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Abstract
In the first chapter of this dissertation I study the properties of a model averaging estimator
with ridge regularization. I propose the ridge-regularized modifications of Mallows model
averaging (Hansen, 2007, Econometrica, 75) and heteroskedasticity-robust Mallows model
averaging (Liu and Okui, 2013, The Econometrics Journal, 16) to leverage the capabilities
of averaging and ridge regularization simultaneously. Via a simulation study, I examine
the finite-sample improvements obtained by replacing least-squares with a ridge regression.
Ridge-based model averaging is especially useful when one deals with sets of moderately to
highly correlated predictors, because the underlying ridge regression accommodates correlated
predictors without blowing up estimation variance. A two-model theoretical example shows
that the relative reduction of mean squared error is increasing with the strength of the
correlation. I also demonstrate the superiority of the ridge-regularized modifications via
empirical examples focused on wages and economic growth.
The second chapter focuses on the use of elastic-net regression for instrumental variable
estimation. I investigate the relative performance of the lasso and elastic-net estimators for
fitting the first-stage as part of IV estimation. Because elastic-net includes a ridge-type penalty
in addition to a lasso-type penalty, it generally improves upon lasso in finite samples when
correlations among the instrumental variables are not negligible. I show that IV estimators
based on the lasso and elastic-net first-stage estimates can be asymptotically equivalent.
Via a Monte Carlo study, I demonstrate the robustness of the sample-split elastic-net IV
estimator to deviations from approximate sparsity, and to correlation among instruments
that may be high-dimensional. Finally, I provide an empirical example that demonstrates
potential improvement in estimation accuracy gained by the use of IV estimators based on
elastic-net.
The third chapter, a joint work with S. Anatolyev, contributes to wider use of advanced
conventional methods for dealing with instrumental variable regression with many, possibly
weak, instruments in Stata. We introduce a STATA command, mivreg, that implements
consistent estimation and testing in linear IV regressions with many instruments, which may
be weak.

Abstrakt
V první kapitole této disertační práce navrhuji a studuji vlastnosti modelového průměrovacího
estimátoru s hřebenovou regularizací. Navrhuji ridge-regularizační modifikace Mallowsova
průměrování modelu(Hansen, 2007, Econometrica, 75) a Mallowsova průměrování modelu
robustního vůči heteroskedasticitě(Liu and Okui, 2013, The Econometrics Journal, 16),
abychom současně využili schopnosti průměrování a ridge regularizace. Prostřednictvím
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simulační studie dokumentuji vylepšení na konečném vzorku dat, což je důsledkem nahrazení
nejmenších čtverců ridge regresí. Průměrování na základě ridge modelu je zvláště užitečné,
když se zabýváme množstvími středně až vysoce korelovaných prediktorů, protože základní
ridge regrese se korelované prediktory akomoduje, aniž by došlo k nafouknutí rozptylu odhadů.
Jednoduchý teoretický příklad ukazuje, že relativní snížení střední kvadratické chyby roste
se silou korelace. Na empirických příkladech, zaměřených na mzdy a ekonomický růst, dále
demonstruji přednost ridge regularizovaných modifikací.
Druhá kapitola se zaměřuje na použití elastic net regrese pro instrumentální odhad proměn-
ných. Zkoumám relativní výkon odhadů lassa a elastic net pro predikované hodnoty prvního
stupně jako součást odhadu IV. Jelikož elastic net obsahuje kromě penalizace typu lasso
penalizaci typu ridge, obecně se oproti lassu v konečných vzorcích zlepšuje, když korelace
mezi instrumentálními proměnnými nejsou zanedbatelné. Ukazuji, že IV odhady založené
na odhadech lassa a elastic net v prvním stupni mohou být asymptoticky ekvivalentní.
Prostřednictvím Monte Carlo studie demonstruji robustnost estimátoru elastic net IV s
rozděleným vzorkem dat vůči odchylkám od přibližné řídkosti a vůči korelaci mezi potenciálně
mnohorozměrnými instrumenty. Nakonec uvádím empirický příklad, který demonstruje
potenciální zlepšení přesnosti odhadu získané použitím IV odhadů založených na elastic net.
Třetí kapitola, společná práce se S. Anatolyevem, přispívá k širšímu využití pokročilých
konvenčních metod pro práci s regresí s mnoha, potenciálně slabými, instrumentálními
proměnnými ve Statě. Zavádíme příkaz, mivreg, který implementuje konzistentní odhad a
testování v lineárních IV regresích s mnoha instrumenty, které mohou být slabé.
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Introduction

Increasing availability of covariate-rich datasets creates new challenges encountered in applied
econometrics. While classic model selection methods have been predominant for dealing with
model uncertainty for decades, more modern methods with embedded regularization often
have favourable asymptotic and finite-sample properties. Each chapter of this thesis presents
a setup in which data dimensionality deteriorates the performance of traditional methods,
and highlights ways to address the issues.

The first chapter contributes to the literature on model uncertainty and model averaging
for prediction problems. When a model for determination of a specific variable is not precisely
dictated by theory, one often faces a trade-off between a parsimonious model with few variables
and a sophisticated model with potentially high-dimensional sets of predictors. While a
parsimonious model delivers estimates with a low variance and large bias, a sophisticated
model tends to do exactly the opposite. Therefore, combining models with different numbers of
variables generally reduces the mean squared error of the resulting predictions. Many methods
for finding the optimal combination exist. A leading method is based on generalization of
the Mallows (1973) model selection criterion to the Mallows model averaging criterion by
Hansen (Hansen, 2007).
I propose a ridge-regularized Mallows model averaging estimator. The ridge model averaging
estimator (RMA) ensures better finite-sample properties via ridge regularization of the design
matrices corresponding to the models being averaged. In principle, ridge regression and model
averaging serve a similar purpose, minimization of the mean squared error through shrinkage,
though in different ways. While model averaging, e.g., as in Hansen (2007), reduces the
asymptotic mean squared error, ridge regularization leads to finite-sample improvements.
Therefore, combining model averaging with ridge regularization results in an estimator that
inherits asymptotic optimality, and, in addition, yields better finite-sample properties due to
ridge regularization.
I suggest ridge-based modifications of both Mallows model averaging (Hansen, 2007) and
heteroskedasticity-robust Mallow model averaging (Liu and Okui, 2013). A tractable theoret-
ical example with two models demonstrates that the relative reduction of the mean squared
error is increasing with the strength of predictor correlatedness. Via a simulation study, I
examine the finite-sample improvements obtained by replacing ordinary least-squares with a
ridge regression for model averaging prediction. Ridge-based model averaging is shown to
be superior when one deals with sets of moderately to highly correlated predictors, because
underlying ridge regressions accommodate correlated predictors without blowing up estima-
tion variance. I also show the superiority of the ridge-regularized estimator modifications via
empirical examples focused on wages and economic growth.

The second chapter contributes to the literature on estimation of treatment effects in a
non-experimental setting with many instrumental variables (IV). While the use of many
instruments improves estimation accuracy, dealing with high-dimensional sets of instrumental
variables can be complicated, and often requires instrument selection or regularization of
the first-stage regression. Currently, lasso is established as the most popular method for
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simultaneous variable selection and regularization.
I advocate the use of elastic-net in place of lasso in the first-stage regression. The motivation
is twofold. First, elastic-net combines lasso regularization with ridge penalization, and thus it
generally improves over lasso in finite samples if correlations among the instrumental variables
are significant. Second, by attaining a balance between lasso and ridge penalties, elastic-net
accommodates deviations of the first-stage equation from a sparse structure, and thus is a
robust alternative to lasso, which relies heavily on the sparsity assumption.
I claim that IV estimators that employ lasso and elastic-net first-stage predictions under
sparsity are asymptotically equivalent. Via a Monte Carlo study, I demonstrate the robustness
to correlation among the instruments and deviations from sparsity of the sample-split IV
estimation based on elastic-net first-stage estimates. The cross-fitted elastic-net IV estimator
tends to performs similarly to the sample-split version, though sometimes it results in minor
test size distortions. Finally, I provide an empirical example that employs the proposed
methods to estimation of returns to schooling. The example demonstrates the cross-fitted
elastic-net IV estimator that results in the point estimate without a clear bias towards
the OLS estimate, while delivering the smallest standard errors. As expected, the sample-
split elastic-net IV estimator appears to be more vulnerable to random splits of the real
data. However, similarly to the cross-fitted elastic-net IV estimator, it continues to produce
reasonable estimates even when its lasso-based counterpart does not select any variables into
the first-stage regression, and thus fails to deliver any estimates.

The third chapter, a joint work with S. Anatolyev, contributes to wider use of advanced
conventional methods to deal with instrumental variable regression with many instruments,
which may be weak, in Stata. Over recent decades, econometric tools for handling instrumental
variable regressions with many instruments have been developed. However, practitioners
rarely use appropriate tools because they are not available in popular econometric packages,
STATA in particular. We introduce a STATA command, mivreg, that implements consistent
estimation and testing in linear IV regressions with many (possibly weak) instruments. The
command mivreg covers both homoskedastic and heteroskedastic environments, estimators
that are both non-robust and robust to error non-normality and projection matrix limit,
both parameter tests and specification tests, and both with and without correction for the
existence of moments. We also run a small simulation experiment using mivreg and illustrate
how mivreg works with real data.
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1 Model Averaging with Ridge Regularization

Published as CERGE-EI Working Paper Series No 758.

1.1 Introduction

Model uncertainty is a challenge that is frequently encountered in applied econometrics.
The two most common approaches to addressing model uncertainty are model selection and
model averaging. While model selection has been the predominant method for decades, the
sensitivity of results to the choice of model selection criteria has contributed to the increasing
popularity of model averaging techniques.1The central question of model averaging is how
to assign weights to candidate models optimally. Many different solutions coexist in the
literature.2

Although model averaging was initially developed within the Bayesian paradigm, the literature
on frequentist model averaging (FMA) is currently growing rapidly. Within FMA, early
contributions were made by Buckland et al. (1997) who suggested that the weight for each
model be a function of its value of the Akaike information criterion (hereafter AIC; Akaike
1974) or the Schwarz-Bayes information criteria (BIC; Schwarz 1978). Yang (2001) introduced
a way to combine candidate models with weights found via sample splitting, thus making
weighting schemes more flexible. Hansen (Hansen 2007, Hansen 2008) adopted the Mallows
criterion (Mallows 1973) to model averaging under error homoskedasticity (Mallows model
averaging, or MMA), thereby providing a way to find optimal weights without efficiency losses
caused by sample splitting. Later, Liu and Okui (2013) introduced a heteroskedastiticty-robust
Mallows criterion for model averaging (hereafter HR-MMA).
In this paper, I propose ridge-regularized versions of the MMA and HR-MMA estimators
that provide better finite-sample prediction performance in terms of the mean squared error
(MSE): the ridge model averaging (RMA) estimator and the heteroskedasticity-robust ridge
model averaging (HR-RMA) estimator, respectively. The ridge regression, introduced by
Hoerl and Kennard (1970), is a generalization of the OLS regression that aims to reduce
the MSE by penalizing large coefficients. A penalization parameter governs the amount of
shrinkage (and thus the coefficient biasness) that, in general, makes it possible to trade off
a small bias for a significant reduction in variance of estimates, thereby lowering the mean
squared error. The gain from ridge regularization tends to be larger in the case of high
correlation among predictors.
Building on the idea of least squares averaging by Hansen (2007), I replace ordinary least-
squares estimation with a ridge regression to minimize the consequences of correlation among
predictors. The proposed estimators differ from the MA-Ridge estimator by Zhao et al.
(2020), which averages across varying regularization parameter values for a single model
specification (i.e. across estimators instead of models), and obtains the optimal weights
through minimization of the jackknife criterion. Another possible benchmark for the proposed

1See also Breiman (1996) where subset selection is shown to be unstable, thus resulting in poor prediction
accuracy.

2Moral-Benito (2015) and Steel (2020) provide comprehensive reviews of model averaging in economics.
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estimator is the jackknife model averaging (JMA) estimator by Hansen and Racine (2012),
which is a regularization-free baseline of the MA-Ridge estimator by Zhao et al. (2020).
However, the jackknife model averaging by Hansen and Racine (2012) is based on OLS
regressions, and thus is not suited for the cases when the number of predictors approaches or
exceeds the sample size.
In a Monte Carlo study I compare the finite sample performance of the RMA and HR-RMA
estimators with that of the MMA and HR-MMA estimators, as well as several other estimators
including weighted BIC (WBIC), Bates-Granger (by Bates and Granger 1969), and JMA.
Our simulation design is close to that adopted in Hansen (2007, 2008), while I also examine
separately the cases of medium and high correlation among predictors. Although the ridge
model averaging estimator does not uniformly MSE-dominate all alternative estimators for
all considered specifications, it typically has the best performance over considerable intervals
of population R2.

The reduction in MSE achieved by the RMA can be viewed through the lens of optimal weights.
Basically, the set of alternative models includes those with parsimonious specifications (with
few regressors), and sophisticated models (with many regressors), as well as moderately
parametrized models. The optimal weights found via RMA tend to be higher for more
sophisticated models, while the weights obtained via different procedures are predominantly
distributed between low and moderately parametrized specifications. This is because the
ridge model averaging estimator can use more information from highly parametrized models
without inflating the estimation variance, whereas this property is not shared by estimators
based on simple least squares estimators.
I demonstrate how the proposed estimator works in two empirical examples. I employ the
cross-section earning data used by Hansen and Racine (2012) and the Barro and Lee (1994)
data on cross-country determinants of long-term economic growth. In both examples, there
are many possible predictors to be used relative to the sample size. In both examples,
ridge-regularized modifications of the MMA and HR-MMA estimators tend to perform better
than the baselines, especially in small samples.
This paper proceeds as follows: Section 2 introduces a general model averaging estimator,
and a ridge-regularized model averaging estimator. Section 3 presents a two-model example
that demonstrates the reduction in MSE achieved via the use of ridge regularization. Section
4 shows the results of a Monte Carlo study that examines the relative performance of several
competing estimators in finite samples. Section 5 presents empirical examples. Section 6
concludes.

