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Abstract:

Ligand binding site prediction from protein structure is a fundamental prob-
lem in the field of structural bioinformatics that has many applications
related to the elucidation of protein function and structure-based drug dis-
covery. The first focus of this thesis was the application of machine learning
to this and related problems. The second focus was the development of
practically usable tools based on our research. The machine learning based
tools produced as a result of the work on this thesis include the pocket
re-scoring method PRANK, a stand-alone ligand binding site prediction
method P2Rank (together with its extended web interface PrankWeb) and
the peptide binding prediction method P2Rank-Pept. We have shown that
our methods outperformed available state-of-the-art tools while providing
other benefits like prediction speed and stability. Furthermore, we have
developed AHoJ, a flexible tool for the search and alignment of Apo-Holo
protein pairs in the PDB. AHoJ that is ideal for creating Apo-Holo datasets
which can in turn help to better evaluate binding site prediction methods in
the future.
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Chapter 1

Introduction

1.1 Structure of the thesis

The thesis is structured in the following way. Part I: Commentary sum-
marizes my work and contribution and puts it in the context while Part II:
Publications contains the full text of ten peer-reviewed co-authored publica-
tions that constitute the core of the contribution and were published during
my PhD study.

In Part II, some of the publications are introduced by a concise "Author’s
highlights". These are not necessarily summaries of the articles and are not
meant to replace abstracts but rather highlight points that might be relevant
to the readers of the thesis.

Instead of trying to be just a summary of included publications, the text
of the thesis is intended to be an accompanying commentary to my work as
a whole with some added value. The thesis contains some of my personal
opinions and experiences and better explains the motivation behind some
efforts and decisions. This includes some points that did not find a way to
the original publications or could be only said with hindsight. Furthermore,
while the included papers describe the software as it was when it was
initially released, this thesis describes the software as it is now, with all
accumulated improvements and changes.
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CHAPTER 1. INTRODUCTION

1.2 Binding site prediction and related problems

Ligand binding site prediction is a fundamental problem in the field of com-
putational biology that seeks to identify the location and shape of binding
sites on protein structures that can interact with small molecules. This
section contains a concise introduction to the problem and its context. The
main goal is, however, to highlight inherent complications with the problem
definition and bring up considerations that shaped the work presented in
this thesis.

1.2.1 Motivation

Prediction of ligand binding sites from protein structure has many ap-
plications in elucidation of protein function [KJ14] and rational drug
design [ZGWW12, PSM∗10, TBNT16]. It has been employed in drug side-
effects prediction [XXB11], fragment-based drug discovery [LEG16], dock-
ing prioritization [LJ06, FB15], structure based virtual screening [LSCZ14]
and structure-based target prediction (or so called inverse virtual screen-
ing) [SBB∗14]. Increasingly it is being used in large-scale structural stud-
ies that try to analyze and compare all known and putative binding sites
on a genome-wide or PDB-wide level [DWH15, MBB16, MZF∗17, SCS∗17,
BSSC18].

In practice, it is often the case that predicting ligand binding sites is
not an end in itself but it represents only a step in a larger automated
solution or pipeline. For instance, a druggability prediction server PockDrug-
Server [HBG∗15] relies on ligand binding site prediction internally. Similarly,
allosteric site prediction tools Allosite [HLH∗13] and AlloPred [HLH∗13]
both internally employ a ligand binding site prediction tool Fpocket [LGST09]
as the first step of their workflows.

1.2.2 The problem statement

The problem of ligand binding site prediction from protein structure can be
defined in the following way: given a protein structure, produce a list of
putative binding sites and score/order them according to the likelihood of
binding relevant ligands.

This definition is rather technical but still leads to several questions:
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CHAPTER 1. INTRODUCTION

How can/should be predicted binding sites represented? It turns out that
in whatever way possible and that the existing methods represent binding
sites in various ways, which include but are not limited to: a set of protein
surface atoms, a set of residues or a set of points around the surface of
the protein (points on a regular 3D grid, alpha sphere centers or points
on protein’s solvent accessible surface). To evaluate a prediction method
we need a binding site to be represented at least as a single point, i.e.
center/centroid of a binding site.

Why it is important to score/order predicted binding sites? To mean-
ingfully evaluate prediction methods and to determine their identification
success rate it is necessary to consider only predicted sites with the highest
score (e.g. Top-1/Top3 or better Top-n/Top-(n+2) where n is the number
of known ligands on a given protein). If we were to consider all predicted
pockets, an obviously useless method that would cover the whole surface of
the protein with predicted binding sites would achieve 100% success rate.

Which types of ligands are relevant? This is often only implicitly defined
by the datasets on which are particular methods trained and/or bench-
marked. For a detailed discussion see Supplementary Materials to [KH18].

1.2.3 Related problems

Proteins can interact with a variety of binding partners: small molecule
ligands, ions, peptides, other proteins and nucleic acids. For each type
of binding partner, we can consider the problem of predicting its binding
locations. Developing a prediction method for each of those molecular types
presents distinct challenges and also offers specific clues that can be best
utilized by specialized methods.

In contrast with the task of binding site prediction, there is a closely
related task of binding residue prediction. Although the difference may
seem only technical, it is important to distinguish between the two. The
task of binding site prediction involves the prediction of binding sites as
such, i.e. a binding site is considered an entity which shape and location
(represented at least as a center point) needs to be determined. On the
other hand, the task of binding residue prediction can be viewed as a task
of labeling residues by a binary label (binding vs. non-binding), or by a
binding probability score from the range of [0, 1]. One way to look at is
that the task of binding residue prediction does not include the final step of
clustering binding residues into binding sites.
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CHAPTER 1. INTRODUCTION

An important variation of the problem is predicting binding residues
from the sequence alone.

1.2.4 Existing methods and tools

Ligand binding site prediction methods have been in development for almost
40 years now (the first known method, to my knowledge, was published in
1985). During this time more than 50 different algorithms or improvements
have been published.

Existing methods for ligand binding site prediction are based on a variety
of algorithmic approaches. Traditionally, methods have been categorized
based on their main algorithmic strategy into geometric, energetic, conser-
vation based, template based, knowledge based and machine learning based.
In reality, many of the existing tools are based on some combination of the
mentioned approaches. Methods based on a consensus of results of other
algorithms have also emerged.

More details on existing methods and tools can be found in numerous
reviews and surveys [LJ06, HOH∗10, PSM∗10, LSZ10, CMGK11, FRH11,
RBJ15, BS17, SLD∗]. In the introduction to the paper [KH18] I have
provided another comprehensive survey of existing tools with a focus on
their practical usability. In it I have highlighted the importance of the cat-
egorization of the tools along several lines: template based / template-free
methods, web servers / stand-alone tools, and residue-centric / pocket-
centric methods and I have argued that there is a strong case for a new fast
stand-alone user-friendly and template-free tool.

Studies that introduced existing methods reported relatively high predic-
tion accuracy, usually on traditional small datasets. However, the results of
the only independent benchmark [CMGK11] suggested that existing meth-
ods may not be as accurate as previously believed when applied to new
datasets.

When I started working on the problem at the first sight it might seem
that the field is crowded with tools available for researchers. However, after
a closer survey [KH18] I found that only a few of the published methods
were available as a stand-alone software that can be used locally (in contrast
with web-based methods). Furthermore, most of those stand-alone tools
were unnecessarily complicated to use (users were required to perform
preprocessing tasks that could have been automated by the authors of the
software). Even fewer of the tools were available as open-source software.

