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Prologue
Similar to my Ph.D., which was divided into two parts – one conducted in

Prague under the supervision of Stanislav Hencl, and the second in Jyväskylä
under the supervision of Pekka Koskela – this thesis will also consist of two
parts. These parts share common themes, with the most prominent being
the examination of mappings from R𝑛 to R𝑛 belonging to some Sobolev
space 𝑊 1,𝑝. In both cases, the mappings are expected to be either bijective
or, at the very least, “almost bijective”.

The first part focuses on weak limits of homeomorphisms, driven by
a clear variational motivation to minimize an energy functional. Conse-
quently, we explore the properties of weak limits in this context. In the
second part, which delves into Hardy spaces, the variational motivation is
less apparent but still present in a more concealed manner. Harmonic maps
are closely related to minimization problems, and in this section, we inves-
tigate conformal and quasiconformal maps.
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1 The injectivity almost everywhere

1.1 Introduction
In the first part of this thesis, our focus lies on studying mappings that

can represent deformations within models of nonlinear elasticity. We are
particularly interested in the property of injectivity, which prohibits matter
from interpenetrating. Therefore, an intuitive candidate would be the class
of homeomorphisms. Indeed, under certain conditions, such as assuming
that the mapping 𝑓 : Ω → R𝑛 for Ω ⊆ R𝑛 has finite energy (where energy is
defined by the functional

∫︀
Ω 𝑊 (𝐷𝑓 ), inclusive of special terms like 𝐷𝑓 , adj 𝐷𝑓

or 𝐽𝑓 ), and reasonable boundary data, the mapping 𝑓 is a homeomorphism.
For further insights into these types of results, refer to e.g. [12, 13, 18, 26].

For a broader notion of injectivity, refer to Ball’s paper [2]. However, his
approach presumes that the mapping is continuous everywhere. Interest-
ingly, under certain circumstances, such as when stretching an object made
of a rubber-like material, cavitations, or small internal cavities, may form.
As a result, we seek models that accommodate these discontinuities.

Even though we allow for cavitations, we still strive for injectivity in
some manner. One such approach was proposed by Ciarlet and Nečas.
They explored mappings that satisfy 𝑓 ∈ 𝑊 1,𝑝(Ω) for 𝑝 > 𝑛, 𝐽𝑓 > 0 almost
everywhere, and ∫︁

Ω
𝐽𝑓 ≤ |𝑓 (Ω)|.

This last property is nowadays known as the Ciarlet-Nečas condition. They
demonstrated that such mappings are almost everywhere injective in the
image (see below for the definition). The condition 𝐽𝑓 > 0 is commonplace
in nonlinear elasticity models. In the case of real deformations, it wouldn’t
make sense for the 𝐽𝑓 to be negative since we do not alter the orientation,
and if 𝐽𝑓 tends toward 0 (indicating a substantial material compression), then
the energy would rise towards infinity. For additional results following this
approach, consult e.g. [3, 4, 5, 6, 8, 19, 27].

The deformations we examine are generally derived as minimizers of
certain energy functionals. A relevant class to investigate is the class of
weak limits of homeomorphisms, specifically weak limits of homeomor-
phisms within the Sobolev space 𝑊 1,𝑝. This class can be extended to in-
clude mappings that satisfy the (INV) condition, which essentially stipulates
that the interior of a sphere is mapped to the interior of the sphere’s im-
age (while the exterior is mapped to the exterior). This holds trivially for
homeomorphisms, and the (INV) condition remains intact under weak lim-
its. Müller and Spector explored this class in [20]. They demonstrated that
if the mapping 𝑓 satisfies the (INV) condition and 𝐽𝑓 > 0 almost everywhere,
the mapping is injective almost everywhere within the domain. For this,
they utilize a topological degree, which requires at least the continuity of the
mapping on spheres. Therefore, this approach is valid only for 𝑝 > 𝑛 − 1.
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1.2 Our results
We showed that for 𝑝 ≤ 𝑛 − 1 the injectivity almost everywhere can fail,

and it can fail even for a strong limit of Sobolev homeomorphisms.
We can consider injectivity almost everywhere in two ways: it could

either denote injectivity almost everywhere in the image or in the domain.
For the former, the definition is apparent:
Definition 1.1.
Let 𝑓 : Ω → R𝑛 be a mapping. We say that 𝑓 is injective almost everywhere
in the image if there exists a set 𝑁 ⊆ 𝑓 (Ω) with |𝑁| = 0 such that 𝑓−1(𝑦) is
a singleton for every 𝑦 ∈ 𝑓 (Ω)∖ 𝑁 .

In this case, we proved the following theorem:
Theorem 1.2.
For every 𝑛 ≥ 3, there exists a continuous mapping 𝑓 : [−1, 1]𝑛 → [−1, 1]𝑛
with 𝐽𝑓 > 0 a.e., which is a strong limit of Sobolev homeomorphisms 𝑓𝑘 in
the space 𝑊 1,𝑛−1(︀[−1, 1]𝑛,R𝑛)︀

with 𝑓𝑘(𝑥) = 𝑥 for 𝑥 ∈ 𝜕 [−1, 1]𝑛 and there is
𝐶𝐴 ⊆ [−1, 1]𝑛 with |𝐶𝐴| > 0 such that

𝑓−1(𝑦) is a continuum for every 𝑦 ∈ 𝐶𝐴.

The other possibility is injectivity a.e. in the domain. Here, the definition
and statement of the counter-example are somewhat more complicated, so
we refer readers to the paper for further details and definitions.
Theorem 1.3.
For every 𝑛 ≥ 3 there is ̃︀𝑓 : [−1, 1]𝑛 → [−1, 1]𝑛 with 𝐽̃︀𝑓 > 0 a.e. which is
a strong limit of Sobolev homeomorphisms ̃︀𝑓𝑘 ∈ 𝑊 1,𝑛−1([−1, 1]𝑛,R𝑛) with
̃︀𝑓𝑘(𝑥) = 𝑥 for 𝑥 ∈ 𝜕[−1, 1]𝑛. The quasicontinuous representative of ̃︀𝑓 is one-
to-one on [−1, 1]𝑛 (but ̃︀𝑓 ([−1, 1]𝑛) ⊊ [−1, 1]𝑛). There is a continuous map-
ping 𝑤 : [−1, 1]𝑛 → R𝑛 which is a generalized inverse to ̃︀𝑓 , i.e. 𝑤(̃︀𝑓 (𝑥)) = 𝑥
for every 𝑥 ∈ [−1, 1]𝑛 such that there is 𝐶𝐴 ⊆ [−1, 1]𝑛 with |𝐶𝐴| > 0
and 𝑤−1(𝑥) is a continuum for every 𝑥 ∈ 𝐶𝐴.

The counter-examples in both instances stem from similar construction.
To provide a general understanding, we have included here several illus-
trative images, for full details please refer to the paper. The final mapping
will be composed of several auxiliary mappings. Moving backward, we start
with a set with positive measure, a Cantor-type set:
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We want a disjoint family of continua, one for each of the points of this set.
For that, we need more space around those points, so (in a bi-Lipschitz way)
we make our squares (cubes) smaller and rearrange them from a grid-like
structure into a tower formation:

Subsequently, we construct telescopic “tentacles” for each of these squares
(or cubes):

These tentacles need to be long, so we need to introduce a map that aids in
their elongation:

The final mapping integrates all these constituent parts. We begin with
the elongated tentacles, contract them, relocate them from the tower struc-
ture back into the grid, and, ultimately, expand the squares (cubes):
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If 𝑝 > 𝑛 − 1, the injectivity a.e. holds. For the case of injectivity a.e. in
the image, we have
Theorem 1.4.
Let Ω ⊆ R𝑛 be open and let 𝑓 : Ω → R𝑛 be a weak limit of Sobolev
homeomorphisms 𝑓𝑘 ∈ 𝑊 1,𝑝(Ω,R𝑛), 𝑝 > 𝑛 − 1 for 𝑛 > 2 or 𝑝 ≥ 1 for 𝑛 = 2.
Then there is a precise representative 𝑓 and a set 𝑁1 ⊆ R𝑛 of Hausdorff
dimension 𝑛 − 1 such that the preimage 𝑓−1(𝑦) consists of only one point
for every 𝑦 ∈ 𝑓 (Ω)∖ 𝑁1.

While Müller and Spector in [20] already discovered this result under
the additional assumption that 𝐽𝑓 > 0, their approach could be applied even
without this assumption after some technical refinement.

For the case of injectivity a.e. in the domain, we need to use the topo-
logical image 𝑓𝑇 , which is a set function. For instance, if a cavitation exists,
then the topological image of the point from which it sprouted will cover
the entire cavity.
Theorem 1.5.
Let Ω ⊆ R𝑛 be open and let 𝑓 : Ω → R𝑛 be a weak limit of Sobolev home-
omorphisms 𝑓𝑘 ∈ 𝑊 1,𝑝(Ω,R𝑛), 𝑝 > 𝑛 − 1 for 𝑛 > 2 or 𝑝 ≥ 1 for 𝑛 = 2.
Then there is a set 𝑁2 ⊆ R𝑛 of Hausdorff dimension 𝑛 − 𝑝 such that the
image 𝑓𝑇(𝑥) consists of only one point for every 𝑥 ∈ Ω∖𝑁2. If we moreover
assume that 𝐽𝑓 > 0 a.e then there is a set 𝑁3 of zero measure such that
𝑓 |Ω∖𝑁3 is one-to-one.

In the second part of this theorem, the assumption that 𝐽𝑓 > 0 a.e. is
unavoidable because of locally constant mappings. As before, this result
essentially follows from previously known results [5, 20, 21].
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2 A mapping in the Hardy space
In this section, our attention is drawn towards the plane. Specifically, we

are considering Ω, a simply connected domain that is a subset of R2, which
we identify with the complex plane C. We delve into the boundary behavior
of quasiconformal mappings from the unit disk, denoted as D, onto Ω. Our
particular interest lies within the Hardy space 𝐻𝑝(D, Ω).

2.1 Definition
Hardy spaces were first named by Frigyes Riesz in 1923 in [25], named

in honor of G. H. Hardy due to his pioneering work in 1915, [11]. In his
paper, Hardy studied the growth of conformal mapping of the unit disk as
its boundary was approached. The original definition (using the formula (1))
was for conformal maps, but the same works for quasiconformal mappings
as well. Recall that a homeomorphism 𝑓 : D → Ω is quasiconformal if
𝑓 ∈ 𝑊 1,2

𝑙𝑜𝑐(D,C) and if there is a constant 𝐾 such that |𝐷𝑓 (𝑧)|2 ≤ 𝐾 · 𝐽𝑓 (𝑧)
holds for almost every 𝑧 ∈ D. As conformal mappings map “small circles to
circles”, the quasiconformal mappings map “small circles to elipses”, where
the ratio of the semiaxes is bounded by 𝐾.
Definition 2.1.
Let D be the unit disk and 0 < 𝑝 < ∞. The Hardy space 𝐻(D, Ω) is the space
of all quasiconformal mappings 𝑓 : D → Ω such that

sup
0≤𝑟<1

(︂∫︁ 2𝜋

0

⃒⃒
𝑓

(︀
𝑟 · 𝑒𝑖𝜙)︀⃒⃒𝑝 d𝜙

)︂ 1
𝑝

< ∞. (1)

From (1) we can immediately see that the Hölder inequality implies that
𝐻𝑝 ⊆ 𝐻𝑞 for 𝑞 ≤ 𝑝.

To see how this connects to the boundary behavior of the mapping, it
is useful to consider an equivalent definition. For this, we must first define
what we mean by boundary values for a quasiconformal mapping, given it
is only defined at the interior of the disk.
Definition 2.2.
The theorem [24, Theorem 1.7.] allows us to define for each conformal
𝑔 : D → Ω and for almost every 𝜔 in 𝑆1

𝑔(𝜔) := lim
𝑟→1−

𝑔(𝑟𝜔).

According to [17, Theorem 2.], this limit also exists for almost every 𝜔 ∈ 𝑆1

when 𝑔 is quasiconformal, thereby permitting us to use the same definition.

Utilizing the aforementioned definition, we invoke the following theorem
obtained by Zinsmeister [28], which provides an equivalent definition for
Hardy spaces:
Theorem 2.3. (Zinsmeister)
Let 𝑓 be a quasiconformal mapping of D and let 0 < 𝑝 < ∞. Then 𝑓 ∈ 𝐻𝑝

if and only if 𝑓 (𝜔) ∈ 𝐿𝑝(𝑆1), where 𝑆1 = 𝜕D is the unit circle in C.
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2.2 Questions

Let Ω be a non-empty simply connected domain. Our interest is in the
following questions:

Is there a quasiconformal mapping 𝑓 : D → Ω that is
in the Hardy space 𝐻𝑝 for a given 𝑝 > 0?

Is there a quasiconformal mapping 𝑓 : D → Ω that is
not in the Hardy space 𝐻𝑝 for a given 𝑝 > 0?

(2)

It is natural to start with the Riemann mapping theorem, which provides
us with a conformal mapping ℎ : D → Ω. Due to the Prawitz theorem, the
mapping ℎ is in the Hardy space 𝐻𝑝 for every 𝑝 < 1

2 . This conclusion is
sharp, as illustrated by the Koebe map 𝑓 (𝑧) = 𝑧

(1−𝑧)2 , which does not belong
to the Hardy space 𝐻 1

2 .
In a similar vein, any 𝐾-quasiconformal mapping 𝑓 is in the Hardy space

𝐻𝑝 for every 𝑝 < 1
2𝐾 , as shown in [1]. This is also a sharp result.

The answers to questions (2) in the context of conformal mappings are
known. In 1970 in [9], Hansen introduced the concept of the Hardy number
of the set Ω:
Definition 2.4.
Let Ω ⊆ C. Let ℎ be a conformal mapping from D onto Ω. The Hardy
number of the set Ω is defined as

𝐻Ω := sup{𝑝 ∈ (0, ∞) : ℎ : D → Ω is in 𝐻𝑝}.

For simply connected domain ∅ ⊊ Ω ⊊ C, this definition does not depend
on the choice of ℎ. Hence, for every 𝑝 < 𝐻Ω, every conformal mapping
𝑓 : D → Ω is in the space 𝐻𝑝(D, Ω), and for 𝑝 > 𝐻Ω there is no conformal
mapping from D onto Ω that belongs to the Hardy space 𝐻𝑝(D, Ω). The
connection between the Hardy number and the geometry of the set Ω has
been explored in multiple studies, e.g. in [7, 9, 10, 14, 15, 22, 23].

2.3 Answers
The answers to questions (2) are given by the following theorems.

Theorem 2.5.
Let Ω ⊊ C be a non-empty, simply connected domain. Let 𝑝 ∈ (0, ∞).
Then there is a quasiconformal mapping 𝑓 from D onto Ω, which is in the
Hardy space 𝐻𝑝(D, Ω).

The proof starts with a mapping ℎ provided by the Riemann mapping
theorem. As it is conformal, the Prawitz theorem guarantees it belongs to
the Hardy space 𝐻𝑞 for every 0 < 𝑞 < 1

2 . Therefore ℎ ∈ 𝐿𝑞(𝑆1) (in the sense
of the Definition 2.2). We then create a reparametrization 𝑔 on 𝑆1, such that
the composition ℎ ∘ 𝑔 is in the space 𝐿𝑝(𝑆1). What remains to be shown is
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that this mapping on the circle can be extended inside in a quasiconformal
manner. This extension will belong to the required Hardy space 𝐻𝑝(D, Ω).

To demonstrate this, we must employ intrinsic Hardy spaces. In the case
of conformal mapping, the definition is equivalent to the definition of Hardy
spaces, but it allows us to utilize the intrinsic norm. For more details, refer
to [16]. Through this, we can show that the reparametrization 𝑔 is doubling,
and consequently, we can extend it to a quasiconformal mapping on the
entire disk.

To answer the second question (the existence of a “bad” mapping), we
must exclude cases where the Riemann mapping from D onto Ω is in the
Hardy spaces 𝐻𝑝 for all 0 < 𝑝 < ∞, i.e., cases where 𝐻Ω = ∞. This happens
not only for bounded sets (where the boundary values from Definition 2.2
are obviously in 𝐿∞(𝑆1)), but for example for strips such as R× (0, 1) as well.
Theorem 2.6.
Let Ω ⊊ C be a non-empty, simply connected domain. Then we have the
following dichotomy:

(1) Either 𝑓 ∈ 𝐻𝑝(D, Ω) for all 0 < 𝑝 < ∞ and every quasiconformal
mapping 𝑓 : D → Ω,

(2) or for every 𝑞 > 0 there is a quasiconformal mapping 𝑓 : D → Ω such
that 𝑓 ̸∈ 𝐻𝑞(D, Ω).

The idea behind the proof can be outlined as follows: Assume we have
a quasiconformal mapping 𝑓 , which does not belong to the Hardy space
𝐻𝑝(D, Ω) for a given 𝑝 > 0. That means that 𝑓 grows “quickly” as we ap-
proach the boundary 𝑆1. In fact, there exists a sequence of points 𝑧𝑛 in D
converging towards some point 𝜔 ∈ 𝑆1, such that

|𝑓 (𝑧𝑛)| · |𝜔 − 𝑧𝑛|
1−𝜀

𝑝 ≥ 𝑐.

We then construct a quasiconformal mapping 𝑔 on the disk that moves the
points “further away from the boundary”, i.e.

|𝜔 − 𝑧𝑛|
1−𝜀

𝑝 = |𝑔−1(𝜔) − 𝑔−1(𝑧𝑛)|
1+𝜀

𝑞 .

Therefore
⃒⃒
𝑓 ∘ 𝑔(𝑔−1(𝑧𝑛))

⃒⃒
· |𝑔−1(𝜔) − 𝑔−1(𝑧𝑛)|

1+𝜀
𝑞 = |𝑓 (𝑧𝑛)| · |𝜔 − 𝑧𝑛|

1−𝜀
𝑝 ≥ 𝑐,

which ensures that the growth of 𝑓 ∘ 𝑔 along the points 𝑔−1(𝑧𝑛) (that is
as we approach the boundary) is large and therefore 𝑓 ∘ 𝑔 is not in the
space 𝐻𝑞(D, Ω).
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Injectivity almost everywhere
for weak limits of Sobolev homeomorphisms

Ondřej Bouchala1 Stanislav Hencl1 Anastasia Molchanova2

Abstract

Let Ω ⊂ R𝑛 be an open set and let 𝑓 ∈ 𝑊 1,𝑝(Ω,R𝑛) be a weak (sequen-
tial) limit of Sobolev homeomorphisms. Then 𝑓 is injective almost every-
where for 𝑝 > 𝑛 − 1 both in the image and in the domain. For 𝑝 ≤ 𝑛 − 1
we construct a strong limit of homeomorphisms such that the preimage of
a point is a continuum for every point in a set of positive measure in the
image and the topological image of a point is a continuum for every point
in a set of positive measure in the domain.

1 Introduction
Let Ω ⊂ R𝑛 be an open set and let 𝑓 : Ω → R𝑛 be a mapping. In this paper,
we study classes of mappings 𝑓 that might serve as deformations in Nonlinear
Elasticity models. Following the pioneering papers of Ball [1] and Ciarlet and
Nečas [7] we ask if our mapping is in some sense injective as the physical ‘non-
interpenetration of the matter’ asks a deformation to be one-to-one.

There are several ways how to obtain injectivity or at least injectivity almost
everywhere (a.e.) of the mapping 𝑓 . As in [1] we can ask that our mapping
has finite energy where the energy functional

´

Ω
𝑊 (𝐷𝑓) contains special terms

(like ratio of powers of 𝐷𝑓 , adj𝐷𝑓 and 𝐽𝑓 ) and any mapping with finite energy
and reasonable boundary data is a homeomorphism (the reader is referred to e.g.
[16, 20, 22] and [28] for related results).

