of butyric acid, propionic acid, and asparagine in the serum, while
the concentration of glycerol and 2-propanol decreased. Inulin intake also affected markers of glucose
tolerance and insulin sensitivity, but the individual response varied greatly. Nevertheless, significant
improvement in glucose tolerance (measured as 120 min OGTT glucose) was observed in the entire
group that received the intervention, along with a tendency towards a reduction in the area under the
curve (AUC) for OGTT glucose and fasting glycemia. Linear regression models were fitted with all
glucose metabolism parameters as outcome variables and all omics and clinical variables as predictors.
We identified potential predictors of individual response to inulin treatment independently
on pre-intervention glycemic parameters, such as serum BCAA derivatives, serum
3-hydroxyisobutyrate, fecal indole and various bacterial taxa (Ruminiclostridium, Lachnoclostridium,
Eubacterium halii).

In conclusion, this study provides valuable insights into the role of gut microbiota in the development
of metabolic diseases and the potential use of dietary interventions to modulate the microbiota
and improve metabolic health. The findings highlight the complex nature of microbial changes
underlying the development of TD2 and obesity but also suggest that inulin supplementation can lead
to significant improvements in glucose tolerance and insulin sensitivity, as well as changes
in microbiota composition and metabolome. These findings may help personalize treatment options
and improve outcomes for patients with metabolic diseases who have struggled to achieve success
through lifestyle changes alone.

This article was published on the 21 of April 2023 in Nutrition & Diabetes, IF = 4.73
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AIM: The metabolic performance of the gut microbiota contributes to the onset of type 2 diabetes. However, targeted dietary
interventions are limited by the highly variable inter-individual response. We hypothesized (1) that the composition of the complex
gut microbiome and metabolome (MIME) differ across metabolic spectra (lean-obese-diabetes); (2) that specific MIME patterns
could explain the differential responses to dietary inulin; and (3) that the response can be predicted based on baseline MIME
signature and clinical characteristics.

METHOD: Forty-nine patients with newly diagnosed pre/diabetes (DM), 66 metabolically healthy overweight/obese (OB), and 32
healthy lean (LH) volunteers were compared in a cross-sectional case-control study integrating clinical variables, dietary intake, gut
microbiome, and fecal/serum metabolomes (16 S rRNA sequencing, metabolomics profiling). Subsequently, 27 DM were recruited
for a predictive study: 3 months of dietary inulin (10 g/day) intervention.

RESULTS: MIME composition was different between groups. While the DM and LH groups represented opposite poles of the
abundance spectrum, OB was closer to DM. Inulin supplementation was associated with an overall improvement in glycemic
indices, though the response was very variable, with a shift in microbiome composition toward a more favorable profile and
increased serum butyric and propionic acid concentrations. The improved glycemic outcomes of inulin treatment were dependent
on better baseline glycemic status and variables related to the gut microbiota, including the abundance of certain bacterial taxa
(i.e., Blautia, Eubacterium halii group, Lachnoclostridium, Ruminiclostridium, Dialister, or Phascolarctobacterium), serum concentrations
of branched-chain amino acid derivatives and asparagine, and fecal concentrations of indole and several other volatile organic
compounds.

CONCLUSION: We demonstrated that obesity is a stronger determinant of different MIME patterns than impaired glucose
metabolism. The large inter-individual variability in the metabolic effects of dietary inulin was explained by differences in baseline
glycemic status and MIME signatures. These could be further validated to personalize nutritional interventions in patients with
newly diagnosed diabetes.

Nutrition and Diabetes (2023)13:7 ; https://doi.org/10.1038/541387-023-00235-5

Obesity and its associated metabolic diseases, including type 2
diabetes, currently represent one of the greatest challenges to
global health care [1]. Recently, it has been suggested that the
composition and performance of the gut microbiota contribute to
individual risks. The critical role of the gut microbiota in the
development of obesity was suggested by a seminal study by
Turnbaugh [2], followed by others confirming differences in
microbiota composition between lean and obese individuals [3, 4].

Further research showed an association between the gut
microbiota and the development of type 2 diabetes [5-8], with
evidence of a specific gut microbiota signature characteristic of
prediabetes [9, 10]. However, while many studies suggest that
type 2 diabetes is associated with gut dysbiosis [11], results on the
composition and function of the microbiota are inconsistent and
sometimes contradictory. For example, o-diversity has been
reported to be significantly lower [6, 12, 13], not significantly
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reduced [14], or comparable to nondiabetic subjects in patients
with T2D [15, 16]. Most studies report significant differences in the
composition of the gut microbiota between diseased and healthy
subjects [17], but they differ greatly with respect to specific taxa.
Some studies show that T2D is associated with an increased
Firmicutes/Bacteroidetes ratio [6, 13, 14, 18, 19], whereas others
report a significant increase [14, 18] or decrease [6, 13] in
Proteobacteria. At the genus level, there are few dysregulated taxa
that have been consistently reported, ie, an increase in
Streptococcus [9, 15, 20], Escherichia [15, 21, 22], Veillonella
[6, 21], Lactobacillus [13, 18, 23], and Collinsella [12, 15]; decrease
in Akkermansia [15, 18], Dialister [15, 19], Haemophilus [12, 15],
Roseburia [12, 15], and Faecalibacterium [10, 12, 13], whereas many
others show changes in both directions [17]. Diet composition is a
known risk factor for the development of type 2 diabetes. In
addition to direct effects on host physiology, diet plays an
important role in shaping the microbiome, thereby influencing its
metabolic program [24]. Therefore, dietary interventions focused
on modulating the composition and/or performance of the gut
microbiota appear to be a promising therapeutic target.
Supplementation with prebiotic supplements, and dietary fiber
in particular, is often recommended as a beneficial treatment for
non-communicable diseases, but controlled clinical trials indicate
pronounced differences in response to treatment, with consider-
able personal variability [25]. The underlying causes are not yet
clear, but strong inter-individual differences in microbial response
to dietary fiber likely play a key role [26, 27]. Therefore, the
identification of the microbial taxa that mediate the beneficial
effects of dietary fiber may open new avenues for individualized
treatment approaches [28]. In the present study, we aimed to
determine (i) whether the composition of the complex gut
microbiome and metabolome (MIME) differ in lean healthy, obese
healthy, and obese diabetic drug-naive type 2 diabetic patients; (ii)
whether the effects of inulin on glucose tolerance and insulin
sensitivity can be explained, at least in part, by the response of the
gut microbiota to inulin intervention; and (iii) whether this
response can be predicted from the initial MIME signature.

MATERIAL AND METHODS

The current study was performed within the framework of the TRIEMA
project: Treatment of Insulin Resistance by Modification of Gut Microbiota
(ClinicalTrials.gov Identifier: NCT03710850). The first study from the project
has been already published [24].

Study design and population

Observational study. Forty-nine newly diagnosed patients with pre/
diabetes (DM: BMI >25, fasting glycemia >56mM, and/or 2hOGTT
glycemia >7.8 mM), 66 metabolically healthy overweight/obese (OB: BMI
>25) and 32 lean healthy (LH: BMI <25) subjects were screened and
enrolled in the cross-sectional case-control study. A clinical visit was
scheduled after enrollment. Volunteers were examined after a 12-h
overnight fast; blood and urine samples were collected; a clinical
examination, bicimpedance analysis, and oral glucose tolerance test
(OGTT, 75 g glucose) were performed. A prospective 3-day dietary record
and stool samples were collected from each participant. Dietary records
and stool samples were obtained no longer than a week after the
clinical visit.

Prospective study. Twenty-seven patients (DM) were then enrolled in a one-
arm, non-controlled intervention study in which they were fed 10g of inulin
daily for 3 months. The sample size determination for the intervention study
was calculated for the primary outcome, glucose disposal (GD). According to
GD, standard deviations ranged from 1.8 to 2.5 mg/kg/min in both insulin-
sensitive and insulin-resistant individuals, with high insulin levels (i.e., 80 mU/
m?) showing less variability with SD up to 051 [29]. We anticipate that
participants will respond individually to the intervention, and we will divide
them into tertiles (responders, neutral, and non-responders). If we consider a
difference between changes of 20% (i.e, ~1.5 mg/kg/min) to be significant to
have 90% power to detect a difference at the 0.05 alpha level, we must have
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6 subjects in each group. To account for dropouts or incomplete data, we
aimed to have at least 9 subjects in each group (i.e, responders vs. non-
responders). Baseline and post-intervention examinations were identical to
those described above. In addition, indirect calorimetry and a two-step
glucose clamp (10 and 80 miU/m? BSA insulin dose) were performed [30].
Insulin sensitivity (IS) of adipose tissue was expressed as the change in non-
esterified fatty acids (NEFA) and plasma glycerol levels from baseline to the
steady state of the first step of the clamp, whereas IS of skeletal muscle was
expressed as space-corrected glucose infusion rate per kg fat-free mass (Mcor
mg/kg FFM/min) and metabolic clearance of glucose divided by steady-state
insulinemia (MCR/, ml/kg FFM/min) at the steady state of the second step.
Detailed calculations are described in Supplementary Material. All participants
signed an informed consent before enrollment in each respective study. The
research protocol was approved by the Ethics Committee of University
Hospital Kralovske Vinohrady (EK-VP /26/0/2017) in accordance with the
Declaration of Helsinki. The study was registered under NCT03710850.

Gut microbiome analysis

DNA from stool samples was isolated using the QIAmp PowerFecal DNA Kit
(Qiagen, Hilden, Germany), and the V4 region of the bacterial 16 S rRNA
gene was amplified by PCR. Sequencing was performed using the Miseq
reagent kit V2 with a MiSeq instrument (lllumina, Hayward, CA, USA). The
raw sequences were processed using a DADA2 Amplicon Denoiser [31].

Short-chain fatty acids (SCFA) in plasma
SCFA were analyzed in plasma by LC-MS according to a method described
before [32].

Volatile compounds (VOCs) analysis in feces

Volatile fingerprinting of fecal samples was performed using an Agilent
7890B gas chromatograph (Santa Clara, California, USA) coupled to a
Pegasus 4D time-of-flight mass spectrometer (LECO, Geleen, The Nether-
lands). Data acquisition and initial data processing were performed using
instrumental SW ChromaTOF by LECO.

NMR analyses

Serum samples (after protein precipitation) were measured on a 600 MHz
Bruker Avance Ill spectrometer (Bruker BioSpin, Rheinstetten, Germany)
equipped with a 5mm TCl cryogenic probe head. The concentrations of
individual metabolites, identified by comparison of proton and carbon
chemical shift with the HMDB database, were expressed as PQN [33]
normalized intensities of corresponding signals in CPMG spectra. The list of
quantified metabolites with corresponding 'H and '*C chemical shifts is
given in Table S1. The representative "H NMR spectrum is shown in Fig. S1.

Statistics

The statistical analyses were performed using R software packages and in-
house scripts [34]. The microbiome and VOCs data were treated as
compositional (proportions of total read count in each sample or
proportion of the total area of selected masses), and before all statistical
analyses, the data were transformed by centered log-ratio (cIr) transforma-
tion with a multiplicative simple replacement for handling zero values.
According to their abundance and prevalence, the bacteria were classified
as “core microbial taxa” when fulfilling the following conditions, ie.
abundance of >0.1% and prevalence of >75% at least in one experimental
group. Other microbial taxa were classified as rare.

All methods are described in detail in Supplementary Material,

RESULTS

Observational study: clinical characteristics

The clinical characteristics of the study participants are shown in
Table 1. As expected, the groups differed in terms of glycemic
indices, insulin sensitivity, and beta cell function. Biomarkers of
lipid metabolism were significantly elevated in both the OB and
DM groups compared with LH.