5



CHAPTER 1. INTRODUCTION

1.3 Goals

There is no reason to pretend that the work presented in this thesis was
a liner process of first setting some fixed set of goals and then gradually
accomplishing them. Indeed, what is included in the thesis is mostly only
the work that led to in some way successful results. With that in mind, the
following list is included here mainly to clarify my intentions and motivations
and highlight the issues of existing tools I decided to focus on improving.

• Explore the possibility of improving existing ligand binding site predic-
tion methods by replacing their scoring function.

• Develop a stand-alone ligand binding site prediction method based on
machine learning. Although machine learning has been applied to the
problem before and some studies have been published, their focus was
on predicting binding residues rather than on predicting binding sites
as such [KK09, QW00, CHG14].

• Produce command line tools that can be used locally and are easy
to set up and use and therefore can be easily employed in larger
bioinformatics pipelines.

• Produce intuitive web based tools with integrated visualizations that
have documented REST APIs.

• Work towards a better evaluation of ligand binding site prediction
methods on Apo-Holo datasets.
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Chapter 2

Overview of the contribution

2.1 List of Publications

The following peer-reviewed publications and associated structural bioin-
formatics software constitute the core contribution presented in this thesis.
Full texts of these publications (except [con19, con21]) including relevant
supplementary materials are included in Part II.

[KH15a] KRIVÁK R., HOKSZA D.: Improving protein-ligand binding site
prediction accuracy by classification of inner pocket points using
local features. Journal of Cheminformatics 7, 1 (Apr 2015), 12. doi:
10.1186/s13321-015-0059-5

[KH15b] KRIVÁK R., HOKSZA D.: P2RANK: Knowledge-Based Ligand
Binding Site Prediction Using Aggregated Local Features. In Inter-
national Conference on Algorithms for Computational Biology (2015),
Springer, pp. 41–52. doi:10.1007/978-3-319-21233-3_4

[KH18] KRIVÁK R., HOKSZA D.: P2Rank: machine learning based tool
for rapid and accurate prediction of ligand binding sites from
protein structure. Journal of cheminformatics 10, 1 (2018), 39. doi:
10.1186/s13321-018-0285-8

[KH7] KRIVÁK R., HOKSZA D., ŠKODA P.: Improving quality of ligand-
binding site prediction with Bayesian optimization. In 2017 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM)
(2017), pp. 2278–2279. doi:10.1109/BIBM.2017.8218024
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CHAPTER 2. OVERVIEW OF THE CONTRIBUTION

[KJH18] KRIVÁK R., JENDELE L., HOKSZA D.: Peptide-Binding Site Predic-
tion From Protein Structure via Points on the Solvent Accessible
Surface. In Proceedings of the 2018 ACM International Conference on
Bioinformatics, Computational Biology, and Health Informatics (New
York, NY, USA, 2018), BCB ’18, Association for Computing Machinery,
p. 645–650. doi:10.1145/3233547.3233708

[JKS∗19] JENDELE L., KRIVAK R., SKODA P., NOVOTNY M., HOKSZA D.:
PrankWeb: a web server for ligand binding site prediction and
visualization. Nucleic Acids Res. 47, W1 (Jul 2019), W345–W349.
doi:10.1093/nar/gkz424

[JSK∗22] JAKUBEC D., SKODA P., KRIVAK R., NOVOTNY M., HOKSZA D.:
PrankWeb 3: accelerated ligand-binding site predictions for exper-
imental and modelled protein structures. Nucleic Acids Research 50,
W1 (05 2022), W593–W597. doi:10.1093/nar/gkac389

[con19] CONSORTIUM P.-K.: PDBe-KB: a community-driven resource for
structural and functional annotations. Nucleic Acids Research 48, D1
(10 2019), D344–D353. doi:10.1093/nar/gkz853

[con21] CONSORTIUM P.-K.: PDBe-KB: collaboratively defining the biolo-
gical context of structural data. Nucleic Acids Research 50, D1 (11
2021), D534–D542. doi:10.1093/nar/gkab988

[FKHN22] FEIDAKIS C. P., KRIVAK R., HOKSZA D., NOVOTNY M.: AHoJ:
rapid, tailored search and retrieval of apo and holo protein struc-
tures for user-defined ligands. Bioinformatics 38, 24 (10 2022),
5452–5453. doi:10.1093/bioinformatics/btac701

2.1.1 Autorship notes

In the publications where I am the first author [KH15a, KH15b, KH18,
KH7, KJH18] I have contributed most of the research ideas and software
development, performed the experiments and I have written most of the text
of the manuscripts (all under the supervision and with consultation with
my supervisor David Hoksza following his initial ideas about an aggregated
representation of protein physico-chemical features).

In the publications related to the web interface (PrankWeb) [JKS∗19,
JSK∗22] I have contributed some of the development, performed the experi-
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CHAPTER 2. OVERVIEW OF THE CONTRIBUTION

ments [JKS∗19] or helped with their design [JSK∗22] and written parts of
the manuscript [JKS∗19].

Publications related to PDB-KB [con19, con21] were written by a con-
sortium of authors and P2Rank is only one of the tools integrated with
PDB-KB. I have helped to develop data transformation of P2Rank output
to PDB-KB input format, contributed to the validator of PDB-KB input data
and performed predictions on all proteins in the PDB.

In [FKHN22] I have developed the web interface and contributed to the
development of the command line version of the software.

2.2 Summary of the contribution

This section summarizes the most important contributions of the work
presented in this thesis. Most of the work was produced in cooperation with
co-authors of respective publications.

A list of released bioinformatics software and practical/usable contribu-
tions follows.

1. We have developed PRANK, a machine learning based method that
allows to re-score (re-rank) ligand binding sites predicted produced by
other methods. Since it helps true binding sites to be ranked higher, it
improves the applicability and usefulness of their predictions. PRANK
is useful especially in combination with methods like Fpocket, which
produce a large amount of predicted binding sites for each protein
but do not always score true binding sites at the top. PRANK was
made available as a free command line tool with source code available
upon request. Later it became part of the P2Rank codebase and was
released as open-source software.

2. We have developed P2Rank, a fully independent method for ligand
binding site prediction based on machine learning. Although some
machine learning based methods for a given problem were described
in the literature before, to our knowledge P2Rank was the first prag-
matically usable tool for ligand binding site prediction based on ma-
chine learning. P2Rank makes predictions by scoring and clustering
points on the protein’s solvent accessible surface. The ligandability
score of individual points is determined by a Random Forest model
trained on the dataset of known protein-ligand complexes. P2Rank
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CHAPTER 2. OVERVIEW OF THE CONTRIBUTION

is released as open-source software (under MIT license) on GitHub
(https://github.com/rdk/p2rank).

3. We have developed PrankWeb, a web application interface for P2Rank
[JKS∗19]. In addition to a standalone version of P2Rank, PrankWeb
employs a custom-made conservation pipeline and improved predic-
tion models trained using conservation as one of the features (i.e.
descriptors). Unlike many similar tools at the time of the release,
PrankWeb came with a documented REST API. The later version intro-
duced the support for mmCIF format and prediction model specialized
for AlphaFold structures [JSK∗22]. PrankWeb is freely available at
https://prankweb.cz/ and open-sourced (under Apache License 2.0)
on GitHub (https://github.com/cusbg/prankweb).