The approach motivated by Ball [1] is fine if our mapping is continuous every-
where but in some deformations the cavitation or even fractures may occur. To
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model these phenomena we need conditions which guarantee that our mapping is
injective a.e. but on some small set bad things may happen. Ciarlet and Nečas
[7] studied the class of mappings that satisfies

ˆ

Ω

𝐽𝑓 ≤ |𝑓(Ω)| (1.1)

together with 𝐽𝑓 > 0 a.e. and they showed that mappings of this class are injective
a.e. in the image, see e.g. [2, 3, 4, 5, 12, 27, 31] for further results in this direction or
[21, 23] for numerical treatment. The inequality (1.1) is called the Ciarlet–Nečas
condition nowadays. Note that the constraint 𝐽𝑓 > 0 a.e. is usually assumed
in models of Nonlinear Elasticity as the ‘real deformation’ cannot change its
orientation and the energy density 𝑊 (𝐷𝑓(𝑥)) should tend to ∞ when 𝐽𝑓 (𝑥) → 0,
i.e. when we compress too much.

Another approach can be traced to Müller and Spector [25] where they studied
a class of mappings that satisfy 𝐽𝑓 > 0 a.e. together with the (INV) condition
(see e.g. [4, 8, 17, 26, 29, 30]). They showed that mappings in their class are
one-to-one a.e. (see Section 5 for more information). Informally speaking, the
(INV) condition means that the ball 𝐵(𝑥, 𝑟) is mapped inside the image of the
sphere 𝑓(𝑆(𝑎, 𝑟)) and the complement Ω ∖ 𝐵(𝑥, 𝑟) is mapped outside 𝑓(𝑆(𝑎, 𝑟))
(see Preliminaries for the formal definition).

In all results in the previous paragraph the authors assume that 𝑓 ∈ 𝑊 1,𝑝(Ω)
for some 𝑝 > 𝑛− 1. We show that injectivity a.e. may fail horribly for 𝑝 ≤ 𝑛− 1
even though the mapping 𝑓 is even a strong limit of homeomorphisms. We would
like to stress that it fails even in the limiting case 𝑝 = 𝑛− 1 which is technically
more involved. The class of mappings that we study in our project consists of
weak (sequential) limits of Sobolev homeomorphisms. Homeomorphisms clearly
satisfy the (INV) condition and so their weak limit must as well if 𝑝 > 𝑛 − 1,
since in this case the (INV) condition is closed under weak convergence (see [25,
Lemma 3.3]). Therefore the class of weak limits of Sobolev homeomorphisms is
a suitable class for variational models and one could expect that nice properties
of homeomorphisms (like invertibility) could be carried to their weak limit.

The class of weak limits of Sobolev homeomorphisms was recently character-
ized in the planar case by Iwaniec and Onninen [18, 19] and De Philippis and
Pratelli [9]. Moreover, one can study the orientation of mappings in this class [15]
or even investigate planar BV weak limits and characterize their set of cavities
and fractures [6]. In [24] Molchanova and Vodopyanov studied invertibility a.e. of
a special subclass of weak limits of homeomorphisms. We generalize some of their
results and we show the sharpness of the assumption 𝑝 > 𝑛−1. Our first result is
about the invertibility a.e. in the image. By a continuum we mean the image of
the segment [0, 1] in R𝑛 by a continuous one-to-one mapping. See Preliminaries
for the definition of a precise representative of a Sobolev mapping.

Theorem 1.1. Let Ω ⊂ R𝑛 be open and let 𝑓 : Ω → R𝑛 be a weak limit of
Sobolev homeomorphisms 𝑓𝑘 ∈ 𝑊 1,𝑝(Ω,R𝑛), 𝑝 > 𝑛 − 1 for 𝑛 > 2 or 𝑝 ≥ 1 for
𝑛 = 2. Then there is a precise representative ̂︀𝑓 and a set 𝑁1 ⊂ R𝑛 of Hausdorff
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dimension 𝑛−1 such that the preimage ̂︀𝑓−1(𝑦) consists of only one point for every
𝑦 ∈ ̂︀𝑓(Ω) ∖𝑁1.

On the other hand for every integer 𝑛 ≥ 3 there is a continuous mapping
𝑓 : [−1, 1]𝑛 → [−1, 1]𝑛 with 𝐽𝑓 > 0 a.e. which is a strong limit of Sobolev homeo-
morphisms 𝑓𝑘 ∈ 𝑊 1,𝑛−1([−1, 1]𝑛,R𝑛) with 𝑓𝑘(𝑥) = 𝑥 for 𝑥 ∈ 𝜕[−1, 1]𝑛 such that

there is 𝐶𝐴 ⊂ [−1, 1]𝑛 with |𝐶𝐴| > 0

and 𝑓−1(𝑦) is a continuum for every 𝑦 ∈ 𝐶𝐴.

Let us point out that the positive part of the statement essentially follows
from the known results and techniques ([4, 25, 26]) while the counterexample
is entirely new and it is our main contribution. In the positive direction we
only remove the assumption 𝐽𝑓 > 0 a.e. from [25] to have a mathematically
complete theory. It is interesting that the Hausdorff dimension of the critical set
𝑁1 suddenly jumps from 𝑛 − 1 to 𝑛 as 𝑝 changes from 𝑝 > 𝑛 − 1 to 𝑝 = 𝑛 − 1.
Note that the bound of dimension 𝑛 − 1 for 𝑁1 for 𝑝 > 𝑛 − 1 is sharp as the
mapping [𝑥1, 𝑥2, . . . , 𝑥𝑛] → [0, 𝑥2, . . . , 𝑥𝑛] shows. In [25, Section 11] there is a
counterexample (in case 𝑝 < 𝑛 = 2), which shows that the weak limit of a
sequence of one-to-one a.e. mappings might be two-to-one in a set of positive
measure if (INV) is not satisfied. Our counterexample is entirely different as it is
∞-to-one and it is in some sense ‘monotone’ as a strong limit of homeomorphisms,
which is definitely not the case for a mapping from [25].

Our second result is about the invertibility a.e. in the domain. See Prelimi-
naries for the definition of the topological image 𝑓𝑇 (𝑥).

Theorem 1.2. Let Ω ⊂ R𝑛 be open and let 𝑓 : Ω → R𝑛 be a weak limit of
Sobolev homeomorphisms 𝑓𝑘 ∈ 𝑊 1,𝑝(Ω,R𝑛), 𝑝 > 𝑛 − 1 for 𝑛 > 2 or 𝑝 ≥ 1 for
𝑛 = 2. Then there is a set 𝑁2 ⊂ R𝑛 of Hausdorff dimension 𝑛 − 𝑝 such that
the image 𝑓𝑇 (𝑥) consists of only one point for every 𝑥 ∈ Ω ∖𝑁2. If we moreover
assume that 𝐽𝑓 > 0 a.e then there is a set 𝑁3 of zero measure such that 𝑓 |Ω∖𝑁3 is
one-to-one.

On the other hand for every 𝑛 ≥ 3 there is ̃︀𝑓 : [−1, 1]𝑛 → [−1, 1]𝑛 with 𝐽 ̃︀𝑓 > 0

a.e. which is a strong limit of Sobolev homeomorphisms ̃︀𝑓𝑘 ∈ 𝑊 1,𝑛−1([−1, 1]𝑛,R𝑛)

with ̃︀𝑓𝑘(𝑥) = 𝑥 for 𝑥 ∈ 𝜕[−1, 1]𝑛. The quasicontinuous representative of ̃︀𝑓 is one-
to-one on [−1, 1]𝑛 (but ̃︀𝑓([−1, 1]𝑛) ⊊ [−1, 1]𝑛). There is a continuous mapping
𝑤 : [−1, 1]𝑛 → R𝑛 which is a generalized inverse to ̃︀𝑓 , i.e. 𝑤( ̃︀𝑓(𝑥)) = 𝑥 for every
𝑥 ∈ [−1, 1]𝑛 such that

there is 𝐶𝐴 ⊂ [−1, 1]𝑛 with |𝐶𝐴| > 0

and 𝑤−1(𝑥) is a continuum for every 𝑥 ∈ 𝐶𝐴.

Locally constant mapping shows that the assumption 𝐽𝑓 > 0 a.e. is needed
for the conclusion that 𝑓 |Ω∖𝑁3 is one-to-one. Moreover, there is no bound for the
Hausdorff dimension of 𝑁3 as there is a Lipschitz mapping 𝑓 which maps a set of
dimension 𝑛 to a single point (see Example 4.3 below).
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As in Theorem 1.1 the positive result essentially follows from the known results
([4, 25, 26]) while the counterexample is entirely new. As above the counterex-
ample exists also for the critical exponent 𝑝 = 𝑛− 1 and there is again a sudden
jump in the dimension of the critical set 𝑁2 from 𝑛− 𝑝 ≤ 1 to 𝑛.

2 Preliminaries
By 𝐵(𝑐, 𝑟) we denote the euclidean ball with center 𝑐 ∈ R𝑛 and radius 𝑟 > 0, and
𝑆(𝑐, 𝑟) stands for the corresponding sphere.

2.1 Precise representative of a Sobolev mapping

Recall the following result from [32, Theorem 3.3.3 and Theorem 2.6.16].

Theorem 2.1. Let 1 ≤ 𝑝 ≤ 𝑛 and let 𝑓 ∈ 𝑊 1,𝑝(R𝑛) be a 𝑝-quasicontinuous
representative and set

𝐸𝑝 = {𝑥 ∈ R𝑛 : 𝑥 is not a Lebesgue point of 𝑓} .

Then dimℋ(𝐸𝑝) ≤ 𝑛− 𝑝.

We put

𝑓 *(𝑥) =

⎧
⎨
⎩

lim
𝑟→0+

1

|𝐵(𝑥, 𝑟)|

ˆ

𝐵(𝑥,𝑟)

𝑓(𝑦) 𝑑𝑦 if the limit exists,

0 otherwise.
(2.1)

Note, that the representative 𝑓 * is 𝑝-quasicontinuous (see remarks after [25,
Proposition 2.8]). We define a precise representative of 𝑓 ∈ 𝑊 1,𝑝(Ω,R𝑛) as any
representative which is equal to 𝑓 * up to a set of 𝑝-capacity 0 (see e.g. [32, Section
2.6] for the definition of capacity).

Here is a useful observation [25, Lemma 2.9] about the representative 𝑓 *.

Lemma 2.2. Let 𝑓𝑘 → 𝑓 weakly in 𝑊 1,𝑝(Ω,R𝑛), 𝑎 ∈ Ω and 𝑟𝑎 := dist(𝑎, 𝜕Ω).
Then there is an ℒ1-null set 𝑁𝑎 such that for any 𝑟 ∈ (0, 𝑟𝑎) ∖ 𝑁𝑎 there exists a
subsequence 𝑓𝑗 such that 𝑓 *

𝑗 → 𝑓 * weakly in 𝑊 1,𝑝(𝑆(𝑎, 𝑟),R𝑛). Furthermore, if
𝑝 > 𝑛− 1 then 𝑓 *

𝑗 → 𝑓 * uniformly on 𝑆(𝑎, 𝑟).

2.2 Topological degree

Given a smooth map 𝑓 from Ω ⊂ R𝑛 into R𝑛 we can define the topological degree
as

deg(𝑓,Ω, 𝑦0) =
∑︁

{𝑥∈Ω:𝑓(𝑥)=𝑦}
sgn(𝐽𝑓 (𝑥))

if 𝐽𝑓 (𝑥) ̸= 0 for each 𝑥 ∈ 𝑓−1(𝑦). This definition can be extended to arbitrary
continuous mappings and each point, see e.g. [10].
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The value of the degree of a continuous mapping 𝑓 : 𝐵(𝑎, 𝑟) → R𝑛 depends
only on its values on the boundary 𝑆(𝑎, 𝑟). Thus, given a continuous mapping
𝑓 : 𝑆(𝑎, 𝑟) → R𝑛 we use the notation deg(𝑓, 𝑆(𝑎, 𝑟), 𝑦) for deg( ̂︀𝑓,𝐵(𝑎, 𝑟), 𝑦), where
̂︀𝑓 : 𝐵(𝑎, 𝑟) → R𝑛 is any continuous extension of 𝑓 : 𝑆(𝑎, 𝑟) → R𝑛.

The degree is known to be stable under uniform convergence (see e.g. [10,
Theorem 2.3 (1)]), i.e.

𝑓𝑘 ⇒ 𝑓 on 𝑆(𝑏, 𝑠) and 𝑦 /∈ 𝑓(𝑆(𝑏, 𝑠))

⇓
lim
𝑘→∞

deg(𝑓𝑘, 𝑆(𝑏, 𝑠), 𝑦) = deg(𝑓, 𝑆(𝑏, 𝑠), 𝑦).

(2.2)

It is also well-known that for a homeomorphism 𝑓 and 𝑦 /∈ 𝑓(𝑆(𝑎, 𝑟)) we have

deg(𝑓, 𝑆(𝑎, 𝑟), 𝑦) ̸= 0 ⇔ 𝑦 ∈ 𝐵(𝑎, 𝑟). (2.3)

2.3 (INV) condition

Suppose that 𝑓 : 𝑆(𝑎, 𝑟) → R𝑛 is continuous, following [25] we define the topolog-
ical image of 𝐵(𝑎, 𝑟) as

𝑓𝑇 (𝐵(𝑎, 𝑟)) :=
{︀
𝑦 ∈ R𝑛 ∖ 𝑓(𝑆(𝑎, 𝑟)) : deg(𝑓, 𝑆(𝑎, 𝑟), 𝑦) ̸= 0

}︀
.

Denote
𝐸(𝑓,𝐵(𝑎, 𝑟)) := 𝑓𝑇 (𝐵(𝑎, 𝑟)) ∪ 𝑓(𝑆(𝑎, 𝑟)).

Definition 2.3 ((INV) condition). We say that 𝑓 : Ω → R𝑛 satisfies the condition
(INV), provided that for every 𝑎 ∈ Ω there exists an ℒ1-null set 𝑁𝑎 such that for
all 𝑟 ∈ (0, dist(𝑎, 𝜕Ω)) ∖𝑁𝑎 the mapping 𝑓 |𝑆(𝑎,𝑟) is continuous,

(i) 𝑓(𝑥) ∈ 𝑓𝑇 (𝐵(𝑎, 𝑟)) ∪ 𝑓(𝑆(𝑎, 𝑟)) for ℒ𝑛-a.e. 𝑥 ∈ 𝐵(𝑎, 𝑟) and

(ii) 𝑓(𝑥) ∈ R𝑛 ∖ 𝑓𝑇 (𝐵(𝑎, 𝑟)) for ℒ𝑛-a.e. 𝑥 ∈ Ω ∖𝐵(𝑎, 𝑟).

Moreover, we define the multifunction which describes the topological image
𝑓𝑇 (𝑥) of a point as

𝑓𝑇 (𝑥) :=
⋂︁

𝑟>0, 𝑟 /∈𝑁𝑥

𝐸(𝑓 *, 𝐵(𝑥, 𝑟)),

where 𝑓 * is given by (2.1). Let us recall that a quasicontinuous representative
of 𝑓 ∈ 𝑊 1,𝑝(Ω,R𝑛), 𝑝 > 𝑛 − 1, is continuous for every 𝑥 on almost every sphere
𝑆(𝑥, 𝑟).

2.4 Cantor-set construction

Following [14, Section 4.3] we consider a Cantor-set construction in (−1, 1)𝑛.
Denote the cube with center at 𝑎 and edge 2𝑟 by 𝑄(𝑎, 𝑟) = (𝑎1 − 𝑟, 𝑎1 + 𝑟)×

· · · × (𝑎𝑛 − 𝑟, 𝑎𝑛 + 𝑟). Let V be the set of 2𝑛 vertices of the cube [−1, 1]𝑛 ⊂ R𝑛
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and V𝑘 = V× · · · ×V, 𝑘 ∈ N. Consider a decreasing sequence {𝛼𝑘}∞𝑘=0 such that
𝛼𝑘 ≈ 𝛼𝑘+1, 1 = 𝛼0 ≥ 𝛼1 ≥ · · · > 0,

𝑟𝑘 = 2−𝑘𝛼𝑘 and 𝑟′𝑘 = 2−𝑘𝛼𝑘−1.

Set 𝑧0 = 0, then 𝑄(𝑧0, 𝑟0) = (−1, 1)𝑛 and we proceed by induction. For

v(𝑘) = (𝑣1, . . . , 𝑣𝑘) ∈ V𝑘

we denote
v(𝑘 − 1) = (𝑣1, . . . , 𝑣𝑘−1)

and define (see Fig. 1)

𝑧v(𝑘) = 𝑧v(𝑘−1) +
1

2
𝑟𝑘−1𝑣𝑘 = 𝑧0 +

1

2

𝑘∑︁

𝑗=1

𝑟𝑗−1𝑣𝑗,

𝑄′
v(𝑘) = 𝑄(𝑧v(𝑘), 𝑟

′
𝑘) and 𝑄v(𝑘) = 𝑄(𝑧v(𝑘), 𝑟𝑘).

Figure 1: Cubes 𝑄𝑣(𝑘) and 𝑄′
𝑣(𝑘) for 𝑘 = 1, 2.

The measure of the 𝑘-th frame 𝑄′
v(𝑘) ∖𝑄v(𝑘) is

ℒ𝑛(𝑄′
v(𝑘) ∖𝑄v(𝑘)) = (2𝑟′𝑘)

𝑛 − (2𝑟𝑘)
𝑛 ≈ 2−𝑛𝑘(𝛼𝑘−1 − 𝛼𝑘)𝛼

𝑛−1
𝑘 , (2.4)

and we have 2𝑛𝑘 such frames.
Denote 𝐴 := {𝛼𝑘}∞𝑘=0, the resulting Cantor set

𝐶𝐴 :=
∞⋂︁

𝑘=1

⋃︁

v(𝑘)∈V𝑘

𝑄v(𝑘)

is a product of 𝑛 Cantor sets 𝒞𝛼 in R

𝐶𝐴 = 𝒞𝛼 × · · · × 𝒞𝛼,

and the number of cubes in {𝑄v(𝑘) : v(𝑘) ∈ V𝑘} is 2𝑛𝑘. Hence,

ℒ𝑛(𝐶𝐴) = lim
𝑘→∞

2𝑛𝑘(2𝛼𝑘2
−𝑘)𝑛 = lim

𝑘→∞
2𝑛𝛼𝑛𝑘 .
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2. 5 H o m e o m o r p hi s m t h a t m a p s a C a n t o r s e t o n t o a n o t h e r
o n e

C o nsi d er t w o s e q u e n c es A = { α k } ∞
k = 0 a n d B = { β k } ∞

k = 0 , a n d t w o C a nt or s ets C A

a n d C B ar e d esi g n e d a c c or di n g S e cti o n 2. 4. We als o d e fi n e

̃︀r k = 2 − k β k , ̃︀r ′
k = 2 − k β k − 1 ,

̃︀z v ( k ) = ̃︀z v ( k − 1 ) +
1

2
̃︀r k − 1 v k = ̃︀z 0 +

1

2

k∑︁

j = 1

̃︀r j − 1 v j ,

̃︀Q ′
v ( k ) = Q ( ̃︀z v ( k ) , ̃︀r

′
k ), ̃︀Q v ( k ) = Q ( ̃︀z v ( k ) , ̃︀r k ).

❅
❅

❅
❅

Q ′
v

Q v

✲g

❅
❅

❅
❅

̃︀Q ′
v

̃︀Q v

Fi g ur e 2: T h e tr a nsf or m ati o n of Q ′
v ∖ Q v o nt o ̂︀Q ′

v ∖ ̂︀Q v f or n = 2

T h er e e xists a h o m e o m or p his m g w hi c h m a ps C A o nt o C B (s e e Fi g. 2). M or e-
o v er, i n Q ′

v ( k ) ∖ Q v ( k ) w e h a v e a n al o g o usl y t o [ 1 4, pr o of of T h e or e m 4. 1 0]

|D g (x )| ≈ m a x

{︃
̃︀r k

r k

,
̃︀r k − 1

2
− ̃︀r k

r k − 1

2
− r k

}︃

= m a x

{︂
β k

α k

,
β k − 1 − β k

α k − 1 − α k

}︂

( 2. 5)

a n d

J g (x ) ∼
̃︀r k − 1

2
− ̃︀r k

r k − 1

2
− r k

(︂
̃︀r k

r k

)︂ n − 1

.

