
BACHELOR THESIS

Šimon Tichý

The Last Clan - RTS game in Unity

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: RNDr. Jan Pacovský
Study programme: Computer Science (B1801)

Study branch: Software and Data Engineering

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I thank my family for standing by my side during times of debugging.

ii

Title: The Last Clan - RTS game in Unity

Author: Šimon Tichý

Department: Department of Distributed and Dependable Systems

Supervisor: RNDr. Jan Pacovský, Department of Distributed and Dependable
Systems

Abstract: This thesis explores the development of a real-time strategy (RTS)
game using Unity’s Data-Oriented Technology Stack (DOTS) and the C# pro-
gramming language. RTS games offer captivating real-time battles, requiring
players to control multiple units with distinct traits. Traditional object-oriented
design often leads to redundant data in memory, but DOTS presents a new data-
oriented architectural style that enhances game design.

The goal is to build a game environment where a player can control his clan
units, capable of building, gathering, and fighting against computer-driven ene-
mies. The thesis highlights the benefits of ECS through DOTS, such as efficient
memory utilization and support for multithreaded code. Through this study, we
demonstrate the potential of data-oriented technology, a new approach to design-
ing RTS games, addressing exciting challenges encountered during development.

Keywords: Unity, Entity Component System, DOTS, C#, Unity JobSystem,
RTS 2D game

iii

Contents

1 Introduction 3
1.1 Gameplay . 3
1.2 Thesis structure . 4

2 Background 5
2.1 Real-time strategy games . 5
2.2 Unity engine . 5
2.3 Unity DOTS . 7

2.3.1 Entity Component System 7
2.3.2 Burst . 7
2.3.3 Job System . 7

2.4 Entity Component System (Unity DOTS) 8
2.4.1 Entity . 8
2.4.2 Component . 9
2.4.3 System . 11

3 Analysis 13
3.1 Engine and technology selection 14
3.2 Game map . 15
3.3 Unit navigation . 17
3.4 Map saving . 19
3.5 Pathfinding . 19
3.6 Unit information sharing . 22

4 User’s documentation 23
4.1 Setting up a game . 23
4.2 Gameplay . 24
4.3 Map editor . 27

5 Programmer’s documentation 29
5.1 Environment preparation . 30
5.2 The Game Scene lifecycle . 30
5.3 Map creating . 32
5.4 User Interface . 34
5.5 Menu and Map editor . 36
5.6 ECS Entities and Components . 37

5.6.1 Archetypes and instancing Entities 37
5.7 Entity Component Systems . 39

5.7.1 Pathfinding System . 40
5.7.2 Attacking System . 44
5.7.3 Building System . 44
5.7.4 Gathering System . 45
5.7.5 Unit manager . 47

6 Conclusion 49

1

Bibliography 50

List of Figures 55

List of Abbreviations 57

A Table of controls 58

B Attached CD 59

2

1. Introduction
One of the most exciting computer game genres is real-time strategy (RTS), where
players engage in captivating real-time battles. The world of RTS games has
seen numerous implementations; however, traditional object-oriented design may
result in redundant data occupying memory. In response, Unity has introduced
the innovative Data-Oriented Technology Stack (DOTS), which offers a data-
oriented architectural style that has the potential to enhance game design. By
utilizing efficient data manipulation for entities sharing similar traits, this study
embarks on an exploration to develop an RTS game, documenting the challenges
and decisions encountered along the way.

Our primary goal is to develop an RTS game within Unity, utilizing the power
of the C# programming language and the Unity DOTS framework. Unlike turn-
based strategy games, RTS offers real-time decision-making with a dynamically
changing number of units, making it an ideal playground to explore the potential
of DOTS.

The choice of the RTS genre is not merely for its ability to control multiple
entities, each with unique traits, but also because it presents intriguing subprob-
lems like pathfinding, concurrent data management, user input handling, and
UI rendering across different scenes. Our decision to embrace DOTS over con-
ventional object-oriented design is rooted in its data-oriented approach, enabling
efficient memory utilization and multithreaded code support through Unity’s Job
System.

Entity Component System (ECS) [20] is a data-driven framework working
over unmanaged Entities alternative to the typical Game Object architecture.
The three principal parts of ECS are Components representing the data, Entities
serving as an identification of Components enabling us to logically group data
together, and Systems adding logic/behavior to the Entities by transforming their
Components’ data.

1.1 Gameplay
The game includes basic settings, Map Editor, and an option to start a new game
on a custom map with a computer as an enemy or a teammate.

The gameplay consists of a 2D map with fixed boundaries where a player can
control his units, capable of fighting, gathering, and even building. The player
needs food and other resources to survive and further develop.

The food is obtainable via fishing on the sea, where resources like minerals and
wood are accessible and gathered on the land. Wood and minerals are essential
for building construction, where each building offers different traits.

To win the game, the player needs to either destroy the enemy’s army or let
the enemy starve with a blockade over resources essential for survival.

3

1.2 Thesis structure
In the Introduction, we introduce the RTS genre and its core mechanics. The
Introduction further describes a unity engine with its new data-oriented technol-
ogy stack and what are the benefits of implementing DOTS’ Entity Component
System design.

In the Analysis, we further decompose the problems of technology selection,
environment/map creation, and information/state sharing amongst units and
Systems. Furthermore, we will discuss the pitfalls and architectural choices for
pathfinding and its algorithm selection and data representation.

In the User documentation, we will walk a user through the first game launch
process, present the basic game mechanics, and give guidance to create a custom
map using the included map editor.

In the Programmer documentation, we dig deeper into the environment’s ba-
sic building blocks like map creation, interface, selected ECS design, and essen-
tially: the Components forming every unit and Systems working over the game
data transforming all Entities. Concretely, we will explain the leading Systems
responsible for Pathfinding, Attacking, Building, Gathering, and Unit manage-
ment.

4

2. Background
In this chapter, we will introduce the RTS genre and the traits of a typical RTS
game. Then we will describe the Unity engine, its structure, and the objects it
uses. Later in Background, we will discuss DOTS and technologies tied to this
stack: Entity Component System, Burst, and the Job System. Ultimately, we
will dig deeper into ECS concepts and their internal workings.

2.1 Real-time strategy games
Game franchises like Warcraft, Age of Empires, StarCraft, and Stronghold series
belong to the RTS (real-time strategy) game genre. The real-time game means
that the game does not run in separate moves like turn-based games, but rather
everything happens simultaneously [44]. Thus, it is required for the player to be
able to adapt an existing plan or come up with a completely new strategy swiftly
as the game moves on.

The typical game environment has almost always definitive boundaries and
habitually consists of units, buildings, and resources to gather. The usual goal is
to destroy all enemy player units and resources before the enemy does the same
to you. The manner to achieve victory in RTS games differs, yet among typical
traits lies building Systems, resource gathering, and combat Systems.

The building Systems offer the player to construct different buildings, where
the attributes may vary (health, appearance, or cost). For example, barracks
might train new soldiers, but warehouse offers storage for gathered resources.
These buildings usually represent the player’s base of operation. Destroying their
preponderance almost always results in a player’s eventual loss.

Resource-gathering Systems are crucial in the RTS genre because every action
(training a unit, constructing a building, upgrading . . .) costs a particular number
of in-game resources. Thus, it is essential to gather more so we can build better to
have a greater army and eventually win the game. A player can obtain resources
using gatherer units, where the units’ ability to gather might differ on specific
resources. For example, a shipping unit may fish on the seas but cannot mine in
the mines as other gatherer units might.

Combat Systems offer tools for a player to achieve victory, whether via sieging
the enemy’s base that completely depletes their resources, hunting animals, or
simply crushing your opponents in a direct battle. As a rule, the army consists
of many unit types with attributes upgradable during the game (such as damage,
armor, or a new ability). However, all units come at some cost, whether it is
a one-time payment only (building a ship; or training a solider) or they need
to be fed and maintained periodically during the game, thus withdrawing your
resources constantly.

2.2 Unity engine
Unity is a game engine developed by Unity Technologies. Since 2005, when it was
first released, the Unity game engine has supported cross-platform development

5

backing both 3D and 2D graphic projects. Moreover, with its tools, Unity is
nowadays used not only in the game industry but, with its support for augmented
and virtual reality, it can be used in the film, engineering, or even automotive
industry.

The engine internally runs on native C/C++ but implements .NET and C#
wrapper for creating Scripts [47], where the base class from which most Unity
scripts derive is MonoBehaviour class.

Scripts are primarily used for player controls or as Components to describe
the associated Game Object logic. However, not all Scripts are limited to Game
Objects; some Scripts might render textures, implement AI logic, or produce
multithreaded code via the Job System. For the Job System and multithreading,
we will later introduce the SystemBase class.

As an integrated development environment (IDE) and debugger, Unity sup-
ports Visual Studio, Visual Studio Code, and JetBrains Rider.

Assets [1] depict all the items used in Unity projects. Assets can represent
visual or audio elements like models, textures, sprites, sound effects, or music.
Assets can also describe more abstract items such as color gradients, animation
masks, or arbitrary text or numeric data. Furthermore, the Assets are shareable
via The Unity Asset Store, where the Unity community offers Assets varying from
textures and models to animation and tutorials.

Scenes [46] are also Assets representing the main workspace in Unity and unite
other Assets like cameras, user interface, level design, lights, and more. A simple
game might consist of two or just one Scene: one for in-game content and the
other for a menu. However, having all levels in a single Scene environment can
sometimes be challenging. In that case, it is reasonable to split different levels
into separate Scenes, each with its unique habitat, characters, and design.

Game Object [25] is the elementary object in Unity containing Components
capable of holding data that further determine the object’s purpose.

To make an example of a Game Object: an object might be a game camera
with Components [8] like Transform, camera settings, and panning script. The
Transform Component usually contains position vectors, where the camera set-
tings can contain variables with panning speed, camera zoom scale, etc. And the
panning script would be responsible for in-game control of a camera.

The Game Objects always contain the Transform Component - others are
optional. Game Objects containing only the Transform Components can serve as
a container for other Game Objects in the Game Scene hierarchy. We can think
of a Game Object as a class in objective programming and Components as its
attributes, fields, or even methods in the form of a Script.

The Prefab System allows saving Game Objects, their Components, and values
as a Prefab. The ThePrefab [42] is nothing more than an Asset that we can
instantiate from to create new Prefab instances in the Scene. A practical use
case might be when we need to spawn many units of the same type as trees, NPC
(a non-player character), effects, and buildings. . .

Unity also introduces the Package Manager [39], a tool to manage and import
downloaded and Asset Store packages. A package is a container for tools, features,

6

and Assets. It could be, for instance, specialized editors (for text, animation, and
more), project templates, runtime tools, and libraries.

2.3 Unity DOTS
Unity’s Data-Oriented Technology Stack (DOTS) [15] is a combination of tech-
nologies and packages that introduces a data-oriented architecture design, which
offers a highly performant and scalable approach to building games in Unity.

Data-oriented design attaches importance to the separation of data and logic
that works with that data. This way, the data can be better managed and sorted
in memory, thus minimizing accessing times across the game. The DOTS consists
of the Entity Component System, Burst Compiler, and C# Job System.

2.3.1 Entity Component System
Entity Component System (ECS) 2.4 is a data-oriented framework that offers an
alternative to Game Objects. The ECS comprises three principal parts: Systems,
Components, and Entities. The ECS design splits the data and logic into Com-
ponents and Systems. The Entities replace Game Objects and serve as identifiers
of Components belonging together. Further ECS specifications will be explained
later 2.4.

2.3.2 Burst
Burst [4] is a compiler primarily designed to work with Unity’s Job System. It
translates from IL/.NET bytecode via LLVM compiler to highly optimized native
code called high-performance C# (HPC#), often working faster than its C++
Game Object equivalent.

The LLVM Project is a collection of modular and reusable compiler and
toolchain technologies, where the name itself is not an acronym but the full name
of the project. [33]

The benefits of using Unity’s Job System are improved application’s overall
performance. Burst default compiles your code using just-in-time (JIT) compi-
lation as the game runs but also uses the ahead-of-time (AOT) compilation of
supported code before the game even starts.

Burst uses the Just In Time (JIT) method to compile the code parts only
when the code is required/called. During JIT compilation, bytecode-like code
compiles to more optimal machine code at program runtime. The optimizations
are possible due to the constant analysis of currently executed code parts and
calculating if their optimization would increase the overall performance. The
Ahead-of-time (AOT) compilation, contrary to JIT, does the optimization before
the program runs rather than at program runtime and compiles to the native
code.

2.3.3 Job System
C# Job System exposes Unity’s internal C++ Job System, where the CPU
threads are managed by the Unity Job System [29] and offers an abstraction

7

of Jobs. A Job is a small method or unit of work designed for one task and can
have an input and output.

One of the main advantages of using Jobs is their ability to be chained so
one Job will only run after the dependent Job completes. While writing multi-
threaded code, possible race conditions might occur. To monitor and prevent race
conditions that might occur while writing multi-threaded code, the Unity Job
System has its own Safety system. With this well-designed system, a developer
can take the effectiveness of safely parallelized code with minimal performance
overhead. The only drawback would be that due to the Safety system, where a
Job can only access blittable data types.