Observational study: fecal microbiome composition

In all samples, we found 44,332 amplicon sequence variants (ASVs)
and identified 13 phyla, 30 classes, 56 orders, 104 families, and 367
genera. Considering only the ASVs, all a-diversity indices were
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OB K-W test DMCT
LH vs OB LH vs DM OB vs DM
47/19
87.2 [25.8] “0.05 “0.001 “0.001 <0.01
513 [14.2] “0.05 “0.001 “0.001 n.s.
30.8 [6.6] “0.05 “0.001 “0.001 “0.05
0.9 [0.1] “0.05 “0.001 “0.001 “0.05
329(14.7] 0.05 “0.001 “0.001 n.s.
51.9(17.3] “0.05 n.s. n.s. “0.05
38.0[(12.6] “0.05 n.s. n.s. “0.05
1777[555] ns. N/A N/A N/A
72 [28.5] ns. N/A N/A N/A
65 [35.5] “0.05 “0.05 n.s. n.s.
197 [73.5] ns. N/A N/A N/A
15 [7.5] ns. N/A N/A N/A
5.3 [0.6] 0.05 “0.001 “0.001 “0.001
6.4 [1.6] “0.05 ns. “0.001 “0.001
239 [150] “0.05 ns. “0.001 “0.001
6453[4122] “0.05 “0.01 “0.001 “0.05
9.5 [5.7] “0.05 “0.001 “0.001 “0.001
5.3 [0.6] 0.05 “0.001 “0.001 “0.01
6.4 [1.6] “0.05 “0.001 “0.001 “0.001
4.0 [3.4] “0.05 “0.01 “0.001 “0.001
1.1 [1.0] “0.05 n.s. n.s. n.s.
4.9 [5.7] “0.001 n.s. “0.001 “0.001
108 [145] “0.001 ns. “0.001 “0.001
1.01[0.60] “0.05 “0.001 “0.001 “0.01
5.15 [1.24] “0.05 ‘0.01 “0.05 n.s.
1.39 [0.56] 0.05 0.05 “0.001 ns.
3.06 [1.16] 0.05 “0.001 0.05 n.s.
1.10 [0.71] ‘0.05 “0.001 “0.001 “0.05
23 [4.0] “0.05 “0.001 “0.001 n.s.
7.27 [0.50] ns. N/A N/A N/A
23.0 [6.9] ns. N/A N/A N/A

Table 1. Group characteristics for lean (LH), obese (OB) and persons with pre/diabetes (DM).
LH DM
General characteristics
Sex (F/M) 16/16 26/23
Weight (kg) 74.8 [23.1] 99.5 [17.4]
Age (years) 309 [11.0] 583 [13.1]
BMI (kg/m?) 23,0 [4.0] 34,9 [9.1]
WHR 0.8 [0.1] 1.0 [0.1]
Body composition
Fat (kg) 14.2 [4.8] 39.5[22.3]
FFM (kg) 56.5 [22.5] 61.3[14.8]
TBW (kg) 41.4 [16.5] 44.9[10.8]
Macronutrient intake
Total energy (kcal/day) 2101[1583] 2017[879]
Proteins (g/day) 81 [29] 82 [33]
Lipids (g/day) 83 [49] 79 [40]
Carbohydrates (g/day) 232 [98] 207 [96]
Dietary fiber (g/day) 18 [19] 16 [9]
Glucose metabolism
Fasting glucose (mmol/l) 4.8 [0.3] 5.9 [0.8]
2h OGTT glucose (mmol/l) 57 0.1] 8.9 [3.1]
AUC for OGTT glucose (mmol/ 254 [114] 499 [282]
Ix120min ")
AUC for OGTT insulin (mIU/ x 120 min~") 3890[2707] 8948[6596]
Insulin (mIU/I) 4.0 [2.7] 15.9 [8.6]
C-peptide (pmol/l) 233 [97) 769 [357]
HbA1c (mmol/mol) 32 [2] 38 [7]
Matsuda index 10.2 [6.4] 20[1.7]
Insulinogenic index 0.8 [0.7] 0.8 [1.0]
Oral disposition index 6.7 [4.9] 1.91[1.2]
Beta cell index 163 [134] 45 [25]
TyG index 0.51 [0.67] 1.54[0.59]
Lipid metabolism
Total cholesterol (mmal/l) 4.30 [1.09] 5.01 [1.23]
HDL-C (mmol/l) 1,67 [0.47] 1.26 [0.30]
LDL-C (mmol/l) 237 [1.15] 3.05 [1.40]
Triacylglycerols (mmol/l) 0.69 [0.52] 1.53 [0.93]
Inflammatory markers
CRP (mg/) 0.7 [0.9] 33 [45]
Stool characteristics
pH in feces 7.26 [0.67] 7.04 [0.52]
dry mass (%) 25.1 [8.9] 24.5 [9.9]

Data were given as median [71].

AUC area under the curve during oral glucose tolerance test, BMI body mass index, CRP C-reactive protein, DMCT Dunn’s multiple comparison test, FFM fat-free
mass, HDL-C high-density lipoprotein—cholesterol, HbAT glycated hemoglobin, K-W Kruskal-Wallis test, LDL-C low-density lipoprotein—cholesterol, N/A not
applicable, ns not significant, TyG index In (fasting triglyceride x fasting glucose)/2; TBW total body water, WHR waist-hip ratio. Insulinogenic index (AINS 0-30/
AGLU 0-30), ISI-M Matsuda-deFronzo index; oral disposition index (IGI*ISI); beta cell index ((AUC,yiin/iIAUCg1ycose)*ISI.

*n < 0.05, *p < 0.01, **p < 0.001,

significantly lower in OB and DM compared with LH, whereas no
differences were found between the DM and OB groups (Fig. 52).
When ASVs were aggregated and classified at the genus level,
only the Shannon index remained significantly lower in OB and
DM compared with LH (Fig. 53).
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At the phylum level, the microbiota composition was
dominated by Firmicutes and Bacteroidetes, followed by much
less abundant Actinobacteria, Proteobacteria, and Verrucomi-
crobia. The median abundance of all other phyla was less than
0.01%. There were no significant differences in the
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representation of individual phyla (Table S2). The separation of
individual samples at the genus level is visualized in Fig. 1A.
Multivariable statistics revealed significant differences in
B-diversity (p <0.001), and pairwise analysis confirmed signifi-
cant differences between OB vs. LH (p <0.001) and DM vs. LH
(p <0.001), but not between DM and OB. Using univariable
analysis, we identified 37 taxa that had significantly different
abundance among groups; 15 of them met the criteria of “core”
microbiota, i.e., an abundance of >0.05% and a prevalence of
>75% in at least one group (Fig. 1B and Table S$3), accounting
for 45% of all core genera. Thirteen core genera were more
abundant in LH compared to the other two groups, while

. Groups

]
: s o] LH
-10= -
i OB
| s DM
1

Dim1 (10.8%)

| Erysipelotricha UCG-003 I 1
| | Lachnospiraceae incertae sedis

| Lachnospiraceae ND3007 group *
| Bifidobacterium
| Anaerostipes *
Fusicatenibacter 0
|Lachnospiraceae_unassigned (*)
| | [Eubacterium)] hallii group * -05
____|Blautia (*)

Dorea . -1
Lachnospiraceae NK4A136 group =
Faecalibacterium *

Christensenellaceae R-7 group *
Pseudobutyrivibrio (*)

Lachnoclostridium (*)

| Lachnospiraceae FCS02 group

| [Ruminococcus] gauvreauli group
Marvinbryantia *

Lachnospiraceae UCG-008

Family X1l AD3011 group

Prevotella 7

| Prevotellaceae

Tyzzerella 3
Catenibacterium (*)
| Tyzzerella 4
| Alloprevotella

Mitsuokella (*)

Megasphaera *
Fusobacterium (*)

| Bacteroidales_unassigned

| Ruminococcaceae UCG-004
Flavenifractor *

Desulfovibrio

Succinivibrio

Slackia
|Megamonas

0.5

Core microbiota

LH OB DM

Fig. 1 Fecal microbiome composition. A 2D PCA scores plot on
genera level after clr transformation. The explained variance of each
component is included in the axis labels. The large points represent
the centroids of each group. B Abundances of all significant genera
(FDR <0.1). Proportional data were used. Each cell then represents
the mean in each group for the corresponding genera. Rows were
z-scaled. Core genera are defined by the condition abundance
>0.05% and prevalence >75% at least in one group. Genera marked
by * are confirmed butyrate producers, and genera marked by (*) are
potential butyrate producers.
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Pseudobutyrivibrio and Lachnoclostridium were enriched only in
DM. Confirmed butyrate producers, i.e., Anaerostipes, Eubacter-
ium halii, Faecalibacterium, Christensenellaceae R-7 group, were
more abundant in the core microbiota LH than in the core
microbiota OB or DM. Most of the taxa enriched in DM and/or
OB belong to the “non-core” taxa. Among them, potentially
harmful genera were identified (Fusobacterium, Megasphera,
and Desulfovibrio). Significant positive correlations were found
between Fusobacterium abundance and C-peptide concentra-
tion in all groups. The common or unique taxa specific to the
groups are shown in Fig. 54.

The discrimination of the groups as a function of microbiome
composition was investigated using a machine learning approach
(LASSO regression model). This model, which has an accuracy of
51% and a sensitivity of 66% (LH), 50% (OB), and 43% (DM), does
not reliably classify LH, OB, and DM (Fig. S5). When we grouped
OB and DM, the accuracy of the model increased to 75% and the
sensitivity to 65% (LH) (Fig. S6).

Observational study: fecal metabolome
In the fecal metabolome, we identified 185 different VOCs. Within
this subset, 113 VOCs were of very low abundance (‘0.1%), 54
VOCs each accounted for 0.1-1% of the total, 12 VOCs accounted
for 1-5% of the total, and six were very abundant (>5%). The
separation of individual samples is visualized in Fig. 2. Multi-
variable statistics revealed significant differences in B-diversity
(p=0.0017). The pairwise analysis confirmed significant differ-
ences between the DM vs. LH groups (p<0.01) and OB vs. LH
(p < 0.05), but not between DM and OB.

Univariable analysis followed by effect size analysis revealed ten
VOCs with significantly different abundance between groups (FDR

Groups

(] LH
oB
DM

Dim1 (26%)

B
Nonanoic acid I 1
Benzeneacetaldehyde
2-Octanol 05
Propyl acetate

Decane

Tetradecanal
trans-Ocimene
-0.5
Humulene
Methyl pentanoate
LH CB DM |

Fig. 2 Fecal metabolome composition. A 2D PCA scores plot on
VOCs abundances after cIr transformation. Only VOCs meeting
condition AUC,,20.1% AUC., are shown. The explained
variance of each component is included in the axis labels. The
large points represent the centroids of each group. B Abundances of
significant metabolites. Proportional data were used. Each cell then
represents the median in each group for the corresponding
metabolite. Rows were z-scaled.
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p<0.1) (Fig. 2B and Table 54). Nonanoic acid was more abundant,
while all other compounds, including SCFA esters, were less
abundant in the OB and DM groups compared to LH. Only methyl
pentanoate showed an opposite pattern in the DM and OB groups
(DM>LH = OB) (Fig. 57). Nonanoic acid correlated positively with
the TyG index in all groups.

A LASSO model created for the classification of tested subjects
into three categories (LH vs OB vs DM) achieved only 52%
accuracy and only 48% (LH), 54% (OB), and 53% (DM) sensitivity
(Fig. S8). When we combined subjects from OB and DM into one
category, classification accuracy increased to 80.5%, but sensitivity
remained low at 52% (Fig. S9).

Observational study: serum/plasma metabolome

To determine the composition of the serum metabolome, we used
an untargeted NMR approach and LC-MS analyzes that allows
accurate determination of SCFA concentration in plasma. In total,
we identified 35 quantified analytes by NMR and nine SCFAs by
LC-MS, only acetate/acetic acid was identified by both methods.
PERMANOVA analysis suggested the separation of the groups, and
subsequent pairwise tests revealed significant differences
(p=0.001) in serum metabolome composition between all
compared pairs.