Li k e wis e, f or y ∈ ̃︀Q ′
v ( k ) ∖ ̃︀Q v ( k ) w e h a v e

|D g − 1 (y )| ≈ m a x

{︂
α k

β k

,
α k − 1 − α k

β k − 1 − β k

}︂

a n d J g − 1 (y ) ∼
r k − 1

2
− r k

̃︀r k − 1

2
− ̃︀r k

(︂
r k

̃︀r k

)︂ n − 1

. ( 2. 6)

M or e pr e cis el y w e d e fi n e t his g as a u nif or m li mit of bili ps c hit z m a p pi n gs g k

w hi c h m a p t h e k -t h it er ati o n of t h e C a nt or s et C A o nt o t h e k -t h it er ati o n of C B .
T h at is

g k (x ) = g (x ) f or x /∈
⋃︁

v ( k ) ∈ V k

Q v ( k ) ( 2. 7)

a n d
g k m a ps Q v ( k ) o nt o ̃︀Q v ( k ) li n e arl y f or v (k ) ∈ V k .
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2.6 Constructing a Cantor tower

We build a Cantor tower as in [13].
Suppose 𝑛 ≥ 2 and denote by V̂ the set of points

(︀
0, 0, . . . , 0,−1 + 2𝑗−1

2𝑛

)︀

where 𝑗 = 1, 2, . . . , 2𝑛. Sets

V̂
𝑘
:= V̂× · · · × V̂, 𝑘 ∈ N,

serve as sets of indices in the construction of a Cantor tower.
Suppose that {𝛽𝑘}∞𝑘=0 is a decreasing sequence as before with 1 = 𝛽0 and

𝛽𝑖 > 2𝑛𝛽𝑖+1, and define

�̂�𝑘 := 2−𝑘𝛽𝑘 and �̂�′𝑘 := 2−𝑘𝛽𝑘−1. (2.8)

Set 𝑧0 = 0. Then it follows that 𝑄(𝑧0, �̂�0) = (−1, 1)𝑛 and we proceed further by in-
duction. For �̂�(𝑘) := (𝑣1, 𝑣2, . . . , 𝑣𝑘) ∈ V̂

𝑘
we denote �̂�(𝑘−1) := (𝑣1, 𝑣2, . . . , 𝑣𝑘−1)

and define (see Fig. 3)

𝑧�̂�(𝑘) := 𝑧�̂�(𝑘−1) + �̂�𝑘−1𝑣𝑘 = 𝑧0 +
𝑘∑︁

𝑗=1

�̂�𝑗−1𝑣𝑗

̂︀𝑄′
�̂�(𝑘) := 𝑄(𝑧�̂�(𝑘), �̂�

′
𝑘) and ̂︀𝑄�̂�(𝑘) := 𝑄(𝑧�̂�(𝑘), �̂�𝑘)

(2.9)

Figure 3: Cubes ̂︀𝑄�̂�(𝑘) and ̂︀𝑄′
�̂�(𝑘) for 𝑘 = 1, 2 in the construction of the Cantor

tower.

2.7 Bilipschitz mapping which takes a Cantor set onto a
Cantor tower

Let us now define the Cantor set 𝐶𝐵 as in Section 2.4 by choosing

𝛽𝑘 = 2−𝑘𝛽, (2.10)
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where 𝛽 ≥ 𝑛 + 1. Using this sequence we also define the Cantor tower 𝐶𝑇
𝐵 as in

Section 2.6.
As 𝛽 ≥ 𝑛+ 1, we see that

̂︀𝑄�̂�(𝑘) = 𝑄(𝑧�̂�(𝑘), 2
−𝑘𝛽𝑘) ⊊ 𝑄(𝑧�̂�(𝑘), 2

−1−𝑘𝛽𝑘−1) =
1

2
̂︀𝑄′
�̂�(𝑘)

and thus we have enough empty space in ̂︀𝑄′
�̂�(𝑘) ∖ ̂︀𝑄�̂�(𝑘) to move the cubes of the

next generation into a tower formation.
The following theorem from [13, Proposition 2.4] gives us a bilipschitz mapping

𝐿 : R𝑛 → R𝑛 which maps the Cantor set 𝐶𝐵 onto the Cantor tower 𝐶𝑇
𝐵 . We refer

to this mapping as a tower mapping.

Theorem 2.4. Suppose that 𝐶𝐵 is the Cantor set and 𝐶𝑇
𝐵 is the Cantor tower

in R𝑛 defined by the sequence

𝛽𝑘 = 2−𝑘𝛽 ,

where 𝛽 ≥ 𝑛 + 1. Then there is a bilipschitz mapping 𝐿 : R𝑛 → R𝑛 which takes
𝐶𝐵 onto 𝐶𝑇

𝐵 . Moreover,

for every �̂�(𝑖) ∈ V̂
𝑖
𝐿−1( ̂︀𝑄�̂�(𝑖)) = ̃︀𝑄𝑣(𝑖) for some 𝑣(𝑖) ∈ V𝑖. (2.11)

2.8 Piecewise linear mappings

We define an auxiliary piecewise linear mapping and estimate its derivative.
Let

𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 and 𝑠1 < 𝑠2 < 𝑠3 < 𝑠4. (2.12)

We consider a piecewise linear mapping ℎ : [𝑡1, 𝑡4] → R with ℎ(𝑡𝑖) = 𝑠𝑖, 𝑖 =
1, 2, 3, 4, i.e.

ℎ(𝑡; [𝑡1, 𝑠1], [𝑡2, 𝑠2], [𝑡3, 𝑠3], [𝑡4, 𝑠4]) =

⎧
⎪⎨
⎪⎩

𝑠2−𝑠1
𝑡2−𝑡1 (𝑡− 𝑡1) + 𝑠1, if 𝑡1 ≤ 𝑡 ≤ 𝑡2,
𝑠3−𝑠2
𝑡3−𝑡2 (𝑡− 𝑡2) + 𝑠2, if 𝑡2 < 𝑡 ≤ 𝑡3,
𝑠4−𝑠3
𝑡4−𝑡3 (𝑡− 𝑡3) + 𝑠3, if 𝑡3 < 𝑡 ≤ 𝑡4.

(2.13)

Clearly

|𝐷ℎ(𝑡)| =

⎧
⎪⎨
⎪⎩

𝑠2−𝑠1
𝑡2−𝑡1 , if 𝑡1 < 𝑡 < 𝑡2,
𝑠3−𝑠2
𝑡3−𝑡2 , if 𝑡2 < 𝑡 < 𝑡3,
𝑠4−𝑠3
𝑡4−𝑡3 , if 𝑡3 < 𝑡 < 𝑡4.

(2.14)

3 Injectivity in the image: counterexample in the
Theorem 1.1

3.1 Definition of tentacles

We start with a Cantor tower 𝐶𝑇
𝐵 and for each point 𝑦 ∈ 𝐶𝐴 we find a corre-

sponding point 𝑥 ∈ 𝐶𝑇
𝐵 (see (3.1)). We want to have a continuum 𝑙𝑥 (with the
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end point 𝑥) which goes onto 𝑦 by our mapping. For better visualization we first
map 𝐶𝑇

𝐵 on itself to squeeze this 𝑙𝑥 onto 𝑥 by mapping ℎ. Then, with the help
of a bilipschitz mapping 𝐿−1 (Theorem 2.4) we transform 𝐶𝑇

𝐵 to 𝐶𝐵 and finally
we map homeomorphically 𝐶𝐵 onto 𝐶𝐴 by 𝑔−1 (see Subsection 2.5), i.e. the final
mapping

𝑓 = 𝑔−1 ∘ 𝐿−1 ∘ ℎ
squeezes 𝑙𝑥 onto 𝑦 (see Fig. 7).

For any 𝑥 ∈ 𝐶𝑇
𝐵 we find sequence �̂�(𝑘) ∈ V̂

𝑘
such that

𝑥 =
∞⋂︁

𝑘=1

̂︀𝑄�̂�(𝑘) and this corresponds to 𝑦 =
∞⋂︁

𝑘=1

𝑄𝑣(𝑘) ∈ 𝐶𝐴, (3.1)

where the mapping �̂�(𝑘) → 𝑣(𝑘) is given by 𝐿−1( ̂︀𝑄�̂�𝑘
) = ̃︀𝑄𝑣(𝑘) from (2.11). Now

for each ̂︀𝑄�̂�(𝑘) we define a tentacle 𝑇�̂�(𝑘) (a long and thin polyhedron) which
contains ̂︀𝑄�̂�(𝑘) and we set

𝑙𝑥 :=
∞⋂︁

𝑘=1

𝑇�̂�(𝑘). (3.2)

First we define a ‘straight’ tentacle 𝑇 𝑆�̂�(𝑘) and then we adjust it in the next sub-
section so that

𝑇�̂�(𝑘+1) ⊂ 𝑇�̂�(𝑘) whenever �̂�(𝑘 + 1) is a continuation of �̂�(𝑘),

i.e. first 𝑘 terms of �̂�(𝑘 + 1) are exactly �̂�(𝑘) (see Fig. 4).
Take the parameter 𝛽 from (2.10) and recall (2.8), that is �̂�𝑘 = 2−𝑘𝛽𝑘 =

2−𝑘(𝛽+1). We define for 𝑘 ∈ N

𝑎𝑘 = 1−
𝑘∑︁

𝑖=0

�̂�𝑖+2 ≈ 1, 𝑐𝑘 = 1−
𝑘−1∑︁

𝑖=0

�̂�𝑖+2 ≈ 1,

and further we fix decreasing sequences 0 < 𝑏𝑘+1 < 𝑏𝑘 <
1
𝑒
and 0 < 𝑑𝑘+1 < 𝑑𝑘 <

1
𝑒

such that 𝑏𝑘 < 𝑑𝑘 < 𝑎𝑘 < 𝑐𝑘 and 𝑑𝑘+1 < 4𝑛𝑏𝑘 (3.3)

whose exact values we find by induction using Lemma 3.2 below.
For 𝑟 > 0 and 𝜌1 < 𝜌2 we define a parallelepiped

𝑃 (𝑟, 𝜚1, 𝜚2) := [𝜚1, 𝜚2)× (−𝑟, 𝑟)× · · · × (−𝑟, 𝑟).

For each 𝑘 we also define

𝑃 ′
𝑘 := 𝑃 (𝑑𝑘, �̂�𝑘, 𝑐𝑘) and 𝑃𝑘 := 𝑃 (𝑏𝑘, �̂�𝑘, 𝑎𝑘).

Now we define ‘straight’ tentacles as

𝑇 ′𝑆
𝑘 := 𝑄(0, �̂�𝑘) ∪ 𝑃 ′

𝑘 and 𝑇 𝑆𝑘 := 𝑄(0, �̂�𝑘) ∪ 𝑃𝑘,
𝑇 ′𝑆
�̂�(𝑘) := 𝑧�̂�(𝑘) + 𝑇 ′𝑆

𝑘 and 𝑇 𝑆�̂�(𝑘) := 𝑧�̂�(𝑘) + 𝑇 𝑆𝑘 .
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Both 𝑇 ′𝑆
𝑘 and 𝑇 𝑆𝑘 clearly contain 𝑄(0, �̂�𝑘) and note that 𝑇 𝑆𝑘 ⊂ 𝑇 ′𝑆

𝑘 as 𝑐𝑘 > 𝑎𝑘
and 𝑑𝑘 > 𝑏𝑘. Moreover, 𝑃 ′

𝑘 and 𝑄(0, �̂�𝑘) have one common side and thus 𝑇 ′𝑆
𝑘

is connected. Furthermore, the length of each tentacle 𝑇 ′𝑆
𝑘 is bigger than 𝑎𝑘 >

1− 1
1−2−𝛽−1 and hence

𝑙𝑆 :=
∞⋂︁

𝑘=1

𝑇 𝑆𝑘 is a nontrivial segment. (3.4)

𝑇𝑆
𝑘−1

𝑇 ′
𝑘

𝑇 ′𝑆
𝑘

𝑆𝑘

Figure 4: Two generations of tentacles.

Let us estimate

|𝑃𝑘| ≈ 𝑎𝑘 · (2𝑏𝑘)𝑛−1 ≈ 𝑏𝑛−1
𝑘 and |𝑃 ′

𝑘| ≈ 𝑐𝑘 · (2𝑑𝑘)𝑛−1 ≈ 𝑑𝑛−1
𝑘 . (3.5)

3.2 Shifting of tentacles into previous tentacles

In this section we want to shift the ‘straight’ tentacles into ‘real’ tentacles 𝑇�̂�(𝑘)
so that

𝑇 ′
�̂�(𝑘+1) ⊂ 𝑇�̂�(𝑘) whenever �̂�(𝑘 + 1) is a continuation of �̂�(𝑘). (3.6)

Figure 5: Tentacles 𝑇 ′
1, 𝑇1 and 𝑇 ′

2
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Set 𝑇 ′
1 = 𝑇 ′𝑆

1 , 𝑇1 = 𝑇 𝑆1 . We need a shifting mapping

(𝑠𝑘)�̂�(𝑘)(𝑡, 𝑠) =

⎧
⎪⎨
⎪⎩

𝑠− (�̂�𝑘−1 − 𝑏𝑘−1)(𝑣𝑘)𝑛, if 𝑡 ∈ (�̂�𝑘−1, 𝑐𝑘 + �̂�𝑘],

𝑠− (𝑣𝑘)𝑛(�̂�𝑘−1−𝑏𝑘−1)

�̂�𝑘−�̂�𝑘−1
(�̂�𝑘 − 𝑡), if 𝑡 ∈ (�̂�𝑘, �̂�𝑘−1],

𝑠, if 𝑡 ∈ (0, �̂�𝑘].

For 𝑥 ∈ 𝑇 ′𝑆
𝑘 define

(𝑆𝑘)�̂�(𝑘)(𝑥1, . . . , 𝑥𝑛) :=
(︀
𝑥1, . . . , 𝑥𝑛−1, (𝑠𝑘)�̂�(𝑘)(𝑥1, 𝑥𝑛)

)︀
.

Note that we have shifted the 𝑥𝑛 coordinate by (𝑧𝑣(𝑘) − 𝑧𝑣(𝑘−1))𝑛 = �̂�𝑘−1(𝑣𝑘)𝑛
down (see (2.9)), i.e. we have moved the right part of 𝑘-tentacle 𝑇 ′𝑆

𝑘 to the height
of (𝑘 − 1)-tentacle 𝑇 𝑆𝑘−1 (see Fig. 4), and then we moved it by 𝑏𝑘−1(𝑣𝑘)𝑛 up so
that the position of different 𝑇 ′𝑆

𝑘 is different and they are again above each other
in the (𝑘 − 1)-tentacle 𝑇 𝑆𝑘−1 (of height 2𝑏𝑘−1).

It is easy to see that the Jacobian of this mapping is equal to 1 and hence it
does not change the measure of the tentacles. We can estimate its derivative as

|𝐷(𝑆𝑘)�̂�(𝑘)| ≈ max

{︂
1,

(𝑣𝑘)𝑛(�̂�𝑘−1 − 𝑏𝑘−1)

�̂�𝑘 − �̂�𝑘−1

}︂
≈ 1

and moreover
|𝐷(𝑆𝑘)

−1
�̂�(𝑘)| ≈ 1.

For �̂�(𝑘) = (𝑣1, . . . , 𝑣𝑘) we denote �̂�(𝑗) = (𝑣1, . . . , 𝑣𝑗) and we define

𝑆�̂�(𝑘) := (𝑆1)�̂�(1) ∘ · · · ∘ (𝑆𝑘)�̂�(𝑘).

Remark 3.1. Note that for each 𝑥 ∈ 𝑇 ′𝑆
𝑘 ∩ (𝑄(0, �̂�𝑗−1) ∖ 𝑄(0, �̂�𝑗)) mapping

𝑆�̂�(𝑘)(𝑥) is a composition of 𝑘 − 1 translations and one bending (𝑆𝑗)�̂�(𝑗) with
|𝐷(𝑆𝑗)

−1
�̂�(𝑗)| ≈ |𝐷(𝑆𝑗)�̂�(𝑗)| ≈ 1. Hence, this composition is also bilipschitz with a

constant that does not depend on 𝑘.

Let us define the 𝑘-th generation as

𝑇 ′
�̂�(𝑘) := 𝑆�̂�(𝑘)(𝑇

′𝑆
�̂�(𝑘)) and 𝑇�̂�(𝑘) := 𝑆�̂�(𝑘)(𝑇

𝑆
�̂�(𝑘)),

𝑃 ′
�̂�(𝑘) := 𝑇 ′

�̂�(𝑘) ∖𝑄(𝑧𝑣(𝑘), �̂�𝑘) and 𝑃�̂�(𝑘) := 𝑇�̂�(𝑘) ∖𝑄(𝑧𝑣(𝑘), �̂�𝑘).
This definition ensures (3.6) as 𝑏𝑘 > 2𝑛𝑑𝑘+1 (see Fig. 4) by (3.3). Since the
shifting map does not change the volume, we obtain from (3.5) that

|𝑃�̂�(𝑘)| ≈ 𝑏𝑛−1
𝑘 and |𝑃 ′

�̂�(𝑘)| ≈ 𝑑𝑛−1
𝑘 . (3.7)

It is clear that the diameter of 𝑙𝑥, which is defined by (3.2), is bigger than the
diameter of 𝑙𝑆 (see (3.2) and (3.4)) and hence 𝑙𝑥 is a nontrivial continuum. More-
over,

ℒ𝑛
(︀ ⋃︁

𝑥∈𝐶𝑇
𝐵

𝑙𝑥
)︀
= 0, since ℒ𝑛

(︁ ⋃︁

𝑣(𝑘)∈V̂𝑘

𝑇 ′
𝑣(𝑘)

)︁
≤ 2𝑛𝑘

(︀
𝑑𝑛−1
𝑘 + �̂�𝑛𝑘

)︀
−−−→
𝑘→∞

0. (3.8)
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�̂�𝑘−1 𝑎𝑘 �̂�0�̂�𝑘

𝑇 ′𝑆
𝑘𝑇𝑆

𝑘

�̂�𝑘−1 2�̂�𝑘−1 �̂�0�̂�𝑘 2�̂�𝑘 = ̃︀𝑎𝑘

̃︀𝑇 ′𝑆
𝑘

̃︀𝑇𝑆
𝑘

Figure 6: Tentacle squeezing 𝐻𝑘.

3.3 Squeezing inside tentacles

The aim of this section is to obtain a mapping which is identity outside the
tentacles and squeezes each continuum 𝑙𝑥 onto 𝑥 for every 𝑥 ∈ 𝐶𝑇

𝐵 .
Analogously to Section 3.1 we define parameters which describe the sizes of

squeezed tentacles. We set

̃︀𝑎𝑘 = 2�̂�𝑘 ≈ 2−𝑘(𝛽+1),

̃︀𝑐𝑘 = ̃︀𝑎𝑘−1 = 2�̂�𝑘−1 ≈ 2−𝑘(𝛽+1).

With these parameters we consider for each 𝑘 ∈ N

̃︀𝑃 ′
𝑘 := 𝑃 (𝑑𝑘, �̂�𝑘,̃︀𝑐𝑘) and ̃︀𝑃𝑘 := 𝑃 (𝑏𝑘, �̂�𝑘,̃︀𝑎𝑘).

Now the ‘squeezed’ tentacles (see Fig. 6) are defined by

̃︀𝑇 ′𝑆
𝑘 := 𝑄(0, �̂�𝑘) ∪ ̃︀𝑃 ′

𝑘 and ̃︀𝑇 𝑆𝑘 := 𝑄(0, �̂�𝑘) ∪ ̃︀𝑃𝑘,
̃︀𝑇 ′𝑆
�̂�(𝑘) := 𝑧�̂�(𝑘) + ̃︀𝑇 ′𝑆

𝑘 and ̃︀𝑇 𝑆�̂�(𝑘) := 𝑧�̂�(𝑘) + ̃︀𝑇 𝑆𝑘 .