A blittable data type, unlike a non-blittable, does not require conversion be-
tween managed and native code [16] since it does not need to be processed by
the Interop Marshaler due to its common representation in both managed and
unmanaged memory.

The Interop Marshaller [34] handles the representation for ambiguous types
and gives default representation or alternative representations where multiple rep-
resentations exist. The Interop Marshaler does this by having multiple instances
of the data appearing as a single one.

This process of marshaling is usually automatically invoked by the CLR (Com-
mon Language Runtime) [7] and stands convenient not only when working over
the same data from multi-threaded code.

The int, byte, single, or double are all blittable types [3]. The blittable type
can also be a one-dimensional array of blittable primitive types, like an array of
bytes, or a value type containing only blittable types. The non-blittable types
are, for example, string, object types, but also bool class.

2.4 Entity Component System (Unity DOTS)
Entity Component System (ECS) [20] is a data-oriented framework available via
the Entities package that is obtainable through the package manager. ECS in-
troduces a new data-driven architecture using unmanaged Entities alternative
instead of the Game Objects 2.2.

Entity Component design can gain massive performance by optimal memory
management over Entities’ Components. On the contrary, the Game Objects lay
randomly in memory, where the ECS optimizes the Chunks and the Chunk access
time. ECS also enables unprecedented control and determinism over its Entities
on multiple threads simultaneously.

The three principal parts of ECS are Entities (identity), Components (data),
and Systems (logic or behavior).

2.4.1 Entity
The easiest way to think of a simple Entity [19] is a nameless lightweight Game
Object with only the Translation Component associated. An Entity is princi-
pally just an ID holding no data and no behavior but instead groups pieces of
data (Components) that belong together. The Entity IDs are the only stable way
to reference another Component or Entity. Systems then provide the behavior,
and Components hold the data.

8

2.4.2 Component
The ECS Components [17] represent all the different data fields associated with
an Entity. The ECS Component is not the same as the Unity Component [58],
which is the base class for everything attached to a Game Object. The Unity
Component can additionally contain logic, unlike the ECS Components, where
the logic is implemented separately in Systems.

The ECS Components either need Garbage collection and are called managed
or do not and are called unmanaged. The managed Component can contain any
type, unlike the unmanaged Components that contain only blittable and other
unmanaged types. However, the benefit of using unmanaged Components over
managed ones is that they are accessible in Jobs and Burst compiled code [11].

Component Archetypes and memory layout

A unique set of Components associated with one Entity is called an Entity
Archetype [17]. Two Entities are of the same Archetype if they have the same
set of Components.

The unmanaged Components are maintained in Chunks. A Chunk is an al-
located continuous block in memory dedicated to a single Archetype. A Chunk
can only store Entities of the same Archetype. When a Chunk becomes full, ECS
automatically utilizes another new block/Chunk, again for a single Archetype.
Thus, adding and removing Components of an Entity change the Entity’s Archetype,
resulting in its relocation in memory to a different Chunk. The Entities in Chunks
are not sorted in a particular order because the space in a Chunk is assigned when
the first Entity of the corresponding Archetype moves to the Chunk.

Figure 2.1: Each Archetype has zero or more Chunks, and each Chunk hosts one
or more entities of that Archetype. Chunks hosting the same Archetype will thus
have the same data layout.

The managed Components are not stored directly in the Chunks. Instead,
a World consists of one long array referencing all the class instances. Other
managed type Components can store an index to this array. However, accessing a
managed Component of an Entity causes some extra overhead due to the necessity

9

of an extra lookup; this extra work makes them less optimal than the unmanaged
Components.

Component manageability and data accesss

To read or write Component values or change or add Components of an indi-
vidual or multiple Entities, ECS uses an Entity Manager to manage all Entities
in a World. Entity Manager also keeps track of all the different Archetypes and
organizes the data associated with an Entity for optimal performance. It is also
possible to instantiate new Entities from a particular Entity Archetype.

An EntityQuery [23] is a great tool to specify a target Entity or Entities, which
is an ECS object we can use to describe an Archetype of an Entity or find a specific
Entity with Components matching the input Component requirements (WithAll,
WithAny, WithNone). The EntityQuery efficiently retrieves the matching set of
Chunks.

Structural changes are not executable in parallel from a Job and must run
on the main thread instead. A structural change is, for example: creating and
destroying a Chunk or adding and removing Entities from a Chunk.

To make structural changes from a Job/parallel code, the ECS uses an En-
tityCommandBuffer, which at predetermined moments called sync points [48]
runs/performs/playbacks [41] all structural changes. A synchronization point
(sync point) is a point in the program execution that will wait to complete all
already scheduled Jobs. Sync points are thus great to minimize since it limits the
benefits of using the parallelized code.

EntityCommandBuffer offers methods for enqueuing all thread-safe actions/
structural changes, processes all the buffered changes, and replays them later on
the main thread (also called Playback) when a given sync point gets reached, or
a Job completes.

To prevent non-deterministic behavior while splitting the recording of com-
mands in EntityCommandBuffer across multiple threads, the ECS uses int sort
keys to record the order of all changes. The sort key is passed as the first argu-
ment to each ECB method and used to sort the commands before Unity performs
the commands [41].

Component Interfaces

Every ECS Component has to implement one of the Component Interfaces:
IComponentData, ISharedComponentData, ISystemStateComponentData, ISys-
temStateSharedComponentData, or IBufferElementData. These interfaces have
no methods or properties but mark the struct or class as a type of ECS. The
interface also affects the type of a Component, its memory representation, and
its manageability by the Garbage collector [17].

The most basic Component type implements the IComponentData interface
and can be either managed or unmanaged. The managed IComponentData Com-
ponents are classes containing fields of any type. The unmanaged IComponent-
Data Components are structs containing only unmanaged or blittable field types.
If an unmanaged struct without data fields implements IComponentData, it is
called a Tag Component [14] and behaves like a regular unmanaged Component
type.

10

To represent array-like Component structures, ECS offers the DynamicBuffer
[10], a resizable array. Its elements are unmanaged struct Components imple-
menting the IBufferElementData interface with the same field constraints as the
IComponentData interface. IBufferElementData struct defines the elements of a
DynamicBuffer type and the DynamicBuffer Component type itself.

To have a few instances of one Component shared amongst multiple Entities,
the ECS introduces Shared Components [12], a struct implementing the IShared-
Component interface. These Components are shareable between Chunks, and
their values are without duplicities. All SharedComponent values are stored as
managed objects in an array outside the Chunks. The Chunk stores only one
index for each shared Component in its Archetype. Since the values get shared
in the array, every change to the array counts as a Structural change.

Similar to Shared Components are Chunk Components [9], but the Compo-
nent data are shared only within the Chunk, unlike Shared Components, which
can share across multiple Chunks.

System State Components [13] implement ISystemStateComponentData and
are like regular Components. However, an entity with one or more System State
Components is not destroyed but will get specially marked and remove all its
non-System State Components.

2.4.3 System
Systems [49] add logic/behavior of an Entity to the ECS workflow by transforming
the Components’ data. An example of such might be a movement System that
calculates the position of an Entity for the next frame.

Unity ECS automatically discovers all in-project System classes implementing
the SystemBase and instantiates them at runtime.

Every System script needs to implement the SystemBase class. The System-
Base requires its children to implement OnUpdate() method, which runs every
frame as there are Components or Entities that this System changes. The other
callback functions are optional; for example, the OnCreate() method can initialize
the System because it runs when System gets created, if implemented [50].

The System execution order [51] is determined by the System Group to
which the System belongs. The default World contains a hierarchy of Compo-
nentSystemGroup instances. The ECS initially contains three root-level System
Groups: InitializationSystemGroup, SimulationSystemGroup, and Presentation-
SystemGroup. We can also create custom System Groups and decide the order
execution amongst System Groups to run before or after other Groups or Systems.
The System Groups can also be nested in each other.

System example

An example of an ECS System might be a game containing two tree cutters
commissioned to search and cut nearby trees (Figure 2.2). The tree cutters would
be Entities, and so the trees. We would split the design into two Systems, one
responsible for navigating to the nearest tree and the other for cutting the tree
if in range.

11

Figure 2.2: System LumberingNavigator fetches the positions of trees and nav-
igates the tree cutters to the closest tree by transforming their Translation.
System AutoTreeCutting then cuts the tree redistributing the wood resources
from the tree to the tree cutters.

System AutoTreeCutting would iterate over all Entities with TreeCutter-
Tag and fetch their Translation value for comparison with the Translation
of TreeTag Entities to see if any trees are in range. If a tree is in range, its
WoodResources are changed and added to the Inventory of each’s Entity with
TreeCutterTag gathering nearby. However, if the tree is not within reach, the
LumberingNavigator System seeks the nearest tree, calculates the path, and
moves the cutter to the tree.

Entities 1 and 2 have the same tree cutter set of Components and are thus
the same Archetypes. In contrast, Entity 3 represents a tree with a unique set of
Components forming a unique Archetype.

Entity 1 and Entity 2 might share the same Chunk since the Chunk hosts
multiple data of one Archetype, whereas Entity 3 would be alone in its own
Chunk dedicated to Entities of the tree Archetype.

12

3. Analysis
We have chosen an RTS genre besides others because it offers control over many
units capable of interacting with each other in real-time. The topic of managing
multiple Entities in a game is interesting because, in the RTS genre, many of them
share similar properties. Thus, a well-thought design could save a programmer
from overused memory containing a lot of redundant data, which can lead to not
optimal access times.

Unity’s DOTS is a Data-Oriented Technology Stack introducing a new data-
oriented architecture design that further separates the data and the logic. It
unifies technologies and packages and answers the problem of data redundancy
and manageability over multiple similar data fields and behavior.

Entity Component System (ECS) is a framework inside DOTS and the focus
of this thesis. ECS uses unmanaged Entities instead of Game Objects and is
available via the Entities package in the Unity engine.

The whole game development consists of many steps, and each step’s imple-
mentation might vary between companies or developers.

Our game development challenges fall into these logical categories: the User
Interface with menu, game Entities and their logic, and the game environment
itself. The 2D graphics utilized in the game are licensed under Creative Commons.

The UI is usually implemented either by the new becoming standard UI Tool-
kit, the Unity UI (also known as uGUI), or the Immediate Mode GUI, but that
is rarely used in practical solutions and is most often used just for debugging
purposes.

The Unity UI, combined with the TextMeshPro package, has been chosen
because it offers almost the same functions as the UI Toolkit [56]. The main
drawback of the UI Toolkit is that some parts and features need to contain stable
implementation.

Units, buildings, resources and their logic are in traditional Game Object-
oriented design, represented as Game Objects with Components containing its
attributes, where an attached Script gives behavior to that Game Object. For
example, a tree Game Object would have a Component position and a Component
holding number of resources associated with this tree. However, the tree logic, like
leaves falling, would be included in the attached Script component implementing
the MonoBehaviour class.

The ECS uses an Entity instead of the Game Object; the tree would be an
Entity with a Component Translation containing position and a Component
NumberOfLogs. The leaf-falling logic would be separated in a System script
implementing the SystemBase class.

The controllable units in the game have Components like health points and
attack power/range. Different types of Units can do various actions like gather or
swim. The ECS technology then ensures better manageability of the units and ef-
fectively iterates over example Archetype-specific data fields (like NumberOfLogs
obtainable from all trees rapidly).

13

The game environment is designed to represent a 2D map with two main
surfaces Water (containing Fish) and Land. Further, The Land hosts Mineral-
Deposits, Grass, and Rough terrain capable of slowing units running over
it. MineralDeposit and Grass serve as possible spawn points for minerals and
trees.

The requirements on the environment representation are to quickly refer to
all map Land and Water components without the need for additional actions
like raycasting to determine position. It is also essential to correctly represent all
obstacles and also be able to determine their exact position and size, but most
importantly, to integrate well with pathfinding algorithms essential for the RTS
genre.

Features such as Fog of War, deeper economics mechanics, or multiple unit
formations are good-looking, but they are just more abstractions. The main
goal was to understand and develop an RTS game using the ECS technology’s
data-oriented design, a relatively new approach to game development.

3.1 Engine and technology selection
Most of today’s games get developed under some game engine. A game engine is
a software framework that (like other frameworks) can significantly shorten the
time of implementing basic logic and usually offers easy-to-manage control over
multithreaded code or graphics like rendering settings.

The biggest video game companies usually use their proprietary engine ad-
justed to their needs with automated patterns for easier development or handy
tools and packages. The most recognizable might be Bethesda with the Creation
engine, Valve with their Source engine, Rockstar with RAGE, Ubisoft with Anvil
(formerly known as AnvilNext), or DICE with the Frostbite engine. In the RTS
genre, proprietary engines dominate the market. Noticeable engines might be
Genie Engine used for Age of Empires or the Warcraft engine developed under
Blizzard Entertainment used for older Warcraft and StarCraft games.

Some features that an engine (Unity including) often offers are a vector system,
basic implementation of game physics, networking, and multithreaded program-
ming interface.

