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Abstract:

In the first chapter, we show that a biased principal can strictly benefit from
hiring an agent with misaligned preferences or beliefs. We consider a “delegated
expertise” problem in which the agent has an advantage in acquiring information
relative to the principal. We show that it is optimal for a principal who is ex ante
biased towards one action to select an agent who is less biased. Such an agent is
more uncertain ex ante about what the best course of action is and would acquire
more information. The benefit to the principal of a better-informed decision
always outweighs the cost of a small misalignment.

In the second chapter, I study a game between an agent and a principal in a
dynamic information design framework. A principal funds a multistage project
and retains the right to cut the funding if it stagnates at some point. An agent
wants to convince the principal to fund the project as long as possible, and
can design the flow of information about the progress of the project in order to
persuade the principal. If the project is sufficiently promising ex ante, then the
agent commits to providing only the good news that the project is accomplished.
If the project is not promising enough ex ante, the agent persuades the principal
to start the funding by committing to provide not only good news but also the
bad news that a project milestone has not been reached by an interim deadline.

In the third chapter, we study an information design model in which the state
space is finite, the sender and the receiver have state-dependent quadratic loss
functions, and their disagreement regarding the preferred action is of arbitrary
form. This framework enables us to focus on the understudied sender’s trade-
off between the informativeness of the signal and the concealment of the state-
dependent disagreement about the preferred action. In particular, we study which
states are pooled together in the supports of posteriors of the optimal signal.

Abstrakt:

V prvni kapitole ukdzeme, ze zaujaty principal muize mit prospéch z najmuti
agenta s neshodnymi preferencemi nebo presvédéenim. Zkoumame problém dele-
gované expertizy®, ve kterém ma agent oproti principalovi vyhodu pri ziskavani
informaci. Ukazujeme, ze pro principéla, ktery je ex ante zaujaty viici jedné akei,
je optimélni vybrat agenta, ktery je méné zaujaty. Takovy agent je ex ante vice
nejisty ohledné toho, jaky postup je nejlepsi, a ziska tak vice informaci. Prinos
z lépe informovaného rozhodnuti pro principala vzdy prevazi naklady na malou
neshodu v preferencich.

Ve druhé kapitole studuji hru mezi agentem a principadlem v rameci dynam-
ického informacniho designu. Principal financuje vicefazovy projekt a ponechava
si pravo omezit financovani, pokud v uréitém okamziku zacne projekt stagno-



vat. Agent chce premluvit principéla, aby financoval projekt tak dlouho, jak je
to mozné, a muze navrhnout tok informaci o priibéhu projektu, aby principala
presvéddéil. Pokud je projekt dostatecné slibny ex ante, pak se agent zavazuje
poskytovat pouze dobré zpravy, ze projekt je dokoncen. Pokud projekt neni
dostatecéné slibny ex ante, agent presvéddl principéla, aby zahdjil financovani
tim, ze se zavéaze poskytovat nejen dobré, ale i $patné zpravy ohledné nedosazeni
milniku projektu v prozatimnim terminu.

Ve treti kapitole, se zabyvame modelem Bayesidanskeho presvédéovani s
konecné mnoha stavy a kvadratickymi ztratovymi funkcemi odesilatele a prijemce
zévisejicimi na stavu. Nesouhlas mezi odesilatelem a prijemcem ohledné op-
timalni akce miize mit libovolny tvar. Tento model umoznuje zamérit se na
relativné neprozkoumany kompromis mezi informativnost{ signalu a utajenim ne-
souhlasu ohledné optimalni akce. Konkrétné se zamérujeme na to, jak odesilatel
sdruzuje stavy v posteriorech optiméalniho signélu.
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Introduction

Information is valuable for efficient decision-making, and thus, in many situa-
tions, the owners of information can strategically use it to their advantage. Retail
goods sellers tend to conceal certain attributes of a product while being trans-
parent about others, biased prosecutors strategize when inviting a witness to a
court hearing, and experts obfuscate specific pieces of evidence when advising
a policymaker - all these are examples of strategic information provision, which
is the overarching theme of this dissertation. The first chapter examines a set-
ting in which a boss and an expert agree on an issue ex post but disagree ex
ante due to differences in opinions on the issue, and studies the boss’s choice of
expert based on these differences. The second and third chapters consider the
expert and the decision-maker with misaligned preferences, focusing on the dy-
namic and static aspects of the expert’s choice of information provision to the
decision-maker, respectively.

In the first chapter, we consider a principal and an agent who share the
same preference for choosing an action that matches the unobservable state of
the world, but who have different prior beliefs regarding the state. In contrast
to the principal, the agent can access costly information about the state of the
world. We study the principal’s choice in the “delegated expertise” problem: the
principal selects an agent based on the agent’s prior belief, and then the agent
acquires information and chooses the action. Surprisingly, we show that it is not
optimal for the principal to delegate the task to an agent whose prior belief is
perfectly aligned with the principal’s prior. Instead, we demonstrate that it is
optimal for the principal to delegate the task to an agent who agrees with the
principal on the best action choice ex ante but who is more uncertain than the
principal (i.e., the optimal agent’s prior belief is relatively closer to the uniform
prior belief than the principal’s). We demonstrate that, instead of delegating to
an agent with a misaligned prior, the principal can achieve the optimal delegation
outcome by delegating to an agent with misaligned preferences over the action
choices. Finally, we show that delegation to a misaligned agent as an incentive tool
performs at least as well as action-contingent or outcome-contingent transfers to
the agent. The results serve as a useful directional behavioral tool for delegation
in public organizations and provide support for diversity in large organizations.

In the second chapter, I examine a game between a principal who funds an
innovative multi-stage project and decides when to cut funding, and an agent who
controls the information on the project’s progress toward completion. I assume
that the project has two stages, the agent prefers the principal to postpone cutting
the funding, and the agent can commit to a dynamic information policy specifying
which pieces of information will be provided to the principal and when. 1 study
the agent’s choice of information policy and show that if the project is sufficiently
attractive to the principal ex ante, then the agent promises to disclose only the
completion of the second stage of the project, doing so with a postponement.
However, if the project is not sufficiently attractive ex ante, the agent promises to
provide information regarding the completion of both the second and first stages
of the project. This particular structure of optimal disclosure is preserved under a
more general preference specification. Intriguingly, the optimal form of disclosure



for the first stage completion is a deterministic interim deadline: at the outset of
the game, the agent announces a date at which she will disclose if the first stage
is already completed or not, and upon receiving the bad news, the principal cuts
funding for the project precisely at the interim deadline. The results shed light
on the information disclosure in venture finance and bureaucracies.

In the third chapter, we explore the structure of optimal signals in the
Bayesian persuasion model with a continuous action space and discrete state
space. We assume that both the sender and the receiver share quadratic loss
preferences, which implies that they have state-dependent preferred actions. The
main twist is that we assume the difference between the sender’s and the receiver’s
state-dependent preferred actions can have an arbitrary form, and we show how
this form determines the sender’s choice of optimal signal. In particular, we define
the state-pooling structure of a signal. Given a signal, this structure specifies
which states of the world are pooled together in the supports of posterior beliefs
constituting the signal. Unexpectedly, we demonstrate that the state-pooling
structure of an optimal signal can be explored using a simple condition on the
alignment of the sender’s and receiver’s preferred actions at pairs of states. Using
this condition, we provide a graph procedure that takes the set of states of the
world and the form of preference misalignment as input, and delivers the optimal
and candidate-optimal pools of states as the output.



1. Optimally Biased Expertise

Co-authored with Pavel llinov (CERGE-EI), Andrei Matveenko (University of
Mannheim, Department of Economics), and Egor Starkov (University of Copen-
hagen, Department of Economics).

1.1 Introduction

Presidents, CEOs, and other leaders are often touted as visionaries, paving the
way to a brighter tomorrow. However, they cannot do this alone. They regularly
rely on the advice and expertise of others, and they may hire advisors and experts
who do not necessarily share the same vision. For example, Lyndon Johnson was
passionate about his economic reform, “the War on Poverty”: “That’s my kind
of program. I'll find money for it one way or another. If I have to, I'll take away
money from things to get money for people. ... Give it the highest priority. Push
ahead full tilt” [Bailey and Duquette, 2014, p. 354]. Chairing Johnson’s Council
of Economic Advisers was Walter Heller, who, while being one of the original
authors of the War on Poverty, was no stranger to pushing against it, advocating
for fiscal responsibility and frugality, especially later in the 1960s.! Similarly,
Ronald Reagan’s radical “Reaganomics” reforms clashed from their early days
with a more restrained position of the Federal Reserve and its then-chairman
Paul Volcker,? but that did not stop Reagan from renominating Volcker to a
second term in 1983.

Why can it be beneficial for a partisan principal to hire an agent with a
misaligned vision? At first sight, such a decision looks counterintuitive — e.g.,
Holmstrom [1980] suggests that misalignment between a principal and an agent
leads to a conflict of interest, because, from the principal’s point of view, the
agent then makes suboptimal decisions. A similar conclusion could be drawn
from the political economy literature, which suggests that political leaders trade
off competence for loyalty when selecting appointees [Lewis, 2011] — one would
think that misalignment depresses loyalty, while not necessarily benefitting the
competence. Nevertheless, in this paper we show that even conditional on compe-
tence, misalignment between a principal and an agent can lead to better decisions
or recommendations, and thus benefit a partisan principal.

To show this, we consider a delegation model in which a principal (she) and
an agent (he) have common payoffs from different actions, given an unobserved
state of the world, but have misaligned prior beliefs about the state of the world.?

ICrichton, K. 1987. “Walter Heller: Presidential Persuader.” The New
York  Times, June  21. https://www.nytimes.com/1987/06/21/business/
walter-heller-presidential-persuader.html

2Atkinson, C. 1982. “Reagan, Volcker Meet to Discuss Policy Rift”
Washington ~ Post,  February 17. https://www.washingtonpost.com/archive/
business/1982/02/17/reagan-volcker-meet-to-discuss-policy-rift/
f0e448ae-a08d-46b9-aefd-5f4d5449b04f/

3In the context of our motivating examples, this can be interpreted as both the President
and the Economist having the same objective (strong economy, low inflation, high employment,
etc.), but different views on which monetary and fiscal tools should be used in order to achieve
these objectives in a given situation. For instance, the President could believe tax cuts are more


https://www.nytimes.com/1987/06/21/business/walter-heller-presidential-persuader.html
https://www.nytimes.com/1987/06/21/business/walter-heller-presidential-persuader.html
https://www.washingtonpost.com/archive/business/1982/02/17/reagan-volcker-meet-to-discuss-policy-rift/f0e448ae-a08d-46b9-aefd-5f4d5449b04f/
https://www.washingtonpost.com/archive/business/1982/02/17/reagan-volcker-meet-to-discuss-policy-rift/f0e448ae-a08d-46b9-aefd-5f4d5449b04f/
https://www.washingtonpost.com/archive/business/1982/02/17/reagan-volcker-meet-to-discuss-policy-rift/f0e448ae-a08d-46b9-aefd-5f4d5449b04f/

The agent does not have any preexisting knowledge about the case he is asked to
consider, but can use his expertise to acquire additional information to make the
best decision. The agent’s cost of learning is not internalized by the principal,
and her own cost of learning is prohibitively high. This setting was labeled by
Demski and Sappington [1987] as the “delegated expertise” problem.

We show that when the principal is ex ante biased towards some action (in the
sense of having a non-uniform prior belief over which of the actions is optimal),
it is optimal for her to hire a misaligned agent. In particular, she benefits the
most from delegating to an agent who is ex ante less biased and hence more
uncertain than she is about what the best course of action is (Propositions 1.3
and 1.6.2, Theorem 1.4.4). This is because, the more uncertain the agent is,
the more he learns about the state, and the better his action fits the state —
which benefits the principal. This, however, must be balanced against the tilt:
any kind of misalignment between the principal and the agent leads to a tilt in
the agent’s decisions relative to what the principal would prefer. In the end,
the principal prefers to hire an agent who is more uncertain than she is, and
who thus conducts a more thorough investigation than an aligned agent would,
— but who still favors the same action ex ante. This result holds regardless of
who has the final decision rights: the optimal delegation strategy is the same
whether the principal delegates the decision rights to the agent or merely expects
a recommendation on the optimal course of action (Proposition 1.6.3).

This conclusion has implications in various settings. One relates to bilateral
relationships — e.g., when an authority in a public organization wants to find the
best expert to delegate a decision to. Our findings offer conditions on the set of
experts for delegation to be beneficial, as well as an upper bound for the expected
gains from such a delegation. Moreover, if it is relatively straightforward for the
authority to rank available experts in regards to their attitudes, we provide a
useful directional behavioral tool: the authority should look for an expert who
shares similar views but who is more uncertain or moderate. Our second inter-
pretation covers large organizations. We take heterogeneous priors as different
views of the people in organizations such as research teams, firms, and political
parties. Our results speak in favor of diversity of views in such organizations. We
characterize a useful diversity strategy for the leader: she benefits from having
workers with slightly more moderate views. Although the optimal agent is unique
in our model, our problem is static and one-shot. For other decision problems, the
leader may have different opinions and, therefore, benefits from having workers
with different views in the organization.?

Importantly, the optimal degree of misalignment is non-monotone in the
strength of principal’s own bias (Corollary 1.3). If the principal is unbiased,
then she would prefer an unbiased agent, who would hence be aligned with her
vision. The same would apply if a principal is extremely biased — in this case
she is almost certain that one action is better than all others, and may either

likely to benefit the economy, whereas the Economist could advocate for a more restricted fiscal
policy for sake of maintaining control over monetary policy.

4Banerjee and Somanathan [2001] and Li and Suen [2004] present a counterargument to
the benefits of diversity, arguing that if a decision needs to be made by a collective, diverse
collectives can have a harder time agreeing on a decision and may produce worse outcomes. For
a recent review on diversity in organizations, see Shore, Chung-Herrera, Dean, Ehrhart, Jung,
Randel, and Singh [2009].



take this action on her own, or find an agent who is equally as biased. Hiring a
misaligned agent is hence most optimal for the somewhat-biased principal, who
has some ex ante preference for one action over another, but who still values the
information that would be collected by the agent.

We further show that the principal can equivalently benefit from leveraging
misalignment in preferences rather than misalignment in beliefs. Our Theorem
1.5.1 states that the best delegation outcome can be implemented by hiring an
agent with either optimally misaligned beliefs, or optimally misaligned prefer-
ences (or, equivalently, offering action-contingent payments). This result has a
mirror implication for the empirical literature estimating discrete choice models:
Theorem 1.5.1 implies that the agent’s observed action choice probabilities alone
do not allow an external observer to jointly identify the decision maker’s beliefs
and preferences in our setting.

The main conclusion of our paper is that delegation to an agent with mis-
aligned beliefs is an instrument that is available — and valuable — to the principal.
Further, in our setting, this instrument can perform equally as well as contracts
with action-contingent payments (Theorem 1.5.1) and outcome-contingent pay-
ments (Proposition 1.5.2), — and even better if we take the principal’s contract
costs into account. Further, misalignment is typically better than restricting the
agent’s choice set (Proposition 1.5.3). This benefit of misalignment challenges
the opinion that disagreement between the principal and the agent inevitably
leads to conflict, and thus the principal should seek to hire an agent who is most
aligned with her preferences and beliefs (see Holmstrom, 1980, Crawford and So-
bel, 1982b, Prendergast, 1993, Alonso and Matouschek, 2008, Egorov and Sonin,
2011, Che et al., 2013 for some examples of such a message).

The existence of the principal’s trade-off between the amount of information
acquired by an agent and the tilt in his resulting decisions relies on the flexibility
of the agent’s learning technology. We capture this flexibility using the Shannon
model of discrete rational inattention, which allows the agent to acquire arbitrary
signals and parametrizes the cost of such a signal through the expected entropy
reduction (see Mackowiak et al., 2023 for a recent survey of the literature on
rational inattention).> The choice of a signal in this model depends on the agent’s
prior belief: an agent whose prior is skewed towards some state of the world
chooses a signal which is relatively more informative regarding that state and thus
allows him to make a better decision in that state. This dimension of flexibility is
what enables the relative tilt in the misaligned agent’s decisions. We demonstrate
(see Section 1.6.2) that our results are not specific to the entropy parametrization
and continue to hold with other information cost specifications that allow for
flexible learning, such as the channel capacity cost [Woodford, 2012| and the
log-likelihood ratio cost [Pomatto, Strack, and Tamuz, 2023|.

Our paper is mainly connected to the literature on delegation. Most papers
on delegation follow Holmstrom [1980] in assuming that the agent has preexist-

5The entropy parametrization has been rationalized in both information theory as a cost
function arising from the optimal encoding problem [see Cover and Thomas, 2012] and decision
theory as arising naturally from Wald’s sequential sampling model [see Hébert and Woodford,
2019], and has been shown to work as a microfoundation of the logit choice rule commonly used
in choice estimation [Matéjka and McKay, 2015]. We mainly explore the model of finding the
best alternative, studied in Caplin et al. [2019]; the Shannon model with general preferences is
studied in Section 6.1.



ing private information relevant to the decision. We adopt instead the “delegated
expertise” setting of Demski and Sappington [1987], where the agent has no infor-
mation advantage over the principal ex ante, but rather has to collect information,
and the expertise grants him a learning advantage over the principal.® Demski
and Sappington [1987] explore a contracting problem in a setting in which the
agent chooses between a finite number of signal structures. Lindbeck and Weibull
[2020] extend this analysis to a rationally inattentive agent (who can acquire any
information subject to entropy costs). Szalay [2005] shows that restricting the
agent’s action set can be a useful tool in such a setting, because banning an ex
ante optimal “safe” action can nudge the agent to acquire more information about
which of the risky actions is the best. Our overarching message is similar: the
principal is willing to sacrifice something in exchange for the agent’s acquiring
more information, but we present a different channel through which the principal
can achieve this.

The closest study to our paper is contemporary work by Ball and Gao [2021].
They consider a model of delegated expertise and demonstrate a result similar
to that of Szalay [2005]: that banning ex ante safe actions can lead to more in-
formation acquisition by the agent, which benefits the principal. However, where
Szalay [2005] looks at a scenario in which the principal’s and the agent’s prefer-
ences coincide ex post (i.e., net of information costs), Ball and Gao [2021] explore
a model with misaligned preferences and show that the principal may benefit from
some misalignment between her preferences and those of the agent. In their set-
ting, this is due to divergence between the principal’s and the agent’s ex ante
optimal actions (due to preference misalignment), which makes banning the ex
ante agent-preferred action less costly for the principal. Our paper suggests a
different channel through which misalignment may incentivize the agent’s infor-
mation acquisition: using a flexible information acquisition framework, we show
that misalignment can lead to more information acquisition by the mere virtue of
the agent being more uncertain than the principal about what the optimal action
is.

The effects of misalignment in prior beliefs have also been studied by Che and
Kartik [2009]. They analyze a delegated expertise game in which the principal
retains the decision rights, and the agent, after acquiring the relevant information,
chooses whether to disclose it to the principal. They show that the need to
communicate may incentivize a misaligned agent to acquire more information
than an aligned one, in order to more effectively persuade the principal about
which action needs to be taken, as well as to avoid punishment for concealing
evidence. As we show in Section 1.6.3, both the persuasion and the prejudice
avoidance channels are absent from our model, even if we consider communication
(as opposed to delegation, as in the baseline model). Our explanation of the
desirability of misalignment is thus completely separate from that of Che and
Kartik [2009]. We argue instead that agents are heterogeneous in their ex ante
uncertainty regarding the optimal action, and this heterogeneity can be exploited

6Graham, Harvey, and Puri [2015] show that delegation tends to be applied when the
decision-making demands more evidence that the delegatee can provide. Alternatively, the
choice to delegate a decision is often is often exercised when a delegator faces a volatile envi-
ronment [Foss and Laursen, 2005, Ekinci and Theodoropoulos, 2021], in which any knowledge
quickly becomes obsolete.



by hiring a more uncertain agent, who will put more effort into learning the state
— even if such an agent would be misaligned relative to the principal. Our setup
further allows us to obtain novel comparative statics results and to show that the
optimal misalignment is non-monotone in the principal’s bias.

Finally, a literature exists that argues in favor of misaligned delegation in
strategic settings, as a way to commit to a certain strategy. Examples include
Rogoff [1985], Segendorfl [1998], Kockesen and Ok [2004], Stepanov [2020], and
Ispano and Vida [2022]. We differ from that literature by focusing on delegation
of non-strategic decisions, showing how misalignment may be beneficial even in
the absence of a strategic counterparty.

The remainder of the paper is organized as follows: Section 1.2 formulates
the main model, which is analyzed in Section 1.3 for the special case of binary
states and actions, while Section 1.4 analyzes the general problem. Section 1.5
compares misaligned beliefs as a delegation tool to other tools, such as misaligned
preferences, payments, and restricting the action set. Section 1.6 explores a
number of extensions of the baseline model, and Section 1.7 concludes.

1.2 Model

1.2.1 The Story

We begin by explaining verbally the outline of the model and justifying some of
the assumptions made therein; the formal setup follows in Section 1.2.2.
Consider a principal (she) who would like to implement an optimal decision
that depends on the unknown state of the world. To choose the best course of
action, the principal delegates the decision to an expert (an agent, he), who has
a learning advantage in acquiring information about the state and the optimal
decision. For simplicity, we assume that the agent’s learning costs (defined fur-
ther) are finite and the principal’s are infinite, but the results extend naturally to
the case when the principal’s learning costs are finite but larger than the agent’s.
Further, Section 1.6.3 demonstrates that communication is equivalent to delega-
tion in our setting (barring the equilibrium multiplicity), so it is not important
for our results whether the principal or the agent makes the final decision.
There are many experts available to the principal, and all experts have a com-
mon interest with the principal, but differ in their opinions on the issue (Section
1.5.1 demonstrates the connection of our results to the case of common beliefs but
misaligned preferences). These prior beliefs of different agents are observable by
the principal — e.g., due to the agents’ reputation concerns (i.e., agents needing
to publicly establish a particular stance on a broad policy question for sake of
earning, and subsequently capitalizing on, a specific reputation). Experts with
different initial opinions would acquire different information, and thus possibly
make different final decisions. The principal is thus concerned with choosing the
best agent for the job. Alternatively, our results can be interpreted as compar-
ative statics for a game between a principal and a given agent with some fixed
misalignment, w.r.t. the degree of misalignment. That said, we believe that a
literal interpretation of selecting one agent from a population with heterogeneous
beliefs is valid as well. Kahneman, Sibony, and Sunstein [2021] survey a large
body of evidence suggesting that similar experts and decision-makers in similar



conditions make extremely different judgement and predictions, with a large share
of these differences attributable to the interpersonal heterogeneity (and a smaller
share being due to intra-personal noise in decision-making). We argue that this
heterogeneity can be leveraged by the principal through selecting an agent whose
bias fits a given problem the most.”

1.2.2 The Setup

The above can be modeled as a game played between a principal and a population
of agents. Let A denote the set of actions with a typical element a, and €
denote the set of states with a typical element w. The principal has a prior
belief p, € A(Q), where A(Q) denotes the set of all probability distributions
on . Every agent in the population has some prior belief © € A(2), which is
observable by the principal.® In what follows, we refer to an agent according to
his prior belief. Let M C A(Q2) denote the set of prior beliefs of all agents in the
population.®

The terminal payoff that both the principal and the agent selected by the
principal receive when action a is chosen in state w is given by u(a,w). Prior to
making the decision, the selected agent can acquire additional information about
the realized state. We assume that the agent can choose any signal structure
defined by the respective conditional probability system ¢ : Q — A(S), which
prescribes a distribution over signals s € § for all states w € ), where § is
arbitrarily rich. The information is costly: when choosing a signal structure ¢,
the agent must incur cost ¢(¢, 1) that depends on the informativeness of the signal
¢ and the agent’s prior belief 1.1

The cost function we consider is the Shannon entropy cost function used in
rational inattention models [Matéjka and McKay, 2015]. In this specification,
the cost is proportional to the expected reduction in entropy of the agent’s belief
resulting from receiving the signal (we consider other cost functions in Section

"Note that the evidence presented by Kahneman, Sibony, and Sunstein [2021] implies that
the population of principals would also be heterogeneous in their judgements of a given decision
problem. This, together with the inherent heterogeneity of problems, would create demand for
a wide variety of experts — and hence mitigate the agents’ desire to conceal or misrepresent
their biases.

8To clarify, we work with a model of non-common prior beliefs about w, and we take this
assumption at face value. Such settings are not uncommon in economic theory: see Morris
[1995], Alonso and Camara [2016], Che and Kartik [2009] for some examples and discussion.
It is well known [see Aumann, 1976, Bonanno and Nehring, 1997] that agents starting with a
common prior can not commonly know that they hold differing beliefs. We allow the agents to
have heterogeneous prior beliefs, and thus to “agree to disagree”. While it may be possible to
replicate our results in a common-prior model with asymmetric information, where an agent’s
ex ante belief is affected by some private information not observed by the principal, such a
model would feature signaling concerns (e.g., an agent learning something about the principal’s
information about the state from the fact that he was chosen for the job, and the principal
then exploiting this inference channel). We prefer to abstract from such signaling and simply
assume non-common priors from the start.

9For many of the results we assume that the population of agents is rich enough to represent
the whole spectrum of viewpoints: M = A(Q).

19Gimilar to, e.g., Alonso and Camara [2016], we assume that the agent and the principal share
the understanding of the signal structure. Combined with them having different (subjective)
prior beliefs over states, this implies they would also have different (subjective) posterior beliefs
if both observed the signal realization.
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1.6.2 to show that our results do not depend on this particular specification).
Namely, let  : S — A() denote the agent’s posterior belief system, obtained
from p and ¢ using the Bayes’ rule. The cost is then defined as

(¢, ) —( > p(w) In p(w)+

weN

+2 (Z u(w’)cb(SIw’)) U(w|8)1n77(w|8)), (1.1)

weN s€S \w'eN

where A € R, is a cost parameter.!! We assume that the principal does not

internalize the cost of learning, and the agent fully bears this cost. The main
interpretation [shared by, e.g., Lipnowski, Mathevet, and Wei, 2020| of this as-
sumption is that the cost reflects the cognitive process of the agent. Information
acquisition costs thus lead to moral hazard, with the agent potentially not willing
to acquire the amount of information desired by the principal. This is the main
conflict between the two parties in our model.

In line with the delegation literature, we assume that the principal cannot use
monetary or other kinds of transfers to manage the agent’s incentives. This is
primarily because learning is non-contractible in most settings — indeed, it is diffi-
cult to think of a setting, in which a learning-based contract could be enforceable,
i.e., either the principal or the agent could demonstrate beyond reasonable doubt
exactly how much effort the agent has put into learning the relevant information,
and what kind of conclusions he has arrived at. A simpler justification of the
no-transfer assumption could be that such transfers are institutionally prohib-
ited in some settings (see Laffont and Triole, 1990, Armstrong and Sappington,
2007, Alonso and Matouschek, 2008 for some examples and a discussion of such
settings). Section 1.5 shows that even when contracting is feasible, it does not
improve upon hiring an agent with a misaligned belief, and neither can restricting
the set of actions that the agent is allowed to choose from.

The game proceeds as follows. In the first stage, the principal selects an agent
from the population based on the agent’s prior belief 1. In the second stage, the
selected agent chooses signal structure ¢ and pays cost ¢(¢, ). In the third stage,
the agent receives signal s according to the chosen signal structure ¢ and selects
action a given s. Payoffs u(a,w) are then realized for the principal and the agent.

The following subsections describe the respective optimization problems faced
by the principal and her selected agent, and introduce the equilibrium concept.

1.2.3 The Agent’s Problem

The agent selected by the principal chooses a signal structure ¢ : Q — A(S) and
a choice rule 0 : § — A to maximize his expected payoff net of the information
costs. The agent’s objective function is

Efu(a,w)|u] — c(é. ) = 3 nlew) 3 dlslwlulo(s).w) — elé, ).

weN seS

He follow the standard convention and let 01n0 = 0.
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The agent’s problem can then be written down as

max{z l(w) 3 lsl)ulo(s),w) - c<¢,u>}. (1.2)

’ weN seS

Lemma 1 in Matéjka and McKay [2015] shows that problem (1.2) with entropy
cost function can be reframed as a problem of selecting a collection of conditional
choice probabilities. This reformulation is presented in Section 1.2.6.

1.2.4 The Principal’s Problem

The principal’s problem is to choose an agent based on his prior belief © € M in
order to maximize her expected utility from the action eventually chosen by the
agent. Her objective function is

Elu(a, w)lpp] = 3 ptp(w) D ¢(slw)u(o(s),w),

weN seS

so her optimization problem can be written down as

max{z fip(w )Z¢M(5|w)u(aﬂ(s),w)} ’ (1.3)

wen ses
s.t. (¢, 0,) solves (1.2) given p,

where the choice of agent p affects the signal structure ¢, and the choice rule
o, chosen by the agent. Therefore, the principal’s problem is effectively that of
choosing a pair (¢, o) from a menu given by the agents’ equilibrium strategies.

1.2.5 Equilibrium Definition

We now present the equilibrium notion used throughout the paper; the discussion
follows. [Equilibrium| An equilibrium of the game is given by (1%, {#7, 07, }enm):
the principal’s choice u* € M of the agent who the task is delegated to and a
collection of the agents’ information acquisition strategies ¢7 : Q@ — A(S) and
choice rules o}, : & — A for all u € M, such that:

1. ¢% and o}, constitute a solution to (1.2) for every u € M;
2. p* is a solution to (1.3) given (¢, 07).

Note that the above effectively defines a Subgame-Perfect Nash Equilibrium.
While our game features incomplete information (about the state of the world
chosen by Nature), and the players’ beliefs play a central role in the analysis,
problem formulations (1.2) and (1.3) allow us to treat these beliefs as just some
exogenolus functions entering the terminal payoff functions. This is primarily
because one player’s actions do not affect another player’s beliefs in this game,
hence a belief consistency requirement is not needed (however, we do require
internal consistency in that the agent’s posterior belief 7 is obtained by updating
his prior belief 1 via Bayes’ rule given his requested signal structure ¢).

12



1.2.6 Preliminary Analysis

Matéjka and McKay [2015] show that with entropy costs, the agent’s problem of
choosing the information structure and choice rule can be reduced to the problem
of choosing the conditional action probabilities. Namely, the maximization prob-
lem of the agent can be rewritten as that of choosing a decision rule 7 : Q@ — A(A)
(which is a single state-contingent action distribution, as opposed to the combi-
nation of a signal strategy ¢ : Q@ — A(S) and a choice rule 0 : § — A):

{Zu ) (3 ke <a,w>)—c<w,u>}, (1.4

weN acA

where ¢(7, 1) denotes, with abuse of notation, the information cost induced by
the action distribution 7.2 Lemma 2 in the online appendix of Maté&jka and
McKay [2015] implies in our setting that the agent’s problem has a unique solu-
tion in either formulation (up to signal labels). Let (a;) denote the respective
unconditional probability of choosing alternative a; (calculated using the agent’s

own prior belief p):
= 3 ) (alw). (1.5)

weN
The principal’s problem can then be rewritten as choosing ;1 € M that solves

g {z i) (X m(ebolutan o)) } 06

weN acA

s.t. m, solves (1.4) given p.

In what follows, we refer to problem (1.6) as the principal’s full problem. Our
main interest in what follows lies in the properties of the solution p* of the full
problem and the chosen agent’s optimal strategy 7.

We now proceed to analyze the model described above.

1.3 Binary Case

We start by looking at the binary-state, binary-action version of the model, since
the results can be presented more clearly in such a setting than in the general
model."™® We show that the principal has to balance off the amount of information
acquired against the nature of information acquired — since agents with different
prior beliefs tilt their learning towards different states. This makes the principal
favor agents who are somewhat more uncertain than her regarding the state, but
who do not necessarily have a uniform prior belief (Proposition 1.3).

12Cost c(m, u) is calculated as the cost c(¢, i) of the cheapest strategy (¢, o) that generates
7. The choice rule in such a strategy is deterministic, and the signal strategy prescribes at most
one signal per action [Matéjka and McKay, 2015, Lemma 1]. Given this, we have that

c(w)A(Zu(w)(Z (alw) In7(a ) > B(a)Ina )

we acA acA

13Such a binary model is common in the delegation literature, see e.g. Li and Suen [2004]
with a slightly different informal story.
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Assume that the state space is Q = {[,r} and with abuse of notation let
us represent beliefs p by the probability they assign to state r, so u € [0, 1].
Assume further that the action set is A = {L, R}, and the common utility net of
information costs that the principal and the agent get from the decision is given
by u(L|l) = w(R|r) = 1 and w(L|r) = u(R|l) = 0. We proceed by the backward
induction, looking at the agent’s problem first, and then using the agent’s optimal
behavior to solve the principal’s problem of choosing the best agent.

The agent is allowed to choose any informational structure (Blackwell experi-
ment) he wants, paying the cost which is proportional to the expected reduction
of the Shannon entropy of his belief. Using the result presented in Section 1.2.6,
the agent’s problem can be reformulated as the problem of choosing a stochastic
decision rule 7 : Q — A(A), which solves

max { r(RIr) + (1= p)m(LIL) — e, ) . (1.7

The solution to this problem can be summarized by the two precisions {7 (R|r), 7(L|l)}
or, alternatively, the two unconditional probabilities {#(R), 3(L)}. Using Theo-
rem 1 in Matéjka and McKay [2015], we get that

(o) = — e (Rl = — g
B(L)ex + B(R) B(L) + B(R)ex
and their Corollary 2 implies that
_pet —(1—p) (- —p
ﬁ(R> o 6% 1 ) ﬁ(L> o 6% 1 ) (19>

cropped to [0, 1]. Combining (1.8) and (1.9), we get that the solution to problem
(1.7) is given by™

(net — (1 —p)) et
2 9
GEDP
((1 = pex —p) e
(f=1) (-
cropped to [0, 1]. Figure 1.1 demonstrates how the agent’s action precisions choice

depends on his prior belief.
In turn, the principal’s problem is

fmax {ppmu(Rlr) + (1 = pp) 7 (LI}

s.t. m, solves problem (1.7) given u.