The univariable analysis identified 21 metabolites that were
significantly different in abundance between groups (Fig. 3B and
Table S5). Based on the univariable analysis, we identified LH, OB,
and DM-specific groups of serum metabolites. For most metabo-
lites, the DM and LH groups represented the opposite poles of the
abundance spectra, with OB closer to the DM group. All three
groups differed in serum concentrations of intermediates of
saccharide metabolism (glucose, lactate, and mannose) and two
amino acids (AA) (glutamine, alanine). The concentration of seven
compounds, including three SCFA (propionic acid, succinic acid,
valeric acid), two AA (tyrosine, histidine), and glycerol was
comparable at OB and DM, but differed from LH. Six compounds,
including two branched-chain amino acid (BCAA) derivatives (2-
oxoisovalerate, 3-methyl-2-oxovalerate), 2-hydroxybutyrate, acet-
one, 2-propanol, and formic acid, presented a specific DM-
associated signature (Fig. S10).

A LASSO -model based on serum metabolome data was able to
classify unknown subjects into the categories LH, OB, or DM with
an accuracy of 74% and a sensitivity of 90% (LH), 72% (OB), or 65%
(DM) (Fig. S11). When we grouped subjects from OB and DM
groups together, model accuracy increased to 89% and sensitivity
(LH) increased to 88% (Fig. S12). None of the models selected
glucose as a key discriminant.

Observational study: integrative analysis

We further investigated whether a combination of all variables would
allow better classification between groups. With this integrated
LASSO model, an unknown subject could be assigned to one of the
three groups (LH, OB, and DM) with an accuracy of 77% and a
sensitivity of 88% (LH), 79% (OB), and 66% (DM), respectively. LASSO
coefficients included five variables from the microbiome dataset, one
variable from the fecal metabolome dataset, and nine variables from
the serum metabolome dataset (Fig. $13). When we constructed the
LASSO model only for two groups (LH vs. OB 4 DM), we were able to
classify an unknown subject with 91% accuracy and 89% sensitivity.
Ten microbes, five fecal VOCs, and 11 serum metabolites contributed
to the discrimination between groups (Fig. S14).

Finally, we looked for a possible complex interaction between
different MIME components in individual groups. Figure 4 depicts
the positive and negative Spearman correlations among datasets
filtered by |p|>0.5; these correlations unravel differences in
interaction networks within each group. In the LH group, we
observed a rich network among variables both within and outside
the datasets, whereas the complexity in OB and DM was much
lower.
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Prospective study: effect of inulin on omics signature
Twenty-seven newly diagnosed DM subjects participated in a three-
month, single-arm, non-controlled intervention study in which they
were administered inulin (10 g/day) without other antidiabetic
medications and/or lifestyle interventions. No clinically significant
adverse events occurred, and all subjects completed the study. The
inulin intervention was associated with a significant change in
microbiota composition (PERMANOVA p<0.001) and a significant
decrease in a-diversity (Fig. 5A, B). At the phylum level, the
abundance of Bacteroidetes and Proteobacteria significantly
decreased, whereas the proportion of Actinobacteria and Verruco-
microbia significantly increased (Table S$6). Univariable analysis
revealed 28 taxa with significantly different abundance before and
after inulin treatment (Fig. 5C and Table 57). The abundance of 16
bacterial taxa (genera or higher taxonomic units), including
confirmed butyrate producers such as Faecalibacterium, Anaerostipes,
and Eubacterium halii or bacteria considered beneficial such as
Lactobacillus, Bifidobacterium, and Akkermansia, increased after
treatment. The abundance of 12 taxa, including Alistipes, Odoribacter,
or Bacteroides, decreased.

In serum and feces, inulin intake was not associated with a shift
in total metabolome composition, but using univariable analysis,
we identified several metabolites that were significantly different
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Fig. 4 Correlation chord diagrams between variables of different datasets. Spearman correlations were calculated for each group (LH, OB,
DM) separately. Only correlations among variables from different datasets (clinical variables, microbiome, serum, and fecal metabolome) and
characterized by |p| > 0.5 are presented. Positive (A, C, E) and negative (B, D, F) correlations are shown separately. The colors on the circuit code
individual datasets, the color of the edges corresponds to one of the datasets that are linked by the edge. Blue: microbiome; green: fecal
metabolome; yellow: clinical variables; violet: serum metabolome.
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before and after the intervention. In serum, the concentration of
butyric acid, propionic acid, and asparagine increased significantly,
whereas the concentration of glycerol and 2-propanol decreased
after inulin treatment (Fig. S15 and Table S8). In feces, three VOCs
were significantly different in abundance (p “0.05) before and
after inulin treatment, including two propionic acid esters
(increased) and 1-hexanol (decreased) (Table 59). However, the
significance disappeared after multiple comparisons.

Prospective study: effect of inulin on glucose metabolism

Inulin intake affected markers of glucose tolerance and insulin
sensitivity, but the individual response was highly variable; we
observed positive, no, or negative changes for each of the
variables (Fig. 6 and Table 510). In the entire intervention group,
we observed a significant improvement in glucose tolerance
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(120 min OGTT glucose) and a trend toward a reduction in AUC for
OGTT glucose and fasting glycemia. Skeletal muscle insulin
sensitivity, measured by glucose clamp and expressed as MCR/I
value, increased by more than 10% after the intervention
compared with baseline in 14 subjects (from +11.4 to +62.4%),
whereas it did not change or decrease in 13 subjects (from +4.8 to
—48.7%). A similar distribution was observed for other indices of
insulin sensitivity (Mcorr corrected for FFM, AUC OGTT insulin, and
fasting insulinemia).

Prospective study: predictors of the metabolic effect of inulin
Because we replicated previous findings of large inter-individual
differences in metabolic responses to inulin, we sought to identify
predictors of these differences. To this end, we built linear
regression models for all glucose metabolism parameters studied
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Table 2. Predictors of the inulin treatment effect on glucose homeostasis parameters.

outcome predictor B, p val B, p val By R?
Bx

AUC OGTT glucose Ruminiclostridium —41.60 0.015 —0.11 0.236 0.393
Lachnospiraceae_incertae sedis 40.37 0.015 —-0.18 0.044 0.249
Lachnoclostridium 35.83 0.033 -0.16 0.083 0.317
3-methyl-2-oxovalerate 37.78 0.018 —-0.18 0.044 0.326
alanine 36.28 0.024 -0.19 0.040 0.287
ethanol —51.31 0.001 -0.21 0.008 0.501

2 h OGTT glucose AUC OGTT insulin 1.00 0.027 —0.03 0876 0.286
fasting insulinemia 0.91 0.037 ~0.10 0.536 0.181
HOMA INS 0.88 0.046 -0.12 0.487 0.215
Eubacterium halii group 0.99 0.032 -0.17 0321 0.280
3-methyl-2-oxovalerate 1.08 0.012 —0.09 0.585 0.287
3-hydroxyisobutyrate 0.98 0.024 ~0.14 0392 0.278
2-oxoisocaproate 0.93 0.033 —0.12 0462 0.229
pyruvate 0.93 0.034 —0.09 0.580 0.245
indole 1.33 0.002 —-0.11 0.465 0.350
tridecanol 1.17 0.008 =013 0.426 0.300
¢-Dodecalactone 1.13 0.012 -0.18 0276 0.269
methyl heptenone 1.05 0.020 -0.16 0.360 0.217
2-undecanone 1.05 0.021 —-0.16 0341 0.240
methyl butanal 1.02 0.024 -0.1 0527 0.214

MCR/I (FFM) 1Sl (Matsuda) 0.01 0.005 —0.67 0.008 0313
AUC OGTT insulin —-0.01 0.005 —-0.53 0.017 0.291
2 hr OGTT insulinemia —0.01 0.024 —0.45 0.051 0.251
HOMA INS —0.01 0.027 —0.57 0.029 0.208
fasting insulinemia —0.01 0.030 —0.56 0032 0.269
HOMA IR —0.01 0.036 —0.55 0.035 0.205
1GI -0.01 0.045 -040 0.080 0.189
Blautia —0.01 0.027 —-0.22 0.329 0.222
[Eubacterium] hallii group —0.01 0.030 -0.16 0451 0.180
asparagine 0.01 0.011 —0.31 0121 0.230

A Mcorr (FFM) 1SI (Matsuda) 1.02 0.001 -0.53 0.025 0.474
AUC OGTT insulin —0.90 0.002 -0.31 0.132 0.335
HOMA INS —0.90 0.003 —0.38 0.080 0.318
Fasting insulinemia —0.88 0.003 —0.37 0.090 0.326
HOMA IR -0.86 0.006 -0.38 0.091 0.243
1GI —-0.75 0.009 —0.20 0.367 0.243
2 h OGTT insulinemia —0.66 0.029 —0.24 0293 0.201
Dialister —-0.58 0.038 —-0.01 0.979 0.172
Phascolarctobacterium 0.55 0.048 0.08 0.705 0.203
asparagine 0.75 0.011 —0.26 0239 0.210

The data shown in the table are derived from the linear regression model described by the equation YO - ylA) Po + ﬁwa + BXXEA’ + &, where Y™ stands for
outcome variable at time A; Y® stands for outcome variable at time B,B>A; X'™ stands for a standardized variable at time A representing in each model any
single clinical, metabolome or microbiome variable; f3,, By are model coefficients; ¢ stands for random error. Fecal metabolites were filtered by the condition £
AUC, 20.1% Z AUC,,, across all samples; bacteria were filtered by the condition median abundance 20.1% of the total £ of bacteria across all samples.

HbAIC glycosylated hemoglobin, Mcorr glucose disposal space corrected and adjusted to fat-free mass, MCR/l metabolic clearance rate of glucose space
corrected and adjusted to fat-free mass divided by steady-state insulinemia, OGTT oral glucose tolerance test, R* proportion of variation in y explained by the

predictors obtained using bootstrapping (50 iterations).

as outcome variables, with all clinical or omics variables as
predictors; we omitted variables with significant coefficients that
had high leverage (Figs. 516-519). Despite the limitations of our
model, it showed several potentially interesting findings (sum-
marized in Table 2). For example, the effect of inulin on skeletal
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muscle insulin sensitivity (Mcorr and MCR/I) could be predicted
from pre-intervention glycemic measures. In contrast, the MIME
predictors of the inulin effect were mostly not associated with pre-
intervention outcome variables. Change in AUC OGTT glucose was
negatively associated with an initial abundance of
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Ruminiclostridium, whereas increases in Mcorr and MCR/l were
associated with higher initial serum asparagine (both parameters)
and lower Dialister (Mcorr) or Blautia and Eubacterium halii (MCR/1).
Initial serum concentrations of BCAA derivatives were positively
associated with increases in AUC and 2-hour OGTT glucose. All
results are summarized in Table 2.

DISCUSSION

Our main findings are: (i) obesity is the dominant factor
determining the MIME signature, whereas glycemic status has a
lesser additional influence; (ii) the metabolic response to inulin
supplementation in individuals with newly diagnosed predia-
betes/diabetes is highly variable but can be predicted, at least in
part, from baseline clinical characteristics and MIME signatures,
Indeed, more insulin-resistant individuals with poorer glycemic
indices and elevated circulating BCAA derivatives and fecal indole
and p-cresol are less likely to respond to inulin supplementation.

Observational study: gut microbiome and metabolome
Obesity is a prominent risk factor for the development of type 2
diabetes. Numerous studies have identified groups of bacterial
taxa that are enriched or depleted in obesity and type 2 diabetes,
and despite considerable heterogeneity in the results, some
common observations have been noted. First, type 2 diabetes is
associated with the depletion of potentially beneficial bacteria
rather than the presence of some dominant potentially harmful
bacteria. Second, the abundance of butyrate producers and the
functional potential for butyrate production is reduced in type 2
diabetes [10, 20, 35]. Third, the diversity of the microbiota is lower
in diseased individuals compared with healthy controls [6, 36].

Some of our results are consistent with the above, whereas
others are contradictory. In contrast to the results of Wu [10], the
change in the composition of the gut microbiota in our study was
not related to glycemic status but mainly to obesity. The dominant
butyrate producers, such as Faecalibacterium, Anaerostipes, Eubac-
terium halii, or Blautia were significantly less abundant in the
microbiota of DM and OB, but we did not detect lower SCFA
concentrations in either feces or serum. In contrast, MCFA,
nonanoic and decanoic acids were elevated in OB and DM. MCFA
can originate from dietary sources [35], but also from microbial or
yeast fermentation [37]. SCFA and MCFA have different immuno-
modulatory properties; whereas SCFA attenuate inflammation,
MCFA have the opposite effect [35, 38, 39]. In addition, MCFA may
enhance intestinal permeation because of their physicochemical
properties as anionic surfactants [40]. Based on these findings, we
might suggest that it is not the lower level of SCFA but the
increased level of MCFA in the lumen that contributes to the
complications associated with obesity, such as impaired intestinal
barrier function or chronic low-grade inflammation.