1.2 Model Averaging

The setup and notation are taken from Hansen (2007). Consider {(yi, xi)}, i = 1, ..., n. Let
µi = µ (xi) = E (yi |xi ) be the conditional mean so that

yi = µi + ei, (1)
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where E (ei |xi ) = 0. For further use of matrix notation define y = (y1, ..., yn)′, µ =
(µ1, ..., µn)′, e = (e1, ..., en)′. The conditional variance σ2 (xi) = E (e2

i |xi ) may depend on xi.
Consider a set of competitive linear estimators

{︂
µ̂1, ..., µ̂M

}︂
for the conditional mean µ.3

Every estimator from this set can be written as µ̂m = Pmy, where operator Pm does not
depend on y. Then the model selection problem is about picking a single estimator from the
set

{︂
µ̂1, ..., µ̂M

}︂
. When the selection is guided by the mean-squared error (MSE) criterion, the

traditional bias-variance trade-off arises, and thus in principle the model of any complexity
may attain a balance.
Compared to model selection, model averaging involves averaging across

{︂
µ̂1, ..., µ̂M

}︂
to

attain further reduction of the MSE. Consider w =
(︂
w1, ..., wM

)︂′
, a vector of non-negative

weights such that ∑︁M
m=1 wm = 1. Then for any admissible w, the averaging estimator for µ

takes the form
µ̂ (w) ≡

M∑︂
m=1

wmµ̂m = µ̂w = P (w) y, (2)

where µ̂ =
(︂
µ̂1, ..., µ̂M

)︂
is the n × M matrix of first-step estimates, and

P (w) ≡
M∑︂

m=1
wmPm. (3)

For least-squares estimators, Pm = PLS
m ≡ Xm (Xm′Xm)−1 Xm′, where xm

i is the i’th row of
Xm, xm

i is 1 × km for m = 1, 2, ..., M . In the case of ridge estimators,

PR
m ≡ Xm (Xm′Xm + λmIkm)−1

Xm′

for a tuning parameter λm ∈ (0, ∞). A particular model corresponds to a choice of predictors
xm

i together with the optimal value of λm.
The averaging residual is

ê (w) = y − µ̂ (w) =
M∑︂

m=1
wmêm = êw,

where êm = y − µ̂m and ê =
(︂
ê1, ..., êM

)︂
. The Mallows model averaging (MMA) criterion of

Hansen (2007) for weight selection is a penalized sum of squared residuals. The weighted
average of least-squares residuals is complemented by a penalty term that increases in both
error variance, and average model complexity that is conveyed by the trace of the matrix
P (w):

Cn (w) = w′ê′êw + 2σ̂2tr (P (w))
ŵMMA = arg min

w∈H
Cn (w) ,

3The number of competitive estimators M may grow with n but we omit the subscript from Mn for the
sake of simpler notation.
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where H =
{︂
w ∈ [0, 1]M : ∑︁wM

m=1 = 1
}︂
, σ̂2 is a consistent estimate of the error variance.4

Define the in-sample mean-squared error

Ln (w) = (µt − µ̂ (w))′ (µt − µ̂ (w)) .

Lemma 3 from Hansen (2007) shows unbiasedness (up to a constant) of Cn (w) for in-sample
mean-squared error, Ln (w), for iid observations. Specifically, he shows that

E [Cn (w)] = E [Ln (w)] + nσ2,

so that the weights found through minimization of Cn (w) also minimize Ln (w), in expectation.
In addition, Theorem 1 from Hansen (2007) shows the asymptotic optimality of Mallows’
criterion for model selection with independent data if the weights are restricted to a discrete
set, in the sense that Ln (ŵ) / infw∈Hn(N) Ln (w) →p 1, where Hn (N) restricts the weights
wm to the set

{︂
0, 1

N
, 2

N
, ..., 1

}︂
. Notably, the asymptotic optimality of the Mallows’ criterion

relies on homoskedasticity of the error term.5

To address the case of the heteroskedastic error term, Liu and Okui (2013) introduced a
modification of the Mallows’ criterion that is heteroskedasticity-robust, the so called HRCp

criterion:
HRCp (w) ≡ ∥y − P (w) y∥2 + 2tr [ΩP (w)] ,

where êi is the residual from a preliminary estimation6 and pii (w) is the ith diagonal element
of P (w). The weights obtained through minimization of the HRCp criterion are shown to
be asymptotically optimal (see Theorem 2.1 from Liu and Okui, 2013). The same property is
shared by its feasible version (under more assumptions, see their Theorem 2.2).7 For the sake
of consistent notation within this paper, the weights obtained via minimization of the ˆ︂HRCp

criterion will be denoted as ŵHR−MMA.

Ridge Model Averaging

I define the ridge-regularized MMA estimator (hereafter RMA) as

ŵRMA = arg min
w∈H

[︂
w′ê′

RêRw + 2σ̂2tr
(︂
P R (w)

)︂]︂
,

where P R (w) = ∑︁M
m=1 wmPR

m and êR =
(︂
ê1

R, ..., êM
R

)︂
is a matrix of stacked residuals from

ridge regressions for each specification. Thus, ridge regularization affects both terms of
the criterion simultaneously. Correspondingly, the heteroskedasticity-robust ridge model
averaging (HR-RMA) estimator is defined by

4Hansen (2007) suggests employing σ̂2 from the “largest” approximating model.
5Wan et al. (2010) provide an alternative proof of the asymptotic optimality that extends the result to a

non-discrete weight set.
6The authors discuss various possibilities for obtaining êi. For instance, in the case of nested models, they

recommend using the residuals from the largest model, and this paper follows their recommendation.
7Anatolyev (2021) proposes using individual variance estimates that are robust to regressor numerosity.
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ŵHR−RMA = arg min
w∈H

[︄
w′ê′

RêRw + 2
n∑︂

i=1
ê2

iRpR
ii (w)

]︄
,

where pR
ii (w) is the ith diagonal element of PR (w). For both the RMA and HR-RMA

estimators, P R (w) is a function of optimal shrinkage values for all models being averaged,
i.e. P R (w) = P R (w, λopt). For each separate model m, I estimate λopt

m via leave-one-out
cross-validation that results in asymptotically optimal λ̂

opt

m (Li 1987).
Having in mind the results on asymptotic optimality of the Mallows criterion for model
averaging by Hansen (2007), and its heteroskedasticity-robust counterpart by Liu and Okui
(2013) in the class of linear estimators, I investigate the finite-sample benefits of the proposed
regularized modifications from the same class, RMA and HR-RMA, relative to the baselines
of MMA and HR-MMA. For most applications, the right hand side variables tend to be
correlated with each other,8 so the Mallows criterion with underlying ridge regularization of
a design matrix is expected to deliver better finite sample properties of the estimates. In the
next section, I provide a toy example demonstrating the relative performance of the RMA
estimator.

1.3 Theory: A Two-Model Example

In this subsection I consider a toy theoretical example that illustrates the mechanics of the
MMA and RMA estimators under homoskedasticity of the error term. First, I derive the
MSE for the averaged least-squares and ridge estimates. Then, I derive the optimal shrinkage
parameters for two models estimated via the ridge regression, and plug them into the MSE for
the averaged ridge estimate. That allows us to find the optimal weights for both estimators.
Let the true unknown model be

Y = X1β1 + X2β2 + e, E [e|X1, X2] = 0, E
[︂
e2|X1, X2

]︂
= σ2.

Two alternative approximations are Y = X1β1+e1 and Y = X2β2+e2, i.e. each approximating
model includes only a part of the regressors from the true model. The column dimensions of
X1 and X2 are assumed to be equal, rank (X1) = rank (X2) = p.

Two options are considered: (1) averaging the LS estimates or (2) averaging the ridge
estimates for both approximations. Two OLS estimates are given by

β̂
ols

1 = (X ′
1X1)−1

X ′
1Y and β̂

ols

2 = (X ′
2X2)−1

X ′
2Y,

and the average least-squares estimate is

β̃ = wols

(︄
β̂

ols

1
0

)︄
+
(︂
1 − wols

)︂(︄ 0
β̂

ols

2

)︄
=
⎛⎝ wolsβ̂

ols

1(︂
1 − wols

)︂
β̂

ols

2

⎞⎠
8For example, in a high-dimensional dataset, there might be large sample correlations even when the

variables are independent, see Fan and Lv (2008).
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where wols is the optimal OLS weight to be determined later.9 Similarly, two ridge estimates
are given by

β̂
r

1 (λ1) = (X ′
1X1 + λ1Ip)−1

X ′
1Y and β̂

r

2 (λ2) = (X ′
2X2 + λ2Ip)−1

X ′
2Y

and the average ridge estimate is

β̃ (λ1, λ2) = wr

(︄
β̂

r

1 (λ1)
0

)︄
+ (1 − wr)

(︄
0

β̂
r

2 (λ2)

)︄
=
⎛⎝ wrWλ1 β̂

ols

1

(1 − wr) Wλ2 β̂
ols

2

⎞⎠
where Wλ1 = (X ′

1X1 + λ1I)−1 X ′
1X1, Wλ2 = (X ′

2X2 + λ2I)−1 X ′
2X2 and wr is the optimal

ridge weight.
From now on let us assume, for the sake of illustration, that X1 and X2 are orthonormal, i.e.
X ′

1X1 = X ′
2X2 = Ip, and also X ′

1X2 = ρIp, where ρ mirrors the degree of correlation among
the predictors. Then the mean squared error of the average least-squares estimate is

MSEols
(︂
wols

)︂
= pσ2

[︃(︂
wols

)︂2
+
(︂
1 − wols

)︂2
]︃

+ βT
1

[︃(︃(︂
wols

)︂2
− 2wols + 1

)︃
+
(︂
1 − wols

)︂2
ρ2
]︃

β1

+ βT
1 ρ
[︂
2wols

(︂
wols − 1

)︂
− 2wols

(︂
1 − wols

)︂]︂
β2

+ β′
2

[︃(︂
wols

)︂2
ρ2 +

(︃(︂
1 − wols

)︂2
− 2

(︂
1 − wols

)︂
+ 1

)︃]︃
β2,

where p is the common column rank of X1 and X2, while the mean squared error of the
average ridge estimate is

MSEr (λ1, λ2, wr) = pσ2
[︄

(wr)2

(1 + λ1)2 + (1 − wr)2

(1 + λ2)2

]︄
+

+ βT
1

[︄
(wr)2 − 2wr (1 + λ1) + (1 + λ1)2

(1 + λ1)2 + (1 − wr)2

(1 + λ2)2 ρ2
]︄

β1

+ βT
1 ρ

[︄
2wr (wr − 1 − λ1)

(1 + λ1)2 − 2 (wr + λ2) (1 − wr)
(1 + λ2)2

]︄
β2

+ β′
2

[︄
(wr)2

(1 + λ1)2 ρ2 +
(︄

(1 − wr)2

(1 + λ2)2 − 2 (1 − wr)
1 + λ2

+ 1
)︄]︄

β2.

Derivations are provided in Appendix 1.E, Part 1. For both MSEols
(︂
wols

)︂
and MSEr (λ1, λ2, wr),

the first term of the sum corresponds to the variance, while the other three terms represent
the squared bias.
Before finding the optimal weights for the ridge averaging estimator, the optimal values of λ1
and λ2 should be plugged in separately for each ridge regression. Under the assumption that

9I assume here that whenever the regressor is missing from the approximating model, the corresponding
coefficient is set to 0, as is usually done within the FMA.

10



I made earlier,

λopt
j = pσ2 + ρβ′

1β2

β′
jβj + ρβ′

1β2
, j = 1, 2.

Derivations are provided in Appendix 1.E, Part 2.
Finally, one can use MSEr

(︂
λopt

1 , λopt
2 , wr

)︂
to find the optimal weights, 0 ≤ wr,opt ≤ 1, similar

to the optimal weights for the least-squares averaging estimator, 0 ≤ wols,opt ≤ 1. Since the
resulting expressions are complicated10, let us look at the comparative statics.

Figure 1: Difference in MSE given the optimal weights: in absolute terms (left) and normalized
over the MSE of the RMA estimator (right). Baseline case: p = 3, σ2 = 2, β′

1β1 = β′
2β2 = 1.

As a baseline case, consider p = 3, σ2 = 2, β′
1β1 = 1, β′

2β2 = 1, β′
1β2 =

√︂
β′

1β1 · β′
2β2 − 0.1 =

0.948. The correlation among the predictors varies between 0 and 1. Figure 1 shows
the resulting difference between MSEols

(︂ ˆ︁wols
)︂

and MSEr
(︂ˆ︁λopt

1 , ˆ︁λopt
2 , ˆ︁wr

)︂
for ρ ∈ [0, 1], in

absolute terms (left) and relative to MSEr
(︂ˆ︁λopt

1 , ˆ︁λopt
2 , ˆ︁wr

)︂
(right). Despite the difference

itself not being monotonic (in this case, U-shaped), the relative difference is monotonically
increasing with the correlation among the predictors. In other words, higher correlation
implies larger reduction in the MSE due to ridge regularization, in relative terms.

Figure 2: Difference in MSE given the optimal weights: in absolute terms (left) and normalized
over the MSE of the RMA estimator (right). β′

1β1 = 0.2
10Available upon request.
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Figures 2, 3, and 4 demonstrate similar outcomes for alternative parameter combinations.
In particular, Figure 2 shows the differences in MSE for β′

1β1 = 0.2, keeping the other
parameters the same. In general, the pattern is similar to that for β′

1β1 = β′
2β2 = 1, although

the magnitude of MSEols
(︂ ˆ︁wols

)︂
− MSEr

(︂ˆ︁λopt
1 , ˆ︁λopt

2 , ˆ︁wr
)︂

is higher in the case of unequal
model coefficients. Figure 3 presents the results for the baseline case with the variance of
the error term changed to σ2 = 1 and σ2 = 5, respectively. Overall, the magnitude of the
reduction in the MSE is increasing with the error variance. Finally, Figure 4 shows the results
for the baseline case with the number of predictors changed to p = 10. An increase in the
number of predictors also leads to a higher magnitude of the reduction in the MSE due to
ridge regularization.

Figure 3: Difference in MSE given the optimal weights: in absolute terms (left) and normalized
over the MSE of the RMA estimator (right). σ2 = 1 (top) and σ2 = 5 (bottom)

Figure 4: Difference in MSE given the optimal weights: in absolute terms (left) and normalized
over the MSE of the RMA estimator (right). p = 10
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In the next section I compare the finite-sample performance of the canonical Mallows model
averaging with that also taking advantage of ridge regularization.

1.4 Finite-Sample Comparison

I now examine the finite-sample performance of the proposed RMA and HR-RMA estimators
relative to their closest competitors, the MMA and JMA estimators (Hansen, 2007; Hansen
and Racine, 2012), and the HR-MMA estimator (Liu and Okui, 2013), in terms of MSE.
Apart from the correlation pattern among predictors, our simulation design combines the
features of those from Hansen (2007) and Hansen and Racine (2012). The infinite-order
regression model is

yi = θ0 +
∞∑︂

k=1
θkxki + ei,

where xki are identically distributed N (0, 1). All the regressors are equicorrelated with
a correlation coefficient 0.5 in case [M](moderate correlation) and 0.75 in case [H](high
correlation).11 The error term ei is conditionally distributed as N (0, σ2 (x2i)), where σ2 (x2i) =
x4

2i. The parameters are set by the rule

θk = cγk

γk = kαβk∑︁K
j=1 j2αβ2j

to model various specifications of θk. I consider several combinations of α and β. First, for
α = 0.5, the considered values of β are [.6, .7, .8, .9]. Then I fix β at β = 0.7, and consider
[.25, .5, 1] as values for α. The population R2 varies on a grid from 0.1 to 0.9, so the parameter
c is set by the rule c =

√︂
R2/ (1 − R2). I examine three sample sizes, n = 25, 50, 100 with

the maximum model lengths p = 9, 11, 15, respectively. In the experiment I also include the
weighted BIC criterion (WBIC)12 and the equal weighting (EW) scheme.13

I compare the competing methods based on the mean squared error

MSE = 1
n

(µ − ˆ︁µ)′ (µ − ˆ︁µ)

that is averaged across 5000 simulation draws.
11Except for an intercept, x1.
12The least squares model average estimator with the weights wm = exp

(︁
− 1

2 BICm

)︁
/
∑︁M

j=1 exp
(︁
− 1

2 BICm

)︁
,

where BICm = n ln σ̂2
m + ln (n) m.