4. We have integrated P2Rank/PrankWeb with EBI’s Protein Data Bank in
Europe – Knowledge Base (PDBe-KB), the new PDBe’s major resource
of integrated protein data [con19, con21]. PDB-KB now contains an-
notations based on P2Rank predictions precomputed for almost every
protein in the PDB and it is being periodically updated with predictions
on new proteins. PDBe-KB is available at https://pdbe-kb.org.

5. We have developed AHoJ, a highly-configurable tool for the search
and alignment of Apo-Holo protein pairs in the PDB [FKHN22]. AHoJ
is available as an open-source command line program and a web
application that allows running searches for multiple queries at the
same time (and thus produce Apo-Holo datasets) and includes integ-
rated web-based visualization. The web application is freely available
at http://apoholo.cz/ and the command line tool is open-sourced
(under Apache License 2.0) on GitHub (https://github.com/cusbg/
AHoJ-project).

6. I have developed FasterForest, a Java library that contains two highly
optimized Random Forest implementations. These implementations
represent mainly technical optimizations of the previous original open-
source work [Sup13, Sel17] and require roughly 75% time and 50%
space compared to the original implementations. The library was
used during the development and optimization of our later methods
[KJH18, JKS∗19]. FasterForest library is available as open source
under GNU GPL v2 (https://github.com/rdk/FasterForest).
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CHAPTER 2. OVERVIEW OF THE CONTRIBUTION

The following list summarizes my research contributions, i.e. theoretic-
ally interesting results or novel contributions to the discussion in the field of
binding site prediction.

1. P2Rank was the first machine learning based method related to a
protein structure that internally used points on the solvent accessible
surface of the protein instead of a typical approach of using points on
a regular 3D grid.

2. In publication [KH18] I introduced some points that I believe were
missing from the discussion in the field. These include the following:
running times (i.e. speed) of prediction methods, we highlighted the
difference between pocket-centric and residue-centric methods and
respective evaluation methodologies, and included a discussion of the
possibility of reaching Bayes optimal rate on inherently noisy datasets.

3. During the development of the prediction methods, I used the tech-
nique of Bayesian optimization [BCdF09] that allowed me to optimize
several arbitrary parameters simultaneously.

4. We have developed and published the results of P2Rank-Pept, a method
specialized for the prediction of peptide binding sites from protein
structure. This demonstrated the applicability of our general approach
to different related tasks P2Rank-Pept is a part of the P2Rank codebase,
but up to this date it has not been released with a pre-trained model.
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Chapter 3

Tools for ligand binding site
prediction

3.1 PRANK: replacing the scoring function of
existing methods

Most of the existing ligand binding site prediction methods find much more
pockets on a given structure than there are actual true binding sites. At
the same time, they employ a fairly simple ranking function leading to
sub-optimal prediction results1.

To address this problem, we introduced a novel machine learning-based
pocket ranking algorithm called PRANK (Pocket RANKing) that can be used
post-processing step which improves the performance of existing ligand
binding site prediction methods. The outline of the algorithm is shown
in Figure 3.1 and further described in Figure 3.2 which shows an internal
pocket representation used by PRANK. A detailed description of the al-
gorithm can be found in [KH15a].

Our benchmarks showed that our new scoring function considerably
outperformed the native scoring functions of Fpocket [LGST09] and Con-
Cavity [CLT∗09] on all evaluated datasets. Furthermore, we showed that
it outperformed two simpler scoring functions: PLB index, which is based
on amino acid composition [SSKH07] and a simple ordering by pocket
volume. Improvements in the prediction success rate achieved by PRANK

1measured as binding site prediction success rate considering Top-k predicted pockets
with the highest score

12
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FIGURE 3.1: Flowchart that outlines PRANK algorithm.

when applied to Fpocket predictions can be seen in Figure 3.3.

PRANK takes a protein structure and the output of a third-party predic-
tion method on the input and produces a list of re-scored and re-ranked
pockets on the output. PRANK can currently process the output of the fol-
lowing methods: Fpocket , ConCavity , SiteHound [GS09], MetaPocket 2.0
[ZLL∗11], LISE [XH12] and DeepSite [JDMR∗17]. Furthermore, a clean
internal API allows parsers for new methods to be easily implemented.

PRANK was originally developed and distributed as a set of scripts written
in Groovy programming language and later integrated into the codebase and
distribution of P2Rank as a standalone command line application running
on Java Virtual Machine.
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CHAPTER 3. TOOLS FOR LIGAND BINDING SITE PREDICTION

FIGURE 3.2: PRANK: Visualization of inner pocket points. (a) Displayed is
the protein 1AZM bound to one ligand (magenta). Fpocket predicted 13 pockets
that are depicted as colored areas on the protein surface. To rank these pockets,
the protein was first covered with evenly spaced points on a solvent accessible
surface (probe radius 1.6 Å) and only the points adjacent to one of the pockets were
retained. The colour of the points reflects their ligandability (green = 0...red = 0.7)
predicted by Random Forest classifier. PRANK algorithm rescores pockets according
to the cumulative ligandability of their corresponding points (calculated as a sum of
squares). Note that there are two clusters of ligandable (red) points in the picture,
one located in the upper dark-blue pocket and the other in the light-blue pocket in
the middle. The light-blue pocket, which is, in fact, the true binding site, contains
more strongly ligandable points and therefore will be ranked higher. (b) Detailed
view of the binding site with the ligand and the inner pocket points.
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FIGURE 3.3: PRANK: Results of rescoring Fpocket predictions on CHEN11
dataset. Chart showing prediction success rates of Fpocket compared with results
rescored by PRANK on CHEN11 dataset considering Top-n, Top-(n+2) and all
pockets (total coverage). The success rate is measured by DCA criterion for the
range of integer cutoff distances (i.e. distance between the center of a predicted
pocket and any atom of the ligand). Displayed results for rescored pockets are
averaged from ten independent 5-fold cross-validation runs.
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3.2 P2Rank: machine learning based method

Building on PRANK we have developed P2Rank a stand-alone independent
ligand binding site prediction method. We have realized that relying on
third-party methods for making predictions and then rescoring them is
actually limiting and that our machine learning based approach can predict
that the other methods are not able to identify at all. Compared to PRANK,
P2Rank is looking at the whole surface of the protein. It covers it with points
on a solvent accessible surface, predicts their ligandability and then clusters
points with high ligandability into predicted binding sites. The working
of the algorithm is illustrated in Figure 3.4 which shows an entire surface
of the protein covered with points with predicted ligandability. A detailed
description of the algorithm can be found in [KH18].

FIGURE 3.4: P2Rank: Visualization of ligand binding sites predicted by for
structure 1FBL. Protein is covered by a layer of points lying on the Solvent Access-
ible Surface of the protein. Each point represents its local chemical neighborhood
and is colored according to its predicted ligandability score (from 0=green to
1=red). Points with high ligandablity score are clustered to form predicted binding
sites (marked by coloring adjacent protein surface). In this case, the largest pre-
dicted pocket (shown in the close-up) is indeed a correctly predicted true binding
site that binds a known ligand (magenta). Visualization is based on a PyMOL script
produced by P2Rank.
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3.2.1 Features

This section contains a summary of the features and characteristics of the
software from the point of view of a user and from the point of view of
a new model/method developer. The current version of the software is
described (P2Rank 2.4).

