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This paper describes an energy-preserving and globally time-reversible code for weakly compressible 
smoothed particle hydrodynamics (SPH). We do not add any additional dynamics to the Monaghan’s 
original SPH scheme at the level of ordinary differential equation, but we show how to discretize 
the equations by using a corrected expression for density and by invoking a symplectic integrator. 
Moreover, to achieve the global-in-time reversibility, we have to correct the initial state, implement a 
conservative fluid-wall interaction, and use the fixed-point arithmetic. Although the numerical scheme 
is reversible globally in time (solvable backwards in time while recovering the initial conditions), we 
observe thermalization of the particle velocities and growth of the Boltzmann entropy. In other words, 
when we do not see all the possible details, as in the Boltzmann entropy, which depends only on 
the one-particle distribution function, we observe the emergence of the second law of thermodynamics 
(irreversible behavior) from purely reversible dynamics.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The original smoothed particle hydrodynamics (SPH) scheme, 
now called weakly compressible SPH (WCSPH), was developed in 
1970s by R. Gingold and J. Monaghan [1]. The scheme used the 
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leap-frog time integration and relied on an artificial term stabi-
lizing the fluid in the presence of shocks. Many other stabiliza-
tion strategies were conceived. In the δ-SPH method [2], diffusion 
terms are added to the continuity equation, and methods based 
on Riemann solvers [3]. These approaches often provide results in 
reasonable agreement with experimental data or other numerical 
methods. Unfortunately, they often come at the cost of increased 
complexity and necessity to fine-tune additional numerical param-
eters [4].1 Failure in such fine-tuning can result in unrealistic dis-
sipation, or large energy oscillations unless a convenient limiter is 
used [7].

Another problem of SPH (especially in solid mechanics) is the 
so called tensile instability, where simulations are unable to with-
stand a dilation of volume (leading to clamping of particles inside 
the solid body) [8]. A solution is to use the Lagrangian kernels, 
which depend on the Lagrangian distances between the particles 
instead of the Eulerian distances [9][10]. The price to pay is that 
the Lagrangian kernels become too distorted for large deforma-
tions, which can be avoided by switching between the Lagrangian 
and Eulerian iterations [11]. In this manuscript, we do not consider 
solid mechanics, which is why we can work with the standard Eu-
lerian kernels.

Novelty of this manuscript lies mainly (to our best knowledge) 
in the global reversibility of the SPH scheme and in the thermody-
namic interpretation of the results (growth of Boltzmann entropy 
despite the reversibility). To achieve the global reversibility, we 
had to formulate SPH as a symplectic system, to correct the way 
density is typically treated, to use the fixed-point arithmetic, and 
to implement a conservative wall-fluid interaction. Each of these 
steps is necessary for the global reversibility. The second main new 
point lies in the thermodynamic interpretation of the emergence of 
irreversibility that we observe. Although the underlying dynamics 
is reversible and the Liouville entropy (that takes into account po-
sitions of all particles) does not grow, the Boltzmann entropy (that 
no longer takes into account the individual particles) grows. This 
emergence of the second law of thermodynamics is caused by the 
information loss between the complete Liouville description and 
the averaged Boltzmann description of the particle system.

Although the reversible (non-dissipative) terms in the SPH sim-
ulations typically do not alter the total energy appreciably, they 
can cause a sort of irreversibility. WCSPH simulations contain the 
evolution equation for the discrete density and can also contain 
an evolution equation for particle energy, but if the underlying 
numerical integrator is not symplectic, it changes the phase vol-
ume, which causes irreversible evolution of the distribution func-
tion [12,13]. In this manuscript, we construct a globally reversible 
symplectic SPH scheme, which can be used also for backward sim-
ulations and leads to the initial state of the particles, and thus it 
does not introduce numerical dissipation in the above sense.

The symplecticity can be achieved by a particular way to cal-
culate the pressure. There are essentially two different ways, how 
pressure can be calculated in WCSPH [14]. A commonly used ap-
proach is to update the density iteratively, using the velocities 
obtained from the discretized balance of momentum. Alternatively, 
one can compute density directly as an SPH interpolation of parti-
cle masses [15]. The latter approach is less common, but it leads to 
a symplectic structure of the system of SPH differential equations, 
which makes the WCSPH discretization completely stable even 
in the absence of viscosity or stabilization. Although the former 
method leads also to a Hamiltonian system, it is not symplectic, 

1 It is possible that the intimate connection between the parameters in the diffu-
sive and viscous term might be connected with the alternatives to the Navier-Stokes 
equations where Laplacian-like terms are present in both the momentum equation 
and the equation of continuity [5,6].

but only Poisson, which makes it harder to construct a structure-
preserving geometrical numerical integrator [12]. Another a bit 
more complicated symplectic scheme was proposed in [16], where 
the density is coupled with another field (similarly as position is 
coupled with momentum).

However, standard symplectic WCSPH shows unphysical behav-
ior at free surfaces, where constant functions are not correctly 
interpolated [14]. We suggest two ways how to correct this issue. 
The first method modifies the density by an appropriate integra-
tion constant, which is easy to implement. The second, and more 
complex method, renormalizes the initial state by solving a certain 
nonlinear problem using Newton’s method. We also demonstrate 
that a careful implementation of the symplectic WCSPH scheme, 
using the corrected treatment of free surfaces and the fixed-point 
(as opposed to the more usual floating-point) arithmetic leads to 
global time-reversibility. This can be considered as an additional 
symmetry-preserving feature alongside the conservation of energy, 
mass, momentum, and angular momentum. The purpose of this 
paper is to show key advantages of the symplectic WCSPH com-
pared to the standard approach.

The symplectic WCSPH with a proper treatment of free bound-
aries, conservative wall-fluid interaction, and fixed-point arith-
metic becomes globally reversible in time. For instance, the 
breaking-dam simulation can be reversed to recover the initial 
conditions. Although the resulting code is energy-preserving and 
reversible, it can still be considered dissipative in the sense that 
the Boltzmann entropy of the SPH particles grows. In other words, 
we observe the emergence of the second law of thermodynamics 
from purely reversible dynamics. In the case of the breaking dam 
simulation, the particles eventually occupy the bed of the con-
tainer and their velocity distribution is approximately Maxwellian. 
We provide a reasoning for this apparent paradox between re-
versibility and irreversibility by means of information theory at 
the end of the manuscript.

The energy budget in SPH simulations is of great interest be-
cause it indicates which degrees of freedom lose energy and which 
gain it [17]. Dissipative terms (like the viscous terms or the dif-
fusive terms) typically reduce the total energy, but sometimes the 
kinetic energy decreases and compressional energy increases while 
in other cases the kinetic energy increases. Although it may be 
tempting to link the decrease of a particular kind of energy (for 
instance kinetic energy) with dissipation, such link can not hold 
in general, since sometimes the particular kind of energy increases 
and sometimes decreases. The equilibrium partitioning of the to-
tal energy budget can be actually estimated from the virial the-
orem [18]. Therefore, the initial conditions determine which part 
of the energy will grow and which will drop. For isolated sys-
tems, it is the growth of entropy that indicated dissipation while 
in isothermal systems the total free energy decreases [19]. In this 
manuscript, we discuss how entropy grows even in reversible iso-
lated systems.

We demonstrate the various versions of WCSPH on dam-break 
and Gresho vortex benchmarks. All SPH codes used to make this 
paper is freely available within the new SmoothedParticles.jl pack-
age [20] written in the Julia programming language [21]. But let us 
first recall the WCSPH equations in the following Section.

2. WCSPH for inviscid fluids

The standard weakly compressible spatial semi-discretization of 
Euler fluid equations in a uniform gravitational field is [22]:

∂tρa =
∑

b

mb(ua − ub)w ′(rab)eab, (1a)

2
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∂t ua =
∑

b

mb

(
pa

ρ2
a

+ pb

ρ2
b

)
w ′(rab)eab − g ẑ, (1b)

∂tra = ua, (1c)

where the pressure is a function of density via the barotropic for-
mula,

p(ρ) = c2ρ0

7

[(
ρ

ρ0

)7

− 1

]
. (2)

Constant ρ0 stands for the referential density, g is the gravitational 
acceleration, and c is the numerical speed of sound (typically cho-
sen as ten times the characteristic flow speed Uchar). It is well 
known that the system of ordinary differential equations (1) con-
serves the total energy in the form

H =
∑

a

ma

(
v2

a

2
+ εa + gz

)
, (3)

where

εa = c2

42

[(
ρ

ρ0

)6

+ 6ρ0

ρ

]

is the potential of internal energy (also called compressional) sat-
isfying dεa = pa

ρ2
a

dρa . Moreover, for g = 0, the momentum

M =
∑

a

maua,

and angular momentum

L =
∑

a

mara × ua

are conserved as well. Naturally, gravitational force can deliver 
some momentum to the fluid, while the equal opposite reaction 
of the fluid on Earth is considered grounded.

The WCSPH equations (1) represent a Hamiltonian system, 
which can be checked for instance using program [23]. But it is 
not a symplectic system because the mass density is treated as a 
state variable. If, on the other hand, the density would always be 
calculated from the current positions of the particles, then only 
the positions and momenta would be state variables and the sys-
tem of equations would be symplectic. Symplecticity would make 
it easier to choose a geometric structure-preserving numerical in-
tegrator, for instance using the Störmer-Verlet scheme [24,12].

A symplectic form of WCSPH is obtained by solving the ordi-
nary differential equation for density (1a),

ρa =
∑

b

mb w(rab), (4)

instead of updating ρa iteratively by (1a). However, this closed ex-
pression for density (4) is rarely used in practice because it leads 
to questionable behavior near free surfaces [14]. This happens be-
cause free boundary particles are under-occupied and, according to 
(4), they have ρ � ρ0. Therefore, they are equipped with large in-
ternal energy and, affected by its negative gradient, they start to 
vibrate. A remedy is provided in the following section, which leads 
to the possibility to use the symplectic form of WCSPH.

3. Treatment of free surfaces

3.1. Solving the equation for ρa with an appropriate integration 
constant

The issue of unphysical behavior at free surfaces can be cor-
rected by choosing an appropriate integration constant when solv-
ing the differential equation for ρa ,

ρa =
∑

b

mb w(rab) + Ca, (5)

where

Ca = ρ0 − ρa|t=0 .

Indeed, since WCSPH based on (1a) typically assumes zero internal 
forces at t = 0, it is actually (5) and not (4) that is equivalent to 
the standard WCSPH formulation, since (4) leads to non-zero den-
sity gradients near the boundary. Although schemes based on (1a)
and (5) are completely equivalent at the ODE level, they become 
very much different once time discretization is considered. It ap-
pears that (1a) is currently used by most researchers, despite the 
advantages of Equation (5):

1. Inferring ρ from positions using Equation (5) does not accu-
mulate the density error.

2. The system of SPH evolution equations becomes symplectic 
(and not only Hamiltonian).

3. Therefore, symplectic structure-preserving integrators can be 
employed, which leads to simulations globally reversible in 
time.

However, even if we use the correct closed formula for density 
(5) and use a symplectic integrator, are facing another obstacle. For 
problems involving free surfaces, integration constant Ca is typi-
cally much bigger for boundary particles and, therefore, whenever 
such particle submerges into interior of the fluid body, it generates 
a small void pocket around itself. This unwanted numerical artefact 
is removed in the following section.

3.2. Initial state correction (ISC)

The numerical artefact that particles that are originally at the 
boundary are treated differently than the rest of the particles, even 
if the submerge into the in the interior of the fluid, is rooted in the 
difference in the Ca constants at the beginning. Therefore, we shall 
remove that artifact by correcting the initial state.

A solution is to correct the initial positions by a vector field δx
such that

ρ0 =
∑

b

mb w
(∣∣xa + δxa − xb

∣∣) .

These non-linear equations can be solved by a strategy based on 
the Newton’s method, details of which follow. Linearization with 
respect to δxa leads to

ρ0 − ρa
.=

∑
b

mb(δxa − δxb) · w ′(rab)eab.

On the right hand side, we identify the discrete divergence opera-
tor D̃1

−ρa D̃1
aδx

.= ρ0 − ρa, (6a)

see [14] for details. This linear problem for unknowns δx is under-
determined, so shall be restricted to δx in the form of a discrete 
gradient

δxa =
∑

b

mb

(
φa

ρ2
a

+ φb

ρ2
b

)
w ′(rab)eab,

which can be also rewritten as

δxa + 1

ρa
G1

aφ = 0. (6b)

Sparse linear system (6) for δx and φ has to be solved iteratively, 

3
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Fig. 1. Applying ISC to particles in square arranged regularly. Density (4) is shown in color (red to blue). Initially, it varies due to boundary effect but becomes everywhere 
constant after 7 iterations of ISC (up to relative error less than 10−10). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

updating x and reevaluating ρ according to (4), until ρ .= ρ0 with 
satisfactory precision. This initial state correction (ISC) procedure 
has been tested in our numerical examples, and the procedure 
converges quadratically except for problems with too much sym-
metry (for instance rectangle with particles arranged in square grid 
nearly always diverges).2 The whole procedure may be then sum-
marized as follows (see Fig. 1):

Initial state correction (ISC)

1. set |δxa| < δr
10 randomly for all a

2. repeat until sufficient precision is acquired:
3. xa = xa + δxa for all a
4. recompute neighbor list
5. find ρa = ∑

b mb w(rab) for all a
6. solve N(d + 1) × N(d + 1) linear problem[

I 1
ρ G1

−ρ D̃1 0

][
δx
φ

]
=

[
0

ρ0 − ρ

]

This computation is expensive, but is performed only once per 
simulation. In place of the linear system with 2 × 2 block matrix, 
one could also solve directly for φ:

−ρ D̃1 1

ρ
G1φ = ρ0 − ρ.

However, the product A = −ρ D̃1 1
ρ G1 leads to a matrix which is 

much more dense. A matrix-free iterative method could be used 
without evaluating the product directly, is a future possibility.

Let us note that after ISC, all constant fields will be correctly 
interpolated, at least initially. Weak compressibility helps to pre-
serve this trait approximately in a way that does not accumulate 
error provided (4) is used. In this sense, ISC can be considered 
an alternative to (zeroth order) operator renormalization with the 
benefit that it does not break the symmetry of smoothing kernel. 
Unfortunately, this technique has two drawbacks. Firstly, it may 
slightly deform geometry in an unwanted way. Secondly, adapt-
ing it to a concrete setting may be difficult — for instance, when 
an anti-clump term is included.

2 For these cases, we recommend to initially disrupt particle positions by a ran-
dom noise.

Both symplecticity of the system of equations and ISC improve 
the numerical solutions, but in order to obtain a globally reversible 
behavior we have to tackle a further problem caused at the walls 
of the simulation box, as in the following section.

3.3. Wall modelling

In WCSPH, walls can be modeled by a layer of dummy particles 
which behave as if they belonged to the fluid, except that their 
positions and velocities are fixed. In this approach, it is hoped that 
the forces preventing compression will deflect any incoming par-
ticle. This method, of course, violates balance of momentum, but 
this is plausible, since we can imagine that any momentum yielded 
by the fluid is grounded. More importantly though, dummy parti-
cles violate conservation of energy. To see this, consider a wave 
stopped by a wall. The fluid acts on the solid with equal and op-
posite force. Therefore, a wall particle a is subject to acceleration, 
which should change its velocity after time step δt to

va = δt
F a

ma
.

To preserve wall integrity, this velocity must be annulled, reducing 
the total energy by a small kinetic contribution. From this, we see 
that dummy particles are essentially dissipative.

One could argue that this is still physically reasonable because 
every fluid-solid collision creates a sound wave, leading to loss 
of energy. However, it is dubious whether such effect is correctly 
modeled by dummy particles. Moreover, it complicates efforts to 
make a strictly energy-conservative scheme.

An alternative approach uses a fluid-solid force inspired by the 
Lennard-Jones potential

F a→b = − Ewall

r2
ab + ε2

(s2
ab − sab) rab

by which a wall particle a acts onto a fluid particle b. Here,

sab =
⎧⎨
⎩

r2
wall+ε2

r2
ab+ε2 if rab < rwall,

1 otherwise.

rab is the distance between a wall particle and a fluid particle, and 
Ewall, rwall, and ε are numerical parameters [25].3 Except for this 

3 In our dam-break simulation, we choose Ewall = 10gh (g being the gravitational
acceleration and h the height of the water column), rwall = 0.95dr (dr being the 
typical distance between particles), and ε = 10−6.

4
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interaction, wall particles are neither considered in the balance of 
mass (1b) nor in the calculation of density (5). Unlike the dummy 
particle approach, this solid wall modeling is conservative, with a 
modified energy

H =
∑

a∈fluid

ma

(
v2

a

2
+ εa + gz

)

+
∑

a∈wall

∑
b∈fluid

Ewall

(
1

4
s2

ab − 1

2
sab + 1

4

)
, (7)

and the wall-particle force is just minus the derivative of the wall-
particle interaction energy. To see this, compute the total differen-
tial

dHwall =
∑

a∈wall

∑
b∈fluid

Ewall d

(
1

4
s2

ab − 1

2
sab + 1

4

)

=
∑

a∈wall

∑
b∈fluid

Ewall

(
sab

2
− 1

2

)
dsab

= −
∑

a∈wall

∑
b∈fluid

Ewall

(
sab

2
− 1

2

)
r2

wall + ε2(
r2

ab + ε2
)2

dr2
ab

= −
∑

a∈wall

∑
b∈fluid

Ewall

(
s2

ab − sab

) 1

r2
ab + ε2

rab · drab

and hence, we have, for every fluid particle b:

−∂Hwall

∂xb
= −

∑
a∈wall

Ewall

(
s2

ab − sab

) 1

r2
ab + ε2

rab =
∑

a∈wall

F a→b

This makes it potentially advantageous for problems involving in-
viscid flows.