With the help of piecewise linear mapping from Section 2.8 we can squeeze the
‘straight’ tentacles. The main idea of this construction is that points have zero
capacity in𝑊 1,𝑛−1(R𝑛−1), i.e. the correct truncation of the function log log 1

|𝑥| has
small support, value 1 at 0 and arbitrarily small norm in 𝑊 1,𝑛−1. For 𝑝 < 𝑛− 1
it would be enough to work with piecewise affine mappings instead of log log 1

|𝑥| .
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Lemma 3.2. Let 𝑛 ≥ 3, 𝛿𝑘 > 0, 𝛽 ≥ 𝑛 + 1 and 𝑘 ∈ N. Then we can find small
enough 𝑑𝑘 > 𝑏𝑘 > 0 and a bilipschitz mapping 𝐻𝑆

𝑘 : 𝑄(0, 1) → 𝑄(0, 1) such that
𝐻𝑆

0 (𝑥) = 𝑥 for every 𝑥 ∈ 𝑄(0, 1)

𝐻𝑆
𝑘 (𝑥) = 𝐻𝑆

𝑘−1(𝑥) for each 𝑥 /∈ 𝑃 ′
𝑘, 𝐻

𝑆
𝑘 (𝑥) = 𝑥 for 𝑥 ∈ 𝑄(0, �̂�𝑘)

and 𝐻𝑆
𝑘 maps 𝑃𝑘 onto ̃︀𝑃𝑘 linearly.

Furthermore, |𝐷𝐻𝑆
𝑘 (𝑥)| ≤ 1 for 𝑥 ∈ 𝑃𝑘 and

ˆ

𝑃 ′
𝑘

|𝐷𝐻𝑆
𝑘 (𝑥)|𝑛−1 𝑑𝑥 ≤ 𝛿𝑘. (3.9)

Proof. Set 𝐻𝑆
0 (𝑥) = 𝑥 and proceed by induction. We define

𝐻𝑆
𝑘 (𝑥) = 𝐻𝑆

𝑘−1(𝑥) for 𝑥 /∈ 𝑃 ′
𝑘 (3.10)

and it remains to define it on 𝑃 ′
𝑘. Since 𝐻𝑆

𝑘−1 is the identity on {𝑥1 ≤ �̂�𝑘−1} and
𝑃 ′
𝑘 ∩ {𝑥1 ≥ �̂�𝑘−1} ⊂ 𝑃𝑘−1 (see (3.3)) where 𝐻𝑆

𝑘−1 is linear we obtain that on 𝜕𝑃 ′
𝑘

we have

𝐻𝑆
𝑘 (𝑥) = [𝑙𝑘−1(𝑥1), 𝑥2, . . . , 𝑥𝑛], where 𝑙𝑘−1(𝑥1) = 𝑥1 for 𝑥1 ≤ �̂�𝑘−1 and
for 𝑥1 ∈ [�̂�𝑘−1, 𝑐𝑘] it is linear with 𝑙𝑘−1(�̂�𝑘−1) = �̂�𝑘−1 and 𝑙𝑘−1(𝑎𝑘−1) = ̃︀𝑎𝑘−1.

(3.11)
As ̃︀𝑎𝑘−1 < 𝑎𝑘−1 we know that the derivative |𝑙′𝑘−1| ≤ 1 there.

Further, we define it for 𝑥 ∈ {𝑎𝑘} × [−𝑑𝑘, 𝑑𝑘]𝑛−1 as

𝐻𝑆
𝑘 (𝑥) = [𝜙𝑘(𝑥), 𝑥2, . . . , 𝑥𝑛] where

𝜙𝑘(𝑥) := 𝑙𝑘−1(𝑎𝑘)−
(︁
log log

1

max{𝑏𝑘, |[𝑥2, . . . , 𝑥𝑛]|∞} − log log
1

𝑑𝑘

)︁
,

where |[𝑥2, . . . , 𝑥𝑛]|∞ = max{|𝑥2|, . . . , |𝑥𝑛|}. Then it is easy to see (𝐻𝑆
𝑘 (𝑥))1 =

𝑙𝑘−1(𝑎𝑘) when 𝑥1 = 𝑎𝑘 and |[𝑥2, . . . , 𝑥𝑛]|∞ = 𝑑𝑘 and thus it agrees with (3.11)
there. Moreover, we fix 𝑑𝑘 small enough in such a way as (𝐶(3.12) is a constant
whose exact value we specify later)

2(𝛽+1)𝑘(𝑛−1)

log𝑛−2 1
𝑑𝑘

< 𝐶(3.12)𝛿𝑘 (3.12)

and we fix 𝑏𝑘 < 𝑑𝑘 so that (see Fig. 6)

for |[𝑥2, . . . , 𝑥𝑛]|∞ = 𝑏𝑘 we have 𝜙𝑘(𝑥) = 𝑙𝑘−1(𝑎𝑘)−
(︁
log log

1

𝑏𝑘
− log log

1

𝑑𝑘

)︁
= ̃︀𝑎𝑘.
(3.13)

For every 𝑥 ∈ 𝑃𝑘 we have |[𝑥2, . . . , 𝑥𝑛]|∞ ≤ 𝑏𝑘 and thus 𝜙𝑘(𝑥) = ̃︀𝑎𝑘. Therefore
for every 𝑥 ∈ 𝑃𝑘 we can define

𝐻𝑆
𝑘 (𝑥) =

[︀
𝑙𝑘(𝑥1), 𝑥2, . . . , 𝑥𝑛

]︀
where 𝑙𝑘 is linear with 𝑙𝑘(�̂�𝑘) = �̂�𝑘 and 𝑙𝑘(𝑎𝑘) = ̃︀𝑎𝑘.

(3.14)
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It is easy to see that |𝐷𝐻𝑆
𝑘 | ≤ 1 there and that this agrees with (3.11) used for

𝑘 − 1 before. Finally on the hyperplane 𝑥 ∈ {�̂�𝑘−1} × [−𝑑𝑘, 𝑑𝑘]𝑛−1 we define it as
(see Fig. 6)

𝐻𝑆
𝑘 (𝑥) = [𝜓𝑘(𝑥), 𝑥2, . . . , 𝑥𝑛] where

𝜓𝑘(𝑥) := 𝑙𝑘−1(�̂�𝑘−1)− 𝐴𝑘

(︁
log log

1

max{𝑏𝑘, |[𝑥2, . . . , 𝑥𝑛]|∞} − log log
1

𝑑𝑘

)︁
.

As before it agrees with (3.11) for 𝑥1 = �̂�𝑘−1 and |[𝑥2, . . . , 𝑥𝑛]|∞ = 𝑑𝑘. The
constant 𝐴𝑘 is chosen so that for 𝑥 ∈ 𝑃𝑘∩{𝑥1 = �̂�𝑘−1}, i.e. for |[𝑥2, . . . , 𝑥𝑛]|∞ ≤ 𝑏𝑘,
it goes along with (3.14). By this and (3.13) we obtain

�̂�𝑘 ≤ 𝑙𝑘−1(�̂�𝑘−1)− 𝐴𝑘

(︁
log log

1

𝑏𝑘
− log log

1

𝑑𝑘

)︁
= 𝑙𝑘−1(�̂�𝑘−1) + 𝐴𝑘

(︁
̃︀𝑎𝑘 − 𝑙𝑘−1(𝑎𝑘)

)︁

and hence
𝐴𝑘 ≤

𝑙𝑘−1(�̂�𝑘−1)− �̂�𝑘
𝑙𝑘−1(𝑎𝑘)− ̃︀𝑎𝑘

≤ �̂�𝑘−1 − �̂�𝑘
�̂�𝑘−1 − 2�̂�𝑘

≤ 𝐶

and so 𝐴𝑘 is bounded by a constant independent of 𝑘.
For every [𝑥2, . . . , 𝑥𝑛] ∈ [−𝑑𝑘, 𝑑𝑘]𝑛−1 we use linear interpolation between values

on four hyperplanes (𝑥1 = �̂�𝑘, 𝑥1 = �̂�𝑘−1, 𝑥1 = 𝑎𝑘 and 𝑥1 = 𝑐𝑘) with the help of
the function ℎ from Section 2.8 and for 𝑥 ∈ 𝑃 ′

𝑘 we define

𝐻𝑆
𝑘 (𝑥) =

[︁
ℎ
(︀
𝑥1; [�̂�𝑘, �̂�𝑘], [�̂�𝑘−1, 𝜓𝑘(𝑥)], [𝑎𝑘, 𝜙𝑘(𝑥)], [𝑐𝑘, 𝑙𝑘−1(𝑐𝑘)]

)︀
, 𝑥2, . . . , 𝑥𝑛

]︁
.

By (3.10) and (3.11) this mapping is continuous. The mapping 𝐻𝑆
𝑘 is bilipschitz

on all parts (whilst the bilipschitz constant depends on 𝑘) and hence it follows
immediately that it is bilipschitz on 𝑄(0, 1).

It remains to estimate the integrability of the derivative. By (2.14) we obtain
that the derivative with respect to the first coordinate can be estimated as

|𝐷1𝐻
𝑆
𝑘 (𝑥)| ≤

⎧
⎪⎨
⎪⎩

𝜓𝑘(𝑥)−�̂�𝑘
�̂�𝑘−1−�̂�𝑘 , for �̂�𝑘 < 𝑥1 < �̂�𝑘−1,
𝜙𝑘(𝑥)−𝜓𝑘(𝑥)
𝑎𝑘−�̂�𝑘−1

, for �̂�𝑘−1 < 𝑥1 < 𝑎𝑘,
𝑙𝑘−1(𝑐𝑘)−𝜙𝑘(𝑥)

𝑐𝑘−𝑎𝑘 , if 𝑎𝑘 < 𝑥1 < 𝑐𝑘.

Since 𝜙𝑘(𝑥) takes values between 𝑙𝑘−1(𝑎𝑘) and ̃︀𝑎𝑘 (see (3.13)) and 𝜓𝑘(𝑥) takes
values between 𝑙𝑘−1(�̂�𝑘−1) = �̂�𝑘−1 and ̃︀𝑎𝑘 we can estimate this by the universal
constant 𝐶 (where 𝐶 does not depend on 𝑘). Furthermore, by (2.13) we know
that we can estimate the derivative with respect to other coordinates by the
constant multiple of the corresponding derivative of

𝜓𝑘(𝑥)− �̂�𝑘
�̂�𝑘−1 − �̂�𝑘

+
𝜙𝑘(𝑥)− 𝜓𝑘(𝑥)

𝑎𝑘 − �̂�𝑘−1

+
𝑙𝑘−1(𝑐𝑘)− 𝜙𝑘(𝑥)

𝑐𝑘 − 𝑎𝑘
.

Since 𝐴𝑘 ≤ 𝐶 we can estimate this by

𝐶max
{︁ 1

�̂�𝑘−1 − �̂�𝑘
,

1

𝑎𝑘 − �̂�𝑘−1

,
1

𝑐𝑘 − 𝑎𝑘

}︁⃒⃒
⃒𝐷

(︁
log log

1

max{𝑏𝑘, |[𝑥2, . . . , 𝑥𝑛]|∞}
)︁⃒⃒
⃒
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The maximum of the three terms can be estimated by 𝐶 1
�̂�𝑘

≤ 𝐶2(𝛽+1)𝑘 and thus
we can estimate the derivative with respect to other coordinates as

|𝐷𝑗𝐻
𝑆
𝑘 (𝑥)| ≤

{︃
𝐶2(𝛽+1)𝑘

|[𝑥2,...,𝑥𝑛]|∞ log 1
|[𝑥2,...,𝑥𝑛]|∞

for 𝑏𝑘 < |[𝑥2, . . . , 𝑥𝑛]|∞ < 𝑑𝑘,

0 for |[𝑥2, . . . , 𝑥𝑛]|∞ < 𝑏𝑘.

Now a simple change to polar/spherical coordinates in R𝑛−1 and (3.12) gives us
ˆ

𝑃 ′
𝑘

|𝐷𝐻𝑆
𝑘 (𝑥)|𝑛−1 𝑑𝑥 ≤ 𝐶2(𝛽+1)𝑘(𝑛−1)

ˆ

𝑃 ′
𝑘

1

|[𝑥2, . . . , 𝑥𝑛]|𝑛−1
∞ log𝑛−1 1

|[𝑥2,...,𝑥𝑛]|∞
𝑑𝑥

≤ 𝐶2(𝛽+1)𝑘(𝑛−1)

ˆ 𝑑𝑘

0

1

𝑟𝑛−1 log𝑛−1 1
𝑟

𝑟𝑛−2 𝑑𝑟

≤ 𝐶2(𝛽+1)𝑘(𝑛−1) 1

log𝑛−2 1
𝑑𝑘

< 𝐶𝐶(3.12)𝛿𝑘 < 𝛿𝑘,

where we have chosen 𝐶(3.12) in (3.12) so that the last inequality holds.

Above we have defined ‘straight’ tentacles 𝑇 ′𝑆
�̂�(𝑘) and we have squeezed them by

𝐻𝑆
𝑘 onto squeezed ‘straight’ tentacles ̃︀𝑇 ′𝑆

�̂�(𝑘). Analogously we take ‘real’ (=twisted)
tentacles 𝑇 ′

�̂�(𝑘) and we squeeze inside them by 𝐻𝑘 to obtain ‘real’ squeezed tenta-
cles ̃︀𝑇 ′

�̂�(𝑘). For 𝑘 ≥ 1 we define

𝐻𝑘(𝑥) := 𝑆�̂�(𝑘) ∘ (𝐻𝑆
𝑘 + 𝑧�̂�(𝑘)) ∘ (𝑆−1

�̂�(𝑘)(𝑥)− 𝑧�̂�(𝑘)) for 𝑥 ∈ 𝑇 ′
�̂�(𝑘), (3.15)

̃︀𝑇 ′
�̂�(𝑘) := 𝐻𝑘(𝑇

′
�̂�(𝑘)) and ̃︀𝑇�̂�(𝑘) := 𝐻𝑘(𝑇�̂�(𝑘)).

Theorem 3.3. Let 𝑛 ≥ 3, ̃︀𝛿𝑘 > 0, 𝛽 ≥ 𝑛+ 1 and 𝑘 ∈ N. Then we can find small
enough 𝑑𝑘 > 𝑏𝑘 > 0 and a bilipschitz mapping ℎ𝑘 : 𝑄(0, 1) → 𝑄(0, 1) such that
ℎ0(𝑥) = 𝑥 for every 𝑥 ∈ 𝑄(0, 1),

ℎ𝑘−1(𝑥) = ℎ𝑘(𝑥) for 𝑥 /∈
⋃︁

�̂�(𝑘)∈V̂𝑘

𝑃 ′
�̂�(𝑘),

ℎ𝑘(𝑥) = 𝑥 for 𝑥 ∈ ̂︀𝑄�̂�(𝑘) and ℎ𝑘(𝑃�̂�(𝑘)) = ̃︀𝑃�̂�(𝑘).

(3.16)

We can estimate the integral of its derivative as
ˆ

⋃︀
𝑣(𝑘)∈V̂𝑘

𝑃
′
�̂�(𝑘)

|𝐷ℎ𝑘(𝑥)|𝑛−1 𝑑𝑥 ≤ ̃︀𝛿𝑘. (3.17)

Moreover, a pointwise limit ℎ of ℎ𝑘 is continuous, 𝐽ℎ(𝑥) > 0 a.e., and

ℎ(𝑙𝑥) = 𝑥 for every 𝑥 ∈ 𝐶𝑇
𝐵 ,

where 𝑙𝑥 is defined by (3.2).
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Proof. We set ℎ0(𝑥) = 𝑥 and further we define (see (3.15))

ℎ𝑘(𝑥) =

{︃
ℎ𝑘−1(𝑥) for 𝑥 /∈ ⋃︀

�̂�(𝑘)∈V̂𝑘 𝑇 ′
�̂�(𝑘),

𝐻𝑘(𝑥) for 𝑥 ∈ 𝑇 ′
�̂�(𝑘),

(3.18)

which clearly fulfills (3.16) since 𝐻𝑘(𝑥) = ℎ𝑘−1(𝑥) = 𝑥 on all 𝑄(𝑧�̂�(𝑘), �̂�𝑘).
We have 2𝑛𝑘 different sets 𝑇 ′

�̂�(𝑘) and all of them are bilipschitz copy of 𝑇 ′𝑆
𝑘 ,

mappings 𝑆�̂�(𝑘) are bilipschitz with a constant that does not depend on 𝑘, and
hence we obtain by Lemma 3.2 that

ˆ

⋃︀
𝑣(𝑘)∈V̂𝑘

𝑇
′
�̂�(𝑘)

|𝐷ℎ𝑘(𝑥)|𝑛−1 𝑑𝑥 ≤ 2𝑛𝑘𝐶

ˆ

𝑇 ′𝑆
𝑘

|𝐷𝐻𝑆
𝑘 (𝑥)|𝑛−1 𝑑𝑥 ≤ 2𝑛𝑘𝐶𝛿𝑘.

Given ̃︀𝛿𝑘 we set 𝛿𝑘 = 1
𝐶
2−𝑛𝑘̃︀𝛿𝑘 and find 𝑏𝑘 and 𝑑𝑘 small enough so that (3.9) and

thus also (3.17) holds.
Outside of

⋃︀
𝑣(𝑘)∈V̂𝑘 𝑇 ′

�̂�(𝑘) all mappings ℎ𝑙, 𝑙 ≥ 𝑘, are equal to ℎ𝑘−1 and they
are therefore bilipschitz there and 𝐽ℎ𝑙 > 0 a.e. It follows that we can define
ℎ = lim𝑘→∞ ℎ𝑘 and it is defined everywhere outside of (see (3.2) and (3.6))

∞⋂︁

𝑘=1

⋃︁

�̂�(𝑘)∈V̂𝑘

𝑇 ′
�̂�(𝑘) =

⋃︁

𝑥∈𝐶𝑇
𝐵

𝑙𝑥.

Moreover, it is continuous and 𝐽ℎ > 0 a.e. there. By (3.8) we know that
ℒ𝑛(

⋃︀
𝑥∈𝐶𝑇

𝐵
𝑙𝑥) = 0 and then ℎ is defined a.e. Since

ℎ𝑘(𝑇�̂�(𝑘)) = ̃︀𝑇�̂�(𝑘) and diam ̃︀𝑇�̂�(𝑘) → 0

it is not difficult to see that ℎ(𝑙𝑥) = 𝑥 for every 𝑥 ∈ 𝐶𝑇
𝐵 . The continuity of ℎ

everywhere follows.

3.4 Counterexample in Theorem 1.1

Construction of the counterexample in Theorem 1.1. Let us define a Cantor-type
set 𝐶𝐴 of positive measure by

𝛼𝑘 =
1

2

(︀
1 + 2−𝑘𝛽

)︀
.

We need the sequence of functions 𝑔𝑘, built in Section 2.5, to map 𝐶𝐴 onto the a
Cantor-type set 𝐶𝐵 with small enough ‘windows’ defined by (2.10), i.e.

𝛽𝑘 = 2−𝑘𝛽 with 𝛽 ≥ 𝑛+ 1.

According to (2.6) in the 𝑖-th frame 𝑄′
𝑣(𝑖) ∖𝑄𝑣(𝑖), 𝑖 ≤ 𝑘, we have

|𝐷(𝑔𝑘)
−1(𝑥)| ≈ max

{︂
𝛼𝑖
𝛽𝑖
,
𝛼𝑖−1 − 𝛼𝑖
𝛽𝑖−1 − 𝛽𝑖

}︂
≈ 2𝑖𝛽 (3.19)
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and on ̃︀𝑄𝑣(𝑘) we have
|𝐷(𝑔𝑘)

−1(𝑥)| ≈ 𝛼𝑘
𝛽𝑘

≈ 2𝑘𝛽. (3.20)

We also need the bilipschitz mapping 𝐿, defined in Section 2.6, to map 𝐶𝐵 to
a Cantor tower 𝐶𝑇

𝐵 , and we have

|𝐷𝐿(𝑥)| ≤ 𝑙, |𝐷𝐿−1(𝑥)| ≤ 𝑙. (3.21)

Let us start from the Cantor tower 𝐶𝑇
𝐵 and apply our mapping ℎ𝑘 from The-

orem 3.3 to squeeze the inner part of the cube. Then we need a mapping 𝐿−1 to
go from 𝐶𝑇

𝐵 to 𝐶𝐵, and (𝑔𝑘)
−1 to go to the Cantor set of positive measure 𝐶𝐴.