User facing features

• Ease of setup. P2Rank is distributed as a precompiled binary package
with pre-trained prediction models that requires no compilation or
installation. P2Rank does not depend on any third-party bioinformatics
software and the only dependency is Java Virtual Machine.

• Ease of use. Given any protein structure, P2Rank is able to produce
prediction by running a single command (i.e. no preprocessing steps
or multiple-step procedures are needed). This is still quite rare among
available methods.

• High prediction accuracy, especially when compared to methods that
are comparably fast.

• PyMol visualisation. P2Rank optionally produces PyMol visualizations
such as the one that can be seen in Figure 3.4.

• Optimized multi-threaded implementation. P2Rank is only one of two
methods that need under one second to generate a prediction on a
single protein of average size [KH18].

• Support for both PDB and mmCIF formats. P2Rank is one of the
few existing ligand binding site prediction methods that are currently
able to process mmCIF format and produce predictions on proteins of
unlimited size as well as on AlphaFold models.

• Stability. Great care has been taken so that P2Rank finishes successfully
(without crashing) on any valid PDB or mmCif input that contains
protein structure. It is admittedly a moving target. P2Rank has been
therefore evaluated by running it on the whole PDB and is regularly
automatically run on new PDB entries. This stands in contrast with
many available tools, some of which have a failure rate that can be as
high as 20-80% (see supplementary materials to [KH18]).
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• Interpretability. For each pocket and each residue, P2Rank produces
a probability score, which is a number from the [0, 1]. Transforma-
tions from raw scores to probability scores are trained/fitted for each
prediction model on a calibration dataset.

Features related to training new models and development of new meth-
ods

P2Rank can be also seen as a framework and a workbench for training new
prediction models and developing new prediction methods. The following
list summarizes the features that are relevant for advanced users/developers
that want to do one of the following: train new models on specific datasets,
develop methods for new prediction tasks, or develop new local prtoein
descriptors and compare their contribution to predictive performance.

• Java API for predictions. P2Rank can be used as a library by the
programs running on JVM.

• Training and evaluation of new models. P2Rank is able to train and
evaluate new models on different dataset running single command.

• Configurability. P2Rank has more than 100 documented configurable
parameters. Configuration can be stored in a config file and overridden
in the command line.

• Different evaluation modes and metrics. P2Rank implements pocket-
centric and also residue-centric evaluation and within them calculates
various prediction performance metrics.

• Grid optimization with visualization. P2Rank implements an internal
optimization loop for grid optimization based on a list of parameter
values. If only one or two parameters are optimized at the same
time P2Rank can produce bar charts or heatmaps for every calculated
metric.

• Integration with external optimizers. P2Rank implements an internal
optimization loop that can make use of third-party optimizers. Two op-
timizers that implement Bayesian optimization are currently integrated
[SLA12, JG17].

• Easy development of new features/descriptors. P2Rank contains a
clean internal API for the development of new features. New features
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can be calculated either for protein atoms or residues (those are
then projected onto solvent accessible surface points) or for solvent
accessible surface points directly, depending on what comes most
naturally.

• Ability to use externally calculated features/descriptors via CSV files
which contain features calculated for every residue in the dataset.

3.2.2 Results

Results in Table 3.1 show that P2Rank clearly outperforms other evaluated
tools in Top-n and Top-(n+2) categories on two datasets. P2Rank also
achieves higher success rates than were possible to achieve just by re-scoring
predictions of Fpocket using PRANK algorithm. Still, Fpocket+PRANK
performed better than any of the other tools except for P2Rank. We have
also evaluated the performance of a reduced version of P2Rank that uses
only a single geometric feature (descriptor): protrusion. Surprisingly, even
this simplified, purely geometric version of P2Rank slightly outperforms
other tools in most cases (except for MetaPocket 2.0 in Top-(n+2) category).
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TABLE 3.1: P2Rank: Comparison of predictive performance on COACH420 and
HOLO4K datasets.

COACH420 HOLO4K
Top-n Top-(n+2) Top-n Top-(n+2)

Fpocket 56.4 68.9 52.4 63.1
Fpocket+PRANKa 63.6 76.5 62.0 71.0
SiteHound† 53.0 69.3 50.1 62.1
MetaPocket 2.0† 63.4 74.6 57.9 68.6
DeepSite† 56.4 63.4 45.6 48.2
P2Rank[protrusion]b 64.2 73.0 59.3 67.7
P2Rank 72.0 78.3 68.6 74.0

The numbers represent identification success rate [%] measured by DCA criterion
(distance from pocket center to closest ligand atom) with 4 Å threshold considering
only pockets ranked at the top of the list (n is the number of ligands in considered
structure).
†These methods failed to produce predictions for some portion of input proteins. Here
are displayed success rates calculated only based on subsets of proteins, on which they
finished successfully. Detailed, pairwise comparison with P2Rank on the exact subsets
can be found in the Supplementary Information of [KH18].
apredictions of Fpocket re-scored by PRANK algorithm
breduced version of P2Rank that uses only single geometric feature: protrusion

3.3 PrankWeb: more than a web interface for
P2Rank

We have developed PrankWeb, a web application for the prediction of ligand
binding sites [JKS∗19]. While PrankWeb uses P2Rank in the backend, it
is not just a simple web interface for P2Rank. It additionally employs a
custom-made conservation pipeline and improved prediction models trained
using conservation as one of the features (i.e. descriptors). The new version
[JSK∗22] introduced the support for mmCIF format and prediction model
specialized for AlphaFold structures [TAW∗21].

Note: the pre-trained models that use conservation are included in the
standalone command line distribution of P2Rank, but the conservation
pipeline is not. To use these models in command line mode users can make
use of PrankWeb’s docker images.
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3.3.1 Features

• PrankWeb is able to predict binding sites on experimental structures
(PDB), AlphaFold models or any valid sructure uploaed by the user.

• Conservation pipeline. PrankWeb can calculate sequence conservation
scores and employ this information in binding site prediction.

• Customizable web-based visualization of prediction results that in-
tegrates sequence and structural visualization. Visualization includes
conservation score and AlphaFold score (pLDDT) if available.

• Precomputed predictions. We have computed the ligand binding site
predictions for two components of the AlphaFold DB, the “model
organism proteomes” and “Swiss-Prot”, as well as for the whole PDB.
For each database, AlphaFold DB and PDB, we computed the prediction
with and without using conservation. Results precomputed for PDB
are being automatically periodically updated by running predictions
with the structures newly added to PDB. PrankWeb can serve the
predictions on those structures to users instantaneously via its web
interface. Moreover, precomputed predictions on individual databases
are available for bulk download on PrankWeb’s website.

• Documented REST API.

3.3.2 Results

Table 3.2 presents the evaluation of all new P2Rank models used for Prank-
Web 3, as well as their comparison with the former models user by the
original version or PrankWeb. It can be seen that the new Default models
exceed the performance of the corresponding old models when evaluated
on the representative HOLO4K dataset.