Observational study: serum metabolome
The serum metabolome signature of obesity and diabetes
overlapped greatly in the study. Compared to lean subjects, both
the OB and DM signatures follow the same direction and differ
only in magnitude. The “adiposity signature,” which is similar in
both OB and DM, includes SCFA (succinic and propionic acid
increased, while valeric acid decreased), aromatic AA tyrosine
(increased), and two other AA (histidine and asparagine,
decreased). The concentration shift of five other metabolites, ie.,
intermediates of saccharide metabolism (glucose, lactate, and
mannose, increased) and AA glutamine and alanine, follows the
concordant direction to LH, but there is a significant difference
among all three groups. Six metabolites are specific for DM. This
signature consists of three BCAA derivatives, formic acid, 2-
hydroxybutyrate, acetone, and 2-propanol.

Our findings are consistent with previously published observa-
tions [41, 42]. Some signature metabolites could be attributed to
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altered saccharide metabolism in obesity and diabetes, such as
glucose, mannose, and lactate. 2-propanol, acetone, and
2-hydroxybutyrate might be related to NADH/NAD+ redox
imbalance, which has been proposed as one of the features of
T2D [43].

Some other signature metabolites, i.e, SCFA and BCAA, are
located at the interface between the host and microbiota. SCFA in
serum have not previously been described as components of an
obesity-related serum signature, probably because of the analy-
tical difficulties associated with their determination in serum. They
are exclusively microbial products, some of which (circulating
butyric acid and propionic acid) have been associated with
beneficial effects [44]. Elevated circulating BCAAs have been
associated with insulin-resistance conditions such as obesity,
diabetes [45], and even cancer [46]. For mammals, BCAAs are
essential and must be supplied from external sources. Recent
research has deciphered the importance of the gut microbiota in
modulating the availability of many necessary compounds,
including BCAA, to the host [47].

Inulin intervention and the effects on microbiota composition
and performance

Three months of regular consumption of 10g inulin/day was
associated with a significant shift in the composition of the
microbiota, characterized by a marked increase in potentially
beneficial bacteria, many of which are capable of butyrate
production [48]. At the same time, several bacterial taxa were
depleted, such as those associated with the fermentation of
proteins [49, 50]. This observation is largely consistent with
previously published reports [51, 52].

We did not detect a significant shift in the composition of the
fecal metabolome, although there was a non-significant trend
toward an increase in SCFA esters content. Participants were asked
not to change their dietary habits, and the only difference before
and after the intervention was the amount of inulin consumed.
This change could primarily increase the production of SCFA, but
these compounds are readily utilized by other microbes or
colonocytes at the site of their production, and only about 5% of
SCFA are excreted in the feces [53]. A small fraction of SCFA from
the intestine may enter the bloodstream, and indeed we observed
a significant increase in serum butyric and propionic acid
concentrations at the end of the intervention. Muller et al. [54]
have previously reported that it is not fecal but circulating SCFA,
particularly butyrate, that can provide a link between the gut
microbiota and whole-body insulin sensitivity. SCFA are ligands of
the G protein-coupled receptors GPR41 and GPR43, which are
expressed in many tissues, including adipose tissue and skeletal
muscle [55, 56]. Animal studies have shown that oral administra-
tion of SCFA or intravenous infusion improves insulin sensitivity
[54].

Predicting the individual effect of an inulin intervention

The increasing understanding of the role of the microbiome in
host physiology opened new avenues for research focused on the
possibility of predicting the outcome of a given intervention
based on the individual MIME setting. Clinically relevant results
have been obtained in cancer research, e.g., the success of therapy
with Anti-programmed Cell Death Protein-1 (PD—1) has been
shown to depend significantly on the baseline composition of the
patient's gut microbiota [57-60]. MIME has also been successfully
used to predict the response of IBD patients to a low FODMAP diet
[61] or anti-TNF treatment [62], the efficacy of synbiotic treatment
of gastrointestinal disease in children [63], or the prediction of the
clinical outcome of bariatric surgery [64]. The gut microbiota may
serve as a biomarker for selecting the most effective drugs for the
treatment of rheumatoid arthritis [65], and gut bacterial signatures
have even been described to characterize the diagnosis and
predict treatment outcomes in bipolar depression [66].

Nutrition and Diabetes (2023)13:7



Inulin-type dietary fiber is thought to alleviate several features
of metabolic syndrome; however, results from human studies are
inconsistent. A recent systematic review [67], which included 33
RCTs, showed that inulin intake (average 11 g/day) significantly
reduced blood glucose, total cholesterol, and TAG in individuals
with prediabetes and diabetes. However, a common feature of all
included studies was the wide heterogeneity of individual
responses to treatment, making clear dietary recommendations
difficult. Therefore, we sought to identify factors that would allow
a personalized assessment of the efficacy of inulin treatment. We
found that patients with a profile suggestive of less impaired
glucose homeostasis were likely to improve metabolically. In
addition, we identified several other potential predictors that were
not dependent on pre-intervention glycemic indices, including
lower serum BCAA derivatives (3-methy-2-oxovalerate, 2-oxoiso-
caproate), serum 3-hydroxyisobutyrate (product of NADH oxida-
tion), fecal indole, and/or various bacteria (Ruminiclostridium,
Lachnoclostridium, Eubacterium halii, etc), which could allow a
more accurate prediction of inulin intervention outcomes. In the
prediabetes phase, patients are often advised to change their
lifestyle and diet. Despite initial adherence to advice, outcomes
may be highly variable, and patients who have failed despite their
best efforts may be demotivated to adhere to further recommen-
dations. The tool of predicting the individual appropriateness of a
particular intervention, in this case, the administration of inulin,
would help personalize treatment so that it has a higher chance of
success in potential responders and does not expose potential
non-responders to repeated failures.

Strengths and limitations of the study

There are several strengths of the study. First, the DM group
included only participants with newly diagnosed type 2 diabetes
prior and/or concomitant treatment, thus excluding confounding
effects of antidiabetic drugs on the effects of inulin. Second, we
did not rely solely on the measurement of fecal SCFA as the only
indicator of SCFA production in the colon, but used a highly
sensitive LC-MS method that allows its quantification in serum.
Third, we evaluated the complex effects of the inulin intervention
using a multi-omics approach. Nevertheless, the study is limited
by several factors. First, we were able to include only a limited
number of subjects, and the results were not validated in an
independent cohort. For this, the results were internally validated
by permutation tests. Second, the lean healthy subjects differed
from the OB or DM groups by age, because obesity and associated
comorbidities are more common in older populations. Age is one
of the external factors affecting microbiota composition, but this is
especially true for very young children or the elderly (over 70 years
of age). In adolescence and adulthood, the composition of the
microbiome is remarkably stable in terms of diversity indices, PCA
metrics, or representation of selected taxa [68-70]. Therefore, we
believe that the age difference in our population did not result in
a significant bias. Third, we did not control dietary intake during
the prospective intervention study with inulin because we did not
want to further burden participants and increase the risk of
dropping out of the study, but all participants were explicitly
asked to maintain their usual dietary habits. An indirect measure
of adherence to the habitual diet may be the BMI of participants,
which did not change significantly during the intervention period.
Finally, the prospective study design was a single-arm, non-
controlled intervention study, so the causality of the effect of
inulin on metabolic outcomes cannot be inferred. The small
number of participants in the prospective study did not allow us
to build more complex models to account for possible synergies
among predictors. Because the study aimed to explore predictors,
and we found several novel biomarkers that predict response to
inulin treatment, these will need to be validated on a larger scale
in future studies.
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In summary, we showed that the gut microbiota and
metabolome profiles in OB and DM differed from those of lean
healthy individuals, whereas the differences between OB and DM
were less pronounced. We identified several omics-derived
biomarkers that may play a central role in the development of
obesity-associated metabolic changes. In patients with newly
diagnosed pre/diabetes, we observed substantial inter-individual
variability in the effects of inulin on glucose homeostasis and
identified several predictors of treatment response. If replicated in
further studies with other populations, the identified predictors
could facilitate the estimation of inulin intervention outcomes,
paving the way for the concept of personalized dietary manage-
ment of early diabetes.
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3.4 Assessment of the protective effect of vegan microbiota against the
influence of the obesogenic diet

As described in the introductory section, gut microbiota plays an essential role in energy homeostasis,
weight control and inflammation, which are all related to NCDs like obesity, T2D or non-alcoholic fatty
liver disease (NAFLD). Targeted modulation of gut microbiota and its metabolic programming is
considered a potentially promising therapeutic approach in the NCDs treatment but more research
on this topic is definitely needed. Fecal microbial transfer (FMT) is gaining more attention due to its
potential therapeutic properties by altering the entire microbial community. As noted above, vegan
or plant-based diets are associated with beneficial effects on overall health, suggesting that vegan
microbiota might be desirable, and subjects adhering to plant-based diets should be explored
as suitable candidates for FMT donors. However, it remains unclear how the transferred microbiota is
affected by the host diet and the substrates provided.

In this study, stool from four vegan donors was used to prepare a mixed VG inoculum used for FMT
transfer to GF animals. Female GF mice were colonized with VG inoculum and were paired with male
GF mice. Their offspring were further used for the experiment when ex-GF humanized mice (VG) were
fed either a Western-type diet (WD) or a standard diet (SD) with or without the addition of inulin (I).
The same experimental design was used in conventional mice (CV). The objectives of this study were
to determine whether and how the vegan microbiota may have a protective effect against
an obesogenic diet, to describe the mechanistic relationships of microbiome and metabolome in these
mice, and to explore the effect of fiber in enhancing the additional therapeutic potential of the vegan
microbiota.

After an eight-week experimental period on specific diets, glucose and lipid homeostasis parameters,
fecal microbiota composition and serum and fecal metabolome were determined. Western diet caused
a significant increase in total body weight and liver triacylglycerol content in both mice models
(Kruskal-Wallis test and Dunn’s post hoc test with the Benjamin—Hochberg correction, p < 0.05).
Impaired glucose homeostasis caused by the Western diet was observed only in the VG group. Inulin
supplementation reversed the liver steatosis and improved glucose homeostasis in the VG group, but
not in the CV group, so further analyses focused on the VG group only. Regarding microbiota in the VG
group, pairwise PERMANOVA analysis on the taxonomic level species showed significant differences
between all dietary groups (SD vs SD + | p = 0.0011, SD vs WD p =0.0011, SDvs WD + | p =0.0011, WD
vs WD + | p = 0.0042). The LASSO machine learning regression model was able to classify bacteria
at the species level between all pairs of groups with at least 90% accuracy, sensitivity and specificity.

Untargeted metabolome analysis identified 61 VOCs in cecum content. Inulin supplementation did not
lead to an alteration of cecum metabolome in the SD diet group (paired PERMANOVA, p > 0.1), but
resulted in a significant change in the WD group (paired PERMANOVA, p = 0.005). Interestingly, after
inulin supplementation, we observed a shift from amino acid fermentative metabolism to saccharolytic
fermentation described by a decrease of the product of tryptophan fermentation indole (only
in VG_SD+| group), a decrease of methionine/cysteine fermentation product dimethyl trisulfide
(in both VG_SD+| and VG_WD+l groups), increase of butyrate (only in VG_SD+I group) and increase
of acetic acid (in both VG_SD+l and VG_WD+| groups). The serum metabolome assessed by NMR
spectroscopy was not significantly affected by any of the treatments. Paired PERMANOVA analysis
revealed no difference between groups (all paired PERMANOVA tests > 0.15).
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In this animal model, we demonstrated that vegan microbiota alone may not be sufficient
to counteract the negative metabolic effects of a Western-type diet. However, further
supplementation by dietary fiber (in this case inulin) can protect from steatosis and impairment
of glucose metabolism. Notably, this effect was only observed in humanized mice and not
in conventional mice models. Furthermore, inulin supplementation in humanized mice model led
to a shift in the cecal microbial community and its metabolic performance. These results suggest that
the treatment of metabolic disorders by FMT should be also supported by subsequent dietary
precautions in order for the treatment to be more successful.