Note that differential equations (1) (with or without the explicit 
density integration (4)) automatically conserve the Hamiltonian (or 
energy), due to their Hamiltonianity (in particular symplecticity) 
[14]. Indeed, the energy is conserved due to the skew-symmetry 
of the underlying Poisson bracket, and the momentum is conserved 
if the Hamiltonian is invariant with respect to spatial translations 
[12,26]. Or course, the conservativeness can be also checked man-
ually by directly evaluating the conservation laws.

The values of the wall-interaction parameters depend on the 
particular situation. The wall energy must be much higher than 
typical energy of a particle colliding with the wall so that particles 
effectively bounce off the wall. The rwall parameter must be, on the 
other hand, smaller than the typical distance between the particles 
so that the wall-particle interactions do not disturb the particle-
particle interactions.

In our case, when we seek a globally reversible-in-time simu-
lation, the conservativeness of the fluid-wall interaction becomes 
important.4 However, even if we use the correct close formula 
for density (1a), the initial state correction, and the conservative 
fluid-wall interaction, the symplectic Störmer-Verlet scheme is not 
reversible globally in time because of the errors caused by the 
floating-point arithmetic. The following section contains the final 
ingredient necessary for that reversibility, the symplectic Störmer-
Verlet integrator with fixed-point arithmetic.

4. Symplectic integrator and fixed-point arithmetic

The symplectic character of evolution equations (1b) and (1c) is 
preserved in symplectic numerical schemes, for instance the clas-

4 Note that the results about global time-reversibility would stay the same if we 
chose a system without boundary, where no wall-fluid treatment would be neces-
sary.

Fig. 2. Energy growth in standard WCSPH (STD) and symplectic WCSPH (SYM) in 
dambreak simulation with zero viscosity and parameters from Table 1. Without a 
stabilization of some sort, STD diverges, whereas SYM is stable.

sical Verlet scheme [27]. Consequences are for instance the long-
time stability of the trajectories and conservation of integrals of 
motion (energy, momentum, and angular momentum, among oth-
ers) [12]. However, even application of the Verlet scheme in SPH 
does not lead to globally in-time reversible simulations due to the 
floating-point errors, but a remedy is in the fixed-point arithmetic, 
as we show below.

The advantage of the direct update of density to the integra-
tion of the continuity equation is that the former way leads to 
a symplectic scheme while the latter to a non-symplectic (albeit 
still Hamiltonian) scheme. Although the scheme with integration 
of the continuity equation is still Hamiltonian, the underlying Pois-
son bracket is non-canonical (Poisson geometry), and it is more 
difficult to construct numerical schemes respecting the geometri-
cal structure [12]. For instance, the standard symplectic schemes 
like Störmer-Verlet do not preserve the Poisson structure, but they 
preserve the symplectic structure.

The usual discretization of the SPH equations using the Störmer-
Verlet scheme is

1. u(tm+ 1
2
) = u(tm) + 1

2 δt a(r(tm))

2. r(tm+1) = r(tm) + δt u(tm+ 1
2
)

3. u(tm+1) = u(tm+ 1
2
) + 1

2 δt a(r(tm+1)),

where a is the acceleration composed of internal, gravitational, and 
wall forces. The scheme is of second order and symplectic, and 
therefore it conserves energy Hδt with error

Hδt(r, u) − H(r, u) = O (δt2)

that does not depend explicitly on time, provided that δt is suf-
ficiently small [28].5 If we took ρ as a separate state variable 
with its own evolution equation (1a) (usual WCSPH), symplecticity 
of the system of equations would be violated. The usual WCSPH 
equations are still Hamiltonian (generated by a Poisson bracket 
and a Hamiltonian), as checked by program [23], but they are not 
symplectic and they thus the (symplectic) Verlet scheme does not 
preserve their geometric structure, which causes energy to grow 
exponentially, unless some stabilization is used - see Fig. 2.6

5 Here, we rely on the fact that p = p(ρ) = p(ρ(r)) using the closed expression 
(5).

6 In [22], it is suggested to correct this error by a mid-step extrapolation of den-
sity. However, it should be noted this approach adds additional inaccuracy to the 
scheme.
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Table 1
Parameters used for dam-break test.

density ρ 1000 kg/m3

spatial step dr 0.005 m
num. sound speed c 120 m/s
gravitational constant g 9.8 m/s2

water column width lwcw 1 m
water column height lwch 2 m
box width lbw 4 m
box height lbh 3 m
kernel support radius h 3 dr
Lennard-Jones radius rwall 0.95 dr
Lennard-Jones energy Ewall 10 mglwch
time step dt 0.2 h/c

Besides being symplectic, Verlet scheme is also time reversible, 
which means that after changing the sign of velocities, the scheme 
returns back in time. The scheme thus preserves the time-reversal 
symmetry of the original system (1a), (1b), (1c). We can verify this 
by substituting

u(tm) �→ −u(tm+1)

u(tm+1) �→ −u(tm)

r(tm) �→ r(tm+1)

r(tm+1) �→ r(tm)

which produces the same set of equations

1. −u(tm+ 1
2
) = −u(tm+1) + 1

2 δt a(r(tm+1))

2. r(tm) = r(tm+1) − δt u(tm+ 1
2
)

3. −u(tm) = −u(tm+ 1
2
) + 1

2 δt a(r(tm)),

but in the reversed order. Unfortunately, the time reversibility fails 
in the floating-point arithmetic (FloPA), where addition is not as-
sociative. In particular, addition and subtraction of a value δx to a 
float x does not recover x. For instance

(1 + 0.5ε) − 0.5ε
float= 0.9999999999999999 �= 1. (8)

Although this error is usually very small, it tends to accumulate 
in the presence of non-linearities and destroys the reversibility in 
longer simulations.

There is, however, an easy solution suggested by [29] in the 
context of N-body simulations of Solar System. It converts vectors 
r(tm), u(tm), and a(tm) to the fixed-point arithmetic (FixPA) just 
before they are used in the time-step evaluation. Since addition 
is associative in FixPA, this method allows for bit-precise time re-
versibility and long-time conservation of energy – see Fig. 3. Note 
that the intermediate computations of the sums in (5) and (1b)
can be still performed in FloPA and only then converted to FixPA. 
However, due to the non-associativity of FloPA, summation of more 
than two elements in FloPA is order-dependent, and to ensure re-
versibility, the order of the summands must be chosen in a way 
that does not depend on the current state of the simulation (for 
instance, it is possible to perform summations always in the order 
of the particle indices).

In summary, symplectic WCSPH with the correct closed formula 
for density, the initial state correction, the conservative wall-fluid 
interaction, and the symplectic numerical Verlet scheme in the 
fixed-point arithmetic finally lead to globally-in-time reversible 
simulations. We have demonstrated the reversibility for instance 
on the dam break benchmark, and Appendix A contains the Gresho 
vortex benchmark. Although the simulation is symmetric, we can 
still observe the growth of entropy if we choose not to see all the 
details of the simulation, which is the matter of the following sec-
tion (Fig. 4).

5. Dissipativity vs. decrease in mechanical energy

Can we judge dissipativity of an SPH simulation from observing 
decrease of mechanical energy or increase of internal (or compres-
sional) energy? The purpose of this Section is to discuss the rela-
tion between dissipation and transformation of particular forms of 
energy.

For instance the δ-SPH method adds a diffusive term to the 
continuity equation. The purpose of this term is stabilization of 
the scheme, and the term actually removes the noise from the 
pressure field and decreases the energy dissipation caused by the 
numerical scheme [17]. However, it is not straightforward to add 
the δ-SPH term into our symplectic scheme because our scheme 
does not contain the discretized continuity equation, to which that 
term would be added. Instead, we evaluate the density from the 
current particle positions (and from a correction based on their 
initial position). However, since our numerical scheme preserves 
the energy (up to a tiny constant that decreases with the time 
step), we do not need the δ-SPH term to decrease the dissipation 
of energy here, see Fig. 5. Moreover, since our aim is to obtain the 
global-in-time reversibility, we can not add the δ-SPH term here 
because it would violate the reversibility.

Nevertheless, the δ-SPH-like term might be added into the sym-
plectic scheme in an indirect way. If another vector field is added 
to the state variables and coupled to the density as in mechanics 
of superfluids [33], it might be possible to keep the symplectic-
ity of the SPH scheme. Algebraic dissipation in the equation for 
the extra vector field should then, after the field relaxes to a 
quasi-equilibrium value, restore a diffusion-like term in the den-
sity equation, as in [34].

In paper [17], the sum of the kinetic and potential energies 
is called mechanical, and our internal energy is called compres-
sional. The dissipation is calculated as the negative of the evolu-
tion of the mechanical energy in [17]. Therefore, we can compare 
the behavior of our kinetic, potential, and internal energies with 
the mechanical and compressional energies from [17]. Plots of the 
components of energy during the globally reversible dam-break 
simulation, namely the kinetic energy, gravitational (or potential) 
energy, the compressional energy, and the wall energy (from the 
wall-fluid interactions) are contained in Appendix C.

Since our scheme is symplectic, we preserve the underlying ge-
ometrical structure of the evolution equations (symplecticity), but 
the total energy is conserved only approximately. This is a feature 
of symplectic integrators that can not be circumvented because 
only the exact solutions preserve both the symplectic structure and 
energy [35]. However, the error in the total energy does not accu-
mulate over time with symplectic integrators (it remains bounded 
by the time-step and order of the method), see [12] (Ch. IX.8). In 
our case, the numerical error in the total energy was less than 
2 · 10−4%. Moreover, the qualitative behavior (growth of entropy 
and global reversibility) is not affected by either raising or reduc-
ing the time-step, despite the numerical error in energy decreases 
with lower time steps. Therefore, the qualitative behavior is not 
caused by the numerical errors in the total energy.

While the total energy is approximately conserved in the dam-
break simulation, the gravitational energy oscillates until it reaches 
the minimum when the particles occupy the bottom of the con-
tainer. Similarly, the wall-energy oscillates during the simulation, 
but it is small in comparison with the total energy. The kinetic en-
ergy goes in a non-monotonous way from the initial zero (particles 
not moving initially) until it reaches its maximum. Similarly, the 
compressional (or internal) energy grows until it reaches its max-
imum. Energy mainly flows from the gravitational energy (which 
decreases in time) to the kinetic energy and to the internal (com-
pressional) energy (approximately 3/4 to the kinetic and 1/4 to 
the internal).

6
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Fig. 3. Results for dam break test with parameters from Table 1 using symplectic WCSPH. At t = 1 s, we reset the time counter and revert all velocities. In FixPA, the 
simulation is completely reversible and returns to the initial state. In FloPA, this fails due to round-off errors illustrated in (8).

Fig. 4. Comparison of symplectic WCSPH (SYM) in dam-break simulation with ex-
perimental data [30] (EXP) and numerical result from Violeau’s book [14] (VIO). 
Here, T = t

√
g/lwcv is a dimensionless time and X = lle/lwcv, where lle is the x-

coordinate of the wave’s leading edge.

Although the overall mechanical energy (kinetic + potential) de-
creases, its drop can not be associated with dissipation in general. 
Instead, dissipation should be considered as the reduction of the 
total energy (including the compressional part). When this occurs, 
it also means that the simulated physical system is not isolated, 

Fig. 5. Total energy (kinetic, potential, compressional, and wall) in the dam-break 
simulation. The initial value is subtracted and the remainder is divided by the total 
change of the potential energy during the simulation, as in [31,32]. The total energy 
is well preserved in our scheme. The total change is bounded in time and the bound 
decreases with the time step.

since otherwise the total energy would be conserved. A typical 
SPH simulation is not isolated, as the total energy typically de-
creases due to either the integrator or due to artificial dissipation 
[17].

7
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Fig. 6. Left: Histogram of the velocities of the particles at time t = 2.0 (blue) in comparison with the equilibrium Maxwell-Boltzmann distribution (orange) (19) with fitted 
temperature T . Right: Evolution of Boltzmann entropy (see Appendix B) in the reversible breaking-dam simulation (blue). Despite the reversibility of the dynamics, the 
entropy increases and approaches equilibrium entropy corresponding to the temperature of the measured Maxwell-Boltzmann distribution (blue line) from (21).

Let us now address the question whether symplectic integrators 
reduce the dissipation. First, symplectic integrators are suitable 
only for the reversible part of the differential equations, whereas 
the irreversible part (viscosity and diffusion) is typically not in 
the symplectic form [14]. Non-symplectic integrators, however, 
can cause irreversibility even in the reversible part of the equa-
tions. Although they can conserve the energy precisely, they do 
not preserve the phase-volume, which means that they affect the 
evolution of the distribution function of the particles [13]. Con-
sequently, they affect the Liouville entropy of the system, which 
causes dissipation. Another source of irreversibility is the floating-
point arithmetic, which actually spoils the reversibility and phase-
volume preservation of the exact symplectic integrators, leading 
to similar source of irreversibility as the non-symplectic integra-
tors. In practice, the dissipation caused by imperfect integration 
of the equations is often shadowed by the dissipation due to the 
viscous terms that are pertinent in situations that require some 
smoothing (for instance distorted boundary [15]). Nevertheless, if 
one wishes to minimize the dissipation due to the reversible terms 
in the SPH scheme, one should use the symplectic integrator, fixed-
point arithmetic, and better also the other tweaks proposed in the 
current manuscript.

6. Emergence of the second law of thermodynamics

The second law of thermodynamics tells that the entropy of 
each isolated system grows until the system reaches the thermo-
dynamic equilibrium. Where does this irreversible behavior come 
from when the underlying evolution equations for particle dynam-
ics (here SPH) are reversible? In this section we illustrate that the 
emergence of the second law from completely reversible dynam-
ics is caused by ignoring details of the dynamics, similarly as in 
[36–38].

The emergence of the second law is actually expected due to 
the result of Lanford [39] and following works [40], where a sys-
tem of classical particles with a short-range potential is shown 
to obey the Boltzmann equation. The collision term in the Boltz-
mann equation then causes the growth of the Boltzmann entropy. 
Fig. 6 shows the growth of Boltzmann entropy in a reversible SPH 
breaking-dam simulation. But how to interpret the Lanford’s math-
ematical result and the observed growth of Boltzmann entropy 
of the SPH particles from the physical point of view? The SPH 
particles obey reversible Hamiltonian dynamics. Another possibil-
ity to describe their motion is the Liouville equation, which ex-

presses reversible evolution of the N-particle distribution function, 
f N(t, r1, p1, . . . , rN , pN ). Indeed, Liouville equation follows from 
the particle mechanics, and, vice versa, if we set the distribution 
function to be the product of Dirac δ-distributions in the positions 
and momenta of all particles, we recover Hamilton canonical equa-
tions. Liouville equation also conserves the Liouville entropy

SLiouville( f N) = −kB

N!
∫

dr1

∫
dp1 . . .

∫
drN

∫
dpN f N ln

(
h3N f N

)
,

(9)

which thus remains constant. This is consistent with the reversibil-
ity of the underlying Hamiltonian particle mechanics.

Now we decide not to see all the positions and momenta of 
the individual particles, observing for instance only the probability 
distribution of momenta at given space and time. Such one-particle 
distribution function f (t, r, p) indeed does not contain the knowl-
edge of positions and momenta of all particles and thus the en-
tropy of the system expressed in terms of f must be higher than 
the Liouville entropy (functional of f N ). The former is the Boltz-
mann entropy and it is obtained by maximization of the Liouville 
entropy subject to the constraint that the one-particle distribution 
function is known [26]. Plugging the resulting f N back into the Li-
ouville entropy, we obtain the Boltzmann entropy

SBoltzmann( f ) = −kB

∫
drdp f (ln

(
h2 f

)
− 1) (10)

see [26]. Because the Boltzmann entropy is the Liouville entropy 
evaluated at the point f N where it is maximal (keeping the knowl-
edge of f ), the Boltzmann entropy is higher than the Liouville 
entropy. Although the Liouville entropy remains constant in the 
dynamics, the Boltzmann entropy can grow in the dynamics fol-
lowing the Liouville equation.

The irreversibility of the dynamics of the one-particle distri-
bution function can be illustrated on the reversible breaking-dam 
simulation with fixed-point arithmetic. Section 4 contains details 
of the simulation, but let us also show the histogram of the parti-
cle velocity distribution in the middle of the simulation, just before 
the velocities are inverted. Fig. 6 shows the measured histogram of 
the velocities of the SPH particles in comparison with the equi-
librium Maxwell-Boltzmann distribution function (19) obtained by 
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fitting the effective temperature.7 Although all velocities were ini-
tially zero, their distribution approaches the equilibrium distribu-
tion. This approach towards equilibrium is reflected in the growth 
of Boltzmann entropy during the long-time reversible simulation.

In other words, when the particles are described by the Boltz-
mann equation, our knowledge is incomplete, since the positions 
and momenta of all the particles remain unknown, in contrast to 
the description by means of Hamilton canonical equations or Li-
ouville equation. And this lack of knowledge makes the evolution 
of the one-particle distribution function f irreversible. The irre-
versibility is then explicitly expressed by the collision integral in 
the Boltzmann equation. The second law of thermodynamics thus 
emerges from completely reversible dynamics when our descrip-
tion is incomplete (not seeing all positions and momenta of the 
particles).

In summary, if we see all the positions and momenta in the 
SPH simulation, we can not see the second law of thermodynamics. 
Indeed, the simulation is reversible and the Liouville entropy re-
mains constant. However, when we only focus on the one-particle 
distribution function, we can see the growth of Boltzmann entropy 
and thus irreversible behavior. The second law of thermodynamics 
emerges when we our knowledge about the precise state of the 
system is incomplete [38].