7(R|r) =
(1.10)

(L]l =

)

(1.11)

It is easy to see by comparing the payoffs in (1.7) and (1.11) that the princi-
pal benefits from higher precisions 7(R|r) and 7(L|l), the same as the agent.
However, the relative weights the principal and the agent assign to these preci-
sions depend on their respective priors p, and g, and are hence different. Hence,

4This solution takes the form of the so-called rational inattention (RI) logit. In comparison
to the standard logit behavior, under Rl-logit the decision-maker (the agent in our case) has a
stronger tendency to select the ex ante optimal alternatives more frequently.
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Figure 1.1: Solution of problem (1.7) for different prior beliefs p.

in order to understand the trade-offs that the principal faces in hiring agents
with different priors, we need to explore how the agent’s optimal strategy (1.10)
depends on his prior belief p.

When solving problem (1.7), the agent faces a trade-off between increasing
the precision of his decisions, 7(R|r) and #(L|l), and the cost of information.
Further, he prefers to learn more about the more probable event: the higher is
the probability that the agent’s prior belief assigns to w = r, the more important
is precision 7(R|r) for his payoff, compared to 7(L|l). Therefore, two agents
with different beliefs would acquire different information, leading to different
precisions 7(R|r) and 7(L|l).'> At the same time, the closer is the prior belief y
to the extremes (= 0 or p = 1), the more confident is the agent about what the
state is, and the less relevant is the precision in the other state for him, leading
to such an agent acquiring less information in total.

To summarize, the agent’s belief u affects his optimal decision precisions in
two ways: a more uncertain agent acquires more information (and hence makes
a better decision on average) than an agent who believes one state is more likely.
However, the latter is more concerned with choosing the correct action in the ex
ante more likely state, while neglecting the other state.

The principal prefers, ceteris paribus, to hire an agent who acquires more
information and hence makes better choices — i.e., a more uncertain agent (u
close to 0.5). However, if she believes that, e.g., state r is ex ante more likely
(p > 0.5), then she, for all the same reasons as the agent, cares more about
the agent choosing the optimal action in state r than in state [. The latter leads
her to prefer an agent who is not completely uncertain (¢ # 0.5), favoring those
who agree with her in terms of which state is more likely (¢« > 0.5). Balancing
the two issues leads to the principal optimally hiring an agent who has a belief
different from hers: g # p,, vet who agrees with her ex ante on the optimal
action: pu > 0.5 <= p, > 0.5.

Figure 1.2 plots the principal’s expected utility from hiring an agent as a
function of the agent’s belief ;¢ when p, = 0.7. We can see the principal with a
prior belief y, = 0.7 would prefer to hire an agent with a prior belief ;1 ~ 0.6.
Note that the graph is flat for very high and very low u, which corresponds to the

15This feature of the flexible information acquisition model was analyzed in the application
to belief polarization by Nimark and Sundaresan [2019], as well as in the marketing literature
[see Jerath and Ren, 2021].
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Figure 1.2: Expected utility of principal with prior belief y, = 0.7 as a function
of the agent’s prior belief .

optimal agent's prior

1.0

0.8

0.6

0.4

02} Lo - principal's prior

e
s . =
L’ optimal agent's prior
! ! ! ! — principal's prior
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.3: The optimal delegation strategy u* as a function of the principal’s
prior belief .

agents who do not learn anything, and simply always choose the ex ante optimal
action. Further, agents with low p ~ (0.15,0.2) acquire non-trivial information,
but hiring them is worse for the principal than taking the ex ante optimal action
(equivalent to hiring an agent with ¢ = 1). In other words, if an agent is too
biased, the information he acquires does not benefit the principal due to the tilt
in the agent’s actions relative to what the principal would have chosen.

Proposition 1.3 below formalizes this intuition and provides a closed-form
solution for the optimal delegation strategy given the principal’s prior belief ft,.
Figure 1.3 visualizes the optimal delegation strategy as a function of .

If M =10, 1], then the principal’s optimal delegation strategy is given by

; VHp
w(pp) = ——= : (1.12)
g Vip + V1= pp
Therefore, if p, € (%, 1), the principal optimally delegates to an agent with belief
Ha € (%7 :up) :

From Proposition 1.3 and Figure 1.3 we can immediately see that misalign-
ment is the most beneficial to a moderately-biased principal, while if u, is close
to either 0.5 or 1, then it is best to hire an (almost-)aligned agent. This is
summarized by Corollary 1.3 below.

The optimal misalignment |u, — p*(p,)] is single-peaked in p, € (%, 1).

One thing to note about Proposition 1.3 is that the optimal delegation strategy
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Figure 1.4: Action precisions under optimal delegation and delegating to the
aligned agent.

(1.12) does not depend on the agent’s information cost factor, A. While it is
immediate that the higher is A, the less information the agent with any given
prior p collects, Proposition 1.3 serves to show that the trade-off between the
quantity of information and the tilt in the decisions does not depend on the
absolute quantity of information the agent acquires. Section 1.6.2 does, however,
suggest that this specific conclusion is likely an artifact produced by the entropy
information cost function.

Figure 1.4 demonstrates the difference in the action precisions between dele-
gating to a perfectly aligned agent (u = j,) and the optimally misaligned agent
as given by (1.12). Optimal delegation leads to the agent consuming more in-
formation, lowers the probability of correctly matching the ex ante more likely
(according to the principal’s belief i, ) state, 7(R|r), and increases 7(L|l), thereby
bringing the two closer together. Overall, under the optimal delegation, the ex
ante less attractive option (as seen by both the principal and the agent) is im-
plemented relatively more frequently as compared to the case of the aligned del-
egation. The principal’s benefit from a higher 7(L|l) under optimal delegation
outweighs her loss from a lower 7(R|r) than under aligned delegation.

Here, an interesting connection can be made to prospect theory (see Barberis,
2013 for a review). In particular, Tversky and Kahneman [1992] suggest that
in problems of choice under risk, individual decision-makers tend to succumb
to cognitive biases such as overweighing small probabilities and underweighing
large probabilities. They propose a probability weighting function that decision-
makers unconsciously use, which is reminiscent of our optimal delegation strategy
(1.12), with g, being the objective probability and p* being the decision-maker’s
perceived probability. Our result can thus be interpreted as one possible evo-
lutionary explanation of the probability weighting functions. Namely, suppose
that “Nature” (evolutionary pressure) is the principal and “Human” is the agent.
They both have common utility function u(a,w) representing the survival prob-
ability of the individual/population, but natural selection is indifferent towards
the human’s cognitive costs ¢(¢, i) involved in the decision-making process. In
this setting, natural selection would lead humans to develop probabilistic misper-
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ceptions according to (1.12), since these maximize the survival probability.®
In the next section, we generalize the binary model, assuming more available
alternatives, while keeping the structure of the payoffs the same.

1.4 General Case

In this section, we extend the analysis to a general problem of finding the best
alternative, allowing for N > 2 actions and states. We show that the principal’s
optimal delegation strategy is qualitatively the same as in the binary case, i.e.,
it is optimal to hire a “more uncertain” agent who investigates more actions in
search of the best one than a fully aligned agent. Further, we characterize the
whole set of decision rules that can be achieved by selecting the agent’s prior
belief and show that it coincides with what can be achieved by selecting action-
contingent subsidies for the agent.

We are now looking at the model with A = {qay,...,an} and Q = {wy,...,wn}
for some N, and the preferences are given by u(a;,w;) = 1 and u(a;,w;) = 0
if © # j. Without loss of generality, we assume that the principal’s belief u, is
such that p,(w1) > pp(we) > ... > pp(wy) (otherwise states and actions can
be relabeled as necessary). As before, results from Section 1.2.6 apply, meaning
that the agent’s problem is equivalent to choosing the action distribution 7 :
Q — A(A) to maximize (1.4), and the principal selects an agent according to
his prior g € M to maximize (1.6). We do not restrict the choice of agents and
let M = A(Q) (i.e., for any probability distribution p € A(Q2), the principal can
find and hire an agent with prior belief p).

1.4.1 Agent’s Problem

Proceeding by backward induction, we start by looking at the problem of an
agent with some prior belief . Invoking Theorem 1 from Matéjka and McKay
[2015], as we did in the binary case, we obtain that the agent’s optimal decision
rule satisfies:

wl(ay,ws)
Blaj)e >
ulag,w;) )

Z{cvzl Blag)e >

where 3(a;), defined in (1.5), is the unconditional choice probability according to
the agent’s prior belief 1, and itself depends on {m(aw;)},. While (1.13) does
not provide a closed-form solution for the decision rule 7(a;|w;), it implies that the
conditional choice probabilities 7 are uniquely determined given the unconditional
choice probabilities £, and this mapping depends solely on the agent’s payoffs and
not on his prior belief. In what follows, we use the implication that a collection
of the unconditional choice probabilities 3 pins down the whole decision rule =
and use [ to summarize the agent’s chosen decision rule.

The above is not to say that closed-form expressions cannot be obtained.
Caplin et al. [2019] show (see their Theorem 1) that an agent with a prior belief y

7T(CLi|w]‘> = (113)

16Steiner and Stewart [2016] suggest an alternative explanation of probabilistic mispercep-
tions using a similar nature-as-a-principal approach, but a different source of conflict between
Nature and Human.
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optimally chooses a decision rule that generates unconditional choice probabilities

B(a;) = max O,l UB) + 0)ulwr) Ly, (1.14)

) > p(wy)
jeC(p)
where § = ex —1; CB)={ie{l,..,N}: B(a;) > 0} denotes the consideration
set, i.e., the set of actions that are chosen with strictly positive probabilities, and
K(B) = |C(8)| denotes the power (number of actions in) this set.

1.4.2 Principal’s Relaxed Problem

As mentioned previously, (1.13) implies that a collection of the unconditional
choice probabilities 3 pins down the whole decision rule 7. Let us then consider a
relaxed problem for the principal, in which instead of choosing the agent’s prior
i, she is free to select the unconditional choice probabilities 5 € A(A) directly:

N N a, G“WA’%)
mgux {ZMP(WJ) (Z Nﬁ( ) ) u(ai,wj)) } . (1.15)
i=1 i=1 Yooy Blar)e™

In the above, we used (1.13) to represent the conditional probabilities 7(a;|w;) in
(1.6) in terms of the unconditional probabilities 3(«a;). In Section 1.4.3 we show
that the solution to this relaxed problem is implementable in the full problem
— i.e., that there exists an agent’s belief i that generates the principal-optimal
choice probabilities 3.

Note that (a;) in the above represents the probability with which an agent
expects to select action a;. The principal’s expected probability of a; being se-
lected, SN | p1p(w;)m(asw;), would generically be different, since her prior belief
1, is different. Despite the potential confusion this enables, analyzing the princi-
pal’s problem through the prism of choosing £ is the most convenient approach
due to the Rl-logit structure of the solution to the agent’s problem.

Given the state-matching preferences u(a;,w;) = 1, u(a;,w;) = 0 if i # j, we
can simplify (1.15) to

= Blag)es
max {;up(wj)m} : (1.16)

We can now state the solution to the principal’s problem as follows.
Lemma 1. The solution to the principal’s relaxed problem (1.16) is given by

) o L[ KGOV |

g > fip(w;)
JjEC(B*)

where § = ex — 1.

Lemma 1 describes the solution in terms of the action choice probabilities,
which do not necessarily give the reader a good idea of its features and the
intuition behind this solution. We explore these in more detail in Section 1.4.4.
Before that, however, we need to ensure that this solution is attainable in the
principal’s full problem, which is done in the following section.
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1.4.3 Principal’s Full Problem

The question this section explores is: can the principal generate choice proba-
bilities 8* by appropriately choosing the agent’s prior belief ;7 In the binary
case, the answer was trivially “yes”: due to continuity of the agent’s strategy,
by varying the agent’s belief p(r) between 0 and 1, the principal could induce
any unconditional probability #(R). In the multidimensional case, this is not
immediate. However, the following result shows that the result still holds with
N actions and states under state-matching preferences.

Lemma 2. In the principal’s full problem (1.6), any vector # € A(A) of uncondi-
tional choice probabilities is implementable: there exists a prior belief u € A(Q)
such that B(a;) = Z;V:1 pw;)my(ailwy), where 7 solves the agent’s problem (1.4)
given (.

The lemma states that if M = A(Q), then the principal can generate any
vector of unconditional action probabilities. Note that this does not imply that
she is able to select any decision rule 7(a;|w;) — if this were the case, under the
state-matching preferences she would simply choose to have 7(a;|w;) = 1 for all 7.
However, Lemma 2 does imply that the choice probabilities described in Lemma 1
— those that solve the principal’s relaxed problem, — are implementable and thus
also solve her full problem. The result does, however, rely on the state-matching
preferences: we show in Section 1.5.1 that it does not hold for arbitrary payoff
functions.

1.4.4 Properties of the Optimal Delegation Strategy

While Lemma 1 presents the solution of the principal’s problem in terms of the
unconditional choice probabilities, this representation is not the most visual. We
now demonstrate some implications of this solution in terms of other variables.
Namely, Theorem 1.4.4 extends Proposition 1.3 and shows how the chosen agent’s
prior belief relates to that of the principal. Proposition 1.4.4 then compares
actions taken under optimal delegation vs aligned delegation.

We begin by looking at the optimal agent choice in terms of the agent’s belief

*

W
The principal’s equilibrium delegation strategy p* is such that for all 7,5 €

{1,...,N}:

In particular, p*(wy) > ... > p*(wy). Further, p*(w;) < pp(w;) and p*(wy) >
tp(wn), with equalities if and only if pp(wi) = ... = pp(w;).

The intuition behind the result above is the same as that behind Proposition
1.3: the optimally chosen agent is more uncertain than the principal between any
given pair of states. To see this, note that if p,(w;) > pp(w;) then 1 < L& <

¥ (wy)
% — i.e., the agent believes state w; is ex ante more likely than w;, as the
7

principal does, but he assigns relatively less weight to w;. This applies to any
pair of states. Thus, the implication is that the optimal agent must assign a lower
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ex ante probability to wy, the most likely state according to the principal, than she
does, and vice versa for wy. Note further that the result in Theorem 1.4.4 is again
independent of A, implying that the optimal delegation strategy is determined by
the relative trade-off between the quantity of information acquired and the tilt
introduced in actions by the misalignment in beliefs, but the absolute quantity
of information acquired is irrelevant. In particular, hiring an agent with p* is
optimal even when he acquires no information, and another agent p is available,
who would be willing to invest effort in learning w (since such a p-agent would
be too misaligned relative to the principal).

We now switch to comparing the choices made under optimal delegation to
those that would arise under aligned delegation — i.e., if the principal selected
an agent with p = u,. Let 3 denote the choice probabilities that would be gener-
ated under aligned delegation. Caplin et al. [2019] show that these probabilities
3, as a function of the agent’s prior u, are given by (see their Theorem 1)

s Lo L[ ) 4 o)
Pl mme 05 TS )

JEC(B)

—1|3. (1.17)

Since pip(w1) > ... > pp(wn ), the consideration set in the aligned problem is then
simply C(8) = {1, ..., K}, and its size K = K(f3) is the unique solution of

pp(wic) > K+(5 Zﬂp (wj) 2 pp(wici1)- (1.18)

In turn, we can see from Lemma 1 that under optimal delegation, size K* = K(3*)
of the consideration set under optimal choice is

Viglorc) > > \ile) 2 glom ) (1.19)

These two conditions allow us to compare K* and K directly, which is done by
the following proposition.

Optimal delegation weakly expands the consideration set relative to aligned
delegation:

K(B8*) > K(B).

In other words, delegating to an optimally misaligned agent leads to a wider
variety of actions played in equilibrium. This is a direct consequence of delegation
to a more uncertain agent — since he is less sure than the principal of what
the optimal action is ex ante, he considers more actions worth investigating.
Every action has some positive probability of actually being optimal, and thus a
more uncertain agent plays a wider range of different actions ex post. We could
already see this effect at play in the binary case, where if p, is extreme, then an
aligned agent takes the ex ante optimal action without acquiring any additional
information, whereas the optimally chosen agent could investigate both actions.
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1.5 Misaligned Beliefs Versus Other Instruments

The preceding analysis set the foundation for using misalignment in beliefs as an
instrument in delegation. This section studies how this instrument compares to
the other instruments, such as contracting or restricting the delegation set. We
keep the overall structure of the problem the same as in Sections 1.3 and 1.4,
but modify the problem to allow for different tools at the principal’s disposal,
and compare the outcomes in these modified problems to those in the baseline
problem of choosing an agent with the optimal beliefs.

1.5.1 Contracting on Actions/Misaligned Preferences

The most basic delegation tool is contracting: if the principal could offer the
agent a contract that specifies contingent payments, this would be the most direct
way to provide incentives (see Laffont and Martimort [2009] for many examples).
We begin by looking at action-contingent contracts 7 : A — R, which allow
the principal to incentivize the agent by offering payments that depend on the
action that the agent selects. This assumes that actions are contractible (i.e.,
observable and verifiable) and the principal has the institutional power to make
such contracts — either of which may or may not hold in any given setting. We
assume that all agents and the principal have a common prior belief g, all players’
preferences are quasilinear in payments, and the principal’s marginal utility of
money is p, and the agent’s marginal utility of money is 1.17

Note that instead of contracting, we can interpret this setup as a problem of
selecting an agent with misaligned preferences by setting p = 0. Schedule 7 then
represents not payments, but rather an agent’s “biases”, i.e., inherent preferences
towards certain actions on top of the “unbiased” utility w(a,w). Such a problem of
selecting an agent with optimally misaligned preferences is a natural counterpart
to our baseline problem of selecting an agent with optimally misaligned beliefs.

The agent’s problem (again using the equivalence presented in 1.2.6) is then
given by

N N
X{Zup(wg > wlauky) (lanwy) 1 v(ar)) —c<¢,up>}, (1.20)
j=1 i=1
given 7, and the principal’s contracting problem is

mTaX{Z;/Lp(w] ;W alw;) ( (@i, w;) — pT(ai>)}

s.t. m solves (1.20) given 7.

(1.21)

Instead of providing a closed-form solution to this problem, we appeal to
Lemma 2 to argue that regardless of p, the principal cannot obtain higher ex-
pected utility than in the baseline problem of choosing an agent with a misaligned

"In line with the baseline problem, we do not impose any explicit participation constraints
on the agent that would impose a lower bound on the transfers. The implicit assumption here
is that the agent is being paid some non-negotiable unconditional salary if he is hired, which
is sufficient to ensure participation. Payments {7(a;)} should then be treated as premia, with
the limited liability assumption implying they must be non-negative.
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belief . In particular, Lemma 2 implies that any unconditional choice proba-
bilities 5 € A(A) generated by an agent, who is incentivized by payments or
misaligned preferences, can also be obtained by selecting an agent with appro-
priately misaligned beliefs. Moreover, by using Proposition 3 of Matveenko and
Mikhalishchev [2021] we can also show the converse — that any decision rule
achievable with misaligned beliefs can be replicated with payments 7 (or by set-
ting the quotas, i.e., imposing specific unconditional choice probabilities for a
different action). These results are formalized by the following theorem.'®

The principal’s problem of contracting on actions (1.21) is equivalent to her
full (delegation) problem (1.6):

1. For any vector 7 : A — R of payments/biases and a corresponding 3 : 0 —
A(A) that solves (1.20) given 7, there exists a prior belief © € A(Q) such
that 8 also solves (1.4) given p.

2. For any p € A(Q) and the corresponding 3 : O — A(A) that solves (1.4)
given p, there exist payments 7 : A — R such that 5 also solves (1.20)
given T.

The theorem above directly implies that neither of the two instruments (con-
tracting on actions or searching for an agent with stronger/weaker preferences
for specific actions) can yield strictly better results than hiring an agent with an
optimally misaligned belief. Further, if the principal’s contract choice is subject
to the limited liability constraint (7(a;) > 0 for all ), then it is immediate that
contracting on actions is strictly worse, since it cannot yield a better decision
rule, but requires payments from the principal — payments which are avoidable if
she instead hires an agent who is intrinsically motivated by his beliefs over states
or preferences towards specific actions.

Further, our Lemma 2 and the results of Matveenko and Mikhalishchev [2021]
also imply that no combination of misaligned beliefs, misaligned preferences, and
payments for actions can perform better than any individual instrument. More-
over, they also imply that suboptimal misalignment along any single dimension
can be amended using other instruments. That is, if a given agent holds a non-
optimal prior belief (that does not coincide with the principal’s either), the op-
timal behavior might be induced via action-contingent transfers. Conversely, if
an agent has biased preference towards certain actions, this misalignment can
be compensated for by selecting an agent with an approprite prior belief. The
following proposition presents one example of such equivalence, in the context of
a model with N = 2.

Consider the binary setting of Section 1.3. Consider the principal’s problem
of contracting on actions (1.21), where p = 0 and the agent holds prior belief

i # pp. Then:

1. for any pu, there exist payments/biases {7*(L),7*(R)} that implement the
optimal conditional choice probabilities from Section 1.3;

18The result regarding quotas is not included in the theorem, yet it follows immediately from
Lemma 1 of Matveenko and Mikhalishchev [2021].
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2. these payments/biases are such that!®

R R e =

It is easy to see the intuition behind the proposition: if the agent’s prior belief
i assigns lower probability to state w = r compared to the principal-optimal
prior p* given in Proposition 1.3, such an agent is ex ante too hiased towards
action a = L for the principal’s taste, even though he potentially acquires more
information than an agent with belief u*. Therefore, the principal can nudge the
agent towards action a = R by offering higher payment if he selects R (or find
an agent whose preference bias towards R offsets his belief bias towards state
[).2% This discussion also emphasizes that what matters for our results is not
the agent’s uncertainty about the state per se, but the agent’s uncertainty about
what the optimal action is. E.g., an agent who assigns very high probability to
state w = [ can be optimal for the principal, as long as the agent’s preferences are
sufficiently biased in favor of action @ = R — so the agent is actually uncertain
about which action to take and chooses to acquire additional information to break
the indifference.

1.5.2 Contracting on Outcomes

We now turn to exploring outcome-contingent contracts. An outcome in our
model can be measured by whether a correct action was chosen (¢ = a; when
w = w;) or not. We thus let the principal select payments 7,7 that the agent
receives, so that 7(a;,w;) = 7 and 7(a;,w;) = 7 if i # j.2' We assume limited
liability (7,7 > 0), quasilinearity of preferences in payments for all agents, and
let the agent’s marginal utility of money to be 1, and the principal’s marginal
utility of money to be p.
The agent’s problem is then choosing 7 : 0 — A(A) that solves®?

max { > w) S w(ailw;) (ulai, wp) + 7(ai,w5)) — (o, M)}, (1.22)

j=1 i=1

¥The closed-form expressions are available in the proof in the Appendix.

20This is broadly related to the findings of Espitia [2023], who shows that the bias in the
agent’s preferences can be counteracted by the bias in beliefs (although, the belief biases in his
paper are limited to over- and underconfidence).

211f the principal could contract on both actions and outcomes, she would have the freedom
to select any payment schedule {7(a;,w;)}. Lindbeck and Weibull [2020] study such a problem
with N states and two actions.

22While it is more common in the literature to consider an agent who yields no intrinsic utility
from actions and is motivated exclusively via payments, for sake of consistency, we maintain
the assumption that the agent enjoys the same intrinsic utility u(a,w) as the principal, albeit
possibly to a different magnitude.
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given 7, and the principal’s contracting problem is

N N
H;E%_X{Z,u i)Y m(aslwy) ( (@i, w;) — pr(ai,wj))}, (1.23)
L i=1

s.t. 7(ai,w;) = 7 for all i,
7(a;,w;) = 1 for all i, # 1,

7 solves (1.22) given 7, 1.

It is trivially optimal for the principal to set = = 0, since her objective is to
provide incentives for the agent to match the state. Then the agent’s (ex post)
payoff net of information cost becomes u(a;, w;)+ 7(a;, w;) = (1+7)u(a;,w;), and
the principal’s payoff is u(a;, w;) —7(a;,w;) = (1 —pT)u(a;,w;). In other words, by
increasing the incentive payment 7, the principal effectively lowers the relative
cost of information for the agent, at the cost of decreasing her own payoff. It
then appears like an instrument that could be universally useful for the principal
— even when she chooses an agent with the optimal prior belief, she could still
benefit from reducing the agent’s information cost, which would result in him
acquiring more information. The following proposition shows, however, that this
is not the case: while contracting on outcomes may be a useful instrument, it
cannot improve on delegating to the optimally misaligned agent when payments
are costly to the principal.

Consider the principal’s contracting problem (1.23) in the binary setting of

there exist

Section 1.3 and suppose p, > 1/2. Then for any p > min{l, X

L, e and fip, fip such that:
Lofip, < pp < p* < pp < pip < fip, where p* is given by (1.12);
2. the principal’s problem (1.23) is solved by 7 > 0 if p € (fiy, piy) U (fip, fig);
3. the principal’s problem (1.23) is solved by 7 = 0 otherwise.

The proposition states that the principal uses the incentive payments, 7 > 0,
when she has an intermediate degree of misalignment in opinions with the agent.
This may happen if the agent is moderately more biased than the principal,
(> p,, and acquires too little information for the principal’s taste (which is the
case when p, < ip < i < fip). An additional reward for matching the state then
incentivizes the agent to acquire more information and improves the principal’s
payoff, despite her giving a part of it to the agent. If the agent is too biased,
however (> fip), then the incentives become too costly for the principal to
provide, and she chooses 7 = 0. The logic is analogous if the agent is sufficiently
biased in the opposite direction (¢ < 0.5). Finally, if the agent is sufficiently
aligned with the principal, p € g, pp], then providing bonus payments does
not provide enough of an additional incentive to the agent to justify the cost for
the principal. This latter case includes both the aligned agent (u = p,,) and the
optimally biased agent (1 = p*(p,)). Therefore, the principal’s ability to offer
incentive payments is not beneficial to her when she has access to a broadly-
aligned agent.
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1.5.3 Restricting the Delegation Set

Another instrument commonly explored in the delegation literature is restricting
the delegation set — i.e., the set of actions that the agent may take [see, e.g.,
Holmstrom, 1980]. In particular, in the context of “delegated expertise” problems,
Szalay [2005] and Ball and Gao [2021] show that it may be optimal to rule out
an ex ante optimal action in order to force the agent to exert effort and learn
which of the ex post optimal (but ex ante risky) actions is best. Lipnowski et al.
[2020] show a similar result in a Bayesian Persuasion setting in which the receiver
is rationally inattentive to the sender’s message.

In our setting, however, there are no “safe” actions that the principal could
rule out, as Propostion 1.4.4 suggests. Assuming that the principal and the
agent hold the same prior belief y,, and p,(wy) > ... > p,(wy), action a; is the
“safest” in the sense of being the most likely ex ante to be optimal. However,
it would be trivially suboptimal for the principal to ban a; — since, indeed, this
is the action that is ex ante most likely to be ex post optimal! In other words,
while excluding a; from the delegation set would lead the agent to acquire more
information, it would also lead to larger ex post losses due to the agent being
unable to select action a; in cases in which it is optimal to do so. Thus while
the general idea of the principal being willing to nudge the agent to acquire
more information/information about ex ante suboptimal actions holds true in
our setting, restricting the delegation set is not an instrument that lends any
value to the principal.

Proposition 1.5.3 below summarizes this logic. Consider the agent’s problem
as given by

N N
max { > ip(wi) Y mlailwy)u(as, wy) — (Gba/ﬁp)}) (1.24)
j=1 i—1

given A* C A (and the maximization is w.r.t. a mapping = : Q@ — A(A*)), and
the principal’s restriction problem

(1.25)

N N
max {Zﬂp(% > m(ailw;)u au%)}
= i=1
s.t. 7w Q — A(A") solves (1.24) given A™.

Then we can state the result as follows.
The unrestricted delegation set A* = A is always a solution to the principal’s
restriction problem (1.25).

1.6 Extensions

1.6.1 Alternative Preference Specifications

The analysis in Sections 1.4 and 1.5.1 is heavily reliant on state-matching pref-
erences that we assume are shared by both the principal and the agent(s). It is
reasonable to ask whether our conclusions hold under other preference specifica-
tions. Since the utility function w(a,w) is shared by both the principal and the
agent, it is reasonable to generalize one at a time.
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We begin by generalizing the principal’s utility function w,(a,w) while main-
taining the agent’s intrinsic preference for matching the state: wa(a;,w;) = 1,
ua(a;,w;) = 0if ¢ # j. Naturally, the specific functional forms of the optimal del-
egation strategies (such as those presented in Proposition 1.3, Theorem 1.4.4, and
Lemma 1) depend on the specific form of the principal’s utility function. However,
Lemma 2 only depends on the agent’s utility function, meaning that Theorem
1.5.1 still holds: any outcome that can be achieved by contracting on actions
or hiring an agent with misaligned intrinsic preferences, can also be achieved by
hiring an agent with misaligned beliefs (and vice versa). Meaning that regardless
of the principal’s objective function, hiring an agent with state-matching prefer-
ences and a suitable belief is as good as hiring an agent with aligned prior belief,
state-matching preferences, and either some additional preference over actions,
or action-contingent payments on top of that.

The above does, however, hinge on the agent having state-matching prefer-
ences as a bhaseline. If we allow arbitrary preferences for the agent — even if they
align with the principal’s preferences net of the information cost — the equiva-
lence stated in Theorem 1.5.1 breaks down. In such a general case, finding an
agent with optimally misaligned preferences may yield strictly better results for
the principal than hiring an agent with an optimally misaligned belief, and hence
contracting on actions may, in principle, yield better results too. This is due to
the equivalence presented in Section 1.4.2 breaking down with general preferences,
as stated by the following proposition.

There exists a utility function w(a,w) such that the solution to the princi-
pal’s relaxed problem (1.16) cannot be attained as a solution to the full problem
(1.6).  There exists a non-state-matching utility function «(a,w) such that the
conclusions of Theorem 1.5.1 do not hold.

The proposition above states that with general preferences, the principal is
no longer able to implement any vector of unconditional choice probabilities 3
via an appropriate choice of the agent’s prior ;1 — which is still possible through
the choice of action-contingent contracts as in Section 1.5.1 (see Proposition 3 in
Matveenko and Mikhalishchev, 2021).

1.6.2 Alternative cost functions

Our analysis uses the Shannon entropy cost function (1.1) to model the agent’s
cost of acquiring information. It has an undesirable property, that the cost of a
given signal structure/Blackwell experiment depends on the agent’s prior belief
[see Mensch, 2018|. To demonstrate that our main result does not hinge on this
or any other specific properties of the entropy cost parametrization, this section
explores three alternative specifications of the cost function in the binary setting
of Section 1.3. We show that, in all cases, the principal’s optimal delegation
strategy looks similar to what we obtain in Proposition 1.3: unless y, is too
extreme, it is optimal for the principal to delegate to an ex ante more unbiased
agent: p*(u,) € (0.5, ).

As noted, in the binary setting of Section 1.3, we assumed Q = {[,r}, A =
{L, R}, and the common utility function net of information costs given by w(L|l) =
u(R|r) =1 and w(L|r) = uw(R|l) = 0. In all settings below, we look for an equi-
librium as defined in Section 1.2.5, with the ¢(¢, i) in the agent’s problem (1.4)
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Figure 1.5: The optimal delegation strategy p*(u,) with channel capacity cost
function.

replaced by one of the respective cost functions defined below.

Channel capacity cost function. The first cost function we consider is the
channel capacity cost proposed by Woodford [2012]. We follow the analysis by Ni-
mark and Sundaresan [2019], hereinafter referred to as NS. The channel capacity
cost of a given signal structure ¢ : Q — A(S) is given by

where c(¢, 1) is the entropy cost (1.1). Intuitively, the channel capacity measures
the maximum amount of information that can be extracted from signal ¢ by any
agent. By definition, the cost co(¢) of a given signal structure does not depend
on the selected agent’s prior u, unlike the Shannon entropy cost function.

NS show that the argument from Section 1.2.6 continues to hold with the
channel capacity cost: the agent optimally selects a “recommender” signal struc-
ture, where each signal realization is associated with a unique action. Thus we
can reduce the agent’s problem to that of choosing a decision rule 7 : Q@ — A(A)
which solves

max {m(RIr) + (1 = (LI = colm, )} (1.26

where co(m, 1) denotes the information cost induced by 7 (which, in this formu-
lation, does depend on ).

NS show that the agent’s problem (1.26) is well-defined and a solution always
exists. It shares the same broad features as the solution with entropy costs: an
agent with p > 0.5 chooses an experiment such that 7(R|r) > n(L|l) and vice
versa. More broadly, 7(R|r) is continuous and increasing in p, while the opposite
is true for 7(L|l); a more uncertain agent also acquires more information in total.

The continuity of 7 w.r.t. g implies that the principal’s problem (1.11) always
has a solution. The fact that the agent’s behavior is qualitatively the same as
a function of y as it was with entropy costs implies that the principal’s trade-
off also remains fundamentally the same: more information vs less tilt. While
the principal’s problem proved to be analytically intractable, Figure 1.5 presents
numerical solutions for two values of A and all .

Both plots in Figure 1.5 demonstrate a delegation strategy that is qualitatively
the same as in Figure 1.3, which plotted the same strategy for entropy costs: if
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the principal’s belief p, is not too extreme, she chooses an agent with belief
i between p, and 0.5. For extreme pu,, same as before, she selects (an agent
who acquires no information and chooses) the ex ante optimal action. However,
Figure 1.5 also highlights a difference relative to the Shannon model, in that the
principal’s solution now depends on the cost parameter A: higher A leads to less
delegation under channel capacity costs. This suggests that the independence of
the principal’s strategy from A is a special feature of the Shannon model.

Log-likelihood ratio cost function. We now move on to consider the log-
likelihood ratio (LLR) cost function proposed by Pomatto, Strack, and Tamuz
[2023], hereinafter referred to as PTS. PTS derive the LLR cost function axiomat-
ically as the cost of acquiring information (as opposed to the entropy cost being
that of processing information, according to their argument) from a set of intuitive
cost linearity axioms. The LLR cost of a given signal structure ¢ : Q@ — A(S) is
defined as

)= 3 ag fin (S ) dotslen,

where \;; are the parameters encoding the “closeness” of states w; and w; (how
difficult it is to distinguish them). In our binary setting, we assume A\pp = App, =
A. As in the case of channel capacity costs, PTS’ main representation theorem
shows that the LLR cost of a given experiment ¢ does not depend on the prior
belief .