The game engine ”market” offers dozens of game engines, yet some are under
paid license. But to sum up all essential traits like license cost, documentation,
and support: there are two most recommended options Unity or Unreal engine.

The Unreal engine, as well as the Unity engine, has support for visual scripting
and runs internally on C++ (Unreal engine, for instance, offers a node system
where a programmer can build up the logic by creating a dependency graph with
logical nodes. . .).

We have chosen The Unity engine because: Unity has the DOTS with ECS,
Unity uses C# for the scripting language, as opposed to the Unreal engine, which
uses C++; and in my opinion, Unity has more readable documentation and a more
active community. The community of Unity’s forum actively shares experience,
sounds, graphics, and Assets containing simple logic and extension packages.

An event-based system using objects is an alternative to the classical DOTS
System using ECS. The main drawback is that a larger count of units (= Game

14

Objects because the event-based system is Game Object-oriented) would imply
more frequent event calls being a bottleneck just by technology selection which
we want to prevent.

The ECS, a relatively new and remarkable technology, was selected because it
offers scalability over many units (especially these sharing similar data instances
like health points or team color of a unit) with improved access times over the
classical Game Object-oriented design.

Changing and adding Components to an Entity does not affect the other
Components’ data (which stays in place) because Components are mutually in-
dependent, each representing a different attribute. The advantage of Components
is their reusability over many similar Entities. An example might be a Heath or
HealthPoints (HP) Component (usually two numbers - current HP and max HP)
that we can reuse on a building or a soldier Entity because this Component ini-
tially represents the same. Thus, we can represent similar traits/attributes over
multiple Entities without creating a new type-specific structure holding HP.

The two (minor) reasons to select ECS might offer optional future extensibil-
ity. The first is ECS’s optimized multiplayer interface and server authoritative
Netcode library [37], yet unused in this thesis. The second is ECS’s HDRP (high-
definition renderer pipeline) [27], which optimizes graphically complex objects
due to the well-designed fetching to memory with less memory usage.

Other ECS alternatives to Unity’s DOTS ECS (often published on GitHub)
usually market themselves as having better performance, readability, or design
than others. The most famous might be Entitas [18], an open-source ECS
framework having code-independent logic, claiming better performance (than the
DOTS ECS has) without sacrificing the code readability.

The drawback is that Entitas documentation is rather brief, the updates are
released slowly, and it only provides support via a Discord server.

Unity’s DOTS with its ECS is a more suitable tool for this task with its newest
stable updates, well documentation, and C# scripting support.

The Unity version selected for this thesis is 2020.3 because it was (at the start
of the project) one of the preferable stable versions offering support for ECS 0.51
[19]. An alternative to ECS 0.51 is to use ECS 1.0 [22], a newer yet not-so-stable
version.

The ECS 1.0 introduces a new Baking [2] workflow enforcing pure ECS design,
replacing the ECS 0.51 workflow of using a converted Game Object Prefab Asset
as an Entity Prefab. Unfortunately, it is complicated to migrate the whole project
from ECS 0.51 to 1.0 since ECS introduces breaking changes in HDRP, scene
management, and other essential parts. . .

At the time of writing, the 0.51 version is still preferable amongst the commu-
nity because the 1.0 version has tendencies to crash often, and the DOTS physics
package has occasional difficulties working correctly.

3.2 Game map
The map consists of two main surfaces: land and water. The land contains either
a mineral deposit (spawn point for minerals), grass (spawn point for trees), or
rough terrain.

15

The game plays on a 2D map with fixed boundaries. The world map with
boundaries is a common practice in the RTS genre (as well as 2D design). How-
ever, the main reason why we have chosen 2D over 3D is that most problems we
have dealt with in 2D contain the same abstract idea that can be transformed
likewise to 3D, without some unnecessary difficulties of 3D development (for ex-
ample, harder pathfinding with different ground levels and overall, more difficult
rendering practices which is not the goal of this thesis).

There are more approaches to creating a 2D map. The usual practice is to
use a Tilemap [54], 2D objects on a 2D plane, or 3D objects using a top-down
look (but that would again include the 3D graphics that might require special
attention).

Grids are Game Objects [26] uniting Tilemaps, where each Tilemap holds
information about all containing tiles and their location. The Grid affects its
Tilemaps’ tiles layout and can be isometric, rectangular, or hexagonal. The
rendering, shadows, lights, and graphics settings (of a Tilemap) are manageable
via the Tilemap renderer [55], which offers control over all tiles from one point.

The Game Object design would require an external array holding the tiles’
position data, which was why we picked Tilemap with Rectangular Grid, where
the rectangular design offers an intuitive tile position system (each tile is address-
able simply by a two-dimensional vector), a handy in RTS for Building Systems,
pathfinding, and the Map editor.

The second reason for using Tilemap is that in Game Object design, each
object has a Rigidbody [43] Component, which controls the object’s position
and collider but presents the Rigidbody Component responsible for Game Object
positioning and collision detection, which could be a bottleneck if calculated for
too many units.

The other problem might be pattern making (like continuous Grass or Water
tiles), which is nicely solved in Tilemap but would require a script for placing
logic if used with Game Objects. Tiles (rule tiles) placed next to each other can
create patterns depending on other tiles’ positions, leading to a prettier game and
a Map manager.

Every placed tile is stored in a Tile palette [53]. The Tile palette is like a
classical palette created by the user containing placeable tiles. There are more
types of tiles: basic tiles (just a sprite or image), animated tiles, and rule tiles
(the ones used for pattern making), all aligned to a Grid.

The 2D graphics of (animated/rule) tiles used were under CC (Creative Com-
mons) distributable and adaptable licenses from Opengameart.org [38], where the
file with all resources is in the document attached to the project.

Upon reconsideration, Tilemaps were deemed unsuitable, and we would not
opt for them in future implementations due to their poor scalability. Initially, we
intended to accommodate user-defined map sizes. However, our testing revealed
that utilizing an initial map size 600+ by 500 tiles resulted in undesirable perfor-
mance issues such as low fps and tearing. Consequently, we limited the map size
to 200x200 to ensure an enjoyable and playable game experience.

16

3.3 Unit navigation
Navigating through the map for computer-driven units might cause some difficul-
ties. Since every unit is limited on the surface, it got spawned (ship on the Water
area and archers and warriors on the Land); to navigate or populate unexplored
territories, we have to introduce some ”conquering” tactics. A few tactics to con-
sider: send units randomly, directly or split the map into components, analyze,
and only then send the units.

Sending units randomly to ”bump” into an unexplored map part could be
highly not optimal since the unit could spend vast time trying to find a path to
the part of a map where units cannot enter, even tho it is the same surface as
the figure 3.1 shows.

Figure 3.1: The Ship would spend considerable time finding a nonexistent path
to the inner Water circle even though the Ship and destination are the same tile
type.

The other method would be to mark the location of enemy units or part of
the maps we want to populate is to walk into a straight line, and if the line poses
some obstacle, build a Warehouse on it, spawn units that will build Fishery, and
so on to overcome all obstacles. Figure 3.2 shows why this implementation could
be more optimal.

17

Figure 3.2: Exploring in a straight line could result in unnecessary buildings
constructed to overbear components that are unnecessary to pass to get to the
destination. Crosses signalize all the buildings built when a player would want
to explore using this algorithm.

We have chosen to split the map into so-called components 3.3. If two neighbor
tiles are of the same type, they belong to the same component. These components
are simply continuous parts of the map with the same tiles. Every component
can be referred to by a number which helps us to create an adjacent component
graph to register all components sharing at least one neighbor tile. This solution
solves both of the mentioned issues of previous implementation choices.

Figure 3.3: In our solution, the map falls into components. With components, a
computer-driven clan can determine which components were not conquered yet
(marked with red) or if the path is in the same component and exists (marked
with purple).

18

Splitting the map into the components will further help us in the pathfinding
unstucking 5.12 or the initial player spawning in the GameStateManager.cs.

3.4 Map saving
The Map (Tilemap) consists of many types of surfaces: land, water, grass, rough
terrain, and mineral deposit. The Map terrain needs to preserve this data plus
the players’ spawn points and load them into a new game or the Map editor. The
tamper-proof file format is unnecessary since the game plays without the Fog of
War, and all maps are editable.

The preferable saving methods are to use C# binary serialization (with the .
NET’s Binary Formatter Class) or JSON serialization (via the JsonUtility [31]).
Using serialization requires the data to be represented by a serializable object.
The object is (then) serialized into a binary file in the case of a Binary Formatter
or JSON file in the case of a JsonUtility.

The Binary Formatter and JsonUtility might be the right tools for saving the
whole game state: unit position, unit plan, each player’s resources, and not yet
gathered resources. The drawback is both sterilization methods use way too much
data when this problem is nothing more than a 2D array (having the map size)
able to store terrain data of each tile according to its position. With the 2D array
representation, it is easier to save data into a text file, each char representing one
tile (terrain type).

3.5 Pathfinding
Pathfinding is one of the fundamental game mechanics in the RTS, whether it
is combat following, walking to gather, or just wandering; it is essential to do it
optimally.

Potential problems with data redundancy might arise when multiple selected
units get an order to move to one location. The target destination is the same
for all Units, yet their individual paths to reach this goal are not always that
different.

Land pathfinding: The usual choice of algorithm for game pathfinding is A*
(A-Star), but we chose something other than this option (at least for Land navi-
gation) because it has the two following drawbacks.

The main problem is that as the game moves on, the map change (construction
and destroying of buildings, cutting trees). The continual change keeps marking
some calculated paths as obsolete, thus raising the necessity of recalculating them
in real-time. Frequently recalculating might be costly in a solution where each
unit keeps track of its path nodes.

The other problem is that an algorithm selected must consider even forces
between units (so they would not get pushed away from the calculated Path) as
Figure 3.4 describes. A solution using the A* algorithm would demand recreat-
ing the Path again if the units got away (e.g., pushed by other units) from the
precalculated path nodes.

19

Figure 3.4: Suppose a Ship (lower one) gets scheduled with a path and encounters
another friendly Ship(upper one). In that case, forces between units (pink arrows)
could throw the first ship off the precalculated path, and the path would need to
be unnecessarily recalculated. That is the reason why forces between Ship units
are so small.

We can count more tiles around, but sometimes that would be unnecessary,
and it still would not be guaranteed that these cases would not happen (poten-
tially leading to performance inconsistency).

That is why we have chosen Flow-field (Vector-field) pathfinding. Flow-field
pathfinding resolves the shortest path task from all tiles on the map to the target.
All units with the same target have reference to this one FlowField stored in
their Target Component, and any change in the map would affect only one
FlowField.

The Flow-field pathfinding also allows forces between units since a unit pushed
to another tile still has information about the shortest path from that tile, and
there is no need to find to calculate a new one.

Figure 3.5: Flow-field pathfinding

20

The problem with Flow-field is that sometimes we calculate paths from tiles
that will never host units; these calculations would be unnecessary, increasing
our computation time. This issue is amplified on the Water since water surface
counts as the majority in my game and usually occurs in larger continuous blocks
than Land.

Water pathfinding: We have decided to make A* pathfinding for ships be-
cause they have fewer collisions/ interactions than ground units due to the small
spacing forces between ships. Water resources (fishing spots) are not qualified
as obstacles, so the updates are similarly less frequent. The ships also cost more
resources than Land units and thus would appear in the game in fewer numbers
than ground units, which usually form larger groups.

Auto-gathering pathfinding: The other issue with data redundancy while
pathfinding is auto-gathering. Units flagged with AutoGatherTag automatically
migrate from resource and deposit building; on Land, it is wood and minerals
deposited into the Warehouse; on Water, it is food from fishing spots deposited
to the Fishery.

Figure 3.6: Land auto-gathering

The solution is that instead of each unit remembering the path or FlowField,
each player has two FlowFields assigned at the start of the game. A player’s first
FlowField holds information about the shortest path from each ground tile on
the map to the nearest Warehouse owned by the player. The second FlowField
has the shortest path from each Water tile to the closest Fishery owned by the
according player. Both FlowFields get calculated by Flow-field pathfinding and
serve for AutoGather units to navigate back to the deposit building when their
inventory fills.

For a player, each player’s building is a valid destination for its auto-gathering
FlowField (Figure 3.6). This way, when the map changes, it is necessary to

21

update only (2 * number of players) a few FlowFields, and all auto-gathering
paths back are updated.

3.6 Unit information sharing
A game with multiple units usually requires information (like the number of
gatherable items from specific resources or following a target) to be shared be-
tween the Units. The problem with sharing is the data needs to be processed in
real-time swiftly with little overhead because some other actions might depend
on the data received (for example, information that the other unit is too close or
attacked).

Integrating ECS with Events/Unity Events [24] is one option for passing such
information. A nice treat of an event-driven environment (above other implemen-
tations) is clean and self-explanatory code. However, the scalability over many
units usually leads to an overwhelming number of events triggered at once (for
example, spacing between units in large groups), which could be better for its
computation/memory requirements. The other reason is the ECS needs to be
better adapted to work with Game Objects, which are usually the objects events
are bound to/ raised from.

The ECS solves this problem because the data are not bound to an Entity.
This way, the data are processed Entity independent. The Systems processing
the Entity Components’ data do not need to understand all Entity Components,
only those the System operates over.