Interestingly, since our discrete system is deterministic, re-
versible and can exist in only finitely many states, it is recurrent 
[41]. In other words, if the system evolves long enough, it comes 
back to the initial state exactly (provided that the particles are not 
allowed to escape to infinity). However, since the phase space of 
the system contains thousands of SPH particles, it has enormous 
amount of states, which makes it highly unlikely to observe the 
recurrence theorem in practice.

7. Conclusion

In this paper we have turned the usual weakly compressible 
smoothed particle hydrodynamics (WCSPH) to a symplectic form 
by finding the correct closed formula for the mass density. Because 
the closed formula for density leads to different treatment of parti-
cles that are initially near the boundary, the method of initial state 
correction (ISC) was introduced, due to which all particles are then 
treated in the same way. This leads to stable SPH simulations in 
the presence of free surfaces without any further stabilization.

In order to get simulations that preserve the energy, we use a 
conservative fluid-wall interaction. A symplectic (Verlet) scheme, 
which is suitable for the symplectic WCSPH, implemented in the 
fixed-point arithmetic then leads to globally-in-time reversible SPH 
simulations. This is demonstrated on the dam-break benchmark, 
where inversion of velocities at a later stage of the simulation 
eventually leads the system back to the initial state. The simula-
tions are available in a new Julia package SmoothedParticles.jl [20].

Despite the global reversibility of the simulations, we observe 
thermodynamic behavior when we do not use all the details of 
the simulation. The Boltzmann entropy, which depends only on the 
one-particle distribution function and not on positions of individ-
ual particles, grows in the dam-break simulation and approaches 
the equilibrium value. In other words, we observe the emergence 
of the second law of thermodynamics from purely reversible dy-
namics, caused by reduction of our knowledge about the system.

7 Note that the effective temperature is not the physical temperature of the sys-
tem because it is calculated from the overall motion of the macroscopic SPH par-
ticles. To see this, consider the extreme case of only one SPH particle with weight 
one kilogram, where the effective temperature obtained from the motion of that 
macroscopic particle does not coincide with the physical temperature of that parti-
cle.

In future, we would like to extend the WCSPH framework to 
non-isothermal fluids and solids while keeping the Hamiltonianity 
of the equations and numerical schemes. In particular, we would 
like to apply our approach towards reversibility in solid mechanics, 
using for instance the Lagrangian kernels [9,10].
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Appendix A. Gresho vortex benchmark

The Gresho vortex benchmark [42] prescribes a tangential ve-
locity component of Eulerian fluid in polar coordinates as8

u0
θ (r) =

⎧⎪⎨
⎪⎩

5r for r < 1
5 ,

2 − 5r for 1
5 < r < 2

5 ,

0 for r > 2
5 .

The vortex is confined in a box (− 1
2 , 12 ) ×(− 1

2 , 12 ) with no-slip wall 
(though different variants can be found in literature). Theoretically, 
in the absence of viscosity, the vortex should be stationary, but ob-
taining this in a numerical scheme is challenging. In our numerical 
experiment, we simulate the flow in time-interval [0,1] and mea-
sure the error using a discretized (L∞, L2) Sobolev norm

e = max
t∈[0,1]

√
75

4π

∑
a

Va
∣∣ua − u0(ra)

∣∣2
. (11)

The meaning of the factor 75
4π is that the zero velocity field corre-

sponds to error 1. In order to prevent formation of void space in 
the center of vortex, we had to include an anti-clump force term 
in the form

f =
∑

b

mb

(
p0

ρ2
a

+ p0

ρ2
b

)
w̃ ′(rab)eab,

where w̃ is a smoothing kernel with support radius dr
2 . Addition-

ally, we consider noise reduction by the Shepard filter

ũa = 1

γa

∑
b

Vbub wab,

where

γa =
∑

b

Vb wab.

8 Similar simulation of the Kepler vortex shows stability of the vortex even after 
200 revolutions [43,44].
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Fig. 7. Simulation result with Vogel spiral + ISC arrangement at t = 0 (left) and t = 1 (right).

Table 2
Error of Gresho vortex benchmark for different grid types (square, hexagonal, Vogel 
spiral, Vogel spiral + ISC) and with different types of noise filtering. The error is 
computed according to formula (11). It appears from data that passive (a posteriori) 
filter is better than active filtering (which dissipates energy). Compared to WENO 
method [42], numerical dissipation in symplectic WCSPH is quite strong.

no filter passive filter active filter

square 28.16% 12.20% 53.07%
hexagonal 27.84% 11.77% 55.79%
Vogel 29.85% 13.31% 78.06%
Vogel + ISC 28.19% 11.26% 55.25%

Table 3
Parameters used for Gresho vortex simulation. This 
benchmark is dimensionless and with no gravity. Walls 
were implemented by two layers of dummy particles.

density ρ 1
spatial step dr 1e-2
num. sound speed c 20
kernel support radius h 3 dr
box size l 1
anti-clump pressure p0 10
time step dt 0.1h/c
filter frequency M 30

This filter can be applied either in post-processing (passive filter), 
or by setting ua := ũa every M time steps (active filter). Results are 
summarized in Table 2 and Fig. 7. Simulation parameters are listed 
in Table 3. Note that the pressure field is noisy because the noise 
is not suppressed by artificial dissipation [17]. However, the total 
energy is still conserved despite the noise. As the noise affects the 
quality of the solution, we opt-out for filtering it out in the post-
processing rather than eliminating it in the calculation because the 
latter would violate our goals of global-in-time reversibility and 
energy conservation.

Appendix B. The Maxwell-Boltzmann entropy

In this section we derive the formula for Boltzmann entropy in 
terms of the Maxwell-Boltzmann distribution and, subsequently, to 
find its equilibrium value.

B.1. The reduced Boltzmann entropy in terms of the 
Maxwell-Boltzmann distribution

Let us start with the Boltzmann entropy in two dimensions ex-
pressed in terms of the one-particle distribution function f (t, r, p),

S(Boltzmann) = −kB

∫
dr

∫
dp f (ln

(
h2 f

)
− 1), (12)

where the position is constrained to a box with volume V and 
where h is the Planck constant. This formula can be obtained for 
instance by the principle of maximum entropy from the Liouville 
entropy, from where it also follows that the one-particle distribu-
tion function is normalized to the number of particles, see [26].

Assuming that the distribution function depends only on the 
magnitude of the momentum (isotropic dependence), the Boltz-
mann entropy can be rewritten as

S(Boltzmann) = kB N ln
e

h2
− 2πkB V

∞∫
0

dp pf (p) ln f (p), (13)

where p = |p| is the norm of the momentum. This dependence 
on the one-particle distribution function f (p) has to be converted 
to a dependence on the Maxwell-Boltzmann distribution function 
f M B(v), which tells the probability that the norm of velocity of a 
particle v = p/m is in the interval (v, v + dv). This is done using 
the normalization,

1 = 1

N

∫
dr

∫
dp f =

∞∫
0

dv
2πm2 V

N
v f (v), (14)

which leads to the expression of the two-dimensional Maxwell-
Boltzmann distribution function in terms of the one-particle distri-
bution,

f M B(v) = 2πm2 V

N
v f (v), (15)

which is normalized to unity. Note that we assume that the one-
particle distribution is homogeneous in space (the total volume be-
ing V ) and isotropic in momentum. These assumptions are valid in 
the thermodynamic equilibrium, but they approximately hold also 
before the equilibrium is reached, and for the purpose of showing 
that the Boltzmann entropy grows in our simulations, the approx-
imation is satisfactory. Finally, the Boltzmann entropy in terms of 
the Maxwell-Boltzmann distribution function becomes

S(Boltzmann) − kB N ln
e

h2
= −kB N

∞∫
0

dv f M B(v) ln

(
f M B(v)N

2πm2 v

)
.

(16)
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Since the number of particles is conserved in our simulation, we 
only evaluate the part of Boltzmann entropy that varies when f M B

changes,

S(Boltzmann)

reduced = S(Boltzmann) − kB N ln e
h2

kB N
+ ln

(
N

2πm2

)

= −
∞∫

0

f M B(v) ln

(
f M B(v)

v

)
, (17)

called reduced Boltzmann entropy. Note that the integral converges 
near the origin because the Maxwell-Boltzmann distribution typi-
cally has linear growth there.

In our simulations, this reduced Boltzmann entropy is numeri-
cally integrated using the approximate Maxwell-Boltzmann distri-
bution function obtained from a histogram of the particle velocities 
at given time instant.

B.2. Equilibrium Boltzmann entropy

What is the final value of the reduced Boltzmann entropy when 
the system of particles reaches the thermodynamic equilibrium? 
This question can be answered in two steps. First, the equilibrium 
distribution function is calculated by the principle of maximum 
entropy (MaxEnt). Second, the equilibrium distribution function is 
plugged into the formula for the reduced Boltzmann entropy. Note, 
however, that the MaxEnt step depends on the energy (Hamil-
tonian) of the system and it depends on the complexity of the 
Hamiltonian whether the calculation can proceed purely analyti-
cally (without numerical solutions). Therefore, we use the simplest 
Hamiltonian approximating the true Hamiltonian of our SPH par-
ticles, consisting only of the kinetic energy of the particles. Maxi-
mization of the Boltzmann entropy subject to the constraints given 
by the total energy and total number of particles leads to the equi-
librium one-particle distribution function

fequilibrium = 1

h2
e
− N∗

kB e
− E∗

kB

p2

2m , (18)

where N∗ and E∗ are the Lagrange multipliers corresponding to 
the two constraints (number of particles and total energy). From 
the normalization it follows that N/V = exp(−N∗/kB)/h2, while 
the other Lagrange multiplier can be interpreted as the inverse 
temperature, E∗ = 1/T .

The equilibrium Maxwell-Boltzmann distribution function then 
becomes

f M B,equilibrium(T , v) = m

kB T
ve− 1

2 mv2
. (19)

As time proceeds in our simulations, the histogram of particle 
velocities approaches the equilibrium Maxwell-Boltzmann distribu-
tion.

When this equilibrium distribution function is plugged back 
into the Boltzmann entropy, the reduced Boltzmann entropy be-
comes

S(Boltzmann)

(reduced)
(T ) = 1 + ln

(
kB T

m

)
. (20)

This equilibrium entropy, which depends on T , can be calculated 
once the temperature is obtained by fitting the histogram of par-
ticle velocities to the equilibrium Maxwell-Boltzmann distribution 
function (19). This makes sense, however, only at later stages in 
the simulations, when the histogram approaches the equilibrium 
distribution.

Fig. 8. Evolution of the total energy in the dam-break simulation (forward and re-
versed simulations). The energy oscillates within 2 · 10−4% of the initial (exact) 
value.

Fig. 9. Kinetic energy in the dam-break simulation (forward and reversed simula-
tions). The energy starts from zero and then evolves in a non-monotonous way 
towards its maximum when the particles occupy the bottom of the container.

Fig. 10. Gravitational (potential) energy in the dam-break simulation (forward and 
reversed simulations). The energy decreases as the particles tend to occupy the bot-
tom of the container.

Instead of using the equilibrium temperature, which makes 
sense only in later stages of the simulations, we can express the 
equilibrium entropy in terms of energy, which can be measured 
anytime. The total kinetic energy of the two-dimensional system 
of particles is equal to E = NkB T , which makes it possible to write 
the equilibrium entropy in terms of the energy,

11



O. Kincl and M. Pavelka Computer Physics Communications 284 (2023) 108593

Fig. 11. Internal (or compressional) energy in the dam-break simulation (forward 
and reversed simulations). The energy grows from the initial condition to its maxi-
mum when the particles occupy the bottom of the container.

Fig. 12. The wall-fluid interaction energy in the dam-break simulation (forward and 
reversed simulations). Once the fluid starts interacting with the wall, the wall en-
ergy oscillates around an average value.

S(Boltzmann)

(reduced)
(E) = 1 + ln

(
E

Nm

)
. (21)

This value of equilibrium entropy is close to the Boltzmann en-
tropy obtained directly from the approximated Maxwell-Boltzmann 
distribution, while the entropy based on the equilibrium tempera-
ture is only approached at later stages of the simulations.

Appendix C. Energy budget in the dam-break simulation

This Section contains the plots of various parts of the en-
ergy (gravitational, kinetic, internal, wall) and the total energy 
within the reversible dam-break simulation. The time-span ranges 
from the initial condition to the point where the particle veloc-
ities were inverted. The plots contain both the forward simula-
tion and the backward simulation (denoted by subscript rev). See 
Figs. 8–12.
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a b s t r a c t 

Smoothed Particle Hydrodynamics (SPH) methods are advantageous in simulations of fluids 

in domains with free boundary. Special SPH methods have also been developed to simulate 

solids. However, there are situations where the matter behaves partly as a fluid and partly 

as a solid, for instance, the solidification front in 3D printing, or any system involving both 

fluid and solid phases. We develop an SPH-like method that is suitable for both fluids and 

solids at the same time. Instead of the typical discretization of hydrodynamics, we dis- 

cretize the Symmetric Hyperbolic Thermodynamically Compatible equations (SHTC), which 

describe both fluids, elastic solids, and visco-elasto-plastic solids within a single frame- 

work. The resulting SHTC-SPH method is then tested on various benchmarks from the hy- 

drodynamics and dynamics of solids and shows remarkable agreement with the data. 

© 2022 Elsevier Inc. All rights reserved. 

1. Introduction 

We continue investigating different numerical strategies for the discretization of the unified formulation of continuum 

fluid and solid mechanics [1,2] , which can describe flows of Newtonian and non-Newtonian fluids [3] , as well as deforma- 

tions of elastoplastic solids [4] in a single system of first-order hyperbolic partial differential equations. In this paper, we 

are particularly interested in the capabilities of the Smoothed Particle Hydrodynamics approach to capture the solution to 

the unified model in both fluid and solid regimes. Because the non-dissipative part of the model (all differential terms) 

belongs to the class of Symmetric Hyperbolic Thermodynamically compatible (SHTC) equations [5–9] , we shall also refer 

to the unified model as the SHTC equations. Moreover, as shown in [5] the SHTC equations can also be seen as a particu- 

lar realization of the GENERIC (General Equation for Non-Equilibrium Reversible-Irreversible Coupling) approach [10–12] to 

non-equilibrium thermodynamics. From this view point, where we emphasize thermodynamic compatibility, our approach 

is similar to the formulation of the SPH scheme based on the GENERIC framework [13–15] . In the long-term perspective, 

we, therefore, are interested in developing an SPH Hamiltonian integrator that respects various properties of the continuous 

equations (differential constraints, Jacobi identity, etc.) at the discrete level. This goal is partially addressed in this paper. 

Previously, the unified model of continuum mechanics was discretized using various mesh-based techniques including 

Godunov-type finite volume methods and Discontinuous Galerkin methods [2] , Arbitrary Lagrangian Eulerian methods [4,16] , 

a finite volume method in the Updated Lagrangian formulation with a high-order IMEX time integrator [17] , semi-implicit 
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staggered finite volume method [18] for low-Mach number problems, thermodynamically compatible finite volume scheme 

[19] . 

This time, we turn to the discretization of the SHTC equations with mesh-free methods and, in particular, with the 

Smoothed Particle Hydrodynamics (SPH), which is a particle-based numerical method for partial differential equations in- 

troduced by Gingold and Monaghan in 1977 [20] . The method allows for an elegant treatment of complex time-dependent 

geometries. This feature makes it attractive for problems involving fluid-structure interactions [21–24] and multiphase flows 

[25] . Despite its name, there are also numerous applications to solids [26–32] . We refer, for example, to [33] for a compre- 

hensive review. 

Although SPH methods were successfully applied to simulate fluids and solids, the schemes and equations were rather 

different. For exam ple, fluid mechanics equations are formulated in the Eulerian frame, while solid mechanics equations are 

traditionally formulated in the Lagrangian frame. Our ultimate goal, therefore, to develop a single reliable scheme that 

works in both fluid and solid regimes of the SHTC equations, is far from being trivial. For example, such a goal is very 

appealing from the perspective of modeling material flows that exhibit coexistence of the fluid and solid states, as well 

as mutual transformations, e.g. selective laser metal printing (3D printing of metals), flows of viscoplastic fluids, landslides 

and avalanches, ice formation, etc. Another canonical example of coexistence of fluid-like and solid-like behavior is granular 

flows [34,35] . In particular, models for granular materials [35–37] have, in addition to the standard SPH equations for po- 

sition and momentum, relationships for strain or other state variables (e.g. vorticity). Thus, granular flows with their many 

phases [34,35] might be also addressed in future within the SHTC-SPH framework proposed here . 

Although SPH methods were successfully applied to simulate fluids and solids, the schemes and equations were rather 

different. For exam ple, fluid mechanics equations are formulated in the Eulerian frame, while solid mechanics equations are 

traditionally formulated in the Lagrangian frame. Our ultimate goal, therefore, to develop a single reliable scheme that works 

in both fluid and solid regimes of the SHTC equations, is far from being trivial. For example, such a goal is very appealing 

from the perspective of modeling material flows that exhibit coexistence of the fluid and solid states, as well as mutual 

transformations, e.g. selective laser metal printing in additive manufacturing, flows of viscoplastic fluids, granular flows [34] , 

landslides and avalanches, ice formation, etc. 

Despite the fact that the SHTC equations are formulated in the Eulerian frame (which is necessary for a fluid-like motion), 

these equations also have a particle-like, and therefore Lagrangian, nature, which was discussed in [38] . In particular, the 

main field of SHTC equations that makes it possible to describe fluids and solids at once is the distortion field A . This field 

can be seen as a field of infinitesimal local basis triads, which are allowed to arbitrary rearrange with their neighbors and 

thus exhibit the particle-like nature. Such a continuum description of matter was in particular inspired by Frenkel’s idea to 

characterize the fluidity of the liquids by the so-called characteristic particle rearrangement time τ [39,40] . Moreover, the 

SHTC equations can be derived by the transformation of the Lagrangian Hamiltonian continuum mechanics to the Eulerian 

continuum [41] . Therefore, Lagrangian particle-like methods, like the SPH scheme developed in this work, may provide an 

important theoretical tool to study the small scale dynamics of the distortion field in the future. 