The final mapping 𝑓 is a pointwise limit of

𝑓𝑘(𝑥) = (𝑔𝑘)
−1 ∘ 𝐿−1 ∘ ℎ𝑘(𝑥)

almost everywhere (see Fig. 7). Mappings 𝑓𝑘 are clearly bilipschitz and below we
show that 𝑓𝑘 → 𝑓 strongly in 𝑊 1,𝑛−1 and hence 𝑓 is a strong limit of Sobolev
homeomorphisms 𝑓𝑘 such that 𝑓𝑘(𝑥) = 𝑥 on 𝜕[−1, 1]𝑛. We know that 𝑔−1 =
lim𝑘→∞(𝑔𝑘)

−1 is a homeomorphism which maps 𝐶𝐵 onto 𝐶𝐴 and that 𝐿−1 is
a homeomorphism which maps 𝐶𝑇

𝐵 onto 𝐶𝐵. By Theorem 3.3 we know that
ℎ = lim𝑘→∞ ℎ𝑘 is continuous and the standard computation shows that

𝑓(𝑥) = 𝑔−1 ∘𝐿−1 ∘ℎ(𝑥) and it is a continuous mapping which maps 𝐶𝑇
𝐵 onto 𝐶𝐴.

By Theorem 3.3 we also know that for every 𝑥 ∈ 𝐶𝑇
𝐵 we have ℎ(𝑙𝑥) = 𝑥 and

clearly 𝑔−1 ∘ 𝐿−1(𝑥) = 𝑦 where 𝑦 is the corresponding point in 𝐶𝐴 (see (3.1)). It
follows that 𝑓−1(𝑦) is a continuum 𝑙𝑥 for every 𝑦 ∈ 𝐶𝐴. Finally, 𝐽𝐿−1 > 0 a.e.,
𝐽ℎ > 0 a.e. by Theorem 3.3, and by the construction we also have 𝐽𝑔−1 > 0 a.e.
as it is locally equal to some bilipschitz mapping 𝑔−1

𝑘 on [−1, 1]𝑛 ∖ 𝐶𝐵. It is not
difficult to see that 𝑓 is locally bilipschitz on [−1, 1]𝑛 ∖⋃︀𝑥∈𝐶𝑇

𝐵
𝑙𝑥 and hence we can

use the composition formula for derivatives to obtain (see (3.8))

𝐽𝑓 (𝑥) = 𝐽𝑔−1

(︀
𝐿−1(ℎ(𝑥))

)︀
𝐽𝐿−1

(︀
ℎ(𝑥)

)︀
𝐽ℎ(𝑥) > 0 for a.e. 𝑥 ∈ [−1, 1]𝑛.

ℎ𝑘 𝐿−1 𝑔−1
𝑘

Figure 7: Mapping 𝑓𝑘.

It remains to show that 𝑓 ∈ 𝑊 1,𝑛−1. We show that mappings 𝑓𝑘 form a
Cauchy sequence in 𝑊 1,𝑛−1. Since 𝑓𝑘 → 𝑓 pointwise, it is easy to see that 𝑓𝑘
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converges strongly to 𝑓 . We have fixed 𝛽 > 𝑛+1 so that Theorem 2.4 holds and
we set

̃︀𝛿𝑘 =
2−𝑘𝛽(𝑛−1)

𝑘2
. (3.22)

Given this ̃︀𝛿𝑘 we find 𝑑𝑘 > 𝑏𝑘 > 0 according to Theorem 3.3. Note that all
conclusions above (𝑓 is continuous, 𝐽𝑓 > 0 a.e.) are valid, but we need this
choice of 𝑑𝑘 > 𝑏𝑘 to show that 𝑓 ∈ 𝑊 1,𝑛−1.

By Theorem 3.3 we know that ℎ𝑘−1(𝑥) = ℎ𝑘(𝑥) for every 𝑥 /∈ ⋃︀
�̂�(𝑘)∈V̂𝑘 𝑃 ′

�̂�(𝑘)

and clearly by (2.7) 𝑔−1
𝑘−1(𝑦) = 𝑔−1

𝑘 (𝑦) for 𝑦 /∈ ⋃︀
𝑣(𝑘)∈V𝑘−1

̃︀𝑄𝑣(𝑘−1). In view of (2.11)
it follows that

𝑓𝑘(𝑥) = 𝑓𝑘−1(𝑥) for 𝑥 /∈
⋃︁

�̂�(𝑘)∈V̂𝑘

𝑃 ′
�̂�(𝑘) ∪

⋃︁

�̂�(𝑘−1)∈V̂𝑘−1

̂︀𝑄�̂�(𝑘−1) =:𝑀𝑘.

Therefore
ˆ

𝑄(0,1)

|𝐷𝑓𝑘 −𝐷𝑓𝑘−1|𝑛−1 =

ˆ

𝑀𝑘

|𝐷𝑓𝑘 −𝐷𝑓𝑘−1|𝑛−1

≤ 𝐶

ˆ

𝑀𝑘

|𝐷𝑓𝑘|𝑛−1 + 𝐶

ˆ

𝑀𝑘

|𝐷𝑓𝑘−1|𝑛−1.

(3.23)

Note that 𝑓𝑘 is bilipschitz (as a composition of bilipschitz mappings) and
hence we can compute its derivative a.e. by the composition of derivatives. With
the help of (3.21) we get

|𝐷𝑓𝑘(𝑥)| ≤ |𝐷𝑔−1
𝑘 | · |𝐷𝐿−1| · |𝐷ℎ𝑘| ≤ 𝑙

⃒⃒
𝐷𝑔−1

𝑘 (𝐿−1 ∘ ℎ𝑘(𝑥))
⃒⃒
·
⃒⃒
𝐷ℎ𝑘(𝑥)

⃒⃒
.

By (3.19) and (3.20) we know that everywhere in 𝑄(0, 1) we have |𝐷𝑔−1
𝑘 | ≤ 𝐶2𝑘𝛽

and |𝐷𝑔−1
𝑘−1| ≤ 𝐶2𝑘𝛽. It follows that

|𝐷𝑓𝑘(𝑥)| ≤ 𝐶2𝑘𝛽|𝐷ℎ𝑘(𝑥)| and |𝐷𝑓𝑘−1(𝑥)| ≤ 𝐶2𝑘𝛽|𝐷ℎ𝑘−1(𝑥)|.
For 𝑥 ∈ ̂︀𝑄�̂�(𝑘−1)∖

⋃︀
�̂�(𝑘)∈V̂𝑘 𝑃 ′

�̂�(𝑘) we know that ℎ𝑘(𝑥) = ℎ𝑘−1(𝑥) = 𝑥 by Theorem
3.3 and hence
ˆ

⋃︀
�̂�(𝑘−1)∈V𝑘−1

̂︀𝑄�̂�(𝑘−1)∖
⋃︀

�̂�(𝑘)∈V̂𝑘
𝑃 ′
�̂�(𝑘)

|𝐷𝑓𝑘|𝑛−1 ≤ 𝐶2𝑘𝛽(𝑛−1)ℒ𝑛
(︁ ⋃︁

�̂�(𝑘)∈V𝑘

̂︀𝑄�̂�(𝑘)

)︁

≤ 𝐶2𝑘𝛽(𝑛−1)2𝑛𝑘(2−𝑘2−𝑘𝛽)𝑛 ≤ 𝐶2−𝑘𝛽.

With the help of Theorem 3.3 and (3.22) we obtain
ˆ

⋃︀
�̂�(𝑘)∈V𝑘 𝑃

′
�̂�(𝑘)

|𝐷𝑓𝑘|𝑛−1 ≤ 𝐶2𝑘𝛽(𝑛−1)

ˆ

⋃︀
�̂�(𝑘)∈V𝑘 𝑃

′
�̂�(𝑘)

|𝐷ℎ𝑘|𝑛−1 ≤ 𝐶2𝑘𝛽(𝑛−1)̃︀𝛿𝑘 ≤
𝐶

𝑘2
.

Analogous estimate holds also for 𝐷𝑓𝑘−1 and hence (3.23) implies that
ˆ

𝑄(0,1)

|𝐷𝑓𝑘 −𝐷𝑓𝑘−1|𝑛−1 ≤ 𝐶2−𝑘𝛽 +
𝐶

𝑘2
.

Since 2−𝑘𝛽 + 1/𝑘2 is a convergent series it follows immediately that 𝑓𝑘 form a
Cauchy sequence in 𝑊 1,𝑛−1. It follows that 𝑓 ∈ 𝑊 1,𝑛−1.
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4 Injectivity in the domain: counterexample in
Theorem 1.2

4.1 Stretching inside tentacles

The following gives us an analog of Lemma 3.2. We can view the mapping ̃︀𝐻𝑆
𝑘

as the inverse of 𝐻𝑆
𝑘 from Lemma 3.2 but formally we define it otherwise so our

estimates are simpler.

Lemma 4.1. Let 𝑛 ≥ 3, 𝛿𝑘 > 0, 𝛽 ≥ 𝑛 + 1 and 𝑘 ∈ N. Then we can find small
enough 𝑑𝑘 > 𝑏𝑘 > 0 and a bilipschitz mapping ̃︀𝐻𝑆

𝑘 : 𝑄(0, 1) → 𝑄(0, 1) such that
̃︀𝐻𝑆
0 (𝑥) = 𝑥 for every 𝑥 ∈ 𝑄(0, 1)

̃︀𝐻𝑆
𝑘 (𝑥) = ̃︀𝐻𝑆

𝑘−1(𝑥) for 𝑥 /∈ ̃︀𝑃 ′
𝑘,

̃︀𝐻𝑆
𝑘 (𝑥) = 𝑥 for 𝑥 ∈ 𝑄(0, �̂�𝑘)

and ̃︀𝐻𝑆
𝑘 maps ̃︀𝑃𝑘 onto 𝑃𝑘 linearly.

Furthermore,
ˆ

̃︀𝑃 ′𝑆
𝑘

|𝐷 ̃︀𝐻𝑆
𝑘 (𝑥)|𝑛−1 𝑑𝑥 ≤ 𝛿𝑘. (4.1)

Proof. This proof is analogous to the proof of Lemma 3.2 and hence we skip some
details. We set ̃︀𝐻𝑆

0 (𝑥) = 𝑥 and we define

̃︀𝐻𝑆
𝑘 (𝑥) = ̃︀𝐻𝑆

𝑘−1(𝑥) for 𝑥 /∈ ̃︀𝑃 ′
𝑘. (4.2)

Then on 𝜕 ̃︀𝑃 ′
𝑘 we have

̃︀𝐻𝑆
𝑘 (𝑥) = [̃︀𝑙𝑘−1(𝑥1), 𝑥2, . . . , 𝑥𝑛], where ̃︀𝑙𝑘−1(𝑥) = 𝑥1 for 𝑥1 ≤ �̂�𝑘−1 and

for 𝑥1 ∈ [�̂�𝑘−1,̃︀𝑐𝑘] it is linear with ̃︀𝑙𝑘−1(�̂�𝑘−1) = �̂�𝑘−1 and ̃︀𝑙𝑘−1(̃︀𝑎𝑘−1) = 𝑎𝑘−1.
(4.3)

Further, we define it for 𝑥 ∈ {̃︀𝑎𝑘} × [−𝑑𝑘, 𝑑𝑘]𝑛−1 as

̃︀𝐻𝑆
𝑘 (𝑥) = [̃︀𝜙𝑘(𝑥), 𝑥2, . . . , 𝑥𝑛] where

̃︀𝜙𝑘(𝑥) := ̃︀𝑙𝑘−1(̃︀𝑎𝑘) +
(︁
log log

1

max{𝑏𝑘, |[𝑥2, . . . , 𝑥𝑛]|∞} − log log
1

𝑑𝑘

)︁
.

We fix 𝑑𝑘 small enough so that (𝐶(4.4) is a constant whose exact value we specify
later)

2(𝛽+1)𝑘(𝑛−1)

log𝑛−2 1
𝑑𝑘

< 𝐶(4.4)𝛿𝑘 (4.4)

and we fix 𝑏𝑘 < 𝑑𝑘 so that

for |[𝑥2, . . . , 𝑥𝑛]|∞ = 𝑏𝑘 we have ̃︀𝜙𝑘(𝑥) = ̃︀𝑙𝑘−1(̃︀𝑎𝑘)+
(︁
log log

1

𝑏𝑘
− log log

1

𝑑𝑘

)︁
= 𝑎𝑘.

(4.5)
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For every 𝑥 ∈ ̃︀𝑃𝑘 we can now define
̃︀𝐻𝑆
𝑘 (𝑥) =

[︀̃︀𝑙𝑘(𝑥1), 𝑥2, . . . , 𝑥𝑛
]︀
where ̃︀𝑙𝑘 is linear with ̃︀𝑙𝑘(�̂�𝑘) = �̂�𝑘 and ̃︀𝑙𝑘(̃︀𝑎𝑘) = 𝑎𝑘.

(4.6)
Finally on the hyperplane 𝑥 ∈ {�̂�𝑘−1} × [−𝑑𝑘, 𝑑𝑘]𝑛−1 we define it as

̃︀𝐻𝑆
𝑘 (𝑥) = [ ̃︀𝜓𝑘(𝑥), 𝑥2, . . . , 𝑥𝑛] where
̃︀𝜓𝑘(𝑥) := ̃︀𝑙𝑘−1(�̂�𝑘−1) + ̃︀𝐴𝑘

(︁
log log

1

max{𝑏𝑘, |[𝑥2, . . . , 𝑥𝑛]|∞} − log log
1

𝑑𝑘

)︁
.

The constant ̃︀𝐴𝑘 is chosen so that for 𝑥 ∈ ̃︀𝑃𝑘 ∩ {𝑥1 = �̂�𝑘−1}, i.e. for every
|[𝑥2, . . . , 𝑥𝑛]|∞ ≤ 𝑏𝑘 we have

̃︀𝑙𝑘−1(�̂�𝑘−1) + ̃︀𝐴𝑘
(︁
log log

1

𝑏𝑘
− log log

1

𝑑𝑘

)︁
=
𝑎𝑘 + 𝑐𝑘

2
.

By this and (4.5) we obtain

1 ≥ ̃︀𝑙𝑘−1(�̂�𝑘−1) + ̃︀𝐴𝑘
(︁
log log

1

𝑏𝑘
− log log

1

𝑑𝑘

)︁
= ̃︀𝑙𝑘−1(�̂�𝑘−1) + ̃︀𝐴𝑘

(︁
𝑎𝑘 − ̃︀𝑙𝑘−1(̃︀𝑎𝑘)

)︁

and hence
̃︀𝐴𝑘 ≤

1

𝑎𝑘 − ̃︀𝑙𝑘−1(̃︀𝑎𝑘)
=

1

𝑎𝑘 − ̃︀𝑎𝑘
≤ 𝐶.

For every 𝑥 ∈ [�̂�𝑘,̃︀𝑐𝑘]× [−𝑑𝑘, 𝑑𝑘]𝑛−1 we define for 𝑥 ∈ ̃︀𝑃 ′
𝑘

̃︀𝐻𝑆
𝑘 (𝑥) =

[︁
ℎ
(︀
𝑥1; [�̂�𝑘, �̂�𝑘]; [�̂�𝑘−1, ̃︀𝜓𝑘(𝑥)], [̃︀𝑎𝑘, ̃︀𝜙𝑘(𝑥)], [̃︀𝑐𝑘,̃︀𝑙𝑘−1(̃︀𝑐𝑘)]

)︀
, 𝑥2, . . . , 𝑥𝑛

]︁
.

Again ̃︀𝐻𝑆
𝑘 is bilipschitz on 𝑄(0, 1). By (2.14) we estimate the derivative with

respect to first coordinate

|𝐷1
̃︀𝐻𝑆
𝑘 (𝑥)| ≤

⎧
⎪⎪⎨
⎪⎪⎩

̃︀𝜓𝑘(𝑥)−�̂�𝑘
�̂�𝑘−1−�̂�𝑘 , for �̂�𝑘 < 𝑥1 < �̂�𝑘−1,
̃︀𝜙𝑘(𝑥)− ̃︀𝜓𝑘(𝑥)
̃︀𝑎𝑘−�̂�𝑘−1

, for �̂�𝑘−1 < 𝑥1 < ̃︀𝑎𝑘,
𝑙𝑘−1(̃︀𝑐𝑘)−̃︀𝜙𝑘(𝑥)

̃︀𝑐𝑘−̃︀𝑎𝑘 , if ̃︀𝑎𝑘 < 𝑥1 < ̃︀𝑐𝑘.

and this is clearly bounded by 𝐶2(𝛽+1)𝑘. Furthermore, by (2.13) and ̃︀𝐴𝑘 ≤ 𝐶 we
know that we can estimate the derivative with respect to other coordinates by

𝐶max
{︁ 1

�̂�𝑘−1 − �̂�𝑘
,

1

̃︀𝑎𝑘 − �̂�𝑘−1

,
1

̃︀𝑐𝑘 − ̃︀𝑎𝑘

}︁⃒⃒
⃒𝐷

(︁
log log

1

max{𝑏𝑘, |[𝑥2, . . . , 𝑥𝑛]|∞}
)︁⃒⃒
⃒

The maximum of the three terms can be estimated by 𝐶 1
�̂�𝑘

≤ 𝐶2(𝛽+1)𝑘 an a simple
change to polar/spherical coordinates in R𝑛−1 and (4.4) gives us
ˆ

̃︀𝑃 ′
𝑘

|𝐷 ̃︀𝐻𝑆
𝑘 (𝑥)|𝑛−1 𝑑𝑥 ≤ 𝐶2(𝛽+1)𝑘(𝑛−1)

ˆ

̃︀𝑃 ′
𝑘

1

|[𝑥2, . . . , 𝑥𝑛]|𝑛−1
∞ log𝑛−1 1

|[𝑥2,...,𝑥𝑛]|∞
𝑑𝑥

≤ 𝐶2(𝛽+1)𝑘(𝑛−1)

ˆ 𝑑𝑘

0

1

𝑟𝑛−1 log𝑛−1 1
𝑟

𝑟𝑛−2 𝑑𝑟

≤ 𝐶2(𝛽+1)𝑘(𝑛−1) 1

log𝑛−2 1
𝑑𝑘

< 𝐶𝐶(4.4)𝛿𝑘 < 𝛿𝑘,

where we have chosen 𝐶(4.4) in (4.4) so that the last inequality holds.
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Analogously to Theorem 3.3 we now obtain:

Theorem 4.2. Let 𝑛 ≥ 3, ̃︀𝛿𝑘 > 0, 𝛽 ≥ 𝑛+ 1 and 𝑘 ∈ N. Then we can find small
enough 𝑑𝑘 > 𝑏𝑘 > 0 and a bilipschitz mapping ̃︀ℎ𝑘 : 𝑄(0, 1) → 𝑄(0, 1) such that
̃︀ℎ0(𝑥) = 𝑥 for every 𝑥 ∈ 𝑄(0, 1),

̃︀ℎ𝑘+1(𝑥) = ̃︀ℎ𝑘(𝑥) for 𝑥 /∈
⋃︁

�̂�(𝑘)∈V̂𝑘

̃︀𝑃 ′
�̂�(𝑘),

̃︀ℎ𝑘(𝑥) = 𝑥 for 𝑥 ∈ ̂︀𝑄�̂�(𝑘) and ̃︀ℎ𝑘( ̃︀𝑃�̂�(𝑘)) = 𝑃�̂�(𝑘).

(4.7)

We can estimate the integral of its derivative as
ˆ

⋃︀
𝑣(𝑘)∈V̂𝑘

̃︀𝑃 ′
�̂�(𝑘)

|𝐷̃︀ℎ𝑘(𝑥)|𝑛−1 𝑑𝑥 ≤ ̃︀𝛿𝑘.