One System can manage all movement over units with scheduled paths (using
only read-only access permissions to read a unit’s data). The other System can
meanwhile run with read-write permissions transforming /recalculating (obsolete)
data.

To share information between Systems, the Tag Components [14] are usually
used (for example, System for archery does not need to know how to deallocate/
remove an Entity with 0 HP, so it only flags it with the ToBeDestroyed Tag
Component, and other Systems running over these Tag Components will process
this Entity).

The Systems can run every frame or only when an EntityQuery [23] is satisfied.
The EntityQuery is essential for working with Systems because we can mark which
data and with which permissions (ReadOnly vs. ReadWrite) we want to get from
Entities that satisfy the EntityQuery. The EntityQuery can also specify Entities
entering a Job in the Unity Job System.

The Jobs then iterates only over carefully selected Entities, fully embracing the
power of multithreaded Jobyfied code with Burst [4]. The main drawback is that
Jobs work only over unmanaged data, and only allowed collections (inevitable for
pathfinding) within a Job are the Native collections.

The native collections [57] present a thread-save unmanaged alternative to
the managed C# collections. The main difference is the necessity of deallocating
them manually on Job completion. The second difference is they do not support
multidimensional indexing (e.g., multidimensional arrays). We have solved this
issue by flattening the collections and indexing them with a flat index instead.

22

4. User’s documentation
The game lore is that we, amongst other players, appear on islands and form a
team with survivors. It is essential to stay alive for the longest time to be the
Last clan, whether via letting our opponent starve or attacking him to fasten
the victory. Each player controls one clan, and every clan belongs to one of two
teams with a maximum of 3 players/clans in each team.

During one game, a player gathers resources to build ships, Warehouses, Fish-
eries, or recruit units. Ships gather food resources on the seas (fishing), where
the land units can gather minerals and cut trees. Every gathering unit, whether
fishing or tree-cutting, must deposit the resources to the according deposit build-
ing to add these resources from the unit’s inventory to the players (the one who
owns these units).

All land units need to feed one food resource periodically. With feeding comes
another mechanic: starving. Starving is a game mechanic where a random (land)
unit gets destroyed when a player who owns them does not possess food to feed
them.

The game goal is to stay alive for the longest, or at least longer than the
enemies. We can achieve this directly via fighting or indirectly by defending to
the point where the enemy starves to death. The game ends when all the clans’
land units die/the enemy team dies, leaving the survivor team as winners.

Extended controls are mentioned in the Table of controls appendix A.

4.1 Setting up a game
To start the program, run TheLastClan.exe which can be found on the attached
CD B. The game initially welcomes a player with a menu where the player can
choose a new game or enter the map editor.

After selecting the new game, the player is presented (Figure 6) with numerous
options about the game, such as resources that each player begins with, map
selection, or team size.

After setting the options, we can click the Start the game button, and the
game starts launching.

23

Figure 4.1: Menu Scene shows the game settings after the user clicks on the Play
button.

4.2 Gameplay
We are spawned, as the game starts, with initial resources two land units, a
Fishery, and a ship. Every game Entity can be selected (left mouse button) to
show additional information (Figure 4.2) about the unit, building, or resource.

The user interface consists of three main parts: total resources indicator,
mini-map, and the selected Entity info.

Figure 4.2: User interface after a unit gets selected.

Total resources, shown in the upper left corner of the interface, holds informa-
tion about the player’s inventory plus the number of idling units. The selected

24

unit info works similarly, located under the mini-map showing info about the
currently selected object (requires one).

The next step of the game is to start gathering to become self-sufficient with-
out worrying about the food resource obtainable from fishing. If no food resources
are available in the player’s inventory, the units begin to die one by one randomly,
and the starving warning appears (Figure 4.3). To prevent more units from dying,
gather more food, which also turns off this warning.

Figure 4.3: A starving warning message appears if the player’s food supplies are
empty.

To begin fishing, right-click on the fishing spot with the ship selected, and the
ship automatically starts migrating between fishing spots and Fishery to deposit
filled inventory (Figure 4.4). Besides serving as the deposit building for food, the
Fishery enables players to build more ships.

Figure 4.4: A ship sent to fish on a fishing spot will flow to the spot and start
fishing automatically if the spot is nearby.

To start gathering on land, first, we must select a unit and build Warehouse.
The Warehouse can recruit new units or deposit the land resources to the player’s
inventory. To construct the Warehouse or the Fishery, we need enough materials
for the building construction, select a controllable unit and press the Q or the W
key, hovering with a mouse over the area where the new building should place.

25

Every building stands on 2x2 tiles and has to stand on specific type tiles. The
Warehouse can only stand if all four tiles are land tiles, whereas the Fishery has
to stand on at least one water and land tile.

However, the units cannot build over the rough terrain and mineral deposit or
a warning message of the inability to place buildings briefly shows. The warning
also shows when there are not enough resources for the building construction.

The rough terrain also slows units passing over it, as opposed to the grass
positively impacting unit movement.

If no units, resources, or buildings get targeted by the right mouse button,
the standard MoveTo operation is performed over the selected units.

After building the first Warehouse, the units can deposit gathered materials
there, and the auto-gathering feature is on. The auto-gathering means the selected
unit starts migrating back and forth (Figure 4.5) from resource to the Warehouse
like a ship is migrating between fishing spots and Fishery.

Figure 4.5: Auto-gathering units will automatically return to the nearest deposit
building to empty their inventories if full (arrows added for clarity). The units
will also automatically search for the nearest resource if their lastly selected got
depleted.

With enough resources secured player can start attacking. The attacking
works similarly to other actions: select owned units and right-click on the target
(Figure 4.6). After the target gets to 0 health points, it automatically disappears.
The units capable of attacking are warriors and archers, each having a different
attack range, damage, and health points.

26

Figure 4.6: Archers and Warriors can fight buildings or land units. The unit
marked to attack enemies will damage them if in attack range.

4.3 Map editor
The map editor is accessible via the menu. The player clicks the map editor
button and loads an empty 200x200 tile customizable map.

There are a total number of 5 map surfaces, where each has different proper-
ties. The grass is a spawning area for trees and the mineral deposits for minerals.
The resources get to spawn automatically. The map editor only creates the pos-
sible spawn locations.

To load and save the map, fill the map name textbox (with the ”Enter the
map name. . . ” placeholder) and click on the load / save button with the map
name textbox filled. The maps are saved and loaded in a text format from the
system-dependent permanent storage path.

The map can be edited by a mouse cursor (left click) working like a brush
using the selected surfaces as paint and the Tilemap as a canvas. There is also
an option to fill a selected area with the currently selected brush if holding the
left Control key, as Figure 4.7 shows.

27

Figure 4.7: Map editor

28

5. Programmer’s documentation
We can separate the development of our game into design and logic. The scripts
determine the game logic since they operate on the game data and transform
them. The graphics can seem less important; choosing poor graphical design
or technology can have negative performance implications, even if scripts run
optimally.

In our project, the implementation lies in the /Assets directory, where the
main game logic is in the /Prefabs, /Scenes, and /Scripts directory.

The /Prefabs contain instantiable Game Objects later used to spawn ECS
Entities, where the /Scenes directory holds Game, Menu and MapEditor Scenes.
The other directories contain mostly graphical Assets like Game Object materials
for hp and selection circle rendering, palettes for drawing into the Tilemap, and
others: sprites, fonts, and tiles.

The /Scripts directory 5.1 holds /Components, /Systems, MonoBehaviour,
and Scene management scripts /MapEditor/MapEditorController.cs and
/Menu/MainMenuController.cs.

Figure 5.1: Structure of the /Scripts directory containing 6 Scripts and 4 direc-
tories. The directories are: /Systems, /Components, /Menu and /MapEditor.

The /Component directory includes (ECS) Components representing proper-
ties of all in-game Entities.

The MonoBehaviour scripts are scripts inheriting from the MonoBehaviour
base class [36], capable of interacting and transforming the Game Objects. Ex-
amples of MonoBehaviour scrips in my projects are CameraController.cs en-
abling the player to control the camera or MapManager.cs holding/managing
information about the current map environment (tied to Tilemap), like size or
depth map.

29

The scripts in /Systems directory are Systems, the most important in the
game. Systems inherit from the SystemBase a base class from ECS, enabling
them to manage Entities optimally with the Job System and Burst compilation
support.

Some scripts can have the Controller or the Manager suffix. The controllers
are usually scripts directly/indirectly working with user input, whereas the man-
agers are Systems transforming Entities’ data and managing them. Examples
might be GameStateManager.cs or PlayerController.cs.

5.1 Environment preparation
The environment we have chosen is Unity 2020.3.16fl, distributed under the un-
paid license for projects not exceeding a certain amount of money gained from
the game. The Unity version is available via the Unity Hub managing all Unity
versions installed on the machines for all added projects.

The main package that needs installing via the package manager is Unity
Entities [21], which is part of the DOTS. The DOTS also requires additional
packages, nowadays automatically installed with the Entity package. Required
(automatically downloaded) packages are Hybrid Renderer, Jobs, Netcode, Col-
lections, Mathematics, and Burst.

The Hybrid renderer [28] is a System managing the rendering data of all
Entities and sending these data to Unity’s existing rendering architecture. The
Collections [57] contain unmanaged Native collections required while working
with Jobs on multithreaded code. The Jobs [30] extends the unity core Job
System over the DOTS package. Mathematics [35] provides functions necessary
for optimal working with the Burst package [4], compiling C# to highly efficient
native code.

The game also uses the TextMeshPro package [35], essential for creating UI
with text that is not blurry and fully customizable.

All the 2D graphics used in the game is under CC (Creative Commons) dis-
tributable and adaptable licenses from Opengameart.org [38], where the file with
all resources is in the /Assets/Sprites/credits.md file attached to the project.

5.2 The Game Scene lifecycle
When starting the Game Scene, which is the primary Scene in the project, several
Systems run in a particular order and then continue to loop until the end of the
game.

Everything begins in the Menu Scene screen 5.2, where the player selects a
map plus additional options to the game and clicks on the Start the game button.

First, the Prefabs with ConvertToEntity Components get converted into
Entities, essential for later instantiating new Entities from these Prefabs. The
Prefabs are initially in the Game Scene hierarchy under the Prefab Game Object.

30

Figure 5.2: User input from the MapManagerMenu.cs in Menu Scene initiates the
start of the game, switching Scene to the Game Scene where the map initialization
starts. The map gets initialized in MapManager.cs, and resources and players
get spawned by the ResourceManager.cs and the GameStateManager.cs.

The next step MapManager.cs: checks the static class SettingsGlobal.cs
holding information about the selected map, resources, and other initial settings.
The MapManager.cs then redraws Tilemaps (the most time-consuming part):
according to the selected map in the Menu Scene.

As soon as the Tilemap instantiates, the MapManager.cs runs Create-
CostField(), CreateMapComponents(), CreateMapComponentAdjacencyMa-
trix() CreateComponentDepthMap() methods, essential for pathfinding, build-
ing, and resource spawning.

After successfully initializing the map, MapManager.cs spawns an Entity with
MapInitializedTag, signalizing the ResourceManager.cs and the GameState-
Manager.cs to run.

The ResourceManager.cs starts first, analyzes the CostField and runs
SpawnTrees(), SpawnFishingSpots(), and SpawnMinerals() methods spawn-
ing all the resources available on the map during the game.

The GameStateManager.cs checks SettingsGlobal.cs, calculates
the spawn positions of all players, and then spawns them with the correct: re-
sources/units.

At the end of the initialization phase, other essential Systems have their loop:
the Attacking.cs, the Gathering.cs, and Pathfinding.cs (amongst other
smaller Systems), transforming units, paths, targets, and resources. All are run-
ning in a loop, searching if any EntityQueries matching Entities need to be pro-
cessed.

Another notable System loop might be the UnitManager.cs running an En-
tityQuery over all unit Entities and checking if any is starving/idle. Or the loop
of GameStateManager.cs checking if the game ended already and who won.

31

5.3 Map creating
We have created the map using Tilemap. The Tilemaps are used both in the
Game (Figure 5.3) and MapEditor Scene. When creating a Tilemap, multiple
grids can be instantiated under one object creating a multi-layered Tilemap.
There are six grids: each used to depict different map layers. The Water and
Land are disjunct, where the Grass, MineralDeposit and RoughTerrain can
be placed only on the Land.

Figure 5.3: The Game Objects hierarchy in the Game Scene. The Game Scene
contains: Prefabs, cameras, UI elements, and MapGrid holding 6 Tilemaps.

Splitting into multiple Tilemaps layers can significantly ease the work done
on the map editor because all Tilemaps have building methods like HasTile
(Vecor3Int position), or SetTile(Vector3Int position, Tilemaps.Ti-
leBase). The HasTile() returns true if a tile was painted/placed on the given
location, making the Tilemap well addressable. And the SetTile() method puts
a Prefab tile in the given position. Thus, detecting where the Water (obstacle)
starts; could be done via Water.HasTile().

Every Game Object also possesses the rendering layer [32] assigned, which
determines which Game Object will render in front and which in the back.