13The least squares model average estimator with the weights wm = 1/M . EW is uniformly dominated so
I do not show it on our graphs for the sake of their better readability.
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Figure 5: n = 25. Case [M] of moderate correlation among predictors.

Figures 5, 6 and 7 present the results for the sample sizes of 25, 50, and 100, respectively,
under moderate correlation among the regressors.14 Each panel of graphs displays average
MSE across different values of R2, varied from 0.1 to 0.9. Overall, the ridge-based model
averaging estimators nearly uniformly outperform their alternatives for all sample sizes. In
addition, heteroskedasticity robust RMA has a lower MSE than non-robust RMA unless the
true R2 is very low (below about 0.2). The reduction in MSE from using HR-RMA instead
of HR-MMA varies between 10% and 53% for n = 25, between 6% and 44% for n = 50 and
between 1% and 44% for n = 100. Appendix 1.H presents the results for n = 100 in the case
[H] of high correlation among the predictors. Although higher correlation does not change the
results qualitatively, the improvement achieved by the ridge-based RMA estimators relative
to other estimators tends to be more uniformly pronounced under stronger correlation of the
regressors.

14The shape of coefficients γk is shown in Appendix 1.C.
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Figure 6: n = 50. Case [M] of moderate correlation among predictors
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Figure 7: n = 100. Case [M] of moderate correlation among predictors

In Appendix 1.W I show the distributions of the optimal weighs over the set of competing
models for n = 100 with moderately correlated predictors. One can easily see that the weights
obtained for the ridge-based estimators tend to favor the larger models, while the optimal
weights found via JMA/MMA favor small or moderate model lengths for low and high values
of R2, respectively. The reason is the ability of RMA and HR-RMA to accommodate larger
models without inflating the variance, while this property is not shared by estimators based
on ordinary least-squares regressions.
In the next section I examine the relative performance of the ridge-based averaging estimators
via two real-data examples.
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1.5 Empirical Examples

1.5.1 Wage Prediction

Similarly to Hansen and Racine (2012), I employ Wooldridge’s (Wooldridge 2003, pg. 226)
‘wage1’ cross-sectional dataset, a random sample (526 observations) from the US Cur-
rent Population Survey for the year 1976.15 There is uncertainty about the best model
for the log of average hourly earnings, so a set of thirty models ranging from the un-
conditional mean (k = 1) through a full model that includes k = 30 variables is con-
sidered. Explanatory variables include non-dummy variables educ, exper, tenure and
dummy variables female, married, nonwhite, numdep, smsa, northcen, south, west, con-
struc, ndurman, trcommpu, trade, services, profserv, profoss, clerocc, servocc, and interaction
terms nonwhite×educ, nonwhite×exper, nonwhite×tenure, female×educ, female×exper,
female×tenure, married×educ, married×exper, married×tenure.
Then, as in Hansen and Racine (2012), the sample is randomly split into a training portion
n1 and an evaluation portion of size n2 = n − n1. I compare the same methods mentioned in
the previous section: MMA, HR-MMA, JMA, WBIC, RMA and HR-RMA. For each model I
compute its average square prediction error (ASPE) using the evaluation set of observations.
The procedure is repeated for 100 splits, then the median ASPE over 100 random splits is
reported. The size of the training portion is varied, n1 = 50, 75, 100, 200, 300, 400, 500. All
numbers in the Table 1 are normalized by the corresponding ASPE of HR-MMA, so the
entries lower than 1 indicate superior performance relative to the HR-MMA estimator.

Table 1: Out-of-sample predictive efficiency. Entries less than one indicate superior perfor-
mance relative to the HR-MMA estimator.

n1 MMA JMA WBIC RMA HR-RMA
50 0.7131 0.6935 0.8066 0.6047 0.6272
75 0.9338 0.9012 1.1341 0.8473 0.8731
100 0.9540 0.9389 1.1850 0.9034 0.9214
200 0.9966 0.9952 1.0266 0.9857 0.9903
300 1.0014 1.0018 1.0081 0.9970 0.9929
400 1.0020 1.0044 1.0073 0.9939 0.9946
500 0.9987 1.0052 1.0453 1.0074 1.0072

Table 1 shows that both ridge-based model averaging estimators (RMA and HR-RMA
columns) deliver improvement in predictive efficiency comparable to that achieved by the
MMA, HR-MMA and JMA methods in finite samples. The benefits of RMA and HR-RMA
are especially pronounced for smaller sample sizes, though they tend to persist for larger
samples as well. Moreover, for smaller samples (n1 = 50, 75, 100) random splits result
relatively often in the singular design matrix, thus increasing the motivation for regularization
from a practitioner’s perspective. HR-RMA tends to have marginally lower out-of-sample
predictive efficiency relative to RMA, thus demonstrating a price to pay for robustness to
heteroskedasticity.

15See http://fmwww.bc.edu/ec-p/data/wooldridge/WAGE1.des for a full description of the data.
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Figure 8: Correlation heatmap and correlation histogram for the wage predictors, in-sample
portion of the data n1 = 500. The absolute values of correlations are employed.

This example illustrates the scope of the benefit achieved by the use of ridge-regularized
model averaging estimators under relatively low correlations among the predictors. Figure 8
presents a heatmap and histogram for pairwise correlations16 among the variables for n1 = 500.
Notably, the variables are mostly low to moderately correlated, though the correlations are
high enough for the ridge regularization to be beneficial. The next subsection presents another
example, with moderately to highly correlated predictors, where the relative benefits from
using the ridge-based model averaging estimators are even larger.

1.5.2 Growth Determinants

Next, I work with the dataset collected by Barro and Lee (1994) on cross-country determinants
of long-term economic growth. Overall, the dataset includes 60 potential predictors of the
average growth rate of GDP between 1960 and 1985 for 90 countries. I use this dataset to
predict the growth rate via averaging across different combinations of predictors in the model.
The intercept and the logarithm of the initial GDP are always included,17 and only nested
models are considered.
I employ three different schemes for sample-splitting to compare the performance of all
estimators:
(Leave-one-out) use all but one country for model estimation to make the predictions for the
remaining country, do this for each country,
(Out-of-sample-5) randomly select 85 (out of 90) countries for model estimation to make the
predictions for the remaining 5 countries, make 500 draws, then average the results across
them,

16Absolute values of pairwise correlations are used for the sake of visibility.
17Similarly to Belloni et al. (2011) and Giannone et al. (2021) who employ the same dataset for the purpose

of prediction.
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(Out-of-sample-10) randomly select 80 countries for model estimation to make the predictions
for the remaining 10 countries, make 500 draws, then average the results across them.
For each scheme, I compute the average squared prediction error across 1/5/10 countries,
respectively. I compare the same methods as before, and all presented statistics are again
normalized with respect to the HR-MMA. Table 2 shows that all methods outperform the
HR-MMA estimator. Both the RMA and HR-RMA tend to deliver smaller prediction error
than the MMA, while the performance of the RMA is similar to that of the JMA. Remarkably,
the oldest method, WBIC, does especially well in this example.

Table 2: Average squared prediction error in long-run growth regression (all numbers are
normalized over those for HR-MMA)

MMA JMA WBIC RMA HR-RMA
Leave-one-out 0.7489 0.4193 0.3324 0.4851 0.7815
Out-of-sample-5 0.6347 0.4422 0.3718 0.4770 0.6109
Out-of-sample-10 0.5861 0.4043 0.3312 0.4369 0.5294

Figure 9 presents the correlation heatmap and histogram, similarly the previous empirical
example. Unlike in the previous example, here the predictors are moderately to highly
correlated. Correspondingly, in this example I observe bigger improvement attained by the
RMA and HR-RMA methods relative to that in the previous example, where the predictors
are low to moderately correlated (say, for the sample sizes n1 = 75 and n1 = 100 in the
wage prediction example, which are close to the sample sizes employed in the example of the
current subsection).

Figure 9: Correlation heatmap and correlation histogram for the growth predictors. The
absolute values of correlations are employed.
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1.6 Conclusion

This paper promotes the use of ridge-regularized model averaging estimation. Although the
proposed RMA and HR-RMA estimators do not dominate the alternatives uniformly over
the parameter space, in most cases they outperform others over a considerable interval of the
population R2. The improvement achieved by ridge regularization may be partially attributed
to changes of the weight distribution: the optimal weights found via RMA/HR-RMA tend to
be higher for more sophisticated models, while the weights obtained via other procedures are
predominantly distributed among low and moderately parametrized specifications.
Two empirical examples demonstrate the benefits of the ridge-regularized model averaging
estimators. Specifically, the RMA tends to deliver better predictions than the MMA, while the
HR-RMA outperforms the HR-MMA, especially in small samples. Notably, in both examples
the RMA performs better or comparably to the JMA, which may be more computationally
intensive. Although in this paper I utilize a rather demanding cross-validation procedure to
select the optimal degree of regularization, there are alternative ways to set up the shrinkage
parameter (see, for example, Hansen and Kozbur 2014). While other data-driven approaches
may result in the shrinkage parameter deviating from the optimal value, their use may still
be beneficial, as shown by Hansen and Kozbur, in particular.
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Appendix 1.C

Figure 10: Simulation study: regression coefficients (all graphs are truncated along the
horizonal axis)
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Appendix 1.E

Part 1

The averaged OLS estimate:

β̃ =wols

(︄
β̂

ols

1
0

)︄
+
(︂
1 − wols

)︂(︄ 0
β̂

ols

2

)︄
=
⎛⎝ wolsβ̂

ols

1(︂
1 − wols

)︂
β̂

ols

2

⎞⎠
=
[︄

wols 0
0 1 − wols

]︄⎛⎝ β̂
ols

1

β̂
ols

2

⎞⎠ = W olsβ̂
ols

=
⎛⎝ wolsβ1 + wols (X ′

1X1)−1 X ′
1 (X2β2 + e)(︂

1 − wols
)︂

β2 +
(︂
1 − wols

)︂
(X ′

2X2)−1 X ′
2 (X1β1 + e)

⎞⎠
The bias of the averaged OLS estimate:

E
[︂
β̃ − β

]︂
=E

[︄
wols

(︄
β̂

ols

1
0

)︄
+
(︂
1 − wols

)︂(︄ 0
β̂

ols

2

)︄
−
(︄

β1
β2

)︄]︄

=E

⎡⎣⎛⎝ β1
(︂
wols − 1

)︂
+ wols (X ′

1X1)−1 X ′
1X2β2 + wols (X ′

1X1)−1 X ′
1e

−β2w
ols +

(︂
1 − wols

)︂
(X ′

2X2)−1 X ′
2X1β1 +

(︂
1 − wols

)︂
(X ′

2X2)−1 X ′
2e

⎞⎠⎤⎦
=E

⎡⎣ β1
(︂
wols − 1

)︂
+ wols (X ′

1X1)−1 X ′
1X2β2

−β2w
ols +

(︂
1 − wols

)︂
(X ′

2X2)−1 X ′
2X1β1

⎤⎦
The variance of the averaged OLS estimate:

V ar
[︂
β̃
]︂

=V ar

⎡⎣⎛⎝ wols (X ′
1X1)−1 X ′

1e(︂
1 − wols

)︂
(X ′
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2e

⎞⎠⎤⎦
=

⎡⎢⎣
(︂
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)︂2
σ2 (X ′

1X1)−1 wols
(︂
1 − wols

)︂
σ2 (X ′

1X1)−1 X ′
1X2 (X ′

2X2)−1

wols
(︂
1 − wols

)︂
σ2 (X ′

2X2)−1 X ′
2X1 (X ′

1X1)−1
(︂
1 − wols

)︂2
σ2 (X ′

2X2)−1

⎤⎥⎦
The average of ridge estimates:

β̃ (λ1, λ2) =wrWλ1

(︄
β̂

ols

1
0

)︄
+ (1 − wr) Wλ2

(︄ 0
β̂

ols

2

)︄
=
⎛⎝ wrWλ1 β̂

ols

1

(1 − wr) Wλ2 β̂
ols

2

⎞⎠
=
[︄

wrWλ1 0
0 (1 − wr) Wλ2

]︄⎛⎝ β̂
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1

β̂
ols

2

⎞⎠ = W r
λ1λ2 β̂
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=
(︄

wrWλ1β1 + wrWλ1 (X ′
1X1)−1 X ′

1 (X2β2 + e)
(1 − wr) Wλ2β2 + (1 − wr) Wλ2 (X ′

2X2)−1 X ′
2 (X1β1 + e)

)︄
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where Wλ1 = (X ′
1X1 + λIp)−1 X ′

1X1 and Wλ2 = (X ′
2X2 + λIp)−1 X ′

2X2. The bias of the
averaged ridge estimate:

E
[︂
β̃ (λ1, λ2) − β

]︂
=E

⎡⎣⎛⎝ wrWλ1 β̂
ols

1

(1 − wr) Wλ2 β̂
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β2
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)︄]︄
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1X2β2
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2X2)−1 X ′

2X1β1

)︄]︄

The variance of the averaged ridge estimate:
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β̃ (λ1, λ2)

]︂
=V ar
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wrWλ1 (X ′
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1e
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=
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V11 V ′
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V21 V22
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W ′
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X ′
2X1 (X ′
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W ′

λ1

V22 = (1 − wr)2 σ2Wλ2 (X ′
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W ′
λ2

The mean squared error of the averaged ridge estimate β̃ (λ1, λ2):

MSE
(︂
β̃ (λ1, λ2)

)︂
= tr

[︂
V ar

[︂
β̃ (λ1, λ2)

]︂]︂
+
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E
(︂
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Now its squared bias:
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So, the desired MSE is (4) + (5) + (6) + (7).

Part 2

For the first model estimated via ridge:
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Appendix 1.H

Figure 11: n = 100. The case [H] of high correlation among predictors
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Appendix 1.W

Figure 12: Optimal weights, α = 0.5, β = [0.6, 0.7] (left to right), R2 = [0.1, 0.5, 0.9] (top to
bottom). The case [M] of moderate correlation among predictors.
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Figure 13: Optimal weights, α = 0.5, β = [0.8, 0.9] (left to right), R2 = [0.1, 0.5, 0.9] (top to
bottom). The case [M] of moderate correlation among predictors.
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Figure 14: Optimal weights, α = [0.25, 1] (left to right), β = 0.7, R2 = [0.1, 0.5, 0.9] (top to
bottom). The case [M] of moderate correlation among predictors.
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2 Instrumental Variable Estimation with Many Instru-
ments Using Elastic-Net IV

Published as CERGE-EI Working Paper Series No 759.