In the binary setting, the agent optimally chooses no more than two signal
realizations, because LLR cost is monotone with respect to the Blackwell order.
Therefore, we can again invoke the logic of Section 1.2.6 and reduce the agent’s
problem to that of choosing a decision rule 7 : Q — A(A) subject to cost ¢ ()2

PTS explore a binary problem in their Sections 6.1 and 6.6 but only demon-
strate an analytical solution to the agent’s problem for the case y = 0.5. We
have found the agent’s problem to be analytically intractable for p # 0.5, and
therefore solve both the agent’s and the principal’s problems numerically. Fig-
ure 1.6 demonstrates our findings. The principal’s optimal delegation strategy
plotted therein looks qualitatively the same as for entropy and channel capacity
costs (Figures 1.3 and 1.5, respectively): if the principal’s belief p, is not too ex-
treme, the principal chooses an agent with belief  between p, and 0.5. Further,
similarly to the setting with channel capacity costs in Figure 1.5, the principal
delegates less for higher values of the information cost parameter A.

Symmetric cost functions. Finally, we explore a family of simple “symmet-
ric¢” cost functions, which restrict the agent to symmetric signals. This analysis
highlights the importance of flexibility in the agent’s learning technology for the
trade-off we identify. In particular, suppose that, instead of being able to choose
an arbitrary signal structure ¢ : O — A(S), the agent is restricted to a binary
signal space S = {[,r} and can only choose the signal precision that we denote,
abusing notation, by ¢ = ¢(r|r) = ¢(l|l) € [1/2,1]. The cost of information is
then given by some function cg(¢) that is strictly increasing, convex, differentiable

Z3PTS provide a representation for ¢z, (7) not presented here.
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Figure 1.6: The optimal delegation strategy p*(p,) with LLR cost function.

in ¢ € [1/2,1], and satisfies ¢s(1/2) = 0 and the Inada conditions ¢5(1/2) = 0,
lim d () — +oc.

 Let ¢, denote the precision optimally chosen by an agent with prior belief p.
The agent only acquires information (¢3 > 1/2) if he intends to follow the signal
(o(r) = R and o(l) = L), because this trivially dominates doing the converse,
and conditional on ignoring the signal, acquiring an uninformative signal ¢ = 1/2
is strictly cheaper. Hence if ¢}, > 1/2, then

9, —argmax {0 + (1 = )6 — cs(0)} (1.27)

Let ¢** denote the candidate solution given by the FOC of (1.27): cs(¢**) = 1.
Note that ¢** does not depend on the agent’s belief u. The agent’s expected
utility from acquiring no information (¢ = 1/2) and taking the ex ante optimal
action is given by max{u, 1 — p}. The expected utility from choosing ¢ = ¢** is
given by ¢** — cs(¢**) € [1/2,1].%* Then denoting the agents who are indifferent
between the two options by up = ¢** —cs(¢™) and g, =1 — (¢™ — cs(¢*™)), we
can describe the agent’s optimal choice of precision by

O, — ]
i 1/2  otherwise.

* {QS** 1f H = [ML)/-LR] )

Moving on to the principal’s problem (and maintaining the assumption that
pp > 1/2), the principal’s payoff is given by ¢* if ¢, = &**, by p, if ¢}, = 1/2
and g > 1/2, and by 1 — p,, if ¢7, = 1/2 and p < 1/2. Therefore, the principal’s
preferred agent is

M*(Mp) _ JURS [/{L?:”‘R] lf Hp <- QS**) (128)
we (pp ] i pp > ™.

Notably, if u, € (up, ¢**), then the principal strictly prefers a misaligned agent,

whose prior belief is more uncertain than the principal’s. Further, there exists a

selection from (1.28) that supports the following proposition (which is proved by

the preceding argument): Given a symmetric information cost function cg(¢),

24 Function ¢ — cs(¢@) is strictly concave in ¢ due to the assumptions made, evaluates to 1/2
when ¢ = 1/2 (hence ¢** —cg(¢™) > 1/2), and because cg(¢) > 0, we have that ¢ —cs(¢) <1
forall ¢ <1.
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there exists an equilibrium in which the principal always delegates to a more
uncertain agent: for any u, > 1/2, p*(up) € [1/2,1p). 1t is evident, however,
that the statement of Proposition 1.6.2 is quite weak. Symmetric information cost
leads to the principal actually being indifferent between all agents u € [, i),
as well as between all agents p € (fip, 1], because, within these intervals, p affects
neither the tilt in the agent’s decisions, nor the amount of information acquired.
Consequently, if u, ¢ (g, ¢**), then hiring an aligned agent or, possibly, even
a more certain agent, is equally as optimal for the principal as hiring a more
uncertain agent. Conversely, if the principal strictly prefers to hire a learning
agent, then she might as well hire an agent with ¢ = 1/2, whose decisions will
not be any more tilted than those of an agent with p = up.

It is straightforward that the result above continues to hold for any weakly
increasing cs(¢), whereas all the other assumptions on cg(¢) are not strictly
necessary and were adopted to simplify the argument. For example, we could
also consider a “Pandora’s box” cost function, under which the agent can either
learn the state perfectly at a cost, or learn nothing. This can be captured as
cs(¢p) = A-I{¢p > 1/2}, where I{-} is the indicator function. Under such a cost
function, the agent would learn the state perfectly if he is sufficiently uncertain,
and stick to his prior belief otherwise; and it is thus always weakly optimal for the
principal to choose the most uncertain agent: p*(u,) = 1/2. Another learning
technology that is also symmetric across states and signals, but does not fall
under the parametrization above, is the one used by Szalay [2005] and Ball and
Gao [2021]. In their respective models, the agent selects an effort e € [0, 1] subject
to cost cp(e), which allows him to perfectly learn the state with probability e,
and with the complementary probability 1 — e the agent observes no signal. It
is easy to see that under this technology, the learning effort €, is higher when
o is closer to 1/2 (more uncertain agents learn more). However, same as with
symmetric cost functions, there is no disadvantage to hiring a misaligned agent
— the principal would strictly prefer to hire the most uncertain agent, u = 1/2.

The goal of this exercise is to demonstrate that, to fully capture the trade-off
that the principal faces — that between the quantity of information acquired by
a misaligned agent and the decision tilt that such a misalignment introduces, —
a flexible learning technology is necessary. Inflexible technologies, such as those
described by the symmetric cost functions, lack the detail to fully capture the
trade-off that the principal faces. At the same time, the robustness checks pre-
sented above that use the channel capacity and the log-likelihood ratio cost func-
tions demonstrate that our results are not specific to the entropy cost — that it
is indeed the flexibility of the agent’s learning technology and not the specific
features of the cost function that drive our results.

1.6.3 Communication

In this section, we consider the importance of decision rights in our model with
misaligned beliefs. In particular, we juxtapose the delegation scheme explored so
far, under which the agent has the power to make the final decision, to commu-
nication, where an agent must instead communicate his findings to the princi-
pal, who then chooses the action. A large literature in organizational economics
is devoted to comparing delegation and communication in various settings (see
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Dessein, 2002, Alonso, Dessein, and Matouschek, 2008, Rantakari, 2008 for some
examples). We show that in our setting, communication performs as well as
delegation — i.e., the principal will always find it optimal to follow the agent’s
recommendation.

Although the principal and the agent have the same preferences, it is generally
unclear whether it is optimal for the principal to follow a recommendation of an
agent due to the misalignment in their beliefs. Namely, since the principal and
the agent start from different prior beliefs, the same is true for posteriors: if the
principal could observe the information that the agent obtained, her posterior
belief would be different from that of the agent. This implies that ex interim, the
principal could prefer an action different from the agent’s choice, and could benefit
from overruling the agent’s decision if she had the power to do so. However, this
would mean that the agent’s incentives to acquire information are different from
the baseline model, and the principal could have some influence over the agent’s
learning strategy via her final choice rule.?® We show below that, in the end, none
of these effects come into play, and there exists a communication equilibrium that
replicates the delegation equilibrium.

The setup follows the baseline model from Section 1.2 with state-matching
preferences, with the exception that the final stage (“agent selecting action a €
A”) is replaced by two. First, after observing signal s € S generated by his signal
structure ¢, the agent selects a recommendation (message) a € A to the principal.
After that, the principal observes the recommendation a, uses it to update her
belief p,(w|a) about the state of the world, and then selects an action a € A that
determines both parties’ payoffs.?® The equilibrium of the communication game
is then defined as follows. [Communication Equilibrium] An equilibrium of the
cheap talk game is characterized by (u*,{¢%, 5}, }uem, 0%, 1tp), which consists of
the following:

L. the principal’s posterior beliefs p, : A — A(Q) that are consistent with
(¢, 07) (i-e., satisfy Bayes’ rule on the equilibrium path);

2. the principal’s choice rule o* : A — A, which solves the following for every
a € A, given the posterior p,:

max { > mp(wla)u(o(a), W)} ;

o(a) weN

3. a collection of the agents’ information acquisition strategies ¢7, : Q@ — A(S)
and communication strategies 7}, : & — A that solve the following given o
for every pu € M:

max { > pw) Y dlslwu(o(a(s)),w) — (o, u)} ;

weN seS

25 Argenziano, Severinov, and Squintani [2016] provide one example of how the principal can
manipulate the agent’s information acquisition incentives under cheap talk communication.

26Given that message labels are arbitrary, we focus w.l.o.g. on “direct” equilibria, in which the
agent’s message corresponds to an action recommendation. Further, for simplicity we assume
that the principal only observes the recommendation made by the agent, and not the signal he
received or the signal structure he requested.

22



4. the principal’s choice p* € M of the agent to whom the task is delegated,
which solves the following given (¢}, 07), o*, and p,:

max { > up(w) Y d(slw)u(a(a(s)), W)} :
weN SES

We can then state the result as follows.

There exists a communication equilibrium (u*, {¢}, 07 }uerm, 0, pp) that is
outcome-equivalent to the equilibrium (u*, {7, 0} }em) of the original game, in
the sense that ¢* and ¢}, coincide across the two equilibria, 67, = 0},., and o* is
the identity mapping.

The result is, perhaps, unsuprising, since Holmstrom [1980] showed that com-
munication is equivalent to restricting the agent’s action set, and this latter in-
strument was shown in Section 1.5.3 to be irrelevant in our setting, as long as
the principal can select an agent with the prior belief she prefers. The result in
Proposition 1.6.3, however, is subject to a few caveats. First, cheap talk models
are plagued by equilibrium multiplicity: for any informative equilibrium, there
exist equilibria with less informative communication, up to completely uninfor-
mative (babbling) equilibria. In our setting, this means that, in addition to
the equilibrium outlined in Proposition 1.6.3 above, there also exists a babbling
equilibrium in which the agent acquires no information and makes a random rec-
ommendation, and the principal always ignores it and selects the ex ante optimal
action.?” There would also likely exist multiple equilibria of intermediate infor-
mativeness — e.g., equilibria with a limited vocabulary, where only some actions
A C A are recommended on the equilibrium path. In practice, this means that,
under communication, there is a risk of miscoordination on uninformative equi-
libria, whereas under delegation the equilibrium is unique. The same force may
also work the other way, and there may be equilibria that are preferred by the
principal to the delegation equilibrium, that can only be sustained under cheap
talk (see Argenziano et al., 2016 for an example of how such equilibria may arise).
However, the question of whether such equilibria exist is beyond the scope of this
paper.

The second caveat lies in the fact that Proposition 1.6.3 relies on state-
matching preferences. In our setting (with the exception of Section 1.6.1), any
action is either “right” or “wrong”, without any degrees of correctness. The mis-
alignment of beliefs across the principal and the agent is thus small enough to
not warrant the principal overriding the agent’s suggested action. In contrast, in
a uniform-quadratic framework of Argenziano et al. [2016] or a normal-quadratic
framework of Che and Kartik [2009], both states and actions lie in a continuum,
and the principal’s loss is proportional to the distance between the realized state
and the chosen action. In such a setting, any misalignment (be it in preferences
or beliefs) between the principal and the agent would lead to the principal being
willing to override the agent’s recommendation, leading to the delegation equi-
librium being no longer directly sustainable under communication. This ability

27If an agent makes uninformed recommendations, it is optimal for the principal to ignore
it. If the principal ignores the recommendation, it is optimal for the agent to not acquire any
information. Neither agent in this situation can unilaterally deviate to informative communi-
cation.
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to exploit interim misalignment is also what drives the persuasion and prejudice
avoidance channels that underlie the result of Che and Kartik [2009]. By shutting
these channels down we provide a novel explanation for the optimality of bias in
delegation.

On a separate note, it is immediate from Proposition 1.6.3 that the same
equilibrium would survive in a setting with verifiable communication a la Che and
Kartik [2009], where an agent chooses between disclosing a signal that he received
and disclosing nothing — as opposed to cheap talk communication assumed above,
where the agent can send any message. Since in the cheap talk equilibrium
described in Proposition 1.6.3, the principal always finds it optimal to follow the
(optimally chosen) agent’s recommendation and take the agent’s most preferred
action even in the absence of evidence, the same is true when evidence can be
presented. In other words, the agent would never have an incentive to conceal
evidence from the principal.

1.7 Conclusion

We show that hiring an agent with beliefs that are misaligned with those of
the principal can be beneficial for the principal, especially when the principal is
ex ante biased. We show this in the context of a model where the agent can
acquire costly information before making a decision. A biased principal prefers
to delegate to an agent who is ex ante more uncertain about what the best action
is, but who is somewhat biased towards the same action as the principal. This is
mainly due to a more uncertain agent being willing to acquire more information
about the state, which enables more efficient actions to be taken. As we show,
exploiting belief misalignment can be a valid instrument that a principal can use
in delegation, which in our setting performs on par with or better than contingent
transfers or restriction of the action set from which the agent can choose. The
value of this instrument is greatest to a moderately-biased principal, whereas
both an unbiased and an extremely biased principals would optimally select an
aligned agent.

In the analysis, we use the workhorse rational inattention model for discrete
choice, the Shannon entropy model. It allows us to provide a richer demonstration
of the consequences of delegation to a misaligned agent by allowing the agent to
acquire information flexibly, which tilts the decisions of an agent with misaligned
beliefs relative to an aligned agent. We show that misaligned delegation is op-
timal despite the tilt introduced by this flexibility. While the exact trade-offs
obviously do depend on the particular cost function specification, we do show
that, qualitatively, our results are not specific to the entropy information cost.

Due to the added complexity of entropy models, we confine our exploration to
a discrete state-matching model, which strays from the continuous models more
commonly used in delegation problems. In a model with continuous actions, the
scope for an agent to manifest his tilt is much larger, and hence the trade-off
between the agent’s information acquisition and tilted decision-making would
again be different. Exploration of the effects of misalignment in a continuous
model of delegated expertise could be an interesting direction for further research.

Yet another assumption that may feel excessively strong in our analysis is the
common knowledge of all agents’ and the principal’s prior beliefs. It may be more
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reasonable to assume that agents are strategic in presenting their viewpoints to
the principal and that they make inferences from the fact that they were chosen
for the job. Such signaling concerns could yield an economically meaningful effect,
but we abstract from them completely in our paper. A more careful investigation
is in order.
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1.A Main Proofs

1.A.1 Proof of Proposition 1.3

Throughout this proof, we will refer to the delegation rule under consideration,

ILL*: \//’LP
/ORI

as the candidate rule. It is straightforward that under the candidate rule, if
fp > % then p* € (%,up), since

R Pop

T—w VT=m -

when g, > %, 80 1" < pp, and also /i, > /T — g, in that case, so pu* > % It thus
remains to show that the candidate rule is indeed optimal for the principal. While
a shorter proof exists that invokes Lemma 1 that derives an optimal strategy for
the case of N states and actions, we choose to present a more direct, albeit a
somewhat longer, proof.

Plugging the solution to the agent’s problem (1.10) (assuming this solution is
interior for now) into the principal’s problem (1.11), we get that the principal’s
payoff looks as follows:

ppm (Blr) + (1 — pp)m(LIL) = pp

o (1= pp)?
M (1.29)

It is trivial to verify that the second-order condition holds as well, hence as long
as (1.29) yields an interior solution (i.e., the probabilities in (1.10) are in [0, 1]),
the candidate solution is indeed optimal among all such interior solutions.

We now check for which g the solution (1.10) is interior. Using the expressions
(1.10), one can easily verify that 7(R[r) = 0 <= 5 > e * and 7(R|r) <
1 <— ﬁ < e%, and the conditions w(L|l) € [0, 1] yield the same two interiority
conditions. This implies that if ﬁ € {e_%,eﬂ, then the agent acquires some
information and selects both actions with positive probabilities, and otherwise
(m(R|r),m(L|l)) € {(1,0),(0,1)}, meaning that the agent simply chooses the ex
ante optimal action for sure without acquiring any information about the state.
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The candidate rule then suggests that the principal delegates to a learning
agent iff £ m - € {e_%,e%], and otherwise delegates to an agent who plays the ex
ante optimal action. We have shown that the candidate rule selects the optimal
among the learning agents; it is left to verify that such a criterion for choosing
between learning and non-learning agents is optimal for the principal.

Consider p, > %; then among the non-learning agents, the principal would
obviously choose the one who plays a = R (rather than @ = L), and such a choice
yields the principal expected payoff p,- 1+ (1 —p,)-0 = p,. Optimal delegation to
a learning agent yields (by plugging the candidate rule into the principal’s payoff
obtained above)

1
ex 1—
eX — Hp *M
I

2
ex —1

1
p ex 1 TN
_(1_,“10)1_“*] :e% 1 {GA —2 /ﬁp(l_ﬁ‘p)} :
(1.30)
Taking the difference between (1.30) and p,, the payoff from delegating to a

non-learning agent, let us find belief y, of a principal who would be indifferent
between the two:

1
ex 1
< {GA — 24/ pp(1 _,L‘pﬂ —p =0
2 1 2
ex —2eX\/ pup(1 — pip) = ppe™ — piy

i

—Hp

Hence, the principal prefers a learning agent when <exanda non-learning

agent when % > ex. Therefore, the candidate rule is indeed optimal for
—Hp

tp > % A mirror argument can be used to establish optimality for p, < % This
concludes the proof of Proposition 1.3.

1.A.2 Proof of Corollary 1.3

Proof of Proposition 1.3 shows that u*(u,) < w, for all g, € (0.5,1), hence we
can ignore the absolute value operator. Using expression (1.12) we then obtain

d Apip(1 = pip) + 20/ pp(1 — pp) — 1

. (p — 1" (p1p)) =

— 55
2\/Mp(1 — Itp) - (\//TzoJr VI— Mp)

where the denominator is weakly positive for all y, € (0.5,1), and the numerator

is positive if and only if /u,(1 — p,) ¢ (%\/g, %\/5), which is equivalent to

fp < 5+ 5 @ ~ 0.893. Then |u, — u*(1p)| is increasing for these values of
tp and decreasing otherwise, meaning it satisfies single-peakedness.




1.A.3 Proof of Lemma 1

The goal is to find the optimal choice probabilities 5* € A(A) which maximize
the principal’s expected utility (1.16). First, let us rewrite expression (1.16) using
S=ex —1:
ZM Bla >€§ B Z . “p%wj)(l +8B(ay)) — P«p(éwj)
o(w;)
1+(5ﬁ( e o) 1+ 68(ay)

=2 ( T a<1ﬁff(§2j<>aj>>> '

The first term in the brackets above is independent of 3, so the principal’s max-
imization problem is equivalent to

>

min 3 M (1.31)

N
Let € denote the Lagrange multiplier corresponding to the constraint Y- 5(a;) =

j=1

1. Then the first-order condition for 3(a;) with i € C(f) is
(1+68(a;))? = —% (1.32)

Summing up these equalities over all j € C(3), we get that
S (1 +88(a))? — — iz fal) (1.3

Jjec () §
Combining (1.32) and (1.33):
Hp\Wi

L+ 6B(a;) = ) > (14 38(ay))? (1.34)

\/ZjEC(ﬁ) pp(w;) \ secis)

Once again summing up these equalities over all j € C(3), we get that

K(8) + 6 — A0 V) ST,

\/ Yjecs) Po(wi) \ jécis)

Expressing \/Z] com 1+ B(az))? from this expression and plugging it into (1.34)
allows us to express ﬁ (a;) (for i € C()) in closed form as

] ((K(ﬁ) + 0y Hp(wi) 1) |

Bla;) = = 1.35
“ 0 > jec(p) fp(Wy) ( )

The necessary condition for option ¢ to be in a consideration set (i € C(f)) is
B(a;) > 0 or, equivalently,

prp(wi) > IHOEY > p(w;).



Now let & denote the Lagrange multiplier for the constraint 3(ay) > 0. Then
the first-order condition for an alternative k ¢ C() that is not chosen is

pp(wi) = =& — & = pp(wr) < =€
Plugging in £ from (1.32) into the inequality above yields

P

S S o3 e T V) S s 2 Vil

for all k ¢ C(3).

Since the minimization problem has a convex objective function and linear
constraints, the Kuhn-Tucker conditions are necessary and sufficient. Thus the
necessary and sufficient conditions that the solution £* must satisfy are given by:

W) > = Wi for all i € C(p*),

fip(wi) KB+ jecz(:ﬁ*) fip(w;) (8%)

V p(wi) < W > pp(w;)  forall k & C(37).
j

€C(8*)

Recall that we assumed, without loss of generality, that p,(w) > p,(wse) >
... > pp(wy). Suppose that the solution * is such that K(3*) = K'. Clearly
then, in the optimum, the consideration set C(3*) will consist of the first K’
alternatives.

L
Denote Ay, = (L +9)y/pp(wr) — jz::1 tip(w;). Notice that for all L > 1:

Ay =L+ a0 on) = 3 Vgl
(L =1+ 0 fp(wir) — Z Vitnle) = ()

(L= 11 8 plwn1) T (L + ) J(eor)
“Api = (L= 11 0) (Vilorn) = mer) )

Therefore, Ay decreases in L. Since A; > 0, there either exists unique K’ such
that Ag: > 0and Agr 1 < 0,0or Ay > 0forall L. In the former case, K(8*) = K’,
and in the latter case, K(3*) = N.

In the end, the solution to the principal’s problem is given by 5*(a;) as in
(1.35) if i € C(B%), B*(a;) = 0 if i ¢ C(5*), and C(5*) = 1,..., K(8*), where
K(B*) is as described above.

1.A.4 Proof of Lemma 2

Corollary 2 from Matéjka and McKay [2015] shows that a vector of the uncondi-
tional choice probabilities 8 € A(A) solves (1.13) only if it solves the system of
equations given by

u(ag,w;)

A

N (&
> p{wi)— 5 = L (1.36)
j=1 Spey Blax)e™x
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for every i € {1,..., N} such that 3(a;) > 0.
The question then is: given a vector 5 € A(A) of unconditional choice prob-
abilities, can we find 4 € RY that solves the following system:

plwn) +plws) + o plwn) = 1,

wlaq ;)
%u( ) — =1 Vi € C(B). (1.37)

- N u(ak w])
J=1 Z (ap)e

The system above is a linear system of K(3) + 1 equations with N unknowns.
To prove the solution exists, we use the Farkas’ lemma [Aliprantis and Border,
2006, Corollary 5.85]. It states that given some matrix A € R™*" and a vector
b € R™, the linear system Ax — b has a non-negative root x € R" if and only if
there exists no vector y € R™ such that A’y > 0 with 0’y < 0. The two latter
inequalities applied to our case form the following system:

(z ﬁ(awe"(“’?w”)%z e “”?“))>o Vi€ {1, N},
ieC(p) (1.38)

Yo+ > i <0
i€C(B)

We need to show there exists no y € RE(®T1 that solves the system above. Let

us define z; = y; + yoB(a;) for i € C(B). Then, recalling that e D X and
o 09)
e = 1 for i # j, system (1.38) transforms to
yeX 4 X >0 Ve o)
iE€C(B\{J}
> %20 vje{l,.., N\C(3), (1.39)
i€C(B)
>z < 0.
i€C(B)

System (1.39) above does not have a solution. Indeed, if C(8){1,..., N}, then
the middle set of inequalities directly contradicts the latter inequality. If C'(5) =
{1,..., N}, then subtracting the latter inequality from the former, for a given
Jj € C(B), yields z;6 > 0 <= z; > 0. Since this must hold for all j € C(f), we

obtain a contradiction with the latter inequality, Y. 2z <0.
1€C(B)

By the Farkas’ lemma, we then conclude that for any vector 3 € A(A) there
exists a belief € A(Q) that solves system (1.37). This concludes the proof.

1.A.5 Proof of Theorem 1.4.4

This proof proceeds in two parts. First, we show that the delegation strategy
introduced in the proposition (hereinafter referred to as “the candidate strategy”)
is optimal for the principal. Then we establish that it does indeed possess the
stated properties.

Consider an agent with a prior belief

(1.40)



It is trivial to verify that prior belief i defined this way satisfies the candidate
strategy in the statement of the proposition, and hence represents the candi-
date strategy. Consider an agent hired in accordance with the candidate rule.
Substituting (1.40) into (1.14) yields

(1.41)

1 ((K(ﬁ*) +0)y/ pp(wi) )
ﬁ(ai>:max 07_ —1 )
0 k > fp(w;) )
JeC(5*)

which are exactly the probabilities stated in Lemma 1. Therefore, an agent hired
according to the candidate strategy makes decisions in such a way that generates
the principal-optimal unconditional choice probabilities. Therefore, delegation
according to the candidate strategy is indeed optimal for the principal.

Now we show that the candidate strategy satisfies the properties stated in the
proposition. Firstly, it follows clearly from (1.40) that p*(wi) > p*(w2) > ... >
1 (wn). Tt remains to show that p*(w1) < pp(wr) and p*(wy) > pp(wy). The
former inequality can be shown as follows:

— fp(wi) < ()
j;l fip(w;)
= 1</ pplwn) - (Zl Mp(%))

= 1 < pplwn) + / pep(wr)pp(we) + ... + \ prp(wi)pp(wn),

and the latter inequality holds because g, (wy)+...+pp(wy) = 1and y/pp(wr)pp(w;) >
pp(w;) for all j € {1,..., N}, since py(w1) > pp(w;). Note that p*(wi) = pp(wn)

only if pp(wi) = ... = pp(wn).
Similarly, the inequality p*(wy) > pp(wn) is equivalent to

L > pp(wr)pp(wn) + ..o+ \/Mp(wN—l)Mp(wN) + pip(wn),

which holds because /pp(w;)pp(wn) < pp(w;) for all 7 € {1,..., N}, with equali-
ties only if i, (wy) = ... = pp(wy). This concludes the proof of Theorem 1.4.4.

1.A.6 Proof of Proposition 1.4.4

It follows from (1.18) that the size of the consideration set in the aligned problem,
K, is such that

Kol - K pplw))
JZ:l pp(Wic) shtos ; tp(Wi 1)
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wi)

Since % > 1 for all i < K, we have that “p wZ) > \/” :p< > 1 holds for all
P »(Wg)
i < K. Therefore,

K p
VA ey (1.42)
i=1 (Wi

~—

From (1.19), K* is the unique solution of

f; /i) <K*+6<ZM. (1.43)

i up(wm) pp(Wrce 1)

Two cases are possible, depending on whether
K+6>, M. (1.44)

If K+ < RHS in (1.44) (where RHS refers to the right-hand side), then together
with (1.42) this implies that K solves (1.43), and thus K = K*, which satisfies
that statement of the proposition.

If, however, K +d > RHS in (1.44), then K does not solve (1.43). In
this case, note that going from K by K + 1 increases the LHS of (1.44) by 1
and increases the RHS by the amount strictly greater than 1, since a new term

pp(wrt1)

pp(Wi42)

pip(wici1) < pp(wg). This holds for all K, meaning that if K + 4§ > RHS in

(1.44), then K +46 > f: V) o all K < K. Therefore, the unique solution
e =1 V(WK 1) ' ’

K* of (1.43) must be such that Kj; > K. This concludes the proof.

> 1 is added to the sum, and all existing terms increase because

1.A.7 Proof of Theorem 1.5.1

Part 2 of the statement follows immediately from Proposition 3 of Matveenko
and Mikhalishchev [2021].

To show part 1, we invoke Theorem 1 from Maté&jka and McKay [2015] stated
n (1.13), which claims that in the contracting problem, the 5 : Q — A(A) that
solves the agent’s problem (1.20) is given by

ulag,wi)+7(a;)
A

Blai)e
m(aiw;) = - - W) TR
> Blag)e B
wlay,ws)
B'la)e >

(1.45)

u(ak,wj) )

Z{gv 1 B'(ag)e™x
where 3(a;) Zu (wi)m(ailw;).

7(a;)

Blai)e™>
Sl Blar)e

and 3'(a;)

T(ak) )
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Since ' is a valid probability distribution on A4, representation (1.45) together
with (1.13) imply that such a collection of conditional probabilities 7 is a valid
solution to the agent’s problem (1.4) when the agent’s preferences net of informa-
tion costs are given by u(a;,w;). That is, the principal can implement the desired
conditional choice probabilities m by choosing an agent with unbiased preferences
and some belief p, such that the unconditional choice probabilities selected by
this agent are given by ’. Lemma 2 implies that such a belief © € A(Q) does
indeed exist.

1.A.8 Proof of Proposition 1.5.1

Plugging (1.12) in (1.10) yields the optimal conditional choice probabilities for
the binary model, given by

Q)
>
|

w(Rir) = (5 —1) 7 eF (

(LI = (ef — 1)‘1& <e% B A) | (1.46)

cropped to [0, 1].

The agent’s preferences only depend on the difference 7(R) — 7(L). Assuming
all 7(R) € R are available to the principal (no limited liability), it is without
loss to set 7(L) = 0. The agent’s problem is given by (1.20). Solving it given
7= (7(R),0) yields

1+7(R)

S(l—p)—e 5 fp

— 1) (eHTA(R) — 1) 1%
1+7(R)

e (&(1 —p)—e A +u>
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m(Rlr) =1— <
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(1.47)

)

m(L|l) =

cropped to [0, 1].
The principal’s contracting problem (1.21) in the binary setting with p = 0 is
similar to (1.11):

max {ppm (F|r) + (1= pp) m(LID}
s.t. w(R|r),n(L|l) are given by (1.47).

(1.48)

Assuming the probabilities in (1.47) are interior, the F.O.C. for (1.48) yields the
candidate solution 7(R) given by

7(R) = Aln , (1.49)
1—p + 6% 1—pp
H Hp

where the expression under the In(-) is non-negative for any A, u,, g, and thus the
candidate 7(R) exists for any p that yields interior probabilities (1.47).
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Plugging (1.49) into (1.47) yields, after some routine manipulations, the con-
ditional choice probabilities that coincide with (1.46) (hence, the probabilities
(1.47) are interior given p and 7*(R) if and only if the probabilities (1.46) are
interior). Thus, the condition (1.49) is not only necessary, but also sufficient.
Hence, for any pu, for which (1.46) are interior, 7*(R) as given by (1.49) solves
the principal’s problem (1.48), and this solution exists for any .

If A and , are such that probabilities (1.46) are not interior, then the principal
would like the agent to take the ex ante (principal-)preferred action (it can be
verified that the expressions in (1.46) are such that 7*(R|r) > 1 < 7*(L|l) <0
and vice versa). The candidate transfers (1.49) yield exactly such non-interior
probabilities (when plugged into (1.47)), and hence they still solve the principal’s
problem (1.48) for any respective 1.?® This concludes the proof of part 1 of the
proposition.

To show part 2, consider (1.49) as a function of . It is strictly decreasing in
e on [0, 1], and the equation 7*(R)(x) = 0 has a unique root in [0, 1] equal to

wr = v/ Mo
Vit + VT =11

meaning that 7(R) > 0 < u < pu*.

1.A.9 Proof of Proposition 1.5.2

As argued in the text, it is immediate that 7 = 0. Proceeding analogously to
Section 1.3, we obtain that the agent’s problem (1.22) given the incentive payment
7 > 0 is solved by

7(R|r) = min {1,ma)f{0,wu(R|r)}} and 7(L|l) = min {1, max {0, 7,(L|l)}},

47 /147 -
e (eFTu—(1-p) ex <el—’ 1—u>
) 9

2(147) S 20+7
(6 X — 1) I e r —1
147

TP GRR Ul ) - (—_ p )

where 7, (R|r) =

(ez(l—f)_1>(1_u) A L—p
(1.50)
The principal’s full contracting problem (1.23) can be rewritten as
max | (1 — p7) (ppm(R]r) + (1 = pp)w(L]1)) 5
T€R+{ (1 ' )} (1.51)

s.t. w(R|r),m(L|l) are given by (1.50).

We use 7 to denote the solution to this problem.

To begin with, note that 7% > 0 (due to limited liability) and 7* < 1/p
(otherwise the principal’s payoff is zero or negative, hence such 7* are dominated
by 7 = 0). Further, if 7 > 0, then 7 = 7, since otherwise the principal could
reduce 7 without affecting the agent’s choice.

ZNote that 7*(R) is not the unique solution in this case. If 7*(R|r) = 1,7*(L|l) = 0, then
any 7(R) > Aln (M +(1 - M)e%) — 1 yields the optimal choice probabilities, and if #*(R|r) =

0,7*(L|l) =1, then any 7(R) <1 — Aln (Me% +(1- M)) solves the principal’s problem.
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Let us define the principal’s relaxed contracting problem as

max {(1 = p7) (ppma(Blr) + (1 — p)ma(LI) ),

TeR
s.t. mu(R|r), mu(L|l) are given by (1.50).