Moreover, a pointwise limit ̃︀ℎ of ̃︀ℎ𝑘 is continuous and one-to-one on 𝑄(0, 1)
and 𝐽̃︀ℎ(𝑥) > 0 a.e. And, there is a continuous ̃︀𝑡 : 𝑄(0, 1) → 𝑄(0, 1) which is a
generalized inverse to ̃︀ℎ, i.e. ̃︀𝑡(̃︀ℎ(𝑥)) = 𝑥 for every 𝑥 ∈ [−1, 1]𝑛. On the other
hand,

̃︀𝑡(𝑙𝑥) = 𝑥 for every 𝑥 ∈ 𝐶𝑇
𝐵 , (4.8)

where 𝑙𝑥 is defined by (3.2).

Proof. The proof of this theorem is analogous to the proof of Theorem 3.3 and
therefore we skip it. We only explain why (4.8) holds.

Outside of
⋃︀

𝑣(𝑘)∈V̂𝑘
̃︀𝑇 ′
�̂�(𝑘) all mappings ̃︀ℎ𝑙, 𝑙 ≥ 𝑘, are equal to ̃︀ℎ𝑘−1 and hence

they are bilipschitz there and 𝐽̃︀ℎ𝑙 > 0 a.e. It follows that we can define ̃︀ℎ =

lim𝑘→∞ ̃︀ℎ𝑘 everywhere outside of

∞⋂︁

𝑘=1

⋃︁

�̂�(𝑘)∈V̂𝑘

̃︀𝑇 ′
�̂�(𝑘) = 𝐶𝑇

𝐵

and it is one-to-one and continuous there with 𝐽̃︀ℎ > 0 a.e. For 𝑥 ∈ 𝐶𝑇
𝐵 we define

̃︀ℎ(𝑥) = 𝑥 and notice that now ̃︀ℎ is one-to-one everywhere.
We define ̃︀𝑡 = ̃︀ℎ−1 on 𝑄(0, 1) ∖ ̃︀ℎ(𝐶𝑇

𝐵) and notice that ̃︀𝑡 is continuous there.
Since

ℎ−1
𝑘 (𝑇�̂�(𝑘)) = ̃︀𝑇�̂�(𝑘) and diam ̃︀𝑇�̂�(𝑘) → 0

it is not difficult to see that for every 𝑎 ∈ 𝑙𝑥 :=
⋂︀∞
𝑘=1 𝑇�̂�(𝑘) we can define ̃︀𝑡(𝑎) = 𝑥

and now ̃︀𝑡 is continuous everywhere. For 𝑥 ∈ 𝐶𝑇
𝐵 we have ̃︀𝑡(̃︀ℎ(𝑥)) = ̃︀𝑡(𝑥) = 𝑥 and

hence ̃︀𝑡 is a generalized inverse to ̃︀ℎ.
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4.2 Counterexample in Theorem 1.2

Construction of the counterexample in Theorem 1.2. Again we use the same se-
quences

𝛼𝑘 =
1

2

(︀
1 + 2−𝑘𝛽

)︀
and 𝛽𝑘 = 2−𝑘𝛽 with 𝛽 ≥ 𝑛+ 1

to define Cantor type sets 𝐶𝐴, 𝐶𝐵 and 𝐶𝑇
𝐵 . As in the proof of Theorem 1.1 we

have the estimates of the derivatives (3.19) and (3.20). We set

̃︀𝛿𝑘 =
2−𝑘𝛽(2𝑛−1)

𝑘2
. (4.9)

Given this ̃︀𝛿𝑘 we find 𝑑𝑘 > 𝑏𝑘 > 0 so that we have Theorem 4.2.
Consider the mapping ̃︀𝑓 as a pointwise limit of

̃︀𝑓𝑘(𝑦) = 𝑔−1
𝑘 ∘ 𝐿−1 ∘ ̃︀ℎ𝑘 ∘ 𝐿 ∘ 𝑔𝑘(𝑦)

almost everywhere (see Fig. 8). For 𝑦 ∈ 𝐶𝐴 we know that 𝐿 ∘ 𝑔(𝑦) ∈ 𝐶𝑇
𝐵 where

̃︀ℎ𝑘(𝑥) = 𝑥 and hence it is easy to see that the pointwise limit is equal to ̃︀𝑓(𝑦) = 𝑦

for 𝑦 ∈ 𝐶𝐴. Therefore, we see at once that the pointwise limit of ̃︀𝑓𝑘 is

̃︀𝑓(𝑦) = 𝑔−1 ∘ 𝐿−1 ∘ ̃︀ℎ ∘ 𝐿 ∘ 𝑔(𝑦) everywhere.

Since 𝑔 and 𝐿 are homeomorphisms and ̃︀ℎ is one-to-one we obtain that ̃︀𝑓 is one-to-
one on 𝑄(0, 1). It is not difficult to see that ̃︀𝑓 is locally bilipschitz on [−1, 1]𝑛∖𝐶𝐴
and hence we can use the composition formula for derivatives to obtain

𝐽 ̃︀𝑓 (𝑦) = 𝐽𝑔−1𝐽𝐿−1𝐽̃︀ℎ𝐽𝐿𝐽𝑔 > 0 for a.e. 𝑥 ∈ [−1, 1]𝑛 ∖ 𝐶𝐴.

For 𝑦 ∈ 𝐶𝐴 we know that ̃︀𝑓(𝑦) = 𝑦 and hence 𝐽 ̃︀𝑓 = 1 for a.e. 𝑥 ∈ 𝐶𝐴 once
we show that ̃︀𝑓 ∈ 𝑊 1,1 since the weak derivative is equal to the approximative
derivative a.e.

With the help of Theorem 4.2 we obtain that the continuous mapping

𝑤(𝑦) = 𝑔−1 ∘ 𝐿−1 ∘ ̃︀𝑡 ∘ 𝐿 ∘ 𝑔(𝑦)

is a generalized inverse to ̃︀𝑓 . Moreover, for every 𝑦 ∈ 𝐶𝐴 we know that 𝑥 =
𝐿∘𝑔(𝑦) ∈ 𝐶𝑇

𝐵 . Therefore, the standard arguments show that for ̃︀𝑙𝑥 = (𝐿∘𝑔)−1(𝑙𝑥)
we have by (4.8)

𝑤(̃︀𝑙𝑥) = 𝑔−1 ∘ 𝐿−1 ∘ ̃︀𝑡 ∘ 𝐿 ∘ 𝑔(̃︀𝑙𝑥) = 𝑔−1 ∘ 𝐿−1 ∘ ̃︀𝑡(𝑙𝑥) = 𝑔−1 ∘ 𝐿−1(𝑥) = 𝑦.

Now ̃︀𝑙𝑥 is a continuum and so is 𝑤−1(𝑦) for every 𝑦 ∈ 𝐶𝐴.
By Theorem 4.2 we know that ̃︀ℎ𝑘−1 = ̃︀ℎ𝑘 for every 𝑦 for which 𝐿(𝑔𝑘(𝑦)) /∈⋃︀

�̂�(𝑘)∈V̂𝑘
̃︀𝑃 ′
�̂�(𝑘) and 𝑔𝑘−1(𝑦) = 𝑔𝑘(𝑦) for 𝑦 /∈

⋃︀
𝑣(𝑘−1)∈V𝑘−1 𝑄𝑣(𝑘−1) by (2.7). In view

of (2.11) it follows that

̃︀𝑓𝑘(𝑦) = ̃︀𝑓𝑘−1(𝑦) for 𝐿(𝑔𝑘(𝑦)) /∈
⋃︁

�̂�(𝑘)∈V̂𝑘

̃︀𝑃 ′
�̂�(𝑘) =: ̃︁𝑀𝑘 and 𝑦 /∈

⋃︁

𝑣(𝑘−1)∈V𝑘−1

𝑄𝑣(𝑘−1).
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𝑔𝑘 𝐿

ℎ−1
𝑘

𝐿−1𝑔−1
𝑘

Figure 8: Mapping ̃︀𝑓 .

Note that for 𝑥 ∈ ⋃︀
�̂�(𝑘−1)∈V̂𝑘−1

̂︀𝑄�̂�(𝑘−1) ∖ ̃︁𝑀𝑘 we have by Theorem 4.2

̃︀ℎ𝑘(𝑥) = ̃︀ℎ𝑘−1(𝑥) = 𝑥.

In view of 𝑔𝑘(𝑄𝑣(𝑘−1)) = 𝑔𝑘−1(𝑄𝑣(𝑘−1)) = ̃︀𝑄𝑣(𝑘−1) and 𝐿( ̃︀𝑄𝑣(𝑘−1)) = ̂︀𝑄�̂�(𝑘−1) we
obtain by Theorem 2.4 for 𝑦 ∈ 𝑄𝑣(𝑘−1) ∖ 𝑔−1

𝑘 (𝐿−1(̃︁𝑀𝑘)) that

̃︀𝑓𝑘−1(𝑦) = 𝑔−1
𝑘−1 ∘ 𝐿−1 ∘ 𝑥 ∘ 𝐿 ∘ 𝑔𝑘−1(𝑦) = 𝑦 and similarly ̃︀𝑓𝑘(𝑦) = 𝑦.

Therefore
ˆ

𝑄(0,1)

|𝐷 ̃︀𝑓𝑘 −𝐷 ̃︀𝑓𝑘−1|𝑛−1 =

ˆ

𝑔−1
𝑘 (𝐿−1(̃︁𝑀𝑘))

|𝐷 ̃︀𝑓𝑘 −𝐷 ̃︀𝑓𝑘−1|𝑛−1

≤ 𝐶

ˆ

𝑔−1
𝑘 (𝐿−1(̃︁𝑀𝑘))

|𝐷 ̃︀𝑓𝑘|𝑛−1 + 𝐶

ˆ

𝑔−1
𝑘 (𝐿−1(̃︁𝑀𝑘))

|𝐷 ̃︀𝑓𝑘−1|𝑛−1.

(4.10)
Note that ̃︀𝑓𝑘 is bilipschitz (as a composition of bilipschitz mappings) and

hence we can compute its derivative a.e. by the composition of derivatives. With
the help of (3.21) we get

|𝐷 ̃︀𝑓𝑘(𝑦)| ≤ |𝐷𝑔−1
𝑘 | · |𝐷𝐿−1| · |𝐷̃︀ℎ𝑘| · |𝐷𝐿| · |𝐷𝑔𝑘|

≤ 𝐶
⃒⃒
𝐷𝑔−1

𝑘 (𝐿−1 ∘ ̃︀ℎ𝑘 ∘ 𝐿 ∘ 𝑔𝑘(𝑦))
⃒⃒
·
⃒⃒
𝐷̃︀ℎ𝑘(𝐿 ∘ 𝑔𝑘(𝑦)))

⃒⃒
.
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By the change of variables
ˆ

𝑔−1
𝑘 (𝐿−1(̃︁𝑀𝑘))

|𝐷 ̃︀𝑓𝑘(𝑦)|𝑛−1 𝑑𝑦 ≤ 𝐶

ˆ

𝑔−1
𝑘 (𝐿−1(̃︁𝑀𝑘))

|𝐷𝑔−1
𝑘 |𝑛−1|𝐷̃︀ℎ𝑘|𝑛−1𝐽𝐿

𝐽𝐿

𝐽𝑔𝑘
𝐽𝑔𝑘

𝑑𝑦

≤ 𝐶

ˆ

̃︁𝑀𝑘

|𝐷𝑔−1
𝑘 (𝐿−1 ∘ ̃︀ℎ𝑘(𝑥))|𝑛−1|𝐷̃︀ℎ𝑘(𝑥)|𝑛−1 1

𝐽𝑔𝑘((𝐿 ∘ 𝑔𝑘)−1(𝑥))
𝑑𝑥.

(4.11)
Note that for every 𝑥 ∈ ̃︀𝑃 ′

�̂�(𝑘) ⊂ ̃︁𝑀𝑘 we know that 𝐿−1 ∘ ̃︀ℎ𝑘(𝑥) lies outside of
⋃︀

𝑣(𝑘)∈V𝑘
̃︀𝑄𝑣(𝑘) and hence we can use (2.6) to estimate

|𝐷𝑔−1
𝑘 (𝐿−1 ∘ ̃︀ℎ𝑘(𝑥))| ≤ 𝐶 max

𝑖=1,...,𝑘
2𝛽𝑖 = 𝐶2𝛽𝑘

and
1

𝐽𝑔𝑘((𝐿 ∘ 𝑔𝑘)−1(𝑥))
≤ 𝐶2𝛽𝑘𝑛.

Now (4.9) and (4.11) imply that
ˆ

𝑔−1
𝑘 (𝐿−1(̃︁𝑀𝑘))

|𝐷 ̃︀𝑓𝑘(𝑦)|𝑛−1 𝑑𝑦 ≤ 𝐶2𝑘𝛽(2𝑛−1)

ˆ

̃︁𝑀𝑘

|𝐷̃︀ℎ𝑘(𝑥)|𝑛−1 𝑑𝑥 ≤ 𝐶

𝑘2
.

The similar estimate holds also for 𝐷 ̃︀𝑓𝑘−1 and hence (4.10) implies that
ˆ

𝑄(0,1)

|𝐷 ̃︀𝑓𝑘 −𝐷 ̃︀𝑓𝑘−1|𝑛−1 ≤ 𝐶

𝑘2
.

Since 1/𝑘2 is a convergent series, 𝑓𝑘 form a Cauchy sequence in 𝑊 1,𝑛−1 and hence
𝑓 ∈ 𝑊 1,𝑛−1.

Example 4.3. For every 𝑛 ≥ 2 there is a set 𝐶𝐴 of Hausdorff dimension 𝑛 and
a Lipschitz mapping 𝑓𝐿 : [−1, 1]𝑛 → [−1, 1]𝑛 with 𝐽𝑓𝐿 > 0 a.e. which is a strong
limit of Sobolev homeomorphisms 𝑓𝑘 ∈ 𝑊 1,𝑛−1([−1, 1]𝑛,R𝑛) with 𝑓𝑘(𝑥) = 𝑥 for
𝑥 ∈ 𝜕[−1, 1]𝑛 such that

𝑓(𝐶𝐴) is a point.

Proof. We only briefly sketch the construction. We set 𝛼𝑘 = 1
𝑘
in the construction

of a Cantor type set 𝐶𝐴 (see Section 2.4). Then it is easy to see that the measure
of 𝐶𝐴 is zero but its Hausdorff dimension is 𝑛. We map this by 𝑔 from Section 2.5
to a Cantor type set 𝐶𝐵 given by sequence 𝛽𝑘 = 2−𝛽𝑘, 𝛽 ≥ 𝑛+ 1, as usual. Note
that by (2.5),

𝛽𝑘
𝛼𝑘

≤ 𝐶 and
𝛽𝑘−1 − 𝛽𝑘
𝛼𝑘−1 − 𝛼𝑘

≤ 𝐶

we obtain that 𝑔 is a Lipschitz mapping.
Then we map 𝐶𝐵 by the Lipschitz mapping 𝐿 from Theorem 2.4 to the Cantor

tower 𝐶𝑇
𝐵 . Now 𝐶𝑇

𝐵 ⊂ {0}𝑛−1× (−1, 1) and it is easy to find a Lipschitz mapping
𝑆 which squeezes a segment containing 𝐶𝑇

𝐵 to a single point, it is one-to-one
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outside of this segment and equals to identity on 𝜕[−1, 1]𝑛. We can choose 𝑆 to
be

𝑆(𝑥) =
[︁
𝑥1, 𝑥2, . . . , 𝑥𝑛−1, 𝑥𝑛

√︁
𝑥21 + . . .+ 𝑥2𝑛−1

]︁

on 𝑄(0, 1 − 𝛿) (fix 𝛿 > 0 so that 𝐶𝑇
𝐵 ⊂ 𝑄(0, 1 − 𝛿)) and extend it in a Lipschitz

way so that 𝑆(𝑥) = 𝑥 on 𝜕𝑄(0, 1). Finally the mapping 𝑓𝐿 := 𝑆 ∘ 𝐿 ∘ 𝑔 is a
mapping for which

𝑓𝐿(𝐶𝐴) = 𝑆(𝐶𝑇
𝐵) is a point

and we can obtain it as a weak limit of homeomorphisms in 𝑊 1,∞ (or even strong
limit in 𝑊 1,𝑝 for any 𝑝 <∞).

5 Positive statements: the case 𝑝 > 𝑛− 1

To study the injectivity a.e. with respect to the image we define slightly better
(INV) condition, see Corollary 5.3 below. We need the following generalization
of [25, Lemma 7.3] for the case with no additional assumptions on 𝐽𝑓 .

Lemma 5.1. Let 𝑓 ∈ 𝑊 1,𝑝(Ω,R𝑛), 𝑝 > 𝑛−1, be a weak limit of homeomorphisms
𝑓𝑘 in 𝑊 1,𝑝(Ω,R𝑛), and 𝑎, 𝑏 ∈ Ω. Then there exist ℒ1-null sets 𝑁𝑎 and 𝑁𝑏 such
that for every 𝑟 ∈ (0, 𝑟𝑎) ∖ 𝑁𝑎 and 𝑠 ∈ (0, 𝑟𝑏) ∖ 𝑁𝑏 (where 𝑟𝑥 := dist(𝑥, 𝜕Ω)) the
following holds:

(i) If 𝐵(𝑎, 𝑟) ⊂ 𝐵(𝑏, 𝑠), then

𝐸(𝑓 *, 𝐵(𝑎, 𝑟)) ⊂ 𝐸(𝑓 *, 𝐵(𝑏, 𝑠)).

(ii) If 𝐵(𝑎, 𝑟) ∩ 𝐵(𝑏, 𝑠) = ∅, then

𝑓 *𝑇 (𝐵(𝑎, 𝑟)) ∩ 𝑓 *𝑇 (𝐵(𝑏, 𝑠)) = ∅.

Proof. We may assume that 𝑓 equals to the representative 𝑓 *. By Lemma 2.2,
there are ℒ1-null sets 𝑁𝑎 and 𝑁𝑏 such that for every 𝑟 ∈ (0, 𝑟𝑎) ∖ 𝑁𝑎 and 𝑠 ∈
(0, 𝑟𝑏) ∖𝑁𝑏 one has 𝑓𝑘 → 𝑓 (up to subsequence) uniformly on 𝑆(𝑎, 𝑟) and 𝑆(𝑏, 𝑠).

To establish (i), we show that deg(𝑓, 𝑆(𝑏, 𝑠), 𝑦) ̸= 0 for 𝑦 ∈ 𝐸(𝑓,𝐵(𝑎, 𝑟)) ∖
𝑓(𝑆(𝑏, 𝑠)). Let us firstly suppose that 𝑦 = 𝑓(𝑥) for 𝑥 ∈ 𝑆(𝑎, 𝑟). Since 𝑓(𝑆(𝑏, 𝑠))
is compact and 𝑓𝑘 converge uniformly on the sphere 𝑆(𝑏, 𝑠) there exist 𝜀 > 0 and
𝑘0 ∈ N such that for every 𝑘 > 𝑘0 we have 𝐵(𝑦, 𝜀) ∩ 𝑓𝑘(𝑆(𝑏, 𝑠)) = ∅. Moreover,
𝑥 ∈ 𝑆(𝑎, 𝑟) yields 𝑦 = lim𝑘→∞ 𝑓𝑘(𝑥), and we may assume that 𝑓𝑘(𝑥) ∈ 𝐵(𝑦, 𝜀) for
all big enough 𝑘. Therefore,

deg(𝑓𝑘, 𝑆(𝑏, 𝑠), 𝑦) = deg(𝑓𝑘, 𝑆(𝑏, 𝑠), 𝑓𝑘(𝑥)) (5.1)

for 𝑘 > 𝑘0. Then the continuity of the degree under uniform convergence (2.2)
yields

deg(𝑓, 𝑆(𝑏, 𝑠), 𝑦) = lim
𝑘→∞

deg(𝑓𝑘, 𝑆(𝑏, 𝑠), 𝑦). (5.2)
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Because 𝑓𝑘 are homeomorphisms and 𝑥 ∈ (𝑆(𝑎, 𝑟) ∖ 𝑆(𝑏, 𝑟)) ⊂ 𝐵(𝑏, 𝑠) we obtain,
that

deg(𝑓𝑘, 𝑆(𝑏, 𝑠), 𝑓𝑘(𝑥)) ̸= 0.