3.3.3 Implementation details

The original version of PrankWeb [JKS∗19] was developed as a Java web
application that was using P2Rank internally as a library via P2Rank’s Java
API. The advantage of this approach was that it avoided repeated JVM and
model loading cost on each prediction run (which is measured in order of
seconds).
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TABLE 3.2: PrankWeb: Results of four prediction models employed by Prank-
Web 3 and comparison with two previously used models

COACH420 HOLO4K
Top-n Top-(n+2) Top-n Top-(n+2)

Default (old) 72.0 78.3 68.6 74.0
Default + conservation (old) 73.2 77.9 72.1 76.7
Default 71.6 76.8 72.7 78.0
Default + conservation 74.3 77.2 74.5 78.4
B-factor-free 71.2 77.5 72.1 77.2
B-factor-free + conservation 74.9 78.5 73.9 77.7

The numbers represent identification success rates (in %) measured using the DCA
criterion utilizing a 4.0 Å threshold for the distance between the center of the predicted
LBS and any ligand atom; only the n or (n+2), respectively, top-ranking predicted sites
are considered in the evaluation, where n is the number of ligands in the respective 3D
structure. Values for Default (old) and Default + conservation (old) represent results
of old models used by the original version of PrankWeb. B-factor-free are used with
AlphaFold predictions which utilize the B-factor field for confidence scores. Please
note that old models were generated by the older version of P2Rank, which used older
versions of BioJava and CDK. Using newer versions changed how certain PDB files are
parsed, and an upgrade of the CDK library fixed a bug in the algorithm that generates
SAS points. This, together with bug fixes in P2Rank itself, causes the scores for the
Default (old) and Default models to differ.

With the new release, PrankWeb’s architecture has been completely
redesigned [JSK∗22]. PrankWeb is now developed as a modern Python
web application with modular architecture that strictly separates web-based
user interface, data storage, and an execution component. Each component
corresponds to a Docker image. Combined with docker-compose, it is
easy to deploy and update PrankWeb instances, or using just the execution
component run predictions on private data without exposing them to third-
party servers. Each new prediction is now executed as a separate P2Rank
process. This brings higher flexibility but also brings back JVM and model
loading cost. This fact is now offset by faster startup times on newer
JVMs and by the fact that predictions for many available structures are
automatically precomputed by PrankWeb.
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FIGURE 3.5: Peptide-binding residue prediction based on points on the Solvent
Accessible Surface. a) Protein (3NFK/A) is covered in a layer of points lying on
the solvent accessible surface. Each point represents its local chemical neighborhood
and is described by a feature vector calculated from its surroundings. Points are
colored according to the peptide-binding score (∈ [0,1]) predicted by a Random
Forest classifier (green=0/red=1). b) Peptide-binding score of any given solvent
exposed residue is based on the score of its adjacent points (radius of the cutoff
and the form of aggregation function were subject to optimization). Residues with
the score above a certain threshold are labeled as predicted positives (blue).

3.4 P2Rank-Pept: prediction of peptide binding
sites

We have applied our approach to the task of peptide binding site prediction.
Compared to P2Rank we had to develop and employ a variety of new
features to achieve top performance. Among them were features related to
protein geometry, secondary structure and sequence conservation. Figure 3.6
shows the outline of the algorithm i.e. the steps that P2Rank-Pept follows
to predict peptide-binding residues using previously trained classification
model. Prediction on a particular protein is further illustrated in Figure 3.5.
P2Rank-Pept is a part of the P2Rank codebase, but up to this date it has not
been released with a pre-trained model. Although we achieved predictive
performance that was significantly higher than the competition, I was not
convinced that the method is practically useful in its current state.
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1. Generate points
Generate a set of points on protein’s

solvent accessible surface (SAS points).

2. Calculate features
Calculate feature vectors for SAS points
based on their local 3D neighbourhood.

3. Predict point scores
Predict peptide-binding scores of SAS

points by pre-trained Random Forest model.

4. Calculate residue scores
Calculate residue scores based

on scores of adjacent SAS points.

5. Classify residues
Select peptide-binding residues

by applying a threshold.

FIGURE 3.6: P2Rank-Pept algorithm outline
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3.5 Integration with PDB-KB

We have integrated P2Rank/PrankWeb with EBI’s Protein Data Bank in
Europe – Knowledge Base (PDBe-KB), the new PDBe’s major resource of
integrated protein data [con19, con21]. PDB-KB now contains annotations
based on P2Rank predictions precomputed for almost every protein in the
PDB and it is being periodically updated with predictions on new proteins.
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Apo-Holo protein search

4.1 Introduction

Ligand-binding proteins exist in a bound (Holo) and an unbound (Apo) state.
Structurally those states are almost always, to some extent, conformationally
different due to the binding-induced conformational changes. For many
proteins, both of these states can be found in the PDB, often in multiple
entries.

This picture gets further complicated when we consider proteins that can
bind multiple ligands on multiple binding sites (which is probably a majority
of ligand-binding proteins). One particular protein with two binding sites
can thus exist in a few different versions in the PDB: not binding any ligand,
binding a ligand in one of the binding sites but not in the other, and binding
ligands in both sites. The generally accepted definition is that a protein in
the Apo state does not bind any ligands at all and Holo state covers the
situations where it binds one or multiple ligands. However, when we talk
about Apo-Holo protein pairs and their search, it is more useful to think
about a pair of Apo-Holo structures with respect to: (a) a specific binding
site, (b) a set of specific binding sites, (c) all known binding sites.

The Apo-Holo protein pairing is not readily available in the PDB and
the consideration about multiple binding sites just illustrates one of the
reasons. The process of Apo-Holo pairing is further complicated by sequence
irregularities in the PDB, a consideration of which type of molecules should
be considered as relevant ligands and a specific way how the binding site
occupancy is determined (which is a process that necessarily involves some
arbitrary thresholds). Apo-Holo protein pairing should thus not be seen as
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a static link between PDB entries, but rather as a qualified search process,
which results depend on a user query that can specify various arbitrary
search options.

4.2 Motivation

Our motivation for developing Apo-Holo protein search tool was the need
to create Apo-Holo datasets for better evaluation of binding site prediction
methods. The general problem in the field of ligand binding site prediction
(and arguably a shortcoming of my own work) is the fact that methods are
typically being evaluated only on Holo datasets. Evaluating binding site
prediction methods on Holo datasets means that the prediction method can
"see" the protein structure as it is after the ligand-induced conformational
changes. A prediction method can then use the information encoded in the
conformational change in the Holo structure to predict a binding site that
it would not be able to predict on the Apo structure. The consequence is
that the reported results of success rates of binding site prediction methods
can be overly optimistic and may not represent expected results when we
apply them to Apo structures (which is almost always what we are looking
for when running binding site prediction).

Many other bioinformatics tasks also require access to several conform-
ations (preferably Apo and Holo) and can benefit from the existence of a
flexible Apo-Holo search tool. These include observing the effects of ligand
binding [BS08], exploring the specificity of a binding site [MSWN02], un-
veiling cryptic binding sites [CWR∗16] and assessing the importance and
consistency of water molecules [WDP∗18].

4.3 Existing resources

Some resources to address the need of Apo-Holo protein pairing have
been built previously. These can be divided into pre-calculated datasets
or databases [LSG∗10, CYF∗12, DLOW07], and one search tool [MTNS11].
However, all the available resources seem to be either not actively updated
or are not available at all at the time of writing.
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FIGURE 4.1: Flowchart depicting the workflow in AHoJ

4.4 Our solution

We have developed AHoJ, a command line tool and a web application that
enables the user to conduct easy, fast and parameterizable searches for
Apo-Holo structural pairs in the PDB against a query structure [FKHN22].
The user is allowed to specify one or more ligands or binding sites of interest
as a part of a query, or can let the application detect the ligands instead.
The query structure itself can be Holo or Apo and the result consists of
two lists of found structures: those that are Apo with respect to specified
binding sites and those that are Holo. All structures are furthermore aligned
to the query structure and various metrics for each structure are calculated
(including a sequence overlap with the query, RMSD and TM-score). The
search process is illustrated in Figure 4.1.