2.1 Introduction

The instrumental variables (IV) regression is a common tool for identification of treatment
effects under regressor endogeneity. From the theoretical perspective, researchers would
like to utilize as much exogenous variation in the explanatory variables as possible, as it
increases the precision of IV estimates: Newey (1990), Amemiya (1974) and Chamberlain
(1987) motivate the use of many instruments for the purpose of nonparametric estimation of
optimal instruments. However, conventional GMM-type estimators, such as 2SLS, tend to be
substantially biased when the number of instrumental variables is not small relative to the
sample size: see Bekker (1994a) and Newey and Smith (2004).
The problem of many instruments may be circumvented in various ways. The use of
statistical methods with imbedded regularization is increasingly popular among economists.
Regularization techniques allow one to deal with ill-posed inverse problems, and date back
to Tikhonov (1943). Such methods include the ridge regression (Hoerl and Kennard 1970),
lasso (Tibshirani 1996), the penalized maximum likelihood estimation (Hastie et al. 2009),
and boosting (Buhlmann 2006), among others. There are several alternative regularization
procedures used as part of IV estimators: ridge and James-Stein type shrinkage applied
to the first stage by Hansen and Kozbur (2014) and Spiess (2017), respectively; lasso for
estimation of both the first stage and the reduced form by Belloni, Chen, Chernozhukov and
Hansen (2012, hereafter BCCH); applications of random forests and deep neural networks by
Wager and Athey (2018) and Farrell et al. (2021), respectively. In this list, BCCH stands out
due to the extreme popularity of lasso as a regularization technique that is often employed
under sparsity. In sparse models, there is a small number of variables18 that convey most of
the impact of all covariates in the response variable. Lasso represents the simplest sparse
modeling approach that allows simultaneous variable selection and coefficient estimation.
The key assumption needed for lasso to produce a meaningful solution is the sparsity of the
underlying model (see Section 2.1 for the definition of sparsity). The sparsity assumption may
be justified in structural economic equations, where few variables participate in determinating
an outcome variable. However, the lasso estimator is also promoted as a universal workhorse
for pure prediction tasks. Despite the popularity of the sparse modeling framework, the
adequacy of the sparsity (or approximate sparsity) assumption is often questionable. For
example, Giannone et al. (2021) find evidence against sparsity for a collection of empirical
applications from macroeconomics, microeconomics, and finance, where sparsity is routinely
assumed without pretesting.
Furthermore, the simplicity of the lasso approach has its costs even under sparsity. For
example, Zou and Hastie (2005, hereafter ZH) stress three limitations of classical lasso: (1) if

18s = o (n) ,where n is the sample size.
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predictors are highly correlated as a whole, the prediction performance of the ridge regression
dominates that of lasso (first observed in Tibshirani 1996), as with highly correlated predictors
the lasso solution paths tend to be unstable ; (2) in the p > n case, when the number of
variables p exceeds the number of observations n, lasso selects at most n variables; (3) if there
are groups of predictors within which pairwise correlations are high, lasso generally selects
only one variable from each group. ZH propose an alternative estimator – elastic-net (EN) –
that successfully eliminates these shortcomings of lasso.19 Through a simulation study and
empirical examples they show that elastic-net often outperforms lasso in terms of prediction
accuracy. In addition, EN essentially combines the properties of lasso and ridge , thus being
able to accommodate some DGP’s deviations from sparsity.
Of the three above-mentioned conditions under which the performance of lasso may be
improved, at least the first two directly relate to IV estimation. Economists often estimate a
causal effect based on a dataset at hand with many characteristics available for every unit
(possibly p > n), where many serve as potential instruments (including the basic instrumental
variables, their interactions and transformations). These instruments, however, tend to
be moderately or highly correlated, leading to unstable lasso solution paths.20 Thus, by
using lasso to tackle the first-stage prediction problem, one faces exactly the scenario under
which the performance of lasso may be improved via an additional ridge-type regularization,
therefore justifying the use of the elastic-net technique.
This paper contributes to the literature on IV estimation with many instruments by considering
the use of the elastic-net approach for estimating the first-stage regression. While the lasso
(and post-lasso) IV estimator by BCCH and the ridge jackknife IV estimator by Hansen
and Kozbur (2014) stem from the sparsity and the density of the first-stage relationship,
respectively, I propose the elastic-net IV estimator (ENIV), which fits between those two.
Similarly to lasso, elastic-net with a properly selected penalty parameter is shown to have
oracle properties21 under sparsity. Consequently, the results of BCCH on consistency and
asymptotic normality (under possible non-Gaussianity and heteroskedasticity of the error
term) of a generic sparsity-based IV estimator can be applied to the proposed elastic-net
IV estimator. At the same time, in the case of no sparsity, elastic-net is by construction
capable of acting like a ridge regression. Thus, for elastic-net with data-driven parameters (a
penalty level, and a weighting parameter reflecting the degree of DGP sparsity), the proposed
estimator should be robust to the unknown degree of sparsity of first-stage relationships.
To address the issue of overfitting (see, for example Chernozhukov et al. 2018), I consider
sample-split and cross-fit versions of the basic elastic-net IV estimator (SS-ENIV and CF-
ENIV, respectively), and compare them with the lasso-based analogues. I study the relative
performance of the proposed estimators via simulations. Specifically, I compare the resulting
IV estimates in terms of the median absolute bias, median absolute deviation and rejection rate.
The SS-ENIV and CF-ENIV estimators perform well relative to the lasso-based alternatives,
regardless of the signal’s sparsity.

19Elastic-net reduces to lasso in an orthogonal design, where lasso is optimal, see Donoho et al. (1995).
20Under high dimensionality of the problem, even when the instrumental variables are independent, there

might be large sample correlations, see Fan and Lv (2008).
21i.e. to achieve the rate of convergence that is very close to the oracle rate

√︁
s/n achievable when the

true model is known.
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Additionally, I demonstrate the potential gains of the EN-based IV estimation based on the
classic empirical investigation from Angrist and Krueger (1991), who look at the causal effect
of schooling on earnings. The identification strategy and data from Angrist and Krueger
(1991) provide many available instrumental variables for schooling. While employing as many
of them as possible potentially leads to higher accuracy of the estimated causal effect, it
also leads to biases and inferential problems. Therefore, the use of instrument selection
or regularization techniques is justified, thus making the example suitable for testing the
performance of the EN-based IV estimators.
The plan of this paper is as follows. In Section 2 I describe an instrumental variables setup and
overview the regularization-based methods for estimation of optimal instruments. In Section
3 I present and discuss the results of a simulation study that examines the performance of
the proposed estimator relative to its closest competitors. Section 4 provides an empirical
example to demonstrate potential improvement in estimation accuracy gained by the use of
IV estimators based on elastic-net.

2.2 The Instrumental Variables Model

The problem setup is similar to that from BCCH, simplified to the case of a scalar endogenous
variable. The model is yi = d′

iδ0 + ei, where yi is a scalar outcome, di is a kd-vector of
variables, and δ0 denotes the true value of a vector-valued parameter δ. The first element
of di is endogenous, while the remaining elements of di constitute a vector of exogenous
covariates wi. The disturbance term ei is such that E [ei |zi ] = 0, where zi is a kz-vector of
instrumental variables.
As a motivation, suppose the disturbance term is conditionally homoskedastic, E [e2

i |zi ] = σ2.
For a kd-vector of instruments A (zi), the standard IV estimator of δ0 takes the form

δ̂ = (En [A (zi) d′
i])

−1 En [A (zi) yi] ,

where {(zi, di, yi) , i = 1, ..., n} is i.i.d. sample, En [f ] := En [f (zi)] := ∑︁n
i=1 fi/n. Given

instruments A (zi), √
n
(︂
δ̂ − δ0

)︂
→d N

(︂
0, Q−1

0 Ω0Q
−1
0

)︂
,

where Q0 = E [A (zi) d′
i] and Ω0 = σ2E

[︂
A (zi) A (zi)′

]︂
. Employing the optimal instrument

A (zi) = D (zi) = E [di |zi ] achieves the semiparametric efficiency bound for estimating δ0,

with the asymptotic variance Λ∗ = σ2
{︂
E
[︂
D (zi) D (zi)′

]︂}︂−1
(see Chamberlain 1987).

2.2.1 Regularized Estimation Methods for Optimal Instruments

In practice, the optimal instrument D (zi) is not known, and many ways to estimate it exist
in the literature. Suppose there is a large set of instruments,

fi := (fi1, ..., fip)′ := (f1 (z1) , ..., fp (z1))′

available for estimation of conditional expectation D (zi), and the number of instruments p is
possibly larger than the sample size n. In BCCH, the optimal instrument D (zi) is assumed
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to be approximately sparse, i.e. a function D (zi) is deemed to be well-approximated by a
function of unknown 1 ≤ s ≪ n instruments:

D (zi) = f
′

i β0 + a (zi) ,

∥β0∥0 ≤ s = o (n) ,
[︂
Ena (zi)2

]︂1/2
≤ cs ≲P

√︂
s/n.

The identities of s relevant instruments, i.e. T = support (β0) = {j ∈ {1, ..., p} : |β0j| > 0},
are meant to be a priori unknown. The sparsity assumption requires that at most s instruments
approximate the conditional expectation D (zi) so that the approximation error a (zi) does
not exceed the conjectured size

√︂
s/n of the error of the infeasible estimator that “knows”

the identity of these s relevant instruments (the “oracle estimator”).

Lasso

The first stage regression equation is

di = D (zi) + vi, E [vi|zi] = 0.

For the sample {(zi, di) , i = 1, ..., n} , consider estimators of the optimal instrument D (zi) of
the form ˆ︂Di := ˆ︂D (zi) = f ′

i
ˆ︁β,

where ˆ︁β is the sparse estimator based on regressors fi and di as the dependent variable. The
sparse estimator sets all but a small fraction of the coefficient estimates β̂j to 0. Let Q (β)
denote the least squares criterion function, ˆ︁Q (β) := En

[︂
(di − f ′

iβ)2
]︂
, then the lasso estimator

employed in BCCH is defined as a solution to

ˆ︁βL ∈ arg min
β∈Rp

ˆ︁Q (β) + λL
⃦⃦⃦ ˆ︁Υβ

⃦⃦⃦
1

,

where λL is the penalty level and ˆ︁Υ = diag (ˆ︁γ1, ..., ˆ︁γp) is a diagonal matrix with data-dependent
weights, also called penalty loadings. The basic lasso estimator, with all penalty loadings set
to 1, was introduced by Tibshirani (1996) as a technique for simultaneous estimation and
variable selection. Basically, lasso shrinks the coefficients toward 0 as λL increases, and some
coefficient estimates are set to 0 for large enough λL.
Lasso has been shown to be variable selection consistent, i.e. to be able to discover the
correct model specification, under suitable conditions (see Meinshausen and Buhlmann 2004).
Initially, the weighted/adaptive version of lasso (with data-dependent penalty loadings)
was proposed in Zou (2006) in response to debates about whether the lasso estimator is
an oracle procedure (Fan and Li 2001; Meinshausen and Buhlmann 2004). For the data-
dependent and cleverly chosen loadings22, the adaptive lasso estimator is shown to enjoy
oracle properties. Relatively recently, BCCH have proposed novel penalty loadings that

22Zou (2006) suggests the weight vector ŵ = 1/
⃓⃓⃓
β̂
⃓⃓⃓γ

, where β̂ is a root-n consistent estimator for β, and
γ > 0.
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result in sharp convergence rates for the lasso estimator under possible non-Gaussianity and
heteroskedasticity.
Having estimated the optimal instrument via lasso, let ˆ︂Di be a vector of instruments that
also includes the vector of exogenous covariates wi

ˆ︂Di =
(︂ˆ︂D (zi) , w′

i

)︂′
.

Then the resulting lasso-IV estimator

ˆ︁δL = En

[︂ˆ︂Did
′
i

]︂−1
En

[︂ˆ︂Diyi

]︂
(8)

is shown to achieve the efficiency bound asymptotically,
√

n
(︂ˆ︂δL − δ0

)︂
=d N (0, Λ∗) +

oP (1). The IV estimator with the lasso-based optimal instrument is root-n consistent and
asymptotically normal (see Theorem 3 of BCCH). Moreover, consistency and asymptotic
normality continues to hold for any generic sparsity-based method achieving specific near-
oracle performance bounds (see Theorem 4 of BCCH), and I exploit this result in the next
section.

Elastic-Net IV Estimator

Although lasso is aimed at high-dimensional problems, its performance may be deteriorated
by the correlation among predictors, which often takes place in high-dimensional settings. Zou
and Hastie (2005) point out that the lasso solution paths are unstable (i.e. not smooth) when
predictors are highly correlated. The relevance of this issue is stressed by Fan and Lv (2008)
who show that even with the independent predictors the maximum sample correlation can be
large, as long as the dimensionality is high. In addition, ZH notice that for high-dimensional
problems with p ≫ n, lasso is incapable of selecting more than p variables into the model.
Consequently, they propose an alternative penalized estimator, elastic-net (EN),

β̂
EN = arg min

β

⎧⎪⎨⎪⎩
N∑︂

i=1

⎛⎝di −
p∑︂

j=1
fijβj

⎞⎠2

+ λEN
p∑︂

j=1

(︂
α |βj| + (1 − α) β2

j

)︂⎫⎪⎬⎪⎭ ,

which involves an l2-penalty in addition to lasso’s l1-penalty. The first term of the penalty,
λEN ∑︁p

j=1 α |βj| encourages a sparse solution, as does the lasso penalty, while the second
term, λEN ∑︁p

j=1 (1 − α) β2
j , regularizes the covariance matrix, and encourages equality of the

coefficients on highly correlated predictors. ZH shows that elastic-net may be interpreted as
a stabilized23 version of lasso (p. 308, Theorem 2), and can therefore improve upon lasso.
In the statistical literature, the performance of the elastic-net estimator is usually analyzed
under a restrictive assumption of the Gaussian and homoskedastic error term. For example,
when Gaussian and homoskedastic noise is assumed, Jia and Yu (2010) study the model
selection properties of the elastic-net estimator in the asymptotic framework where the

23Stabilization is achieved via replacement of the sample covariance matrix ˆ︁Σ with its shrunken (towards
the identity matrix) version.
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number of variables p grows with the sample size n. They provide sufficient conditions for
elastic-net to be model selection consistent24, as well as theoretical and simulation examples
demonstrating when elastic-net can consistently select the true model, while lasso fails to do
so.25 Further, Ghosh (2011) considers adaptive elastic-net that generalizes elastic-net in the
same way that adaptive lasso generalizes lasso, thus expanding the set of conditions under
which elastic-net performs consistent variable selection. The adaptive elastic-net estimator
uses a more flexible l1-penalty for consistent variable selection, while the ridge-type penalty
term stays unchanged26 and continues to regularize the solution path:

β̂
EN

ada = arg min
β

⎧⎪⎨⎪⎩
N∑︂

i=1

⎛⎝di −
p∑︂

j=1
fijβj

⎞⎠2

+ λEN
1

p∑︂
j=1

wj |βj| + λEN
2

p∑︂
j=1

β2
j

⎫⎪⎬⎪⎭ ,

where the weight estimate ˆ︁wj = 1/|ˆ︁βj|γ, j = 1, ..., p, for some γ > 0, with the ordinary least
squares estimator ˆ︁βOLS being a possible choice of ˆ︁β. Under suitable conditions, the adaptive
elastic-net estimator is shown to have oracle properties (variable selection consistency and
asymptotic normality, see Theorem 3.2).
However, the breakthrough results of Theorem 4 in BCCH on root-n consistency and
asymptotic normality apply to a wide class of sparsity-based methods that encompasses the
elastic-net estimator. Consequently, to get the desired asymptotic properties of the elastic-net
estimator under possible non-Gaussianity and heteroskedasticity of the error term, it is
enough to establish the near-oracle bounds that are required by BCCH’s Theorem 4. I use
the result from Zou and Hastie (2006) about transformation of the elastic-net problem into an
equivalent lasso problem on augmented data to show that the elastic-net estimator performs
closely enough to the oracle under sparsity, in the sense of meeting sufficient conditions of
BCCH’s Theorem 4.
Proposition 1. For

(︂
λEN

1 , λEN
2

)︂
such that γ = λEN

1 /
√︂

1 + λEN
2 = λL

opt, where λL
opt denotes

the optimal penalty for the lasso-estimator, the elastic-net estimator obeys the near-oracle
performance bounds:

⃦⃦⃦ˆ︂DEN
i − Di
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2,n

≤p
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s log (n + p)

n + p⃦⃦⃦ˆ︁δEN − δ0

⃦⃦⃦
1

≤p

√︄
s2 log (n + p)

n + p

Therefore, the elastic-net estimator can perform a variable selection and estimation similarly
to the lasso estimator. Once the sufficient conditions of Theorem 4 in BCCH continue to hold,
one can rely on the existing results regarding consistency and asymptotic normality of generic
sparsity-based IV estimators obtained in BCCH. In other words, the IV estimators based on
elastic-net and lasso can be asymptotically equivalent under sparsity and the appropriate
choice of the penalty parameters

(︂
λEN

1 , λEN
2

)︂
. At the same time, ridge regularization often

24Jia and Yu (2010) also state a specific condition for the inconsistency of the elastic-net estimator.
25See also Yuan and Lin (2007) for a similar study for fixed p.
26In principle, adaptive weights can also be placed on an l2 penalty, but it is not necessary to guarantee

the oracle properties of the adaptive elastic-net estimator examined in Ghosh (2011).
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leads to finite-sample improvement, so the relative finite-sample performance of the IV
estimators based on elastic-net (with a ridge-type penalty) and lasso (without a ridge-type
penalty) is of interest, and is investigated in Section 3 of this paper.

Sample-Split and Cross-Fit Elastic-Net IV Estimator

In principle, one could employ ˆ︂Di = f ′
i
ˆ︁βEN for ˆ︂Di in (2.2.1) to define an IV estimator with a

EN-regularized first stage. However, as noted in Hansen and Kozbur (2014), among others,
this direct approach would typically introduce a so-called regularization bias (similar to other
methods involving regularization ).27 In general, the least shrunk coefficients correspond to
the instruments that are most highly correlated with the first stage noise, thus contaminating
the exclusion restriction. The use of sample-splitting or jackknifing is a common way of
lowering the regularization bias. I employ the sample-splitting technique to preserve the
exclusion restriction, thus defining

β̂
EN

I1 = arg min
β

⎧⎪⎨⎪⎩
∑︂
i∈I1

⎛⎝di − β0 −
p∑︂

j=1
fijβj

⎞⎠2

+ λEN
p∑︂

j=1

(︂
α |βj| + (1 − α) β2

j

)︂⎫⎪⎬⎪⎭ ,

which is the elastic-net estimate from an elastic-net regression of d on f with regularization
parameters

(︂
λEN , α

)︂
using the random subset of observations I1 (a half of the sample, in the

simplest case). The estimator ˆ︂Di for the ith unit is then defined as ˆ︂Di = f ′
i β̂

EN

I1 . Finally, I
define the sample-split ENIV estimator as

ˆ︁δSS−ENIV =
⎛⎝∑︂

i∈Ic
1

f ′
i β̂

EN

I1 d′
i

⎞⎠−1 ∑︂
i∈Ic

1

f ′
i β̂

EN

I1 yi,

where Ic
1 ∩ I1 = ∅.

By splitting the sample into halves, I break the correlation between ˆ︂Di and ei that is not
asymptotically negligible. Although the elastic-net regularization causes some loss of signal
due to coefficient shrinkage (similar to other regularization methods), a data-driven choice
of
(︂
λEN , α

)︂
is expected to result in quality signal extraction from a high-dimensional set of

instruments, whether sparse or dense. For example, for α = 0 and positive λEN , the elastic-net
IV estimator reduces to the ridge IV estimator. I suggest choosing the shrinkage parameter
based on the optimization of a first stage cross-validation criterion due to popularity and
availability of cross-validation tools in R, Python, Stata, etc.28 In general, for not very large
datasets one can replace a sample-splitting approach with a jackknifing procedure to fit
the first stage, thus generalizing the sample-split ENIV estimator to the jackknife ENIV
estimator.

27See Chernozhukov et al. (2018) for an extended discussion of the regularization bias and de-biased
estimation.

28The use of cross-validation is yet to be theoretically justified for elastic-net, despite being a widely spread
practice. See Chetverikov et al. (2021), which justifies the practice of using cross-validation to choose the
penalty parameter for lasso.
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Another possible approach is cross-fitting. Cross-fitting estimators are also based on the idea
of sample-splitting. First, the sample is partitioned into I1 and I2, and only observations
from I1 are used to get β̂

EN

I1 , whereas only observations from I2 are used to produce ˆ︁δ12 =(︃∑︁
I2 f ′

i β̂
EN

I1 d′
i

)︃−1
× ∑︁

i∈I2 f ′
i β̂

EN

I1 yi . Then the subsamples are swapped so that β̂
EN

I2 and

ˆ︁δ21 =
(︃∑︁

I1 f ′
i β̂

EN

I2 d′
i

)︃−1
× ∑︁N

i∈I1 f ′
i β̂

EN

I2 yi are obtained in an analogous way. Consequently,

the cross-fit elastic-net IV estimator is defined as ˆ︁δCF −ENIV =
(︂ˆ︁δ12 + ˆ︁δ21

)︂
/2. This way

both subsamples (symmetrically) contribute to the resulting estimate, thus increasing its
efficiency. I adopt the algorithm by Anatolyev and Mikusheva (2022, Section 3.2) to estimate
the variance of ˆ︁δCF −ENIV in a way that accounts for the correlation between ˆ︁δ12 and ˆ︁δ21.29

Finally, sample-split and cross-fit lasso-based IV estimators, which act as benchmarks in the
following section, are defined analogously.

2.3 Simulation study

The design of this simulation study closely follows that of Hansen and Kozbur (2014). I
demonstrate the performance of the IV estimators employing elastic-net, and compare it with
the performance of lasso-based IV estimators, and the ridge jackknife IV estimator (RJIVE)
by Hansen and Kozbur (2014). Let the data generating process be

yi = xiδ0 + ei

xi = Z ′
iΠ + ui

with
(ei, ui) ∼ N

(︄
0,

(︄
σ2

e σeu

σeu σ2
u

)︄)︄
,

where xi is the scalar treatment variable, and δ0 = 1 is the parameter of interest. The sample
size n = 100, σ2

e = 2, and corr (ei, ui) = 0.6. The remaining parameters are varied within the
simulation study.
I consider two instrument designs: binary and continuous (Gaussian). Real datasets typi-
cally employ very different combinations of both binary and continuous instruments, thus
motivating examination of the two extreme cases: (i) all instruments are binary, and (ii) all
instruments are continuous. The continuous instrument design considers correlated Gaus-
sian instruments drawn with mean 0 and variance var (Zij) = 0.3. The correlation between
Gaussian instruments is given by corr (Zij, Zik) = 0.8|j−k|. The binary design is motivated
by the presence of many categorical variables, which often takes place in practice. In this
design, all instruments are drawn from Zij ∈ {0, 1} with Pr (Zij = 1) = 0.8 such that the
pairwise correlations are close to corr (Zij, Zik) = 0.8|j−k|.30 For each design, the number of
instruments is set to K = 95 or K = 190.

29Anatolyev and Mikusheva (2022) propose the algorithms for constructing a four-split estimator. I use a
version simplified to a case with only two splits.

30First, I make draws from the standard normal distribution, and apply Cholecky’s decomposition to
generate the Gaussian instruments Z0

ij with correlations corr
(︁
Z0

ij , Z0
ik

)︁
= 0.8|j−k|. Then I set Zij = I{Z0

ij
>0.8}.
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In addition to alternation of the instrument design, I also vary the first-stage coefficients
Π to generate dense, sparse, and mixed first-stage signal structures. In the dense scenario,
Π = (ι0.4K , 00.6K)′, where ιp is a 1 × p vector of ones, and 0q is a 1 × q vector of zeros. In
the sparse scenario Π = (3ι5, 0K−5)′, so only five instruments are relevant. Finally, in the
mixed scenario, Π = (3ι5, ι0.4K , 00.6K−5)′. By varying the noise σ2

u in the first-stage regression,
I control the strength of the instrument set measured by the concentration parameter
µ2 = NΠ′E [Z ′

iZi] Π/σ2
u. To model the cases of the weak and strong signal provided by the

instruments, I set µ2 = 30 and µ2 = 150, respectively.
I consider three IV estimators based on elastic-net: elastic-net IV estimator (ENIV), sample-
split elastic-net IV estimator (SS-ENIV), and cross-fit elastic-net IV estimator (CF-ENIV).
Their lasso-based counterparts are Lasso-IV, SS-Lasso-IV, and CF-Lasso-IV. I also report the
results for RJIVE and the 2SLS estimator. In addition, I present the results for the post-Lasso-
IV estimator described in BCCH31, as well as its sample-split version (SS-post-Lasso-IV).
The penalty levels for ENIV, SS-ENIV, and CF-ENIV is chosen through cross-validation.
The reported results are obtained by averaging across 1500 draws for each setting. For each
estimator, I present the median bias (Med. Bias), the median absolute deviation (MAD), and
the rejection rate for a 5%-level test of H0 : δ0 = 1 (RP 5%). For the post-Lasso estimator
with lasso sometimes selecting no instruments into the first stage regression, I calculate the
median bias and the median absolute deviation conditional on the lasso estimator selecting
at least one variable. In such a case, a failure to reject the null is recorded.
Table 2.1 shows the results for K = 95. Panels A and B focus on the results for weak
instruments (µ2 = 30), Panels C and D report the results for a stronger signal (µ2 = 150).
For the weak sparse signal, Lasso-IV, post-Lasso-IV, RJIVE, SS-ENIV, and CF-ENIV result
in reasonable rejection frequencies, with RJIVE and SS-ENIV being among the most accurate.
However, for the dense weak signal, only RJIVE, SS-ENIV and CF-ENIV continue to
have approximately the correct size (CF-ENIV tends to over-reject but not as much as the
Lasso-based estimators).
For the mixed design, only RJIVE and SS-ENIV deliver accurate test size. Overall, SS-ENIV
tends to produce more precise rejection rates when the true non-zero coefficients on the
instruments vary in magnitude (the case of a mixed signal), compared to the case of the
equal coefficient magnitude32, which is often examined as part of simulation exercises in the
literature (e.g. in Hansen and Kozbur, 2014, among others). In practice, there is often no
good reason to expect a signal to be evenly distributed across all instruments that explain a
decent share of variance in xi, the treatment variable. Whereas RJIVE tends to result in
rejection frequencies slightly above the nominal test size, the opposite is true for SS-ENIV.
With a strong sparse signal, most Lasso-based estimators produce adequate rejection frequen-
cies, as expected. RJIVE, SS-ENIV and CF-ENIV retain rather accurate test size irrespective
of the data structure when the signal is strong. Notably, CF-ENIV performs better with
strong signals (sparse, dense, or mixed) than with weak signals. The SS-ENIV estimator
proves to be a good alternative to RJIVE when dealing with a strong mixed signal, similarly

31BCCH recommend the penalty level to be proportional to
√

n log K. I employ the same penalty as in
Hansen and Kozbur (2014), namely 2.2

√︁
2n log (2K)σuσe.

32All first-stage variables are standardized before ridge/lasso/elastic-net estimation is performed.
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to the case of a weak mixed signal discussed above.

Table 2.1. Simulation Results many instruments K = 95
Sparse Signal Dense Signal Mixed Signal

Med. Bias MAD RP 5% Med. Bias MAD RP 5% Med. Bias MAD RP 5%
A. Concentration parameter = 30. Binary Instruments

Lasso-IV 0.009 0.015 0.091 0.017 0.018 0.237 0.012 0.013 0.201
SS-Lasso-IV 0.003 0.023 0.009 0.004 0.04 0.011 0.000 0.024 0.007

post-Lasso-IV 0.010 0.015 0.111 0.016 0.017 0.253 0.012 0.013 0.249
SS-post-Lasso-IV 0.003 0.023 0.008 0.004 0.038 0.013 0.000 0.024 0.009

CF-Lasso-IV 0.014 0.015 0.000 0.002 0.025 0.000 0.007 0.015 0
RJIVE -0.001 0.020 0.047 -0.001 0.011 0.055 -0.001 0.010 0.052
ENIV 0.022 0.022 0.405 0.020 0.020 0.448 0.015 0.015 0.466

SS-ENIV 0.000 0.028 0.038 0.001 0.020 0.056 0.000 0.015 0.048
CF-ENIV 0.001 0.022 0.104 0.000 0.015 0.098 -0.001 0.012 0.095

B. Concentration parameter = 30. Gaussian Instruments
Lasso-IV 0.005 0.011 0.076 0.011 0.012 0.210 0.007 0.008 0.177

SS-Lasso-IV 0.002 0.016 0.031 0.002 0.030 0.005 0.002 0.015 0.012
post-Lasso-IV 0.007 0.011 0.104 0.011 0.012 0.224 0.008 0.009 0.215

SS-post-Lasso-IV 0.002 0.016 0.029 0.001 0.030 0.005 0.003 0.015 0.011
CF-Lasso-IV 0.004 0.010 0.001 0.004 0.022 0.000 0.006 0.009 0.000

RJIVE -0.001 0.014 0.051 -0.002 0.010 0.041 0.000 0.008 0.053
ENIV 0.012 0.014 0.284 0.013 0.013 0.421 0.010 0.010 0.459

SS-ENIV 0.001 0.019 0.041 0.001 0.018 0.037 0.002 0.013 0.043
CF-ENIV 0.001 0.014 0.101 0.001 0.014 0.123 0.001 0.010 0.119