Hence, (5.1) and (5.2), as well as the fact that the degree is integer valued, give

deg(𝑓, 𝑆(𝑏, 𝑠), 𝑦) = lim
𝑘→∞

deg(𝑓𝑘, 𝑆(𝑏, 𝑠), 𝑦)

= lim
𝑘→∞

deg(𝑓𝑘, 𝑆(𝑏, 𝑠), 𝑓𝑘(𝑥)) ̸= 0.

It remains to prove the case when 𝑦 /∈ 𝑓(𝑆(𝑎, 𝑟)) (so deg(𝑓, 𝑆(𝑎, 𝑟), 𝑦) ̸= 0). As
before, the uniform convergence on spheres 𝑆(𝑎, 𝑟) and 𝑆(𝑏, 𝑠) and the continuity
of the degree ensure

deg(𝑓, 𝑆(𝑎, 𝑟), 𝑦) = lim
𝑚→∞

deg(𝑓𝑚, 𝑆(𝑎, 𝑟), 𝑦) = deg(𝑓𝑘, 𝑆(𝑎, 𝑟), 𝑦),

deg(𝑓, 𝑆(𝑏, 𝑠), 𝑦) = lim
𝑚→∞

deg(𝑓𝑚, 𝑆(𝑏, 𝑠), 𝑦) = deg(𝑓𝑘, 𝑆(𝑏, 𝑠), 𝑦),

for some big 𝑘 ∈ N. Since 𝑦 ∈ 𝐸(𝑓,𝐵(𝑎, 𝑟)) ∖ 𝑓(𝑆(𝑎, 𝑟)), we have

deg(𝑓, 𝑆(𝑎, 𝑟), 𝑦) ̸= 0,

and so deg(𝑓𝑘, 𝑆(𝑎, 𝑟), 𝑦) ̸= 0. Further, 𝑓𝑘 is a homeomorphism and 𝐵(𝑎, 𝑟) ⊂
𝐵(𝑏, 𝑠), therefore deg(𝑓𝑘, 𝑆(𝑎, 𝑟), 𝑦) ̸= 0 implies deg(𝑓𝑘, 𝑆(𝑏, 𝑠), 𝑦) ̸= 0 by (2.3).
So deg(𝑓, 𝑆(𝑏, 𝑠), 𝑦) ̸= 0 and this completes the proof of (i).

To prove (ii) we assume, on the contrary, that 𝑦 ∈ 𝑓𝑇 (𝐵(𝑎, 𝑟)) ∩ 𝑓𝑇 (𝐵(𝑏, 𝑠)).
Then the uniform convergence and continuity of the degree ensure that there is
𝑘 ∈ N

0 ̸= deg(𝑓, 𝑆(𝑎, 𝑟), 𝑦) = lim
𝑚→∞

deg(𝑓𝑚, 𝑆(𝑎, 𝑟), 𝑦) = deg(𝑓𝑘, 𝑆(𝑎, 𝑟), 𝑦),

0 ̸= deg(𝑓, 𝑆(𝑏, 𝑠), 𝑦) = lim
𝑚→∞

deg(𝑓𝑚, 𝑆(𝑏, 𝑠), 𝑦) = deg(𝑓𝑘, 𝑆(𝑏, 𝑠), 𝑦).

Since 𝑓𝑘 is a homeomorphism, deg(𝑓𝑘, 𝑆(𝑎, 𝑟), 𝑦) and deg(𝑓𝑘, 𝑆(𝑏, 𝑠), 𝑦) cannot
both differ from zero, which is a contradiction.

Based on Lemma 5.1 we follow [25] and [28] to define the set-valued image

𝑓𝑇 (𝑎) :=
⋂︁

𝑟>0,𝑟 /∈𝑁𝑎

𝐸(𝑓 *, 𝐵(𝑎, 𝑟)).

Note that 𝑓𝑇 (𝑎) is non-empty and compact, as an intersection of a decreasing
sequence of non-empty compact sets.

Theorem 5.2. Let 𝑓 be a weak limit of homeomorphisms 𝑓𝑘 in 𝑊 1,𝑝(Ω,R𝑛),
𝑝 > 𝑛 − 1 for 𝑛 > 2 or 𝑝 ≥ 1 for 𝑛 = 2. Then there exists an ℋ𝑛−𝑝 null
set 𝑁𝐶 ⊂ Ω and a representative ̂︀𝑓 of 𝑓 such that ̂︀𝑓 is continuous at every
𝑥 ∈ Ω ∖ 𝑁𝐶. Furthermore 𝑓𝑇 (𝑥) is a singletone for every 𝑥 ∈ Ω ∖ 𝑁𝐶, ̂︀𝑓 = 𝑓 *

cap𝑝-a.e. and ̂︀𝑓 can be chosen so that ̂︀𝑓(𝑥) ∈ 𝑓𝑇 (𝑥) for every 𝑥 ∈ Ω.
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Proof. Assume 𝑝 > 𝑛−1. The theorem follows from [25, Theorem 7.4] considering
the fact that the weak limits of homeomorphisms satisfy the (INV) condition and
Lemma 5.1 instead of [25, Lemma 7.3]. Note that the condition 𝐽𝑓 ̸= 0 a.e. comes
from [25, Lemma 7.3] and plays no part in the rest of the proof.

The fact that 𝑓𝑇 (𝑥) is a singletone follows from the proof of [25, Theorem 7.4]
as we have there

𝑁𝐶 :=
{︀
𝑥 : diam(𝑓𝑇 (𝑥)) > 0

}︀
.

In the case 𝑛 = 2, 𝑝 = 1 we know that weak limit of homeomorphisms satisfy
the (INV) condition thanks to the [9, Lemma 2.6]. And we can use the proof of
[25, Theorem 7.4] with [9, Remark 2.9] instead of [25, Lemma 7.3].

Proof of the positive part of Theorem 1.2. This follows from Theorem 5.2. The
‘moreover’ part with the additional assumption that 𝐽𝑓 > 0 a.e. was known
before, see [25, Lemma 3.4]. Note that this lemma holds even in the case 𝑝 = 1,
𝑛 = 2.

Corollary 5.3. The representative ̂︀𝑓 from Theorem 5.2 satisfies a strengthened
version of condition (INV), that is for every 𝑎 ∈ Ω and ℒ1-a.e. 𝑟 ∈ (0, 𝑟𝑎)

(i) ̂︀𝑓(𝑥) ∈ ̂︀𝑓𝑇 (𝐵(𝑎, 𝑟)) ∪ ̂︀𝑓(𝑆(𝑎, 𝑟)) for every 𝑥 ∈ 𝐵(𝑎, 𝑟) and

(ii) ̂︀𝑓(𝑥) ∈ R𝑛 ∖ ̂︀𝑓(𝐵(𝑎, 𝑟)) for every 𝑥 ∈ Ω ∖𝐵(𝑎, 𝑟).

Proof. The proof follows from [25, Corollary 7.5] with regard for Lemma 5.1 (or
[9, Remark 2.9] for 𝑛 = 2, 𝑝 = 1) and Theorem 5.2.

Proof of the positive part of Theorem 1.1. We assume that 𝑓 = ̂︀𝑓 , where ̂︀𝑓 is
from Corollary 5.3. Suppose, by contradiction, that there is 𝛿 > 0 such that for

𝐹 = {𝑦 ∈ R𝑛 : diam(𝑓−1({𝑦})) > 0}

we have ℋ𝑛−1+𝛿(𝐹 ) > 0. Clearly, 𝐹 =
⋃︀
𝑘∈N 𝐹𝑘, where

𝐹𝑘 =
{︁
𝑦 ∈ R𝑛 : diam(𝑓−1({𝑦})) > 1

𝑘

}︁
.

Hence we can fix 𝑘 ∈ N such that ℋ𝑛−1+𝛿(𝐹𝑘) > 0.
For each 𝑥 ∈ Ω there is a radius 𝑟𝑥 < 1

2𝑘
, such that

𝑓 |𝑆(𝑥,𝑟) ∈ 𝑊 1,𝑝(𝑆(𝑥, 𝑟),R𝑛) ∩ 𝒞0(𝑆(𝑥, 𝑟),R𝑛)

(see Lemma 2.2) and the assertion of Corollary 5.3 holds. Choosing a countable
covering of Ω with balls {𝐵(𝑥𝑖, 𝑟𝑥𝑖)}∞𝑖=1, due to the area formula [25, Proposi-
tion 2.7], we know that ℋ𝑛−1(𝑓(𝑆(𝑥𝑖, 𝑟𝑥𝑖))) < ∞, so ℋ𝑛−1+𝛿(𝑓(𝑆(𝑥𝑖, 𝑟𝑥𝑖))) = 0.
Therefore, even for

𝐸 :=
∞⋃︁

𝑖=1

𝑓(𝑆(𝑥𝑖, 𝑟𝑥𝑖))
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we have ℋ𝑛−1+𝛿(𝐸) = 0. We now claim, that 𝐹𝑘 ⊂ 𝐸, which is the contradiction
with ℋ𝑛−1+𝛿(𝐹𝑘) > 0.

Indeed, assume that 𝑦 ∈ 𝐹𝑘 ∖ 𝐸. Then there must be points 𝑧1 and 𝑧2 in Ω,
such that 𝑓(𝑧1) = 𝑓(𝑧2) = 𝑦 and dist(𝑧1, 𝑧2) >

1
𝑘
. Fix 𝑖 for which 𝑧1 ∈ 𝐵(𝑥𝑖, 𝑟𝑥𝑖),

𝑧2 /∈ 𝐵(𝑥𝑖, 𝑟𝑥𝑖) with the balls 𝐵(𝑥𝑖, 𝑟𝑥𝑖) covering Ω and 𝑟𝑥𝑖 <
1
2𝑘
. Because 𝑦 /∈ 𝐸

we know that 𝑦 /∈ 𝑆(𝑥𝑖, 𝑟𝑥𝑖). Therefore, Corollary 5.3 (i) states

𝑦 = 𝑓(𝑧1) ∈ 𝑓𝑇 (𝐵(𝑥𝑖, 𝑟𝑥𝑖))

and the assertion (ii) holds

𝑦 = 𝑓(𝑧2) ∈ R𝑛 ∖ 𝑓𝑇 (𝐵(𝑥𝑖, 𝑟𝑥𝑖)),

which is a contradiction.
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Existence of quasiconformal mappings
in a given Hardy space

Ondřej Bouchala1,2 Pekka Koskela1

Abstract

Let Ω be a simply connected domain in C and let 0 < 𝑝 < ∞. We
show that there is a quasiconformal mapping 𝑓 from the unit disk D onto
Ω which is in the Hardy space 𝐻𝑝.

We furthermore show that either all quasiconformal mappings from D
onto Ω are in 𝐻𝑝 for every 𝑝, or for every 0 < 𝑝 < ∞ there is a quasicon-
formal mapping 𝑓 : D → Ω with 𝑓 /∈ 𝐻𝑝.

1 Introduction
The classical definition of 𝐻𝑝 declares that an analytic function 𝑓 belongs to

𝐻𝑝, 0 < 𝑝 < ∞ when

‖𝑓‖𝐻𝑝 := sup
0<𝑟<1

(︂∫︁

𝑆1

|𝑓(𝑟𝜔)|𝑝 d𝜔
)︂ 1

𝑝

< ∞. (1)

If 𝑓 is additionally univalent (i.e. a conformal map), then we have 𝑓 ∈ 𝐻𝑝 for all
0 < 𝑝 < 1

2
by the Prawitz theorem and the Koebe map 𝑓(𝑧) = 𝑧

(1−𝑧)2
shows that

this estimate is sharp. In 1970, Hansen [11] introduced the concept of a Hardy
number. In the case of a nonempty, simply connected domain Ω, this is defined
as the supremum of the exponents 𝑝 > 0 for which 𝑓 ∈ 𝐻𝑝 for a Riemann map
from the unit disk D onto Ω. Notice that if 𝑝 < 𝑞, then 𝐻𝑞 ⊆ 𝐻𝑝. Given a simply
connected domain ∅ ⊊ Ω ⊊ C, the Hardy number of Ω is independent of the
choice of conformal map from D to Ω. The relation of the Hardy number with
the geometry of Ω has been investigated in [5], [11], [12], [13], [14], [21] and [22],
and one can find different interpretations of it in [5], [21] and [22].
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In this paper we consider the case of a quasiconformal map of the unit disk D
onto a simply connected domain Ω. Recall that a homeomorphism 𝑓 is quasicon-
formal if 𝑓 ∈ 𝑊 1,2

loc (D,C) and there is a constant 𝐾 so that |𝐷𝑓(𝑧)|2 ≤ 𝐾𝐽𝑓 (𝑧)
for almost every 𝑧 ∈ D. Analogously to the case of an analytic function, we write
𝑓 ∈ 𝐻𝑝 if 𝑓 satisfies (1). The analog of the above result for univalent functions
from [4, Theorem 3.2] states that 𝑓 in 𝐻𝑝 for all 𝑝 < 1

2𝐾
if 𝑓 is 𝐾-quasiconformal.

Various interpretations for the membership in 𝐻𝑝 for a quasiconformal map
𝑓 can be found in [4], [6] and [27].

Our first result shows that the analog of a Hardy number of a domain as the
supremum of the Hardy exponents over the entire class of quasiconformal maps
is not a meaningful concept.

Theorem 1.1. Let Ω ⊊ C be a non-empty, simply connected domain. Let
𝑝 ∈ (0,∞). Then there is a quasiconformal map 𝑓 from D onto Ω, which is in
the Hardy space 𝐻𝑝.

Analogously to the case of conformal maps (see [5, Theorem A.]), membership
in 𝐻𝑝 for quasiconformal maps is determined (see [4]) by the maximal growth
order of 𝑓 , that is 𝑓 ∈ 𝐻𝑝 if and only if

∫︀ 1

0
sup{|𝑓(𝑥)| : |𝑧| = 𝑟}𝑝 d𝑟 < ∞.

This suggests that one should prove Theorem 1.1 by trying to improve on the
growth order of a given map onto Ω. This is what we do: once Ω is fixed, we
consider a Riemann map and improve its maximal growth order by composing
with a suitable quasiconformal self-map of the disk. The difficulty is that we
also need to temper down the growth in many unknown directions. This is done
by constructing a suitable quasisymmetric map on 𝜕D via the boundary values
of the conformal map and by eventually applying the Beurling-Ahlfors extension
procedure.

Theorem 1.1 allows us to prove the following somewhat surprising result.
For a quasiconformal map 𝑓 , write 𝓁

(︀
𝑓(𝜕𝐵(0, 𝑡))

)︀
for the length of the curve

𝑓(𝜕𝐵(0, 𝑡)).

Corollary 1.2. Let Ω ⊊ C be a non-empty, simply connected domain. Let 𝑝 < 2.
Then there is a quasiconformal map 𝑓 : D → Ω such that

∫︁ 1

0

𝓁
(︁
𝑓
(︀
𝜕𝐵(0, 𝑡)

)︀)︁𝑝

d𝑡 < ∞.

In the case of a conformal map, the convergence of the above integral is
actually equivalent with membership in 𝐻𝑝 when 0 < 𝑝 < 2 + 𝜀, where the
precise value of 𝜀 is not known, see [10]. This, together with Theorem 1.1 and
the results in [7, Section 8], suggest that the claim of Corollary 1.2 might actually
also hold for 𝑝 = 2 or for all 0 < 𝑝 < 2 + 𝜀 for some positive 𝜀. We would like to
know if that is the case.

Theorem 1.1 shows that we can find “arbitrarily good” quasiconformal maps
from the 𝐻𝑝-perspective (“arbitrarily good” refers to 𝑝 large). Our third result
shows that either all quasiconformal maps onto Ω belong to 𝐻𝑝 for all finite 𝑝 or
we can find “arbitrarily bad” quasiconformal maps.
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Theorem 1.3. Let Ω ⊊ C be a non-empty, simply connected domain. Then we
have the following dichotomy:

(1) Either 𝑓 ∈ 𝐻𝑝 for all 0 < 𝑝 < ∞ and each quasiconformal map 𝑓 : D → Ω,

(2) or for each 𝑞 > 0 there is a quasiconformal map 𝑓 : D → Ω such that 𝑓 /∈ 𝐻𝑞.

Our proof of Theorem 1.3 is based on a similar idea as described above, but in
this case we do not rely on the Beurling-Ahlfors extension, but construct suitable
quasiconformal self-maps of the disk directly using an iteration procedure.

The above theorems deal with the class of all quasiconformal maps. Our
proofs give some estimates for the constants of quasiconformality, but it would be
interesting to know the optimal estimates. Furthermore, it would be interesting
to know sharp ranges for the possible exponents 𝑝 for which each quasiconformal
map 𝑓 : D → Ω belongs to 𝐻𝑝 in terms of geometric data of Ω. This paper deals
with the planar setting, but one could also consider the higher dimensional case.
Here the natural setting would be to assume that we are given a quasiconformal
map 𝑓 : 𝐵𝑛(0, 1) → Ω. Then necessarily 𝑓 in 𝐻𝑝 for some 𝑝 by results in [4].
Suppose that 𝑓 does not belong to 𝐻𝑝 for all 𝑝 < ∞ and let 𝑝0 be the supremum
of the 𝑝 for which 𝑓 in 𝐻𝑝. It is natural to pose the following problem. Given
0 < 𝑞 < ∞, can one find quasiconformal self-maps 𝑓1 and 𝑓2 of 𝐵𝑛 so that
𝑓 ∘ 𝑓1 ∈ 𝐻𝑞 and 𝑓 ∘ 𝑓2 /∈ 𝐻𝑞?

The proof of Theorem 1.1 can be found in Chapter 3. Theorem 1.3 is proven
in Chapter 4 and the corollaries are proven in Chapter 5.

2 Preliminaries
We write D = 𝐵(0, 1) for the open unit ball in C. We denote the unit circle

as 𝑆1 := 𝜕𝐵(0, 1) and the upper half-plane as H := {𝑥 + 𝑖𝑦 : 𝑦 > 0}. For an arc
𝐽 ⊊ 𝑆1, we denote its midpoint as 𝑒𝑖𝑡𝐽 . Furthermore, by 2𝐽 and 𝐽

2
we denote the

arc with the same midpoint as 𝐽 and double and half the length of 𝐽 respectively.
By 𝓁(𝛾) we denote the length of a curve 𝛾. Given 𝑢, 𝑣 ∈ Ω the intrinsic path

distance between 𝑢 and 𝑣 in Ω is

𝑑𝐼(𝑢, 𝑣) := inf{𝓁(𝛾) : 𝛾 is a curve connecting 𝑢 and 𝑣 in Ω}.

Furthermore we use the intrinsic “norm” defined as |𝑓(𝑧)|𝐼 := 𝑑𝐼
(︀
𝑓(0), 𝑓(𝑧)

)︀
.

Given 𝑥 ∈ D let

𝐵𝑥 := 𝐵

(︂
𝑥,

1− |𝑥|
2

)︂
, 𝑆𝑥 :=

{︂
𝑦

|𝑦| : 𝑦 ∈ 𝐵𝑥

}︂
.

We call 𝐵𝑥 a Whitney ball and refer to 𝑆𝑥 as its shadow.

Definition 2.1. The statement of [23, Theorem 1.7.] allows us to define for each
conformal 𝑔 : D → Ω and for almost every 𝜔 in 𝑆1

𝑔(𝜔) := lim
𝑟→1

𝑔(𝑟𝜔).
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By [18, Theorem 2.] this limit also exists for almost every 𝜔 ∈ 𝑆1 when 𝑔 is
quasiconformal, and hence we can use the same definition.

Definition 2.2. Let 𝑓 be a quasiconformal map of D and let 𝑝 ∈ (0,∞). We say
that 𝑓 belongs to the Hardy space 𝐻𝑝 if

‖𝑓‖𝐻𝑝 := sup
0<𝑟<1

(︂∫︁

𝑆1

|𝑓(𝑟𝜔)|𝑝 d𝜔
)︂ 1

𝑝

< ∞.