Both the command line tool and the web application can process multiple
queries in one run and thus allow to easily create custom Apo-Holo datasets
or allow researchers to work in a batch mode without any further program-
ming. The web application allows downloading the results of individual
queries or the results of all the queries in a job together. The command
line tool produces PyMol visualization and the web application additionally
contains an integrated Mol* [SBD∗21] visualization of the results (see Fig-
ure 4.2). Both applications are freely available and the command line tool
is open-sourced.
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FIGURE 4.2: AHoJ web application: screenshot of a page that displays the result
of a single search query.
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Chapter 5

Conclusion

The main focus of my Ph.D. study was the application of machine learning
to the problem of ligand binding site prediction from protein structure and
related problems.

I have developed or contributed to the development of several novel
methods which include the pocket re-scoring method PRANK, a stand-
alone ligand binding site prediction method P2Rank (together with its
extended web interface PrankWeb) and the peptide binding prediction
method P2Rank-Pept.

The emphasis was always put also on producing pragmatically usable
and user-friendly tools, not just on the publication of the methods. This
seems to have been a largely successful approach which can be seen in
the adoption data. To this date, a binary distribution of P2Rank has been
downloaded more than 6500 times while PrankWeb is currently being used
by more than 1300 unique users a month.

Furthermore, I have helped to develop AHoJ, a flexible tool for the search
and alignment of Apo-Holo protein pairs in the PDB. The main motivation
behind it was the need to create Apo-Holo datasets for better evaluation of
binding site prediction methods. The existence of this tool will hopefully
contribute to binding site prediction methods being again more commonly
evaluated on Apo-Holo datasets.
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Improving protein-ligand binding
site prediction accuracy by
classification of inner pocket
points using local features

Reference

KRIVÁK R., HOKSZA D.: Improving protein-ligand binding site predic-
tion accuracy by classification of inner pocket points using local fea-
tures. Journal of Cheminformatics 7, 1 (Apr 2015), 12. doi:10.1186/
s13321-015-0059-5

Author’s highlights

We have developed PRANK, a machine learning based method that allows
to re-score (re-rank) ligand binding sites predicted produced by other meth-
ods. Since it helps true binding sites to be ranked higher, it improves the
applicability and usefulness of their predictions. PRANK was made available
as a free command line tool with source code available upon request.

Note: in this paper we have used the term Connolly surface referring to
the surface which would be more precisely described as solvent accessible
surface.
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P2RANK: Knowledge-Based
Ligand Binding Site Prediction
Using Aggregated Local Features

Reference

KRIVÁK R., HOKSZA D.: P2RANK: Knowledge-Based Ligand Binding Site
Prediction Using Aggregated Local Features. In International Conference
on Algorithms for Computational Biology (2015), Springer, pp. 41–52. doi:
10.1007/978-3-319-21233-3_4

Author’s highlights

Building on PRANK method we have deceloped P2Rank: a method for
prediction of ligand binding sites. This conference article contains the
cleanest exposition of P2Rank algorithm itself.

Note: in this paper we have used the term Connolly surface referring to
the surface which would be more precisely described as solvent accessible
surface.
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P2Rank: machine learning based
tool for rapid and accurate
prediction of ligand binding sites
from protein structure

Reference

KRIVÁK R., HOKSZA D.: P2Rank: machine learning based tool for
rapid and accurate prediction of ligand binding sites from protein
structure. Journal of cheminformatics 10, 1 (2018), 39. doi:10.1186/
s13321-018-0285-8

Author’s highlights

An expanded version of the previous conference contribution that introduced
P2Rank as a freely available open-source tool. P2Rank was extensively tested
against 5 other state-of-the-art methods. Notable is a longer introduction
discussing the state of the field of LBS prediction methods.

The supplementary material contains a discussion about which ligands
are considered biologically relevant. Furthermore, there is a detailed pair-
wise comparison with every other method from our evaluation.
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Improving quality of
ligand-binding site prediction
with Bayesian optimization

Reference

KRIVÁK R., HOKSZA D., ŠKODA P.: Improving quality of ligand-binding
site prediction with Bayesian optimization. In 2017 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM) (2017), pp. 2278–2279.
doi:10.1109/BIBM.2017.8218024

Author’s highlights

Extended conference abstract summarising several updates to the algorithm.
Most notable of them is the implementation of a framework for using
Bayesian optimization to optimize several arbitrary parameters of the al-
gorithm at the same time.
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Peptide-Binding Site Prediction
From Protein Structure via Points
on the Solvent Accessible Surface

Reference

KRIVÁK R., JENDELE L., HOKSZA D.: Peptide-Binding Site Prediction
From Protein Structure via Points on the Solvent Accessible Surface.
In Proceedings of the 2018 ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics (New York, NY, USA, 2018),
BCB ’18, Association for Computing Machinery, p. 645–650. doi:10.1145/
3233547.3233708

Author’s highlights

P2Rank was modified for the prediction of peptide binding Sites. Apart from
working with different datasets the method had to be redesigned to include
a residue-centric prediction mode. To achieve performance better than
other existing methods several new descriptors were introduced, including
geometrical descriptors and sequence conservation score.
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PrankWeb: a web server for
ligand binding site prediction and
visualization

Reference

JENDELE L., KRIVAK R., SKODA P., NOVOTNY M., HOKSZA D.: PrankWeb: a
web server for ligand binding site prediction and visualization. Nucleic
Acids Res. 47, W1 (Jul 2019), W345–W349. doi:10.1093/nar/gkz424

Author’s highlights

We have developed easy to use web interface for P2Rank with web based
visualization, the ability to download the results and documented REST
API. A custom pipeline for calculating sequence conservation scores was
developed as part of the project and a new default model for P2Rank
was trained (the one using sequence conservation among features). The
performance of the model using conservation was compared to the model
without conservation with the result that conservation contributes to a
slightly better prediction success rate and results in producing a lower
number of more relevant pockets. At the same time P2Rank introduced Java
API which allowed it to be used as a library by programs running on JVM.
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PrankWeb 3: accelerated
ligand-binding site predictions for
experimental and modelled
protein structures

Reference

JAKUBEC D., SKODA P., KRIVAK R., NOVOTNY M., HOKSZA D.: PrankWeb
3: accelerated ligand-binding site predictions for experimental and
modelled protein structures. Nucleic Acids Research 50, W1 (05 2022),
W593–W597. doi:10.1093/nar/gkac389

Author’s highlights

Complete rewrite of PrankWeb as a modern modular Python web application.
The conservation pipeline was completely redesigned. The new version is
more efficient and consistent with regard to the required time for calculation
for any single sequence. Four new prediction models were trained.
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PDBe-KB: a community-driven
resource for structural and
functional annotations

Reference

CONSORTIUM P.-K.: PDBe-KB: a community-driven resource for structural
and functional annotations. Nucleic Acids Research 48, D1 (10 2019),
D344–D353. doi:10.1093/nar/gkz853