The numerical scheme proposed in this paper is based on an explicit variant of SPH. First, we perform the spatial semidis- 

cretization of the reversible part of the SHTC system. The exact form of discrete operators is derived from a potential, which 

guarantees the conservation of energy without a direct discretization of the total energy conservation law. We obtain a sys- 

tem of ordinary differential equations, for which we find an efficient time-reversible integrator. We also discuss the problem 

of tensile instability and suggest a solution without interfering with the conservative properties of SPH. Finally, the irre- 

versible part is added using the classical Runge-Kutta-4 scheme as time integrator. The last section is devoted to the validity 

tests. 

2. Governing PDEs 

The unified model of continuum fluid and solid mechanics is formulated in the Eulerian frame in a Cartesian coordinate 

system x = { x 1 , x 2 , x 3 } as follows [1,2] 

∂ρ

∂t 
+ ∇ · (ρv ) = 0 , (1a) 

∂(ρv ) 
∂t 

+ ∇ · ( v � ρv − S ) = 0 , (1b) 

∂A 

∂t 
+ v · ∇A + A ∇ v = − 1 

θ
E A , (1c) 

∂(ρE) 

∂t 
+ ∇ · ( v ρE − S v ) = 0 , (1d) 

where ρ is the mass density of the material, v = { v 1 , v 2 , v 3 } is the velocity field, v � ρv = { ρv i v j } , A = { A 

i j } is the distor- 

tion field, ∇ v = { ∂v i 
∂x j 

} , v · ∇ = v i ∂ 
∂x i 

, S = { S i j } is the total stress tensor whose specification depends on the material under 
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consideration and is defined by the total energy density specification E = E(ρ, v , A ) = ε(ρ, A ) + 

1 
2 ‖ v ‖ 2 , see Section 3.4 . In 

addition, ε(ρ, A ) is the internal energy that must be specified by the user. 

The left-hand side of the equations is the reversible part of the time evolution and can be derived either from the 

variational principle or can be generated by Poisson brackets [5] . This part describes the elasticity of the material. The right- 

hand side is characterized by the relaxation term in the distortion equation. Here, E A = 

∂E 
∂A and is essentially the Lagrangian 

stress tensor (first Piola-Kirchhoff stress), while the scalar θ = θ (ρ, τ, A ) ≥ 0 is a relaxation function which depends on 

the state variables and some material constants. In particular, θ ∼ τ , where τ is the strain relaxation time and one of the 

key elements of the SHTC model to describe fluids and solids. For example, in this framework, fluids can be seen as the 

relaxation limit (small relaxation time 0 < τ � ∞ ) of a solid when the shear stresses are strongly relaxed (“melted” solid). 

For Newtonian fluids τ can be taken constant, while for non-Newtonian fluids and elastoplastic solids τ is the function of 

the stress state [3,4] , and therefore of the distortion field τ = τ (A ) (as well as other parameters, e.g. temperature). 

As relaxation time is widely used in non-Newtonian fluid dynamics but with a slightly different meaning, e.g. [15] we 

further comment on the strain relaxation time τ . A viscoelastic fluid, for instance the classical Maxwell model, can be 

obtained from the SHTC equations if the energy does not depend directly on distortion A , but rather only on the left Cauchy- 

Green tensor B = A 

−1 A 

−T , by projection of the dynamics of A to B [12] . The strain relaxation time τ then becomes the 

relaxation time in the Maxwell model. However, many modern extensions of the original Maxwell model implies that the 

stress tensor is additivelly decomposed into pure viscous and elastic parts [15] . In such models, the pure viscous Newtonian 

regime corresponds to the vanishing relaxation time (i.e. τ = 0 ). On the other hand, a material described by the SHTC 

equations is never pure viscous but a viscoelastic one, i.e. the elastic component never vanishes completely, though it might 

be vanishingly small. Thus, the first-order Chapman-Enskog approximation of the SHTC equations in the case of sufficiently 

small but finite τ gives the Navier-Stokes equations [42,43] . On the other side of the spectrum of τ , in the case of no 

dissipation, i.e. τ → ∞ , the SHTC equations are just the Eulerian evolution equations of the finite strain hyperelasticity. 

For simplicity, we ignore the heat transfer effect which is also described by hyperbolic relaxation equations in the SHTC 

framework [5,12,18] , as well as the materials are considered as isothermal. The heat conduction will be included in a follow 

up paper. 

The following section contains a numerical method (SHTC-SPH) that finds approximate solutions of the SHTC Eq. (1) in 

both the fluid and solid regimes. [44] 

3. The SHTC-SPH method 

In order to address the SHTC Eq. (1), which contain the distortion field (unlike hydrodynamics), we have to define a dis- 

crete analogy of the continuous distortion. But before that, let us first recall the standard construction of SPH via smoothing 

kernels. 

The SPH is based on smoothing kernels to calculate the influence of a particle on its surroundings. In this paper, we will 

use Wendland’s quintic kernel, which reads 

w (r) = 

⎧ ⎨ 

⎩ 

αd 

h d 

(
1 − r 

2 h 

)4 (
1 + 

2 r 
h 

)
, r ≤ 2 h 

0 , r ≥ 2 h 

(2) 

where r is the distance from the center of the particle, h is the smoothing length and d is the dimension. The constant αd 

normalizes w such that 
∫ 

R d w = 1 has the following values: { 

α2 = 

7 
4 π

α3 = 

21 
16 π

. (3) 

Following Violeau [45] , we will use the notation 

w ab = w (r ab ) , w 

′ 
ab = d wr ( r ab ) (4) 

where r ab = | x a − x b | = | x ab | is the distance between two particles with positions x a , x b in the Eulerian frame. Furthermore, 

let us also denote 

∇w ab = w 

′ 
ab 

x ab 

r ab 

. (5) 

Realizing that 

w 

′ (r) 

r 
= 

⎧ ⎨ 

⎩ 

− 10 αd 

h d+1 

(
1 − r 

2 h 

)3 
, r ≤ 2 h 

0 , r ≥ 2 h 

(6) 

we can implement ∇w ab in a way that avoids potential division by r = 0 . 

Moreover, in the initial state, the particles are placed in a regular pattern, filling a domain 	0 such that every particle 

occupies a volume V 0 = δr d , where δr > 0 is the spatial step of the simulation. In the 2D case, an isometric grid arrangement 

3 
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is used in this paper, while in the 3D case, the particles are initially distributed in a body-centered cubic crystal. We can 

now proceed to the definition of the discrete state variables. 

3.1. Discrete density 

Mass density can be approximated, using interpolation by smoothing kernel density ρa at x a , as 

ρa = 

∑ 

b 

m b w ab + C ρ,a (7) 

where C ρ,a is a time-independent parameter that enforces the equality of ρa with the reference density ρ0 at the initial 

time instant t = 0 (this is necessary to obtain the vanishing internal energy of the free surface particles). We assume that 

the masses of the particles m b are positive and do not depend on time [46] . In all the examples presented in this paper, we 

use m b = ρ0 V 0 
∣∣

b 
where the volume of the particles follows from V a = ( 

∑ 

b w ab ) 
−1 . 

A straightforward computation then yields the following formula for the differential of the discrete density. 

Statement 1. Assuming r ab > 0 for each pair of particles, the total differential of ρa according to formula (7) with respect 

to the positions of the particles x is 

d ρa = 

∑ 

b 

m b d x ab · ∇w ab (8) 

3.2. Discrete distortion 

An important variable in the SHTC equations is the distortion matrix. In the reversible (elastic) case, i.e. (1c) is homoge- 

neous, it can be thought of as the inverse of the deformation gradient F = 

∂ x 
∂ X 

= A 

−1 , and therefore it satisfies the following 

equation [12, Chap. 3] 

˙ A = −AL , (9) 

which is the identity following from the definition A = 

∂ X 
∂ x 

, [7] . Here, L is the velocity gradient, X is the Lagrangian coordi- 

nate of the continuum, and the dot denotes the material time derivative. Using a renormalized SPH gradient [47,48] inspired 

by work [49] by Falk and Langer, we can approximate this quantity as 

L a = 

( ∑ 

b 

m b v ab � ∇w ab 

) ( ∑ 

b 

m b x ab � ∇w ab 

) −1 

. (10) 

The following statement explains that L a can be found by approximating a differential formula d v = L d x : 

Statement 2. Assume r ab > 0 for each pair of particles and for any fixed particle a that there are d linearly independent 

vectors x ab satisfying r ab < 2 h . (In other words, particle a and its neighbors must not be co-planar in 3D or co-linear in 2D.) 

Then the matrix inverse in (10) exists and L a is the unique solution of the overdetermined system 

L a x ab 
. = v ab (11) 

in the sense of weighted least squares with weights m b 

| w 

′ 
ab 

| 
r ab 

. 

Proof. Note that | w 

′ 
ab 

| = −w 

′ 
ab 

. It is clear from the assumptions that the matrix 

−
∑ 

b 

m b x ab � ∇w ab = 

∑ 

b 

m b | w 

′ 
ab 
| 

r ab 

( x ab � x ab ) (12) 

is positive definite and thus invertible. Now, the global minimimum of coercive and differentiable function 

E(L a ) = −1 

2 

∑ 

b 

m b 

w 

′ 
ab 

r ab 

| L a x ab − v ab | 2 (13) 

with respect to L a exists and satisfies 

0 = d E a = −
∑ 

b 

m b 

w 

′ 
ab 

r ab 

(L a x ab − v ab ) · d L a x ab 

= −d L a : 
∑ 

b 

m b (L a x ab − v ab ) � ∇w ab , ∀ d L a . (14) 

This immediately yields (10) . �

4 
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As a corollary of Statement 2 , it is clear that the definition (10) is first-order exact. In fact, L a x ab = v ab will be solved 

exactly by least squares, provided that a solution exists, which is the case when v can be written as a linear function of x . 

Combining (9) with (10) , we obtain the evolution of A a in the form 

˙ A a = −A a 

( ∑ 

b 

m b v ab � ∇w ab 

) ( ∑ 

b 

m b x ab � ∇w ab 

) −1 

. (15) 

Since v a = 

˙ x a , we can write this as a linear relation between total differentials of A a and x a with respect to time: 

d A a = −A a 

( ∑ 

b 

m b d x ab � ∇w ab 

) ( ∑ 

b 

m b x ab � ∇w ab 

) −1 

, (16) 

Here, we have a subtle problem because we do not have any guarantee that the right-hand side in (16) is integrable — that 

is, unlike for density (see (7) ), we do not have a closed formula for A a = A a ( x ) . Therefore, when � is a closed loop in the 

configuration space, one, in general, has ∫ 
�

d A a  = 0 . (17) 

In other words, if (16) is used, the numerical distortion may not exactly recover its initial value when the shape of a material 

does, potentially introducing some artificial inelasticity and small local residual stresses. Without resorting to the Lagrangian 

description [50] , we have not found a satisfactory solution to this problem in pure Eulerian settings. 

On a side note, instead of treating the density as a separate variable, it is possible to use 

ρa = ρ0 det A a . (18) 

However, in our numerical experiments, using formula (7) appeared to be more reliable. 

3.3. Reversible part of the SHTC-SPH equations 

Let us now consider the case of an elastic solid with internal energy 

U = 

∫ 
	

ρ εd x. (19) 

which we discretize as 

U h = 

∑ 

a 

m a εa , (20) 

where εa = ε(ρa , A a ) is the specific internal energy. For simplicity of notation, let us write 

H a = 

∑ 

b 

m b x ab � ∇w ab (21a) 

T a = −ερa 
I + A 

T 
a εA a H 

−1 
a , (21b) 

where we employed the usual notation for partial derivatives ερa = 

∂ε
∂ρa 

, εA a = 

∂ε
∂A a . Here, H a is a renormalization matrix with 

units of density that appeared in definition of the discrete velocity gradient (10) and is usually negative definite. Matrix T a 

represent the stress on particle a . Now, using (8), (16) , we find how U varies when x changes: 

d U h = 

∑ 

a 

m a ερa 
d ρa + 

∑ 

a 

m a εA a : d A a 

= 

∑ 

a,b 

m a m b 

(
ερa 

∇w ab · d x ab − εA a : A a ( d x ab � ∇w ab ) H 

−1 
a 

)
= −

∑ 

a,b 

m a m b T a ∇w ab · d x ab 

= −
∑ 

a,b 

m a m b (T a + T b ) ∇w ab · d x a . (22) 

Combining (15), (22) and m a ̇ v a = − ∂U h 
∂ x a 

(Newton’s second law), we obtain a system of ordinary differential equations: 

˙ x a = v a 
˙ v a = 

∑ 

b 

m b (T a + T b ) ∇w ab 

˙ A a = −A a L a , (23) 

5 
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which is the system of the SHTC-SPH ordinary differential equations approximating the SHTC equations. 

One of the greatest assets of SHTC-SPH is that it enjoys various conservative properties. 

Statement 3. The system of Eq. (23) satisfies the conservation of the 

• energy 

H h = 

∑ 

a 

m a 

(
v 2 a 

2 

+ εa 

)
, (24) 

• linear momentum 

M h = 

∑ 

a 

m a v a , (25) 

• angular momentum (provided that the shear stress tensor A 

T 
a εA a is symmetric) 

L h = 

∑ 

a 

m a x a × v a . (26) 

Proof. Conservation of energy follows from the construction, linear momentum is conserved due to antisymmetry ∇w ab = 

−∇w ba . Likewise, showing conservation of angular momentum is easy because 

˙ L 

i 
h = ε i jk 

∑ 

a 

m a x 
j 
a ̇ v k a 

= ε i jk 
∑ 

a 

m a x 
j 
a 

( ∑ 

b 

m b (T kl 
a + T kl 

b ) ∇ ab w 

l 

) 

= ε i jk 
∑ 

a 

m a T 
kl 

a 

( ∑ 

b 

m b x 
i 
ab ∇ ab w 

l 

) 

= ε i jk 
∑ 

a 

m a T 
kl 

a H 

li 
a 

= 0 (27) 

since the matrix T a H a is symmetric. �

3.4. Constitutive equations 

The set of Eq. (23) is incomplete until one specifies the dependence of internal energy ε on ρ, A . In this paper, we 

assume that the energy ε(ρ, A ) can be additively decomposed as 

ε(ρ, A ) = ε0 (ρ) + εs (ρ, A ) , (28) 

where ε0 (ρ) may depends only on density and represents stored energy due to volumetric changes in the continuum. In 

general, it is convenient to chose ε0 in such a way that in the ideal fluid limit (Euler equations), it recovers some known 

equations of state (e.g. ideal gas, stiffened gas, MieGrneisen, etc.). In particular, we shall use the following simple quadratic 

relation 

ε0 (ρ) = 

c 2 0 

2 

(
ρ0 

ρ
− 1 

)
2 , (29) 

with constant c 0 taken equal to the bulk sound velocity in the case of small deformations, and ρ0 being a reference density. 

In principle, arbitrary physically meaningful formula can be used instead (29) (e.g. [2,12] ), but for the prove of concept, 

(29) is sufficiently general. From (29) , we can deduce an expression for the pressure: 

p = ρ2 ∂ε0 

∂ρ
= c 2 0 ρ0 

(
1 − ρ0 

ρ

)
. (30) 

On the other hand, εs (ρ, A ) represents stored elastic energy due to tangential deformations. It, however, may contain 

volumetric contribution as well. In this paper, we use two variants for ε(ρ, A ) . Following the papers [2] , we can use 

εDPRZ 
s (A ) = 

c 2 s 

4 

‖ dev (A 

T A ) ‖ 

2 
F , (31) 

where c s is set to be equal to the shear speed of sound so that in the case of small deformations, the Hook law of linear 

elasticity is recovered, ‖ · ‖ F is the Frobenius norm and 

dev M = M − 1 

3 

( tr M ) I (32) 

6 
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denotes deviatoric part . Plugging this into (21b) , we get 

T a = − p a 

ρ2 
a 

I + c 2 s A 

T 
a A a dev (A 

T 
a A a ) H 

−1 
a . (33) 

Remark that formula (31) implicitly depends on density through det A = ρ/ρ0 . Indeed, if a k are the singular values of A then 

it can be shown that 

εDPRZ 
s (A ) = 

1 

6 

(
(a 1 − a 2 ) 

2 + (a 2 − a 3 ) 
2 + (a 3 − a 1 ) 

2 
)

+ 

8 

3 

(
a 2 1 a 

2 
2 

(
1 − 1 

2 

(
a 1 
a 2 

+ 

a 2 
a 1 

))
+ a 2 2 a 

2 
3 

(
1 − 1 

2 

(
a 2 
a 3 

+ 

a 3 
a 2 

))
+ a 2 3 a 

2 
1 

(
1 − 1 

2 

(
a 3 
a 1 

+ 

a 3 
a 1 

)))
(34) 

where, in particular, it is clear that the second part of the formula depends on det A = a 1 a 2 a 3 . This results in a non-zero 

trace of the stress tensor, which is, however, vanishingly small in the case of small deformations. Other options for εs which 

give exactly trace-free stress are available in the literature, e.g. see [51] . 