(1.52)

It differs from the full problem (1.51) in that it ignores the constraints 7 = 0 and
w(R|r), 7(L|l) € [0,1]. We use 7 to denote the interior solution of this relaxed
problem, whenever it exists. So far, we can conclude that the principal’s problem
(1.51) is solved by 7 € {0, 7**}. The local maximizer 7** is optimal if it satisfies
all of the following three properties (and 7* = 0 otherwise):*

Feasibility: 7** exists and 7** € [0,1/p].*
Effectiveness: 7% generates m = 7.
Preferability: 7** is preferred to 7 = 0.

The FOC of problem (1.52) (that must be solved by 7**) is given by

1 N )\p<€21+T%—1)‘|‘2(1_p77—)
o +(1 ,up)l_lu7€A o (5 — 1) + (5 1) (1 p7)

. (1.53)

Let v(u, ptp) denote the LHS and y(7) the RHS of (1.53), respectively. Note that
x(7) is continuous in 7 and only depends on 7, A, and p, but not on p or pu,.

Further, Lemma 3 below shows that if p > min {1, %} then for all A\, x(7) is
increasing in 7 € [0,1/p] (recall that 7** > 1/p obviously violates preferability,
hence we drop this case). We maintain this restriction on p thronghout the rest
of the proof. Monotonicity implies that a feasible 7** exists for given u, iy, A, p
if and only if x(0) < ~v(u,up) < x(1/p), where the “if” part follows from the
intermediate value theorem, and the “only if” part follows from 7 > 1/p never
being optimal. The strict monotonicity of y(7) also means that the objective
function in (1.51) is strictly concave in 7, so if 7** exists, then it is unique and it

is a local maximizer of (1.51).

Lemma 3. Function x(7T) is continuous and increasing in 7 € [0,1/p) for all A
and all p > min {1, 1/2A}.

Proof. Denote £ = £(1,A) = e'X". For sake of brevity we drop the arguments
of £(7, ) and the bar from 7 throughout the proof of this lemma. Then we can

rewrite
Ap(€ = 1) +2(1 — pr)
Ap(E2 = 1)+ (& + 1)(1 —pr)

2Feasibility and preferability should be self-explanatory. Effectiveness means that the incen-
tive payment is effective at inducing the agent to acquire a non-trivial amount of information.
Note that 7 = 0 is effective when the agent acquires information in the absence of a transfer.

30Note that 7** < 1/p is not an exogenous restriction, but is rather implied by preferability,
as established previously. It is, however, convenient to include this an explicit restriction.

x(1) =

Iy
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This function is trivially continuous and differentiable in 7 € [0,1/p|]. Hence it
suffices to show that dfl—(:) > 0:

dx(t)  (Ap(382 = 1) +2(1 — pr)) 2 — 2p¢

dr - M2 =1+ (2 +1)(1 —pr)
oc EPol€? — 1) 4+ 2(1 — pr)]
- [wp Flmmmg A ”] @ D (@1 )= pr)P

g1 2(€-1r25E) i (-1 - 25
A (e — 1)+ (e k) |

The latter expression is strictly positive for 7 € [0, 1/p) if and only if

1 —pr 1 —pr 1 —pr
202 —-1+2 S —-1-2 0. 1.54
(5 * Ap >+ Ap (5 Ap >> (1:54)

The first term is strictly positive (since £ > 1 and 7 < 1/p). The second term is

nonnegative for the given range of 7 if £2 — 1 > 21;%. Note that &2 — 1 > 2457,

hence (1.54) holds if 4T > 1;57 for all 7 € [0,1/p), which holds if p > 1.
Alternatively, we can rewrite (1.54) as

(& -1) <2+1;pm>+21;pm (2— 1;;7) > 0.

In the above expression, the first term is again always strictly positive; the second
term is nonnegative if Ap > 1/2 (since 7 < 1/p).

We thus conclude that if either p > 1, or p > 1/2), then dfl(:) > 0 for
T € 10,1/p), so x(7) is indeed increasing in 7 on that interval. O

Let us define the following cutoffs on u that will prove helpful in establishing
the properties of interest of 7* (feasibility, effectiveness, and preferability):

L. Let pr1 € (0,p") and ppi € (ptp, 1) be such that v(ur1, pp) = v(pr1, 1) =
x(0). Lemma 4 below establishes that these cutoffs exist.

2. Let pro = max {u (L) = 1}, [trz = min {u cmy(Rlr) = 1}, where
mo(L|l) and 7,(R|r) stand for the respective probabilities (1.50) given p
and 7 = 0. In words, pro and ppo are the most extreme beliefs p for
which the agent voluntarily acquires information in the absence of incen-
tive payment. Closed-form expressions can be obtained from (1.50), with

1
pra = — and ppy = .
14+eX 1+eX

3. Let prs =inf{p: 7" >0}, urs = sup {p: 7 > 0}. In words, these denote
the most extreme beliefs p up to which the principal is willing to offer
incentive contracts. Lemma 6 below shows that urs and pups are always
well-defined (i.e., that the set {y : 7% > 0} is nonempty).

4. Let pp4y = max {u cmn (L)) = 1}, fps = min {u cmh(Rlr) = 1}, where
7y (L|l) and 7 (R|r) stand for the respective probabilities (1.50) given
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and 7 = 7. In words, pur4 and ppys are the most extreme beliefs y for
which the agent acquires information given the candidate-optimal incentive

7. Closed-form expressions can be obtained, with p;4 = —== and
1+e X
147%*
_ _e A
HRA = — 177+ -
1+e™ X

b. Let prs € (0,u%) and pups € (p*, 1) be such that y(prs, ptp) = (s, ptp) =
x(1/p). These cutoffs exists due to the properties of vy, ) established for

1+1/p

tr1, as well as the fact that x(1/p) = e =
can be obtained, with

> 1. Closed-form expressions

/ /
e x” + 20 F \/€2H—ip T App(pp — 1)

KI5y LR5 —
2 (1 + el+§/p>

As x(0) < x(1/p) for all X (see Lemma 3), it follows that prs < pr1 and
HRs > MR1-

We now proceed to establishing the conditions on p for which the three prop-
erties of 7* (feasibility, effectiveness, preferability) do or do not hold. To be-
gin with, as was previously claimed, a feasible 7** exists if and only if y(0) <
(1, pp) < x(1/p), which, due to the monotonicity of x(7) in 7, is equivalent to

w€ pns, | U [ere, prsl- (1.55)

As shown by construction above, uys, s are always well-defined and are located
to the outside of ur; and pgy, respectively. It thus remains to verify that pp,
and pp are also well-defined, which is done by the following lemma.

Lemma 4. For all \, if p > min {1, 1/2A}, then pup1 and pgy exist.

Proof. Function x(7) is independent of p. Function ~(u, ) is single-dipped in
p, with min, v(p, tp) = 24/pp (1 — ) < 1 achieved at p = p*(p,) as given
by (1.12), and sup, y(u, ptp) = +o00 achieved by p — {0,1}. Hence a sufficient
condition for the cutoffs of interest to exist is

X(0) > v (1), pip)- (1.56)

In the inequality above, only x(0) depends on p. Note further that dfl—;o) > 0.
Therefore, if (1.56) holds for some p, then it also holds — and, consequently, fr,
and ppg; exist — for all p > p.

Observe that x(0) > 1 for p = %: denoting £ = £(N\) = ex, we have

_ (&2 —1)+2
M =e-nr@rn !
= (E-1*Np(E+1)—1)>0 (1.57)

Since £ = ex > 1, a sufficient condition for (1.57) is given by

1

p= MNET+ 1) (1.58)

47



which obviously holds if p > 5. Further, ex > 1+ + <= AE+1)>1, hence
the RHS of (1.58) is weakly smaller than 1, so the inequality also holds for all
p= L

We conclude that if p > min{l,%}, then x(0) > 1, and hence (1.56) is
satisfied and the relevant cutoffs exist. O

Moving on to effectiveness, it should be immediate from the analysis in Section
1.3 that for a feasible 7** to yield interior choice probabilities (1.50), it must be
that u € [pr4, ptpa]. The following lemma establishes the location of pir4, pirs
relative to other cutoffs.

Lemma 5. Cutoffs purs and pgry are such that pps € |prs, pir2] and pry €
[,LLR27,LLR5]'

Proof. Denoting pur,(7) = max { : m,(L|l,7) = 1} = —= and observing that it
+e A

is strictly decreasing in 7, we get pr,(0) > prn(7) > ur(1/p), which is equivalent

to pre > pra > pr(1/p). Routine calculations using the closed-form expression

for prs then demonstrate that wur(1/p) > prs, implying that in the end, pzy €

lters, per2]. The result for gy is shown analogously. O

Finally, we need to establish when the principal prefers a feasible 7 = 7** to
7 = 0, which is done by the following lemma.

Lemma 6. The principal weakly prefers a feasible 7 = 7 to 7 = 0 if and only if
W€ |prs, prs)|. Further, these cutoffs satisfy prs € |tra, pr2] and pps € [r2, tiral-

Proof. For p € |tup4, pir2], the principal compares his payoff from choosing 7 = 0,
given by 1 — u,, and his payoff from choosing 7 = 7**. Thus, ps satisfies the
following indifference condition

Blu(a,w) | s 7] = (1=p7" () (o (Rl )+ (L= pin) (L)) = 1= (1.59)
The LHS of (1.59) is single-peaked in p:

dE[ua,w) | pp, 7] _ OB[ufa, w) | pp, 7]

du ou

= = o) (e 1 (- ) )

o147
*k e A Hp 1_/'LP
— (1= ) e — (- )
e\ (=)

where the first equality follows from the envelope theorem. The final expression
is strictly positive for g < p*(u,) and strictly negative for g > p*(p,), hence the
single-peakedness follows.

Thus, %E[u(a,w) | pop, 7] > 0 for p € [pera, pr2] (since also pra < 1/2 < u*).
Hence we can show that urs € [pr4, pr2] by establishing that

Elu(a,w) | pp, 75 0 = pra] <1 —pp < Elula,w) | pp, ™5 0 = pir2]

and applying the intermediate value theorem. The first inequality follows from
the fact that at pry4, 7 is such that the agent does not acquire information,
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vet the principal pays a positive transfer to him (which is trivially dominated by
7 = 0). The second inequality follows from the fact that given p = pr, (1.53)
holds for all 7 € [0, 1/p], so if 7** exists, it is preferred to 7 = 0. We conclude that
prs € |pra, pero], and the mirror argument can establish that pgs € (g2, ttR4l-
Finally, the single-peakedness of E[u(a,w) | pp, 7] in g implies that 7 = 7**
is preferred to 7 = 0 for all p € |13, tr3]. O

To summarize, the principal’s problem (1.23) is solved by 7* € {0, 7"}, with
7** being the solution if and only if it is feasible, effective, and preferable. It
is feasible if and only if (1.55) holds; effective if and only if u € [pr4, pera], and
preferable if and only if € [prs, pps]. Further, we have established that prs <
tra < prs < pre (and the converse holds for the other set of cutoffs), as well as
poy < p < pp < pgr. Therefore, 7 = 7 if and only if pt € [prs, pri]U[pr, prs),
whenever these intervals are non-empty. After denoting fi; = prs, fip = prs,
pr, = max{ s, 1}, fhp = min{ug, prs b and excluding the endpoints, at which
7 = 0, we obtain the statement of the Proposition.

1.A.10 Proof of Proposition 1.5.3

Using Theorem 1 of Caplin et al. [2019], the agent’s problem (1.24) given some
restriction set A* is solved by 7 such that the corresponding 3 € A(A*) satisfies
(1.17) for all a; € A*. Further, recall from Section 1.4 that 7 and 3 are connected
in the optimum by relation (1.13) (where we set 7(a;|w;) = F(a;) = 0 for all
a; ¢ A* and all w; € Q). Then by plugging (1.13) and the state-matching utility
into the principal’s expected payoff, it can be rewritten as in (1.16):

| Blaer L (1 +9)B(ai)
2 1+ 08(a) ie;(ﬁ)”p(wl) 1+ oB(a)

Plugging in (1.17) for 5 in the expression above transforms it to

Ly (wi) |(K(B) +0) pplwr) — % pulwj)

JEC(B)
ie%(:ﬁ) (K(B) + 6)pp(wi)

> p(w))

1t N s~ "

S| 2 e T 2 R

144

9 D). (1.60
K(ﬁ)%ie;(ﬁ)”p(w) (1.60)

To prove the proposition statement, we proceed by induction. Consider some
arbitrary action set A_ C A such that a, ¢ A_ for some k € {1,..., N} and
another action set A, = A_ U {a,}. Let 8. denote the unconditional choice
probabilities corresponding to the solution of (1.24) given A, let Cy = C(p.)
and K| = K(84), and define g_, C_, K_ analogously given A_.

Our goal is to show that that selecting A* = A, is weakly better for the
principal than A* = A_. If ax ¢ C, then the payoffs in the two cases are equal,
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and the statement is trivially true. Otherwise, using (1.60) for the principal’s
expected payoff, the statement amounts to:

0< (;jfé 2 up(wi)) — (;_165 P> up(wi))

= 0< ((K_ +8) 3 upw) - ((m +8) Y upw)
— 0 <(K_ +8)uy(wr) — (Zupwl) (1.61)

Since ay € C by assumption, 3, (ax) > 0, which, from (1.17), implies that
(K(8) + 8)pu(wi)

0< —1
> plwy)
JEC(B)
= 0 <(Ky +0)pp(wr) — | D pplwy)
1€Cy

— 0 <(K_+1+0)up(we) — ( > pp(wi) + up(wk))

ieC_

= 0 <(K_ + 0)uplwr) — (Zupwl),
1€C_
which immediately implies that (1.61) holds. Therefore, it is indeed better for the
principal to choose A, over A_. Since A_ was arbitrary, this proves by induction
that allowing a larger action set is always weakly better for the principal, and
hence proves the original proposition.

1.A.11 Proof of Proposition 1.6.1

We provide an example for N = 3. We use the same version of the Farkas’ Lemma
as in the proof of Lemma 2. To show that there is no prior belief that solves the
system of the first-order conditions for the problem, it is sufficient to show that
there is a solution to the following dual inequality system

u(ag,wy) ulag,wg) ulag,wy)
ze” X Fze x4 ze” x>0,

u(ag,wy) ulag,wg) u(az w3)
z1€7 x4 z0eT A+ 236 >0,

u(ag,wy) ulag,wg) ulag,w3z)
ze” X Fze X 4 z3e” & >0,

21+ 20+ 23 < 0.

(1.62)

Let us normalize A = 1 and consider payoffs given by the following matrix:
ulay, wy) ulag,wy) w(az,wr) In3 0 In(2+¢)
wlay, wy) ulag,ws) w(az,ws) 0 In3 In(2+¢)
wla, ws) ulag,ws) wu(az,ws) 0 0 In(2+¢)
Notice that vector (21, 22, 23) = (=1 =9, —1—4, 2) for small enough 4, > 0 solves
system (1.62): the two latter inequalities hold trivially for all such z, and the two

former inequalities hold if ¢ > 35 2. Therefore, there exists no u that solves
system (1.37) given 8 € A(O).
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1.A.12 Proof of Proposition 1.6.3

We first show that there exists an equilibrium in the communication game that
replicates the deletation equilibrium: the optimal agent acquires the same infor-
mation, makes a truthful action recommendation, and the principal follows the
recommendation.

Suppose that under delegation, the optimally chosen agent follows a decision
rule 5* that yields a consideration set C'(5*) = {1, ..., K*}. By Lemma 1, we have
that

o) 2 g - (o)
> 0/ p(wi+) Z <\/u (wi) \/u(wK*)> (1.63)

Suppose the agent reports truthfully. Given the state-matching payoffs, for the
principal to follow recommendation & = ax+- whenever it is issued, it must hold
that

pp(wier |age) = mlaxup(wﬁém), (1.64)

where p,(w|a) is the probability that the principal’s posterior belief assigns to
state w after hearing recommendation & from the agent. In equilibrium, the
principal’s posterior u,(wg-|ax+) must satisfy Bayes’ rule:

N TG+ |Wg* ) p \WE*
il ) = S B S
B Blax:)ex _ pip(wi+)
Bar) + ... + Blax-—1) + Blax-)ex Ty prpwi)m(ane |wi)
_ Blax)ex pip (WK~ )
Lt 0B(ar) S pplwi)m(aseJwi)
Xy (@) Blax)eh plwr)
534%5 “ iy pp(wim (agc |wr)

Where the last line is obtained by plugging the expression for #(ax- ) from Lemma
1 in the denominator of the preceding line. Similarly, we can calculate the prob-
ability that the principal’s posterior assigns to any other state w;:

ZK*l / pp(3) % u(wj) e .
K -)ex < K*,
0 ifj > K*.

For condition (1.64) to hold, it is then enough for

% WK* 1 — 5\/M(WK*) > \/M(w1> - \/M(WK*>7 (165)

to be satisfied. Note, however, that it is strictly weaker than (1.63), since
K*—1
Vilon) = i) < 3 (il = yfaleore)).
i1
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Therefore, we conclude that (1.65) holds, and thus it is optimal for the principal
to choose action ax+~ when the agent with prior belief y* recommends it.

Following the same argument, we can show the same for any other recommen-
dation a; for i € C(B*): the necessary and sufficient condition for the principal
to find it optimal to follow the recommendation would be

Xy ulw) = pu(w),

which is implied by (1.64), since pu(w;) > p(wg+) for i € C(B*). This concludes
the proof.
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2. Setting Interim Deadlines to
Persuade

2.1 Introduction

The development of any innovation requires investment of both time and capi-
tal, while the outcome of this investment is inherently stochastic. Usually, the
investor, being the principal, retains the option to stop funding the innovative
project if at some point it proves unsuccessful. It is widely documented that the
agent running the project tends to prefer the principal to postpone the stopping
of the funding to enjoy either the extra funds or an additional chance to turn her
research idea into a success story.! In such an agent-principal relationship, the
agent’s technological expertise and the quality of her innovative idea often allow
her to manipulate the principal by designing how and when the outcomes of the
research and development process are announced.

Recently, venture capital firms have started to pour billions into startups
focused on the development of quantum computers, which are known for their
technological complexity and difficulty of construction. The economic viability
of quantum computing is questioned by a number of experts; however, the star-
tups promise the investors a completed product in the foreseeable future.? For
instance, a quantum startup PsiQuantum announced to potential investors that
it hopes to develop a commercially-viable quantum computer within five years
and managed to raise more than $200 million in 2019.

This paper studies the implications of the agent’s control of information dur-
ing the progress of a research and development project when the agent and the
principal disagree about the timing of when to abandon the research idea. I ask:
What is the degree of transparency to which an agent should commit before start-
ing to work on an innovative project? In particular, which terms for self-reporting
on the progress of the project should a startup propose while discussing the term
sheet with a venture capitalist? As I show, depending on the properties of the
project, the startup would strategically choose both the timing for the disclosure
of updates on the progress of the project and the type of news it discloses - either
good or bad.

I study a game between a startup and an investor. The startup controls
the information on the progress of the project and has the power to propose
the terms for self-reporting on it to the venture capitalist.* The startup has an
intertemporal commitment power and commits to a dynamic information policy,
which can be interpreted as designing the terms of the contract specifying how
the information on the progress of the project is disclosed over time as the project
unfolds. In return, the investor continuously provides funds and chooses when to

! Agency conflict in which the agent prefers the principal to postpone abandoning the project
that the agent is working on is studied in Admati and Pfleiderer [1994], Gompers [1995], Berge-
mann and Hege [1998, 2005], Cornelli and Yosha [2003].

2"The Quantum Computing Bubble.” Financial Times, August 25, 2022,

37Bristol Professor’s Secretive Quantum Computing Start-Up Raises £179m.” The Tele-
graph, November 16, 2019.

41 discuss the reasoning behind this assumption in Section 2.3.2.
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stop funding the project.

The project has two stages and evolves stochastically over time toward com-
pletion, conditional on continuous investment in it. The completion of each of the
stages of project occurs according to a Poisson process. The completion of the
first stage serves as a milestone, such as the development of a prototype, while
completion of the second stage achieves the project. The investor gets a lump-
sum project completion profit if and only if he stops investing after the project is
completed and before an exogenous project completion deadline, and the startup
prefers the principal to postpone stopping the funding.®

As the investor receives the reward only after a prolonged period of investment,
he initially invests without being able to see if the investment is worthwhile.
Hence, it is individually rational for the investor to start investing only if he is
sufficiently optimistic regarding the future of the project. An important feature
of the setting that I consider is that the information is symmetric at the outset:
not only the investor, but also the startup is unable to find out if the project will
bring profit to the investor or not - this can be inferred only as time goes on and
some evidence is accumulated. The only tool that the startup has for persuading
the investor to start investing is the promise of future reports on the progress of
the project.

Clearly, the good news about the completion of the project is valuable to the
investor as it helps him to stop investing in a timely manner. Further, as evidence
regarding the project accumulates over time, failure to pass the milestone in a
reasonable time makes the project unlikely to be accomplished in time - and the
investor prefers to stop investing after observing such bad news. When designing
the information policy, the startup chooses optimally between the provision of
these two types of evidence in order to postpone the investor’s stopping decision
for as long as possible.

I show that the startup’s choice of information policy depends on the ex ante
attractiveness of the project for the investor. The attractiveness is captured
by the flow cost-benefit ratio of the project. Thus, a project is relatively more
attractive ex ante to the investor when its flow investment cost is lower, its
project completion profit is higher, or the Poisson rate, at which completion of
one stage of the project occurs, is higher.

When the project is sufficiently attractive ex ante to the investor, promises to
provide information only on the completion of the project serve as a sufficiently
strong incentive device to motivate the investor to start the funding at the outset.
Further, the future news on the completion of the project does not harm the total
expected surplus generated by the interaction of the startup and investor, while
the future news on the project being poor decreases the surplus that the startup
can potentially extract from the investor. Accordingly, the startup commits to
providing only the good news, but not the bad news on the project in the future:
it discloses the completion of the project and postpones the disclosure in order
to ensure the extraction of as much surplus as possible from the investor. In
the context of quantum computing, the startup optimally chooses and announces
to the venture capitalist the date by which it plans to have a fully developed
quantum computer. When the date comes, the startup reports completion if the
quantum computer has been completed; if not, the startup reports the completion

51 discuss the reasons for the presence of the project completion deadline in Section 2.3.1.
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as soon as it occurs.

The situation changes when the project does not look promising to the investor
ex ante. In that case, if the startup commits to disclosing only the completion of
the project, the investor will not have the sufficient motivation to start investing
in it. Thus, the startup extends the information policy to encompass not only the
good news but also the bad. As in the case of the promising project, the startup
discloses the project’s completion and does so without any postponement, thereby
fully exploiting its preferred incentive tool. In addition, the startup sets a date
at which the bad news is released if the milestone of the project has not yet been
reached - this date is the interim reporting deadline.

Setting the interim deadline, the startup chooses a deterministic date, which
it optimally postpones. As the startup prefers the investor to postpone stopping
the funding, it prefers the interim deadline to be at a later expected date. Further,
the completion of the stages of project according to a Poisson process makes both
the startup and the investor risk-averse with respect to the date of the interim
deadline. Thus, the startup prefers to set the interim deadline at a deterministic
date and to postpone it as late in time as possible in order to extract all the surplus
from the investor. In the context of quantum computing, the startup optimally
chooses and announces a fixed date by which it plans to have a prototype of the
quantum computer. When the date comes, reporting having the prototype at
hand convinces the investor to contimie the funding, and reporting not having
the prototype leads to termination of the project.

Finally, I demonstrate that the outlined structure of the optimal information
disclosure holds for a broad class of preferences of the startup and the investor.
I allow for profit-sharing between the startup and the investor, varying degrees
of the startup’s benefit from the flow of funding, and exponential discounting,
and show that the startup prefers not to set any interim deadlines whenever
the project is sufficiently promising to the investor. The future disclosure of the
completion of the project promises investor profit in exchange for a prolonged
investment, while the disclosure of the stagnation of the project at the interim
deadline promises investor only saved costs, as further investment stops. Thus,
when the project is attractive, the startup can make the funding and the beneficial
experimentation relatively longer by setting no interim deadlines.

2.2 Related literature

My paper is related to the literature on dynamic information design. The closest
paper in this strand of literature is by Ely and Szydlowski [2020]. Similarly to my
paper, they study the optimal persuasion of a receiver facing a lump-sum payoff
to incur costly effort for a longer time. In my model, as in theirs, the sender is
concerned to satisfy the beginning-of-the-game individual rationality constraint
of the receiver when choosing the information policy. Further, the “leading on”
information policy in Ely and Szydlowski [2020] has a similar flavor to the “post-
poned disclosure of completion” information policy in my paper: promises of news
on completion of the project serve as an incentive device sufficient to satisfy the
receiver’s individual rationality constraint.

However, there are several substantial differences between Ely and Szydlowski
[2020] and my paper. While in their model the state of the world is static and
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drawn at the beginning of the game, in my model it evolves endogenously over
time, given the receiver’s investment. As a result, the initial disclosure used in the
“moving goalposts” policy in Ely and Szydlowski [2020] cannot provide additional
incentives for the receiver in my model. The sender in my model uses another
incentive device to incentivize the receiver to opt in at the initial period: she
commits to an interim deadline at which she discloses that the first stage of the
project is not completed.

Another closely related paper is by Orlov et al. [2020]. The main similarity
to my paper lies in the sender’s incentive to postpone the receiver’s irreversible
stopping decision. The sender in their paper prefers to backload the information
provision, which is in line with the properties of the optimal information policy
in my paper. However, there are a number of substantial differences between
our papers. In Orlov et al. [2020], the sender does not have the intertemporal
commitment power; further, the receiver potentially obtains a non-negative payoff
at each moment of time, and thus the sender does not need to persuade the
receiver to opt in at the beginning of the game.

Ely [2017], Renault et al. [2017], Ball [2019] also analyze dynamic informa-
tion design models. However, their papers focus on persuading a receiver who
chooses an action and receives a payoff at each moment of time, whereas in my
paper the receiver takes an irreversible action and receives a lump-sum project
completion payoff. Henry and Ottaviani [2019] consider a dynamic Bayesian per-
suasion model in which, similarly to my model, the receiver needs to take an
irreversible decision. However, the incentives of the sender and receiver differ
from my model: the receiver wants to match the static state of the world and the
sender is concerned with both the receiver’s action choice and with the timing
of that choice. Basak and Zhou [2020] study dynamic information design in a
regime change game. The optimal information policy in their model resembles
the interim deadline policy in my model: at a fixed date, the principal sends the
recommendation to attack if the regime is substantially weak by that time.

My paper is also related to the literature on the dynamic provision of incentives
for experimentation |Bergemann and Hege, 1998, 2005, Curello and Sinander,
2020, Madsen, 2022]. The closest papers in this strand of literature are by Green
and Taylor [2016] and Wolf [2017]. Similarly to my model, both papers consider
design of a contract regarding a two-stage project, in which the completion of
stages arrives at a Poisson rate. In Green and Taylor [2016], there is no project
completion deadline and the quality of the project is known to be good, while in
Wolf [2017] the quality of the project is uncertain. In contrast to my paper, both
papers focus on a canonical moral-hazard problem and give the power to design
the terms of the contract to the investor (principal) rather than the startup
(agent). In particular, the contract in Green and Taylor [2016] specifies the
terms for the agent’s reporting on the completion of the first stage of the project.
Similarly to my model, the optimal reporting takes the form of a deterministic
interim deadline: at a principal-chosen date, the agent truthfully reports if she
has already completed the first stage, which determines the further funding of
the project.®

In a broad sense, my paper also relates to the small strand of theoretical literature on
dynamic startup-investor and startup-worker relations under information asymmetry [Kaya,
2020, Ekmekei et al., 2020]. However, while these papers focus on the signaling of the type of
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2.3 The model

2.3.1 Setup

[ consider a game between an agent (she, sender) and a principal (he, receiver).
Time is continuous and there is a publicly observable deadline T', ¢t € [0,T].7 For
each t, the principal chooses sequentially to invest in the project (a; = 1) or not
(a; = 0). The flow cost of the investment is constant and given by ¢. The choice
of a; — 0 at some ¢ is irreversible and induces the end of the game.®

The assumption that the project needs to be completed in finite time is natural
in many economic settings. The main interpretation for 7" is an expected change
in market conditions that renders the project unprofitable. In the context of
a research and development project, T" could stand for the date at which the
competitor’s innovative product is expected to enter the market, or the date at
which the competitor is expected to get a patent on the competing innovation.

The state of the world at time ¢ is captured by the number of stages of the
project completed by ¢, x;, and the project has two stages, z; € {0,1,2}. The
state process begins at the state ro = 0 and, conditional on the continuation of
the investment by the principal, it increases at a Poisson rate A > 0. Informa-
tion on the number of stages completed is controlled by the agent. Thus, when
making investment decisions, the principal relies on the information provided by
the agent.

The project brings the profit v if and only if the second stage of the project
has been completed by the time of stopping, and a payoff of 0, otherwise. I
assume that all of the profit goes to the principal. This assumption simplifies the
exposition without affecting the main results of the paper. I relax this assumption
and consider the profit-sharing between the agent and the principal in Section
2.6.

There is a conflict of interest between the agent and the principal as the agent
benefits from using the funds provided by the principal for running the project,
possibly diverting them for her benefit. Thus, the agent faces the flow payoff of
¢ and wants the principal to postpone his irreversible decision to stop as long as
possible.

I study the agent’s choice of information provision to the principal. The agent
chooses an information policy to maximize her expected long-run payoff. 1 assume
that the agent has the power to announce and commit to a policy. An information
policy o is a rule that for each date ¢ and for each past history h (¢) specifies a
probability distribution on the set of messages M. The history includes all past
and current realizations of the process and all past message draws and principal’s
action choices.

When choosing an information policy, the agent faces a rich strategy space.
First, she can choose if the information on the completion of the first, or second,
stage of the project will be disclosed by the policy. Second, she can choose

startup, I study the provision of information by the startup on the progress of the project.
"The results for the setting without a deadline are easily obtained by considering T' — oco.
They are presented in Appendix 2.E.
8The absence of the principal’s commitment to an investment policy and the irreversibility
of the stopping decision capture the venture capitalist’s option to abandon the project, e.g., in
the case of its negative net present value.
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how to disclose the completion of a stage of the project: for instance, to do so
immediately or to postpone the disclosure.

The timing of the game is as follows. First, at ¢ = 0, the agent publicly
commits to an information policy o. Second, at each ¢ the principal observes the
message generated by the information policy and makes her investment decision.
The game ends when the principal chooses to stop investing or at T, if he keeps
investing until 7". I assume that whenever indifferent about investing or not, the
principal chooses to invest, and whenever indifferent about disclosing information
or not, the agent chooses not to disclose.

Throughout the paper, I use the following intuitive notational convention: for
any two dates at which the principal stops investing, S and 7,

S ATmin{S,7},
SVrmax{S,7}.

2.3.2 Discussion of assumptions

The main interpretation of the considered dynamic information design problem
is the contracting between the agent (startup) and the principal (investor) on the
terms of reporting on the completion of stages of the project that are not publicly
observed. The terms could take the form of a proposed formal reporting schedule
or a schedule of meetings with the investor. Non-observability of the stage com-
pletions stems from the fact that, while the technology is being developed in the
lab, the principal either does not have sufficient expertise to assess the progress
or the full access to the lab.

I assume that the principal does not have the power to propose the terms for
reporting to the agent and, e.g., make her fully disclose the progress achieved in
the lab. The most natural interpretation of such an asymmetry in the bargaining
power is the asymmetry in the market for private equity: there are sufficiently
many investors willing to invest in a particular technology or sufficiently few
startups working on the technology.? For instance, investors’ interest in quantum
computing has grown markedly in recent years, while there are reports of a short-
age of human capital in this industry.!°'! Another example is the communication
software industry, which has recently experienced increased investment activity.!?

As the agent enjoys the power of full control over the information on the
progress of the project, she is completely free to offer what is disclosed and when.
In particular, the contract between the agent and the principal can specify that
the completion of the second stage of the project is disclosed with a delay rather
than immediately. The agent who has an advantage in expertise over the principal

°In the alternative interpretation of the model, contracting concerns internal corporate re-
search and development and takes place between the leading researcher and the headquarters
of a company. The leading researcher’s bargaining power in proposing the terms for disclosure
again stems from the market asymmetry: the specialists having the desired level of expertise
might be in a short supply.

197The Quantum Computing Bubble.” Financial Times, August 25, 2022,

H«Quantum Computing Funding Remains Strong, but Talent Gap Raises Concern”, a report
by McKinsey Digital, https://www.mckinsey.com/business-functions/mckinsey-digital /our-
insights/quantum-computing-funding-remains-strong-but-talent-gap-raises-concern/.

127This Is Insanity: Start-Ups End Year in a Deal Frenzy” Best Daily Times, December 07,
2020.
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can rationalize such a condition by saying that before the success is reported to
the principal, it is worth re-checking the data, which takes time.

Even though the principal can not dictate to the agent which information and
how she should disclose, the principal can potentially hire an external monitor
who would visit the lab and prepare an additional report on the progress of the
project. In that case, the contract signed between the agent and the principal will
account for both free information that the agent promised to provide and addi-
tional costly information which the principal obtains with the help of a monitor.
In the baseline version of the model, I assume that the principal can not use the
help of a monitor. This can be rationalized by the shortage of experts in the field,
which makes hiring a monitor prohibitively costly. Alternative interpretation is
that the agent restricts the principal’s access to additional information on the
progress of the project by stating that a potential information leak would put the
technology being developed at risk.'?

The information policy relies upon the agent’s commitment power, which
holds not only within each date but also between the dates. The agent’s commit-
ment within each date follows from prohibitively high legal costs of cooking up
the evidence. The agent’s intertemporal commitment stems from the rigidity of
terms and form of reporting fixed in the contract that the agent and the principal
sign at the outset of the game.

2.4 No-information and full-information bench-
marks

2.4.1 No-information benchmark

First, I consider the simple case when the information policy is given by ¢™¥/: the
same message m is sent for all histories A (t) and all dates ¢. Thus, the agent
provides no information regarding the progress of the project. As I demonstrate,
in this case the principal starts investing in the project if and only if it is suffi-
ciently promising for the principal from the ex ante perspective and invests until
a deterministic interior date.