This article was published on the 15 of January 2023 in Nutrients, IF = 6.71
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Abstract: Fecal microbiota transfer may serve as a therapeutic tool for treating obesity and related
disorders but currently, there is no consensus regarding the optimal donor characteristics. We
studied how microbiota from vegan donors, who exhibit a low incidence of non-communicable
diseases, impact on metabolic effects of an obesogenic diet and the potential role of dietary inulin in
mediating these effects. Ex-germ-free animals were colonized with human vegan microbiota and fed a
standard or Western-type diet (WD) with or without inulin supplementation. Despite the colonization
with vegan microbiota, WD induced excessive weight gain, impaired glucose metabolism, insulin
resistance, and liver steatosis. However, supplementation with inulin reversed steatosis and improved
glucose homeostasis. In contrast, inulin did not affect WD-induced metabolic changes in non-
humanized conventional mice. In vegan microbiota-colonized mice, inulin supplementation resulted
in a significant change in gut microbiota composition and its metabolic performance, inducing the
shift from proteolytic towards saccharolytic fermentation (decrease of sulfur-containing compounds,
increase of SCFA). We found that (i) vegan microbiota alone does not protect against adverse effects of
WD; and (ii) supplementation with inulin reversed steatosis and normalized glucose metabolism. This
phenomenon is associated with the shift in microbiota composition and accentuation of saccharolytic

fermentation at the expense of proteolytic fermentation.

Keywords: fecal microbiota transfer; vegan microbiota; liver steatosis; inulin; proteolytic fermentation

1. Introduction

A Western-type diet characterized by a high intake of refined sugars, animal fats,
and processed food, is associated with a sharp increase in the prevalence of obesity
and non-alcoholic fatty liver disease (NAFLD), one of the most common liver diseases
worldwide [1,2]. Gut microbiota have repeatedly been shown to be among the most im-
portant mediators between diet and obesity risk [3,4]. Several mechanisms were proposed:
enhanced energy harvest, central effects on satiety perception, impairment of intestinal
barrier function, and promotion of chronic inflammation [5]. Certain metagenomic patterns
associated with obesity have been described in the literature [6,7], but they are significantly
influenced by factors such as age, ethnicity, and geography [8].
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Up to now, there is no proven pharmacological treatment for NAFLD and the ther-
apeutic strategies are based mostly on lifestyle interventions, namely, diet [9]. There
are numerous dietary regimes aimed at weight loss and the improvement of metabolic
health [10,11]. Modulation of nutrient intake has several direct effects on the host physi-
ology, such as via nutrient load. In addition, rapidly emerging research into the essential
role of the human microbiome in host physiology opened up the question of whether the
beneficial effects of various diets could be mediated, in some aspects, by shaping the in-
testinal microbiota and changing its metabolic programming. Besides delivery of prebiotic
substrates or probiotic intervention, fecal microbiota transfer (FMT), a currently approved
therapeutic approach in the treatment of Clostridioides difficile infection [12], has gained
growing attention in the context of therapy of other non-communicable diseases, including
obesity or metabolic syndrome [13]. In contrast to probiotic treatment, which does not
induce an alteration in microbiota composition [14], FMT causes a structural change in the
whole gut microbial community [12], and thus may convey complex beneficial effects. Up
to now, six randomized clinical trials assessing the use of FMT from lean omnivore donors
in obese and metabolic syndrome patients have been reported [13,15-18]. Meta-analysis
of the data showed only a partial effect of FMT on obesity-related disorders. While there
was a significant reduction in HbAlc, HDL, and LDL cholesterol levels in FMT recipients,
there was no modification of weight, serum TAG content, or reduction in glycemia [19].
However, none of these studies included any dietary recommendations after FMT.

The effective use of FMT is limited by the insufficient definition of the optimal donor.
According to the current literature, a vegan diet is considered a metabolic health-promoting
approach [20-24], and diet is one of the main environmental factors modulating the com-
position of gut microbiota [25]. Therefore, vegans were implied as suitable donors, though
with unequivocal results. It was shown that vegan FMT alone had a modestly beneficial
effect in the treatment of steatohepatitis [26] but failed to elicit changes in trimethylamine-
N-oxide production in patients with metabolic syndrome [17]. As the receivers did not
change their eating habits, the vegan microbiota itself were probably unable to counteract
the effect of the unhealthy obesogenic diet. In line with this observation, our previous
study showed that strong adherence to a vegan diet in humans resulted in only a relatively
mild effect on microbiota composition [27]. On the other hand, veganism was associated
with significant modification of microbiota performance towards the beneficial metabolite
spectrum, but this aspect could be manifested only in combination with a diet rich in
plant-based food.

Despite these preliminary data, it has not been explored how the transferred microbiota
are affected by the host gut environment and the substrates provided. Therefore, we aimed
to seek whether the metabolic effects of vegan-derived FMT are mediated by diet, and
particularly by dietary fiber. Using the model of ex-germ-free mice colonized with human
vegan microbiota, we explored (i) how vegan microbiota protects against obesogenic
(Western-type) diets; (ii) mechanistic relations in microbiome/metabolome composition,
and (iii) the ability of dietary fiber (inulin) to enforce vegan microbiota therapeutic potential
in the obesogenic milieu.

2. Materials and Methods
2.1. Gut Microbiota Donors

Four vegan donors who did not object to animal experiments for ethical reasons were
recruited from the vegan cohort described in detail in our previous study [27]. Their clinical
characteristics are given in Table 1 and the Supplemental File S1.

All of them strictly avoided all animal products for at least three years. The exclu-
sion criteria were chronic diseases related to metabolism, diseases of the digestive tract,
antibiotic therapy in the past three months, pregnancy, any chronic medication (excluding
hormonal contraception), and regular alcohol consumption defined as any alcoholic drink
on a daily basis. The participants were asked to donate a fresh stool sample, which was
immediately processed [28]. The total bacteria number in each sample was assessed by
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quantitative pan-bacterial real-time PCR (forward primer ACACTGACGACATGGTTC-
TACAGAGTTGATCNTGGCTCAG, reverse primer TACGGTAGCAGAGACTTGGTCTGT-
NTTANGCGGCKGCTG) and each inoculum was diluted to approx. the same bacterial
abundance (3.9 x 10° CFU/uL). The mixed VG inoculum was prepared by mixing an equal
amount of each sample. The aliquots were kept frozen with buffered glycerol at —80 °C
until the transfer.

Table 1. Baseline clinical characteristics of stool donors. HDL-ch, HDL-cholesterol; LDL-ch, LDL-
cholesterol; TC-ch, total cholesterol; TAG, serum triacylglycerol.

Glucose TC HDL-ch LDL-ch TAG CRP
I .Sex  dge Nl mM mM mM mM mM Mg/L
il F 24.5 21.8 486 28 0.89 133 1.28 2.1
2 M 29.1 20.3 465 323 1.6 145 041 0.3
3 M 31.2 21.4 5.04 3.68 1.21 1.93 12 0.3
4 F 40.5 2.5 49 4.58 2.16 212 0.66 05
2.2. Animals

Germ-free C57Bl6 mice originated from the colony bred at the Gnotobiology laboratory
Institute of Microbiology of the CAS, Novy Hradek, CR. Mice were kept under sterile
conditions in Trexler-type plastic isolators, exposed to 12:12 h light—dark cycles, and
supplied with autoclaved tap water and 50 kGy irradiated sterile pellet (breeding diet:
Altromin 1414, Altromin, Germany) ad libitum. Axenicity was assessed every two weeks
by confirming the absence of bacteria, mold, and yeast by aerobic and anaerobic cultivation
of mouse feces and swabs. Female mice were colonized by mixed VG inoculum, bacterial
load >1 x 10” bacteria by the means of administration on the skin, enema, and oral gavage.
The colonized females were mated to germ-free males. Their male offspring, further
described as VG, were kept in gnotobiotic isolators and used for the experiments. We
decided to adopt this design because we aimed to create a “physiologically normal” mouse
model colonized with human vegan microbiota. Recent evidence shows that maternal
exposure to intestinal microbes triggers a wide range of adaptations in the offspring and
the pups born to colonized mothers differ from germ-free mice colonized later during
their lifetime [29,30]. Another reason is that with maternal colonization, we achieve high
homogeneity of offspring colonization. After weaning, all animals were fed a breeding diet
for 3 weeks. Conventional C57Bl6 mice (CV) were obtained from the breeding facility of
the Institute of Microbiology of the CAS, Prague, CR. The power analysis was calculated
to estimate the minimal number of animals per group according to the main outcome
variable, liver TAG content (min n = 5 for p < 0.05 with 0.8 probability). At time point A,
mice were randomly divided into four groups, each of them receiving a specific diet for
another 8 weeks: SD (standard diet), SD + I (standard diet + 10% inulin), WD (western
diet), WD + I (western diet + 10% inulin). The experimental design is shown in Figure 1.
After 8 weeks (timepoint B), an oral glucose tolerance test was performed, animals were
killed by an overdose of anesthesia, and tissue samples were collected for further analyses.
Feces were collected at time points A and B. Experimental diets, the Western diet (42 kJ%
fat, 43 kJ% carbohydrates, 15 k]% protein, no. TD88137 mod.), and standard diet control of
the Western (13 k] % fat, 69 k]% carbohydrates, 15 k]% protein, no. CD88137) were bought
from Ssniff (Soest, Germany). Inulin-supplemented diets (10% wt/wt) were custom-made
by Ssniff. The diets were sterilized by irradiation. All animal experiments were conducted
in concordance with the Guide for the Care and Use of Laboratory Animals (2011).

2.3. Oral Glucose Tolerance Test

An oral glucose tolerance test (OGTT) and a parallel assay of C-peptide concentration
in serum were performed after the administration of a dose of glucose (1 mg. ¢! body
weight) into overnight fasting mice. Blood was taken from the tail vein into heparinized cap-
illaries. The blood glucose was determined with a glucometer (Roche, Basel, Switzerland)

94



Niitrients 2023, 15, 454

40f18

and C-peptide concentration with an ELISA kit (Mercodia, Uppsala, Sweden). Sampling
was performed at 0, 30, 60, and 120 min for each mouse.

ex-GF 4 offspring
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Figure 1. Experimental design. CV, conventional mice; GE, germ-free; OGTT, oral glucose tolerance
test. (A), timepoint A (prior diet intervention); (B), timepoint B (after diet intervention).

2.4. Stool and Cecum Content Bacteriome Analysis

Stool samples were collected from each mouse individually at timepoint A, and the
cecum content was collected at timepoint B. Samples were kept at —80 °C until the DNA
was extracted using a QIAmp PowerFecal DNA Kit (Qiagen, Hilden, Germany), and the V4
region of the bacterial 165 rRNA gene was amplified by PCR. Sequencing was performed
with the MiSeq reagent kit v2 using a MiSeq instrument (Illumina, Hayward, CA, USA).
Raw sequences were processed using a DADA2 amplicon denoiser [31]. Subsequent
taxonomic assignment was conducted by the assignTaxonomy function from the DADA2
R package using the Silva 138.1 reference database [32] at the levels L_1 (Phylum), L_2
(Class), L_3 (Order), L_4 (Family), L_5 (Genus) and L_6 (Species).

2.5. Volatile Compounds (VOCs) Analysis in Feces

Cecum content was homogenized and diluted to the equivalent of 1% (wt/wf) dry
mass. Volatile fingerprinting of fecal samples was performed using an Agilent 7890B gas
chromatograph (Agilent Technologies, Canta Clara, CA, USA) coupled to a Pegasus 4D
time of flight mass spectrometer (LECO, USA). Volatiles were collected using solid-phase
microextraction (SPME) fiber with a divinylbenzene/carboxen/ polydimethylsiloxane coat-
ing from Supelco (USA). Data acquisition and initial data processing were carried out using
instrumental SW ChromaTOF by LECO.