It is also possible to use the Neo-Hookean model 

εNH 
s (A ) = 

c 2 s 

2 

( tr B a − 3 + 2 ln det A a ) , (35) 

which yields: 

T a = − p a 

ρ2 
a 

I − c 2 s ( B a − I ) H 

−1 
a , (36) 

with B a = A 

−1 
a A 

−T 
a being the left Cauchy-Green tensor and the pressure in a particle follows from (30) as 

p a = c 2 0 ρ0 

(
1 − ρ0 

ρa 

)
. (37) 

3.5. Tensile penalty 

A common issue encountered in SPH is the tensile instability — a numerical artifact, which causes unwanted clumping 

of particles in regions of negative pressure. Due to non-linearities in formula (7) , density ρ will increase slightly under 

tensile strain. This is usually not a problem for p > 0 , however, for p < 0 particles can reduce their potential by tensile 

strain according to 

ε

∂ρ
= 

p 

ρ2 
. (38) 

This often results in the formation of particle chains surrounded by void patches, which can eventually cause body tearing. 

There are a few remedies offered in the literature. Monaghan [52] recommends adding an artificial force that repels particles 

with abnormally small separation. Another possible treatment is based on the idea of particle shifting (typically due to an 

artificial Fickian diffusion) which prevents highly anisotropic particle distributions and hence reduce the onset of numerical 

instability in both the internal and free boundary flows [53,54] . 

In this paper, we suggest adding the following tensile penalty term to the energy: 

P h = 

1 

2 

∑ 

a 

m a c 
2 
p 

(
λa 

ρ0 

)2 

, (39) 

where c p is a numerical parameter with the dimension of velocity and that determines the strength of anti-clumping forces. 

The variable λa is defined by the relation 

λa = h 

∂ρa 

∂h 

+ C λ,a = 

∑ 

b 

m b h 

∂w ab 

∂h 

+ C λ,a . (40) 

Our idea is to describe clustering as a situation where ρa increases when we take a smaller smoothing length h . By adding 

this energy term, we enforce a desired distribution of the particles by keeping ∂ρa 

∂h 
small. Similarly to (7) , we add a time- 

independent parameter C λ,a to ensure that λa = 0 at the initial time. The potential P h then generates an additional force 

−∂P h 

∂ x a 
= −

∑ 

b 

m a m b c 
2 
p 

λa + λb 

ρ2 
0 

h 

∂∇w ab 

∂h 

(41) 

7 
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Fig. 1. The plot of h ∂w 
∂h 

(left) and h 
r 

∂ 2 w 
∂ r∂ h 

(right) in two and three dimensions for h = 1 . 

so that the updated balance of momentum reads 

˙ v a = 

∑ 

b 

m b (T a + T b ) ∇w ab 

−
∑ 

b 

m b c 
2 
p 

λa + λb 

ρ2 
0 

h 

r ab 

∂ 2 w ab 

∂ r ab ∂ h 

x ab . (42) 

Restricting ourselves to the Wendland’s kernel (2) , we can provide these explicit formulas: 

h 

∂w 

∂h 

= 

⎧ ⎨ 

⎩ 

7 
4 πh 2 

(
1 − r 

2 h 

)3 
(

7 

(
r 
h 

)2 − 3 r 
h 

− 2 

)
r ≤ 2 h 

0 r ≥ 2 h 

, (43) 

h 

r 

∂ 2 w 

∂ r∂ h 

= 

⎧ ⎨ 

⎩ 

− 35 
4 πh 4 

(
1 − r 

2 h 

)2 ( 7 r 
h 

− 8 

)
r ≤ 2 h 

0 r ≥ 2 h 

(44) 

in 2D, and 

h 

∂w 

∂h 

= 

⎧ ⎨ 

⎩ 

21 
32 πh 3 

(
1 − r 

2 h 

)3 
(

16 

(
r 
h 

)2 − 9 r 
h 

− 6 

)
r ≤ 2 h 

0 r ≥ 2 h 

, (45) 

h 

r 

∂ 2 w 

∂ r∂ h 

= 

⎧ ⎨ 

⎩ 

− 105 
16 πh 5 

(
1 − r 

2 h 

)2 ( 4 r 
h 

− 5 

)
r ≤ 2 h 

0 r ≥ 2 h 

(46) 

in 3D. 

From the graphs in Fig. 1 , we can intuitively understand the behavior of artificial force in (42) as follows: for evenly 

distributed particles (such as in a grid), λa will be close to zero, since this is the average value of h ∂w 

∂h 
inside the ball 

of radius 2 h (or disc in 2D). However, λa will be negative when the particle a is found in a cluster or chain of particles 

surrounded by a void. This activates the artificial force, whose magnitude is proportional to h 
r 

∂ 2 w 

∂ r∂ h 
. This makes it str ongly 

repulsive for nearby particles and slightly attractive for relatively large separations within the particle’s sphere of influence. 

Thus, we get a modification of the equations similar to Monaghan’s anti-clump term but with the additional benefit that 

the energy is conserved, albeit in a modified form, and, as we will see in the next section, the contribution of P h to the 

total energy is usually small. 

3.6. Time integrator 

So far, we have only been concerned with the spatial semi-discretization (discrete space, continuous time), and a time 

integrator is required to solve the SHTC-SPH ordinary differential equations (ODE). ODE system (23) conserve energy, and 

we would like to find a time integrator that preserves this property. First, let us write the system in a more succinct form: 

˙ x a = v a , 

˙ v a = 

f a 
m a 

, 

˙ A a = −A a L a , (47) 

8
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where the force 

f a = 

∑ 

b 

m a m b 

(
T a ( x , ρ, A ) + T b ( x , ρ, A ) 

)
∇w ab −

∑ 

b 

m a m b c 
2 
p 

λa + λb 

ρ2 
0 

h 

r ab 

∂ 2 w ab 

∂ r ab ∂ h 

x ab . (48) 

depends on x , A , ρ and λ. However, from Eqs. (7) , (40) , we see that ρ and λ are themselves merely functions of x , and thus 

we have f a = f a ( x , A ) . For the discrete velocity gradient, we can write L a = L a ( x , v ) . 
Naturally, we would like to use a symplectic integrator, such as the Verlet scheme, which has excellent energy- 

conservation properties [55] . Unfortunately, system (47) is not symplectic due to the presence of variable A a . Instead, we 

suggest the following combination of Verlet (for x and v ) and the mid-point rule (for A ): 

v a 
(

t k + 1 2 

)
= v a (t k ) + 

δt 

2 m a 
f a (t k ) , 

x a 

(
t k + 1 2 

)
= x a (t k ) + 

δt 

2 

v a 
(

t k + 1 2 

)
, 

A a (t k +1 ) = A a (t k ) 

(
I − δt 

2 

L a 

(
t k + 1 2 

))(
I + 

δt 

2 

L a 

(
t k + 1 2 

))−1 

, 

x a (t k +1 ) = x a 

(
t k + 1 2 

)
+ 

δt 

2 

v a 
(

t k + 1 2 

)
, 

v a (t k +1 ) = v a 
(

t k + 1 2 

)
+ 

δt 

2 m a 
f a (t k +1 ) , (49) 

where t k = k δt denotes the k -th time-step, and f a (t) , L a (t) is a shorthand notation for 

f a (t) = f a ( x (t ) , A (t )) , L a (t ) = L a ( x (t ) , v (t )) . (50) 

From the practical standpoint, this scheme is explicit in the sense that there are no linear or non-linear systems to be 

solved, or matrices to be inverted, except those of size d × d. The main motivation for using (49) is to obtain discrete time- 

reversibility as in [46] . Indeed, inverting the sign of v a and L a in (49) , we get the exactly same set of equations with the 

swapped role of t k and t k +1 . 

3.7. Adding relaxation 

We now have a discrete system for elastic solid in terms of arrays x , v , A , which constitutes the reversible part of SHTC 

framework. The last step is adding fluidity to our model by relaxing A , and hence tangential stresses. Let us return to semi- 

discrete differential system (47) , where we add relaxation as 1 

˙ x a = v a , (51a) 

˙ v a = 

f a 
m a 

, (51b) 

˙ A a = −A a L a − 3 

τ c 2 s 

εA a , (51c) 

where τ is the relaxation time (noting that the potential equilibrium of A is A = Q with Q being an orthogonal matrix). For 

an elastic solid τ = ∞ and for a Newtonian fluid τ is a constant, while for non-Newtonian fluids and elastoplastic solids it 

should be taken as a function of A a [3,4] . With this new addition, the equation for A a is often stiff, and therefore, implicit 

and exponential time integrators are recommended [2,17] . However, we already have a very small time step in our explicit 

SHTC-SPH integrator (as opposed to fully implicit finite element or finite volume approaches), so for performance reasons, 

we use a simpler splitting strategy, using the classical Runge-Kutta-4 (RK4) scheme [55] for integrating the relaxation term 

in the PDE for A a : 

v a 
(

t k + 1 2 

)
= v a (t k ) + 

δt 

2 m a 
f a (t k ) , (52a) 

x a 

(
t k + 1 2 

)
= x a (t k ) + 

δt 

2 

v a 
(

t k + 1 2 

)
, (52b) 

1 The function θ in (1c) is taken as θ = 

τ c 2 s 

3 
( det A ) −5 / 3 , see [2] . However, we omit the factor ( det A ) −5 / 3 in this paper for simplicity because it is important 

only in the case of compressible viscous fluids which we shall not consider here. 
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Table 1 

Summary of simulation parameters used in this paper. 

model d r d t c 0 c s c p h 

Beryllium plate DPR 2.50E-04 9.05E-10 9.05E + 03 9.05E + 03 9.05E + 04 3.75E-04 

Twisting column NH 4.96E-02 3.44E-06 7.15E + 02 7.19E + 01 7.15E + 03 7.44E-02 

Taylor-Couette flow DPR 3.33E-02 3.31E-05 2.00E + 01 4.00E + 01 2.00E-01 5.00E-02 

Lid-driven cavity, Re 100 DPR 5.00E-03 1.50E-05 2.00E + 01 2.00E + 01 0.00E + 00 7.50E-03 

Lid-driven cavity, Re 400 DPR 7.14E-03 3.75E-06 2.00E + 01 2.00E + 01 0.00E + 00 1.07E-02 

Lid-driven cavity, Re 1000 DPR 7.14E-03 1.50E-06 2.00E + 01 2.00E + 01 0.00E + 00 1.07E-02 

A a (t ∗k ) = A a (t k ) 

(
I − δt 

2 

L a 

(
t k + 1 2 

))(
I + 

δt 

2 

L a 

(
t k + 1 2 

))−1 

, (52c) 

A a (t k +1 ) = A a (t ∗k ) + 

δt 

6 

(
K 1 ,a (t ∗k ) + 2 K 2 ,a (t ∗k ) + 2 K 3 ,a (t ∗k ) + K 4 ,a (t ∗k ) 

)
, (52d) 

x a (t k +1 ) = x a 

(
t k + 1 2 

)
+ 

δt 

2 

v a 
(

t k + 1 2 

)
, (52e) 

v a (t k +1 ) = v a 
(

t k + 1 2 

)
+ 

δt 

2 m a 
f a (t k +1 ) , (52f) 

where 

K i,a (t ∗k ) = − 3 

τ c 2 s 

εA a 

∣∣∣∣
A = A (t ∗

k 
)+ b i δt K i −1 ,a (t ∗

k 
) 

, i = 1 , 2 , 3 , 4 (53) 

and (b 1 , b 2 , b 3 , b 4 ) = (1 , 1 2 , 
1 
2 , 1) . Therefore, we get relatively cheap time steps and for τ = ∞ (no relaxation) the scheme 

reduces to the reversible one (49) . 

Since positions are updated twice per step, we also require two neighbor list calculations in each iteration of (49) . 

4. Numerical results 

As we have introduced the new SHTC-SPH numerical scheme, the following section contains the numerical results for 

both fluids and solids to demonstrate the robustness of the proposed SHTC-SPH approach. For a list of all the material and 

SPH parameters used in different test cases, we refer to Table 1 . 

4.1. Beryllium plate 

This benchmark examines the two-dimensional oscillation of an elastic solid that is bending due to a velocity field pre- 

scribed at t = 0 . The body in question is a translationally symmetric plate, whose cross section is a rectangle 

	 = 

(
− L 

2 

, 
L 

2 

)
×

(
−W 

2 

, 
W 

2 

)
(54) 

with values L = 0 . 06 m and W = 0 . 01 m . The initial velocity field in this cross section is 

v = Aω 

(
0 

a 1 ( sinh s + sin s ) − a 2 ( cosh s + cos s ) , 

)
(55) 

where s = α
(
x + 

L 
2 

)
and A , ω , a 1 , a 2 , α are constants with values (parameters retrieved from [17] ): 

A = 4 . 3369 · 10 

−5 m, 

ω = 2 . 3597 · 10 

5 s −1 , 

α = 78 . 834 , 

a 1 = 56 . 6368 , 

a 2 = 57 . 6455 . (56) 

We use the constitutive relation (29) –(31) for with 

c 0 = c s = 9046 . 59 m.s −1 . (57) 

10 
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Fig. 2. The y coordinate of center point in beryllium plate benchmark plotted against time. Orange line depicts the result of our scheme. Blue squares 

mark the referential solution. 

Complete elasticity is assumed and therefore τ = ∞ . We choose the spatial step δr = W/ 40 which gives us approximately 

10 0 0 0 particles. The time step is selected according to 

δt = 

0 . 05 δr √ 

c 2 
0 

+ 

4 
3 

c 2 s 

(58) 

and the simulation ends at time t = 3 · 10 −5 s , roughly corresponding to one period of the oscillating motion. 

Three things can be tested in this benchmark. Firstly, we plot the y coordinate of the central point, which we then com- 

pare to data from the finite volume simulation [17] . Fig. 2 shows that we get a reasonable agreement. Secondly, since there 

are no dissipative or external forces involved, it presents an ideal test for verifying the conservation of energy, which we 

achieve to a reasonable degree, see Fig. 3 . One can see some high frequency energy oscillations. These are likely caused by 

secondary vibrating modes. The same effect was observed in [4] . The relative total energy error is within 5 · 10 −6 . Note that 

the kinetic energy decays slightly over time. This behavior can be explained by statistical second law of thermodynamics. 

Indeed, although we have no heat production terms in our equations, almost no total energy losses and reversible equa- 

tions (up to round-off errors), the non-linearity and many degrees of freedom make disorder a self-emergent property. As 

a result, we can see irreversible transformations of one type of energy into another, e.g. transformation of the total kinetic 

energy into the shear elastic energy. The distribution of energy in the final ”thermal equilibrium” could be estimated for 

instance by means of the virial theorem [56] . 

Last but not least, due to the presence of strongly negative pressures, this simulation poses a challenge with respect 

to tensile instability, demonstrating the usefulness of the penalty term (39) . In fact, without this addition, the plate would 

tear completely as can be seen in Fig. 4 . Interestingly, the tensile penalty contribution is kept relatively small despite its 

profound importance in the evolution. 

4.2. Twisting column 

The next benchmark is borrowed from [57] . The initial setup is a cuboid 

	 = 

(
−W 

2 

, 
W 

2 

)
×

(
−W 

2 

, 
W 

2 

)
× ( 0 , H ) (59) 

where W = 1 m and H = 6 m which is subjected to a prescribed velocity field 

v = ω sin 

(
πz 

2 H 

)( 

y 
−x 
0 

) 

, (60) 
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Fig. 3. Different contributions to energy in beryllium plate benchmark plotted against time, normalized. The relative total energy error is within 5 · 10 −6 . 

where ω = 105 s −1 . The base of the column is kept in place by a Dirichlet boundary condition for velocity. Here, we use the 

fully elastic ( τ = ∞ ) Neo-Hookean model (35) with ρ0 = 1100 kg/m 

3 , Y = 17 MPa (Young modulus), ν = 0 . 495 (Poisson ratio). 

These values are related to the bulk shear sound speed by relations: 

ρ0 c 
2 
s = 

Y 

1 + ν
, ρ0 c 

2 
0 = 

νY 

( 1 + ν) ( 1 − 2 ν) 
. (61) 

In this benchmark, inertia should twist the column, building up tensile forces that eventually prevail and reverse the 

rotation. The shape of the column should recover without loss of energy. Additionally, there is associated non-linear effect, 

which causes shrinkage of the column. All these phenomena are observed in our simulation, as can be seen in Figs. 5 and 7 . 

We still have reasonably good energy conservation ( Fig. 6 ), but the Dirichlet boundary condition at the base is slightly dis- 

sipative (since it is implemented by resetting the velocity to zero at every time step). Unfortunately, variables like pressure 

become very noisy in the simulation after a short time, but we did not find a remedy which would not involve artificial 

dissipation. 

4.3. Laminar Taylor-Couette flow 

We now turn our attention to the fluid regime of the SHTC equations, which means that τ < ∞ and the relaxation terms 

need to be taken into account. First, we try a simple test of laminar flow in an annulus 

	 = { (x, y ) : R 

2 
1 < x 1 + y 2 < R 

2 
2 } (62) 

driven by a rigid counterclockwise rotation of the outer ring with angular velocity ω. Meanwhile, the inner ring has zero 

angular velocity. We take R 1 = 1 , R 2 = 2 and ω = 1 . The flow is incompressible and well described by the incompressible 

Navier-Stokes equations with kinetic viscosity ν = 0 . 1 . This corresponds to a low Reynolds number 

Re = 

ωR 2 (R 2 − R 1 ) 

ν
= 20 , (63) 

which ensures laminar flow. The exact stationary solution to this problem is given by the formula 

v = 

R 2 

r 

r 
R 1 

− R 1 
r 

R 2 
R 1 

− R 1 
R 2 

(
−ωy 
ωx 

)
. (64) 

The solution theoretically does not depend on ν but viscosity affects how quickly the velocity field converges (if at all), 

starting from v = 0 . 

12 
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Fig. 4. Images of beryllium plate simulation and color-plot for pressure with tensile instability treatment (left) and without (right). For c p = 0 , particles 

have an extra degree of freedom which allows them to minimize negative pressure by forming clumps. This results in clearly non-physical behavior. 