C. Concentration parameter = 150. Binary Instruments
Lasso-IV 0.005 0.014 0.065 0.012 0.014 0.133 0.008 0.010 0.130

SS-Lasso-IV 0.000 0.022 0.047 0.000 0.022 0.048 -0.001 0.016 0.043
post-Lasso-IV 0.005 0.014 0.068 0.013 0.014 0.155 0.009 0.010 0.144

SS-post-Lasso-IV -0.001 0.022 0.047 0.001 0.020 0.047 0.000 0.016 0.047
CF-Lasso-IV -0.001 0.016 0.000 -0.001 0.016 0.000 -0.001 0.013 0.000

RJIVE -0.002 0.017 0.052 0.000 0.011 0.063 -0.001 0.009 0.063
ENIV 0.012 0.016 0.149 0.016 0.016 0.218 0.012 0.012 0.233

SS-ENIV 0.000 0.022 0.052 0.001 0.016 0.060 -0.001 0.013 0.057
CF-ENIV -0.001 0.015 0.054 0.000 0.012 0.053 -0.001 0.010 0.071

D. Concentration parameter = 150. Gaussian Instruments
Lasso-IV 0.002 0.010 0.064 0.010 0.011 0.175 0.005 0.007 0.113

SS-Lasso-IV 0.000 0.015 0.058 0.000 0.02 0.045 -0.001 0.012 0.048
post-Lasso-IV 0.004 0.010 0.076 0.010 0.011 0.186 0.006 0.007 0.145

SS-post-Lasso-IV 0.000 0.015 0.057 0.001 0.018 0.045 -0.001 0.012 0.048
CF-Lasso-IV -0.001 0.011 0.006 0.000 0.014 0.000 0.000 0.009 0.002

RJIVE 0.000 0.011 0.057 0.000 0.009 0.065 -0.001 0.006 0.055
ENIV 0.008 0.011 0.132 0.012 0.012 0.251 0.008 0.009 0.225

SS-ENIV 0.000 0.015 0.054 0.001 0.013 0.060 0.000 0.010 0.047
CF-ENIV -0.001 0.011 0.056 0.000 0.010 0.079 0.000 0.007 0.070

Note: Results are based on 1500 simulation replications. I report Median Bias (Med. Bias), Median absolute deviation (MAD)
and rejection frequency for a 5% level test (RP 5%) for nine different estimators: the Lasso IV and post-Lasso IV estimators
of Belloni et al. (2012, Lasso-IV and post-Lasso-IV), their sample-split versions (SS-Lasso-IV and SS-post-Lasso-IV), the cross-
fit Lasso IV estimator, the RJIVE by Hansen and Kozbur (2014, RJIVE), and three estimators proposed in this paper: the
elastic-net IV estimator (ENIV), the sample-split elastic-net IV estimator (SS-ENIV) and the cross-fit elastic-net IV estimator
(CF-ENIV).

Table 2.2 shows the results for K = 190. Panels A and B again focus on the results for weak
instruments (µ2 = 30), Panels C and D report the results for a stronger signal (µ2 = 150).
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For the weak sparse signal, some Lasso-based estimators have reasonable rejection frequencies,
although RJIVE and SS-ENIV tend to be superior in terms of bias and rejection rate,
irrespective of sparsity. With the weak signal and mixed data structure, RJIVE and SS-ENIV
perform similarly, although the sample-split elastic-net IV estimator seems to be more prone
to under-rejection. With the strong sparse signal, Lasso-based estimators (Lasso-IV, SS-
Lasso-IV, post-Lasso-IV, SS-post-Lasso-IV) most often result in relatively adequate rejection
frequencies, the same holds for RJIVE, SS-ENIV, and CF-ENIV. With the strong mixed
signal, binary or Gaussian, SS-ENIV tends to produce slightly lower rejection frequencies than
RJIVE, including the case of Gaussian instruments when both estimators slightly over-reject.
To sum up the results of the simulation study, the IV estimators based on elastic-net constitute
a safe alternative to those based on lasso under an unknown degree of sparsity. In particular,
the sample-split elastic-net IV estimator tends to dominate its lasso-based counterpart, the
sample-split lasso IV estimator, as well as other lasso-based IV estimators, in terms of bias
and test accuracy. In addition, the performance of the sample-split elastic-net IV estimator
is comparable to that of the ridge jackknife IV estimator. SS-ENIV tends to result in
slightly lower rejection frequencies than RJIVE, thus being superior in the settings when
both estimators over-reject. RJIVE shows minor over-rejection in most settings considered
with the mixed signal, thereby motivating further investigation of the relative performance of
RJIVE and SS-ENIV estimators in various settings with uneven distribution of explanatory
power across the instrumental variables. Finally, data generating processes with alternative
degrees of sparsity are also worth examining.
Figure 15 presents frequency plots for the penalty ratio from first-stage regressions estimated
via elastic-net. The elastic-net penalty ratio is a/ (a + b) where a and b come from representing
the elastic-net penalty term λ

(︂
α |βj| + (1 − α) β2

j

)︂
as a |βj|+bβ2

j . The penalty ratio is chosen
through cross-validation.33 For the ratio 1.0 the penalty is an l1-penalty (lasso-type), whereas
for the ratio 0.0 it is an l2-penalty (ridge-type).

33I use a Python package, sklearn.linear_model.ElasticNetCV, to fit the first-stage via elastic-net, with a
prespecified grid [0.01, 0.03, .05, .07, .1, .2, .5, .8, .9, 0.93, .95, 0.97, .99, 1]. For each value of the penalty
ratio, the grid for a parameter α, which is also estimated through cross-validation, consists of 100 values and
is defined automatically as part of the ElasticNetCV package.
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Table 2.2. Simulation Results many instruments K = 190
Sparse Signal Dense Signal Mixed Signal

Med. Bias MAD RP 5% Med. Bias MAD RP 5% Med. Bias MAD RP 5%
A. Concentration parameter = 30. Binary Instruments

Lasso-IV 0.010 0.015 0.103 0.016 0.016 0.329 0.013 0.013 0.290
SS-Lasso-IV 0.001 0.032 0.009 0.007 0.038 0.003 0.004 0.025 0.001

post-Lasso-IV 0.010 0.015 0.120 0.015 0.015 0.359 0.013 0.013 0.333
SS-post-Lasso-IV 0.001 0.032 0.008 0.005 0.039 0.003 0.003 0.026 0.002

CF-Lasso-IV 0.025 0.025 0.000 0.009 0.027 0.000 0.006 0.012 0.000
RJIVE 0.000 0.025 0.042 0.000 0.009 0.043 0.000 0.008 0.048
ENIV 0.026 0.026 0.498 0.018 0.018 0.720 0.016 0.016 0.729

SS-ENIV 0.001 0.034 0.037 0.000 0.015 0.043 0.002 0.013 0.043
CF-ENIV 0.001 0.026 0.132 0.000 0.012 0.108 0.001 0.010 0.124

B. Concentration parameter = 30. Gaussian Instruments
Lasso-IV 0.005 0.011 0.074 0.010 0.01 0.275 0.007 0.008 0.231

SS-Lasso-IV 0.000 0.016 0.031 0.010 0.025 0.001 0.002 0.019 0.005
post-Lasso-IV 0.007 0.011 0.124 0.010 0.01 0.315 0.008 0.274

SS-post-Lasso-IV 0.000 0.016 0.030 0.011 0.023 0.001 0.002 0.019 0.005
CF-Lasso-IV 0.005 0.010 0.000 0.015 0.015 0.000 0.007 0.009 0.000

RJIVE -0.001 0.017 0.052 0.000 0.008 0.050 -0.001 0.007 0.042
ENIV 0.013 0.015 0.348 0.011 0.011 0.688 0.009 0.009 0.641

SS-ENIV 0.001 0.019 0.044 0.002 0.013 0.045 0.001 0.013 0.025
CF-ENIV 0.001 0.015 0.110 0.002 0.011 0.129 0.001 0.010 0.141

C. Concentration parameter = 150. Binary Instruments
Lasso-IV 0.005 0.014 0.069 0.011 0.012 0.208 0.010 0.01 0.180

SS-Lasso-IV -0.001 0.021 0.049 0.000 0.023 0.039 0.001 0.018 0.029
post-Lasso-IV 0.005 0.014 0.074 0.012 0.012 0.235 0.010 0.011 0.217

SS-post-Lasso-IV 0.000 0.021 0.051 0.001 0.020 0.042 0.001 0.016 0.032
CF-Lasso-IV 0.001 0.015 0.001 0.001 0.016 0.002 0.000 0.014 0.001

RJIVE -0.001 0.018 0.053 0.000 0.008 0.059 0.000 0.007 0.049
ENIV 0.015 0.018 0.201 0.015 0.015 0.400 0.014 0.014 0.430

SS-ENIV 0.001 0.021 0.052 0.000 0.012 0.061 0.000 0.010 0.042
CF-ENIV 0.000 0.015 0.047 0.000 0.009 0.053 0.000 0.007 0.055

D. Concentration parameter = 150. Gaussian Instruments
Lasso-IV 0.003 0.010 0.055 0.009 0.010 0.239 0.007 0.008 0.207

SS-Lasso-IV -0.001 0.016 0.043 0.002 0.018 0.021 0.000 0.014 0.036
post-Lasso-IV 0.004 0.010 0.060 0.010 0.010 0.274 0.008 0.008 0.259

SS-post-Lasso-IV 0.000 0.015 0.043 0.001 0.016 0.024 0.000 0.014 0.033
CF-Lasso-IV -0.001 0.011 0.002 0.002 0.015 0.001 0.000 0.010 0.002

RJIVE 0.000 0.012 0.045 -0.001 0.006 0.053 0.000 0.006 0.064
ENIV 0.009 0.012 0.146 0.012 0.012 0.440 0.010 0.010 0.444

SS-ENIV 0.000 0.016 0.037 0.000 0.010 0.039 0.000 0.009 0.053
CF-ENIV 0.000 0.011 0.046 0.000 0.007 0.083 0.000 0.006 0.088

Note: Results are based on 1500 simulation replications. I report Median Bias (Med. Bias), Median absolute deviation (MAD)
and rejection frequency for a 5% level test (RP 5%) for nine different estimators: the Lasso IV and post-Lasso IV estimators
of Belloni et al. (2012, Lasso-IV and post-Lasso-IV), their sample-split versions (SS-Lasso-IV and SS-post-Lasso-IV), the cross-
fit Lasso IV estimator, the RJIVE by Hansen and Kozbur (2014, RJIVE), and three estimators proposed in this paper: the
elastic-net IV estimator (ENIV), the sample-split elastic-net IV estimator (SS-ENIV) and the cross-fit elastic-net IV estimator
(CF-ENIV).

A combination of both l1 and l2 penalties is employed when the cross-validation procedure
results in a value between 0 and 1. The results for a sparse, dense, and mixed DGP are
shown in the first, second and third column of plots, respectively. As before, panels A, B,
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C and D correspond to various instrument designs. Only the case with p = 95 is presented,
since the results for the case with p = 190 look very similar.
When fitting the right combination of both l1 and l2 penalties to a first-stage relationship, the
elastic-net estimator is quite successful in detecting a sparse structure, and thus often sets
the penalty ratio to 1 in this case. When dealing with non-sparse first-stage relationships, the
distribution of the penalty ratio is more even, with massive point mass on 0 and 1, and also
on the intermediate values if the signal is strong (µ = 150). Thus, the elastic-net estimator is
performing better in combining l1 and l2 penalties when facing a strong signal, whereas it
tends to often converge to a corner solution (imposing no ridge-type penalty, or no lasso-type
penalty at all) when dealing with a weak signal (µ = 30). In addition, the graphs presented
indicate the need for a finer grid to search over for the best penalty ratio (especially around
the middle value), for a better fit to the unknown sparsity of the data at hand.

2.4 Empirical Example

In this section, I demonstrate the application of the EN-based IV estimators to the classic
example from the many-instrument literature – Angrist and Krueger (1991). The coefficient
of interest in this example is the causal effect of schooling on earnings, and the schooling
endogeneity is addressed through the use of instrumental variables. The data from Angrist
and Krueger (1991) potentially allow one to employ many instruments for identification of
the treatment effect, and there is a rich literature on consequences of alternative IV-choice
decisions, in terms of both point estimate’s and inference quality, driven by the numerosity
and weakness of the available instrumental variables (Bound et al. 1995; Angrist et al. 1999;
Staiger and Stock 1997; Hansen et al. 2008a).
The simple model under consideration is

log (wagei) = α Schoolingi + W ′
i γ + εi

Schoolingi = Z ′
iΠ1 + W ′

i Π2 + ui

where εi and ui satisfy E [εi| Wi, Zi] = E [ui| Wi, Zi] = 0, log (wagei) is a log of individual
wage, Schoolingi is individual years of completed schooling, Wi is a vector of control variables
and Zi is a vector of instrumental variables that affect the wage only through the education
channel. The data come from the 1980 U.S. Census and represent 329,509 men born between
1930 and 1939. The control set consists of 510 variables: a constant, 9 year-of-birth dummies,
50 state-of-birth dummies and 450 state-of-birth × year-of-birth cross-products. I employ
three alternative sets of instruments, varying from three quarter-of-birth dummies to a full
set of interactions with state-of-birth and year-of-birth control variables Wi, i.e. a total of
1,527 instrumental variables. By the identification argument of Angrist and Krueger (1991),
α, the IV coefficient on Schoolingi, is a causal effect of education on earnings.
I report the results for three instrument sets in Table 3.3. For each set of instrumental
variables, I present the estimates from conventional 2SLS, post-Lasso, SS-post-Lasso, ENIV,
SS-ENIV, and CF-ENIV. For the estimators involving sample-splitting, I report two estimates
(separated by / in Table 3.3) that result from swapping the sample halves used for fitting the
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Figure 15: The penalty ratio chosen through cross-validation as part of the first-stage elastic-net
regression. Cross-validation is performed on a grid from 0 to 1. Graphs show the frequency of each
value being selected. For the penalty ratio 1 the penalty is an l1-penalty; for the penalty ratio 0 it
is an l2-penalty; for the penalty ratio between 0 and 1 it is a combination of both. The case with
p = 95 instruments and n = 100 observations is presented.
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first stage. This way I demonstrate the sensitivity of the point estimates that takes place
despite the large sample at hand.