2.6. NMR Analyses

Serum samples (after protein precipitation) were measured on a 600 MHz Bruker
Avance III spectrometer (Bruker BioSpin, Rheinstetten, Germany) equipped with a 5 mm
TCI cryogenic probe head. 1D-NOESY, CPMG, and J-resolved experiments were performed
using standard manufacturers’ software Topspin 3.5. The concentrations of individual
metabolites, identified by comparison of proton and carbon chemical shift with the HMDB
database, were expressed as PON [33] normalized intensities of corresponding signals in
CPMG spectra. The list of quantified metabolites with corresponding "H and "*C chemical
shifts is given in the Supplemental Methods.

2.7. Triglyceride (TAG) Content in the Liver

Lipids were extracted from 100 mg of fresh liver tissue homogenized in 2 mL of
5%NP40 in deionized HyO (95 °C, 5 min; room temperature, 10 min; 95 °C, 5 min). The
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mixture was vortexed between the steps. After the extraction, 50 uL was used for the
determination of protein concentration, and the rest of the homogenate was centrifuged
for 3 min at 14,000x g. The clear supernatant was diluted 1:9 in deionized H;O. The
triglyceride concentration was determined using a commercially available kit (ERBA-
Lachema Diagnostics, Czech Republic) and expressed as pmol TAG mg prot~".

2.8. Statistics

The statistical analyses were performed using R software packages and in-house
scripts [34]. Prior to all statistical analysis, stool and cecum taxa were filtered. We kept
only taxa that appeared in at least 5% of the samples. Stool and cecum microbiota uni-
variable analysis was performed with the DESeq2 R package [35] on raw read counts.
When more than one group is compared, we report both the p-values from the likelihood
ratio test and the pairwise Wald tests. The p-values were adjusted using the Benjamin-—
Hochberg correction. The reported effect size for stool and cecum microbiota is a log
2-fold change obtained by DESeq2. The significance in univariable analysis for NMR and
VOC data was obtained by the Kruskal-Wallis test and Dunn'’s post hoc test with the
Benjamin-Hochberg correction. The reported effect size for these datasets is Cliff’s delta.
Alpha diversity in stool and cecum microbiota was analyzed with a vegan R package
(https:/ /CRAN.R-project.org/package=vegan, accessed on 16 November 2022). The raw
counts were rarefied to 10,000 reads and then the Shannon index was computed. Statisti-
cal significance was computed by the Kruskal-Wallis test and Dunn’s post hoc test with
Benjamin-Hochberg correction. Principal component analysis (PCA) and Permutational
MANOVA (PERMANOVA, adonis function from R package vegan) was used for multivari-
able analysis. All the datasets were centered and scaled prior to analysis. Additionally,
prior to further analysis stool and cecum datasets were transformed by Variance Stabilizing
Transformation. For assessing statistical significance, PERMANOVA was run with 10,000
iterations. We used Euclidean distance in both PCA and PERMANOVA. For pairwise
PERMANOVA comparison, R package pairwiseAdonis was employed. To determine the
discriminating ability of each dataset, we created classification models using Lasso. The
classification metrics were obtained using 3-fold cross-validation with 10 repeats. To select
the smallest number of variables in the models, we reported lambda = 1 se, that is, a lambda
that results in the most regularized model so that the cross-validated error is within one
standard error of the minimum error. Correlation networks of liver TAG content with mi-
crobiome were created as follows. First, the significantly changed taxa from the univariable
analysis were identified. The Spearman correlation coefficient was computed on these taxa
against the liver TAG content. The p-values corresponding to the correlation coefficients
were adjusted using the Benjamin-Hochberg correction and the correlation networks were
created with correlations having adjusted p-value < 0.1. For the stool dataset on L_5 and
L_6levels, we show only correlations with an absolute value larger than 0.6.

3. Results
3.1. Body Composition and Glucose Homeostasis

We assessed the effect of the experimental diets on phenotype according to body
composition parameters, that is, total body weight, liver weight, and triacylglycerol (TAG)
content in the liver in ex-germ-free humanized mice (VG) and conventional mice (CV)
(Figure 2).

As expected, the western diet induced a significant increase in total body and liver
weight and liver TAG content in both models, the latter two parameters being significantly
more affected in VG compared with CV mice. Inulin supplementation had no effect on
WD-induced changes in CV mice, but it was associated with the decrease of liver TAG
content and liver weight reaching a normal level in VG mice. We also observed a tendency
to the normalization of epididymal fat pad weight in the VG_WD + I group (not shown),
despite it not reaching statistical significance at p < 0.05. Western diet administration
was associated with the deterioration of insulin secretion assessed as the fasting and
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glucose-stimulated C-peptide serum concentration only in VG mice. The effect of WD was
compensated by inulin treatment, as both parameters were normalized in the VG_WD
+ I group. Rather surprisingly, the glycemia at 30 min OGTT tended to be higher in CV
mice, and in VG_WD + 1 it was even significantly lower compared with the CV_WD +1
group. Because of the lack of the effect of inulin on metabolic phenotype in CV mice, we
turther focused on the VG model aiming to identify the components of the microbiome
and metabolome associated with the beneficial outcome.
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Figure 2. Effect of the diet and inulin supplementation on body composition and glucose homeostasis.
(A): total body weight (g); (B): liver weight (g); (C): liver TAG content (nmol TAG. mg ! protein);
(D): fasting C-peptide concentration in plasma (pg. L™1); (E): C-peptide concentration in plasma at
30 min of OGTT (pg. L~ 1; (F): glycemia at 30 min of OGTT (mM); (G): histological assessment of liver
slices, Data are shown as box plots (first and third quartile, median) with whiskers (min, max). OGTT,
oral glucose tolerance test; CV, conventional mice; VG, humanized mice; SD, standard diet; SD + I,
standard diet supplemented with inulin; WD, Western diet; WD + I, western diet supplemented
with inulin. ¥ p < 0.05, 7 p < 0.01 CV_WD vs CV_SD; * p < 0.05 CV_WD vs CV_SD + [,  p < 0.05,
Hp<0.01, HE p <0.001 VG_WD vs VG_SD; * p < 0.05,** p <0.01, *** p <0.001 VG_WD vs VG_SD + [;
¥ <005, p<001 VG_WD + 1vs VG_WD; " p < 0.01 VG_WD vs CV_WD; 4p < 0.05 VG_WD + 1
vs CV_WD + L
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3.2. Cecum Microbiota Composition after Dietary and Inulin Intervention in Humanized Mice

Prior to the interventions (timepoint A), the microbiome diversity and composition in
feces did not differ in mice randomly allocated to experimental groups (Figures 51 and 52).
Aiming to compare the microbiota composition among the experimental groups after
the intervention (timepoint B), we analyzed the cecum content because we consider it
the most representative sample of microbiota in the distal intestine. The unsupervised
separation of groups by variance only was visualized using PCA (Figure 3A,C). At the
phylum level, the composition of the microbiota did not differ, PERMANOVA p = 0.025
but the analysis of dispersion test was significant which influence the result. At the species
level, PERMANOVA p < 0.001, analysis of dispersion test was insignificant and pairwise
tests proved differences between all groups (SD vs SD + 1 p = 0.0011, SD vs WD p = 0.0011,
SD vs WD + I p=0.0011, WD vs WD + I p = 0.0042).
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Figure 3. Cecum microbiota composition in humanized mice. (A,C): The 2D PCA scores plot. The
explained variance of each component is included in the axis labels. The large points represent
the centroids of each group. (B,D): Held-out characteristics of Lasso logistic regression model.
(E,F): Alpha diversity of cecum microbiota assessed as Shannon index. ~~~ p < 0.001 VG_SD + I vs
VG_SD; °°" p <0.001 VG_WD + 1 vs VG_SD; # p<0.05, p VG_WD + 1 vs VG_WD. Data are shown as
box plots (1st and 3rd quartile, median) with whiskers (min, max).
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As the next step, we adopted a machine learning approach (Lasso logistic regres-
sion) allowing for quantification of discrimination between every two pairs of groups
(Figure 3B,D). At the L_1 level, we were able to reliably discriminate only VG_SD + 1 vs
VG_SD and VG_WD vs. VG_SD groups, but the discrimination between other groups was
unsatisfactory. The precision of separation increased along with reaching lower taxonomi-
cal levels. At the L_6 level, all pairs of groups could be separated with at least 90% accuracy,
sensitivity, and specificity. Alpha diversity was assessed according to the Shannon index.
Western diet alone increased the diversity at the L_1 (phylum) level but did not affect
other taxonomical levels. Inulin treatment negatively affected the diversity at all levels
independently of the background diet (VG_SD or VG_WD) (Figures 3E,F and S3).

The particular bacterial taxa discriminating between the groups were identified by
univariable analysis that was performed using DESeq2. We observed an effect of all
manipulations on microbiota composition at all taxonomical levels. At the L_1 level, the
VG_WD group was characterized by a higher abundance of Bacteriodota, Actinobacteriota,
and Verrucomicrobiota and decreased abundance of Firmicutes compared with VG_SD.
Inulin treatment counteracted the WD effect on Firmicutes and potentiated the increase
of Verrucomicrobia. Furthermore, inulin supplementation resulted in the decrease of
Desulfobacterotota both in SD- and WD-fed mice (Table S1).

At L_6 level (species), univariable analysis unraveled 76 taxonomical units, that is,
64% of all significantly differently abundant ones among groups at FDR < 0.1 (Table S2).
Considering the effect of diets and inulin, these bacteria could be divided into several
groups (Figure 4). Forty bacterial taxa were affected only by inulin. In 18 bacteria, the effect
of inulin was diet-dependent. Seven bacteria were significantly stimulated by inulin only in
combination with SD (Figure 4A), and 11 only in combination with WD (Figure 4B). Twenty-
two bacteria were affected by inulin independently of the background diet. Of those, inulin
treatment stimulated the abundance of nine bacteria while the abundance of 13 bacteria
was decreased (Figure 4C). Eight species were affected either positively (n = 3) or negatively
(n = 5) only by WD (Figure 4D). In five taxa, the effect of WD was potentiated by inulin.
The only bacteria whose abundance was positively affected by both WD and inulin was
Akkermansia muciniphila, the effect of inulin being an order of magnitude stronger than
the effect of diet. Four bacteria were affected negatively (Figure 4E). Finally, in 14 bacteria
inulin counteracted the effect of WD. Eleven bacteria (Alistipes putredinis, Parabacteroides
merdae, Sellimonas sp., Collinsella stercosis, Suterella sp., Hungatella sp., Flavonifractor sp.,
Lachnospiraceae NK4A136 group, Angelakisella sp., Oscillibacter sp., Bilophila sp.) were
stimulated by WD while inulin supplementation negatively affected their abundance. Three
bacteria (Parasutterella sp., Alistipes shahii, Lachnospiraceae_ NA_INA) were suppressed
by WD, while inulin partially compensated for this effect (Figure 4F). For nine taxa, we did
not identify any pattern of diet or inulin effect.

3.3. Cecum VOCs Composition after the Dietary and Inulin Interventions in Humanized Mice

In total, we identified 61 VOCs in cecum content, 17 of them being significantly
different among groups (Table 53). The separation of the groups is shown in Figure 5
and the PERMANOVA test confirmed that the VOCs composition of at least some of the
groups differs. Inulin supplementation of SD did not result in a significant shift of cecum
volatilome (pairwise PERMANNOVA p >0.1), but using the Lasso logistic regression model
we were able to discriminate between VG_SD and VG_SD + I groups with 89% accuracy
and 86% specificity.