The Navier-Stokes equations (NSEs) are formally incompatible with the SHTC equations, which can be inferred from the 

fact that NSEs are a hyperbolic-parabolic system, whereas SHTC equations include only first-order hyperbolic equations. 

However, it is possible to obtain NSEs (at least formally) in the asymptotic expansion of the SHTC equations as the first- 

order terms in τ [2] . To achieve sufficiently small values of τ one needs to take sufficiently large values of the shear sound 

speed since they are related as [2] 

τ = 

6 ν

c 2 s 

. (65) 

Here, we essentially mirror the common approach in SPH, where incompressibility is enforced by “sufficiently high” values 

of c 0 (corresponding to small Mach number Ma = ‖ v ‖ /c 0 � 1 ) but this time for the shear component of energy. The char- 

acteristic speed in this simulation is ωR 2 = 2 , so it is reasonable to take c 0 = 20 and c s = 40 . Here, we set δr = 

1 
40 and δt

according to (58) . With these parameters, we get 

δt 

τ
. = 0 . 075 (66) 

so the natural time step is significantly smaller than τ , justifying the use of an explicit time integrator for relaxation. Note 

that using strictly incompressible scheme would probably yield better results in this benchmark. However, it would require 
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Fig. 5. Results of the twisting column simulation with a color-plot for pressure. We use this as a qualitative test whether our code can deal with large 

elastic deformations in three dimensions. The last frame shows the column after untwisting, showing some noise in the pressure field (presumably, this 

can be remedied by adding artificial dissipation). Shape of the column is not exactly recovered but note that the elastic energy is not perfectly zero at this 

point either (see Fig. 6 ). 

Fig. 6. Energy conservation in twisting column benchmark. The relative total energy error is within 4 · 10 −7 . 
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Fig. 7. Twisting column: the normalized z-coordinate of material point initially at (0 , 0 , H) plotted against time. Although the column is shrinking at first, 

it “bounces off” at some point and starts to elongate. This effect was also observed in [17] and [57] . The blue line shows comparison to a finite element 

simulation (created using the Fenics software [58] ). 

Fig. 8. Tangential velocity in the simulation at t = 10 along the segment y = 0 , R 1 ≤ x ≤ R 2 (orange line) and its comparison to the exact solution (blue 

squares). Picture on the right magnifies error by subtracting a linear approximation v y ≈ ωr from both data arrays. 

us to use implicit SPH, leading to complications such as boundary recognition [45] . Since this paper pioneers SPH-SHTC 

scheme, we want avoid these intricacies for now. 

Despite the numerous approximations used, we obtain reasonable agreement with the exact solution, as shown in Fig. 8 . 

It is interesting here to plot the distortion field ( Fig. 9 ). Even for such a simple stationary flow, A displays non-stationary 

behavior due to the rotation of the local basis vectors (see the color map in Fig. 9 which ranges from −1 to +1 ) represented 

by A , e.g. see [1–3] . Fig. 10 shows convergence analysis. The convergence curve shows non-monotonic behavior and possibly 

a nonzero discretization error limit. This behavior is known in SPH, see [59] . 

4.4. Lid-driven cavity 

The advantages of the Taylor-Couette benchmark are simple implementation and availability of an exact solution (in 

steady state at least). It is, however, insufficient in the sense that the velocity field does not depend on the magnitude of 

ν . For a more qualitative and challenging test, we include the lid-driven cavity benchmark. The geometry of this problem 

consists of a square 	 = (0 , 1) × (0 , 1) filled with a viscous fluid. The left, right, and bottom boundaries are the walls with 

a no slip boundary condition, i.e. v = 0 , and the top boundary is moving at the prescribed velocity 

v lid = 

(
1 

0 

)
. (67) 

For the shear energy, we use the constitutive Eq. (31) with ρ = 1 . Again, in the case of fluid flows, and especially in- 

compressible flows, the ideal values for the shear and bulk speed of sound would be c s � 1 , c 0 � 1 corresponding to the 
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Fig. 9. Plot of xy distortion component. Interestingly, whereas velocity converges in time (approximately) to the stationary solution (64) , the A field is 

always changing in a periodic manner, forming waves that travel from the outer ring towards the center. 

Fig. 10. Left: Changing δr in Taylor-Couette flow, we observe non-monotonic behavior of the convergence curve. The error is computed using L ∞ norm on 

the segment x ∈ [1 , 2] , y = 0 . Right: Semi-logarithmic plot of energy components normalized by the final total energy E f . Individual components differ by 

several orders of magnitude. The total energy overlaps with the kinetic energy. It increases since the flow is externally driven. 

incompressible Navier-Stokes limit of the SHTC equations, i.e. τ ∼ ν/c 2 s � 1 and Ma ∼ ‖ v ‖ /c 0 � 1 , but this is not possible in 

our scheme because the underlying ODE system (51) would become extremely stiff. Therefore, as an approximation, we set 2 

2 We note that the shear sound speed c s is not an artificial fitting parameter in the SHTC equations but it can be measured for real fluids via the sound 

dispersion data and fitted via a procedure described in [38] . 
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Fig. 12. Evolution of the distortion field in Newtonian lid-driven cavity benchmark for Re = 100 . 

Fig. 13. Left: Convergence analysis in lid-driven cavity problem for Re = 100 . The error is computed using L ∞ norm at the nodes where referential solution 

is provided. Right: Energy components (normalized by the final total energy). 

c s = c 0 = 20 . (68) 

We consider the cases of Re ∈ { 10 0 , 40 0 , 10 0 0 } . The viscosity and the relaxation time are related to this number by: 

ν = 

1 

Re 
, τ = 

6 ν

c 2 s 

. (69) 

The no slip walls are implemented as h -deep layer of particles with zero velocity. The lid is implemented similarly with 

immobile particles but “pretending” to have velocity v lid for the purposes of L computation ( Eq. (10) ). The initial state is 

somewhat problematic in a weakly compressible scheme because discontinuities in the velocity field will generate shock 

waves. For this reason, we fix the zero lid velocity at t = 0 and gradually accelerate it up to 1. 

The results are shown in Figs. 11 and 12 . In Fig. 14 , we plot the transverse velocity along the center lines and compare 

the result to a referential solution [60] . Despite one can see slight discrepancies between SPH-SHTC solution and the refer- 

ence one in Fig. 14 (which we suspect is caused by the problematic implementation of the Dirichlet boundary condition) a 

reasonable agreement between the solutions has been achieved. Fig. 13 shows the convergence analysis. One can observe a 

similar zigzag pattern as seen in the Talor-Coutte benchmark. Also, as was already reported in [3] , as the Reynolds number 

goes higher and higher it gets increasingly difficult to compute the distortion field as its spin faster and faster. As a con- 

sequence, the computation of the viscous stress also getting increasingly difficult that results in spurious oscillations in the 

velocity field, see Fig. (14) , which are more pronounced for high Reynolds numbers. 
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Fig. 14. Plot of transverse velocities along lines x = 

1 
2 

and y = 

1 
2 

in the Newtonian lid-driven cavity benchmark. Decent agreement with reference is 

achieved. With growing Reynolds numbers, however, distortion A has increasingly complicated dynamics, which makes it difficult to resolve viscous stress 

accurately.. Therefore, we see some numerical oscillations in the curves for Re = 10 0 0 . 

5. Conclusion 

We have developed a new SHTC-SPH numerical method that is suitable for simulations of both fluids and solids within 

a single framework. To the best of our knowledge it is the first ever discretization of the SHTC equations with an SPH 

scheme. The method discretizes (both in space and time) the Symmetric Hyperbolic Thermodynamically Compatible Eq. (1), 

which describe both fluids and solids. First, we discretize them in space, which results in the SHTC-SPH ordinary differential 

Eq. (23) , which contain an evolution equation for a discrete analogue of the distortion field. Then, we prescribe a time 

integrator (49) , which gives the SHTC-SPH numerical scheme. 

The scheme is then tested on benchmarks like a vibrating Beryllium plate, twisting column, laminar Taylor-Couette flow, 

and lid-driven cavity flow, and shows acceptable agreement with the data, although finite volume and discontinuous Galerk- 

ing ADER schemes [2,17] usually offer better precision. 

Currently, due to its quasi-Hamiltonian property and lack of dissipation, the presented SHTC-SPH scheme can be ap- 

plied only to smooth flows without discontinuities such as shocks, and future research will be directed towards consistent 

introduction of dissipation into the scheme, e.g. in the spirit of [19] . In the future, we would like to investigate deeper 

geometrical properties of the SHTC-SPH scheme, such as its Hamiltonianity and conservation of Casimirs [61] as well as in- 

corporating the heat conduction part of the SHTC equations. In addition, we plan to combine SHTC with an implicit variant 

of SPH for improving stability and performance in low Mach number flows. 
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ABSTRACT

This paper investigates the applicability of smoothed particle hydrodynamics in simulations of superfluid helium-4. We devise a new approach
based on Hamiltonian mechanics suitable for simulating thermally driven and weakly compressible flows with free surfaces. The method is then
tested in three cases, including a simulation of the fountain effect. We obtain remarkable agreement with referential and theoretical results. The
simulations provide new physical insight, such as the pressure and temperature fields in a vessel experiencing the fountain effect.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0145864

I. INTRODUCTION

Quantum fluids are governed by laws of quantum mechanics
rather than classical ones and represent a fairly recent addition to
the family of various types of fluids with relevance both in funda-
mental science and in technological applications. Prime examples
can be found in superfluid phases of helium isotopes or in
Bose–Einstein condensates of rarefied gases. These fluids possess
remarkable properties, such as the possibility of frictionless flow,
the existence of numerous sound modes, the formation of super-
fluid films, quantized circulation around discrete vortex lines, or
the ability to transport heat convectively with zero local mass flow.
In addition to the fields of low-temperature physics and fluid
dynamics, this behavior makes quantum fluids appealing, via cer-
tain analogies,62 for researchers across multiple disciplines, includ-
ing astrophysicists13,44 or cosmologists,22,65 for which they
represent an accessible model system.

In this work, we deal specifically with the isotope helium-4. The
liquid phase, historically called He I, exists below 4.2K at standard
pressure. When cooled further by pumping on its vapors, helium-4
undergoes a second-order phase transition at 2.17K and enters the
superfluid phase, called He II. Most physical properties of helium are
well-known and tabulated.6

He II exhibits all of the exotic phenomena mentioned above; for
instance, it flows easily through narrow capillaries without friction and
displays two-fluid behavior (in the sense of Landau’s model, see

further below). The latter leads to the mechano-caloric effect, or the
famous fountain effect,1 where a heater causes the motion of helium in
the form of a fountain-like jet.2 Additionally, various forms of turbu-
lent motion may exist in He II, including a state of two-fluid “double
turbulence;” for a phenomenological treatment of quantum turbu-
lence, see Ref. 47.

Historically, experimental investigations of dynamics in He II
may be divided into studies of thermally generated flows, such as the
fountain effect, counterflow in a channel driven by a heater placed at
its closed end,52 or mechanically driven flows, mostly by submerged
oscillating structures.14,20,43 A superfluid wind tunnel experiment has
been constructed,41 and a large-scale K�arm�an flow experiment is now
in operation.40 Methods for flow visualization using tracer par-
ticles25,26 or He excimers42 have been developed recently and applied
to both thermally and mechanically driven flows.

The motion of superfluid helium-4 can be simulated by solving
the Gross–Pitaevskii equation,46 the Hall–Vinen–Bekarevich–
Khalatnikov (HVBK) models,5,15 the one-component models,35 or
by the vortex-filament method.10,19 However, many experiments are
notoriously difficult to simulate numerically using mesh-based tech-
niques such as finite element or finite volume methods, as they con-
tain either a free surface (fountain effect) or a moving boundary
(oscillating bodies). Therefore, it is advantageous to use a method
based on Smoothed Particle Hydrodynamics (SPH),31,33,58 which is
mesh-free and thus more suitable for these problems.
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This paper presents a new numerical mesh-free method for simu-
lations of superfluid helium-4. An SPH method for helium II has
already been developed by Tsuzuki,54–56 who investigated vortices
emerging in a rotating cylinder. Our approach is different because we
discretize helium II using only one type of fluid particle with two den-
sities as opposed to the work of Tsuzuki, where normal and super par-
ticles are distinguished. Our method comes at the cost of including
additional convective terms, which consider that entropy, for instance,
is advected by normal velocity and not by the collective or coflow
velocity. However, it liberates us from assuming that superfluid
behaves like a mixture and facilitates the implementation of heating
bodies (a crucial feature in thermally driven flows, like the fountain
effect). Additionally, we use a slightly different form of equations, a
Hamiltonian variant of the two-fluid model that goes beyond the
Landau–Tisza approach. We explain this in detail in Appendix A. The
Hamiltonian characteristic of the equations is advantageous also in the
SPH numerical scheme.23

The first macroscopic models of superfluid helium-4 were
proposed by Tisza et al.16,27,49,51 Their final model21 consists of four
evolution equations, namely, the continuity equation, balance of
momentum, evolution of superfluid velocity, and entropy balance.
The Landau–Tisza model can also be derived from the
Gross–Pitaevskii equation.53 However, the model has several limita-
tions. First, it does not allow for non-zero superfluid vorticity (quan-
tum vortices).

Second, the Landau–Tisza model is formulated in terms of five
quantities (superfluid density qs, normal density qn, superfluid velocity
vs, normal velocity vn, and entropy density s), despite having only
four evolution equations. This inconsistency is overcome by setting a
dependence of the ratio qn=q on temperature (q ¼ qs þ qn being the
total mass density). Although this setting closes the evolution equa-
tions, it goes against the nature of superfluid helium-4, which is not a
mixture of two fluids, but rather a single fluid with two motions, as
expressed by Landau:27,29 “It must be particularly stressed that we
have here no real division of the particles of the liquid into ‘superfluid’
and ‘normal’ ones….” The dependence qn=qðTÞ actually defines how
free energy depends on temperature, which has to be taken into
account because otherwise compatibility with Hamiltonian mechanics
would be violated.50 The HVBK model resolves the problem of four
equations for five quantities by requiring both vn and vs to be
divergence-free (incompressible).4,38 Another solution was proposed
by Zilsel,64 who introduced a continuity equation for both qs and qn,
despite that there are no real two components in the superfluid helium
(as noted by Landau). Yet another solution is the so-called one-fluid
model,35 where entropy exhibits an extra motion instead of density.

Here, we follow a route that builds upon Hamiltonian structures
of the evolution equations for superfluid helium-4. The Hamiltonian
structure of Landau–Tisza equations was derived from quantum com-
mutators between the mass density and phase of the wave function.7,27

Moreover, Volovik and Dotsenko extended the Hamiltonian structure
to a model related to HVBK dynamics by also considering
Hamiltonian motion of quantum vortices.59–61 Alternatively, the
Hamiltonian form of equations can be derived from the one-fluid
model.50 This is the structure we use in the current manuscript.
Another Hamiltonian formulation of HVBK dynamics was obtained
by Holm and Kuperschmidt,11,17,18 which contains additional state
variables (vector and scalar potentials of the superfluid velocity).

This manuscript is organized as follows. Section II contains both
the continuous model of superfluid helium-4 and the discrete SPH
counterpart. Section III describes numerical simulation of the fountain
effect and its comparison with experimental data.

II. SPH TWO-FLUID MODEL

This section contains a two-fluid model of superfluid helium-4
that extends the Landau–Tisza model and its discretization within
SPH.

A. Reversible part of the model

The reversible part of our model consists of the following four
evolution equations:

Dq
Dt
¼ �qr � v;

Ds
Dt
¼ � 1

q
r � qsvsvnsð Þ;

Dv
Dt
¼ � 1

q
r � qvnvsvns � vns þ pIð Þ;

Dvs
Dt
¼ vnrvTnvns �

rp
q
þ srT;

(1)

where “unknowns” q; s;v; andvs are the density, specific entropy,
coflow velocity, and superflow velocity, respectively. We denote the
temperature as T and pressure as p. Dimensionless variables vn; vs
2 ð0; 1Þ are mass fractions of normal and super components and sat-
isfy vn þ vs ¼ 1. The coflow velocity and the counterflow velocity vns
satisfy the following relations:

v ¼ vnvn þ vsvs; (2)

vns ¼ vn � vs: (3)

We consider T; vn; vs, and p to be smooth functions of the unknowns.
Equations (1) contain convective derivatives with respect to the overall
coflow velocity

Du
Dt

:¼ @u
@t
þ v � ru ¼ 1

q
@ðquÞ
@t
þr � quvð Þ

� �
; 8u: (4)

This is the difference with respect to the standard Landau–Tisza
model,49,53 where the superfluid velocity is convected only by itself
(vs) and not by the whole coflow velocity. Equations (1) should, how-
ever, be superior to the Landau–Tisza model as they contain terms
that at least partly take into account effects of quantum vorticity, see
Appendix A.

B. Irreversible forces

Equations (1) represent only the reversible part of superfluid
dynamics. It can be beneficial to add some irreversibility to the system
for increased realism, enhanced numerical stability, and noise suppres-
sion. We will consider two types of dissipative processes: viscosity of
normal flow and parabolic thermal conduction. In future, the latter
could be replaced with a complete model of quantum turbulence,
which includes mutual friction.We include related entropy production
terms to conserve the total energy. Thus, we write
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Dq
Dt
¼ �qr � v;

Ds
Dt
¼ � 1

q
r � qsvsvnsð Þ þ

b
q

DT þ f
qT

;

Dv
Dt
¼ � 1

q
r � qvnvsvns � vns þ pIð Þ þ

2l
q
r � Dn;

Dvs
Dt
¼ vnrvTnvns �

rp
q
þ srT;

(5)

where l > 0 is the dynamic viscosity, and b > 0 is a diffusion
parameter,

Dn ¼
1
2
ðrvn þrvTn Þ (6)

is a normal velocity deformation tensor, and

f ¼ bjrTj2 þ 2ljDnj2 (7)

is the dissipative power.
Although SPH can compute reversible flows, the stabilization of

entropy helps to prevent the self-emergence of disorder. Numerical
noise is a recognized problem in explicit SPH, which makes velocity
converge to Boltzmann distribution and eventually leads to the
unphysical gas-like behavior of simulated particles.23 We stabilize by
adding a “small Laplacian” to the right-hand side of the entropic bal-
ance. Particle shifting32 would be an alternative remedy.