Table 3.3
2SLS post-Lasso SS-post-Lasso RJIVE ENIV SS-ENIV CF-ENIV

A. 3 instruments
Coefficient 0.108 0.111 0.097 / 0.112 0.109 0.108 0.098 / 0.118 0.108
St. error 0.020 0.0205 0.034 / 0.039 0.020 0.020 0.027 / 0.029 0.020

B. 180 instruments
Coefficient 0.093 0.112 0.097 / 0.112 0.106 0.093 0.103 / 0.114 0.108
St. error 0.010 0.017 0.034 / 0.039 0.016 0.010 0.026 / 0.027 0.009

C. 1527 instruments
Coefficient 0.071 0.086 0.097 0.107 0.074 0.079 / 0.145 0.112
St. error 0.005 0.025 0.039 0.017 0.005 0.061 / 0.064 0.004

Panel A uses the three main quarter-of-birth dummies from Angrist and Krueger (1991).
As expected, all estimators considered result in similar point estimates and standard errors.
Due to the high strength of each of the small number of instrumental variables being used,
the methods involving regularization impose a small regularization penalty, thus leading to
nearly identical results as 2SLS.
Panel B employs 180 instruments including the three quarter-of-birth dummies and their
cross-products with the 9 year-of-birth dummies and 50 state-of-birth dummies. This set
is also used in Angrist and Krueger (1991), with the aim of increasing the efficiency of the
estimates. As expected, the 2SLS estimate is biased toward the OLS estimate of 0.0673.
The same applies to ENIV that actually employs approximately as many instruments as
2SLS does. Post-Lasso, SS-post-Lasso, SS-ENIV, and CF-ENIV tend to deliver adequate
estimates, though the instability of the estimators involving sample splitting is noticeable.
The post-Lasso estimator does not have a downward bias, while CF-ENIV results in the
smallest estimated standard error.
In Panel C, I show results based on the full set of 1527 instrumental variables. Even stronger
bias of the 2SLS estimate towards the OLS estimate is observed. In this case, the SS-post-
Lasso estimator tends to select no variables into the first stage regression (therefore, only a
single number is provided). The post-Lasso, SS-post-Lasso, ENIV estimators now also result
in a substantial downward bias. However, the CF-ENIV still delivers a reasonable point
estimate, and also the smallest estimated standard error as well.

2.5 Conclusion

In this paper, I propose elastic-net instrumental variable estimators to deal with high-
dimensional sets of instruments. The proposed estimators can be asymptotically equivalent to
the lasso-based IV estimators but have better sampling properties if correlations among the
instruments are not negligible. In addition, the IV estimators based on elastic-net are robust
to deviations of the first-stage regression from sparsity. These features make the elastic-net
IV estimators a valuable alternative to the lasso IV estimators for policy evaluation.
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Appendix 2

Proof of Proposition 1.

Lemma 1 from Zou and Hastie (2006) shows that the naive elastic-net criterion

L
(︂
λEN

1 , λEN
2 , β

)︂
= |y − Xβ|2 + λEN

1 |β|1 + λEN
2 |β|2

can be written as the lasso criterion

L (γ, β∗) = |y∗ − X∗β∗|2 + γ |β∗|1 ,

where γ = λEN
1 /

√︂
1 + λEN

2 , β∗ =
√︂

1 + λEN
2 β, and an augmented data set (y∗, X∗) is defined

by

X∗
(n+p)×p =

(︂
1 + λEN

2

)︂−1/2
(︄

X√︂
λEN

2 I

)︄
, y∗

(n+p) =
(︄

y
0

)︄
.

Then, for ˆ︁β∗ = arg minβ L (γ, β∗) ,

ˆ︁βEN = 1√︂
1 + λEN

2

ˆ︁β∗.

Having the elastic-net problem represented as the lasso problem, we can directly apply the
results from Corollary 1 by BCCH on lasso’s convergence rates under non-Gaussian and
heteroskedastic errors. For a properly chosen γ,

⃦⃦⃦ˆ︂D∗
i − D∗

i

⃦⃦⃦
2,n

≲P

√︄
s log (p ∨ (n + p))

n + p
=
√︄

s log (n + p)
n + p

and therefore, ⃦⃦⃦ˆ︂DEN
i − Di

⃦⃦⃦
2,n

≲P

√︄
s log (n + p)

n + p
.

Similarly, using the second inequality from Corollary 1,

⃦⃦⃦ ˆ︁β∗ − β∗
⃦⃦⃦

1
≲P

√︄
s2 log (n + p)

n + p
,

and it can be written as
⃦⃦⃦ ˆ︁βEN − β

⃦⃦⃦
1
≲P

1√︂
1 + λEN

2

√︄
s2 log (n + p)

n + p
≤
√︄

s2 log (n + p)
n + p

,

thus giving us a sufficient condition for Theorem 4 by BCCH to hold.
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3 Many Instruments: Implementation in STATA

Published as Anatolyev, Stanislav, and Alena Skolkova. 2019. "Many instruments: Imple-
mentation in Stata." The Stata Journal 19(4), 849-866.

3.1 Introduction

Instrumental variables (IV) estimation and inference have long been a distinctive method in
applied microeconometric analysis and have often spurred advances in econometric theory.
The IV methods were designed to address endogeneity bias from OLS in estimating a
causal/treatment effect in structural models (such as an effect of smoking on health, returns
to education, or demand elasticity), see Angrist and Krueger (2001). At the dawn of the 21st
century, both theory and practice were extended to accommodate such complications as weak
instruments, numerous instruments, and combinations thereof. It was established that the
empiricist’s workhorse, the two-stage least-squares (2SLS) estimator, fails to deliver consistent
estimates and results in invalid inference when such complications arise, and alternative
approaches to estimation and inference were proposed. The quick progress in econometric
theory did not, however, carry over to empirical practice as fast.
The seminal article by Bekker (1994b) proposed an alternative asymptotic approximation
for linear normal homoskedastic IV regressions with many instrumental variables, together
with consistent estimation and construction of valid standard errors within the new paradigm
of dimension asymptotics. Since then, there has been a significant progress in the theory
of estimation and testing in IV regressions with many, possibly weak, instruments. Many
new or modified versions of old estimators and tests have been proposed, including, among
others, limited information maximum likelihood (LIML), bias-corrected 2SLS, several versions
of jackknife IV estimators, and so on. In an important article, Hansen et al. (2008b)
proposed extensions of estimation and inference methods based on LIML, when, in particular,
the structural and first stage errors are not necessarily normal and when the instruments
may be weak as a group. More recently, Hausman et al. (2012) showed that the leading
‘homoskedastic’ estimators fail to deliver consistency in heteroskedastic models, and proposed
their ‘heteroskedastic’ modifications. Specification testing tools were developed in Anatolyev
and Gospodinov (2011) and Lee and Okui (2012) for the homoskedastic case and in Chao
et al. (2014) for the heteroskedastic case.
The state-of-the-art theoretical literature has converged to suggesting estimation based on
LIML and its Fuller (1977)-type correction that remedies the problem of non-existence of
moments. Parameter inference is based on consistent estimation of up to four terms in
the asymptotic variance, while specification testing is based on asymptotically normal (or
asymptotically equivalent possibly adjusted chi-squared) distribution of the overidentifying
test statistic. The literature has shown that all these tools are robust to weakness of the
instruments as a group (though weakness of a lesser degree than that would jeopardize
identification). We describe these tools in brief in the following sections; see the recent survey
Anatolyev (2019) for more technical details as well as the history of theoretical developments
and suggestions of empirical strategies.
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Despite the theoretical advances, practitioners rarely use appropriate tools because of their non-
availability in popular econometric packages, STATA in particular. The present contribution
aims at filling this void. We introduce a STATA command, mivreg, that implements consistent
estimation and testing in linear IV regressions with many, possibly weak, instruments. This
command covers both homoskedastic and heteroskedastic environments, estimators that
are both non-robust and robust to error non-normality and projection matrix limit, both
parameter tests and specification tests. Even though, as noted above, a number of other
consistent estimators have been proposed, we build up mivreg around the leading LIML
estimator and its Fuller (1977) correction as suggested by the state-of-the-art literature.
In Section 2, we set out the model and introduce necessary notation. In Sections 3 and 4, we
describe estimation and testing tools pertaining to the homoskedastic and heteroskedastic
models, respectively. In Section 5, we present the new command, mivreg. In Section 5,
we illustrate how mivreg works in simulations and compare it with the classical command
ivregress in Section 6. Finally, in Section 7, we illustrate how mivreg works with real data.

3.2 Model

The structural equation is
yi = x′

iβ0 + ei,

where β0 is k×1 vector of structural coefficients of interest, or in matrix notation, Y = Xβ0+e,
where Y = (y1, ..., yn)′ is n × 1, X = (x1, ..., xn)′ is n × k, and e = (e1, ..., en)′ is n × 1. The
first stage equation is

xi = z′
iΓ + ui,

where zi is ℓ × 1 vector of instruments and Γ is ℓ × k matrix of first stage coefficients, or in
matrix notation, X = ZΓ + U, where U = (u1, ..., un)′ is n × k. We assume that the rank of
instrument matrix Z = (z1, ..., zn)′ equals its column dimension ℓ. The structural and first
stage errors follow (︄

ei

ui

)︄
|zi ∼ D

(︄(︄
0
0

)︄
,

(︄
σ2

i Ψ′
i

Ψi Ωi

)︄)︄
,

for some distribution D, normal N being a possibility. Under conditional homoskedasticity,
σ2

i = σ2, Ψi = Ψ and Ωi = Ω for all i = 1, ..., n.

Introduce the projection matrices associated with the instruments
P = Z (Z ′Z)−1

Z ′, M = In − P.

The (i, j)th element of P is denoted Pij. Let us also denote by D the diagonal matrix with
diagonal elements of P on the main diagonal: D = diag {Pii}n

i=1 . By P 2
ii we denote an average

of diagonal elements of P squared: P 2
ii = n−1tr (D2) .

3.3 Homoskedastic case

In the conditionally homoskedastic case, correct parameter estimation and inference was
developed in Bekker (1994b) and Hansen et al. (2008b). Specification testing was dealt with
in Anatolyev and Gospodinov (2011) and Lee and Okui (2012).
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3.3.1 Point estimation

Under many instruments, 2SLS estimation is inconsistent. The leading consistent estimator
is the limited information maximum likelihood (LIML) estimator

β̂LIML = arg min
β

(Y − Xβ)′ P (Y − Xβ)
(Y − Xβ)′ (Y − Xβ)

.

Numerically, instead of the above optimization problem, it can be found via the eigenvalue
problem:

β̂LIML = H̄
−1

X ′P̊ Y,

where
H̄ = X ′P̊X,

and P̊ = P − ᾱIn, and ᾱ is the smallest eigenvalue of the matrix (X̊ ′
X̊)−1X̊

′
PX̊, where

X̊ = (Y, X) .

The LIML estimator has a disadvantage that even its low order moments do not exist. A
simple Fuller (1977) adjustment solves the moment problem:

α̃ = ᾱ − (1 − ᾱ) ς/n

1 − (1 − ᾱ) ς/n
. (9)

This adjustment leads to the FULL estimator, where ᾱ is replaced by α̃ everywhere. It is
usually advised to use the value ς = 1 in practice.
Denote the vector of LIML or FULL residuals by ê, then

σ̂2 = ê′ê

n − k

is the residual variance.

3.3.2 Variance estimation

Under error normality and/or asymptotically constant diagonal of P , the asymptotic variance
is estimated by

V̄ = nH̄
−1Σ̄0H̄

−1
,

where
Σ̄0 = σ̂2

(︂
(1 − ᾱ)2 X̄

′
PX̄ + ᾱ2X̄

′ (In − P ) X̄
)︂

,

and
X̄ = X − ê

ê′X

ê′ê

(Bekker (1994b), Hansen et al. (2008b)).
Under error non-normality and asymptotically variable diagonal of P , the asymptotic variance
is estimated by

V̄ R = nH̄
−1 (︂Σ̄0 + Σ̄A + Σ̄′

A + Σ̄B

)︂
H̄

−1
,
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where the subscript R stands for ‘robust’, and in addition

Σ̄A =
(︄

n∑︂
i=1

(︄
Pii − ℓ

n

)︄
(PX)i

)︄(︄
1
n

n∑︂
i=1

ê2
i

(︂
MX̄

)︂
i

)︄′

and
Σ̄B = P 2

ii − (ℓ/n)2

1 − 2ℓ/n + P 2
ii

n∑︂
i=1

(︂
ê2

i − σ̂2
)︂ (︂

MX̄
)︂

i

(︂
MX̄

)︂′

i

(Hansen et al. (2008b)).
The variance estimates V̄ and V̄ R are a basis of parameter inference. For example, the
standard error for jth parameter can be computed as

√︂
V̄ jj/n.

3.3.3 Specification testing

Consider the conventional J statistic

J = ê′P ê

σ̂2 = (n − k) ᾱ,

and the bias-corrected J statistic

JR = J − ℓ

n

ê′ê

σ̂2 = (n − k)
(︄

ᾱ − ℓ

n

)︄
,

where the subscript R stands for ‘robust’.
Under error normality and/or asymptotically constant diagonal of P , the Anatolyev and
Gospodinov (2011) test prescribes rejecting correct model specification at significance level
ϕ when the value of J exceeds q

χ2(ℓ−k)
ϕ∗ , the (1 − ϕ∗)-quantile of the chi-squared with ℓ − k

degrees of freedom, where

ϕ∗ = Φ
⎛⎝√︄1 − ℓ

n
· Φ−1 (ϕ)

⎞⎠ .

Under error non-normality and asymptotically variable diagonal of P , the Lee and Okui
(2012) test prescribes rejecting correct model specification at significance level ϕ when the
value of

JR√︂
nV̂

J

exceeds q
N (0,1)
ϕ , the (1 − ϕ)-quantile of the standard normal. Here,

V̂
J = 2 ℓ

n

(︄
1 − ℓ

n

)︄
+
⎛⎝P 2

ii −
(︄

ℓ

n

)︄2
⎞⎠⎛⎝ ê4

i

σ̂4 − 3
⎞⎠ .
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3.4 Heteroskedastic case

In the conditionally heteroskedastic case, correct parameter estimation and inference were
developed in Hausman et al. (2012). Specification testing was dealt with in Chao et al. (2014).

3.4.1 Point estimation

The HLIM (‘heteroskedastic LIML’) estimator is

β̂HLIM = arg min
β

(Y − Xβ)′ (P − D) (Y − Xβ)
(Y − Xβ)′ (Y − Xβ)

Numerically, it can be found via the eigenvalue problem:

β̂HLIM = H̄
−1

X ′P̊ Y,

where
H̄ = X ′P̊X,

and P̊ = P − D − ᾱIn, and ᾱ is the smallest eigenvalue of the matrix (X̊ ′
X̊)−1X̊

′(P − D)X̊,
where X̊ = (Y, X) . Similarly to FULL, the Fuller (1977) adjustment (9) leads to HFUL
(‘heteroskedastic FULL’) estimation.
Denote the vector of HLIM or HFUL residuals by ê, then

σ̂2 = ê′ê

n − k

is the residual variance.

3.4.2 Asymptotic variance estimation

Hausman et al. (2012) provide a valid and robust variance estimator for the HLIM estimator:

V̄ = nH̄
−1Σ̄H̄

−1
,

where

Σ̄ =
n∑︂

i=1
((PX̄)i(PX̄)′

i − PiiX̄ i(PX̄)′
i − Pii(PX̄)iX̄

′
i)ê2

i +
n∑︂

i=1

n∑︂
j=1

P 2
ijX̄ iX̄

′
j êiêj, (10)

where
X̄ = X − ê

ê′X

ê′ê
.