The Tilemaps get edited via brushes in the Scene view. They must all be-
long to some palette (Figure 5.4). The project has two palettes located in the
/Assets/Palettes directory. The ground palette is for map design, and the
pathfinding pallete is for drawing arrows into the Pathfinding Tilemap.

Tiles added to the pallet can have many types, where some work like a simple
Sprite (picture), spawned on the brush tip position, while others might have
deeper functionality. The others might be animated tiles switching the Sprites in
a given sequence. Still, for this project, we have chosen the Rule tiles [45] because
they combine simple and animated tiles and add logic to the tile rendering.

32

Figure 5.4: Tilemap editor on the left and the Tile palette ground palette on
the right.

The Rule tiles can react to neighbor tiles of the same type and transform
accordingly (Figure 5.5), giving an interactive feeling to the user.

Figure 5.5: Land Rule tile gets defined by a set of rules. Each rule is described
by a 3x3 grid representing the tiles around. Different markings in the grid rep-
resent different constraints: empty space, cross, or arrow corresponds to the
position/edge where the tile can, can not, or should be connected to the other
neighbor tiles.

The main advantage of using brushes and tiles is that the scripts depend only
on the Tilemap bound to them, meaning we can freely change the rules of tiles,
graphics, or frames on animated tiles.

33

The other great benefit is the simplicity of rewriting a map from a file (loading
a custom map), affecting only a few Tilemaps, without the necessity of spawning
multiple individual Game Objects and managing them. The preferred design is
to keep fewer Game Objects in the solution since the workflow between ECS and
Game Objects still works poorly in the 0.51 Entities. Or at least split the Mono
scripts and the SystemBase scripts.

The MapManager.cs is the main script editing the Tilemaps with direct refer-
ence to this Tilemap Game Object, which is possible because the MapManager.cs
class inherits from MonoBehaviour. It also redraws the map according to the
map in SettingsGlobal.cs using a similar technique as placing tiles in the
MapEditor.cs (HasTile(), PlaceTile()).

One of the essential methods of MapManager.cs is CreateMapComponents()
which separates the map of the components and saves the component of each tile
to the corresponding x,y position in int Components[,].

Figure 5.6: An example of the possible numbering of components in
Components[,] generated by the CreateMapComponents() method; both im-
plemented in the MapManager.cs.

The MapManager.cs also counts the depth map ComponentDepthMap used
to select and find the correct spawn points for FishingSpots and buildings. It
also manages the CostField, which holds information about all obstacles in the
game. The primary usability of CostField is for pathfinding and building.

Other objects presented in the game as trees, minerals, units, buildings, or fish-
ing spots are spawned later and do not affect the Tilemap (only the CostField).

5.4 User Interface
The first essential thing to solve in RTS in the user interface is controlling the
camera. A camera [5] is a Game Object enabling a player to see the game world

34

from the position where the camera currently is. The Game has two cameras: the
MainCamera and the MinimapCamera (used for the mini-map).

The camera controls are located in/Assets/Scripts directory in Camera-
Controller.cs, where the script Transforms Components of the camera Game
Object to match the user input. The script edits the Transform Component of
the MainCamera to make it move (panning).

The MinimapCamera, on the other hand, is indirectly controlled by the user
because we need the mini-map camera to always be in the same position as the
MainCamera, only a bit further (zoomed out).

In Unity, all Game Objects have relative positions linked to their parents.
The parent-relative positioning offers a solution for the MinimapCamera position
where we the MinimapCamera Game Object under the MainCamera object in the
Scene hierarchy. Then every change of the MainCamera ’s Transform Component
propagates to the MinimapCamera since its position is relative to the parent
Game Object. The MinimapCamera then sends its output to the UI element,
which renders the final mini-map in the top right corner.

Figure 5.7: MainCamera is a parent Game Object to the MinimapCamera in the
Game Scene hierarchy.

The alternative to using a standard camera Game Object is Cinemachine [6],
which is better for different game genres since it offers many more methods to
pan the camera or bind it to a character.

The problem was defining the map borders. In the classic Camera solution,
we are just transforming the data and checking if the camera (even if zoomed out)
is still in the map boundaries. But Cinemachine would require world borders to
be defined, which is another Game Object that can affect physics, and in my
opinion, it was just not necessary to use it.

All the UI elements need a canvas parent, which works like a container for the
UI elements. Showing and hiding UI information then falls into turning Game
Objects on and off.

We are also using the TextMeshPro package [52], which offers enhanced UI
elements with more than just basic text editing and without blurry edges.

The other two mentionable UI elements in the Game Scene are the total re-
sources indicator and the current unit info. Both are TextMeshPro textboxes
with panels hidden behind them. The GameUIController.cs then assign the
data to the textbox; it also manages almost all UI elements in the Game Scene,
like showing the UI error messages.

35

The GameUIController.cs inherit from the MonoBehaviour, which means
it can edit objects (as he does with the UI elements); however, the problem is
that Entities which are the data from being accessed by classes implementing the
SystemBase and not the MonoBehaviour (required to manage Game Objects)
scripts. However, the MonoBehaviour script can use the reference on the En-
tity manager via World.DefaultGameObjectInjectionWorld.EntityManager,
which is always present in the World. Using this approach, we can query Entity
data without intervention with any Systems like ResourceManager.cs if we want
to know more resource info.

When a user clicks on an Entity, an EntityQuery is crafted over all se-
lected Entities via the DrawSelected() method to access the Entity info. The
GameUIControl-
ler.cs usually seek selected units marked by the UnitManagerSystem.cs with
the SelectedTag minimizing the data required to fetch from the ECS via Mono-
Behaviour script to Game Object like a text box.

5.5 Menu and Map editor
The menu uses similar objects, like the ones mentioned in the User interface, but
on top of loads, Scenes. The main script controlling menu is the MainMenu-
Controller.cs located in the /Asset/Scripts/Menu directory.

Figure 5.8: Menu hierarchy

The two primary tasks Menu handles are switching between Scenes and in-
teracting with the SettingsGlobal.cs static class from which necessary data
for launching the Game Scene loads. Scenes present in the solution are the Game,
Menu and MapEditor, where the Menu Scene loads them based on the user’s
input. The Menu also searches in the map folder for any custom maps available.

The map editor is the one adding custom maps to the map directory. It has a
Tilemaps structure like the Game Scene, but editable. It uses the HasTile and
PlaceTile mentioned earlier and saves it to persistent storage [40]. Each tile is
represented by one char when saving and loading tiles, as Figure 5.9 shows.

36

Figure 5.9: Map text file representing W character for Water tiles, L for
Land tiles, R for RoughTerrain tiles, the G for Grass tiles, and R for
MineralDeposit tiles.

5.6 ECS Entities and Components
The ECS introduces Entities, Components, and Systems. The Entities have Com-
ponents, and the Systems transform the data in these Components. To fully uti-
lize the ECS technology, it is a good practice to split Systems to work only over
specific Components because then the only System required to have ReadWrite
data access is the one editing it, and others can benefit from the multithreading
while only reading the transformed data. An example of such a System might
be ResourceManager.cs, which only manages the Entities with resource-specific
Tag Components and does not need to understand the Components for unit gath-
ering (implemented in Gathering.cs).

A unique combination of Components is called an Archetype representing a
specific unit type (all archers fall into the same Archetype). The Systems can
then run effectively over the data they need.

A Component is a structure (or class but not recommended) inheriting from
the IComponentData containing variables of unmanaged type example in the
project is Health.cs or Damage.cs.

Other Components used are the Dynamic Buffer Components [10] that work as
resizable arrays over unmanaged types, mostly usable for pathfinding, or the Tag
Components, which are empty structures inheriting from the IComponentData
serving primarily for Tagging the Entities.

An example of a Tag Component might be the ToBeResolvedTag, added to
yet unresolved pathfinding target.

The Components are in the /Assets/Scripts/Components directory.
The essential Archetypes in the project represent units, tasks, buildings, and

resources.

5.6.1 Archetypes and instancing Entities
The game contains multiple Archetypes and Systems running over their Compo-
nents, which allows us to specify EntityQueries selecting only the data needed for
a specific Job.

37

Every Archetype in the program could split into two categories: having System
specific or independent Components.

System-specific Components are those only one System edits or uses. The
System-specific Components are in the chapter dedicated to the according Sys-
tem.

The important Archetypes containing most System-independent Components
are units like Archer (Figure 5.10), Ship, and Warrior.

Figure 5.10: Archer Prefab, used for Entity instancing, attached with Compo-
nent Scripts like ArcherTag, MovableTag or UnitType.

To instantiate Entities with the same properties (like buildings, units, and
resources), we specify a ”Prefab” Archetype that works like a Prefab.

In the standard Game Object-oriented design, the Game Objects instantiate
from Prefabs. Still, since the Entities, unlike the Game Object, do not support
the MonoBehaviour scripts (scripts assignable to Game Object/Prefab), the ECS
introduces the conversion workflow from Game Objects to Entities. Prefabs are
convertible in runtime via the ConverToEntity script (Figure 5.11). We are then
able to instantiate from this converted Entity. Examples of instancing from such
Prefab are SpawnUnit() method in the PlayerController.cs or SpawnPrefab-
Building() in BuildingManager.cs.

The other benefit is that we can instantiate data with reference types (Meshes,
sprites) which would be otherwise problematic in the Systems running mostly over
unmanaged data.

38

Figure 5.11: ArcherPrefab detail, located in the Game Scene Prefabs hierarchy.
The Game Scene holds all Prefabs as children under the Prefabs Game Object,
which further separates into Buildings, Units, Resources parent Game Objects
of individual Prefabs. These Prefabs get converted into Entities on Scene load
and will be used to instantiate new buildings, units, and resources.

The reason why are Game Objects (Prefabs) able to have ECS Components
(implementing IComponentData) in them is by marking the structures as
[GenerateAuthoringComponent] which is then allowed to be associated with a
Game Object. All Prefabs are in the /Assets/Prefab directory.

The conversion workflow is solved better in Entities 1.0, where the Baker
workflow [2] is used.

5.7 Entity Component Systems
Systems are scripts giving logic to the ECS System by transforming the Entities’
Components. Essential Systems are Attacking.cs, Pathfinding.cs,
Gathering.cs, ResourceManager.cs, UnitManager.cs, BuildingManager.cs,
PlayerController.cs and the GameStateManager.cs. All of these are in the
/Assets/Scripts/Systems directory.

Each System manages different functionality, usually containing one or more
Jobs. The usual structure of a System is the handler method preparing an En-
tityQuery and the data necessary for a Job. After fetching all the data, the
handler method schedules the Job and deallocates the data on Job completion.
The EntityQuery is essential for specifying which Components/Archetypes the
Job needs - meaning if there is no Component and the EntityQuery is empty, the
System/Job will not run.

The Jobs used by the Systems usually work with Native collections that do
not support multidimensional addressing and need manual deallocation. We can,
however, create a one-dimensional array indexed by the (one) flat integer index
to act like multidimensional collection-like structures.

39

Let us have a 2D array[arraySize.x, arraySize.y], the flattened index
of its one-dimensional version would look like this:

int FlatIndex(Vector2Int index, arraySize.x){
return arraySize.x * index.x + index.y;

}

with conversion back to the 2D index:

Vector2Int index = new Vector2Int {
y = flatIndex / arraySize.x,
x = flatIndex % arraySize.x

};

The Attacking.cs, Pathfinding.cs, Gathering.cs, UnitManager.cs and
PlayerController.cs are Systems directly affecting units meaning they edit
unit data based on the Tags found on them.

Where the ResourceManager.cs, BuildingManager.cs and GameStateMa-
nager.cs usually do not target units specifically.

To take a look from a player’s perspective. The player selects units and
schedules a task for them. The PlayerController.cs manage to assign the
correct Components for the action chosen.

For example, if the action is a move order, the MoveTo Component is added to
the selected Entity. The Pathfinding.cs then calculates the moving path and
move the Entity. Other Systems might get active while working on these data
like the UnitManager.cs reacting to all current Components associated with a
unit and removing the IdlingTag Component

5.7.1 Pathfinding System
The Pathfinding System, implemented in Pathfinding.cs, manages path cal-
culation for all units in the game and their movement.

The main methods of the System are: WaterMovement(), GroundMove-
ment(), UnitSpacing(), CalculateWaterPaths(), CalculateLand-
Paths() and RemoveUnusedTargets().

The main Components are Target, ToBeResolvedTag, FloatingTargetTag,
FlowFieldCell, MoveTo, Movable, and SailStartPoint. Most are in the
/Assets/Scripts/Components/PathfindingComponents directory.

The Pathfinding System workflow usually works as follows: a movable En-
tity is selected, and the moving action to chosen direction is required. Then, an
Entity with a Target Component (with the desired direction assigned) and the
ToBeResolvedTag (optionally the FloatingTargetTag if ship selected) spawn.
”Reference” to that target Entity is added to the MoveTo Component assigned
to the selected unit. The benefit of using this design is the other Jobs can see if
a unit is ready to be moved - having the ToBeResolvedTag Component on its
target Entity.