The univariable analysis identified five compounds significantly different between
both groups; indole and 1,2-benzisothiazole were significantly decreased while tetradecanal,
1-butanol, and butanoic acid were increased in VG_SD + I compared with the VG_SD group
(Figure 6A). The effect of WD alone on the VOCs spectrum in the cecum was quite modest.
The PERMANOVA pairwise test was non-significant (p = 0.374), the accuracy of the Lasso
logistic regression model was 0.78 with a specificity of 0.67 and we did not identify any
differences in metabolite concentrations by UDAA. The combination of WD with inulin
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supplementation led to the profound shift in cecum VOCs spectrum as revealed by PCA
(Figure 5A), pairwise PERMANOVA result (p = 0.005), and the held-out characteristics
of the Lasso logistic regression model (Figure 5B). Seven compounds were affected by
inulin only in combination with WD (Figure 6B), all of them positive. Two compounds,
unknown RI 1703 (increased) and dimethyl trisulfide (decreased), were influenced by
inulin supplementation in combination with both diets (Figure 6C). Cecum content of
2-pentadecanone was increased by both WD and inulin supplementation, the effect being
additive (Figure 6D). Only in the case of 2-tridecanone was the effect of inulin and WD the
opposite (Figure 6E).
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Figure 4. Bacterial taxa significantly affected by diet and/or inulin. (A): Taxa affected by inulin
only in combination with SD (adj_pval VG_SD + I vs VG_SD < 0.1); (B): Taxa affected by inulin
only in combination with WD (adj_pval VG_WD + I vs VG_SD < 0.1); (C): Taxa affected by inulin
independently on the diet (adj_pval VG_SD + I vs VG_SD < 0.1 and adj_pval VG_WD + I vs
VG_SD < 0.1); (D): Taxa affected only by WD (adj_pval VG_WD vs VG_SD < 0.1); (E) Taxa affected
by both WD and inulin: additive effect (adj_pval VG_WD vs VG_SD < 0.1 and adj_pval VG_WD +1
vs VG_WD < 0.1, effect size VG_WD vs VG_SD and VG_WD vs VG_WD + [ in the same direction);
(F) Taxa affected by both WD and inulin: opposing effect (adj_pval VG_WD vs VG_SD < 0.1 and
adj_pval VG_WD + 1 vs VG_WD < 0.1, effect size VG_WD vs VG_SD and VG_WD vs VG_WD + [ in
the opposite direction). The taxa were selected according to the outcome of the univariable statistic
test (Kruskal-Wallis), omnibus adj_pval < 0.1. The graph shows the effect size calculated as log2FC.
adj_pval, adjusted p-value; FC, fold change.
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Figure 5. Cecum VOCs composition. (A) The 2D PCA scores plot. The explained variance of each
component is included in the axis labels. The large points represent the centroids of each group.

(B) Held-out characteristics of Lasso logistic regression model.
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Figure 6. VOCs significantly affected by diet and/or inulin. (A): VOCs affected by inulin only
in combination with SD (adj_pval VG_SD + I vs VG_SD < 0.1); (B): VOCs affected by inulin only
in combination with WD (adj pval VG_WD + I vs VG_SD < 0.1); (C): VOCs affected by inulin
independently on the diet (adj_pval VG_SD + I vs VG_SD < 0.1 and adj_pval VG_WD + I vs
VG_SD < 0.1); (D): VOCs affected by both WD and inulin: additive effect (adj_pval VG_WD vs
VG_SD < 0.1 and adj_pval VG_WD + Ivs VG_WD < 0.1, effect size VG_WD vs VG_SD and VG_WD
vs VG_WD + I in the same direction); (E): VOCs affected by both WD and inulin: opposing effect
(adj_pval VG_WD vs VG_SD < 0.1 and adj_pval VG_WD + I vs VG_WD < 0.1, effect size VG_WD vs
VG_SD and VG_WD vs VG_WD + L in the opposite direction). The VOCs were selected according to
the outcome of the univariable statistic test (Kruskal-Wallis), omnibus adj_pval < 0.1. The graph shows
the effect size calculated as log2FC. adj_pval, adjusted p-value; FC, fold change; RI, retention index.
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3.4. Serum Metabolome Composition after the Dietary and Inulin Interventions in
Humanized Mice

The serum metabolome assessed by NMR spectroscopy was not significantly influ-
enced by any of the treatments. PCA did not reveal any difference among the groups (all
pairwise PERMANOVA tests >0.15) and the discrimination between groups based on the
Lasso logistic regression model was unsatisfactory as well (Figure S4). Using univariable
analysis, we did not identify any metabolite significantly different among the groups.

3.5. Integrative Analysis

Finally, we looked for possible relationships between microbiome or VOCs compo-
sition and the attenuation of WD-induced liver steatosis. To this end, we constructed
the networks based on the Spearman correlations between liver TAG content and cecum
bacteria or VOCs abundance in VG_WD and VG_WD + I groups (Figure ??). Looking at
the relationships between cecum microbiota and liver TAG content, we found that liver
steatosis negatively correlated with the abundance of four bacteria (Agathobacter, Lactonifrac-
tor, Bacteroides ovatus, Bacteroides uniformis) that all were positively stimulated by inulin.
Thirty-seven taxa correlated positively with liver TAG content including nine bacteria,
whose abundance was positively affected by WD and negatively by inulin, and 12 bacteria
that are negatively modulated by inulin (Figure ??A). The correlation network between
liver TAG content and VOCs compounds identified in the cecum is shown in Figure ??B. We
identified only two positive correlations, between liver TAG content and dimethyl trisulfide
or propyl propanoate. Liver TAG content correlated negatively with nine compounds,
including acetic acid, which is a marker of dietary fiber fermentation.
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4. Discussion

We demonstrated in an animal model that vegan microbiota per se does not counteract
the metabolically detrimental effects of a Western-type diet, but it shows the capacity to
protect from NAFLD and glycemic deterioration when further supplemented with prebiotic
inulin. The effect of inulin was manifested only in combination with vegan microbiota in
humanized mice but not with conventional mice microbiota. Inulin supplementation in
humanized mice resulted in a significant change in cecum microbiota composition with the
accentuation of saccharolytic fermentation at the expense of the proteolytic one.

4.1. The Diet-Microbiota Interaction Influences the Outcomes of FMT Therapy

The landmark studies of Backhed's group [3,4] showed that in the mice model, the
obese phenotype is transmissible by gut microbiota transfer. The possibility to transfer
“diseased microbiota” opens the question of whether it is possible to transfer “healthy
microbiota” and to use it for therapeutic purposes. The major drawback limiting the wide
application of this concept is the lack of a definition of what healthy microbiota is. In the
human gut, it is not possible to define the universally applicable composition of a healthy
microbiome [36]. In relation to metabolic health, adherence to plant-based diets (vegetarian
or vegan) was shown to be associated with potential health benefits [37], and therefore,
vegan microbiota could be considered beneficial. On the other hand, in Western countries
veganism has only a modest impact on gut microbiota composition [27,38,39] and the
outcomes of two available vegan FMT trials were quite modest. The potential explanation
may be derived from the experiment performed by Ridaura et al. who demonstrated
that the invasion and colonization potential of transferred microbiota strongly depends
on the diet [40]. Germ-free mice colonized with gut microbiota from a discordant twin
pair, obese (Ob) and lean (Ln), repeated the donor phenotype on a standard mice diet.
When co-housed and fed a low saturated fat/high fruit and vegetables diet, Ln microbiota
became dominant, invaded the gut of Ob microbiota-colonized cage mates, and prevented
the development of obesity. In contrast, the dominant and protective effect of Ln microbiota
disappeared when mice were fed a high saturated fat/low fruit and vegetable diet. This
study demonstrates how an obesogenic diet can select against human gut bacterial taxa
associated with leanness [40].

Similarly, the background microbiota determines the therapeutic effect of dietary in-
tervention. In mice models, inulin supplementation was associated with variable outcomes.
Three studies were performed on C57Bl6 mice. In one study, inulin reduced the weight gain
and steatosis induced by a western diet with fructose [41] while in the other inulin did not
reverse the adverse effects of a high-fat diet [42]. In mice fed an n-3 fatty acid-deficient diet,
inulin treatment promoted weight gain and adiposity and did not reverse the impairment
of glucose homeostasis [43]. In APOE*3-Leiden.CETP mice (atherosclerosis model) inulin
did not reduce hypercholesterolemia or atherosclerosis development and even resulted in
manifestations of hepatic inflammation when combined with a high percentage of dietary
cholesterol [44]. In our hands, inulin supplementation did not reverse the effect of the
Western diet in conventionally raised C57Bl6 mice at all. Mice intestinal microbiota is pro-
foundly different from the human and even the mice of the same strain but from different
breeding facilities substantially differ in microbiota composition. Therefore, the variable
outcomes of the above-mentioned studies may result from different pre-intervention gut mi-
crobiome settings. Taken together, this evidence emphasizes the strong microbiota-by-diet
interactions and the implication of this relationship for therapeutic purposes.

In the previously cited vegan FMT studies, the participants were explicitly asked not to
change their habitual diet. Therefore, the modest effect of vegan donor microbiota may be
attributed to the diet of the FMT receivers, which did not allow for the manifestation of FMT
therapeutic potential. This hypothesis is corroborated by our previous observational study
comparing the gut microbiome and metabolome of adult vegan and omnivore human
cohorts [27]. We found only modest differences in fecal microbiota composition but a
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substantial difference in the fecal metabolome, which reflects the profoundly different diets
of both groups.

4.2. The Protective Effect of Vegan Microbiota against Diet-Induced Steatosis Depends on
Fiber Supplementation

We failed to show any protective potential of vegan microbiota to counteract the
western diet-induced weight gain, namely the expansion of visceral fat. In contrast, inulin
supplementation prevented the excessive TAG accumulation in the liver and ameliorated
the impairment of glucose metabolism. We may suggest potential mechanisms based on our
observations. Inulin supplementation induced a massive shift in microbiota composition
and often counteracted the effect of an obesogenic diet. At the phylum level, inulin stimu-
lated the abundance of Firmicutes, which resulted in the decreased Bacteroidota/Firmicutes
ratio. In the presence of inulin, the abundance of Desulfobacterota was decreased both
in VG_SD + I and VG_WD + I groups, which indicates the lower presence of sulfur
compounds metabolizing bacteria and attenuation of potentially toxic sulfur-containing
metabolites formation.

We further looked for the association between liver TAG content and the abundance of
bacteria significantly affected by inulin supplementation. We found only four negative cor-
relations between bacteria abundance and liver TAG content. All of them (Lactonifactor sp.,
Agathobacter sp., B. ovatus, B. uniformis) belonged to bacteria significantly stimulated by
inulin. Lactonifactor (p = —0.8) converts the plant lignan secoisolariciresinol diglucoside
into the bioactive enterolignans enterodiol and enterolactone [45] that have therapeutic
properties, including anti-oxidant, anti-cancerous, anti-inflammatory, modulation of gene
expression, anti-diabetic, estrogenic and anti-estrogenic [46]. In the cross-sectional study
performed on 2294 US adults, urinary enterolactone concentration was negatively corre-
lated with NAFLD [47]. Agathobacter sp. (p = —0.7), the bacteria most stimulated by inulin in
our study, is a butyrate producer. It is reported to be stimulated by a different source of fiber
(oatmeal, rye) and associated with lower cardiovascular disease or metabolic risk [48,49].
The depletion of B. uniformis was found in NAFLD [50,51] in observational studies. Treat-
ment with B. uniformis, particularly when combined with fiber, ameliorated diet-induced
hepatic steatosis and inflammation, restored the compromised intestinal immune defense,
and improved whole-body glucose disposal [52,53]. Qiao et al. proposed the mechanism of
the beneficial effect of B. uniformis. They proved that B. uniformis is able to synthesize folate
and its beneficial effect may be explained, at least partly, by folate-enhanced one-carbon
metabolism [54]. Most correlations between bacteria and liver TAG content were positive.
Of interest, 38% of bacteria (n = 14) positively correlating with liver TAG is negatively
influenced by inulin and in some bacteria (24%, n = 9), inulin even counteracts the effect of
WD. Taken together, this evidence strongly suggests that the alteration of gut microbiota
composition resulting from inulin supplementation may be responsible for the amelioration
of steatosis.