As no news arrives, the principal bases his decision about when to stop in-
vesting on his unconditional belief regarding the completion of the second stage
of the project. I denote the unconditional belief that n stages of the project were
completed by t, by p, (¢), i.e., p, (t)P (x; = n). The state of the world is fully
determined by p(t) given by

po(t) =e™,
p1(t) = Me ™,
Py (t) =1 — e — e ™.

The principal’s sequential choice of a; € {0, 1} can be restated equivalently as

13Tn particular, this rationale was used to restrict the investors’ access to information on the
progress of the project in the case of Theranos, see "What Red Flags? Elizabeth Holmes Trial
Exposes Investors’ Carelessness.” The New York Times, November 04, 2021.
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the choice of deterministic stopping time S™ & [0,7] chosen at ¢t = 0.1* Given
the principal’s continuous investment, the probability of completion of the second
stage of the project, ps (t), increases monotonously over time, making obtaining
the payoff v more likely. However, postponing the stopping is costly.

To decide on S™, the principal trades off the flow benefits and flow costs of
postponing the stopping decision, while keeping the individual rationality con-
straint in mind. The flow cost of postponing the stopping for At is given by ¢- At
and the flow benefit is given by v - p; (£) AAt."> Thus, the necessary condition for
the principal’s stopping at some interior moment of time (0 < S < T') is given by

v-pr(S)A=c. (2.1)

Let
c

h—,
VA
the ratio of the flow cost of investment ¢ to the gross project payoff v normalized
using A, the rate at which a project stage is completed in expectation. The
intuitive interpretation of k is the flow cost-benefit ratio of the project. K is an
inverse measure of how ex ante promising the project is for the principal. (2.1)
is equivalently given by!®

p1(5) = L (2.2)

flow benefit of waiting  1OW cost of waiting

and presented graphically in Figure 2.1. As the state process transitions monotonously
from 0 to 1 and then to 2, p; (¢) first increases and after some time starts to de-
crease. Thus, the principal has two candidate interior stopping times satisfying
(2.2), S and S™'. The principal prefers to postpone stopping to ENI, as during

(:9 , SNI) the flow benefits are higher than the flow costs.
The forward-looking principal can guarantee himself a payoff of 0 if he does
not start investing at ¢ = 0. Thus, he will choose to start investing at ¢ = 0 only

if his flow gains accumulated up to T" A S are larger than his flow losses, and
his expected payoff is given by
TASN!

VN max {O,/O (v-p1(s)A—¢) ds} . (2.3)
Geometrically, the integral in (2.3) represents the difference between the shaded
areas in Figure 2.2 that correspond to the accumulated gains and losses. The
principal starts investing at ¢ = 0 if, given 7" and A, the normalized cost-benefit
ratio k is low enough, so that the shaded area of the accumulated gains is at least
as large as that of the accumulated losses. I denote such a cutoff value of k by

kM (T, \) and summarize the principal’s choice without information in Lemma
7.

14Note that the dynamic belief system that he faces is deterministic in a sense of being fully
specified from ¢ = 0 perspective.

15To observe this, note that the probability of the completing both the first and second stages
within a very short time At is negligibly small; thus, during some At, the principal receives the
project completion payoff v iff the first stage has already been completed.

6Here I WLOG express the flow benefits and flow costs of investing for the principal in
different units of measurement.
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Figure 2.1: Principal’s choice under no information:
left plot: postponing stopping increases the chance of getting a project payoff
v;
right plot: principal trades off costs and benefits and optimally stops at g

Lemma 7. Assume no information regarding the progress of the project arrives
over time. Denote the time at which the principal stops investing by SNT. If
k > &N(T, N\), then the principal does not start investing in the project, i.e.,
SNL— 0. If k < KNT(T, X), then the principal’s choice of stopping time is given
by

~NT ol > o—AT
GNT _{S , Zf/\_T(md/ﬁ_e A (2.4)

T, otherwise ,

the closed-form expressions for S and KN (T, ) are presented in the proof in
Appendiz 5.A.

2.4.2 Full-information benchmark

Here, I consider the case in which the information policy is given by o*7: M =
{mo, m1, my} and the message m,, is sent for all ¢ such that x; = n, n € {0,1,2}.
Thus, the principal fully observes the progress of the project at each ¢.17 1 charac-
terize the cutoff level of the cost-benefit ratio below which the principal is willing
to start investing. Further, I show that the principal chooses to stop when no
stages of the project are completed and the project completion deadline T’ is
sufficiently close.

At each t, the principal uses the information on the number of stages com-
pleted to decide either to stop investing or to postpone the stopping. The news
on completion of the second stage of the project makes the principal stop immedi-
ately, as this way he immediately receives the project payoff v and stops incurring
the costs of further investment. If only the first stage of the project is completed,
the principal faces the following trade-off. The instantaneous probability that the
second stage will be completed during At is given by AA¢, which is constant over
the time. Thus, the expected benefit of postponing the stopping for At is given

" This benchmark corresponds to equilibrium in the setting, where the principal has the full
power to propose the terms of self-reporting to the agent.
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Figure 2.2: Principal’s choice to start investing at ¢ = 0 or not:
left plot: 7" > SNI; the project deadline is distant and decision-irrelevant;
right plot: T' < SM; the project deadline is close, which leads to lower
expected benefits of investing.
In both plots the expected accumulated gains are higher than the losses, so the
principal starts to invest at t = 0.

by v - AAt. Meanwhile, the expected cost of postponing the stopping is given by
c- At. As a result, if K < 1, then the principal who knows that the first stage of
the project has already been completed invests until either the completion of the
second stage or until the project deadline T' is reached.

Consider now the case in which the principal knows that the first stage has
not yet been completed. The principal’s trade-off with respect to the stopping
decision is now more involved. Postponing the stopping for At leads to the
completion of the first stage of the project with the instantaneous probability
AAt. Completion of the first stage of the project at some ¢ implies that the
principal receives the continuation value of the game, conditional on having the
first stage completed. I denote the continuation value of the principal at time
t under full information and conditional on the completion of first stage of the
project by Vif{. This is given by'®

V;ﬁl = <v - %) (1 - e_’\(T_t)) : (2.5)

The principal’s expected benefit from postponing the stopping for At is given
by V;ﬁf - AAt and the cost of postponing the stopping is, as before, given by
¢+ At. The continuation value, V;ﬁf , shrinks over time and approaches 0 as the
project deadline T" approaches. This is because the shorter the time left before
the project deadline, the less likely it is that the second stage of the project will
be completed before T'. If at some ¢, and given that no stages are completed yet,
the expected net benefit of investing reaches 0, it is optimal for the principal to
stop at that ¢.° I denote this date by S{" and plot it in Figure 2.3.

18See the derivation in the proof of Lemma 8 in the Appendix.

197f at ¢ the expected benefit of investing becomes lower than the cost, then, after ¢, the
net expected benefit remains negative. Thus, it is optimal for the principal to stop investing
precisely at ¢.
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Figure 2.3: The principal optimally sets an interim deadline ¢ = S’ under full
information: given that the first stage of the project has not been completed by
SE, it is optimal to stop investing at S{".

As the principal has an incentive to stop at S{ only if he knows that the
first stage or the milestone of the project has not been reached, the economic
interpretation of SI is that it is the interim deadline that the principal sets for
the project. If the milestone has not been reached by the interim deadline, then
it is sufficiently unlikely that the project will be completed before the project
deadline T'. Thus, it is optimal for the principal to “give up” on the project and
stop investing at ¢ = S&. If the milestone is reached by the interim deadline,
then the principal has an incentive not to stop investing until either the second
stage is completed or T is hit.

Finally, given the plan to stop either at the interim deadline, or at the comple-
tion of the second stage of the project, it is individually rational to start investing
only if the principal’s expected payoff from the ¢ = 0 perspective is non-negative.
I denote the upper bound for the normalized cost-benefit ratio such that the prin-
cipal starts investing at ¢ = 0 by <7 (T, \). Intuitively, 7 (T, \) > ™ (T, \):
whenever the principal is willing to start investing under no information, he is
also willing to start under the full information. I summarize the principal’s choice
under full information in Lemma 8.

Lemma 8. Assume thatl the progress of the project is fully observable at each
moment in time. If K > &1 (T, )\), where "1 (T, \) > &M (T,X), then the
principal does not start investing in the project. If k < &1 (T, ), the principal
invests either until the random date at which the second stage of the project is
completed, t = 7o, or until the interim deadline, t = St , at which he stops if the
first stage has not yet been completed. Formally, the time at which the principal
stops investing is a random variable T given by:

T2 A T, Zf TgP # 0
T — ) (1]
SE, otherwise

where ST =T + % log (%) and the expression for k1 (T, \) is presented in the
proof in Appendir 5.A.

Assume now that the agent chooses which information to provide to the prin-
cipal. As for k > &7 (T,\) the principal is not willing to start investing even
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under full information, there is no way in which the agent can strategically con-
ceal the information to her benefit. In Section 2.5, I assume x < &7 (T, \) and
analyze how the agent can strategically provide information on the progress of
the project and extract the principal’s surplus.

2.5 Agent’s choice of information policy

In this Section, I present how the agent’s choice of information policy changes
with the ex ante attractiveness of the project, which is captured by the cost-
benefit ratio k. In Section 2.5.1, I start with Proposition 2.5.1 which summarizes
the comparative statics result. In Sections 2.5.2-2.5.3, I proceed with the detailed
discussion of the economic mechanisms that determine the outlined structure of
the optimal information policy. Throughout Section 2.5, I maintain the following
technical assumption:

Assumption 2.1. e’ > X' (AT +1) + 1.

For the sake of a clearer exposition, this assumption rules out the case in
which T is so low that whenever the principal is willing to start investing in the
no-information benchmark, he invests until 7. Relaxing this assumption does not
change the the comparative statics result in Proposition 2.5.1 qualitatively.?

2.5.1 The structure of optimal information disclosure

There exist cost-benefit ratio cutoffs k™7 (T, \), NP (T, \) < &M (T,)\), and
(TN, &N (T, N) < &(T,\) < "1 (T,\), such that, depending on the cost-
benefit ratio of the project, the optimal information policy has the following
form:

1. when k < kNP (T, \), the agent provides no information and the principal
invests until 7

2. when VP (T, \) < k < & (T, \), the agent discloses only the completion of
the second stage of the project and does that with the postponement;

3. when & (T,)\) < k < &1 (T,)\), the agent immediately discloses the com-
pletion of the second stage of the project whenever it occurs and specifies
a deterministic interim deadline, at which it discloses if the first stage is
already completed;

4. when k > g1 (T, \), the agent provides no information as the principal’s
long-run payoff is non-positive even under full information.

Figure 2.4 illustrates Proposition 2.5.1 and presents the partition of the cost-
benefit ratio space based on the corresponding forms of the optimal information
policy.

The structure of optimal disclosure presented in Proposition 2.5.1 follows
the simple and intuitive pattern. The lower is the value of cost-benefit ratio,
the higher is ex ante attractiveness of the project to the principal. First, for

20T discuss the implications of relaxing this assumption in the proof of Proposition 2.5.1.
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Figure 2.4: Comparative statics of the form of optimal information policy with
respect to the cost-benefit ratio of the project, x (T, A).

k < KNP (T, )\), the project is so attractive that the principal is willing to keep
investing until the project deadline T" even in the no-information benchmark.
Thus, there is no need to disclose any information. For the higher values of &,
there emerges a room for strategic disclosure, and the higher is the value of k (i.e.,
the lower is the ex ante attractiveness of the project), the more information the
agent has to disclose to incentivize the principal. For x > &1 (T, X), the project
gets so unattractive that the principal can not strictly benefit from investing even
in the full-information benchmark. In this extreme case, the agent chooses not
to disclose any information.

The most important part of the result in Proposition 2.5.1 demonstrates
which additional pieces of information the agent chooses to disclose and when she
chooses to discloses them as r gets higher and higher. When x € (NP (T, \), & (T, )],
the agent discloses only the completion of the second stage of the project and does
not promise any information on the completion of the first stage of the project.
Further, as s increases from ™7 (T, \) to & (T, \), the agent adjusts the timing
of the disclosure: she postpones the disclosure of the second stage completion
less and less and discloses immediately for & (T, \). For x € (& (T, \), &1 (T, \)),
the agent not only discloses the completion of the second stage of the project
immediately, but also provides information on the completion of the first stage
at the interim deadline that she optimally chooses.

In the subsequent Sections, I provide details on the mechanisms that shape
the aforementioned comparative statics results. 1 omit the trivial case of non-
disclosure under x < £V (T, \) and start the discussion from the optimal infor-
mation policy under x € (k™7 (T, X), & (T, \)].

2.5.2 Postponed disclosure of project completion

In this Section, I restrict attention to x € (k™7 (T, \), % (T, )] and explain why
the optimal information policy has the particular form presented in the Propo-
sition 2.5.1: the agent discloses only the completion of the project and does this
with the postponement.

Agent’s problem

To characterize the agent’s choice of information policy, I consider an equivalent
problem, in which the agent directly chooses the stochastic history-contingent
length of investment subject to the principal’s individual rationality constraints
that ensure optimality of such action process for the principal. An investment
schedule is a random variable 7 : Q — [0,7] defined on the probability space
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(Q, F,P) and adapted to the filtration F' = (F;)i>0 generated by the stochastic
process x;. As I demonstrate in Section 2.5.2, restricting attention to random
variables adapted to the natural filtration of z; is without loss of generality for
the agent’s equilibrium expected payoff when x € (kM7 (T, \), & (T, \)].%

Informally, an investment schedule 7 is a random variable with support [0, 7]
specified by a rule that suggests when to stop investing depending on the history
of previous realizations of the number of completed stages x;.2? The agent chooses
this rule at t = 0. P (x; = 2) captures the belief about two stages of the project
completed by 7, the random time of stopping in the future, and E [r] captures
the expected length of investment from ¢ = 0 perspective.

Given an investment schedule 7, the long-run payoff of the agent and the
principal are given, respectively, by

Wir)Elr]e,
V(r)P(x; =2)v—E|1]ec

As an investment schedule 7 is an action recommendation rule, the action
recommendations generated by this rule have to be obedient for the principal.
In other words, at each date and for each possible history the principal’s actions
suggested by 7 have to be optimal for the principal. An object useful for charac-
terizing if an investment schedule 7 generates obedient action recommendations
is given by the principal’s continuation value at some interim date ¢ promised by
the investment schedule 7. This continuation value depends on the beliefs of the
principal.

As the principal does not commit to a policy at ¢ = 0, he rationally updates his
belief given an investment schedule 7 and assesses the costs and benefits of either
further following the investment schedule 7 provided by the agent or deviating
from it. The absence of stopping by some date ¢t and, thus, the fact that the game
continues at t serves as a source of inference for the principal. First, he forms a
belief regarding the number of completed stages of the project by t, conditional
on the game still continuing at ¢, P (x; = n|t < 7). Second, he forms a belief
regarding the number of completed stages of the project at the random date of
stopping in the future, 7, P (x; = n|t < 7).

Given the absence of stopping by ¢, the principal’s expected payoff promised
by the schedule is given by P (z, = 2|t < 7)v — E[r — t|t < 7]¢. The principal’s
expected payoff from stopping at ¢ is given by P (x; = 2|t < 7)v. The principal’s
continuation value at t given the investment schedule 7 is the difference between
these two expected payoffs, I denote it by V; (7):

V() [P (2 = 2/t <7) — P2 = 2t < 7)o — E[r — t]t < 7]e. (2.6)

This way of formulating the continuation value is intuitive: if the continuation
value V; (1) gets negative then it is not valuable to continue investing for the

21Tn other words, there is no need for external randomization devices to optimally incentivize
the principal when x € (NP (T, X), & (T, \)].

22The stopping rules from the no-information and full-information benchmarks are given in
Lemmas 7 and 8, respectively. Further examples of such rules include “stop 1 minute after the
second stage of the project is completed” and “stop at ¢t = S if only the first stage of the project
is completed by t = 5.
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principal, and he is better-off stopping immediately rather than following the
schedule. The following Lemma shows the necessary and sufficient conditions for
an investment schedule 7 to generate obedient action recommendations for the
principal.

Lemma 9. An investment schedule T is the principal’s best response to at least
one information policy o if and only if

Vi(r) > 0,5t >0 and VN <0, (2.7)

where V;NI is the principal’s optimal continuation value in the absence of any
additional information from the agent starting from the date t.

Vi (1) > 0,Vt > 0 ensures that the principal does not want to stop before the
date of stopping suggested by the investment schedule is reached, and V¥ < 0
ensures that the principal does not want to continue conditional on reaching the
date of stopping suggested by the investment schedule. Conditions from Lemma
9 constitute the system of constraints for the agent’s problem.

As the agent chooses an investment schedule 7 to maximize her long-run
payoff, the constraint VN < 0 is inactive at optimum.?®* Thus, without loss of
generality, I omit this constraint from the agent’s problem, and the problem that
the agent solves at ¢t = 0 is given by

max {c- E[r]}
TeT (28)
s.4.V; (1) > 0,Yt > 0,

where 7T is the set of stopping times with respect to the natural filtration of
x;. As the principal’s choice to postpone the stopping of funding is costly, it is
natural to interpret the system of constraints in (2.8) as the system of principal’s
individual rationality constraints.

The agent’s problem is complex, and thus I solve it in steps. First, I charac-
terize the investment schedule, which solves the relazed version of (2.8) with the
principal’s individual rationality constraints only for some initial periods. Sec-
ond, I demonstrate that there exists an investment schedule solving the relaxed
agent’s problem and satisfying the full system of the principal’s individual ratio-
nality constraints (2.7). This investment schedule pins down optimal information
policy.

Solution to the agent’s relaxed problem

In this Section, I consider the agent’s relaxed problem and discuss its solution.
This sheds light on the technical intuition behind the key properties o the optimal
information policy. The agent’s relaxed problem for the parametric case of kK €
(NPT, \), kN (T, \)] is given by (2.8) with the principal’s individual rationality
constraint only for t € [0, 9 I]. The agent’s relaxed problem for the parametric
case of k € (KN (T, \), % (T, \)] is given by (2.8) with the principal’s individual
rationality constraint only for t = 0.

230Otherwise, the agent can prolong the expected funding by choosing a different 7.
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Consider the agent’s long-run payoff given an investment schedule, W (7).
This can be restated equivalently as follows:
W(r)=[W(n)+V(n)]-V(r)
=Pz, =2)v —[P(x; =2)v—E|7]]. (2.9)

total surplus principal’s surplus

The solution to the agent’s relaxed problem for both considered parametric cases
follows a simple idea: the optimal investment schedule ensures that the total
surplus is mazimal and that the principal’s surplus is minimal. Consider a sched-
ule 7 such that the stopping occurs after the completion of the second stage of
the project, unless the project deadline T" was hit, i.e., the schedule satisfies the
condition 7 > 5 AT". Such a schedule leads to

Pz, =2) =P (xr = 2). (2.10)

Given a schedule 7 satisfying (2.10), if 7 is individually rational for the princi-
pal at date ¢ = 0 then the total surplus generated achieves its upper bound and is
given by P (x7 = 2) v, which depends on the exogenously given project deadline
T and the profit v. However, the stopping only after the second stage completion
is not individually rational for the principal at ¢ = 0 when the cost of funding is
sufficiently high, the profit is sufficiently low, or the expected time until a project
stage completion is sufficiently high.

Lemma 10 elaborates on the cost-benefit ratio cutoff value & (7, A): it dis-
tinguishes the case in which stopping only after the second stage completion is
individually rational at ¢ = 0 from the case in which it is not. Based on this
partition, when x € (NP K (T, \)], T call the project ex ante promising for the
principal.

Lemma 10. For each (T, \) there exists iz (T, \), s (T, \) < & (T, \) < &7 (T, \),
such that if K < K (T, \) (k> K~ (T, X)) then an investment schedule T in which
stopping after o AT happens with probability one is individually rational att =0
(not individually rational at t = 0) for the principal.

For k € (kNP (T, \), i (T, \)], the schedule 7 > 7 AT is individually rational
for the principal at t = 0, and it maximizes the total surplus. In addition to choos-
ing 7 > AT, it is optimal for the agent to choose the investment schedule with a
higher expected date of stopping the funding to extract all the principal’s surplus
subject to his individual rationality constraints. For x € (N (T, \), & (T, \)], the
agent chooses such 7 that the principal’s individual rationality constraint at t =0
is binding. As a result, V(7) = V¥ i.e., the principal gets his no-information
benchmark payoff given by 0.

For k € (kNP (T, \), kN1 (T, \)], as in the no-information benchmark the prin-

cipal invests until S M ith certainty, the agent chooses the investment schedule

as to postpone the start of information provision at least until S N Further, the
agent chooses 7 with a higher expected date of stopping so that the principal’s

individual rationality constraint at ¢ = ™ s binding. The absence of stopping
until at least S* and the fact that individual rationality constraint binds at
t = 5™ taken together imply that V(7) = V™ ie., from ¢t = 0 perspective, the
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principal gets her no-information benchmark payoff, which is non-negative and
given by (2.3).

The next Lemma summarizes the necessary conditions for an investment
schedule to solve the agent’s relaxed problem when the project is promising.
These conditions are shared both by the relaxed problem formulated for the case
of K € (KNP (T, ), kM (T, \)] and the relaxed problem formulated for the case of
k€ (KN(T,\), i (T,\)]. The conditions that are both necessary and sufficient
for an investment schedule to solve the agent’s relaxed problem are presented in
the Proof of Lemma 11.

Lemma 11. Assume v € (kMY 5 (T,\)]. If an investment schedule T solves
agent’s relazed problem, then

1. with probability one, stopping occurs after o NT';

2.V(r) = VN where VNI s the principal’s expected payoff in the no-
information benchmark, given by (2.5).

Optimal information policy

In this Section, I show that there exists an information policy that both solves
the agent’s relaxed problem and satisfies the full system of the individual ratio-
nality constraints. Given this, as Lemma 11 describes the solution to the relaxed
problem, it also sheds light on the properties of the optimal information policy
for the case of a promising project. These properties have a clear-cut economic
interpretation as an investment schedule 7 can be easily interpreted in terms of
action recommendations for the principal.

An investment schedule 7 can be without loss of generality implemented us-
ing a direct recommendation mechanism - a simple policy which has M = {0, 1},
where m = 1 received at date ¢t is a recommendation to continue investing at
t for the principal and m = 0 received at date ¢ is a recommendation to stop
investing at ¢.2* Keeping this in mind, it is clear from Lemma 11 that the optimal
information policy has to satisfy the following conditions. First, whenever the
agent recommends the principal to stop, the second stage of the project is already
completed. Second, the recommendation to stop is postponed so that the princi-
pal’s individual rationality constraint is binding, which manifests in V (1) = V.
The first condition presents the key feature of the optimal information policy for
the case of promising project: the agent discloses the completion of the second
stage of the project, but stays silent regarding the completion of the first stage of
the project. The intuition behind the agent’s choice is simple: a recommendation
to stop when no stages of the project are completed and the project deadline T
is close does indeed incentivize the principal; however, it also reduces the total
surplus generated that can be extracted via the agent’s control of information.
Meanwhile, the recommendation to stop when the two stages of the project are
completed incentivizes the principal without reducing the total surplus gener-
ated. When x < & (T, \), a partially informative policy that discloses only the

24The connection between an investment schedule 7 and a direct recommendation mechanism
implementing the schedule 7 is simple: whenever, based on the evolution of the state process, 7
suggests stopping the funding, the direct recommendation mechanism sends the message m = 0.
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completion of the second stage provides sufficient incentives to the principal, and
thus the agent uses it.2"

I proceed with obtaining an investment schedule that not only satisfies the
conditions in Lemma 11 and solves the relaxed problem, but also satisfies the full
system of the principal’s individual rationality constraints in Lemma 9. Ensuring
both is non-trivial. For instance, consider a mechanism that implements an in-
vestment schedule solving the agent’s relaxed problem and assume it recommends
to continue for ¢ € [0,.5*), then at S* recommends stopping if the second stage
is already completed, but recommends to continue at all the subsequent dates
t € (5%, T]. A no stopping recommendation drawn at S* reveals that the state
is either 0 or 1. Clearly, after sufficient time passes after S*, the principal would
attach a high probability to the second stage already being completed and would
potentially be tempted to deviate from the recommendation to continue.?® How-
ever, a direct recommendation mechanism that implements an optimal investment
schedule exists. 1 present it in Proposition 2.5.2.

Assume x € (k™Y (T, \),& (T, \)]. The optimal mechanism does not provide
a recommendation to stop during ¢ € [0,5*). At ¢t = 5%, if the second stage of
the project is already completed, then the mechanism recommends the principal
to stop. If the second stage of the project is not yet completed, then the mecha-
nism recommends the principal to stop at the moment of its completion t = 7.
Formally,

T=S"V(nAT),

where S* is chosen such that V (1) = V! ie., the respective constraint in the
system of principal’s individual rationality constraints is binding.

The recommendation mechanism starting from S* generates recommendations
to stop if the second stage is completed. As the recommendation to stop comes
immediately at the completion of the second stage for all ¢ > S*, hearing no
recommendation to stop reveals that the state is either 0 or 1. Further, as time
goes on, the principal attaches a higher and higher probability to the state being
1, which ensures obedience to the recommendation to continue at each date.
Further, the start of information provision S* is sufficiently postponed to ensure
that the principal’s individual rationality constraint is binding either at ¢t = S M
or at t = 0.

The choice of 5* is driven by extraction of the principal’s surplus and depends
on k in an intuitive way. First, consider the case x € (kN7 kN (T \)], the prin-

cipal is willing to start investing and invests until ¢ = S° in the no-information
benchmark. The agent’s optimal choice is to set S* > ™ Given such an in-
formation policy, the principal does not stop at ENI, the date of stopping in the
no-information benchmark, and with probability one continues to invest during
t e [SNI, S*) even though the mechanism provides absolutely no information for
all t < S*. This is driven by the fact that the expected benefit from stopping
at some future date ¢ € [S*,T| and obtaining the project payoff v with certainty

%5The “leading on” information policy in Ely and Szydlowski [2020] is similar: the only
information that the policy provides is that the task is already completed and, thus, it is time
to stop investing.

261n other words, V; () drifts down over time and can get negative at some date.
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compensates the flow losses of investing during ¢ € [SNI, S5*).27 Further, the agent
sufficiently postpones S* to ensure that she extracts the principal’s surplus and
the principal gets precisely VN > 0.

In the case k € (kM (T, \), % (T, \)], the principal is not willing to start in
the no-information benchmark as his expected payoff from investing is negative.
Thus, the agent chooses S* to guarantee that the principal gets his reservation
value VM = 0 and is thus willing to start investing at ¢ = 0. The value of
S* is relatively lower as compared to the previous case: as the project is less
attractive, to provide the principal sufficient incentives, the agent needs to start
the information provision regarding the completion of the project earlier.

Finally, there exist many information policies that both solve the agent’s re-
laxed problem and satisfy the full system of constraints (2.7). This constitutes
an important advantage for the agent: she can choose an optimal policy that is
easier to implement from the real-world perspective, depending on the particular
environment. In the optimal mechanism from Proposition 2.5.2, the recommen-
dation to stop at some date ¢t depends only on the current state of the world
x¢. In an alternative delayed disclosure mechanism, the recommendation to stop
arrives with a pre-specified delay after the second stage was completed. Thus, the
recommendation depends only on the past history and not on the current state
of the world. In an optimal delayed disclosure mechanism, the delay becomes
smaller as more time passes. I characterize such a mechanism in Appendix 2.D.?®

Recall that, as Lemma 11 suggests, the key idea of the optimal information
policy is that the agent postpones the disclosure of the completion of the project
to extract more surplus, which makes the principal’s individual rationality con-
straint bind. The higher the cost-benefit ratio of the project x becomes, the
higher additional value the agent’s information policy needs to provide to the
principal to ensure that his active individual rationality constraint is satisfied.
The implication of this for the optimal information policy is presented in Lemma
12.

Lemma 12. Assume v € (KNP (T,\),%&(T,)\)]. Given the recommendation
mechanism implementing an optimal investment schedule 7, for a fired Poisson
rate X\, the expected length of investment E |7| decreases in the cost-benefit ratio
K.

The intuition is that the higher the cost-benefit ratio of the project becomes,
the sooner after the second stage of the project is completed the agent recom-
mends the principal to stop. For the cost-benefit ratio as high as & (T, \), the
agent provides the recommendation to stop immediately at the date of comple-
tion of the second stage of the project. Further, for x > & (7T, ), the optimal
information policy satisfying the conditions in Lemma 11 ceases to be individu-
ally rational for the principal. As I show in the next Section, for £ > & (T, \),

27Similarly to the “leading on” information policy in Ely and Szydlowski [2020], the promises
of future disclosure of the completion of the project are used as a “carrot” to make the receiver
continue investing beyond the point at which he stops in the no-information benchmark.

2 The rich set of optimal direct recommendation mechanisms in my model encompasses both
mechanisms in which the information provision depends only on the current state, similarly
to the optimal mechanism in Ely and Szydlowski [2020], and the mechanisms that use delay,
similarly to the delayed beep from Ely [2017].
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in addition to immediate disclosure of the project completion, the agent provides
the information regarding the completion of the first stage of the project.

2.5.3 Immediate disclosure of completion and an interim
deadline

When x > & (T, \), the project is not promising for the principal and any invest-
ment schedule in which stopping occurs after m» AT with probability one violates
the principal’s individual rationality constraint. In other words, from the ex ante
perspective the future reports disclosing only the completion of the project do
not motivate the principal to start investing. Thus, an investment schedule that
provides an individually rational expected payoff to the principal should assign a
positive probability not only to stopping after the completion of the project, but
also to stopping in either state 0, when no stages of the project are completed,
or state 1, when only the first stage of the project is completed. I present the
necessary conditions for an investment schedule to be optimal when the project
is not promising in Lemma 13.

Lemma 13. Assume r € (k (T, \), "1 (T, ). If an investment schedule T solves
agent’s problem, then it satisfies the conditions

1. conditional on no completed stages of the project, stopping of the funding
happens with a positive probability;

2. conditional on one completed stage of the project, stopping of the funding
happens with probabilily zero;

8. conditional on two completed stages of the project, stopping of the funding
happens immediately (att = 12) and with probability one.

Stopping when only the first stage of the project is already completed is
clearly inefficient. In state 1, the principal prefers to continue investing until the
completion of the second stage and this principal’s incentive to wait is aligned with
the agent’s incentive to postpone the stopping. Further, stopping in state 1 does
not help overcome the problem of the violated individual rationality constraint
under £ > & (T, \). Meanwhile, assigning a positive probability to stopping when
no stages are completed helps to overcome the problem of violated individual
rationality constraint, as the principal benefits from stopping at some date ¢
when the first stage of the project is not yet completed and the project deadline
T is sufficiently close. Further, the agent clearly prefers the stopping of funding
after the completion of the second stage rather than in state 0 as the former does
not harm the total surplus generated. Thus, a schedule that is optimal assigns
probability 1 to immediate stopping when the second stage is completed.

Lemma 13 implies that in an investment schedule, optimal for the agent, stop-
ping after the completion of the second stage of the project happens immediately
and stopping also happens given that no stages of the project are completed -
i.e., at the interim deadline chosen by the agent, which I denote by Sg'. Thus,
Lemma 13 drastically simplifies the strategy space in the agent’s design problem:
it is only left to characterize the optimal interim deadline. At the outset of the
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game, the agent designs a device that privately randomizes over the interim dead-
lines Sg'. That is, the agent publicly chooses a distribution Fséx, then an interim
deadline is drawn according to it and privately observed by the agent. Next,
the information starts to flow. The action recommendation to stop the funding
satisfies the following investment schedule

= {sg‘, ifzgy =0 (2.11)
5 AT, otherwise,
where the principal knows only the distribution Fséx, but not the draw of SZ.
Given that the completion of the second stage of the project is disclosed
immediately, stopping at the interim deadline in state 0 leads to a loss of expected
further investment flow for the agent, and a potential savings from abandoning a
“stagnating” project for the principal. The agent’s payoff can be without loss of
generality restated as the expected loss in future investment due to stopping at
the interim deadline Sg' in state O (rather than at 75 AT). Given this, the agent’s
problem can be expressed as

min Bp_, | P (250 = 0) B [ AT = Sillass = 0] |, (2.12)

SA
A 0
SO

expected loss in future investment given 364

subject to the system of the principal’s individual rationality constraints, which
also have a natural interpretation as the expectation of principal’s savings on
the future investment, which discontinues at SZ' in state 0, minus the loss in the
project completion profit due to stopping the funding at S3' in state 0.2°

Inspecting the agent’s expected loss in future investment in (2.12) reveals that
if the agent postpones the interim deadline S§', then two effects arise. First, the
probability that stopping at the interim deadline will happen decreases. Second,
the expected loss in total surplus due to stopping at the interim deadline rather
than at m AT decreases. Thus, the agent’s expected loss in future investment
is decreasing in the date of interim deadline and the agent prefers an interim
deadline with a later expected date.

Agent’s choice of the interim deadline distribution Fgais affected by the two
factors. First, as the expected loss in future investment in (2.12) is decreasing
and convex in the date of the interim deadline, and thus the agent is risk-averse
with respect to random interim deadlines. Thus, given some random interim
deadline, the agent directly benefits from inducing a mean-preserving contrac-
tion. Second, the agent benefits from inducing a mean-preserving contraction
indirectly. Inspecting the principal’s long-run payoff for some fixed S§ reveals
that the principal is also risk-averse with respect to random interim deadlines.
Thus, inducing a mean-preserving contraction makes the principal better-off and
relaxes the individual rationality constraint at ¢ = 0, hence, allowing the agent
to postpone the expected interim deadline further. As a result the optimal for
the agent interim deadline takes the form of a deterministic date. In other words,
it is optimal for the agent to publicly announce the interim deadline Si' at the
outset, so that the principal knows it.

29The principal’s individual rationality constraint is presented in (2.39).
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The agent has an incentive to postpone the interim deadline and uses her
control of the information environment to postpone the deadline as much as
possible so that the principal’s individual rationality constraint at ¢ = 0 binds.
Figure 2.5 demonstrates the principal’s long-run payoff as a function of the interim
deadline, which I denote by Sy. It is maximized at the principal-preferred interim
deadline S{’, which was characterized in Lemma 8. The agent-preferred interim
deadline S§' yields the principal’s expected payoff of 0.