Abstract

The Protein Data Bank in Europe-Knowledge Base (PDBe-KB, https://
pdbe-kb.org) is a community-driven, collaborative resource for literature-
derived, manually curated and computationally predicted structural and
functional annotations of macromolecular structure data, contained in the
Protein Data Bank (PDB). The goal of PDBe-KB is two-fold: (i) to increase
the visibility and reduce the fragmentation of annotations contributed by
specialist data resources, and to make these data more findable, access-
ible, interoperable and reusable (FAIR) and (ii) to place macromolecular
structure data in their biological context, thus facilitating their use by the
broader scientific community in fundamental and applied research. Here,
we describe the guidelines of this collaborative effort, the current status
of contributed data, and the PDBe-KB infrastructure, which includes the
data exchange format, the deposition system for added value annotations,
the distributable database containing the assembled data, and program-
matic access endpoints. We also describe a series of novel web-pages—the
PDBe-KB aggregated views of structure data—which combine information
on macromolecular structures from many PDB entries. We have recently
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AND FUNCTIONAL ANNOTATIONS

released the first set of pages in this series, which provide an overview of
available structural and functional information for a protein of interest,
referenced by a UniProtKB accession.
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PDBe-KB: collaboratively defining
the biological context of
structural data

Reference

CONSORTIUM P.-K.: PDBe-KB: collaboratively defining the biological
context of structural data. Nucleic Acids Research 50, D1 (11 2021), D534–
D542. doi:10.1093/nar/gkab988

Abstract

The Protein Data Bank in Europe – Knowledge Base (PDBe-KB, https:
//pdbe-kb.org) is an open collaboration between world-leading specialist
data resources contributing functional and biophysical annotations derived
from or relevant to the Protein Data Bank (PDB). The goal of PDBe-KB
is to place macromolecular structure data in their biological context by
developing standardised data exchange formats and integrating functional
annotations from the contributing partner resources into a knowledge graph
that can provide valuable biological insights. Since we described PDBe-KB in
2019, there have been significant improvements in the variety of available
annotation data sets and user functionality. Here, we provide an overview of
the consortium, highlighting the addition of annotations such as predicted
covalent binders, phosphorylation sites, effects of mutations on the protein
structure and energetic local frustration. In addition, we describe a library
of reusable web-based visualisation components and introduce new features
such as a bulk download data service and a novel superposition service that
generates clusters of superposed protein chains weekly for the whole PDB
archive.
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AHoJ: rapid, tailored search and
retrieval of apo and holo protein
structures for user-defined ligands

Reference

FEIDAKIS C. P., KRIVAK R., HOKSZA D., NOVOTNY M.: AHoJ: rapid,
tailored search and retrieval of apo and holo protein structures for
user-defined ligands. Bioinformatics 38, 24 (10 2022), 5452–5453. doi:
10.1093/bioinformatics/btac701

Author’s highlights

We have developed AHoJ, a highly-configurable tool for the search and
alignment of Apo-Holo protein pairs in the PDB. AHoJ is available as an
open-source command line program and a web application that allows
running searches for multiple queries at the same time (and thus produce
Apo-Holo datasets) and includes integrated web-based visualization.

42

http://dx.doi.org/10.1093/bioinformatics/btac701
http://dx.doi.org/10.1093/bioinformatics/btac701


Bibliography

[BCdF09] BROCHU E., CORA V. M., DE FREITAS N.: A Tutorial on
Bayesian Optimization of Expensive Cost Functions, with
Application to Active User Modeling and Hierarchical Rein-
forcement Learning. CoRR abs/1012.2599 (2009).

[BS08] BRYLINSKI M., SKOLNICK J.: What is the relationship between
the global structures of apo and holo proteins? Proteins:
Structure, Function, and Bioinformatics 70, 2 (2008), 363–
377. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/prot.21510, arXiv:https://onlinelibrary.wiley.
com/doi/pdf/10.1002/prot.21510, doi:https://doi.org/
10.1002/prot.21510.

[BS17] BROOMHEAD N. K., SOLIMAN M. E.: Can We Rely on Compu-
tational Predictions To Correctly Identify Ligand Binding
Sites on Novel Protein Drug Targets? Assessment of Bind-
ing Site Prediction Methods and a Protocol for Validation
of Predicted Binding Sites. Cell Biochemistry and Biophysics
75, 1 (Mar 2017), 15–23. URL: https://doi.org/10.1007/
s12013-016-0769-y, doi:10.1007/s12013-016-0769-y.

[BSSC18] BHAGAVAT R., SANKAR S., SRINIVASAN N., CHANDRA N.: An
Augmented Pocketome: Detection and Analysis of Small-
Molecule Binding Pockets in Proteins of Known 3D Struc-
ture. Structure 26, 3 (2018), 499 – 512.e2. doi:https:
//doi.org/10.1016/j.str.2018.02.001.

[CHG14] CHEN P., HUANG J. Z., GAO X.: LigandRFs: random forest
ensemble to identify ligand-binding residues from sequence
information alone. BMC bioinformatics 15 Suppl 15 (Jan
2014), S4. doi:10.1186/1471-2105-15-S15-S4.

43

https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.21510
https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.21510
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.21510
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.21510
http://dx.doi.org/https://doi.org/10.1002/prot.21510
http://dx.doi.org/https://doi.org/10.1002/prot.21510
https://doi.org/10.1007/s12013-016-0769-y
https://doi.org/10.1007/s12013-016-0769-y
http://dx.doi.org/10.1007/s12013-016-0769-y
http://dx.doi.org/https://doi.org/10.1016/j.str.2018.02.001
http://dx.doi.org/https://doi.org/10.1016/j.str.2018.02.001
http://dx.doi.org/10.1186/1471-2105-15-S15-S4


BIBLIOGRAPHY

[CLT∗09] CAPRA J. A., LASKOWSKI R. A., THORNTON J. M., SINGH M.,
FUNKHOUSER T. A.: Predicting Protein Ligand Binding Sites
by Combining Evolutionary Sequence Conservation and 3D
Structure. PLoS Comput Biol 5, 12 (12 2009), e1000585.

[CMGK11] CHEN K., MIZIANTY M., GAO J., KURGAN L.: A critical
comparative assessment of predictions of protein-binding
sites for biologically relevant organic compounds. Struc-
ture (London, England : 1993) 19, 5 (2011), 613–621.
URL: http://dx.doi.org/10.1016/j.str.2011.02.015, doi:
10.1016/j.str.2011.02.015.

[con19] CONSORTIUM P.-K.: PDBe-KB: a community-driven resource
for structural and functional annotations. Nucleic Acids
Research 48, D1 (10 2019), D344–D353. doi:10.1093/nar/
gkz853.

[con21] CONSORTIUM P.-K.: PDBe-KB: collaboratively defining the
biological context of structural data. Nucleic Acids Research
50, D1 (11 2021), D534–D542. doi:10.1093/nar/gkab988.

[CWR∗16] CIMERMANCIC P., WEINKAM P., RETTENMAIER T. J., BICHMANN

L., KEEDY D. A., WOLDEYES R. A., SCHNEIDMAN-DUHOVNY

D., DEMERDASH O. N., MITCHELL J. C., WELLS J. A., ET AL.:
CryptoSite: expanding the druggable proteome by charac-
terization and prediction of cryptic binding sites. Journal of
molecular biology 428, 4 (2016), 709–719.

[CYF∗12] CHANG D. T.-H., YAO T.-J., FAN C.-Y., CHIANG C.-Y., BAI

Y.-H.: AH-DB: collecting protein structure pairs before and
after binding. Nucleic acids research 40, D1 (2012), D472–
D478.