40

The GroundMovement() and WaterMovement() methods are both handler
methods fetching data and creating EntityQueries for the same MoveUnitJob,
which is another example of the reusability of the ECS code via EntityQueries.
Having two handler methods then allows us to run the Job with different param-
eters like the movement speed (different for Land and Water).

The UnitSpacing() method manages forces between units and units and
obstacles and units, which means when a unit overlaps with another unit or
building, the unit gets pushed away. The forces between ships are significantly
weaker because ships use A* pathfinding, as opposed to the Land FlowFields,
and would be otherwise able to be pushed away from the precalculated array.

To prevent units from being stuck if pushed by UnitSpacing() method
to a component they cannot move on, the Pathfinding.cs implements the
InitializeComponentPushOutFlowField() method, which initializes
the ComponentPushOutFlowField. This FlowField contains the shortest path
from every component to the nearest and is used to push out every unit standing
on the component it should not suppose to.

Figure 5.12: ComponentPushOutFlowField for pushing units out of invalid com-
ponents.

The essential methods of the Pathfinding Systems are CalculateLand-
Paths() and CalculateWaterPaths(), calculating all paths in the game.

The CalculateLandPaths() runs for all Land paths marked with the ToBe-
ResolvedTag and creates FlowField using the Flow/vector-field pathfinding.
The calculation begins with fetching the CostField from MapManger.cs con-
taining the costs of all tiles in the game (cost of passing a tile meaning im-
passable walls have the max value). The Job creates an CostField from the
Integration-
Field.

The IntegrationField (Figure 5.13) has the size of the CostField, which
has the same 200x200 size as the map. It gets initialized with zero on the target
tile position, and the tile index enqueues the priority queue cellsToVisit, which
always processes the tile with the lowest value. In each step, we dequeue one value

41

from the queue and check its neighbors’ (8 neighbors in total) current integra-
tion cost and update its value if the old was lower than the sum of the current
tile IntegrationField, CostField[neighbor] and the distance(current tile,
neighbor tile). The distance function uses the Euclidean distance (but Manhat-
tan distance could be in our 2D tile-built world also viable). If the neighbor is
updated, its index gets added to the cellsToVisit queue.

Figure 5.13: Flow-field pathfinding, Cost & Integration Fields

The FlowField gets created from the IntegrationField with vectors on
each tile directing to the neighbor with the lowest IntegrationField cost (Fig-
ure 5.14).

Figure 5.14: In-game example of Land terrain (on the left) and the FlowField
calculated for the Land pathfinding over that terrain (on the right).

The FlowField is a flattened array, where each index contains FlowField-
Cell, a Dynamic Buffer Component. This FlowField gets assigned to a ”target”
Entity holding the Target Component, and the ToBeResolvedTag gets removed.

42

Then all units with MoveTo Component pointing to this ”target” Entity are
moved by the MoveLandUnits() method because their target got resolved. The
target Entity gets resolved when no ToBeResolvedTag Component is associated
with it. The position of a unit determines the index of the FlowFieldCell
Component held in the target Entity, which corresponds to the movement vector
the unit need to follow.

The Flow-field algorithm can also find the closest deposit building for all
AutoGatherTag units. The auto-gathering unit automatically migrates between
resource and deposit buildings (Figure 3.6). The algorithm is a slightly edited
version of the one mentioned, placing more destination tiles at the initialization of
the IntegrationField, where each building position is a destination, whether it
is a Land path to a Warehouse on the Water to a Fishery. Each player is initially
spawned (by the GameStateManager.cs) with two permanent FlowFields, one
for Water auto-gathering and the other for Land auto-gathering, to hold that
information. The unit returning from a resource finds the correct path based on
the player and gets assigned to it (not to be moved into enemies’ Warehouses).

The CalculateWaterPaths(), on the other hand, uses the A* (A star) algo-
rithm for calculating the paths with the Target Component, FloatingTarget-
Tag. The A* returns the shortest one to the destination as a queue of vertices
leading to the target. We take this queue and build a custom FlowField from
it. The reason is that even though the forces between ships are small, we do not
want the Water units to get out of their path, which would get them stuck and
require another recalculation.

Figure 5.15: Ship’s vector field for Water pathfinding. This field gets created from
the A* generated list of tiles representing the shortest path to the destination.
If any tiles from the list have neighboring Land tiles, the vector forces pushing
from that Land tile get added to the Ship’s vector field.

To keep targets up to date: every change to the CostField affects the Land
targets and marking them with ToBeResolvedTag via the MapCostFieldChan-
gedMarkObsoleteData() method in MapManager.cs.

43

The Entities holding target info about the path get destroyed when no more
MoveTo Components are pointing to these Entities (except the auto-gathering
FlowFields) defined in the RemoveUnusedTargets() method.

5.7.2 Attacking System
The Attacking System manages the dealing and receiving damage from units
to buildings and units. There are two types of units able to attack: Archers
and Warriors. Archer and Warrior have both the Attack Component, but their
damage and range differ.

The main Components used in the System are Health, Attack, Translation
(position), AttackTarget, Projectile, and MarkedForAttackTag.

The AttackingUpdateEnemies() and the AttackingUpdateAttackers()
are the core methods of the Attacking System.

When a unit selects another unit or building as an attack target, the Marked-
ForAttackTag gets added to the target Entity, where the attacker the Attack-
Target Component. AttackingUpdateEnemies() runs an EntityQuery for all
targets with MarkedForAttackTag and searches if any enemy has AttackTarget
with an Entity reference equal to the Entity under attack. The MarkedForAt-
tackTag Entity then removes the value of Attack from its health points for
every such enemy in the range.

The AttackingUpdateAttackers() runs for all attackers with the Attack-
Target Component and searches if the attacked unit is nearby. The path gets
scheduled to the target if no enemy units are nearby. If the target is moving,
its path gets copied to the attacker. (The better solution for a target following
would probably be an A* with a heuristic.)

If a target Health reaches zero, the AttackingUpdateEnemies() destroy
the target and remove all Components from other Entities that pointed to this
target.

The archers work similarly to the Warriors with an exception in Attacking-
UpdateAttacker(), where if the Archer is in range, it spawns a Projectile with
the ToBeResolvedTag Component since we are unable to instantiate reference
type (like a picture of the Projectile) from the Job. The ManageProjectile()
method spawns a Projectile, replacing the one with ToBeResolvedTag outside
the Job.

5.7.3 Building System
The Building System manages buildings and their construction. The buildings
available in the game are Fishery and Warehouse, each serving as the deposit
building for specific resources and as a spawn point for building-specific units.

The Fishery is edited by FisherySpawningShips() and the FisheryDepo-
sitResources() method, whereas the Warehouse is by WarehouseSpawning-
Units() and WarehouseDepositResources() methods.

Both resource deposit methods work similarly, one on the Water and the
other on Land. They withdraw resources from the friendly units inventory (if in
range) and transfer them into the player’s global resources inventory.

44

The spawning methods are bound to a specific unit type, and each uses dif-
ferent Components for spawning the units. Fishery uses the FisherySpawning-
Ships and Warehouse the FisheryDepositResources Component.

When a building is requested to spawn a unit, these Components are added to
a building with the corresponding number of units to recruit/ construct. Then the
timer is started signalizing the production process. The construction/recruitment
time differs based on the unit type. The queue gets automatically deleted if the
player does not have enough resources to pay with.

The Building System also manages the construction of new buildings, which
cannot place on top of other obstacles, and RoughTerrain. When a unit gets
scheduled with a building construction task, the BuildingSpawnPoint Com-
ponent and MoveTo Component with the destination of the construction area
get assigned to this unit. If the unit is near the construction, the method
ConstructBuildingIfWorkerNearby() calls the SpawnPrefabBuilding() and
again checks if the building is constructible. If the building spawn point is valid
and the player has enough resources, it gets instantiated from a Prefab.

All buildings get spawned with a fraction of their health points and repair
themselves over time (even if damaged).

5.7.4 Gathering System
The Gathering is the second most crucial System after the Pathfinding be-
cause every unit or building requires the resources for construction or recruitment.

To begin with the Gathering System, we have to start from the Resource-
Manager.cs, which spawns all the resources during the map initialization accord-
ing to locations. The Components used by the ResourceManager.cs to work
with resources are TreeTag, MineralTag, FishingSpotTag and ResourceTag.
The other important Component is Inventory which tells the gatherer which
resources are gatherable from the minerals, fishing spots, or trees.

The locations of the resources are determined by the Tilemap under these re-
sources (minerals only spawn on MineralDeposit, whereas the trees only spawn
on Grass). The algorithms for choosing the specific position are not amusing for
trees and minerals, but the fishing spot locations are selected more interestingly.

The fishing spots appear in two forms: FishingSpotBig and FishingSpot-
Small, differentiating in the number of resources gatherable. The FishingSpot-
Big is rarer and thus needs to get spawned less frequently. The spawn points
are selected using the ComponentDepthMap, which is an array (located in the
MapManager.cs) that counts the number of tiles from shore and assigns each
depth (shore tile has depth 1, their neighbors’ depth 2, and so on), where the
FishingSpotBig get spawned from certain depth thus making it ”harder” to
obtain.

The Gathering System uses more System-specific Components: MarkedFor-
Gather, GatherResources, AutoGatherTag and the AutogatherMovingBack-
Tag.

The ground units gather the minerals and trees, where the ships fish on fish-
ing spots. When a unit gets scheduled for a resource gathering, the resource
is assigned the MarkedForGatherTag and the unit with the GatherResource
Component. The unit also automatically moves to the target managed by the

45

GatheringUpdateGatherers() method.

1 ResourceUpdate() {
2 // runs for each resource
3 // "this" refers to the current resource
4

5 if (!HasComponent<MarkedForGatherTag>(this))
6 return;
7

8 if (this.Resources.Empty())
9 this.Destroy();

10

11 gatherers = getNearbyGatherers();
12 if (gatherers.Count() == 0)
13 RemoveComponent<MarkedForGatherTag>(this)
14

15 foreach (gatherer in gatherers) {
16 if (gatherer.GatherResource.Resource != this)
17 continue;
18

19 if (this.Resources.Empty())
20 RemoveComponent<GatherResource>(gatherer);
21

22 this.Resources -= gatherer.GatherResource.GatherAmount;
23 }
24

25 if (this.Resources.Empty())
26 this.Destroy();
27 }

GatheringUpdateResources() pseudocode

If a Warehouse is present, the AutoGatherTag is automatically associated
with the unit. It tells the Gathering System: when a unit’s inventory is out
of space, it should return to the deposit building. The coming back action gets
signalized by the AutogatherMovingBackTag, and the path to the deposit build-
ings gets assigned according to the player number. When the unit is in the
deposit range of the building, the resources are withdrawn automatically from
the inventory. If the AutogatherMovingBackTag is present, the building re-
moves it. And the MoveTo is again automatically scheduled to the target unit.
The behaviour described is a combination of the deposit-to-the-building methods
(WarehouseDepositResources() and FisheryDepostiResources() located in
BuildingManager.cs) and the GatheringUpdateWaterGatherers() / Gather-
ingUpdateLandGatherers() methods.

1 GathererUpdate() {
2 // runs for each gathering unit
3 // "this" refers to the current unit
4

5 if (!HasComponent<GatherResource>(this))
6 return;
7

46

8 if (this.Inventory.IsFull()) {
9 RemoveComponent<GatherResource>(this);

10

11 if (!HasComponent<AutoGatherTag>(this))
12 return;
13

14 newResource = ClosestResource(this.GatherResource.Resource);
15

16 if (newResource == null)
17 return;
18

19 this.GatherResource = newResource;
20

21 if (!HasComponent<MoveTo>(this))
22 AddComponent<MoveTo>(this);
23

24 this.MoveTo = this.GatherResource.Position;
25 }
26

27 if (this.GatherResource.InRange()) {
28 RemoveComponent<MoveTo>(this);
29 resourceType = this.GatherResource.ResourceType;
30 resourceAmount = this.GatherResource.GatherAmount;
31 this.AddToInventory(resourceType, resourceAmount);
32 } else if (!HasComponent<MoveTo>(this)) {
33 AddComponent<MoveTo>(this);
34 this.MoveTo = this.GatherResource.Position;
35 }
36 }

GatheringUpdateGatherers() pseudocode

ProcessMarkedForDestroyResources() destroys all MarkedForDestroy-
Tag resources, correctly deleting all Gathering Components of other gatherers
pointing to this Entity. And the RemoveObsoleteAutoGatherTag() takes care
of the resources no one is gathering, marked with MarkForGatherTag.

5.7.5 Unit manager
The unit manager affects all units within the UnitStarvingSet() running every
few seconds, removing one food resource for every ground unit a player owns.

The other method is UnitIdlingSet() marking, idling units with
the IdlingTag if they have no work to do.

The essential method, however, is GiveOrders(), which controls all computer-
driven game units. The GiveOrders() calls GiveOrdersWarehousesRecruit-
Units(), GiveOrdersFisheryConstructShips(), GiveOrdersWarehouses-
RecruitUnits(), GiveOrdersFisheryConstructShips(), GiveOrders-
Builders(), and GiveOrdersDefendNearby().