V4

Figure 2.5: Principal’s long-run payoff, V', as a function of an interim reporting
deadline chosen by the agent, Sp.

The next Proposition summarizes the optimal investment schedule, which
can be without loss of generality implemented using a direct recommendation
mechanism:

Assume € (& (T, \), s (T, X)). The optimal information policy is given by
a direct recommendation mechanism that generates

(a) the recommendation to stop at the moment of completion of the second
stage of the project, t = 7, and

(b) a conditional recommendation to stop at the publicly announced interim
deadline ¢t — SZ'. At Sg', stopping is recommended with certainty if the
first stage of the project has not yet been completed.

Formally,

.7 if £ga =0
™ AT, otherwise,

where S is chosen so that the principal’s individual rationality constraint at
t = 0 is binding, i.e., V (1) = 0.

A stopping recommendation at any date other than the interim deadline
t = Sg fully reveals that project is accomplished. Further, observing a recom-
mendation to stop at the interim deadline, the principal learns that the milestone
of the project has not yet been reached and becomes sufficiently pessimistic that
the project will be completed by T'.

A notable feature of the optimal information policy when the project is ex ante
unattractive is its uniqueness. The only optimal instrument through which the
agent fine tunes the incentive provision to the principal is the choice of interim
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deadline, and there is a unique optimal way to set the deadline to make the
principal’s individual rationality constraint bind.

I proceed by considering the comparative statics of the interim deadline. Both
the agent-preferred and the principal-preferred interim deadline, S5t and SI, re-
spectively, increase in the exogenous deadline T'. This is because less time pressure
relaxes the principal’s individual rationality constraint and allows the agent to
postpone the deadline further in order to extract the principal’s surplus.

As the cost-benefit ratio increases up to k!, the agent-preferred deadline
converges to the principal-preferred deadline. An increase in the cost-benefit ratio
of the project makes the principal’s individual rationality constraint tighter.®®
As a result, for a higher x, in the absence of completion of the first stage, the
principal is willing to wait for a shorter time before stopping. Thus, both the
interim deadline preferred by the principal S{" and the interim deadline chosen
by the agent St are lower for a higher . Further, for a higher  the agent has to
choose an information policy relatively closer to the full-information benchmark
to ensure that the individual rationality constraint at ¢ = 0 is satisfied. Hence, the
agent-chosen interim deadline S§' approaches SJ', the interim deadline preferred
by the principal. The comparative statics of S{* and S§' with respect to the
cost-benefit ratio of the project s are presented in Figure 2.6.

So

] Fl

Figure 2.6: Interim deadline chosen by the agent St (dashed) and preferred by
the principal SZ (thick), as functions of the cost-benefit ratio of the project .

2.6 General preferences

In this Section, I allow for profit-sharing between the agent and the principal,
varying degree of the agent’s benefit from the flow of funds, and exponential
discounting, and demonstrate that the optimal information policy still has the
same properties as in the baseline model.

First, I assume that the agent and the principal share the project completion
profit v: the principal gets « - v, while the agent gets (1 —a)-v, a € (0, 1]. Thus,

30This is because the increase in x makes the principal’s instantaneous benefit from waiting
decrease, and the normalized instantaneous cost of waiting becomes higher.
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now the agent benefits not only from the flow of funds provided by the principal for
running the project but also from the share in the profit. The assumption that the
agent gets a share in the project completion profit is natural in many situations. In
particular, the research documents that the entrepreneurs in innovative startups
are up to some extent driven by giving vent to their entrepreneurial mindset and
bringing their innovative ideas to life [Gundolf et al., 2017]. In such a context,
a positive profit share of the agent captures that the agent is motivated by the
success of the project.

Second, I assume that given a flow cost of ¢ incurred by the principal, the agent
obtains a flow benefit B¢, 5 > 0. 3 can be interpreted as the agent’s marginal
benefit from using the funds provided by the principal for funding the project.
Alternatively, for 8 € [0, 1] the loss of 1 — 3 of the amount of the transfer at each
date can be interpreted as the transaction costs. Finally, setting 5 = 0 for some
a < 1 allows for abstracting from the agent’s motives for diverting the funds and
considering the agent motivated only by the success of the project.

Third, I allow for exponential discounting at a rate r > 0. Thus, the present
value of a profit obtained at a date ¢ is given by ve™"* and the present value of a
stream of funding up to date ¢ is given by % (1 —e™") ¢. The following Proposition
demonstrates that given the more general preference specification, the structure
of the optimal disclosure, present in the baseline model, preserves.

(a) When the cost-benefit ratio of the project is low, k < & (T, A, r, &), the op-
timal investment schedule 7 satisfies 7 > 7 AT, i.e., the agent recommends
the principal to stop only after the completion of the second stage of the
project.

(b) When k > & (T, A\, r,«), the optimal investment schedule 7 assigns positive
probability both to the stopping in state 2 and state 0, i.e., the agent not
only discloses the completion of the second stage of the project, but also
specifies an interim deadline for the completion of the first stage.

Similarly to the baseline model, allowing the principal to stop after the project
completion brings profit to the principal and thus leads to a relatively higher total
surplus, which the agent can extract. Meanwhile, allowing the principal to stop
at the interim deadline does not increase total surplus and serves solely as an
expected payoff transfer from the agent to the principal. To see that, note that
stopping when the first stage of the project is still incomplete allows the principal
to save on the further costs of funding the project when over time the project
proves to be “unsuccessful”. This can not be beneficial for the agent as she does
not internalize the costs of running the project. Further, stopping at the interim
deadline is strictly detrimental for the agent as she strictly prefers the principal to
postpone the stopping of funding when no stages of the project are completed.®!

When the project is sufficiently ex-ante attractive, the agent can motivate
the principal to start funding the project without promising to stop the stagnant
project at the interim deadline, and this is strictly beneficial for the agent. Thus,
when the project is promising, the agent sets no interim deadlines, which in
expectation gives her more funds and more experimentation for free.

31The probability of project success and stock of obtained funds are non-decreasing in the
date of stopping irrespective of the number of the completed stages of the project.
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2.7 Conclusion

A transparent flow of information is crucial for the successful management of any
innovative project. However, the researcher, who controls the information on the
progress of the project, often tends to have different motives than the investor.
This leads to the question of how a researcher chooses the transparency of the flow
of information about the progress of a project in order to manipulate the investor’s
funding decisions. I address this question in a dynamic information design model
in which the agent commits to providing information to the principal with an
incentive to postpone the principal’s irreversible stopping of the funding.

I contribute to the dynamic information design literature by studying the
problem of the dynamic provision of information regarding the progress of a mul-
tistage project, which evolves endogenously over time and needs to be completed
before a deadline. I show that the agent’s choice of which pieces of information to
provide and when depends on the project being either ex ante attractive for the
principal or not. In the case of a promising project, the agent provides only the
good news that the project is completed and postpones the reports. In the case of
an unattractive project, to motivate the principal to start funding the project the
agent not only reports the completion of the project, but also helps the principal
to find out when the project stagnates. To achieve this, the agent announces an
interim deadline for the project — a certain date at which she recommends the
principal to cut the funding of the project if the milestone of the project has not
been reached.
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2.A Notational conventions

The state process is given by x:,Vt € R., defined on the probability space
(Q,F,P), t € Ry. Its natural filtration is denoted by F' = (F;);>0. Throughout
Appendices 2.B and 3.A, the following notational conventions are used:

1. I denote the random time at which the nth stage of the project is completed
by 7.. Formally, 7, € R, is a continuously distributed random variable that
represents the first hitting time of x, = n.

2. Consider some stopping time 7. Whenever “7”7 stands as a term in an
inequality, it stands for a realization of the stopping time 7 and it should be read
as “for each w € Q and corresponding 7 (w)”.

Example 1. “m, AT > 77 should be read as “m (W) AT > 7 (w), for all w € Q.

Example 2. “for all t € [S,7)” should be read as “for all ¢t € [S, 7 (w)), for all
we O

3. The continuation value of the agent at time ¢, given 7, and conditional on
t<T:

Wi(r)E[r—tlt <7]e.

4. The total (continuation) surplus at time ¢, given 7, and conditional on
t<T:

SVi(r)We(m) + V(7).

5. Shorthand for posterior beliefs:

G ()P (e = nft < 7),
o ()P, =nlt <71).

2.B The principal’s continuation value

Here 1 present the alternative formulation of the principal’s continuation value
(2.6). This helps me to study some of its properties for further use in Appendix
3.A. The continuation value of the principal at time ¢ and given the investment
schedule 7 is given by (2.6). Postponing the stopping for At brings a benefit
in the form of project completion payoff v iff the second stage of the project is
completed within At¢. As x; follows the Poisson process, the probability of two
increments in a very short time At is negligibly small. Thus, during some At,
the principal gets the project completion payoff v iff the first stage of the project
has already been completed at some earlier time. Thus, postponing the stopping
for At brings the principal v with probability A¢; () At. The second stage is not
completed within At with the complementary probability of 1 — Agy (¢t) At. The
principal’s continuation value is thus given by

Vi (1) = (0Aqr () — ) At + (1 — Ay (£) At) Visar (1)
— oA (a1 () — &) AL+ (1= Aay (8) AL Vipae (7)

Differentiating both sides w.r.t. At and considering lima¢ .o (.) yields
0=0vA(q (t) —K) = A1 (1) Vi (7) + Vi (1),
which, after rearranging becomes

Vi (1) = Aai () Vi (7) + 0A (55— an (1)) (2.13)
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2.C Proofs

Proof of Lemma 7. The beliefs regarding the number of stages of the project
completed by time ¢, x;, evolve according to the Poisson process. The principal’s
unconditional beliefs are given by py (0) = 1 and for any t such that the game
still continues,

bo(t) = —Apo(t),
Pi(t) = Alpo (1) =1 (1)), (2.14)
P (t) = Api (1),

where po (t) = e and p; (t) = Me™, pa (t) = 1 —po (t) — p1 (). The principal’s
problem is given by
Jnax. {v-py(S)—c-S}. (2.15)
[ start with analyzing the choice of S for the interior solution case, S € (0,7).
F.O.C. for (2.15) is given by
vy (S) =¢ (2.16)

or, equivalently, p; (S) = k. There are two values satisfying (2.16): S and ENI,
S < 5™ Ateacht e (:9 , SNI) the principal receives a net positive payoff flow.

Thus, stopping at S is not optimal and the only candidate for optimal stopping

. NI . . . .
is S° .32 Further, one can obtain the closed form expression for the interior

stopping time S™ from (2.16):
~NT

1
S = —XW_l (—fi) s (217)

where W_;(x) denotes the negative branch of the Lambert W function. S s
well-defined for any s < e™!.

Thus, the solution to (2.15) could potentially be 0, ENI, or T'. I proceed with
a useful lemma.

Lemma 14. The following is true regarding the principal’s continuation value
in the no-information benchmark, V,ZVI: if Viw >0, for somet € {O, s /\T},

then VNI (3) >0, for all s € {t, SN /\T},

Proof. The principal’s continuation value in the no-information benchmark is
given by
NI

V, = {pg (T/\SNI) — P (t)} v— (T/\SNI—t) c. (2.18)
Further,
v (1) = vA (n — e_’\t)\t) =vA(k—pi(t)).

p1(t) < kforallt e {O,S} and py (t) > k for all t € {S, sV /\T}. Thus, Viw

increases for t € {O, S}, decreases for t € {S,T A SNI}, and VM (T A SNI) =0,
which establishes the result. O

325 is a local minimum of the objective.

79



Lemma 14 implies that if V¥ (0) > 0 and the principal chooses to opt in at
t = 0, then V,ZVI >0,te {O,gm /\T}, i.e., he invests until t =T A ™ This
implies that the solution to (2.15) is either T'A s or 0.

Finally, at ¢t = 0 the principal chooses to start investing or not. The condition
for the principal to start investing at ¢ = 0 is given by

VN> 0. (2.19)

To specify the set of parameters for which (2.19) is satisfied, I obtain the cutoff
value of x given T  and A. Such a parameterization is intuitive: x above the cutoff
level corresponds to a project with sufficiently high normalized cost-benefit ratio
and implies that the principal does not opt in. T denote this cutoff by £ (T, \).
This solves (2.19) holding with equality. Two cases are possible.

Case 1: T < sM o < —%W_l (—r). This inequality is satisfied when
either + > T or {% =T Given T < S™ (2.19) holding with equality

A Kk <eMAT. o T
becomes
p2 (TYv—"Tec=0.

. . . _ AT
Solving it for k yields x = e=*T (T — 1).
Case 2: T > S"". This inequality is satisfied when % < T and x> e MAT.

Given T > S™, (2.19) holding with equality becomes

NI

VP2 (SNI) — cgNI =0 < v (1 — Do (SNI) — (SNI)) =cS

where (recall that p, (SNI) =)

Po (SNI) = sz (SNI) - )\2;va - )\;NI
and
p () = 3 (8V) = =
Consequently,

_ _ . 1
vm(SNI)—cSNIv—v-n(lJr)\SNIJrW).

Let y)\SNI. Note that, by definition, ¥ > 1. Then x = ye™¥, and so
(vpz <:9NI) - CSNI) Jv=1—¢"" (1 +y+ ?/2) :
It follows that V' (0) is nonnegative whenever As™ > 1o = 1.79328, which is

equivalent to
Kk < kg = 0.298426.

Finally, putting the two cases together yields
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NI Ko = 0.298426, if + <Tandg>e AT
T,)\) = 2.20
R A) {e"\T ("EA/\T—T_l — 1) , otherwise. ( )
O

Proof of Lemma 8. The principal chooses a; € {0, 1} sequentially given the ob-
served realizations of x; € {0,1,2}. Whenever the principal observes t = 73, he
immediately chooses a; = 0 and gets v.

Consider the case x; = 1,t < T, i.e., the first stage of the project has already
been completed. As x; follows a Poisson process, in expectation it would take
% units of time for the second stage to be completed and its completion brings
the principal the value of v. Thus, the necessary and sufficient condition for the

principal to invest at ¢ when x; = 1,¢ < T is given by

v—cC- % >0 <= k<1

Assume that x < 1 holds and x; = 1; thus, the principal chooses to invest at ¢. In
that case, the principal invests until 5 AT". To see this, recall that the only news
that the principal can receive given x; = 1,¢ < T is the completion of the second
stage of the project, 75, which leads to immediate stopping. At each t < AT
such that x; = 1, choosing a; = 0 yields an instantaneous expected payoff of 0,
while choosing a; = 1 yields an instantaneous expected payoff of AvAt — cAt.
Thus, x < 1 suffices for the principal to invest until = AT

Consider now the case of xy = 0,t < T, i.e., no stages of the project have
yvet been completed. Postponing the stopping for At brings the instantaneous
expected payoff of V;ﬁf AAL — cAt, where V;ﬁf is the principal’s continuation value
at time ¢ under full information, conditional on the completion of the first stage
of the project. I proceed with obtaining the expression for V{{i’. By definition,
the principal gets v whenever the second stage is completed not later than T'. The
principal invests until 7, AT, and knows that at ¢ the first stage of the project is
already completed; thus, V;ﬁf is given by

V;tﬁI:UP(Tz§T|$t:1>_CE[T2/\T_t|xt:1]'

Talxe = 1 corresponds to the time between two consecutive Poisson arrivals, and
thus has exponential distribution. First, consider P (rp < T|x, = 1):

P(rp<Tlz=1)=1—e M1,
Next, consider E [ AT — t|zy = 1]:

E[Tg/\T|ZCt — 1] —1
)\e—k(z—t)
7 < Ty = 1)

T
~P(n<Tle=1) [ =5 Azt P (s> Thee = V)T —t

(1 — e_’\<T_t>) tt—e MO 4 p (o >Tley=1)T —1t

(1 — e_’\<T_t>) .

>l =] =

(2.21)
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Thus,

V}ﬁj v (1 B e—A(T—t)) B c% (1 B e—,\(T—t))

— <v - %) (1—eTv).

From (2.22) one observes that V;ﬁf decreases in ¢. If the net instantaneous benefit

(2.22)

given by V;ﬁf AAL — cAt gets as low as 0 at some ¢, then the principal chooses to
stop investing at this t. 1 denote the time at which the net instantaneous benefit
reaches 0 by S{’. S can be obtained from ()\VlFI (Séj) — c) At = 0. Thus,

1 1—2k
S =1+ -1 ( ) : 2.23
0 + h\ 0g 1—x ( )

The principal is willing to start investing iff at £ = 0 the expected payoff from
investing at ¢ = 0 covers the costs of investing, i.e. ()\VlFI (0) — c) At > 0. From

(2.23), this corresponds to S > 0. I denote the upper bound on the cost-benefit
ratio x such that the principal chooses to start investing in ¢ = 0 under full
information by 7 (T, \), I solve Sf = 0 for x and obtain

1 — €—>\T

Fr _
K (T,)\) — m

(2.24)
In summary, under full information, if & < s (T, \), then the principal starts
investing at ¢ = 0. Further, he stops at S} if the first stage of the project has

not been completed by that time. Otherwise, he proceeds to invest until = AT
O

Proof of Proposition 2.5.1. 1 provide the proof for each of the four parametric
cases below.

1. The case of k < KNP (T, \).

kNP (T, \) is defined as follows: for any xk < k¥ (T, \), the principal invests
until 7" in the no-information benchmark. From Lemma 7, if the principal is
willing to start investing, i.e., k < k¥ (T, X), then

SN GNT AT

For the sake of instruction, below I consider relaxing the Assumption 2.1 and
demonstrate how the relation between £V (T, ) and ™7 (T, \) changes between
Case a (relaxed Assumption 2.1) and Case b (Assumption 2.1 holds).

Case a. eM < XT'(AT + 1) + 1. In this case, whenever the principal is
willing to start investing in the no-information benchmark, she invests until 7,
ie., kNP(T,\) = &N (T, )), where kM1 (T, )\) is given by (2.20). To see that,
first, consider the extreme sub-case in which 7" < % As —ASY must belong
to —1 axis of Lambert W function, it has a lower bound corresponding to %
Thus, T < S for any ~ (T,A). Second, consider AT € {1,)\~T}, where AT
solves e’ = AT (AT + 1) + 1. In this case, from (2.17), if s (T, \) < e *\T
(k (T, \) > e M \T, respectively), then T < s (T > s respectively). How-
ever, KV (T, \) < e AT, Thus, sNP (T, \) = &N (T, \).
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Case b. e’ > AT (AT + 1) + 1. As before, it holds that if x (T, \) < e AT
(k (T, \) > e AT, then T < s (T > M respectively). Denote

KNP (T, \) e AT

As sN(T,N) > kNP (T, N), two cases emerge. If 0 < v < VP (T, )), then
T < FNI, and from k < kN1 (T, \), it holds that SN = T and as the agent does
not strictly benefit from disclosing any information, she chooses non-disclosure.
If K > NP (T, \), then T > SV and the agent can potentially benefit from
information disclosure.

2. The case of KNP (T, \) < k < & (T, \).

The result is established in Proposition 2.5.2.

3. The case of £ (T, \) < rk < &I (T, \).

The result is established in Proposition 2.5.3.

4. The case of k > ™ (T, ).

The principal’s long-run payoff in the full-information benchmark non-positive.
Thus, the agent can not strictly benefit from information disclosure and chooses
non-disclosure.

O

Proof of Lemma 9. Necessity. Assume V(1) < 0 for some t. In that case, it
is optimal for the principal to deviate to stopping at ¢ < 7. Thus, there is
no information policy o, for which this 7 is the principal’s best reply. Assume
VNI > 0. Thus, the principal deviates to stopping at ¢ > 7, and there is no o,
for which this 7 is the best reply.

Sufficiency. Assume (2.7) holds. Vi (r) > 0 for all ¢ < 7 implies that the
principal prefers to continue rather than to stop the funding for all ¢ < 7. Thus,
it can not be that case that the principal stops before 7. Further, VN < 0 implies
that, conditional on reaching the date of stopping 7, it is better for the principal
to stop immediately rather than to stop at t > 7.

Consider a direct recommendation mechanism ¢ with M = {0,1} such that
whenever, based on the evolution of the state process, the considered investment
schedule 7 suggests stopping the funding, the direct recommendation mechanism
sends the message m = 0 to the principal. As it is optimal for the principal to
stop at 7, 7 is the principal’s best reply to o. O

Proof of Lemma 10. Consider the recommendation mechanism immediately dis-
closing the completion of the second stage of the project; it is given by 7 = AT
There exists such & (T, \) that solves the principal’s binding ¢ = 0 individual ra-
tionality constraint when 7= m AT

V() =0, (2.25)
where
Vin)=p(Tv—-—E[RAT|c

1 (2.26)
_ AT AT Lo o AT _ AT
fv<1—e — Nle )—c)\<2 2e Ale )
The solution to equation (2.25) is given by
1—eM 4 AT
R(T,\) = . 2.2
ATA) 2 — 2N+ \T (2.27)
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Further, x > & (T,\) = V() <0and k < & (T,\) = V () > 0. O

Proof of Lemma 11. Consider the case of k € (kNP (T, \), N1 (T, \)]. The agent’s
relaxed problem for this case has the individual rationality constraints only for

t €10, ENI], and it is given by

masx (¢ B [7]}

) (2.28)
st Vi(r) = 0.vt e [0,5"].

where Vi(7) is given by (2.6) and T is the set of stopping times with respect to
the natural filtration of x;.

Consider the candidate investment schedule 7 such that 7 > S NI\/(TQ AT) and
V (7) = VN where VM is given by (2.3). I start with arguing that the candidate
T satisfies the system of individual rationality constraints. From Lemma 7, given
candidate 7, the principal invests until 5™ with certainty and the constraints in
(2.28) are satisfied for all ¢ € |0, gNI). Further, 7 implies that Vyvi(7) = 0, i.e.,
the individual rationality constraint at ¢t = S Mg binding.

I proceed with arguing that the candidate 7 maximizes the agent’s objective
function in (2.28). The agent’s objective can be WLOG written out as:

W) =Pz, =2)v — V()
total surplus principal’s surplus

By Lemma 10, an investment schedule 7 that assigns probability one to 7 > AT
satisfies the individual rationality constraint at ¢ = 0 in (2.28). Note that, given
T > 15 AT, the total surplus in (2.29) is given by P (xr = 2) v, i.e., total surplus
achieves its upper bound determined by the exogenously given project deadline
T. The principal’s surplus in (2.29) is given by V (r) = V¥ i.e., principal’s
surplus achieves its lower bound specified by (2.3). This can be seen from the
principal’s decision problem, in which he best replies to an information policy o.
As o allows the principal to condition his actions on the information regarding
the evolution of the state process, the principal’s equilibrium payoff can not be
lower than V¥ his equilibrium payoff when he is restricted to choosing actions
without conditioning them on the information about the state process. Thus, 7
solves the relaxed problem (2.28).

Consider the case of k € (kN (T, ),k (T,)\)]. The agent’s relaxed problem
for this case has the individual rationality constraint only for the initial period,
and it is given by

max {o- B [r]}

s.t.V(r) >0,

where V(1) =P (z, =2)v — E|[7]c

Consider candidate investment schedule 7 such that 7 > m, AT and V (1) =
VNI For such 7, agent’s expected payoff (2.29) is given by P (g = 2)v — VN,
As discussed for the parametric case £ € (V7 (T, \), k™ (T, X)], the first term
is at its upper bound. To see that the second term is at its lower bound, note
that, from Lemma 7, VN = 0, and thus the individual rationality constraint in
(2.30) is binding. Hence, 7 solves the relaxed problem (2.30).

(2.30)

[l
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Proof of Proposition 2.5.2. The proof covers the case k € (kM7 (T, \), &N (T, N)]
and the case € (k™ (T, ), & (T, \)] separately.

1. The case of k € (KNP (T, \), kN1 (T, \)].

[ start with proving the existence of S* such that V () = V¥, Assume that
s* > 8" Forall t e [gNI,S*), stopping never occurs, at ¢ = S* it occurs
if g+ = 2, and for all t € (S*,7) it occurs at t = m AT. For t € [S*,7), the
absence of stopping induces posteriors g, (t). Further, for t € [S*, 7) the principal
discounts future benefits from postponing stopping using the probability of the
state being 2. Hence, the continuation value at ¢t = 5™ can be written as

Vanr (1) = vA (/il p1(z) — kdz + /ST (q1(2) — k) (1 =P (x, = 2)) dz) . (2.31)

s

The principal’s long-run payoff is given by

olNI

V(T)/OS (- pr () A= c)ds + Vi (7),

where fogNI (v-p1(s) A —c)ds = VN1, Thus, to ensure that S* makes the indi-

vidual rationality constraint bind at ¢ = SNI, ie., V(r) = VN it is necessary
and sufficient that Vs (7) = 0. Using (2.31), this equation can be written as

/;V*IH—M (2)dz = /T (¢1(2) — k) (1 =P (x, =2))dz.

S*

Let g (S) [ovr n—p1 (2) dz and k (S) 2 (g1 (2) = ) (1 = P (2, = 2)) dz, S € [S", 7).
@ (t) > k, for all t € [S*,T). Thus, ¢ <:9NI) = 0,k (SNI) > 0. Further,
p1(t) <k, forallt e (SNI,T]. Hence, g (T') > 0,k (T) = 0. Finally, p; (t) < &, for
all t € {SNI,T} implies that ¢’ (S) > 0, for all s € {SNI,T], and ¢, (t) > &, for all
t € [S*,T] implies that k' (S) <0, for all s € [S*,T]. Thus, by the intermediate
value theorem, there exists S* solving Vyni (7) = 0. Thus, there exists S* > A
such that principal’s individual rationality constraint is binding at ¢t = sV
I proceed with proving that the investment schedule 7 satisfies the conditions
in Lemma 9 and thus it ]i\%obedient. N1
First, consider t < S . The principal’s continuation value for all t € [0, 5 ]
can be written as

S‘NI

Vi () = / A (pr (s) — ) ds + Vnr (7).

t

Given the binding individual rationality constraint, it becomes

olNI

s NI
Vi (1) = / vA(p1(s) —k)ds, forall t € [0,5 ).
t
Finally, note that V; (7) above is equivalent to V! given by (2.18). Lemma

7 implies that given x € (™2 (T, \), &N (T, N)], VN1 (0) = V (7) > 0. Further,
Lemma 14 implies that V (1) > 0=V, (7) > 0,Vt € [0, SNI).
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Second, consider t € {ENI,S*}. Given k € (KNP (T, N), &M (T, N)], p1 (t) <

K, Vt € {SNI,S*}. Thus, VN = 0,Vt € {SNI,S*}. The principal’s continuation
value is given by

Vi (r) = /t oA (1 (5) — ) ds + Ve (7). (2.32)

As py (t) < KVt € {SNI, S*}, 17 vX (p1 (s) — k) ds < 0 and it is increasing in t.
As Vonr (1) = 0, where Vv (1) is given by (2.31), it follows that V; (1) > 0,Vt €

(5™ 5.
Third, consider t € |S*, 7). The absence of stopping at ¢t > S* reveals that
xy # 2. Thus, ¢ (t) = p0<gl+<'21<t> = 1i’i\t, YVt € [S* 1), and, thus, ¢, (t) > 0.

Further, ¢; (S*) > k. The continuation value Vt € [S*, 1) is given by
Vi(r) =B vA(q(z) —r)dz|t < 7].

Thus, V; (1) > 0, Vt € [S*, 7).

2. The case of KN (T, \) < k < & (T, \).

I start with proving the existence of S* such that V' (r) = 0. Forall ¢ € [0, 5%),
stopping never occurs, at t = S* it occurs if xg« = 2, and for all t € (S*,T] it
occurs at t = 75, AT. The principal’s long-run payoff can be written as

V() =0vA (/Os*pl (z)—/ﬁder/;(ql (Z)—H)(l—P($Z2))dZ>. (2.33)

To ensure that S* makes the individual rationality constraint bind at t = 0,
it is necessary and sufficient that V' () = 0. The next step of the proof consist
of inspecting (2.33) to establish that there exists S* ensuring that V' (r) = 0. It
follows the respective part from the proof for the parametric case k™7 (T, \) <
k < kN (T, X), imposing SY = 0in it everywhere; thus, I omit it for the sake of
space.

I proceed with proving that the investment schedule 7 satisfies the conditions

in Lemma 9 and thus it is obedient. The principal’s continuation value is given
by (2.32). As k € (N (T,\), % (T, )\)], it follows from Lemma 7 that VN =

0,Vt € [0,S*]. First, assume S* < S From the proof of Lemma 7, it follows

that py () < 5,¥t € [0,5], and py () > 5,¥¢ € [S,8"]. Thus,

NI olNI

/t A (s) — k) ds > /O T N (s) — ) ds, [0, 8™, (2.34)

As Vi(7) is given by (2.32), V(1) = 0 and (2.34) imply that V(1) > 0,Vt € [0, S*].
Second, assume S* > SM As V(r) =0 and fOSNI vA(p1(s) — k)ds < 0, it must
be that V(SNI) > 0. Further, [*" v\ (p; (s) — &) ds increases in ¢ for t € [SNI, S*.
Thus, Vi(7) > 0,Vt € [0, 5*].

Finally, the proof that Vi(7) > 0,Vt € [S*, 1) follows the the respective part
of the proof for the parametric case € (k™7 (T, \), kN (T, \)]; thus, T omit it

for the sake of space.
]
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Proof of Lemma 12. 1 provide the proof for the parametric cases k™7 (T, \) <
k < KNT(T,N) and &N (T, \) < k < /& (T, \) separately.

1. The case of kNP (T, \) < k < kM (T, \).

Under any obedient optimal policy, the principal’s individual rationality con-
straint is binding, thus, V (7) = V¥ or equivalently ps (T) v—E [7] ¢ = po (SNI) v—

sV, Thus,

Bl = o (pa (1) — o (5)) + 8

Differentiating both sides with respect to  yields

OE[r] e T +TN —e 5 Ak
Ok K2\ '

The equation
NI

e A+ TN —e® *—k=0
can be equivalently rewritten as

olNI
et e A= g — e TAT

It has a unique solution corresponding to x = kN7 (T, ) e T *TA\. As k > kNP (T, \),
it holds that O E [r] /0K < 0.

2. The case of kN1 (T, \) < v < K (T, ).

The principal’s long-run payoff under any obedient optimal policy is given by

Elrle=p2(T)wv.

Rewriting it equivalently, E [r] = s1p, (T') = 9 E 7] /0x < 0.
O

Proof of Lemma 13. Lemma 10 implies that if a schedule 7 assigns zero proba-
bility to stopping in states 0 and 1 then V (7) < 0 and the individual rationality
constraint is violated. Thus, the necessary condition for a schedule 7 to be in-
dividually rational under x € (& (T,\), s (T,))) is that it assigns a positive
probability to stopping not only in state 2, but also to stopping in either state 0
or state 1. Consider a schedule 7 that assigns a positive probability to stopping in
state 1. Consider an alternative schedule 7/ which is induced by reallocating the
probability mass of stopping in state 1 to stopping at m» AT. Lemma 8 suggests
that in state 1 the principal strictly benefits from postponing the stopping until
the second stage of the project is completed. Thus, V (') > V (7). Further, un-
der 7/ the principal invests strictly longer, in expectation. Thus, W (') > W (7).
Thus, for a schedule to be optimal it should not assign a positive probability to
stopping in state 1.

Next, consider a schedule 7 which assigns a positive probability to stopping in
states 0 and 2. Assume that the stopping in state 0 happens at date S, which can
be either deterministic or stochastic: if xg = 0 then 7 = S, otherwise, 7 > H, AT
and there exists w € Q such that 7 (w) > 7 (w), i.e., with a positive probability,
stopping in state 2 happens strictly after the date of transition to state 2. Assume
that V (r) = 0. Consider the following investment schedule 7: if xz = 0 then
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7= 8, E[S] > E[S], otherwise, 7+ = 7 AT, and V () = 0. Further, from (2.9),
the agent’s objective is given by

W) =W(r)= V() =V(7) = (SV(r) =V (7))
— SV ()= SV (7).

The change from 7 > AT to 7 = 7 AT induces no loss in total surplus as
the measure of w € Q satisfying the event {r, < T} is equal for both schedules.
Further, the change from conditional stopping at S to conditional stopping at
S induces an increase in total surplus as P (x5 — 0) < P (25 = 0) and thus, in
the latter case, conditional stopping happens less frequently. Hence, SV (7) >
SV (7). Thus, for a schedule that assigns positive probability to stopping in
states 0 and 2 to be optimal, it is necessary that stopping in state 2 happens at
1o with probability 1.

O

Proof of Proposition 2.5.3. Given Lemma 13, the space of candidate optimal in-
vestment schedules under k£ € (% (T, \), x™ (T, \)] simplifies to schedules such
that stopping in state 2 happens at 7, and also stopping in state 0 happens
with positive probability. Thus, to characterize the optimal schedule under
k€ (R (T, ),k (T, \)], I need to characterize the assignment of the probability
mass of stopping in state 0 that is optimal for the agent given the principal’s in-
dividual rationality constraints. To do this, I consider the agent’s optimal design
of a device that randomizes over the dates of stopping in state 0.

At t = 0, the agent chooses a distribution F, on [0,7], observable to both
the agent and the principal. p stands for the random date at which the stopping
occurs if the state is 0 by that date. p is drawn at ¢ = 0 according to F},, which
is independent from the state process x;, and the draw privately observed by the
agent.

I proceed with a useful lemma.

Lemma 15. Given an investment schedule

r= {p’ ey =0 (2.35)

o AT, otherwise,

where p € [0,7T], it holds that
Plx,=2)=P(xr=2)—P(z,=0)P (zpr = 2|z, = 0)

and
Elr|=E[nANT)—P(x,=0)E[n AT —plz, =0].