The variance estimate V̄ is a basis of parameter inference. For example, the standard error
for jth parameter can be computed as

√︂
V̄ jj/n.
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3.4.3 Specification testing

Chao et al. (2014) generalize the specification J test for the heteroskedastic case. Their
statistic is based on the jackknife modification of J statistic’s quadratic form:

J = ê′(P − D)ê√︂
V̂

J
+ ℓ,

where

V̂
J = 1

ℓ

∑︂
i ̸=j

ê2
i P

2
ij ê

2
j = 1

ℓ

⎛⎝ n∑︂
i=1

n∑︂
j=1

ê2
i P

2
ij ê

2
j −

n∑︂
i=1

P 2
iiê

4
j

⎞⎠ (11)

is an estimate of the variance of the modified quadratic form.
The test is one-sided, and the decision rule is reject the null of instrument validity if the
value of J exceeds q

χ2(ℓ−k)
ϕ , the (1 − ϕ)-quantile of the χ2 (ℓ − k) distribution.

3.5 Command mivreg

3.5.1 Functionality

The command mivreg implements estimation, inference on individual parameters and specifi-
cation testing under many, possibly weak, instruments. The default ‘hom’ (for ‘homoskedastic’)
option is based on the LIML or FULL estimators, the ‘het’ (for ‘heteroskedastic’) option is
based on the HLIM or HFUL estimators. Within the ‘hom’ version, the ‘robust’ option leads to
the Hansen–Hausman–Newey variance estimator and Lee–Okui specification test, while the de-
fault non-robust variation computes the Bekker variance estimator and Anatolyev–Gospodinov
specification test. The ‘hetero’ version implements the Hausman–Newey–Woutersen–Chao–
Swanson variance estimator and Chao–Hausman–Newey–Swanson–Woutersen specification
test. By default, the estimators used are LIML or HLIM; the ‘fuller’ option makes the Fuller
correction with parameter ς = 1, and so the FULL or HFUL estimators are used instead.

3.5.2 Syntax

mivreg depvar
[︂

indepvars
]︂ (︂

varlist1 = varlist2
)︂ [︂

if
]︂ [︂

in
]︂ [︂

, hom het robust fuller

level(#)
]︂

by, rolling, statsby and xi are allowed.

3.5.3 Description

The command mivreg performs estimation, inference on individual parameters and speci-
fication testing under many possibly weak instruments. The dependent variable depvar is
modeled as a linear function of indepvars and varlist1, using varlist2 (along with indepvars)
as instruments for varlist1.
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3.5.4 Options

hom uses the LIML (default) or FULL (in combination with full option) estimator.

het uses the HLIM (default) or HFUL (in combination with full option) estimator.

robust leads, under hom option, to the Hansen–Hausman–Newey variance estimator and
the Lee–Okui specification test, while the default non-robust variation computes the Bekker
variance estimator and the Anatolyev–Gospodinov specification test; under het option, to
the Hausman–Newey–Woutersen–Chao–Swanson variance estimator and the Chao–Hausman–
Newey–Swanson–Woutersen specification test.

fuller makes the Fuller correction with parameter ς = 1, which leads to the FULL (in
combination with hom option) or HFUL (in combination with het option) estimator.

level(#) sets the confidence level; the default is level(95).

3.5.5 Saved results

mivreg saves the following in e():

Scalars
e(N) number of observations e(F1) first-stage F statistic
e(rmse) root mean squared error e(df_m_F1) first-stage model degrees of freedom
e(F) model F statistic e(df_r_F1) first-stage residual degrees of freedom
e(df_m) model degrees of freedom e(r2_1) first-stage R2

e(df_r) residual degrees of freedom e(jval) model J statistic
e(r2) R2 e(jpv) J-test p-value
e(r2_a) adjusted R2

Macros
e(model) hom or het e(instd) instrumented variables
e(title) title in estimation output e(insts) instruments
e(depvar) name of dependent variable e(properties) b V

Matrices b V
e(b) coeffcient vector e(V) variance-covariance matrix of the estimators

Functions
e(sample) marks estimation sample

3.5.6 Computational notes

First, throughout we avoid storing n × n matrices like P and In in the memory. For example,
we compute H̄ = X ′ (P − ᾱIn) X as

H̄ = X ′Z (Z ′Z)−1
Z ′X − ᾱX ′X.

Second, the last term in (10) can be alternatively computed without double summations over
n observations (Hausman et al. (2012)):

ℓ∑︂
p=1

ℓ∑︂
r=1

(︄
n∑︂

i=1
Z̃ipZ̃irX̄ iêi

)︄⎛⎝ n∑︂
j=1

ZjpZjrX̄j êj

⎞⎠′

,

52



where Z̃ = Z(Z ′Z)−1. Similarly, the full double summation in (11) can analogously be
computed as

ℓ∑︂
p=1

ℓ∑︂
r=1

(︄
n∑︂

i=1
Z̃ipZ̃irê

2
i

)︄⎛⎝ n∑︂
j=1

ZjpZjrê
2
j

⎞⎠ .

3.6 Simulations

3.6.1 Artificial data

We demonstrate how mivreg works with two sets of artificial data. The artificial data are
generated from the Monte-Carlo setup in Hausman et al. (2012). The estimated equation is

y = β1 + β2x2 + e,

and the first stage equation is
x2 = γz1 + u2,

where z1 ∼ N (0, 1) and u2 ∼ N (0, 1) . The instrument vector is

z =
(︂
1, z1, z2

1 , z3
1 , z4

1 , z1d1, ..., z1dℓ−5
)︂′

,

where dj ∈ {0, 1} with Pr {dj = 1} = 1
2 independent of z1. The structural disturbance is given

by

e = 0.30u2 +
√︄

1 − 0.302

ϕ2 + 0.864 (ϕv1 + 0.86v2) ,

with v1 ∼ N (0, 1) in the homoskedastic case and v1 ∼ N (0, z2
1) in the heteroskedastic case,

and v2 ∼ N (0, 0.862) , both v1 and v2 being independent of u2. Samples of size n = 400
are generated, with ℓ = 30 instruments, the instrument strength γ is chosen so that the
concentration parameter equals nγ2 = 32. The parameter ϕ is set at the value 0.8 which
in the heteroskedastic case corresponds to R2 ≈ 0.25 in the skedastic regression. The true
values of β1 and β2 are set at 1.
Note that the instrument vector is such that the diagonal of P is asymptotically heterogeneous
(see Anatolyev and Yaskov (2017)). In the homoskedastic case, simplifications due to error
normality pertaining to variance estimation and specification testing (see subsections 3.2 and
3.3) are applicable.

3.6.2 Simulation results

In this section, we report output statistics resulting in simulations from using mivreg and
compare it with that when the STATA command ivregress was used.34 The reported results
are obtained from 10,000 simulations.

34For example, to compute 2SLS-related statistics, ivregress 2sls y one (x = z*), nocons robust
was used.
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Table 3.1. Percentiles of simulated distribution of various estimators.

Estimator Homoskedastic case Heteroskedastic case

5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

command ivregress

2SLS 0.93 1.06 1.14 1.23 1.35 0.85 1.02 1.14 1.26 1.43
GMM 0.91 1.05 1.14 1.23 1.37 0.85 1.02 1.14 1.26 1.42
LIML 0.47 0.83 1.00 1.16 1.42 −4.08 −0.27 0.49 1.07 4.48

command mivreg

LIML 0.47 0.83 1.00 1.16 1.42 −4.08 −0.27 0.49 1.07 4.48
FULL 0.52 0.84 1.01 1.17 1.41 −1.14 −0.03 0.56 1.09 2.77
HLIM 0.43 0.82 1.00 1.17 1.43 0.15 0.76 1.01 1.22 1.62
HFUL 0.52 0.84 1.01 1.17 1.43 0.30 0.79 1.02 1.22 1.60

Note: The true value of the parameter is unity.

First, we focus on point estimates. Table 3.1 collects percentiles of simulated distributions of
2SLS, LIML and GMM estimators produced by ivregress, and LIML, FULL, HLIM and
HFUL estimators produced by mivreg. Naturally, the LIML rows coincide.
The 2SLS and GMM estimators (whose results are very similar) are always rightward biased,
as expected. In the homoskedastic case, all the other estimators deliver unbiased estimation.
The LIML estimator is a bit more concentrated towards the center than HLIM, which reflects
higher efficiency of the former. The Fuller versions are more concentrated away from the tails,
which reflects their resistance to outliers. In the heteroskedastic case, LIML and FULL have
severe negative biases, which reflects their inconsistency. Their ‘heteroskedastic’ versions,
HLIM and HFUL, are both median unbiased. While the HLIM estimator is susceptible to
outliers, especially in the left tail, its Fuller version, HFUL, exhibits much tighter and more
symmetric distribution.
Table 3.2 contains actual rejection rates corresponding to the 5% nominal rate for the two
sided t-test of the null H0 : β2 = 1 marked as tβ2=1, the Wald test of the null H0 : β1 = β2 = 1
marked as Wβ1=β2=1, and the specification test marked as JE[ze]=0. The 2SLS and LIML tests
produced by ivregress come in two forms: non-robust and robust to heteroskedasticity.
In the specification tests (which are available only for efficient estimators), the Basmann
(1957) variance estimator is used. The test statistics produced by mivreg use the following
estimators and robustness regimes:35 non-robust LIML, non-robust FULL, robust LIML,
robust FULL, HLIM, and HFUL.
As expected, severe size distortions are exhibited by conventional parameter tests based on

35Note again the different use of the term ‘robust’: the classical tests produced by ivregress may be
robust to heteroskedasticity; of course, they are not robust to instrument numerosity. The tests produced by
mivreg may or may not be robust, within natural robustness to many possibly weak instruments, to error
non-normality and asymptotically variable diagonal of the projection matrix.
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Table 3.2. Actual rejection rates for parameter and specification tests

Estimator Homoskedastic case Heteroskedastic case

tβ2=1 Wβ1=β2=1 JE[ze]=0 tβ2=1 Wβ1=β2=1 JE[ze]=0

command ivregress

non-robust 2SLS 22.0% 17.7% 6.2%
robust 2SLS 14.9% 13.1% −
GMM 33.9% 31.8% 2.5% 26.8% 24.4% 2.1%
non-robust LIML 12.0% 9.6% 3.0%
robust LIML 1.6% 1.3% −

command mivreg

non-robust LIML 4.1% 4.3% 3.0% 9.4% 4.6% 60.1%
non-robust FULL 4.2% 4.5% 2.4% 9.3% 4.7% 56.8%
robust LIML 4.0% 4.3% 2.1% 9.2% 4.5% 54.2%
robust FULL 4.2% 4.5% 1.7% 9.2% 4.6% 50.9%
HLIM 4.7% 4.9% 2.8% 5.4% 4.9% 3.5%
HFUL 5.0% 5.2% 2.9% 5.7% 5.1% 3.4%

Note: The nominal significance level of all tests is 5%.

2SLS, GMM and LIML.36 In the homoskedastic case, all the mivreg tests exhibit similar
behavior, with much smaller distortions, though the ‘heteroskedastic’ versions seem to be
more reliable. In the heteroskedastic case, the latter are the only valid ones theoretically,
and do deliver rejection rates close to nominal. The Fuller correction does not significantly
affect these rejection rates. The results of specification testing point at huge distortions if one
relies on ‘homoskedastic’ specification tests when in fact the homoskedasticity assumption is
violated. One must avoid using them in heteroskedastic environments as one is too much
likely to receive a signal of instrument invalidity when in fact the instruments are valid.

3.7 Example with real data

We illustrate the use of mivreg using real data from a well-known application to the married
female labor supply of Mroz (1987). The number of observations is 428.37

The left-side variable is working hours hours, the only endogenous right-side variable is log
wages lwage; there are also 6 exogenous controls: nwifeinc, educ, age, kidslt6, kidsge6,
and the constant one. The list of basic instruments includes, in addition to the 6 exogenous
controls, 8 exogenous variables: exper, expersq, fatheduc, motheduc, hushrs, husage,

36The conventional specification tests do not exhibit too much of distortions in this particular design;
however, in general they may well do; see Anatolyev and Gospodinov (2011).

37The data can be found at http://www.stata.com/data/jwooldridge/eacsap/mroz.dta. We use only
the records that correspond to women in labor force.
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Table 3.3. Various estimates of wage coefficient for married female labor supply

Options Estimator Instruments Estimate (Standard error)

command reg

robust OLS − −17.4 (81.4)

command ivregress

robust 2SLS basic only 1179.1 (185.2)
robust 2SLS extended 536.4 (101.5)

command mivreg

hom LIML extended 1120.6 (195.3)
hom robust fuller FULL extended 1110.0 (197.2)
het robust fuller HFUL extended 1058.3 (170.5)

huseduc, and mtr, resulting in 14 instruments in total. The basic instruments are pretty
strong as a group: the first-stage F statistic equals 183.5. We also consider an extended
set of instruments – the basic instruments plus all their cross-products (‘interactions’), the
total numerosity amounting to 92. The use of the extended instrument set is meant to
possibly enhance estimation efficiency by exploiting information in the instruments more
actively. However, while the conventional tools are suitable for the basic set of instruments,
the extended instrument set evidently requires handling via many-instrument asymptotics:
the ratio of the number of instruments to the sample size is sizable: ℓ/n ≈ 0.215.
Table 3.3 presents various estimates for the slope coefficient of log wages: OLS, heteroskedasticity-
robust 2SLS (employing the basic and extended instrument sets), as well as three many-
instrument-robust estimators – LIML, FULL and HFUL (employing the extended instrument
set) – whose STATA output will appear below.
Evidently, due to unaccounted endogeneity, OLS estimation from applying the reg command
is inconsistent; the numerical value of the OLS estimate is even negative revealing a big
endogeneity bias. The (more than twofold!) difference between the two 2SLS estimates
points at invalidity of conventional tools and the ivregress command when instruments are
many. The LIML, FULL and HFUL point estimates produced by the mivreg command are
quite in line with the 2SLS estimate that uses only the basic instruments.38 There is a small
difference between ‘homoskedastic’ LIML and FULL point estimates and the ‘heteroskedastic’
HLIM point estimate. Though not too big, this difference makes the HFUL estimate more
trustworthy.39 The smaller standard error of HLIM compared to that of 2SLS may be
interpreted as a gain in efficiency from using the extended instrument set.

38Note also from the STATA outputs that all three corresponding specification tests produce very high
p-values and agree on the model validity.

39Mroz (1987) reports a similar 2SLS estimate using a short list of instruments (line 2 in his Table IV),
but 2SLS estimates also get a lot smaller with longer lists of instruments (lines 3–6 in Table IV). Eventually,
Mroz (1987) adopts smaller estimates than ones seeming correct from our experiments.
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The STATA outputs produced by the command mivreg to deliver the three many-instrument-
robust estimators appear next.

Example

The STATA output for LIML estimation with option hom:
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The STATA output for FULL estimation with options hom robust fuller:
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The STATA output for HFUL estimation with options het robust fuller:
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