C. Constitutive laws

Closing the system (5) requires the knowledge of functions p, T,
and vn. To the best of our knowledge, there is no theory that would
express the energy of helium-4 for wide range of s;q; v2ns and be in
agreement with experiments. However, we point out that due to
extremely good heat conducting properties of helium-4,30 large tem-
perature gradients are unlikely to exist in practice. For instance, the
superfluid fountain, which is the main interest of this paper, can be
powered by temperature difference between a heater and a reservoir as
small as 10�3 K.2 Thus, it should be sufficient to use a linearized
model, which is valid in a vicinity of certain referential temperature T0.
For vn, vs, we use

vn ¼ vn0 þ v0ðs� s0Þ;
vs ¼ vs0 � v0ðs� s0Þ;

(8)

where v0; vn0; vs0; and s0 are constant values at T0.
Yet, how does the energy depend on the state variables s, q, vns,

and v? By means of Galilean invariance, it can be derived that differen-
tial of the specific total energy emust be

de ¼ vn � dv� vsvns � dvs þ
p
q2

dqþ Tds (9)

and that energy has to be in the form of

e ¼ 1
2
v2 þ vs

2vn
ðv� vsÞ2 þ e0ðq; sÞ; (10)

see Appendix A for details.
In the absence of any flow (v ¼ vns ¼ vs ¼ 0), the last undeter-

mined term in the formula for energy (10) can be found by compari-
son with experimental data. Its differential reads

de0 ¼ Tdsþ p
q2

dq: (11)

Due to the low compressibility and thermal expansion coefficient,57

we can estimate the pressure as an affine function of density

p ¼ u21ðq� q0Þ; (12)

where q0 and u1 are a referential density and the first speed of sound.
Similarly, in the absence of any flow, we can use

T ¼ 1þ s� s0
C

� �
T0 ðforvs ¼ vn ¼ 0Þ; (13)

where C is a referential heat capacity. Below Tk, heat capacity is con-
nected to the second speed of sound u2 by

27

u22 ¼
vs0T0s20
vn0C

: (14)

Finally, we integrate (12) and (13) and substitute them in Eq. (10) to
obtain the following approximate total-energy formula:

e ¼ 1
2
v2 þ 1

2
vs
vn
ðv� vsÞ2 þ u21 ln

q
q0

� �
þ q0

q
� 1

� �

þT0ðs� s0Þ þ
T0

2C
ðs� s0Þ2: (15)

Table I contains values of C; vn0; vs0; s0; v
0;q0; and u1 for a given T0

obtained from tabulated experimental data. For a comprehensive col-
lection of measured values, we refer to Donnelly and Barenghi.6

TABLE I. Parameters used in simulations. We list only values relevant to the simula-
tion output.

Cavity Second sound Fountain effect

T0 1:9K 1:65K

q0 1 145:5 kg=m3 145:2 kg=m3

s0 725:5 J=ðkgKÞ 335:0 J=ðkgKÞ
vn0 1 0.4195 0.1934
v0 0 5:697� 10�4 kg K=J 5:851� 10�4 kg K=J

u1 20 40m=s 40m=s
u2 18:83m=s 20:37m=s

C 3902 J=ðkgKÞ 1861 J=ðkgKÞ
l 1

Re
0 10�4 kg=ðmsÞ

b 0 0 dq0s
2
0

200u2
dr 1

N
L
N

d
40

h 3dr 3dr 2:8dr
dt h

10u1

h
Mu1

h
5u1

tend 40
ffiffiffi
2
p

L
u1

0:3 s

H 2� 10�3 m
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D. Discrete space

In SPH, derivatives are approximated by transferring them onto
a convenient smoothing kernel function w ¼ wðrÞ, which satisfiesð

Rd
wðrÞdr ¼ 1; (16)

where d is the geometric dimension of a simulation, usually 1 or 2 (for
translationally symmetrical problems) or 3. In this paper, we will use
the Wendland’s kernel function:

wðrÞ ¼
qd
hd

1� r
2h

� �4

1þ 2r
h

� �
; r � 2h;

0; r � 2h;

8>><
>>: (17)

where

q2 ¼
7
4p
;

q3 ¼
21
16p

:

8>>><
>>>:

(18)

Here, constant h is called the smoothing length. Wendland’s kernel is
often advantageous to the Gaussian kernel because it has compact sup-
port and is defined via a piece-wise polynomial functions, which are
easy to evaluate.

In our numerical method, superfluid is represented by N particles
with positions ra for a ¼ 1; 2;…;N . Each particle has a certain veloc-
ity va, superflow velocity vs;a density qa, entropy sa, and temperature
Ta and moves as a material point. At initial time, they can be arranged
in a grid, such that particle a is centered in a cell of massma (often,ma

can be chosen the same for every a). Replacing continuous derivatives
using SPH techniques yields a system of ordinary differential equa-
tions, which are given as follows:

_qa ¼
X
b

mb
w0ab
rab

rab � vab;

_sa ¼ �
X
b

mb
w0ab
rab

1
q2
a

ja � rab þ
1
q2
b

jb � rab �
2bTab

qaqb

 !

þ fa
Taqa

;

_va ¼ �
X
b

mb
w0ab
rab

1
q2
a
Pa þ

1
q2
b

Pb

� �
rab

þ
X
b

mb
w0ab
rab

2ðd þ 2Þl
qaqb

vn;ab � rab
r2ab þ g2

rab;

_vs;a ¼ �
X
b

mb
w0ab
rab

vn;a
qa
ðvn;ab � vns;aÞrab

�
X
b

mb
w0ab
rab

pa
q2
a
þ pb

q2
b

þ sa
qa

Tab

� �
rab;

_ra ¼ va;

(19)

where for every particle indices a, b

rab ¼ ra � rb;

rab ¼ jrabj;
wab ¼ wðrabÞ;

w0ab ¼
dw
dr
ðrabÞ;

vab ¼ va � vb;
vn;ab ¼ vn;a � vn;b;
Tab ¼ Ta � Tb;

(20)

the entropy flux and the momentum flux are

ja ¼ qasavs;avns;a;

Pa ¼ paI þ qavn;avs;avns;a � vns;a;
(21)

the normal and counterflow velocity can be expressed via

vn;a ¼
va � vs;avs;a

vn;a
;

vns;a ¼ va � vs;a
vn;a

;
(22)

and the dissipative power on particle a is

fa ¼ �b
P

b
mb

qb

w0ab
rab

T2
ab�2lðd þ 2Þ

X
b

mb

qb

ðvn;ab � rabÞ2

r2ab þ g2
w0ab
rab

: (23)

The entropy production term in this form is also present in the SDPD
(Smoothed Dissipative Particle Dynamics) method.8 A numerical
parameter g ¼ h

10 prevents division by zero when two particles overlap.
For detailed explanation of how Eqs. (19) are obtained, we refer to
Appendix B, where we also prove that they conserve energy and
momentum and satisfy the entropic inequality. An important aspect
of our method is that the do-nothing condition represents a free adia-
batic surface. This means that, conveniently, free surfaces do not
require any implementation and particles on this boundary do not
need to be identified. Helium vapors are not modeled in this approach.
Note that by this, we neglect any aerodynamic effects induced by
vapors on liquid helium.

Instead of updating density iteratively, we prefer to use an equiva-
lent closed formula

qa ¼
X
b

mbwab þ Ca; (24)

where Ca is an integration constant specified by the initial condition.
This avoids accumulation of time discretization errors.

E. Discrete time

Simple explicit integrators, like leap-frog, are commonly used in
SPH codes. In this paper, we employ the following scheme, which is
very similar to leapfrog, except we update entropy and density using
mid-time positions:

0. (initial step only) find rate of v and vs
1. update v and vs by dt

2 step
2. update x by dt

2 step
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3. recompute the cell list and find q
4. find the rate of s
5. update s by dt

2 step

6. update x by dt
2 step

7. recompute the cell list and find q
8. find the rate of v and vs
9. update and vs by dt

2 step

In each step, rates are evaluated using the most recently com-
puted values of s;q;v;vs; and x.

III. NUMERICAL EXPERIMENTS
A. Lid-driven cavity

Before we jump to examples involving actual superfluidity, we
assess the validity of our model for classical fluid (Navier–Stokes equa-
tions), which can be understood as a special case of system (1) for
vs ¼ 0. Clearly, our discrete equations (19) must work for classical flu-
ids; otherwise, there would be no hope to use them on more complex
problems.

Lid-driven cavity is usually formulated as a dimensionless prob-
lem: Incompressible, viscous flow is confined in a box ð0; 1Þ � ð0; 1Þ.
No slip boundary is prescribed at the left, bottom, and right walls. At
the top, velocity is v ¼ ð1; 0ÞT , density is q0 ¼ 1, and viscosity l ¼ 1

Re.
Reynolds number Re has various values.

Walls are implemented using a layer of dummy particles, which
are treated normally with the exception that their velocities are con-
stantly zero. The lid is also implemented this way, but with velocity
va ¼ ð1; 0ÞT appearing in the evaluation of viscous forces. The list of
simulation parameters is displayed in Table I. We measure
transverse velocities along x and y centerlines and compare them to a
reference solution by Ghia et al.12 The results are shown in Figs. 1–3
and convergence curve in Fig. 4. Error grows approximately linearly
with dr ¼ 1

N.

B. Second sound waves

Contrary to the previous case, we will now investigate a situation
where coflow velocity is almost zero. Let us consider a standing wave
of second sound, written in terms of entropy as

sðx; tÞ ¼ s0 þ As0 sin
px
L

� �
sin

py
L

� �
cos

ffiffiffi
2
p

pu2t
L

� �
(25)

for x 2 X ¼ ð0; LÞ � ð0; LÞ and L ¼ 1 cm. This is an approximate
solution of continuous two-fluid equation (1) linearized around
v ¼ vs ¼ 0; q ¼ q0, and s ¼ s0. As a test of consistency, we would
like to verify that our numerical model approaches (25) for fine resolu-
tion and small data (A! 0). We impose initial condition

qðx; 0Þ ¼ q0;

sðx; 0Þ ¼ s0 þ As0 sin
px
L

� �
sin

py
L

� �
; x 2 X;

vðx; 0Þ ¼ vsðx; 0Þ ¼ 0

(26)

and free adiabatic boundaries. Particles are initially arranged on a
Vogel spiral with spatial step dr ¼ L

N. Time step is dt ¼ L
Mu1

, and we
end the simulation at t ¼

ffiffi
2
p

L
u2
. Let us define two types of errors. First, a

normalized l1 ! l2 error

�1 ¼ max
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
a

���� saðtnÞ � sexactðxa; tnÞ
As0

����
2

s
: (27)

Second, a dimensionless energy error

�2 ¼ max
n

����
P

a eaðtnÞP
a eð0Þ

� 1

����: (28)

FIG. 1. SPH result compared to the refer-
ential solution for Re ¼ 100 and N¼ 336.
Left: y-component of velocity for y¼ 0.5.
Right: x-component of velocity for x¼ 0.5.

FIG. 2. SPH result compared to the refer-
ential solution for Re ¼ 400 and N¼ 336.
Left: y-component of velocity for y¼ 0.5.
Right: x-component of velocity for x¼ 0.5.
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Figure 5 shows the results for various values of A, N, and M. We
observe that energy error is very small and we can also achieve satisfac-
tory �1 error below 1% (see Fig. 6). It is likely that the convergence rate
could be improved with renormalized operators.37

C. Fountain effect (two-dimensional)

Unlike the two previous examples, in superfluid fountain effect,
coflow and counterflow are equally significant. Let us begin by describ-
ing our idealized setting. A cell (with shape indicated in Fig. 7) is sub-
merged in liquid helium-4 at temperature T0 ¼ 1:65K. In its center,

there is a point heat source of constant power _W . The cell is insulated
by adiabatic walls and a thin superleak at the bottom.

In (19), we add gravitational acceleration g, superleak friction
force f sup;a, and dissipative power from heater fheater;a,

_sa ¼ � � � þ
1

Taqa
fheat;a;

_va ¼ � � � þ g þ f sup;a;

_vs;a ¼ � � � þ g;

(29)

where

FIG. 4. Convergence curves for Re ¼ 100
(left) and Re ¼ 400 (right). Error is mea-
sured as a maximum distance from refer-
ence data. Regression slopes were 0.998
and 1.189, respectively, suggesting approx-
imately linear convergence.

FIG. 3. The streamline plot for Re ¼ 400. Left: Our SPH result. Image created using line integral convolution in Paraview.48 Right: Reference solution.9

FIG. 5. Left: �1 error for M¼ 50 and differ-
ent values of A and N. Right: �2 error for
N¼ 200 and different values of M and A.
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fheat;a ¼ _W wH � d x¼xheat ; y¼yheatf g
� �ðraÞ;

f sup;a ¼ �
vn;avn;a

s
wH � d y¼ysup ; jxj�rsupf g
� 	

ðraÞ:
(30)

Function wH is the kernel (17) with smoothing lengthH and � denotes
the convolution operator. Mollification by wH is necessary because it is
impossible to work with Dirac distributions in SPH. To ensure that
the superleak is practically impenetrable for normal component, relax-
ation time s must be as small as 1 ls. Therefore, it is better to split
superleak friction from other forces and compute it implicitly.

Adiabatic walls of the cell are implemented using static dummy
particles, which take part only in density and pressure computation.
At the walls of the cryostat, let us prescribe no-slip for v, free condition
for vs, and Dirichlet condition S ¼ S0 for entropy (which is almost the
same as T ¼ T0). Consequently, the wall acts as a cooler, preventing
the temperature from growing indefinitely. This condition is imple-
mented using dummy particles, which we force to have constant
entropy and zero coflow velocity, but we allow them to conduct heat.

In the initial state, v ¼ vs ¼ 0 and T ¼ T0 everywhere. A foun-
tain is quickly generated. The speed of the jet is measured by counting
particles that escape from the cell in a given time window. We then
compare these numbers to a theoretical formula from the book by
Landau and Lifshitz,29 which we adapted to a two-dimensional flow

vjet;ideal ¼
_W

T sq d
; (31)

where T; s; and q are values of temperature, entropy density, and
mass density inside the cell (which are nearly constant). We should
emphasize that (31) is merely an approximation as it does not take
into account heat loss through capillary and dissipative effects. It is not
very clear whether the corrected value of vjet should be above or below
the theoretical estimate. Assuming stationary state, the balance of
entropy yields

0 ¼ d
dt

ð
cell
sdm ¼

_W heater

T
þ 1
Tq

ð
cell

fdm� s q d vn;jet; (32)

where the dissipative power f is positive. This would, paradoxically,
predict that vjet;ideal is a lower estimate when dissipation is considered.
However, a counterflow can occur through capillary, which means
that the normal speed vn;jet can be different from vjet. Additionally,
heat can partially escape through walls and superleak in practice.
Measurements by Amig�o et al.2 report values both slightly lower and
higher than (31).

FIG. 6. Evolution of entropy at x ¼ y ¼ L
4 in a simulation compared to the formula

(25). Result for A¼ 0.01, M¼ 50, and N¼ 300.

FIG. 7. Scheme of the simulated apparatus. All lengths are expressed in milli-
meters. Shape is composed of line segments and circular sections with indicated
radii.

FIG. 8. Evolution of the jet speed in com-
parison to theoretical prediction (31). The
left image is for _W ¼ 60W=m and the
right for _W ¼ 80W=m. The discrepancy
for t 2 ð0; 0:1sÞ is transitional effect
caused by the evolution from the initial
state with constant temperature and zero
velocity field. Calculating the average for
t> 0.2, we find that the SPH prediction is
smaller than (31) by 1.95% (left image)
and 2.38% (right image).
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FIG. 9. Coflow velocity plot (up) and pres-
sure plot (down) at t ¼ 0:3 s for different
values of heating power. From left to right:
_W ¼ 60; 80; and 100W=m. Each simu-
lation consists of approximately 200 000
particles. The pressure is very noisy,
especially in the capillary and the plunge
pool.

FIG. 10. Plot of temperature inside the
cell at t¼ 0.25, 0.5, 0.75, and 1ms (from
left to right).
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The Reynolds number can be given as follows:

Re ¼ q0 d vjet;ideal
l

¼
_W

Tsl
: (33)

With l ¼ 1:296� 10�6 Pa s, this yields Re in the range of hundreds
of thousands for reasonably high values of power. Therefore, classical
turbulence appears in the simulation, which is difficult to resolve with-
out a dedicated turbulent model. We sidestep this problem by choos-
ing an artificial l, keeping the Reynolds number around 1500. A
parameter analysis reveals that the relative jet speed does not vary sig-
nificantly with Re for values in range 100–1500, which are accessible
to our model—see Fig. 11.