Proof. P (x, = 2) stands for the mass of events such that the principal gets v.
Given (2.35), the principal gets v either if the second stage is completed not later
than p or if the first stage is completed not later than p and the second stage is
completed not later than T. Thus,

Pz, =2) =P ({z, = 3N {n<T}) +P(z,=2).
Further,
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P({z, =1} n{n<T}) =Pz, = )P(n <Tlr, = 1),
Thus,

P(xr=2) =P (z, = 1)P(ra < T, = 1) + P (x, = 2), (2.36)
Further, from the full probability formula,

P(z,=1)P(n<Tlx,=1) =
P (zr =2)
—P(x,=0)P(r, <T|x, =0)
— Pz, =2)P(n <T|z, =2).

Plugging this into (2.36) yields

Pz, =2)=P(xr =2)—-P(x,

0)P (ry < Tla, = 0).

I proceed with proving the second result of Lemma 15. Given (2.35), it holds
that
Elr]=P(x,=0)E|[r|x, = 0] + P (x, > 0) E[r|x, > 0]

=Pz, =0)p+P(x,>0)E[nAT|x,>0].
Further, from the full probability formula,

(2.37)

Pz, >0)E ATz, >0 =E[nAT]
—P(x,=0)E[nAT|x,=0].

Plugging this into (2.37) yields

Elr|=E[nANT)—P(x,=0)E[n AT —plz, =0].

I proceed to solving the agent’s problem:
max 1 Ep, el [7]]
e B e ) 239
st. Ep, [Vi(T)|t < 7] >0,Vt >0,

where 7 is given by (2.35).
I proceed in two steps: first, I formulate and solve the relaxzed version of
(2.38) with individual rationality constraint only for ¢t = 0; second, I demonstrate

that the solution to the relaxed problem satisfies the full system of constraints in
(2.38).
The individual rationality constraint in the relaxed problem is given by

P(x; =2)v—E[r]c>0.
Using Lemma 15, the agent’s relaxed problem can be written out as:
min {Ep, [P (z, = 0 E[n AT = plz, = 0]}

st. Ep, [P(x, = 0) (cE[RAT —plr, =0 —vP(rp <T|z, = 0))] > =V (r2).
(2.39)
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The Lagrangian function for the problem is
L—=Ep [P(x,=0)E[n AT — plx, = 0]]

— 1 (B, IP (5, = 0) (B AT = pla, — 0] = 0P (72 < Tla, — 0)] 1+ V ().
where P (z, = 0) = e,

ElnAT —plz, =0
T )\2( )e—A(z—

—P(n<T ::0/ dz+P(ry> Tz, — 0)T —
(7—2 |x/0 ) p < P (7_2 < T|l’p _ O) Z+ (7—2 |xP ) 1Y
§__§€—MT—m__€—MT—m(T__p)
(2.40)
and
P(ry <Tlx,=0)=1—e =0 _ X\(T — p)e X0, (2.41)

I obtain the F.O.C., which needs to hold for each value of p that has a positive
probability in F:

e (e (2670 — 1) (u— 1) — pho (T — 1)) = 0. (2.42)

The derivative of the left-hand side of (2.42) w.r.t. pis given by e=* X (2¢ + p (Av — 2¢)).
As k(T N) < %, the derivative is positive. Thus, there exists at most one p
that satisfies the FOC (2.42). Thus, the optimal F), is degenerate. I denote it
with Sg!, the interim deadline.
I proceed with characterizing the optimal Sg':

Sren(l)r% {Pxs =0)E[R AT — S|lxs = 0]}

(2.43)
st. P(zs=0) (B[ AT = Slus = 0] = SVip () = =V (r).
The system of F.O.C. is given by
e ) ST
=01 <
AT —NT-8) _ )
pv (e ) <0ifS—T
%e"\T (2 (e‘MT_S) - 1) —X(T - S)) .
=0 if > 0.
—W4T«awﬂﬂ—1y-MT—sD+V@gzo

Assume g = 0. In this case, the first F.O.C. wrt S yields —ce™7 (26"\<T 5 — 1)

The expression is negative for all S € (0,7). Thus, g > 0, and optimal S
solves the binding constraint. Thus, I proceed with inspecting the corresponding
equation given by

Ce T (2 (e_MT_S) - 1) - AT - S))
—ve M ((e"\<T_S> — 1) — AT — S)) (2.44)
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where V' (7;) is given by (2.26).
The solution to (2.44) is given by

1

S& X {’y + W (—7677)} , (2.45)

where v = 1222 and W(.) denotes the Lambert W function.
Denote the 0 and —1 branches of the Lambert W function by Wy(.) and

W_i(). k € (O,%), thus, v > 0. (2.45) depends on 7 and for each v # 1
corresponds to two points as the Lambert W function has two branches. The
values of (2.45) as a function of v are presented in Figure 2.7. They are given by

L+ Woa (=ye)],0), iy <
S=1(0,5[y+Wo (—’ye_“’)]) ,  ify>1
0, it =1,

05 _+1.0 15 20 '

Figure 2.7: Roots of equation (2.44) as a function of the parameter +:
root corresponding to branch 0 of the Lambert W function - thick;
root corresponding to branch —1 of the Lambert W function - dashed.

7 is decreasing in x, and y,_xrr = 1. As k < k¥, which corresponds to
~ > 1, the solution to (2.44) is given by

Sa=0,  Sp=x[y+Wol(—e)].

As the objective of (2.43) is decreasing in S and Sp > Sy, the solution to (2.43)
is given by

S¢t = . {’y +Wo (—76‘”’)} Y = e’\Tﬂ (2.46)

A 1—&

Finally, I can describe the solution to (2.39): 7 is the stopping time such that

stopping occurs either at the moment of completion of the second stage of the

project or at S§', conditional on the absence of the completion of the first stage
of the project, i.e.

- {554, if 254 = 0 (2,47

™ AT, otherwise,

where S is given by (2.46).
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I proceed with the second part of the proof: 1 demonstrate that (2.47) satisfies
the full system of constraints in (2.38), and thus solves (2.38). To do this, |
need to demonstrate that V;(7) > 0, for all ¢ € [0,7). If the recommendation
mechanism 7 is given by (2.47), then, for t < S& the absence of stopping at some
t reveals that x; # 2. Thus,

1 (t) - A

— Vi < S
pr(t) Fpo(t) 1+ A 0

¢ (t) =

Hence, ¢, (t) > 0, for all t < Si'. Further, for ¢ > S, the absence of stopping
reveals that x; = 1. Thus, ¢, (¢) = 1, for all ¢ > Sg‘.
Writing out V; (1) based on (2.13) yields

Vi (1) = Aai () Vi (1) + vA (55— an (1)) (2.48)

q1(0) = 0 and ¢, (t) > 0, for all t < SZ'. I define ¢ as the solution of % = K.
¢ (t) <k, forallte {O,f/\ S(ﬂ.

[ argue that V(1) > 0 = Vi(7) > 0, for all ¢t € (O,f/\ S(f‘). Assume that
this is not true, then 3¢ such that #inf {t € (O,f A S(f‘) Vi) < O}. As Vi(7) is
continuous in ¢, it follows that V;(r) = 0, and by the mean value theorem there
must be ¢ € (O, f) such that V; (1) < 0. But this is in contradiction with the fact

that Vz(7) > 0 and 2.48.
Consider now t € [t A S§',7). The continuation value can be written as

Vi) =E[ff vA(q1(2) —K)dz|t < 7]. (2.49)

Ask < landq (t) =1, forall ¢t € [S§, 7), it holds that ¢, (t) > &, Vt € [EASE, 7).
Thus, it can be seen from (2.49) that V; (1) >0, Vt € [t A S§, 7).
O

Proof of Proposition 2.6. 1 assume it is not the case that o = 1 and 8 = 0 as,
otherwise, agent is indifferent and discloses no information. I start with proving
existence of k£ and then proceed to proving that when the project is promising,
an investment schedule, in which stopping never occurs in state 0, is optimal.
Proving existence of k follows the steps of the proof of Lemma 10. The principal’s
expected payoff is given by

Vir)=aP(x, =2)vE {e‘”|7'2 < T] —-E {/ e‘”ds} c.
0
R solves V (13) = 0, or, equivalently
T ToNT
aP(xmar =2)vE [e‘r'”A |y < T} =E [/ e‘”ds} c, (2.50)
0

where P (x,ar = 2) = po (T'). Solving (2.50) for x yields

p (I'Tz/\T - 2) E {G_T.TQAT|T2 < T}

N 1
R(T,\ra) = o - { AT e—”ds]
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Finally, V (7) decreases in x. Thus, if « < &(T,\,r,«), then an investment
schedule 7 = 7 AT satisfies the principal’s individual rationality constraint.
Consider now the agent’s expected payoff W (7) given by

Wr)=(1—-a)P(x; =2)vE {6_T7|7'2 < T] +E {/OT e‘”ds} Be.

Consider the case kK < & (T, A\, r,a). Consider an investment schedule 7 given
by (2.35), i.e., such that stopping happens either immediately at the moment of
the second stage completion, or in state 0 at a possibly random interim deadline.
Further, consider an alternative investment schedule 7 = = A T. Given the
two investment schedules, P (x; =2) > P (z, = 2). Further, E {e‘ﬂrg < %] =
Ele™|m < 7| and E {fOT e‘”ds} > Efg e ds]. As W(7) > W(r) and x <
R(T,\ r «a), the agent prefers to implement an investment schedule 7 rather
than 7.

Consider now the case k > & (T, \,r,a). The application of the arguments

from the proof of Lemma 13 establishes the result.
O

2.D Disclosure of project completion with a de-
terministic delay

Assume k € (0,kN (T, )] and T > S™ . The optimal mechanism provides no

information until t = S . At each ¢t > ENI, it generates a recommendation to
stop iff the second stage of the project was completed at date 7 (¢) in the past,

where . . .
-~ - I 4
() = A<1+Aw_1( e At)),

where W_4(.) denotes the —1 branch of Lambert W function.

The mechanism from Proposition 2.D does not recommend stopping until
the second stage of the project is completed, and thus maximizes the total sur-
plus. The mechanism makes the principal’s individual rationality constraint bind,

Veni (1) = 0. The absence of a stopping recommendation after ¢ = S™ induces

posterior beliefs ¢ (t) = &, ¥Vt > ™' Note that the principal’s expected instan-
taneous payoff within At is given by

voqr () ANAE—c- At = v AL (1 (t) — K) .

No information is provided until S and after 8™ the mechanism keeps the
principal’s expected instantaneous payoff precisely at 0, V¢ > S" Asa result,
the principal’s continuation value is kept at 0 for all ¢ € [S I, ).

The delay is given by t—7 (t). At the beginning of the disclosure, t = ENI, the
delay is s" o keep the belief regarding state 1 constant, the delay decreases

for all ¢ € (SNI,T).
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Proof of Proposition 2.D. Posterior beliefs at date 7 induced by the disclosure of
the absence of second stage completion are given by

_ po ()
4o (ﬂ-> - Do (71') +p1 (71')’
o (ﬂ') _ Y4 (ﬂ->

po (m) +pi (7).

As no other evidence is provided during (r,t], the beliefs evolve according to

€—>\S
wls) = Tm

e M\ (s +7)
wl) = e

where s > 7.
The belief regarding state 1 at current date ¢ is given by

e—)x(t—ﬁ) )\t
1+ Aw

The dynamic of the state is the same as in the no-information benchmark until
t— s Therefore,

w5 = (57) = L ond 0 (5 =i (57) =

The dynamics for ¢ > S™ then is ¢ (t) = K, ¢, (t) = 0. Solving from (2.51),

1 1 1
™ = —X (1 + XW_l(—Ee_l_M)\ﬂ) .

The recommendation mechanism 7 is obedient. 7 > 75 AT implies that the
recommendation to stop comes only if the second stage of the project has already
been completed, and thus immediate stopping is clearly optimal for the principal.
The recommendation not to stop is also obedient. V;(7) > 0,Vt € |0, SNI) is
formally demonstrated in the proof of obedience for Proposition 2.5.2. I proceed
by showing that V; () = 0, Vt € [SNI
form yields

¢ (t) = (2.51)

, 7). Writing out V;(7) in the recursive

Vi (1) = (0Aq1 () — ¢) At + (1 — Mgy (£) At) Viyae (1)
— oA (a1 () — &) AL+ (1= Mgy (£) AL Vipar (7)

NI

Asqi (t) =w,Vt €[S ,7), it becomes

NI

Vi(r) = (1= Aq1 (1) At) Vipae (1), VL €[S
Differentiating both sides w.r.t. At yields
0=—=Aq1 (£) Virae () + Vigae (1) .

This differential equation together with the boundary condition Vr(7) = 0 has a
unique solution V;(7) = 0 for all ¢ € {ENI, T}.

77—)'

[l
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2.EE  The case of no project completion deadline

Importantly, the presence of a hard project deadline T serves as one of the nec-
essary and sufficient conditions for the agent to commit to an interim reporting
deadline. Without a hard deadline 7', the principal’s incentives under full infor-
mation are different. Recall from Lemma 8 the principal’s incentive to continue
investing decreases in the length of absence of the first stage completion. In the
case T"— oo, the continuation value Vif;’ is constant and given by v (1 — ). As
a result, the principal’s incentive to continue investing given the absence of stage
completion does not change over time. Thus, if the principal opts in, he never
chooses to stop investing before the completion of the second stage occurs. As
a result, setting an interim deadline stops serving as an agent’s tool to incen-
tivize the principal’s investment. The agent’s information policy in the case of
no project deadline is given in Lemma 16.

Lemma 16. Assume that T — oo. In that case, if Kk < %, then the agent uses
the information policy presented in Proposition 2.5.1, Case 2.

Proof of Lemma 16. Under full information and the absence of an exogenous
deadline, the principal assigns value v, to each state x € {0,1,2}. Clearly,
vy = v as the principal stops immediately and gets v. In state 1, at each t the
principal gets vAt with probability AAt and pays cAt. As a result, the principal’s
continuation value is constant. Assume that x < 1, as otherwise ¢ > Av and the
principal chooses not to invest in state 1. As the principal’s continuation value
in state 1 does not change over time,

0=AX-(v2—wv1) —c,

and so
c

U1:U—X:U(1—fi).
Thus, the principal wants to invest in state 0 if ¢ < Avq, ie., K < %

Finally, as the information regarding 7, is not decision-relevant for the prin-
cipal, for Kk < %, the agent chooses the information policy that discloses only
the completion of the second stage of the project and optimally postpones the
disclosure to make the principal’s individual rationality constraint bind.

[l
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3. Form of Preference
Misalignment Linked to
State-Pooling Structure in
Bayesian Persuasion

Co-authored with Rastislav Rehak (CERGE-EI).

3.1 Introduction

Bayesian persuasion, pioneered by Kamenica and Gentzkow [2011], studies strate-
gic disclosure of information when the sender controls the information environ-
ment (called signal) and the receiver controls the choice of action to be taken.
As a review by Kamenica [2019] suggests, this literature has provided many ex-
tensions of the original model of Kamenica and Gentzkow [2011] with interesting
qualitative insights. However, full characterization of the optimal signal is gen-
erally difficult even in the original model. There has been little progress on this
front, and it has been limited to a small number of special cases.!

We contribute to this literature by studying a special case of the original model
that has received little attention — a Bayesian persuasion model in which both the
sender and the receiver have state-dependent preferred actions. We characterize
a qualitative property of the optimal signal called state-pooling structure, which
describes pools of states that cannot be discerned from one another by the opti-
mal signal. Specifically, we ask how the structure of state-dependent preference
misalignment affects the state-pooling structure of the optimal signal.

To illustrate the main point of this paper, we present an example of a politician
(receiver, he) and his advisor (sender, she). They both wish to implement some
level of government spending ¢ € R that is adapted to the current economic
sitnation captured by GDP per capita y, which takes one of three possible values:
1, 2, or 3. However, they each have a different vision of optimal spending as a
function of GDP per capita. The advisor’s payoff is w4 (a,y) = — (@ — wa(y))?
and the politician’s payoff is up (a,y) = — (a — wp (y))?, where w4(y) and wp(y)
represent the preferred spending of the advisor and the politician in state g,
respectively. The advisor designs an investigation (a signal) that can inform the
politician about the realization of GDP per capita. She does that strategically
to influence the spending choice of the politician. We are interested in how the
structure of this signal depends on the form of misalignment between the advisor’s
and politician’s preferences captured by w4 and wp, respectively.

Figure 3.1 illustrates how the form of disagreement between the advisor’s and
politician’s preferred spending influences the structure of the optimal signal.?
In the case presented in the left plot, the advisor’s optimal signal fully reveals
whether the state of the economy is low or not, i.e., one of the two outcomes of

1We return to this point in the discussion of related literature in Section 3.2.
2The structures of the optimal signals for the two cases considered in Figure 3.1 are derived
using results from Section 3.6.
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Figure 3.1: The form of disagreement between the advisor (w,) and the
politician (wp) matters for the structure of the optimal signal:
left plot: the advisor fully reveals state 1 and pools states 2 and 3 together;
right plot: the advisor pools states 1 and 2 together and states 2 and 3
together
(note: we consider only three levels of GDP per capita; the lines are drawn only
for clarity of the picture)

her investigation fully reveals the low state and the other leaves the politician
uncertain about the high and middle states — we say they are pooled together.
Intuitively, both the advisor and the politician want the highest spending in the
low state, so their goals are aligned in this state and the advisor wants to reveal
it perfectly. However, they disagree about whether the spending should be higher
in the middle or high state, so the advisor wants to attenuate this disagreement
by pooling these two states together. In the case presented in the right plot, the
advisor’s optimal signal reveals whether the economy is above or below average,
i.e., one of the two outcomes of her investigation pools the low and middle states,
while the other pools the middle and high states. Intuitively, the advisor and
the politician disagree about whether the spending should be higher in the low
or middle state, so the advisor wants to attenuate this disagreement by pooling
these two states together. However, they both agree that the spending should
be higher in the middle state than in the high state, but the politician prefers a
greater spending difference between these two states than the advisor. Therefore,
the advisor wants to moderate the politician’s actions by pooling these two states
together.

In Section 3.3, we describe our model. We use the Bayesian persuasion frame-
work of Kamenica and Gentzkow [2011] with one-dimensional finite state space
— the sender’s preferred action. Both the sender and the receiver have quadratic
loss functions with bliss points depending on the state of the world. The structure
of misalignment is captured by function p mapping the state of the world (the
sender’s preferred action) to the receiver’s preferred action. The case of linear
p with slope 1 corresponds to the benchmark of perfect alignment.® We do not
impose any requirements on this function and we analyze the role of its shape for
the qualitative structure of the optimal signal in terms of state pooling.

3A state-independent intercept does not affect the choice of the signal because it is a “sunk
cost” for the sender.

97



In Section 3.4, we present general results on the pooling structure of the opti-
mal signal. The patterns of pooling are driven by the sender’s trade-off between
(i) the informativeness of the signal, which leads to better adaptation of the ac-
tion to the state of the world in states of alignment, and (ii) the revelation of the
realized mismatch of the sender’s and receiver’s preferred actions, which drives
the action of the receiver away from the sender’s preferred action. First, we show
that the sender generically benefits from revealing some information. The only
cases in which non-disclosure is optimal are when p is linear with a slope suffi-
ciently different from 1. Second, we demonstrate that the optimal signal does not
induce an interior belief (except in cases of non-disclosure).

In Section 3.5, we propose a simple graph procedure to characterize the opti-
mal structure of state pooling for a given p. This procedure consists of an analysis
of p on pairs of states and a test of pooling of more than two states. The crucial
element of this procedure is the slope of p between pairs of states, which plays
the role of an index of misalignment — if it is too high (disagreement about mag-
nitude) or lower than zero (disagreement about order), then it indicates space for
pooling; otherwise, it indicates space for separation.

In Section 3.6, we provide a full characterization of the state-pooling structure
in the case of three states of the world. The state-pooling structure is completely
pinned down by the shape of p except for the case in which p has a slope suf-
ficiently different from 1 for each of the three pairs of states. In that case, the
choice of a particular state-pooling structure depends both on the shape of p and
the prior.

3.2 Related literature

First, we relate our work to the Bayesian persuasion literature. The most relevant
results from the seminal paper by Kamenica and Gentzkow [2011] are (i) condi-
tions for full disclosure or non-disclosure in the general form and (ii) comparative
statics of more aligned preferences. Regarding point (i), we go beyond these two
“corner” cases for the optimal signal, similarly as in the recent studies of Arieli
et al. [2020] and Kolotilin and Wolitzky [2020]. We discuss the connection of our
work to Kolotilin and Wolitzky [2020] in more detail later in this section. Re-
garding point (ii), we perform a different exercise with preference misalignment:
we fix the preferences and analyze how the structure of preference misalignment
is related to the structure of state pooling of the optimal signal.

The methodological progress in Bayesian persuasion on the front of providing
a general characterization of the structure of the optimal signal has been scarce.
First, with two or three states of the world, concavification provides an insight-
ful graphical method of solving the sender’s problem [Kamenica and Gentzkow,
2011]. Second, when the sender’s utility depends only on the expected state,
the “Rothschild-Stiglitz approach” [Gentzkow and Kamenica, 2016| and linear
programming methods [Kolotilin, 2018, Dworczak and Martini, 2019] have been
used to solve these problems. However, we are interested in situations with the
sender’s state-dependent preferred action and the role of the structure of prefer-
ence misalignment, where these methods do not deliver immediate answers. We
propose a new concavification-based approach of characterizing the state-pooling
structure of the optimal signal.
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The closest paper to ours is Kolotilin and Wolitzky [2020]. However, we differ
along several directions, and our paper can be viewed as complementary to theirs.
First, their sender prefers higher actions independently of the state, but experi-
ences state-dependent loss from mismatching the preferred action. In contrast,
our sender has state-dependent preferred actions, but her loss from mismatching
the preferred action is state-independent. Second, their receiver prefers higher
actions in higher states; we do not impose this assumption. Third, they provide
sufficient (and “almost necessary”) conditions for special patterns of “assorta-
tive” disclosure. However, they do not provide a procedure for finding the pool-
ing structure of the optimal signal explicitly, and they avoid characterization of
more complicated patterns. In contrast, we work in a more specialized quadratic
setting and do not restrict ourselves to characterization of specific (pairwise) pool-
ing structures. Instead, we propose a general procedure for finding the pooling
structure. Finally, the mechanisms driving the results in the two papers are dif-
ferent: in Kolotilin and Wolitzky [2020], the information does not have value for
the sender alone, so state pooling emerges from pure persuasion concerns, while
state pooling in our model is driven by the interplay of the sender’s incentives to
disclose the state and to hide misalignment.

Two other related papers in Bayesian persuasion literature are Alonso and
Camara [2016] and Galperti [2019]. Similar to our paper, both rely on the con-
cavification technique to obtain insights regarding the optimal signal. Alonso
and Camara [2016] consider the standard Bayesian persuasion model, but as-
sume that the sender and the receiver have heterogeneous prior beliefs. While
the sender in Alonso and Camara [2016] uses the variation of the difference be-
tween the sender’s and receiver’s prior beliefs across the states of the world to
design the optimal disclosure, our sender uses the variation in the misalignment
of the sender’s and receiver’s bliss points across the states of the world.* Galperti
[2019] considers the standard Bayesian persuasion model in which the sender and
the receiver have a special type of heterogeneous prior beliefs: the receiver at-
taches zero probability to some states that are perceived with positive probability
by the sender. While we restrict attention to a sender with state-dependent bliss
actions and study the general patterns of state pooling, Galperti [2019] makes
weaker assumptions about preferences and focuses on patterns of pooling of the
states that have a priori zero probability for the receiver.

Second, the results of our study are connected to the literature on persuasion
games, in which the sender chooses how to disclose her private verifiable informa-
tion regarding the state of the world. Milgrom [1981] and Milgrom and Roberts
[1986] analyze the conventional model of a persuasion game and establish the
result on “unraveling” of the sender’s private information leading to full disclo-
sure. Dye [1985] and Shin [1994] study state pooling in a similar game but with
(second-order) uncertainty of the receiver about whether the sender actually has
some private information or not. Seidmann and Winter [1997] analyze a persua-
sion game in which the sender has state-dependent preferred actions, and they
demonstrate that the “unraveling” result still holds. The combination of these
two features — second-order uncertainty and state-dependent preferred actions —

4They demonstrate that, under some mild conditions on the sender’s and receiver’s prefer-
ences, the sender generically chooses at least partial disclosure over non-disclosure. Similarly,
in our model, the non-disclosure conditions are stringent.
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has been studied in a small number of recent papers. The closest paper to ours
is Hummel et al. [2018], in which unraveling does not occur due to the presence
of the receiver’s second-order uncertainty. In the Bayesian persuasion model that
we study, the sender’s disclosure mechanism serves a similar role to the one in
Hummel et al. [2018]: the sender moderates the receiver’s actions via pooling of
the states for which the sender’s bliss-point line is sufficiently flat relative to that
of the receiver.

Finally, Miura [2018] studies how pooling equilibria can be characterized based
on a procedure that uses a masquerade graph introduced in Hagenbach et al.
[2014]. In his procedure, a pool of states is formed by the types of the sender who
are mutually interested in masquerading, i.e., being perceived by the receiver as
some other type in the pool. In spirit, this resembles the procedure for discovery
of the state-pooling structure we introduce: a masquerade edge between two
nodes (types) in Miura’s graph procedure plays a similar role as an edge between
two nodes (states) in our graph procedure — it captures a motive for manipulative
non-disclosure.

3.3 Model

We consider the standard Bayesian persuasion framework: a sender (S, she)
designs and commits to an information structure (a Blackwell experiment) about
an unknown state of the world w € Q to influence the action a € A of areceiver (R,
he). The state space is finite, Q2 C R, |2] = n, and the action space is continuous,
A =R. The sender and the receiver have a common prior py € A(Q2). They have
the following preferences:

where p : ) — R is arbitrary. Hence, state w represents the preferred action of
the sender and p(w) the preferred action of the receiver.®

As is standard, the sender can be seen equivalently as choosing a Bayes-
plausible distribution over posteriors, which we refer to as signal: m € A(A(Q))
such that

Y. w(p)p(w) = po(w) Yw € Q.0 (3.1)
pEsupp(T)

The timing is as follows: the sender chooses a signal «, a posterior belief p is
drawn according to 7, and the receiver takes an action a given the belief p. The
solution concept is subgame perfect equilibrium. Going backwards, the receiver’s
optimal action given a posterior belief p is a(p) = E, [p(w)]. Hence, the game

5This model can be seen as a reduced form of a model in which the state of the world is two-
dimensional, y = (ws, wg), and the sender can design the experiment only about the dimension
that is relevant for her, wg. The receiver then forms expectations about his relevant dimension,
wg, Using a common prior py € A(Q?), so p(ws) = Ep, [wrlws]. This formulation maps better
to the example with a politician and his advisor presented in the Introduction.

6Kamenica and Gentzkow [2011] show that there exists an optimal 7 such that |supp(7)| <
min{|Q], |A|}. Hence, we restrict our search for the optimal signal only to signals satisfying
|supp(7)| < n.
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reduces to the following problem of the sender:

max —E By [(B, [pw)] —w)?]] st. > wlpp=po,  (32)

TEA(A(Q)) pEsupp(m)

where E. [-] is the expectation over posteriors with respect to 7 and E,, [-] is the
expectation over states with respect to p.

3.4 General results about the optimal signal

In this section, we present general results about the optimal signal, and combine
them in the next section to construct the procedure that allows us to discover
which states are “pooled” together in the optimal signal.

To better understand how the sender chooses the signal, we start by inspecting
the trade-off she faces. We can rewrite the objective function from her problem
(3.2) as

vary (Ep [w]) = Ex [ (B, [w — p(w)])?] (3.3)

The first term captures the benefit of a more informative (in the sense of Black-
well) 7 — ideally, she would like to reveal all states perfectly.” The second term
captures the “cost” of revealed misalignment — ideally, she would like to “pool”
some states to hide the largest misalignment. Hence, the sender prefers to reveal
the most information so that the action is well adapted to the state. However,
since she does not control the action directly, she wants to exploit the form of
misalignment captured by p to manipulate the action of the receiver.

We can notice that the intercept of p does not play a role for the optimal
signal. Formally, consider any function p and take p’ = b+ p for some arbitrary
constant b € R. The sender’s objective function

varr (Bp [w]) = Bx [ (By [w = p'(w)])? (3.4)
can be rewritten in the form
vary (B [w]) = Bx [(By [w — p(w)])?] = 2By, [w — p(w)] + 52 (3.5)

The last two terms in (3.5) do not depend on 7, so the optimal signals under p
and p' coincide. Hence, a state-independent bias b (no matter how large) does
not affect the optimal signal.® Intuitively, the state-independent bias acts as a
sunk cost for the sender. She cannot hide it by any manipulation of the signal
because it is perfectly known ex ante.

It follows from the irrelevance of the intercept of p that what matters for
the optimal signal is the overall shape of p, not agreement in particular states.
In particular, perfect agreement between the sender and the receiver about the
preferred action in a state of the world does not suffice for disclosure of that state.
For example, consider two states wy < wa, p(w1) = w1, p(w2) = 2wy — wy. Even

"To illustrate this point, imagine an interior prior po, a signal 7' with only interior beliefs,
and a signal 72 similar to 7', but with more extreme beliefs: pi = p}c + E(p}c —po) VEk, for some
small enough & > 0. Then, var,2 (E, [w]) = (1 + &)?var1 (Ep, [w]) > vara (B, [w]).

8We can contrast this feature with cheap talk [Crawford and Sobel, 1982a] in which the
value of b matters for the informativeness of the equilibrium communication.
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though the sender and the receiver perfectly agree about the preferred action in
wy, they substantially disagree in wy. It will be evident from the results in this
section that full disclosure of the “perfect-agreement state” w; is not optimal.
Intuitively, due to the Bayesian consistency constraint, full disclosure of w; would
limit the opportunity to moderate the substantial disagreement in ws.’

3.4.1 Characterization of non-disclosure

In this subsection, we characterize the situation in which the sender does not
benefit from revealing any information to the receiver.

The sender never (i.e., for any prior) benefits from providing any information
if and only if p is linear with the slope from (—o0, 0] U [2, 400).

Proof. The proof is in Appendix 3.A. It identifies the conditions for concavity of
the expected utility of the sender as a function of the induced posterior by the
principal-minor test of the Hessian matrix of this function. O

Surprisingly, it is relatively easy to introduce some information revelation in
our setting: it is sufficient to have a nonlinearity in p. The intuition for this
generic taste for information revelation is that information has high value for the
sender who wants to match the state of the world. The cases of optimal non-
disclosure identified in Proposition 3.4.1 are intuitive too: (i) misalignment in
order, i.e., when the sender and the receiver disagree about the order of the bliss
actions (slope of p negative) or (ii) misalignment in magnitude, i.e., when they
agree about the order, but the receiver overreacts relative to the sender (slope of
p greater than two).

The non-disclosure characterized in Proposition 3.4.1 is never uniquely op-
timal for n > 3. To resolve such cases of indifference, we make the following
assumption.

Assumption 3.1. Under indifference, the sender chooses not to disclose the
states.

This assumption can be justified by the sender’s interest in saving effort on
communication when it is not needed. Technically, it greatly simplifies the anal-
ysis. Substantively, it leads us to identify the least informative signal in the
indifference set of the sender. In Appendix 3.B, we analyze the structure of
our problem that gives rise to the cases of indifference, and discuss the role of
Assumption 3.1 as opposed to other selection criteria.

3.4.2 Full disclosure

In the next proposition, we provide a sufficient condition for full disclosure of the
state of the world.

If p is linear with a slope in [0, 2], full revelation of the state is always optimal
(i.e., for any prior).

In fact, Proposition 3.4.1 will imply that it is optimal not to disclose anything in this
example.
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Proof. The proof is in Appendix 3.A. It mostly follows from the proof of Propo-
sition 3.4.1. O

For general n, Proposition 3.4.2 provides only a sufficient condition for full
disclosure, but for n = 2 we can provide a full characterization. This special case
is a cornerstone of our analysis of the case with general n.

Lemma 17. For n = 2, the sender strictly prefers full revelation if and only if
the slope of p is in (0,2). The sender is indifferent between any feasible signals
if and only if the slope of p is either zero or two. The sender strictly prefers no
revelation if and only if the slope of p is in (—o0,0) U (2, 00).

Proof. The proof is in Appendix 3.A. O

3.4.3 “Extremization” — non-existence of an interior pos-
terior

After analyzing the conditions for extreme signals (non-disclosure and full disclo-
sure), we look at more structured signals. The following proposition provides the
key result enabling that analysis.

|[Extremization| Suppose non-disclosure is not optimal. Then, it is never op-
timal to induce an interior posterior.

Proof. The proof is in Appendix 3.A. It is constructed by contradiction with
the optimality of the signal, based on an improvement by splitting one of its
posteriors. We call this result “extremization” because it leads us from the interior
of the simplex to its extreme (boundary) subsimplexes. ]

We can apply Proposition 3.4.3 iteratively to eliminate the areas of posteriors
that will not appear in the optimal signal. This sharpens the idea about the
structure of the optimal signal, which is our main interest, and simplifies the
search for it. We use this idea in the next section.

3.5 State-pooling structure of the optimal sig-
nal

In this section, we go beyond the extreme cases of full disclosure and non-
disclosure and study how preference misalignment, captured by p, affects a qual-
itative property of the optimal signal that we call state pooling. We define the
state-pooling structure of a signal and present an illustrative procedure for its
discovery that builds on the general results from Section 3.4.

3.5.1 Definitions

We say that states wy,,...,wy, , for some ky,... k, € {1,...,n}, are pooled
together (or form a pool of states) under signal 7 if the set M = {wg,, ..., wk, }
satisfies

Jp € supp(r) : supp(p) = M & Vp' € supp(r) s.t. p' #p: Msupp(p'), (3.6)
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where supp(-) denotes support.'® The set of all pools of states that signal

induces is called the state-pooling structure of signal .

The state-pooling structure of a signal can be captured graphically by rep-
resenting each state of the world by a node and each pool by highlighting the
corresponding set of nodes; an example is presented in Figure 3.2.