The GiveOrdersWarehousesRecruitUnits() and GiveOrdersFishery-
ConstructShips() methods are responsible for the computer-driven production
of more units. However, the strategy of how many units, which type, and in what
warehouse should recruit the units is strictly random.

47

The GiveOrdersGatherersWater() and GiveOrdersGatherersLand()
give units orders to gather on the same component as the unit’s position since
every unit in the game has limited movement to only the component they have
got spawned on. Whenever a new idle and non-player unit appears in the game, it
gets assigned a gathering task. Each computer-driven clan tries to distribute the
gathering evenly across the units, meaning there will be the same units gathering
wood as the mining units.

The GiveOrdersBuilders() manages the computer-driven ”conquering” of
more components, e.g., it manages the building on different components that a
player has not visited yet. The conquering splits into two stages: finding the
unvisited components and finding the path to the construction.

In the first stage, the yet unvisited components for each player get found by the
GetPlayerBuildingComponents() which returns bool[number of players,
number of map components] having true if a player has a building on the cor-
responding component position. The second stage counts which units stand on
a component that can reach yet an unvisited component indicated by the Map-
Manager.ComponentsAdjacencyMatrix.

If the ComponentsAdjacencyMatrix returns true, the unit gets scheduled with
construction building on that component. GiveOrdersBuilders() launches if a
player has enough resources for building construction randomly for all computer-
driven units.

The GiveOrdersDefendNearby() is a method for computer-driven defending
allied buildings and units under attack. When a unit gets attacked, its attacker
sends a signal to all nearby units, and when a unit is on the same team as the
attacked unit, it will defend it.

48

6. Conclusion
This thesis shows a bottom-up RTS game’s development process using the Unity
engine with its DOTS technology and standard libraries. We have presented
issues tied to the RTS genre, the development limitations of Unity, the selected
DOTS technology, and proposed alternatives.

The RTS genre is interesting because it usually allows players to control multi-
ple units simultaneously, where each might have specific traits or tasks to resolve,
revealing challenging algorithmic/design problems like data redundancy preven-
tion and multithreading.

The new DOTS technology raised challenges and exciting solutions for sep-
arating the game logic and data, requiring a different approach to the design
than the classical Unity’s GameObject/ MonoBehaviour script design. Concern-
ing the technology selection, we have also evaluated the pros and cons of using
blittable types, took advantage of the multithreaded speed using Jobs with Burst
integrated within the ECS, offered solutions using alternative technologies, and
deconstructed problems around data redundancy and managing multiple game
units with similar data.

The crucial part of the development process was to design well-represented
game environments (UI design and the game map) and optimal integration of
Components and Systems under DOTS. The design later helped us to effectively
implement typical RTS mechanics such as pathfinding, attacking, building, or
gathering, but also fundamental logic/decision-making for computer-controlled
units.

The future game extensions could offer more unit/building/resource types,
more intelligent AI for controlling the enemy, the fog of war, or even changing
the daytime and weather.

The ECS presents exciting solutions and designs offering different data-
oriented perspectives on creating games in Unity. The game, however, can be
further extended and contains only a simple implementation of RTS mechanics
and a handful of unit types. The goal was not to create a new top-selling game but
to walk through the game development process with exciting challenges presented
by the genre and the technology selected, which this thesis summarizes.

49

Bibliography
[1] Assets. Unity - Manual: Asset Workflow, January 2023. URL https:

//docs.unity3d.com/Manual/AssetWorkflow.html. (Accessed: 16 March
2023).

[2] Baking. Convert data with Baking, 2023. URL https://docs.unity3d.
com/Packages/com.unity.entities@1.0/manual/baking.html. (Ac-
cessed: 13 April 2023).

[3] Blittable and Non-Blittable Types. Blittable and Non-Blittable Types,
2017. URL https://learn.microsoft.com/en-us/dotnet/framework/
interop/blittable-and-non-blittable-types. (Accessed: 6 July 2023).

[4] Burst. Burst, 2023. URL https://docs.unity3d.com/Packages/com.
unity.burst@1.8/manual/index.html. (Accessed: 23 March 2023).

[5] Camera. Unity - Scripting API: Camera, 2023. URL https://docs.
unity3d.com/2020.3/Documentation/ScriptReference/Camera.html.
(Accessed: 4 May 2023).

[6] Cinemachine. Cinemachine Documentation, 2019. URL https:
//docs.unity3d.com/Packages/com.unity.cinemachine@2.3/manual/
index.html. (Accessed: 5 May 2023).

[7] Common Language Runtime (CLR). Common Language Runtime (CLR)
overview, 2022. URL https://learn.microsoft.com/en-us/dotnet/
standard/clr. (Accessed: 6 July 2023).

[8] Components. Unity - Manual: Use components, 2023. URL https://docs.
unity3d.com/Manual/UsingComponents.html. (Accessed: 21 March 2023).

[9] Components - Chunk. Chunk Components, August 2022. URL
https://docs.unity3d.com/Packages/com.unity.entities@0.51/
manual/ecs_chunk_component.html. (Accessed: 6 May 2023).

[10] Components - Dynamic Buffer. Dynamic Buffer Components, August 2022.
URL https://docs.unity3d.com/Packages/com.unity.entities@0.51/
manual/dynamic_buffers.html. (Accessed: 6 May 2023).

[11] Components - Management. Component Management, 2021.
URL https://docs.unity3d.com/2020.3/Documentation/Manual/
performance-memory-overview.html. (Accessed: 18 May 2023).

[12] Components - Shared. Shared Components, August 2022. URL
https://docs.unity3d.com/Packages/com.unity.entities@0.51/
manual/shared_component_data.html. (Accessed: 22 March 2023).

[13] Components - System State. System State Components, August 2022.
URL https://docs.unity3d.com/Packages/com.unity.entities@0.51/
manual/system_state_components.html. (Accessed: 23 March 2023).

50

https://docs.unity3d.com/Manual/AssetWorkflow.html
https://docs.unity3d.com/Manual/AssetWorkflow.html
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/baking.html
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/baking.html
https://learn.microsoft.com/en-us/dotnet/framework/interop/blittable-and-non-blittable-types
https://learn.microsoft.com/en-us/dotnet/framework/interop/blittable-and-non-blittable-types
https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/index.html
https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/index.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Camera.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Camera.html
https://docs.unity3d.com/Packages/com.unity.cinemachine@2.3/manual/index.html
https://docs.unity3d.com/Packages/com.unity.cinemachine@2.3/manual/index.html
https://docs.unity3d.com/Packages/com.unity.cinemachine@2.3/manual/index.html
https://learn.microsoft.com/en-us/dotnet/standard/clr
https://learn.microsoft.com/en-us/dotnet/standard/clr
https://docs.unity3d.com/Manual/UsingComponents.html
https://docs.unity3d.com/Manual/UsingComponents.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_chunk_component.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_chunk_component.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/dynamic_buffers.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/dynamic_buffers.html
https://docs.unity3d.com/2020.3/Documentation/Manual/performance-memory-overview.html
https://docs.unity3d.com/2020.3/Documentation/Manual/performance-memory-overview.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/shared_component_data.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/shared_component_data.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/system_state_components.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/system_state_components.html

[14] Components - Tag. Tag components, 2023. URL https://docs.unity3d.
com/Packages/com.unity.entities@1.0/manual/components-tag.html.
(Accessed: 1 May 2023).

[15] DOTS. DOTS - Unity’s new multithreaded Data-Oriented Technology Stack,
2023. URL https://unity.com/dots. (Accessed: 20 March 2023).

[16] ECS. ECS for Unity, 2023. URL https://unity.com/ecs. (Accessed: 24
March 2023).

[17] ECS Components. ECS Components, August 2022. URL
https://docs.unity3d.com/Packages/com.unity.entities@0.51/
manual/ecs_components.html. (Accessed: 20 May 2023).

[18] Entitas. GitHub - sschmid/Entitas, March 2014. URL https://github.
com/sschmid/Entitas. (Accessed: 10 April 2023).

[19] Entities. Entities, August 2022. URL https://docs.unity3d.com/
Packages/com.unity.entities@0.51/manual/ecs_entities.html. (Ac-
cessed: 26 March 2023).

[20] Entities - overview. Entities overview, August 2022. URL https://docs.
unity3d.com/Packages/com.unity.entities@0.51/manual/index.html.
(Accessed: 25 March 2023).

[21] Entities - setup. Entities installation and setup, August 2022.
URL https://docs.unity3d.com/Packages/com.unity.entities@0.51/
manual/install_setup.html. (Accessed: 3 May 2023).

[22] Entities - what is new. What’s new in Entities 1.0, 2023.
URL https://docs.unity3d.com/Packages/com.unity.entities@1.0/
manual/whats-new.html. (Accessed: 12 April 2023).

[23] EntityQuery. Querying data with EntityQuery, August 2022. URL
https://docs.unity3d.com/Packages/com.unity.entities@0.51/
manual/ecs_entity_query.html. (Accessed: 2 May 2023).

[24] Events. Unity - Scripting API: UnityEvent, 2023. URL https://docs.
unity3d.com/ScriptReference/Events.UnityEvent.html. (Accessed: 1
May 2023).

[25] Game Objects. Unity - Manual: Game Objects, 2023. URL https://docs.
unity3d.com/Manual/GameObjects.html. (Accessed: 20 March 2023).

[26] Grid. Unity - Manual: Grid, 2023. URL https://docs.unity3d.com/2020.
3/Documentation/Manual/class-Grid.html. (Accessed: 15 April 2023).

[27] HDRP. High Definition Render Pipeline overview, 2023. URL
https://docs.unity3d.com/Packages/com.unity.render-pipelines.
high-definition@14.0/manual/index.html. (Accessed: 8 April 2023).

[28] Hybrid Renderer. Hybrid Renderer, August 2022. URL https:
//docs.unity3d.com/Packages/com.unity.rendering.hybrid@0.51/
manual/index.html. (Accessed: 3 May 2023).

51

https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/components-tag.html
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/components-tag.html
https://unity.com/dots
https://unity.com/ecs
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_components.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_components.html
https://github.com/sschmid/Entitas
https://github.com/sschmid/Entitas
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_entities.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_entities.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/install_setup.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/install_setup.html
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/whats-new.html
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/whats-new.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_entity_query.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_entity_query.html
https://docs.unity3d.com/ScriptReference/Events.UnityEvent.html
https://docs.unity3d.com/ScriptReference/Events.UnityEvent.html
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/2020.3/Documentation/Manual/class-Grid.html
https://docs.unity3d.com/2020.3/Documentation/Manual/class-Grid.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@14.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@14.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.rendering.hybrid@0.51/manual/index.html
https://docs.unity3d.com/Packages/com.unity.rendering.hybrid@0.51/manual/index.html
https://docs.unity3d.com/Packages/com.unity.rendering.hybrid@0.51/manual/index.html

[29] Job system. Unity - Manual: Job system, 2023. URL https://docs.
unity3d.com/Manual/JobSystem.html. (Accessed: 24 March 2023).

[30] Jobs Package. Unity Jobs Package, June 2022. URL https://docs.
unity3d.com/Packages/com.unity.jobs@0.51/manual/index.html. (Ac-
cessed: 3 May 2023).

[31] JsonUtility. Unity - Scripting API: JsonUtility, 2023. URL
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/
JsonUtility.html. (Accessed: 18 April 2023).

[32] Layers. Unity - Manual: Layers, 2023. URL https://docs.unity3d.com/
Manual/Layers.html. (Accessed: 3 May 2023).

[33] LLVM. LLVM, 2010. URL https://llvm.org/. (Accessed: 20 March 2023).

[34] Marshaling. Interop Marshaling, 2023. URL https://learn.microsoft.
com/en-us/dotnet/framework/interop/interop-marshalling. (Ac-
cessed: 6 July 2023).

[35] Mathematics Package. Unity Mathematics Package, March 2022.
URL https://docs.unity3d.com/Packages/com.unity.mathematics@1.
2/manual/index.html. (Accessed: 3 May 2023).

[36] MonoBehaviour. Unity - Scripting API: MonoBehaviour, 2022. URL https:
//docs.unity3d.com/ScriptReference/MonoBehaviour.html. (Accessed:
2 May 2023).

[37] Netcode. Unity Netcode for Entities, June 2022. URL https://docs.
unity3d.com/Packages/com.unity.netcode@1.0/manual/index.html.
(Accessed: 8 April 2023).

[38] OpenGameArt.org. OpenGameArt.org, 2009. URL https://opengameart.
org/. (Accessed: 18 April 2023).

[39] Package Manager. Unity - Manual: Unity’s Package Manager, 2023.
URL https://docs.unity3d.com/Manual/Packages.html. (Accessed: 21
March 2023).

[40] PersistentDataPath. Unity - Scripting API: Application.persistentDataPath,
2023. URL https://docs.unity3d.com/2020.3/Documentation/
ScriptReference/Application-persistentDataPath.html. (Accessed: 5
May 2023).

[41] Playback. ECS 1.0 - Entity command buffer playback, 2023.
URL https://docs.unity3d.com/Packages/com.unity.entities@1.0/
manual/systems-entity-command-buffer-playback.html. (Accessed: 29
May 2023).