The simulation never reaches a stationary state, but the jet speed
is relatively stable after a brief transitional period. Figure 8 shows that
the computed jet speed is very close to the value (31) but slightly lower

on average. Figure 9 shows the shape of the fountain, velocity, and
pressure. The simulation remains stable even during the violent impact
of jetted helium. Figure 10 shows the temperature in the first millisec-
ond of simulated time. After this short period, second sound waves fill
the cell, and temperature gradients vanish, except for a steep jump at
the superleak. The subsequent evolution is shown in Figs. 11 and 12.
When the fountain connects with colder helium in the cryostat, a tem-
porary drop in temperature occurs. Nonetheless, the effect of the sec-
ond sound traveling upstream and entering the cell through the
capillary was not observed. Table I lists all simulation parameters for
reproduction purposes.

IV. CONCLUSION

We described a new energy-conserving SPH-based numerical
method for superfluid helium.We verified its validity in three essential

FIG. 11. Left: Evolution of temperature in
time for _W ¼ 80W=m. The dashed
orange line indicates when the fountain
connects with the cryostat. Right: Relative
jet speed v̂ ¼ vjet=vjet;ideal (averaged over
time) for various values of Re.

FIG. 12. Plot of temperature distribution
and fountain shape for _W ¼ 80W=m at
equally spaced time frames from 37:5 to
300ms.
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test cases, demonstrating that the technique can accurately capture
coflow and thermally driven counterflow. Our fountain effect simula-
tion verifies the applicability of the formula for fountain jet speed by
Landau and Lishitz.

The numerical scheme discretizes a Hamiltonian one-fluid for-
mulation generalizing the Landau–Tisza two-fluid model. We also
provide a closed form of the energy functional in terms of density,
coflow velocity, entropy density, and superfluid velocity, which has
been missing in the literature.

In the future, we would like to enrich our discrete system by
implementing the dissipative effects of quantum vorticity. Particle sim-
ulation of Rollin films is another promising research direction, as well
as simulation of helium droplets,24 or simulation of inertial particles in
superfluid helium.45 Moreover, the mesh-free nature of SPH is advan-
tageous in multiphase flow simulations, including phase change.34,63

Consequently, we expect that this method could be extended to simu-
late solidification and evaporation in superfluid helium.
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APPENDIX A: DERIVATION OF THE MODEL

This appendix contains a derivation of model (1) from a
Hamiltonian formulation of superfluid-helium dynamics.50,59 The
field of superfluid density interacts with itself partly due to the con-
vective term and partly due to the presence of quantum vortices.
When the reversible (non-dissipative) part of interactions mediated
by quantum vortices is taken into account, we obtain a system of
four Hamiltonian equations for four state variables (mass density q,
momentum density m, volumetric entropy density �s, and superfluid
velocity vs) as follows:

@q
@t
¼ �@kðqEmk þ EvskÞ; (A1a)

@mi

@t
¼� @jðmiEmjÞ � @jðvsiEvsjÞ � q@iEq

�mj@iEmj ��s@iE�s � vsk@iEvsk þ @iðEvskvskÞ; (A1b)

@�s
@t
¼ �@k �sEmkð Þ; (A1c)

@vsk
@t
¼ �@kEq � @kðvsjEmjÞ þ ð@kvsj � @jvskÞ Emj þ

1
q
Evsj

� �
;

(A1d)

where the total energy E with subscripts stands for functional deriv-
atives of the energy with respect to the fields in the subscript. In
particular, Es ¼ T is the temperature, Em ¼ vn is the normal veloc-
ity, and Eq is the generalized chemical potential l. The derivative
Evs has no particular name, but it is investigated below. Equations
(A1) represent a Hamiltonian system generated by a Poisson
bracket that is derived from quantum commutators and dynamics
of vortices7,60 or by the requirement of unconditional validity of
Jacobi identity.50 Note that these equations differ from those of
Landau and Tisza in the terms coupling the evolution of vs with the
derivative of energy with respect to vs, which are a consequence of
the vortex dynamics or of the Jacobi identity.

In order to close evolution equations (A1), we have to provide
an energy functional E ¼

Ð
�edr. We assume that the volumetric

energy density �eðq;m; s;vsÞ ¼ qeðq;v; s;vsÞ is a smooth function
of the state variables (not a function of gradients of the state varia-
bles). This assumption excludes, for instance, any explicit depen-
dence of energy on superfluid vorticity x ¼ r� vs.7,17 Moreover,
from the requirement of Galilean invariance,28,39 it follows that the
energy must be in the form

�e ¼ ��ðq; s;m� qvsÞ þ ðm� qvsÞ � vs þ
1
2
qv2s ; (A2)

where ��ðq; s;m0Þ, denoting m0 ¼ m� qvs, is the volumetric energy
density in the frame of reference co-moving with the superfluid
velocity (to be further specified below).

To obtain model (1), however, we have to transform the
momentum density and volumetric entropy density to the overall
velocity v ¼ m=q and entropy density per mass, s ¼ �s=q.
Derivatives of the energy density with respect to momentum den-
sity and superfluid velocity are

vn ¼
@�e
@m
¼ @��

@m0
þ vs: (A3)

Because the energy �� depends only on the norm of m0, not on its
direction,7 we can introduce an auxiliary field called normal density
qn,

qn ¼
def m0

vn � vs
; (A4)

because the nominator and denominator are collinear due to
Eq. (A3). This, in turn, allows to define superfluid density as
qs¼

def
q� qn, which gives the usual formula m ¼ qsvs þ qnvn. It

should be kept in mind, however, that qn and qs are just auxiliary
variables determined from the actual form of energy, not state vari-
ables. This can be seen for instance from that there are two scalar
equations in Eqs. (A1) (for the overall density and entropy density),
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and so if auxiliary field qn were taken as a state variable, one scalar
evolution equation would be missing. Nevertheless, it is customary
in the two-fluid models of superfluid helium-4 to discuss superfluid
and normal densities,29 so we formulate our model in terms of the
auxiliary fields for better readability.

When we have experimental data on the dependence qn
q ðTÞ,

which is often the case,3 Eq. (A3) actually represents a differential
equation for �e0

qnðq; sÞ
q

¼ m0

q
@��

@m0

� �
q;s

: (A5)

A general solution to this equation is

�� ¼ m2
0

2qnðq; sÞ
þ �e0ðq; sÞ; (A6)

where �e0ðq; sÞ is an integration constant (volumetric energy density
in the absence of any flow). In terms of the auxiliary densities (qn
and vn), the energy density becomes

�� ¼ 1
2
vnðq; sÞv2n þ

1
2
vsðq; sÞv2s þ �e0ðq; sÞ

¼ 1
2

q
vnðq; sÞ

ðvn � vsÞ2 þ �e0ðq; sÞ; (A7)

and the overall energy density per mass is then

eðq;v; s;vsÞ ¼
1
2
v2 þ 1

2
vs
vn
ðv� vsÞ2 þ e0ðq; sÞ; (A8)

where e0 ¼ �e0ðq;qsÞ=q (energy density per mass in the absence of
any flow) is to be determined from thermodynamic data.

The derivative of energy with respect to the superfluid density
reads

q
@e
@vs
¼ @�e
@vs
¼ �q

@��

@m0
þm� qvs ¼ �qsvns; (A9)

where vns ¼ vn � vs is the counterflow velocity. The remaining two
derivatives (with respect to q and s) transform as

@�e
@q
¼ eþ q

@e
@q
� @e
@s

s
q
� @e
@v
� v
q

� �
; (A10)

@�e
@�s
¼ T ¼ @e

@s
: (A11)

Formulas (A3), (A9), (A10), and (A11) permit us to write the differ-
ential of energy density [Eq. (9)],

de ¼ vn � dv� vsvns � dvs þ
p
q2

dqþ Tds: (A12)

Hamiltonian equations (A1) then transform to model (1).
In summary, the reversible part of our model [Eqs. (1)]

together with the identification of derivatives of energy (9) and a
form of the energy itself (determined up to the internal energy) are
implied by Hamiltonian mechanics of superfluid helium-4 [Eqs.
(A1)] and by the requirement of Galilean invariance. The model is
more precise than the standard Landau–Tisza model because it
takes into account at least the reversible interaction between the
field of superfluid velocity with itself due to the quantum vortices.

This results, for instance, in the presence of convective derivative
@t þ v � r in evolution equations for all the state variables, instead
of having the superfluid velocity vs convected only by itself.53

APPENDIX B: METHOD DERIVATION
AND CONSERVATION LAWS

In this appendix, we describe a heuristic derivation of our dis-
crete model from the continuous equations and prove the conserva-
tion of energy and momentum and entropic inequality. To simplify,
we split the ordinary differential system (B19) into reversible and
irreversible parts and establish conservation laws for each sepa-
rately. This procedure works since a conservation law for a generic
ordinary differential equation

_y ¼ f ðyÞ (B1)

can be formulated as a geometric condition that f belongs to the
tangent space of a particular manifold. If two different right-hand
sides f 1 and f 2 satisfy the condition, then so does their sum. A simi-
lar argument can be used for entropic inequality when we replace
tangent space with a half-space.

1. Reversible part

We shall begin with the reversible part of dynamics

Dq
Dt
¼ �qr � v;

Ds
Dt
¼ � 1

q
r � qsvsvnsð Þ;

Dv
Dt
¼ � 1

q
r � qvnvsvns � vns þ pIð Þ;

Dvs
Dt
¼ vnrvTnvns �

rp
q
þ srT:

(B2)

Let us imagine a classical solution to these equations, which lives
in a time-dependent domain Xt and such that the boundary dXt is an
adiabatic free surface, where we assume vns � n ¼ 0 and p¼ 0. (Pressure
is only relevant up to an additive constant. We fix this constant so that
vapor pressure is zero.) The adiabatic free surface is our choice of do-
nothing boundary condition. (Implementation of other boundary condi-
tions, such as at the walls of a cryostat, necessitates specific treatment.)

Multiplying equations in (B2) by arbitrary smooth test func-
tions ~q;~s; ~v; and ~vs and integrating by parts, we inferð

Xt

Dq
Dt

~q dm ¼ �
ð

Xt

q~qr � v dm;
ð

Xt

Ds
Dt

~s dm ¼
ð

Xt

svsvns � r~s dm;

ð
Xt

Dv
Dt
� ~v dm ¼

ð
Xt

vnvsðvns � vnsÞ : r~v dmþ
ð

Xt

p
q
r � ~v dm;

ð
Xt

Dvs
Dt
� ~vs dm ¼

ð
Xt

vnðvns � ~vsÞ : rvn dm

þ
ð

p
q
r � ~vs þ srT � ~vs

� �
dm;

(B3)

where dm ¼ qdV . In the next step, we approximate all integrals
using particles as quadrature nodes
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ð
Xt

udm 	
X
a

maua; 8u (B4)

and replace all derivatives by a discrete SPH operator

@iujr¼ra 	 @iuf ga; (B5)

which approximates @i using particle positions and field values and
which we specify later. Hence, we find the following “discrete weak
formulation:”X

a

ma _qa~qa ¼ �
X
a

maqa~qa fr � vga;X
a

ma _sa~sa ¼
X
a

masavs;avns;a � r~sf ga;
X
a

ma _va � ~va ¼
X
a

mavn;avs;aðvns;a � vns;aÞ : r~vf ga

þ
X
a

ma
pa
qa
r � ~vf ga;

X
a

ma _vs;a � ~vs;a ¼
X
a

mavn;aðvns;a � ~vs;aÞ : rvnf ga

þ
X
a

ma
pa
qa
r � ~vsf ga þ sa~vs;a � rTf ga

� �

(B6)

for all values ~qa;~sa; ~va; and ~vs;a. The next logical step is to perform
a discrete analogy of integration by parts and localization and
express ~qa;~sa; ~va; and ~vs;a explicitly. Before we do that, however, we
would like to use (B6) to prove conservation properties.

Definition 1 (order of consistency). A discrete operator @i �f ga
is k-order consistent if

@iuf ga ¼ @iuðraÞ (B7)

for every polynomial of degree at most k.
Proposition 1 (conservation laws). If @i �f ga is 0-order consis-

tent for all a, then the solution of (B6) satisfies conservation of energy

d
dt

X
a

maea
� �

¼ 0; (B8)

entropy

d
dt

X
a

masa
� �

¼ 0; (B9)

and momentum

d
dt

X
a

mava
� �

¼ 0: (B10)

If @i �f ga is 1-order consistent for all a, then the solution also con-
serves angular momentum:

d
dt

X
a

mara � va
� �

¼ 0: (B11)

Proof. For conservation of entropy, we set ~sa ¼ 1;8a in (B6). The
right-hand side of entropy balance vanishes, since r1f ga ¼ 0. For
momentum, we proceed similarly, but instead, we choose

~v ¼
1
0
0

0
@

1
A 8a (B12)

to show conservation of the first component of momentum, and so
on. For energy, we remind that

de ¼ vn � dv� vsvns � dvs þ
p
q2

dqþ Tds: (B13)

Therefore, when we substitute in ~v ¼ vn; ~vs ¼ �vsvns; ~q ¼ p
q2 ;

and~s ¼ T and sum the four equations, we obtain the desired con-
servation law.

If our discrete derivative is also first order consistent, then we set

~v ¼
0
�za
ya

0
@

1
A 8a: (B14)

The right-hand side of momentum equation vanishes due to the
anti-symmetry of

r~vf ga ¼
0 0 0
0 0 �1
0 1 0

0
@

1
A 8a (B15)

and the fact that the double dot product of symmetric and anti-
symmetric matrix equals zero. This demonstrates conservation of
x-component of angular momentum. Conservation of y and z com-
ponents follows analogically. w

In this paper, in sake of simplicity, we use a simple and stan-
dard SPH operator

@iuf ga :¼ � 1
qa

X
b

mb
w0ab
rab

xiab (B16)

(xi denotes ith component of vector r), which is merely 0-order
consistent. Thus, we conserve all quantities above except for angular
momentum. However, operators of order 1 and higher exist and
can be found in the literature.37

Proposition 2 (dual operator). For any pair of discrete varia-
bles u;w and any coordinate index i,X

a

ma

qa
@iuf gawa ¼ �

X
a

ma

qa
ua @iwf g�a; (B17)

where @iuf ga is given by (B15) and

@iwf g�a:¼ qa

X
b

mb
wa

q2
a
þ wb

q2
b

 !
w0ab
rab

xiab: (B18)

Proof. Can be found in Ref. 58. w
Using the dual operator, we can easily solve the algebraic sys-

tem (B6) and we immediately obtain

_qa ¼ �qa r � vf ga;

_sa ¼ �
1
qa
r � qsvsvnsð Þ

 ��

a
;

_va ¼ �
1
qa
r � qvnvsvns � vns þ pIð Þ

 ��

a
;

_vs;a ¼ vn;a rvTn

 �

avns;a �
1
qa
rpf g�aþ sa rTf ga;

(B19)

and this is precisely the reversible component of (B19).
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2. Irreversible part

Next, we turn our attention to the irreversible part of dynam-
ics, which is

@q
@t
¼ 0;

@s
@t
¼ b

q
DT þ f

qT
;

@v

@t
¼ 2l

q
r � Dn;

@vs
@t
¼ srT:

(B20)

We will need two additional operators, both of which are well
known and established.

Definition 2 (discrete Laplace operator36).

Duf ga :¼ 2
X
b

mb

qb

w0ab
rab

uab: (B21)

Definition 3 (Monaghan’s viscosity operator33).

r � Df gMa :¼ ðd þ 2Þ
X
b

mb

qb

vn;ab � rab
r2ab þ g2

: (B22)

In analogy to (B18), we define
Definition 4 (dissipation duals).

jruj2

 �

a :¼ �
X
b

mb

qb

w0ab
rab
ðuabÞ2; (B23)

jDj2

 �M

a :¼ � d þ 2
2

X
b

mb

qb

ðvn;ab � rabÞ2

r2ab þ g2
w0ab
rab

(B24)

such that
Proposition 3.X

a

ma

qa
Duf gaua ¼ �

X
a

ma

qa
jruj2

 �

a; (B25)

X
a

ma

qa
vn;a � r � Df gMa ¼ �

X
a

ma

qa
jDj2

 �M

a : (B26)

Now, we are able to write the discrete irreversible part of
dynamics as follows:

_qa ¼ 0;

_sa ¼
b
qa

DTf ga þ
fa

Taqa
;

_va ¼
2l
qa
r � Df gMa ;

_vs a ¼ 0;

(B27)

where

fa ¼ b jrTj2

 �

a þ 2l jDj2

 �M

a : (B28)

This gives the remaining irreversible component of (B19).
Proposition 4 (conservation laws—irreversible part). Solution of

irreversible equations (B27) and (B28) satisfies conservation of energy

d
dt

X
a

maea
� �

¼ 0; (B29)

momentum

d
dt

X
a

mava
� �

¼ 0; (B30)

and angular momentum

d
dt

X
a

mara � va
� �

¼ 0: (B31)

Also, it satisfies entropic inequality:

d
dt

X
a

masa
� �

� 0: (B32)

Proof. Energy conservation law follows immediately from

_ea ¼ vn;a � _va � vs;avns;a � dvs;a þ
pa
q2
a

_qa þ Ta _sa; (B33)

Eqs. (B27), and the duality relationships (B25) and (B26). As in
classical SPH method for Navier–Stokes equations, conservation of
momentum follows fromX

a

ma

qa
r � Df gMa ¼ 2ðd þ 2Þ

X
a;b

mamb

qaqb

vn;ab � rab
r2ab þ g2

rabw ¼ 0 (B34)

(the summand is anti-symmetric in a, b). Similarly, conservation of
angular momentum is obtained fromX

a

ma

qa
ra � r � Df gMa

¼ 2ðd þ 2Þ
X
a;b

mamb

qaqb

vn;ab � rab
r2ab þ g2

ðrab �rabwÞ

¼ 0: (B35)

Same technique can be used to show that

X
a

ma
b
qa

DTf ga ¼ 0: (B36)

Since w0ab is always non-positive, fa � 0 for every a. Therefore, we
obtain the entropic inequality. w
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