Figure 3.2: Example of a graphical representation of the state-pooling structure
when n = 4 and the signal induces posteriors supported on {w;} and {wy, wz,ws}

In the next subsection, we propose a procedure that aims to find the state-
pooling structure of the optimal signal for a given form of preference misalign-
ment captured by p. This procedure can easily be represented graphically; its
desired output is a graphical representation of the state-pooling structure of the
type depicted in Figure 3.2, i.e., nodes representing states and highlighted pools.
However, the proposed procedure may not identify the state-pooling structure of
the optimal signal completely in some cases, but may offer only candidates for
optimal pools. Nevertheless, we can often identify which of the candidate pools
are certainly a part of the optimal state-pooling structure. Hence, we introduce
two types of highlighting in the procedure — dashed (highlighting candidate pools)
and full (highlighting pools certainly belonging to the optimal state-pooling struc-
ture). Naturally, highlighting in full is superior to highlighting in dashed because
it expresses certainty.

An important working component of the graphical procedure is the edges
between pairs of nodes — they represent a pooling tendency of the corresponding
states. We will see that this pooling tendency is driven by the slope of p between
pairs of corresponding states; we denote the slope of p between states w; and w;
by

Sij = p(wj> - p(wi). (37>
' Wi — Wi

This object represents an index of misalignment between the receiver (the nu-
merator) and the sender (the denominator).!!

A subroutine of our procedure relates to the well-known problem from com-
puter science called the clique problem. Thus, we borrow a few notions from
graph theory. Let G = (V, F) be an undirected graph (with V' denoting the
set of nodes and E denoting the set of edges). We call a subset of nodes C C V
clique if the subgraph of G induced by C'is complete (i.e., the nodes in C are fully
connected). A cliqgue C' is called mazimal if there does not exist another clique
strictly above C' (in the sense of inclusion). The version of the clique problem

9In intuitive terms, wy,, . ..,wy,, are pooled together under signal 7 if 7 reveals whether the
event {wg,,...,ws,, } occurred.

A similar object plays an important role for the pooling structure (of types) in Hummel
et al. [2018].
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that we are interested in is finding all maximal cliques in an undirected graph.
Systematic inspection of all subsets of nodes or the Bron—Kerbosch algorithm can
be used to solve this problem.

3.5.2 Procedure for discovery of the state-pooling struc-
ture of the optimal signal

We present a procedure that inspects the form of misalignment function p and
reflects its implications for the state-pooling structure of the optimal signal on a
graph. The output are pools highlighted in full (which are certainly present in
the state-pooling structure of the optimal signal) and candidate pools highlighted
in dashed (which may be present in the state-pooling structure of the optimal
signal). We present an example of the output of this procedure at the end of this
subsection and a step-by-step illustration of the procedure leading to this output
in Appendix 3.C.

Procedure for discovery of the state-pooling structure of the optimal
signal:
Input: Set of states Q2 (|Q2] = n) and preference-misalignment function p : Q — R.

1. Create a fully connected graph on n nodes where node ¢ corresponds to
state w;.

2. Eliminate all edges ij such that the slope of p on w; < wy, 8,5, is in (0, 2).

3. Highlight in full each isolated node (i.e., a node with no edges leading to
any other node) as a singleton pool.

4. Among the remaining (i.e., non-isolated) nodes, list all maximal cliques.

5. For each maximal clique C:
for k from |C| to 2:
for all subsets M C ' such that |M| = k:

leftmargin=2cm If M was ever inspected before, do nothing and continue
iteration.

leftmargin=2cm If M is a subset of a highlighted set of nodes, do nothing
and continue iteration.

leftmargin=2cm Otherwise, apply the non-disclosure test to the inspected
pool M: Is p linear with slope in (—o0,0] U [2, 00) on the
states corresponding to the nodes in M?
— If yes, highlight pool M in dashed on output and con-
tinue iteration.

— If no, denote M as inspected and continue iteration.

6. If any node belongs only to one highlighted pool (in dashed), highlight the
corresponding pool in full (if not already highlighted in full).

An example of the output produced by this procedure appears in the right
panel of Figure 3.3; an example of function p leading to this output is depicted

105



in the left panel.!? State 1 is isolated because the sender and the receiver agree
on its position relative to other states both in order and in magnitude, so there
is no reason for the sender to leverage this state for manipulation of beliefs.
States 2, 3, and 4 are pooled together (they pass the non-disclosure test) because
the sender tries to moderate the action of the receiver, who would overreact in
these states (disagreement about magnitude). States 3 and 5 may be pooled
together (disagreement about order) and 4 and 5 may also be pooled together
(disagreement about order), but states 3, 4, and 5 are not pooled together even
though they form a maximal clique (because they do not pass the non-disclosure
test) — the sender prefers to exploit some variation in this collection of nodes.
Hence, the optimal signal will induce posterior p; = §; and posterior ps supported
on 2, 3, and 4. Moreover, it will induce at least one of the posteriors ps or py
supported on 3 and 5 or 4 and 5, respectively.
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Figure 3.3: Output of the graph procedure (right panel) for function p on the
left panel: 1 is isolated; 2, 3, and 4 are pooled together (they pass the
non-disclosure test); 3 and 5 may be pooled together; 4 and 5 may be pooled
together; 3, 4, and 5 are not pooled together (they do not pass the
non-disclosure test)

3.5.3 Discussion of the procedure

The idea underlying our proposed procedure is the iterative application of Propo-
sition 3.4.1 and Proposition 3.4.3, which we call a top-down approach. Starting
from the full (n — 1)-dimensional simplex,'® we can check whether non-disclosure
is optimal using Proposition 3.4.1. If it is optimal, the sender chooses a com-
pletely uninformative signal. If it is not, Proposition 3.4.3 suggests that the
optimal signal will induce posteriors on the boundary of the (n — 1)-dimensional
simplex. Hence, we focus on each of the (n — 2)-dimensional boundary simplexes
and apply the same test. Specifically, by restricting the sender’s expected utility
(as a function of the posterior) on a particular (n — 2)-dimensional simplex, we
use Proposition 3.4.1 to check if non-disclosure is optimal there:

12A step-by-step illustration of the procedure leading to this output appears in Appendix
3.C.
13We start from the (n — 1)-dimensional simplex because p, =1 —p; — - — Dp_1.
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o If it is optimal, then the sender cannot benefit from splitting the pool of
states corresponding to the vertices of the inspected (n — 2)-dimensional
simplex. However, the sender might not want to choose this pool of states
at all, so this pool of states constitutes only a candidate pool for the optimal
signal. !4

« Ifit is not optimal, then by Proposition 3.4.3 we eliminate all interior points
from the inspected (n —2)-dimensional simplex and restrict our focus to its
(n — 3)-dimensional boundary simplexes; for each of them, we repeat the
same steps.

Along the path from the full (n — 1)-dimensional simplex to lower-dimensional
simplexes due to elimination of “interior” posteriors outlined in the second bullet
point, we move closer to the trivial case of 1-dimensional simplexes where we
apply Lemma 17.

Our procedure relies on this top-down approach in Step 5. However, com-
pared to the top-down approach, the procedure starts with a simplification of the
problem by identifying the only relevant subsets of nodes for this inspection —
the maximal cliques (Steps 2 and 4). This step is justified by the fact that the
necessary condition for optimality of non-disclosure on a simplex is optimality of
non-disclosure on its boundary simplexes, which follows easily from Proposition
3.4.1. Hence, if we have a given collection of nodes with some pair of nodes in it
that is not pooled, this whole collection of nodes cannot form a pool.

In Steps 3 and 6 of the procedure, we exploit Bayesian consistency (and the
interior prior). In particular, the structure of the graph obtained after Step
2 is informative about the state-pooling structure by itself: any isolated node
represents a state that is fully disclosed. In Step 5, we can identify only candidates
for optimal pools, but, in Step 6, Bayesian consistency can help us to determine
which of them will be certainly a part of the optimal pooling structure.

Note that we have not mentioned the prior in our identification of the optimal
pooling structure. This prior-independence of our procedure relies on a feature
of the quadratic setting: constant convexity/concavity structure in all points.
However, even in the quadratic setting, the pooling structure of the optimal
signal itself is not always prior-independent. This feature imposes a limit on
how far we can go with our simple prior-independent procedure in identifying
the full pooling structure of the optimal signal. In some cases, we also need to
incorporate the prior into our analysis at the end of the procedure (see Section
3.6 for examples).

3.6 Characterization of the state-pooling struc-
ture for n =3

In this section, we use the above procedure to characterize the state-pooling
structure of the optimal signal in the simplest interesting case of three states (the
case of two states is trivial and is fully characterized in Lemma 17). We describe
the state-pooling structure for all possible cases of the form of p, which we capture

4Here, we also use Assumption 3.1. This simplifies the analysis because we do not need to
keep track of all equivalent splits.
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through si2, s23, and sy3. For clarity of exposition, we divide the cases into five
classes (i)-(v) based on the features of the resulting state-pooling structure and
the role of the prior. Class (i) corresponds to full disclosure, class (ii) corresponds
to signals that fully disclose one of the states, classes (iii) and (iv) correspond
to signals that reveal some information without fully revealing any of the states,
and class (v) corresponds to non-disclosure. Within a given class, we use letters
to distinguish between particular state-pooling structures.

Assume that there are three states of the world, Q = {wy, ws,w3}. Depending
on the form of p, as pinned down by s15, s23, and s;3, the state-pooling structure
of the optimal signal is as follows:

‘ ‘ S12 ‘ So3 ‘ 813 ‘ state-pooling structure

i €(0,2) | €(0,2) | €(0,2) Hwi} {wa}, {ws}}
iia | €(0,2)]¢(0,2) ] (0,2 Hwi}, {ws,ws}}
ii.b | ¢(0,2) ] €(0,2) [ €(0,2) Hws}, {w,wa}}
iiia | ¢ (0,2) | €(0,2) | € (0,2 Hwr, wo b, {wi,wa}}
iii.b | €(0,2) [ €(0,2) | € (0,2) {{w2,ws}, {wi,ws}}
iiic | ¢ (0,2) ] €(0,2) [ €(0,2) R I N
W 2(02) | £ 02) | £02) | G e e
A% S12 =— 823 — S13 = S ¢ (O, 2) {{wl,wg,wg}}

Proof. The proof is in Appendix 3.A. O

The observed state-pooling structures emerge from the interaction of the two
main forces that drive the sender’s choice. On the one hand, the sender wants
to disclose the states so that the induced receiver’s actions vary sufficiently with
the state of the world. On the other hand, she wants to pool the states together
to dampen that variation if there is a severe misalignment in either order or
magnitude in some pairs of states. The slope of p for states w; and w;, s;;
(1,7 € {1,2,3}, i # j), serves as an index that can capture the misalignment in
either order or magnitude in that pair of states.

In case (i), there is no severe preference misalignment in either pair of states,
so the sender fully discloses each state. In case (ii.a), sq3 captures a severe
preference misalignment in the pair of states w,, ws, so the sender pools these
states together to conceal the misalignment but reveals state w; to maximize
the informativeness of the signal. In case (iii.a), s;» and sy3 capture a severe
preference misalignment in two pairs of states, so the sender pools the respective
pairs together but still reveals some information: {{wy,ws},{wi,ws}}. In case
(iv), there is a misalignment in each of the three pairs of states and the optimal
state-pooling structure is sensitive to the prior and to the relation between the
slopes of p.

Bgo =893 =813 =3 ¢ (0,2) corresponds to non-disclosure, so we exclude this combination

from case (iv) and denote it as a separate case (v). See Appendix 3.A for details on the choice
from (iii.a), (iii.b), and (iii.c).
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A notable feature of the state-pooling structure of the optimal signal under
n = 3 is that the sender never chooses to fully disclose the middle state of the
world wy and pool w; and ws together. For that to be the case, it would need
to hold s13 ¢ (0,2), s12 € (0,2), and sp3 € (0,2), which cannot happen.'® The
intuition is that full disclosure of wy and pooling of wy and ws is not in line with the
sender’s preference for maximizing the variance of the induced posterior beliefs.
A potentially better way to leverage state ws is to form two pools {ws,w;} and
{wg, w3} because it can induce relatively more variation in the receiver’s actions.

3.7 Conclusion

We consider a Bayesian persuasion model in which both the sender and the re-
ceiver have state-dependent preferred actions. We specialize to a quadratic-utility
setting to simplify the otherwise nontrivial problem of characterizing the optimal
signal. In this framework, we make the trade-off that drives the sender’s choice of
the signal transparent: on the one hand, the sender wants to reveal information
to adapt the action to the state of the world; on the other hand, she wants to
hide information to conceal the misalignment between her and the receiver.

We focus on characterization of the state-pooling structure of the optimal
signal. In particular, we link the form of misalignment between the sender and the
receiver in their preferred (state-dependent) actions to the state-pooling structure
of the sender’s optimal signal. To achieve this goal, we propose an illustrative
graphical procedure for finding the sets of states that are pooled together in the
supports of posteriors of the optimal signal.

Our model naturally suits the analysis of influence in political economy. The
sender’s and receiver’s (state-dependent) single-peaked preferences over the con-
tinuous action space are consistent with ideology-based preferences over a con-
tinuous set of policy alternatives. That set could represent potential allocations
of a resource such as the amount of budget spending on a public good. Thus, our
framework can capture an arbitrary form of ideological disagreement between a
lobbyist and a policymaker regarding the preferred state-dependent policy and
yield predictions about the structure of the lobbyist’s chosen information disclo-
sure.

Our analysis motivates a number of directions for further research. First,
further investigation and economic interpretation of particular state-pooling pat-
terns that emerge when there are more than three states of the world might be
of interest. Second, more progress could be made on analyzing state-pooling
patterns that may emerge under loss functions of a more general form.

Note that s13 = "(“52:2(1“1) = o ey (823 (w3 — w2) + 512 (wp — w1)) and (0,2) is
a convex set.
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3.A Technical details and proofs

3.A.1 The structure of the sender’s problem

We are interested in the solution of the sender’s problem

e —F [Ep [(Ey [p(w)] — w)?]] s.t. pesuzppww(p)p po.  (38)

We can rewrite the objective function as
—Ex [Ep [p(w)]? = 28, [p(w)] By [w] + B, [w7]] . (3.9)

Using the Bayesian consistency condition Y-, 7(p)p = po, we can see that the last
term becomes

— By [?] (3.10)

Therefore, the solution to the problem above is the same as the solution to the
problem

max B [E, [po(w)] (2B, o] - B, [p@)])] st Y w@p—p.  (311)

TEA(A(Q)) pC ()
A general approach to solving this problem is concavification of the function

9(p) = Ep [p(w)] (2B, [w] — By [p(w)]). (3.12)

We use the parametrization ¢(p) = g(p1,p2,...,Pn_1), where p, =1 —p; — -+ —
Pn_1. We collect the free variables in the vector

p=(p1,--,Pn-1)"

We also denote

/

p=(plw) = plwn), s plwn-1) — plwn))’,
W= (W1 — Wny ey Wil — W)

With this notation, we can write

9(p) = D' [2pw" — pp'| D+ [2wnp’ — pup + 2pni’ — pup1D + 200w — p2. (3.13)
a

Hence, the curvature of ¢ is driven by matrix G because the Hessian matrix is
H-=G+G"v (3.15)
The ij element (i,5 € {1,...,n—1}) of H is

= 90D g 1pfu) — plan)l s — n) — () — plan)lplesy) = plun)]

Hplws) = plwn)l(wi = wn) . (3.16)

1"We can also rewrite g as a linear-quadratic form

tj

1, ) . . o
9(p) = 5P Hp + [2000" = pup’ + 2pp0" = pup'lp + 2pnwn — Fa- (3.15)

110



This special structure of the problem implies that general submatrices of order
3 (for n > 4) of the Hessian matrix H have zero determinants.'® Hence, by the
Laplace expansion of determinants, all submatrices of order & > 3 have zero
determinants. We can deduce from this observation, using the fact that the
determinant rank of a matrix is equal to the column/row rank of the matrix,"
that H has at most two non-zero eigenvalues. Therefore, there are at least n — 3
orthogonal directions (in space R"~! 5 p) that span the space along which g is
linear, and at most two orthogonal directions that span the space (orthogonal to
the space spanned by the linear directions) on which g has a less trivial shape.

3.A.2 Proofs

Proof of Proposition 3.4.1. The sender does not benefit from providing any infor-
mation if and only if ¢ is concave.?’ ¢ is concave if and only if its Hessian matrix is
negative semidefinite, which can be checked with the test on its principal minors.

Suppose n > 3 (the case n = 2 is covered separately in Lemma 17). Let Ay
be a principal minor of order k of the Hessian matrix of ¢. Since A, = 0 for
k > 3 (see the discussion above), a necessary and sufficient condition for g to be
concave is A; <0 and Ay > 0 for all Ay, As.

Let A! be the first-order principal minor obtained from row (column) i:

A =2(p (wi) = p(wa)) (2 (wi = wa) = (p (wi) = p (wa)) - (3.17)

Let AY be the second-order principal minor obtained from rows (columns) 7 and
VE

AY = —A[(p(wi) = p(wi)(wj —wn) = (plwy) = plwn))(wi —wp)’. (3.18)

We can see that A < 0. Hence, g is concave or convex only if Ay = 0 for all A,.

This condition yields a system of % equations
A =0, 4,je{l,...n—1}, i # . (3.19)
Under the natural assumption that w; < -+ < wy, (which is without loss of
generality), we obtain from A3 =
wj — W W, — Wj '

or, equivalently,
wj — w; Wy — Wi '

18Proof is available upon request. It is basically just tedious algebra.

19The determinant rank of H is the size k of the largest k x k submatrix with a non-zero deter-
minant. The column/row rank of H is the dimension of the space spanned by the columns/rows
of H. It is straightforward to show that these ranks are equal.

20The “if” part follows directly from the definition of concavity. The “only if” part would also
follow directly from the definition of concavity if the sender did not benefit from providing any
information for every prior. But if the sender does not benefit from providing any information
only in one prior, because g is a linear-quadratic form, this property extends to all priors.
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Therefore, the system of equations (3.19) gives rise to % slope equality

conditions. From (3.20) and (3.21), we have

o, Plon) —pwi—t)  plnt) =plwn—)  plwn) = plwn-2)

j=n—1i1=n—

Wy — Wp—1 Wn—1 — Wn—2 Wy — Wp—2
e 2i—n_3." (Wn) = pwn-2) _ plwn-2) —plwns)  plwn) = p(wns)
’ . Wy — Wp—2 Wp—2 — Wp—3 Wp — Wp—3
j:M:l,p(wn)—p(wz) _ plwa) —p(wn) _ plwn) —plwn)
’ ) Wy — Wa Wo — W1 Wy — w1

Hence, system (3.19) is equivalent to a linearity of p:

SPwe)—plwn)  plws) —plws)  plwn) = plwn-i) (3.22)

Wg — w1 W3 — Wa Wy — Wp—1

Finally, given that Ay = 0 for all Ay holds, one can establish whether g is
concave or convex based on the sign of A;. Inspecting the sign of (3.17) yields:
wi)

820 4= (plon) — pler) 2 pn L2122

<2 «— 0<s<2. (3.23)

The complement identifies the concavity slopes (including the borderline slopes
s € {0,2}). O

Proof of Proposition 8.4.2. This proposition is basically proven in the proof of
Proposition 3.4.1, using the fact that ¢ is convex if and only if Ay > 0 and
Ay > 0 for all Ay, Ay, The only difference is that the convexity of ¢ is only
sufficient for optimality of full disclosure, but is not necessary (we can provide an
example of optimal full disclosure with non-convex g). O

Proof of Lemma 17. For n = 2, ¢ is a quadratic function, so its second derivative
completely characterizes its curvature, which completely characterizes the type
of optimal signals. In particular, let w; < wy. Then,

829(]91)
ops

=2(p(w1) = p(w2)) 2 (w1 —w2) = (p(w1) = p(w2))) (3.24)

which is strictly positive if and only if the slope of pisin (0,2) (strict convexity and
full disclosure), strictly negative if and only if the slope of p isin (—o0,0)U (2, 00)
(strict concavity and non-disclosure), and zero if and only if the slope of p is either
zero or two (linearity and indifference). O

Proof of Proposition 3.4.5. Non-disclosure is optimal if and only if ¢ is concave.
Hence, if non-disclosure is not optimal, ¢ is not concave. Therefore, ¢ has to have
a direction along which it is strictly convex.?!

Suppose (toward contradiction) that it is optimal to induce an interior pos-
terior, i.e., there exists a posterior p in the support of the optimal signal 7 such
that p(w) > 0 Yw. Then, we can split p along a strictly convex direction to ¢

2IThis is independent of the position because g is a linear-quadratic form.
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and ¢y, i.e., there exists some A € (0, 1) such that p = Ag1 + (1 — N)ga. Then, 7’
formed from 7 by replacing p by ¢1 with probability Az (p) and ¢ with probability
(1 — XN)m(p) is Bayes-plausible and it induces a strict improvement for the sender
because, from strict convexity of ¢ along the direction determined by ¢; and ¢,

Ex [g(p)] — Ex [9(p)] = 7n(p)(Ag(a1) + (1 — N)g(q) — g(p)) > 0. (3.25)

This is a contradiction with optimality of =. O

Proof of Proposition 3.6. We derive the state-pooling structure for the form of p
for each case presented in the table of Proposition 3.6 using the graph procedure
presented in Section 3.5.2.

Case (i). Since 812,823,513 € (0,2), Step 2 of the procedure eliminates all
edges, so each node is highlighted in full in Step 3. Thus immediately after
Step 3, the procedure yields the state-pooling structure of the optimal signal
{{wi} {wa} {ws}}.

Case (ii.a). Since s13,s13 € (0,2) and sp3 ¢ (0,2), after Step 2 of the pro-
cedure, node 1 is isolated (thus, it is highlighted in full in Step 3) and there is
an edge left between nodes 2 and 3. Since the pool {2,3} is a maximal clique
(Step 4) and p is obviously linear with slope from (—o0, 0] U [2,00) on states ws
and ws, this pool is highlighted in dashed in Step 5. Finally, it is highlighted
in full in Step 6 because nodes 2 and 3 belong only to this pool. Therefore, the
state-pooling structure of the optimal signal is {{w;}, {ws,ws}}.

Case (1i.b). Analogous to case (ii.a).

Case (iii.a). Since s12,s13 ¢ (0,2) and s33 € (0,2), after Step 2 of the pro-
cedure, there are two edges left: one between nodes 1 and 2 and one between
nodes 1 and 3. Since both pools {1,2} and {1,3} are maximal cliques (Step 4)
and p is obviously linear with slope from (—o0,0] U [2,00) on states wy,wy and
w1, ws, respectively, these pools are highlighted in dashed in Step 5. Finally, they
are highlighted in full in Step 6 because node 2 belongs only to pool {1,2} and
node 3 belongs only to pool {1,3}. Therefore, the state-pooling structure of the
optimal signal is {{w1,ws}, {w1,ws}}.

Case (1ii.b). Analogous to case (iii.a).

Case (iii.c). Analogous to case (iii.a).

Case (iv). We assume that s12 = so3 = s13 = s ¢ (0,2) does not hold (this
case is covered by case (v)). Thus, the graph procedure yields the candidate pools
{wi,wa}, {wa, w3}, and {wq,ws} (corresponding to the pools of nodes highlighted
in dashed in the graph). To determine the optimal state-pooling structure given
the set of candidate pools is non-trivial.

Denote the n-th directional derivative of a function f : R? — R along a
direction (a,b) by D{,, f. Denote pi Pr(wi) and pz Pr(wz). From the proof of
Proposition 3.4.1, the nonlinearity in p implies that there exists a direction (a, b)
along which ¢ (p1,p2) (defined in (3.12)) is strictly convex. The set of all such
directions is pinned down by the condition

D)9 () > 0, (3.26)

which rewrites as (assuming s13 # 0 and s,3 # 0; see below for the discussion of
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these cases)

a® (p(w1) = p(ws)) [2 (w1 —ws) = (p(wi) = p(ws))] +
b* (p (wa) — p (w3)) [2 (w2 — ws) — (p (w2) — p (ws))] + 507
bE ZE Y (p(wr) = p(ws)) [2 (w1 —ws) = (p (wr) — p(ws))] + (3.27)
wi (p (w2) = p(ws)) [2 (w2 — wa) — (p(w2) — p(ws))] >0
Next, s13 € (0,2) A s93 ¢ (0,2) implies®?
{(p (@) = p ) 2(n —ws) = (p(wn) = p )] <0,
(p(w2) — p(ws))[2(w2 —w3) — (p(w2) — p(ws))] <O

We can see from (3.27) and (3.28) that if (a,b) is a direction along which ¢

is strictly convex, both a and b have to be non-zero. Thus, we can normalize the

direction (a,b) to (§,1) and denote x := . Hence, the set of directions along

which g is strictly convex is characterized by

% (p(w1) — p(ws)) [2 (w1 —ws3) = (p(w1) — p(ws))] +
(p (w2) — p(w3)) [2 (w2 — ws) — (p(w2) — p(w3))] +

)
PAeRe) (5 (001) — p(w)) [2 (w1 — ws) — (p(wr) —p )]+ B2
xz&;:zgﬁ; (p(w2) —p(ws))[2 (w2 —ws) — (p(w2) — p(ws))] >0

Inspecting (3.29) given (3.28), one observes that the first two terms in (3.29)
are non-positive. Therefore, the sum of the last two terms must necessarily be
strictly positive for any direction along which ¢ is strictly convex. Further, if
the third term is strictly negative, the fourth term is non-positive and vice versa.
So, if either of the last two terms is strictly negative, their sum is also strictly
negative. Equivalently, if their sum is non-negative, they both have to be non-
negative. Moreover, if their sum is strictly positive, they cannot both be zero.
But if any one of the last two terms in (3.29) is strictly positive, then by (3.28)

L) =olws) (3.30)

plwz) — plws)

To summarize, if (x, 1) is a direction along which g is strictly convex, then

x>0 if den=rles) g (o s
plwa)—p(ws) 523 (3.31)
£ plw1)—pws) ~ 0 )
plw2)—p(ws)

r<0 i (= >0

523

~— S

By similar arguments, if s;3 = 0,2 the necessary condition for (z,1) being the
direction along which ¢ is strictly convex is

(3.32)

x>0 if523>0,
<0 if523<0

22 At least one of these terms is non-zero due to the assumption that sjy = s93 = 513 = 5 ¢
(0, 2) does not hold.

23Notice that si3 and sy3 cannot be simultaneously zero by assumption, because this would
lead to case (v).
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and if sp3 = 0, the necessary condition for (x, 1) being the direction along which
g is strictly convex is

>0 if >0
{x o =Y (3.33)

<0 if513<0.

Given some interior prior, the sender splits it along a direction along which ¢
is strictly convex and induces posteriors that lie on two edges of the simplex. We
can distinguish the following cases:

1. Ifzﬁ < 0or s;3=0AS823 > 0o0r s)3 =0As13 >0, then x > 0. Hence,
the optimal split is either of the form (¢1,0,1 — ¢1), (1 — g2, 2,0) (pooling
case (iii.a)) or of the form (¢1,1 — ¢1,0), (0,¢2, 1 — ¢2) (pooling case (iii.c))
depending on the prior.

2. If 22% > 0or s;3=0A333 < 0or sz =0A313 <0, then x < 0. In this case,
we need to distinguish further:

(a) If the optimal split goes along the direction (—1,1), it is of the form
(¢1,0,1 — 1), (0,¢2,1 — ¢2) (pooling case (iii.b)).

(b) If the optimal split goes along direction (x, 1) with x < —1, it is either
of the form (¢1,0,1 — 1), (0,¢2,1 — g2) (pooling case (iii.b)) or of the
form (q1,1—q1,0), (0,¢, 1 —q2) (pooling case (iii.c)) depending on the
prior.

(¢) If the optimal split goes along direction (z, 1) with x > —1, it is either
of the form (¢1,0,1 — ¢1), (0,42, 1 — g2) (pooling case (iii.b)) or of the
form (¢1,0,1—q1), (g2, 1 —q2,0) (pooling case (iii.a)) depending on the
prior.

Case (v). Proposition 3.4.1 applies and under Assumption 3.1 yields non-
disclosure. O

3.B Comment on Assumption 3.1

The structure of function ¢ (see (3.12)) uncovered in Section 3.A.1 implies that
for n > 4, there always exists a direction along which ¢ is linear. Therefore, even
when ¢ is concave and non-disclosure is optimal, it is never uniquely optimal for
n > 4. In particular, the sender is indifferent between sticking to the prior and
splitting it to some posteriors from the space determined by the linear directions
of g (and the prior), possibly all the way to the boundaries of the original simplex.
Moreover, if g is concave, it is also concave on the boundary simplexes and we
can repeat the same argument, proceeding downward in dimensions. For n = 3,
by Proposition 3.4.1, g is concave only if it is linear in one direction. Hence, even
for n = 3, non-disclosure is not uniquely optimal and the sender is indifferent
between choosing a non-informative signal (keeping the belief at the prior) and
splitting the prior into posteriors along the linear direction, all the way to the
edges of the simplex. Therefore, pairwise signals (i.e., signals leading to posteriors
supported on at most two states) are also always optimal.?*

24This result is reminiscent of the result of Kolotilin and Wolitzky [2020] that there is no loss
of generality from focusing on pairwise signals in their setup.
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In the main text, we impose Assumption 3.1, which resolves indifference in
favor of non-disclosure of states. It is a natural assumption that can be justified
by the sender not wasting resources (time and energy) on communication when
it is not needed (although the cost of communication is not featured explicitly
in our model). This selection criterion simplifies the analysis. First, it enables
us to avoid imposing some ad hoc assumptions about the selection of specific
partial disclosure patterns from the indifference set. Second, a different natural
assumption might be that the sender resolves her indifference in favor of splitting.
However, this assumption would require us to impose some additional ad hoc
assumptions about the selection of specific directions along which to split (for
higher n) in order to deliver concrete predictions. Moreover, such a resolution of
indifference would be very sensitive to the prior (even in terms of the predicted
pooling structure), so we would need to keep track of the specific directions of
indifference, which would render the analysis much more cumbersome.?®

3.C Demonstration of the procedure for discov-
ery of the state-pooling structure of the op-
timal signal

We demonstrate the application of the procedure for discovery of the state-pooling
structure of the optimal signal (presented in Section 3.5) to the example intro-
duced in Figure 3.3 (for convenience, we reproduce it in Figure 3.4 in this section).
This demonstration is accompanied by Figure 3.5. Red color in Figure 3.5 rep-
resents highlighting as defined in Section 3.5 — final pools in full and candidate
pools in dashed. Green color denotes cliques chosen for application of the non-
disclosure test (Step 5 of the procedure).

5.5 K
VARRN

4 \

4 \

4 \
o= ¢ \
3 3 /-F \
25 J ¥

’
’
’
’
0.5 _ =t
0 + -
1 2 3 4 5

Figure 3.4: Preference misalignment function p considered for the
demonstration of the graph procedure

2570 illustrate the dependence on the prior, for n = 3 under linear p (which is sufficient
for global concavity or convexity), the direction of linearity is (—ﬁ7 1). Since the first
component is strictly between 0 and -1, we can see that, while the non-disclosure is also optimal,
the state-pooling structure (defined in Section 3.5) of the optimal informative signal can be

either {{wy,ws}, {ws,wa}} or {{wi,ws}, {wi,ws}}, depending on the prior.
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(b) Steps2and 3 (c) Steph

Figure 3.5: Illustration of the execution of the procedure, applied to the input
from Figure 3.4; the output is in (f); red color represents highlighting as defined
in Section 3.5 — final pools in full and candidate pools in dashed; green color
denotes cliques chosen for application of the non-disclosure test

The inputs to the procedure are the values of w and p (w) from Figure 3.4.
From formula (3.7), we obtain the values of all s;;: s15 = 0.5, 513 = 1.5, 514 = lg
S15 = 40 So3 = 25, Soq = 25 So = é S34 = 25, S35 = *i, S45 = —3.

In (a) in Figure 3.5, we start with a fully connected graph on five nodes
(n = 5) corresponding to states 1,2, ..., 5.

In (b) in Figure 3.5, we observe the same graph after the application of Steps
2 and 3 of the procedure. We removed all edges ij such that s;; € (0,2). As a
result, node 1 became isolated, so we highlighted it in full. Hence, we can leave
out node 1 from further analysis and focus on nodes 2, 3, 4, and 5.

In (c) in Figure 3.5, we proceed to Steps 4 and 5 of the procedure. It is easily
seen that there are two maximal cliques: one formed by nodes 2, 3, and 4 and
one formed by nodes 3, 4, and 5. First, we inspect the maximal clique formed
by 2, 3, and 4 (highlighted in green) and we apply the non-disclosure test. The
non-disclosure condition holds, so we highlight the maximal clique {2,3,4} in
dashed (as illustrated in (d)). Hence, we do not need to consider any more of its
subsets in Step 5 and we can move our focus to the other maximal clique.

In (d) in Figure 3.5, we inspect the maximal clique formed by nodes 3, 4, and 5
(highlighted in green). The non-disclosure condition does not hold, so we denote
the maximal clique {3,4,5} as inspected and proceed to consider its subsets of
cardinality 2.

In (e) in Figure 3.5, we first consider the clique formed by nodes 4 and 5.
As the non-disclosure condition is satisfied, we highlight this clique in dashed.
Proceeding with the iteration, we test clique {3,5}. Again, the non-disclosure
condition is satisfied, so we highlight it in dashed. Finally, clique {3,4} is a
subset of the highlighted set {2,3,4}, so we do not test it.

In (f) in Figure 3.5, we proceed to Step 6 of the procedure: as node 2 belongs to
only one highlighted clique, {2, 3,4}, we highlight that clique in full. The output
of the procedure is depicted in (f) in Figure 3.5: the singleton pool {1} and pool

.

2.5

117



{2,3,4} highlighted in full and pools {3,5} and {4,5} highlighted in dashed.
Hence, the posteriors induced by the optimal signal certainly include a posterior
supported on states wy = 2, w3 = 3,wy = 4 and the posterior d,,. Moreover, the
optimal signal will induce at least one posterior supported on wz = 3,ws = 5 or

W4:4,W5:5.
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