4.3. Inulin Supplementation and Microbiota Performance

Analysis of the fecal VOCs spectrum confirmed that inulin supplementation affected
the metabolic performance of cecum microbiota by accentuating saccharolytic fermentation
at the expense of amino acid metabolism. This shift is documented by the (i) decrease of
the product of tryptophan fermentation indole (only VG_SD + I); (ii) decrease of methion-
ine/cysteine fermentation product dimethyl trisulfide (both VG_SD + I and VG_WD + I);
(iii) increase of butanoic acid (only VG_SD + I) and (iv) increase of acetic acid (both
VG_SD +Iand VG_WD + I). The main fiber fermentation products are short-chain fatty
acids (SCFA) whose positive effect is widely accepted [55]. Propionate and butyrate are
considered unequivocally beneficial. The role of acetate is not so straightforward, as it
is a lipogenic substrate and may serve as a substrate for lipid synthesis in the liver [56].
In contrast to this, Aoki et al. proposed an alternative hypothesis that acetate derived
from prebiotic fermentation in the gut lumen regulates hepatic lipid metabolism and in-
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sulin sensitivity via FFAR2 signaling in hepatocytes, which prevents the progression of
NAFLD [56].

The health benefits of dietary fiber have been judged mainly according to the enhanced
production of SCFA in the colon. Somewhat neglected is a complementary hypothesis—the
beneficial effect of dietary fiber may be mediated by the inhibition of protein fermentation
as well [57]. Protein fermentation yields intrinsically toxic luminal compounds that affect
epithelial cell metabolism and barrier function [58]. De Preter [57] demonstrated that
oligofructose-enriched inulin in a dose-dependent fashion stimulated SCFA production
and in parallel inhibited the formation of sulfur-containing compounds like dimethyl
tri(di)sulfide or methional. Our data support the hypothesis that inulin supplementation
attenuated the proteolytic fermentation in the colon. We observed a significantly decreased
content of dimethyl trisulfide in both the VG_SD + I and VG_WD + I group and this
compound strongly positively correlated with liver TAG content (p = 0.75). The acetic
acid concentration in the cecum was significantly increased in the VG_WD + I group and
negatively correlated with steatosis (p = —0.65). Therefore, we hypothesize that attenuation
of amino acid fermentation resulting from acidification of the cecal / colonic lumen by SCFA
and catabolic repression imposed by the increased saccharolytic fermentation [57] may
represent an additional protective mechanism of prebiotic supplementation.

5. Conclusions

Using the model of ex-germ-free mice humanized with mixed human vegan microbiota
we found that it does not protect against the adverse effects of a Western-type diet like
obesity, liver steatosis, and compromised glucose homeostasis. In contrast, supplementation
of the Western diet with inulin reversed the steatosis and ameliorated glucose metabolism,
though it did not affect the weight gain. Inulin supplementation resulted in a significant
change in the gut microbiota composition and its metabolic performance, inducing the shift
from proteolytic towards saccharolytic fermentation. Our results offer an explanation for the
relatively modest success of EMT in treating metabolic disorders when healthy microbiota
were applied into an unhealthy environment without subsequent dietary support. In the
context of the potential use of FMT with vegan microbiota in the therapy of metabolic non-
communicable diseases, our study points out that it is not only the particular microbiota
transfer, but also the following dietary intervention with inulin or other dietary fiber and/or
dietary change that is necessary for therapeutic success.
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in timepoint A. Figure S3 Alpha diversity of cecum microbiota in timepoint B assessed as Shannon
index. Figure S4 Serum metabolome composition. File S1: Supplemental Method [59-64].
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4 GENERAL DISCUSSION AND FUTURE PERSPECTIVES

This dissertation thesis addresses the possible modification of the composition of the gut microbiota
by diet not only from a taxonomic but also from a functional point of view, by incorporating
metabolomics into the analyses and developing a new method to estimate the ability of the microbiota
to produce the beneficial metabolite butyrate. The theoretical part of the thesis summarizes the
importance of gut microbes for human health. In particular, it discusses the immersive functions of gut
microbiota and its impact on human development and it also summarizes current knowledge
on manipulating the gut microbiome through diet. It highlights the most reputable research that has
been conducted in this area. In addition, some of the most commonly used multi-omics methods are
introduced and their integration is briefly explained. The experimental part of the thesis focuses
on four monothematic articles that have been published in connection with this work.

The first study describes the microbiome and metabolome profiles of healthy lean vegans
and omnivores and explores the impact of plant-based diet on microbial function and to a lesser
extent, microbial taxonomic composition. The study involved collecting dietary records and analyzing
stool and plasma samples for various analyses such as metabolomics, bile acid spectrum
determination, the SCFAs contents measurement, 16S rRNA sequencing, glucose and lipid
homeostasis, and inflammation parameters. The study found that the vegan diet was associated
with a higher intake of carbohydrates and dietary fiber, more favorable glucose and lipid metabolism,
and lower inflammation levels compared to the omnivorous diet. The metabolome profiles differed
significantly between the groups, with vegans having a higher occurrence of potentially beneficial
metabolites from dietary fiber fermentation and a lower abundance of potentially harmful metabolites
from amino acid fermentation products. The study highlights the importance of plant-based diets
by demonstrating their positive impact on microbial function, metabolic health, and inflammation
levels compared to omnivorous diets.

The second study presented a simple and cost-effective method for estimating the functional capacity
of butyrate synthesis by the gut microbiota, an important process for maintaining overall health.
The method involves the use of gPCR to quantify the bacterial gene encoding
butyryl-CoA:acetate CoA-transferase, a key enzyme involved in butyrate synthesis, and was validated
using six sets of degenerate primers. We compared two strategies for normalizing gPCR results and
found that copy numbers normalized to the 16S rRNA gene and the C. elegans-derived DNA spike were
comparable for all primer sets. We then tested the method on stool samples from healthy lean vegans
and healthy obese omnivores and found that the amount of the but gene in the VG group was
significantly different from the OB group, corresponding to significantly higher amounts of butyrate
in the respective stool samples as determined by NMR. Thus, the method may represent a powerful
tool for estimating the functional capacity of the gut microbiota and could be useful for individual
assessment of the utility of prebiotic or dietary treatment.

The third study investigated whether gut microbiota composition and metabolome differ in lean
healthy, obese healthy, and obese diabetic T2D patients without medication and whether the effects
of inulin on glucose tolerance and insulin sensitivity can be explained by the response of the gut
microbiota to inulin intervention and whether this response can be predicted from the initial
microbiome and metabolome signature. The study found that the composition of microbiome
and metabolome differed between lean participants and obese subjects, but did not distinguish well
obese subjects with and without diabetes. Inulin supplementation resulted in a significant change
in microbiota composition, with an increase in beneficial bacterial taxa and a decrease in potentially
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harmful ones. Inulin intake also affected markers of glucose tolerance and insulin sensitivity,
and potential predictors of individual response to inulin treatment were identified. These findings
highlight the complex character of the gut microbiota and host metabolism response to inulin
intervention and demonstrated the possibilities of personalized therapeutic microbiota manipulation.

In the fourth study, stool samples from four vegan donors were used to prepare a mixed inoculum
for FMT to create humanized ex-GF mice. The aim was to investigate the protective effects of the vegan
microbiota against the Western-type diet and the role of dietary fiber (inulin) in enhancing its
therapeutic potential. The study found that the Western diet caused significant weight gain and
triacylglycerol content in the liver in both humanized and conventional mouse models, but impaired
glucose homeostasis was observed only in the humanized group. Inulin supplementation reversed liver
steatosis and improved glucose homeostasis in the humanized mice group but not in the conventional
mice group. The study suggests that a vegan microbiota alone may not be sufficient to counteract
the negative metabolic effects of a Western-style diet, but follow-up dietary support may substantially
enhance the treatment success.

This thesis concludes by highlighting the importance of gut microbiota for human health
and the opportunity for dietary interventions that can influence microbial composition and function.
The first study demonstrated that adherence to a plant-based diet high in carbohydrates and fiber can
lead to a favorable microbial profile and metabolome associated with improved glucose and lipid
metabolism and lower levels of inflammation. The second study presented a new method to estimate
the functional capacity of butyrate synthesis by the gut microbiota. The third study focused on the
identification of predictors of the therapeutic efficacy of inulin treatment in (pre)diabetes. Finally,
afourth study used FMT to investigate the protective effects of vegan microbiota against
a Western-style diet and found that fiber may enhance the therapeutic potential of FMT. Overall, these
studies highlight the potential of personalized dietary interventions to modify gut microbiota
and improve metabolic health, but further research is needed to confirm these findings.
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5 CONCLUSIONS

AlM 1:

We have shown that the composition of the gut microbiota of healthy lean long-term vegans
and omnivores does not differ dramatically. In contrast, vegans and omnivores significantly differ
in the composition of the fecal, serum, and urine metabolomes, probably as an effect of different
availability of dietary substrates. Consequently, the vegan diet was associated with a lower abundance
of the potentially harmful (protein fermentation products) and a higher occurrence of potentially
beneficial (dietary fiber fermentation products) metabolites in feces.

AlM 2:

We developed a method for the assessment of the functional capacity of gut microbiota for butyrate
synthesis based on the gqPCR quantification of bacterial butyryl-CoA:acetate CoA-transferase. This
method is based on qPCRs using degenerate primers specific for but gene variants and quantification
of but gene abundance using the selected reference gene (16S rRNA gene or spike UNC-6 gene
from C. elegans).

AIM 3:

In patients with newly diagnosed pre/diabetes treated with inulin, we observed considerable
interindividual variability in the effects of inulin treatment on glucose homeostasis. We identified
several omics-derived biomarkers that may play a central role in the development
of obesity-associated metabolic changes and identified several predictors of treatment efficiency.

AIM 4:

Using the model of ex-GF mice humanized with mixed human vegan microbiota we found that it does
not protect against the adverse effects of a Western-type diet like obesity, liver steatosis,
and compromised glucose homeostasis. In contrast, supplementation of the Western diet with inulin
reversed steatosis and ameliorated glucose metabolism, though it did not affect weight gain in this
model. Inulin supplementation resulted in a significant change in the gut microbiota composition
and its metabolic performance, inducing the shift from proteolytic towards saccharolytic fermentation.
In the context of the potential use of fecal microbiota transfer with vegan microbiota in the therapy
of metabolic NCDs, our study points out that it is not only the particular microbiota transfer but also
the following dietary intervention with inulin or other dietary fiber and/or dietary change that is
necessary for therapeutic success.
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6 ABBREVIATIONS

AMPs
ASVs
AUC
BCAAs
BCFAs
BSH

C. elegans
CA
CAZymes
CCA
CDCA
CRP
DCA
DNA
FMT
FXR
GC-MS
GF
GIT
HDL
HEI
HGP
HMOs
HMP
IECs
KEGG
LASSO
LCA
LC-MS
LDL
LPS
ML
MRSA
MS
NAFLD

antimicrobial peptides
Amplicon Sequence Variants
area under the curve
branched-chain amino acids
branched-chain fatty acids
bile salt hydrolases
Caenorhabditis elegans
cholic acid

carbohydrate active enzymes
Canonical Correlation Analysis
chenodeoxycholic acid
C-reactive protein
deoxycholic acid
deoxyribonucleic acid

fecal microbial transfer
farnesoid X receptor

gas chromatography mass spectrometry
germ-free

gastrointestinal tract
high-density lipoprotein
Healthy Eating Index

Human Genome Project
human milk oligosaccharides
Human Microbiome Project
intestinal stem cells

Kyoto Encyclopedia of Genes and Genomes

Least Absolute Shrinkage and Selection Operator

lithocholic acid

liquid chromatography mass spectrometry
low-density lipoprotein
lipopolysaccharides

machine learning

methicillin-resistant Streptococcus aureus
mass spectrometry

non-alcoholic fatty liver disease
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NCDs
NGS
NMR
OGTT
OTUs
PCA
PCR
PERMANOVA
gPCR
RNA
rRNA
SCFAs
sIgA
TMAO
T2D
UDCA
VOCs
WD

non-communicable diseases
next-generation sequencing
nuclear magnetic resonance spectroscopy
oral glucose tolerance test
Operational Taxonomic Units
Principal Component Analysis
polymerase chain reaction
Permutational Analysis of Variance
quantitative PCR

ribonucleic acid

ribosomal RNA

short-chain fatty acids

secretory immunoglobulin type A
trimethylamine N-oxide
type 2 diabetes
ursodeoxycholic acid

volatile organic compounds

Western-type diet
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