[DLOW07] DESSAILLY B. H., LENSINK M. F., ORENGO C. A., WODAK S. J.:
LigASite—a database of biologically relevant binding sites
in proteins with known apo-structures. Nucleic acids research
36, suppl_1 (2007), D667–D673.

[DWH15] DEGAC J., WINTER U., HELMS V.: Graph-Based Cluster-
ing of Predicted Ligand-Binding Pockets on Protein Sur-
faces. Journal of Chemical Information and Modeling 55, 9
(2015), 1944–1952. PMID: 26325445. doi:10.1021/acs.
jcim.5b00045.

44

http://dx.doi.org/10.1016/j.str.2011.02.015
http://dx.doi.org/10.1016/j.str.2011.02.015
http://dx.doi.org/10.1016/j.str.2011.02.015
http://dx.doi.org/10.1093/nar/gkz853
http://dx.doi.org/10.1093/nar/gkz853
http://dx.doi.org/10.1093/nar/gkab988
http://dx.doi.org/10.1021/acs.jcim.5b00045
http://dx.doi.org/10.1021/acs.jcim.5b00045


BIBLIOGRAPHY

[FB15] FEINSTEIN W. P., BRYLINSKI M.: Calculating an op-
timal box size for ligand docking and virtual screen-
ing against experimental and predicted binding pock-
ets. Journal of Cheminformatics 7, 1 (2015), 1–10.
URL: http://dx.doi.org/10.1186/s13321-015-0067-5, doi:
10.1186/s13321-015-0067-5.

[FKHN22] FEIDAKIS C. P., KRIVAK R., HOKSZA D., NOVOTNY M.: AHoJ:
rapid, tailored search and retrieval of apo and holo protein
structures for user-defined ligands. Bioinformatics 38, 24 (10
2022), 5452–5453. doi:10.1093/bioinformatics/btac701.

[FRH11] FAUMAN E. B., RAI B. K., HUANG E. S.: Structure-based
druggability assessment—identifying suitable targets for
small molecule therapeutics. Current Opinion in Chemical
Biology 15, 4 (2011), 463 – 468. Next Generation Therapeutics.
doi:https://doi.org/10.1016/j.cbpa.2011.05.020.

[GS09] GHERSI D., SANCHEZ R.: EasyMIFS and SiteHound: a toolkit
for the identification of ligand-binding sites in protein struc-
tures. Bioinformatics (Oxford, England) 25, 23 (2009), 3185–
3186. URL: http://dx.doi.org/10.1093/bioinformatics/
btp562, doi:10.1093/bioinformatics/btp562.

[HBG∗15] HUSSEIN H., BORREL A., GENEIX C., PETITJEAN M., REGAD

L., CAMPROUX A.: PockDrug-Server: a new web server for
predicting pocket druggability on holo and apo proteins.
W436–W442. doi:10.1093/nar/gkv462.

[HLH∗13] HUANG W., LU S., HUANG Z., LIU X., MOU L., LUO Y., ZHAO

Y., LIU Y., CHEN Z., HOU T., ZHANG J.: Allosite: a method
for predicting allosteric sites. Bioinformatics 29, 18 (2013),
2357–2359. doi:10.1093/bioinformatics/btt399.

[HOH∗10] HENRICH S., OUTI S., HUANG B., RIPPMANN F., CRUCIANI

G., WADE R.: Computational approaches to identify-
ing and characterizing protein binding sites for ligand
design. Journal of molecular recognition : JMR 23, 2 (2010),
209–219. URL: http://dx.doi.org/10.1002/jmr.984, doi:
10.1002/jmr.984.

[JDMR∗17] JIMÉNEZ J., DOERR S., MARTÍNEZ-ROSELL G., ROSE A. S.,
DE FABRITIIS G.: DeepSite: protein-binding site predictor

45

http://dx.doi.org/10.1186/s13321-015-0067-5
http://dx.doi.org/10.1186/s13321-015-0067-5
http://dx.doi.org/10.1186/s13321-015-0067-5
http://dx.doi.org/10.1093/bioinformatics/btac701
http://dx.doi.org/https://doi.org/10.1016/j.cbpa.2011.05.020
http://dx.doi.org/10.1093/bioinformatics/btp562
http://dx.doi.org/10.1093/bioinformatics/btp562
http://dx.doi.org/10.1093/bioinformatics/btp562
http://dx.doi.org/10.1093/nar/gkv462
http://dx.doi.org/10.1093/bioinformatics/btt399
http://dx.doi.org/10.1002/jmr.984
http://dx.doi.org/10.1002/jmr.984
http://dx.doi.org/10.1002/jmr.984


BIBLIOGRAPHY

using 3D-convolutional neural networks. Bioinformatics
33, 19 (2017), 3036–3042. doi:10.1093/bioinformatics/
btx350.

[JG17] JIMÉNEZ J., GINEBRA J.: pyGPGO: Bayesian Optimization
for Python. Journal of Open Source Software 2, 19 (2017),
431. URL: https://doi.org/10.21105/joss.00431, doi:10.
21105/joss.00431.

[JKS∗19] JENDELE L., KRIVAK R., SKODA P., NOVOTNY M., HOKSZA D.:
PrankWeb: a web server for ligand binding site prediction
and visualization. Nucleic Acids Res. 47, W1 (Jul 2019), W345–
W349. doi:10.1093/nar/gkz424.

[JSK∗22] JAKUBEC D., SKODA P., KRIVAK R., NOVOTNY M., HOKSZA D.:
PrankWeb 3: accelerated ligand-binding site predictions
for experimental and modelled protein structures. Nucleic
Acids Research 50, W1 (05 2022), W593–W597. doi:10.1093/
nar/gkac389.

[KH15a] KRIVÁK R., HOKSZA D.: Improving protein-ligand binding
site prediction accuracy by classification of inner pocket
points using local features. Journal of Cheminformatics 7, 1
(Apr 2015), 12. doi:10.1186/s13321-015-0059-5.

[KH15b] KRIVÁK R., HOKSZA D.: P2RANK: Knowledge-Based Lig-
and Binding Site Prediction Using Aggregated Local Fea-
tures. In International Conference on Algorithms for Compu-
tational Biology (2015), Springer, pp. 41–52. doi:10.1007/
978-3-319-21233-3_4.

[KH18] KRIVÁK R., HOKSZA D.: P2Rank: machine learning based
tool for rapid and accurate prediction of ligand binding
sites from protein structure. Journal of cheminformatics 10, 1
(2018), 39. doi:10.1186/s13321-018-0285-8.

[KH7] KRIVÁK R., HOKSZA D., ŠKODA P.: Improving quality of
ligand-binding site prediction with Bayesian optimization.
In 2017 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM) (2017), pp. 2278–2279. doi:10.1109/
BIBM.2017.8218024.
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3.2 PRANK: Visualization of inner pocket points. (a) Dis-
played is the protein 1AZM bound to one ligand (magenta).
Fpocket predicted 13 pockets that are depicted as colored
areas on the protein surface. To rank these pockets, the pro-
tein was first covered with evenly spaced points on a solvent
accessible surface (probe radius 1.6 Å) and only the points
adjacent to one of the pockets were retained. The colour
of the points reflects their ligandability (green = 0...red =
0.7) predicted by Random Forest classifier. PRANK algorithm
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