[42] Prefabs. Unity - Manual: Prefabs, 2023. URL https://docs.unity3d.com/
Manual/Prefabs.html. (Accessed: 21 March 2023).

52

https://docs.unity3d.com/Manual/JobSystem.html
https://docs.unity3d.com/Manual/JobSystem.html
https://docs.unity3d.com/Packages/com.unity.jobs@0.51/manual/index.html
https://docs.unity3d.com/Packages/com.unity.jobs@0.51/manual/index.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/JsonUtility.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/JsonUtility.html
https://docs.unity3d.com/Manual/Layers.html
https://docs.unity3d.com/Manual/Layers.html
https://llvm.org/
https://learn.microsoft.com/en-us/dotnet/framework/interop/interop-marshalling
https://learn.microsoft.com/en-us/dotnet/framework/interop/interop-marshalling
https://docs.unity3d.com/Packages/com.unity.mathematics@1.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.mathematics@1.2/manual/index.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/Packages/com.unity.netcode@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.netcode@1.0/manual/index.html
https://opengameart.org/
https://opengameart.org/
https://docs.unity3d.com/Manual/Packages.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Application-persistentDataPath.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Application-persistentDataPath.html
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-entity-command-buffer-playback.html
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-entity-command-buffer-playback.html
https://docs.unity3d.com/Manual/Prefabs.html
https://docs.unity3d.com/Manual/Prefabs.html

[43] Rigidbody. Unity - Scripting API: Rigidbody, 2023. URL
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/
Rigidbody.html. (Accessed: 18 April 2023).

[44] Margaret Rouse. Real-Time Strategy, 2015. URL https://www.
techopedia.com/definition/1923/real-time-strategy-rts. (Accessed:
17 March 2023).

[45] Rule Tile. Rule Tile, November 2022. URL https://docs.unity3d.com/
Packages/com.unity.2d.tilemap.extras@1.8/manual/RuleTile.html.
(Accessed: 4 May 2023).

[46] Scenes. Unity - Manual: Scenes, 2023. URL https://docs.unity3d.com/
Manual/CreatingScenes.html. (Accessed: 17 March 2023).

[47] Scritpting. Unity - Manual: Scripting, 2023. URL https://docs.unity3d.
com/Manual/ScriptingSection.html. (Accessed: 21 March 2023).

[48] Sync points. Sync points, August 2022. URL https://docs.unity3d.com/
Packages/com.unity.entities@0.51/manual/sync_points.html. (Ac-
cessed: 29 May 2023).

[49] Systems. Systems, August 2022. URL https://docs.unity3d.com/
Packages/com.unity.entities@0.51/manual/ecs_systems.html. (Ac-
cessed: 26 March 2023).

[50] Systems - Creating. Systems - Creating, August 2022. URL
https://docs.unity3d.com/Packages/com.unity.entities@0.51/
manual/ecs_creating_systems.html. (Accessed: 11 June 2023).

[51] Systems - Update Order. System - Update Order, August 2022.
URL https://docs.unity3d.com/Packages/com.unity.entities@0.51/
manual/system_update_order.html. (Accessed: 11 June 2023).

[52] TextMeshPro. TextMesh Pro Documentation, December 2022. URL
https://docs.unity3d.com/Packages/com.unity.textmeshpro@3.2/
manual/index.html. (Accessed: 4 May 2023).

[53] Tile Palette. Unity - Manual: Creating a Tile Palette, 2023.
URL https://docs.unity3d.com/2020.3/Documentation/Manual/
Tilemap-Palette.html. (Accessed: 15 April 2023).

[54] Tilemap. Unity - Manual: Tilemap, 2023. URL https://docs.unity3d.
com/Manual/class-Tilemap.html. (Accessed: 14 April 2023).

[55] Tilemap Renderer. Unity - Manual: Tilemap Renderer, 2023.
URL https://docs.unity3d.com/2020.3/Documentation/Manual/
class-TilemapRenderer.html. (Accessed: 15 April 2023).

[56] UI Comparison. Comparison of UI systems in Unity, 2023. URL https:
//docs.unity3d.com/Manual/UI-system-compare.html. (Accessed: 16
April 2023).

53

https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Rigidbody.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Rigidbody.html
https://www.techopedia.com/definition/1923/real-time-strategy-rts
https://www.techopedia.com/definition/1923/real-time-strategy-rts
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.8/manual/RuleTile.html
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.8/manual/RuleTile.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/ScriptingSection.html
https://docs.unity3d.com/Manual/ScriptingSection.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/sync_points.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/sync_points.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_systems.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_systems.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_creating_systems.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/ecs_creating_systems.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/system_update_order.html
https://docs.unity3d.com/Packages/com.unity.entities@0.51/manual/system_update_order.html
https://docs.unity3d.com/Packages/com.unity.textmeshpro@3.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.textmeshpro@3.2/manual/index.html
https://docs.unity3d.com/2020.3/Documentation/Manual/Tilemap-Palette.html
https://docs.unity3d.com/2020.3/Documentation/Manual/Tilemap-Palette.html
https://docs.unity3d.com/Manual/class-Tilemap.html
https://docs.unity3d.com/Manual/class-Tilemap.html
https://docs.unity3d.com/2020.3/Documentation/Manual/class-TilemapRenderer.html
https://docs.unity3d.com/2020.3/Documentation/Manual/class-TilemapRenderer.html
https://docs.unity3d.com/Manual/UI-system-compare.html
https://docs.unity3d.com/Manual/UI-system-compare.html

[57] Unity Collections package. Unity Collections package, August 2022.
URL https://docs.unity3d.com/Packages/com.unity.collections@1.
4/manual/index.html. (Accessed: 2 May 2023).

[58] Unity Components. Unity Component, April 2023. URL https:
//docs.unity3d.com/2020.3/Documentation/ScriptReference/
Component.html. (Accessed: 14 May 2023).

54

https://docs.unity3d.com/Packages/com.unity.collections@1.4/manual/index.html
https://docs.unity3d.com/Packages/com.unity.collections@1.4/manual/index.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Component.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Component.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Component.html

List of Figures

2.1 Each Archetype has zero or more Chunks, and each Chunk hosts
one or more entities of that Archetype. Chunks hosting the same
Archetype will thus have the same data layout. 9

2.2 System LumberingNavigator fetches the positions of trees and
navigates the tree cutters to the closest tree by transforming their
Translation. System AutoTreeCutting then cuts the tree re-
distributing the wood resources from the tree to the tree cutters. . 12

3.1 The Ship would spend considerable time finding a nonexistent path
to the inner Water circle even though the Ship and destination are
the same tile type. 17

3.2 Exploring in a straight line could result in unnecessary buildings
constructed to overbear components that are unnecessary to pass
to get to the destination. Crosses signalize all the buildings built
when a player would want to explore using this algorithm. 18

3.3 In our solution, the map falls into components. With components,
a computer-driven clan can determine which components were not
conquered yet (marked with red) or if the path is in the same
component and exists (marked with purple). 18

3.4 Suppose a Ship (lower one) gets scheduled with a path and encoun-
ters another friendly Ship(upper one). In that case, forces between
units (pink arrows) could throw the first ship off the precalculated
path, and the path would need to be unnecessarily recalculated.
That is the reason why forces between Ship units are so small. . . 20

3.5 Flow-field pathfinding . 20
3.6 Land auto-gathering . 21

4.1 Menu Scene shows the game settings after the user clicks on the
Play button. 24

4.2 User interface after a unit gets selected. 24
4.3 A starving warning message appears if the player’s food supplies

are empty. 25
4.4 A ship sent to fish on a fishing spot will flow to the spot and start

fishing automatically if the spot is nearby. 25
4.5 Auto-gathering units will automatically return to the nearest de-

posit building to empty their inventories if full (arrows added for
clarity). The units will also automatically search for the nearest
resource if their lastly selected got depleted. 26

4.6 Archers and Warriors can fight buildings or land units. The unit
marked to attack enemies will damage them if in attack range. . . 27

4.7 Map editor . 28

5.1 Structure of the /Scripts directory containing 6 Scripts and 4
directories. The directories are: /Systems, /Components, /Menu
and /MapEditor. 29

55

5.2 User input from the MapManagerMenu.cs in Menu Scene initi-
ates the start of the game, switching Scene to the Game Scene
where the map initialization starts. The map gets initialized in
MapManager.cs, and resources and players get spawned by the
ResourceManager.cs and the GameStateManager.cs. 31

5.3 The Game Objects hierarchy in the Game Scene. The Game Scene
contains: Prefabs, cameras, UI elements, and MapGrid holding 6
Tilemaps. 32

5.4 Tilemap editor on the left and the Tile palette ground palette
on the right. 33

5.5 Land Rule tile gets defined by a set of rules. Each rule is described
by a 3x3 grid representing the tiles around. Different markings
in the grid represent different constraints: empty space, cross, or
arrow corresponds to the position/edge where the tile can, can not,
or should be connected to the other neighbor tiles. 33

5.6 An example of the possible numbering of components in Components[,]
generated by the CreateMapComponents() method; both imple-
mented in the MapManager.cs. 34

5.7 MainCamera is a parent Game Object to the MinimapCamera in
the Game Scene hierarchy. 35

5.8 Menu hierarchy . 36
5.9 Map text file representing W character for Water tiles, L for Land

tiles, R for RoughTerrain tiles, the G for Grass tiles, and R for
MineralDeposit tiles. 37

5.10 Archer Prefab, used for Entity instancing, attached with Compo-
nent Scripts like ArcherTag, MovableTag or UnitType. 38

5.11 ArcherPrefab detail, located in the Game Scene Prefabs hier-
archy. The Game Scene holds all Prefabs as children under the
Prefabs Game Object, which further separates into Buildings,
Units, Resources parent Game Objects of individual Prefabs.
These Prefabs get converted into Entities on Scene load and will
be used to instantiate new buildings, units, and resources. 39

5.12 ComponentPushOutFlowField for pushing units out of invalid com-
ponents. 41

5.13 Flow-field pathfinding, Cost & Integration Fields 42
5.14 In-game example of Land terrain (on the left) and the FlowField

calculated for the Land pathfinding over that terrain (on the right). 42
5.15 Ship’s vector field for Water pathfinding. This field gets created

from the A* generated list of tiles representing the shortest path
to the destination. If any tiles from the list have neighboring Land
tiles, the vector forces pushing from that Land tile get added to
the Ship’s vector field. 43

56

List of Abbreviations
C#. C-Sharp.
RTS. Real-time strategy.
DOTS. Data-Oriented Technology Stack (Unity).
UI. User Interface.
ECS. Entity component system.
AI. Artificial intelligence.
IDE. Integrated development environment.
NPC. Non-player character.
LLVM. Low-Level Virtual Machine (initially, but today no longer stands for it).
HPC#. High-performance C#.
AOT. Ahead-of-time.
JIT. Just-in-time.
CIL. Common Intermediate Language.
CLR. Common Language Runtime.
ID. Identification.
2D. Two-dimensional.
3D. Three-dimensional.
uGUI. UnityUI.
HP. Health Points.
CC. Creative Commons.
A*. A-Star.

57

A. Table of controls
Debug mode switch on/off X
Spawn Archer 0
Spawn Warrior 1
Spawn Ship 2
Spawn Warehouse 3
Spawn Fishery 4
Spawn Mineral 5
Spawn Tree big 6
Spawn Tree small 7
Spawn Fishing spot big 8
Spawn Fishing spot small 9
Add resources A
Destroy selected units or buildings R
Clear pathfinding Tilemap C
Show pathfinding Tilemap for the selected build-
ing/moving unit

I

Show pathfinding Tilemap for pushing out of
components

U

Show water auto-gather pathfinding Tilemap O
Show land auto-gather pathfinding Tilemap P
Camera panning left Left arrow
Camera panning right Right arrow
Camera panning up Up arrow
Camera panning down Down arrow
Camera panning speed multiplier OR If held
with spawning key, the enemy gets spawned

Left Shift

Camera panning stop Space
Camera zoom-in S
Camera zoom-out D
Pause menu Esc
Action key 1 Q
Action key 2 W
Clear production queue of selected building F
Select random idle unit V
Select all nearby units Left Control +

Left click

58

B. Attached CD
This thesis includes an attached CD containing the Unity solution, the built
game, and the text of the thesis itself.

59

	Introduction
	Gameplay
	Thesis structure

	Background
	Real-time strategy games
	Unity engine
	Unity DOTS
	Entity Component System
	Burst
	Job System

	Entity Component System (Unity DOTS)
	Entity
	Component
	System

	Analysis
	Engine and technology selection
	Game map
	Unit navigation
	Map saving
	Pathfinding
	Unit information sharing

	User’s documentation
	Setting up a game
	Gameplay
	Map editor

	Programmer’s documentation
	Environment preparation
	The Game Scene lifecycle
	Map creating
	User Interface
	Menu and Map editor
	ECS Entities and Components
	Archetypes and instancing Entities

	Entity Component Systems
	Pathfinding System
	Attacking System
	Building System
	Gathering System
	Unit manager

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	Table of controls
	Attached CD