We will also use the intrinsic Hardy space 𝐻𝑝
𝐼 . We say that 𝑓 ∈ 𝐻𝑝

𝐼 if

‖𝑓‖𝐻𝑝
𝐼
:= sup

0<𝑟<1

(︂∫︁

𝑆1

|𝑓(𝑟𝜔)|𝑝𝐼 d𝜔
)︂ 1

𝑝

< ∞.

The following theorem is due to Zinsmeister [27].

Theorem 2.3 (Zinsmeister). Let 𝑓 be a quasiconformal map of D and let 0 <
𝑝 < ∞. Then 𝑓 ∈ 𝐻𝑝 if and only if 𝑓(𝜔) ∈ 𝐿𝑝(𝑆1).

Theorem 2.4. Let Ω ⊊ C be a non-empty, simply connected domain. Then
there is a conformal map 𝑔 : D → Ω which is in 𝐻𝑞 for every 0 < 𝑞 < 1

2
.

Proof. The existence of such 𝑔 is due to the Riemann mapping theorem, [20].
The fact that this 𝑔 is in 𝐻𝑞 is due to [24], see [8, Theorem 3.16.].

Theorem 2.5. Let 0 < 𝑝 < ∞. Then

(a) If 𝑔 : D → C is a conformal map, then 𝑔 ∈ 𝐻𝑝 if and only if 𝑔 ∈ 𝐻𝑝
𝐼 .

(b) If 𝑓 : D → C is a quasiconformal map and 𝑓 ∈ 𝐻𝑝
𝐼 , then 𝑓 ∈ 𝐻𝑝.

Proof. Part (a) is [16, Theorem 1.1]. To obtain Part (b), it is enough to observe
that

|𝑓(𝜔)|𝑝 ≤ |𝑓(𝜔)− 𝑓(0) + 𝑓(0)|𝑝 ≤ 𝑐(|𝑓(𝜔)|𝑝𝐼 + |𝑓(0)|𝑝),
where 𝑐 = 1 for 𝑝 ≤ 1 and 𝑐 = 2𝑝−1 for 𝑝 > 1.

We will need the concept of quasisymmetry.

Definition 2.6. Let 𝐴,𝐵 ⊆ C and let 𝜂 : [0,∞) → [0,∞) be a homeomorphism.
A homeomorphism ℎ : 𝐴 → 𝐵 is 𝜂-quasisymmetric, if

|ℎ(𝑎)− ℎ(𝑥)|
|ℎ(𝑏)− ℎ(𝑥)| ≤ 𝜂

(︂ |𝑎− 𝑥|
|𝑏− 𝑥|

)︂

for all 𝑎 ̸= 𝑥 ̸= 𝑏 in 𝐴. We say that ℎ is quasisymmetric if any such 𝜂 exists.

Lemma 2.7. Let ℎ be quasiconformal map of D onto D. Then ℎ is quasisym-
metric.
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Proof. Because of [17, Theorems 8.1. and 8.2.] we know that ℎ extends to a
quasiconformal map of the entire C. The claim follows since the [2, Theorem
3.5.3] tells us that each such quasiconformal map is also quasisymmetric.

We need the fact that the radial limit is the same as the “non-tangential”
limit. The following definition and lemma are from [23, Corollary 2.17].

Definition 2.8. We define a Stolz angle at 𝜔 ∈ 𝑆1 as

∆(𝜔, 𝛼, 𝜚) =
{︁
𝑧 ∈ D : | arg(1− 𝜔𝑧)| < 𝛼, |𝑧 − 𝜔| < 𝜚

}︁

for 0 < 𝛼 < 𝜋
2
and 𝜚 < 2 cos𝛼.

Lemma 2.9. Let 𝑔 : D → C be a conformal map. Then for almost every 𝜔 ∈ 𝑆1

and every 𝛼 and 𝜚 it holds that

lim
𝑧→𝜔, 𝑧∈Δ(𝜔,𝛼,𝜚)

𝑔(𝑧) = 𝑔(𝜔).

A Borel measure 𝜇 is said to be doubling if there is a constant 𝑐 > 0 such that
for every 𝑥 and 𝑟 > 0 it holds that

0 < 𝜇(𝐵(𝑥, 2𝑟)) ≤ 𝑐 · 𝜇(𝐵(𝑥, 𝑟)) < ∞.

Theorem 2.10. Let 𝜇 be a doubling measure on 𝑆1, 𝜇(𝑆1) = 2𝜋. Let ℎ : 𝑆1 → 𝑆1

be defined as
ℎ(𝑒𝑖𝑡) = 𝑒𝑖𝜇

(︀
𝐽0,𝑡

)︀
, 𝑡 ∈ [0, 2𝜋),

where 𝐽0,𝑡 is the arc from 0 to 𝑒𝑖𝑡. Then ℎ admits a quasiconformal extension
to D.

Proof. Because of the doubling property, it follows that ℎ is weakly quasisym-
metric, that is for some constant 𝐻 > 0 and for any three points 𝑎, 𝑏, 𝑥 ∈ 𝑆1

|ℎ(𝑎)− ℎ(𝑥)| ≤ 𝐻|ℎ(𝑏)− ℎ(𝑥)|

whenever |𝑎−𝑥| ≤ |𝑏−𝑥|. Each such ℎ is quasisymmetric by [25, Theorem 2.16.].
Finally, according to e.g. [2, Section 5.8.1], every quasisymmetric self-map of

𝑆1 can be extended to a quasiconformal self-map of D.

The following two lemmas are consequences of the Koebe distortion theorem.
They can be found in [16, Lemma 3.1 and Lemma 3.2.].

Lemma 2.11. Let 𝑓 : D → C be a conformal map. Then there exists a constant
𝑐2.11 such that for any 𝑧 ∈ D and for every 𝑥, 𝑦 ∈ 𝐵𝑧 we have

1

𝑐2.11
≤ |𝑓 ′(𝑥)|

|𝑓 ′(𝑦)| ≤ 𝑐2.11.

Lemma 2.12. Let 𝑓 : D → C be a conformal map. Then there is a constant 𝑐2.12
such that for every 𝑥 ∈ D

𝑑(𝑓(𝑥), 𝜕𝑓(D)) ≤ 𝑐2.12(1− |𝑥|)|𝑓 ′(𝑥)|.
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The following theorem is due to [9]. This formulation can be found in [16,
p. 79].

Theorem 2.13 (Gehring-Hayman theorem). There is a universal constant 𝑐2.13
with the following property: Suppose that the map 𝑓 : D → C is conformal and
𝛾 is a curve in D with endpoints 0 and 𝑥 ∈ D. Then

𝓁(𝑓([0, 𝑥))) ≤ 𝑐2.13 · 𝓁(𝑓(𝛾)).

We also need the following [16, Lemma 3.4]:

Lemma 2.14. Let 𝑓 be a conformal map of D into C. There is an absolute
constant 𝑐2.14 such that for every 𝑥 ∈ D

ℋ1
(︀
{𝜔 ∈ 𝑆𝑥 : 𝑑𝐼(𝑓(𝜔), 𝑓(𝑥)) < 𝑐2.14 · 𝑑(𝑓(𝑥), 𝜕𝑓(D))}

)︀

ℋ1(𝑆𝑥)
>

1

2
,

where ℋ1 is the one-dimensional Hausdorff measure.

3 Proof of Theorem 1.1
Lemma 3.1. Let 𝑔 be a conformal map from D into C. Let 𝐽 be an arc in 𝑆1

with 𝓁(𝐽) < 1
2
.

(a) There exist a constant 𝑐1 > 0, such that for almost every 𝑒𝑖𝑡 ∈ 𝐽 it holds that

|𝑔(𝑒𝑖𝑡)|𝐼 ≥ 𝑐1

∫︁ 1− 𝓁(𝐽)
2

0

|𝑔′(𝑠 · 𝑒𝑖𝑡𝐽 )| d𝑠. (2)

(b) There is a constant 𝑐2 > 0, such that given the condition

|𝑔(𝑒𝑖𝑡)|𝐼 ≤ 𝑐2

∫︁ 1− 𝓁(𝐽)
2

0

|𝑔′(𝑠 · 𝑒𝑖𝑡𝐽 )| d𝑠 (3)

it holds that
ℋ1({𝑡 ∈ 𝐽 : (3) holds})

ℋ1(𝐽)
≥ 1

8
.

Furthermore, there is a 𝑒𝑖𝑡0 ∈ 𝐽
2
for which both (3) for 𝐽 and (2) for 𝐽

2
hold.

Proof. To prove part (a) we fix 𝑒𝑖𝑡 ∈ 𝐽 such that |𝑔(𝑒𝑖𝑡)|𝐼 is defined, and we use
Theorem 2.13 to observe that

|𝑔(𝑒𝑖𝑡)|𝐼 ≥
1

𝑐2.13

∫︁ 1

0

|𝑔′(𝑠𝑒𝑖𝑡)| d𝑠 ≥ 1

𝑐2.13

∫︁ 1− 𝓁(𝐽)
2

0

|𝑔′(𝑠𝑒𝑖𝑡)| d𝑠.

Now it is enough to prove that ∀𝑠 ∈
(︁
0, 1− 𝓁(𝐽)

2

)︁
: |𝑔′(𝑠𝑒𝑖𝑡)| ≥ 1

𝑐2.11
|𝑔′(𝑠𝑒𝑖𝑡𝐽 )|. To

show this let us take any such 𝑠 and let 𝑡0 = 𝑡+𝑡𝐽
2

. Note that 𝑒𝑖𝑡𝐽 is the midpoint
of 𝐽 and 𝑒𝑖𝑡0 ∈ 𝐽 is the midpoint between 𝑒𝑖𝑡 and 𝑒𝑖𝑡𝐽 .



Existence of quasiconformal mappings in a given Hardy space 7

𝑒𝑖𝑡

𝑒𝑖𝑡0
𝑒𝑖𝑡𝐽

𝐽

Consider the Whitney ball 𝐵𝑠𝑒𝑖𝑡0 = 𝐵
(︀
𝑠𝑒𝑖𝑡0 , 1−𝑠

2

)︀
. Clearly

|𝑠𝑒𝑖𝑡 − 𝑠𝑒𝑖𝑡0 | = 𝑠|𝑒𝑖𝑡 − 𝑒𝑖𝑡0 | ≤ 𝑠
𝓁(𝐽)
4

≤
(︂
1− 𝓁(𝐽)

2

)︂
𝓁(𝐽)
4

≤ 𝓁(𝐽)
4

=
1−

(︁
1− 𝓁(𝐽)

2

)︁

2
≤ 1− 𝑠

2
.

Therefore 𝑠𝑒𝑖𝑡 ∈ 𝐵𝑠𝑒𝑖𝑡0 . An analogous computation can be done for 𝑡𝐽 in the place
of 𝑡, and so 𝑠𝑒𝑖𝑡𝐽 ∈ 𝐵𝑠𝑒𝑖𝑡0 as well. Hence we may use Lemma 2.11 to conclude
that indeed |𝑔′(𝑠𝑒𝑖𝑡)| ≥ 1

𝑐2.11
|𝑔′(𝑠𝑒𝑖𝑡𝐽 )|, which proves (a).

To prove (b), let us first fix 𝑥 =
(︁
1− 𝓁(𝐽)

2

)︁
𝑒𝑖𝑡𝐽 . Obviously 𝓁(𝐽) = ℋ1(𝐽).

Then 𝑆𝑥 and 𝐽 have the same midpoint and

𝓁(𝐽) ≥ 𝓁(𝑆𝑥) ≥
𝓁(𝐽)
4

. (4)

Indeed, 𝓁(𝑆𝑥) = 2 arcsin
(︁

1−|𝑥|
2|𝑥|

)︁
= 2arcsin

(︁
𝓁(𝐽)

2(2−𝓁(𝐽))

)︁
, and for 𝓁(𝐽) ∈

(︀
0, 1

2

)︀
we

have

𝓁(𝐽) ≥ 2
𝓁(𝐽)

2(2− 𝓁(𝐽))
≥ 2 arcsin

(︂
𝓁(𝐽)

2(2− 𝓁(𝐽))

)︂
≥ 𝓁(𝐽)

2(2− 𝓁(𝐽))
≥ 𝓁(𝐽)

4
. (5)

We want to use Lemma 2.14. Let us consider an 𝑒𝑖𝑡, for which

𝑑𝐼(𝑔(𝑒
𝑖𝑡), 𝑔(𝑥)) < 𝑐2.14 · 𝑑(𝑔(𝑥), 𝜕𝑔(D)). (6)

Then

|𝑔(𝑒𝑖𝑡)|𝐼 := inf{𝓁(𝑔 ∘ 𝛾) : 𝛾 goes from 0 to 𝑒𝑖𝑡}

≤
∫︁ 1− 𝓁(𝐽)

2

0

|𝑔′(𝑠𝑒𝑖𝑡𝐽 )| d𝑠
⏟  ⏞  

=:(♣)

+ inf{𝓁(𝑔 ∘ 𝛾1) : 𝛾1 goes from 𝑥 to 𝑒𝑖𝑡}.

We continue with

|𝑔(𝑒𝑖𝑡)|𝐼 ≤ (♣) + 𝑑𝐼(𝑔(𝑒
𝑖𝑡), 𝑔(𝑥)) ≤ (♣) + 𝑐2.14 · 𝑑(𝑔(𝑥), 𝜕𝑔(D))

≤ (♣) + 𝑐2.14 · 𝑐2.12 · (1− |𝑥|)|𝑔′(𝑥)|,

where we used Lemma 2.12. We know that 1− |𝑥| = 𝓁(𝐽)
2
, and so

|𝑔(𝑒𝑖𝑡)|𝐼 ≤ (♣) + 2 · 𝑐2.14 · 𝑐2.12 ·
∫︁ 1− 𝓁(𝐽)

2

1− 𝓁(𝐽)
2

− 𝓁(𝐽)
4

|𝑔′(𝑥)| d𝑠.
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Now let us consider the Whitney ball 𝐵𝑥 = 𝐵
(︁(︁

1− 𝓁(𝐽)
2

)︁
𝑒𝑖𝑡𝐽 , 𝓁(𝐽)

4

)︁
. For every

number 𝑠 ∈
(︁
1− 𝓁(𝐽)

2
− 𝓁(𝐽)

4
, 1− 𝓁(𝐽)

2

)︁
the point 𝑠 · 𝑒𝑖𝑡𝐽 is in the Whitney ball

𝐵𝑥, as is obviously 𝑥. Therefore because of Lemma 2.11 we know that |𝑔′(𝑥)| ≤
𝑐2.11 · |𝑔′(𝑠𝑒𝑖𝑡𝐽 )|. So

|𝑔(𝑒𝑖𝑡)|𝐼 ≤ (♣) + 2 · 𝑐2.14 · 𝑐2.12 · 𝑐2.11 ·
∫︁ 1− 𝓁(𝐽)

2

1− 𝓁(𝐽)
2

− 𝓁(𝐽)
4

|𝑔′(𝑠𝑒𝑖𝑡𝐽 )| d𝑠

≤
(︀
1 + 2 · 𝑐2.14 · 𝑐2.12 · 𝑐2.11

)︀ ∫︁ 1− 𝓁(𝐽)
2

0

|𝑔′(𝑠𝑒𝑖𝑡𝐽 )| d𝑠.

Therefore, if for some number 𝑡 the inequality (6) holds, then, for the same 𝑡,
(3) holds as well. To finish the proof we observe that 𝑆𝑥 ⊆ 𝐽 (see (4)) and that

ℋ1({𝑡 ∈ 𝐽 : (3) holds})
ℋ1(𝐽)

≥ ℋ1({𝑡 ∈ 𝑆𝑥 : (3) holds})
4 ·ℋ1(𝑆𝑥)

≥ ℋ1({𝑡 ∈ 𝑆𝑥 : (6) holds})
4 ·ℋ1(𝑆𝑥)

≥ 1

4
· 1
2
=

1

8

because of Lemma 2.14.
To establish the last assertion it is enough to realize that 𝑆𝑥

2
⊆ 𝐽

2
because

of (4). The condition (2) holds for almost all 𝑡 ∈ 𝐽
2
. Additionally we know

(because of Lemma 2.14) that there is a 𝑡 ∈ 𝑆𝑥

2
⊆ 𝐽

2
for which (6) and therefore

(3) holds.

Lemma 3.2. Let 𝑔 be conformal map from D into C and let ℎ be a quasiconformal
map of D onto itself, homeomorphic up to the boundary. Then for almost all
𝜔 ∈ 𝑆1 it holds that

lim
𝑟→1−

𝑔
(︀
ℎ(𝑟 · 𝜔)

)︀
= lim

𝑟→1−
𝑔
(︀
𝑟 · ℎ(𝜔)

)︀
.

Proof. Because of Lemma 2.9 it is enough to show that (when 𝑟 → 1−) ℎ(𝑟𝜔)
approaches ℎ(𝜔) non-tangentially, that is that there is 𝛼 and 𝜚 such that ℎ(𝑟𝜔) ∈
∆(𝜔, 𝛼, 𝜚) for 𝑟 close enough to 1. This follows from [19, Theorem 6], but for the
convenience of the reader let us give a proof.

Lemma 2.7 shows that ℎ is in fact quasisymmetric, i.e. there is non-decreasing
function 𝜂 : [0,∞) → [0,∞) such that for all 𝑥, 𝑦 and 𝑧 in D it holds that

|ℎ(𝑥)− ℎ(𝑦)| ≤ 𝜂

(︂ |𝑥− 𝑦|
|𝑥− 𝑧|

)︂
|ℎ(𝑥)− ℎ(𝑧)|.

𝑥
𝜔

𝑧
ℎ

ℎ(𝑥)
ℎ(𝑧)
ℎ(𝜔)
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Let us pick any 𝑥 on the line form 0 to 𝜔, choose ℎ(𝑧) to be the closest point
to ℎ(𝑥) on 𝑆1 and fix 𝑦 = 𝜔. Then, because 𝑧 is on the boundary, we know that
|𝑥−𝜔|
|𝑥−𝑧| ≤ 1. So

|ℎ(𝑥)− ℎ(𝜔)| ≤ 𝜂(1) · |ℎ(𝑥)− ℎ(𝑧)| = 𝜂(1) · 𝑑(ℎ(𝑥), 𝑆1).

This is precisely the desired non-tangentiality.

Lemma 3.3. Let 0 < 𝑞 < 𝑝 and let 𝑔 ∈ 𝐻𝑞
𝐼 with |𝑔|𝐼 ≥ 𝐾 > 0 on 𝑆1. Suppose

that ℎ : C → C is a quasiconformal map with ℎ(0) = 0, mapping 𝑆1 onto 𝑆1, so
that

ℎ−1(𝑒𝑖𝑡) := exp

⎛
⎜⎜⎝𝑖

(︂∫︁ 𝑡

0

|𝑔
(︀
𝑒𝑖𝑠

)︀
|𝑞−𝑝
𝐼 d𝑠

)︂
· 2𝜋 ·

(︂∫︁ 2𝜋

0

|𝑔
(︀
𝑒𝑖𝑠

)︀
|𝑞−𝑝
𝐼 d𝑠

)︂−1

⏟  ⏞  
=:𝐶

⎞
⎟⎟⎠

for 𝑡 ∈ [0, 2𝜋). Then 𝑔 ∘ ℎ ∈ 𝐻𝑝
𝐼 .

Proof. Because 𝑝 > 𝑞 and |𝑔|𝐼 > 𝐾 we know that 0 < 𝐶 < ∞. Firstly we
compute the derivative of (ℎ|𝜕D)−1:

|(ℎ−1)′(𝑒𝑖𝑡)| =
⃒⃒
⃒⃒
⃒

(︂∫︁ 𝑡

0

|𝑔
(︀
𝑒𝑖𝑠

)︀
|𝑞−𝑝
𝐼 d𝑠

)︂′
· 𝐶

⃒⃒
⃒⃒
⃒ =

= |𝑔
(︀
𝑒𝑖𝑡

)︀
|𝑞−𝑝
𝐼 · 𝐶.

Let us define for 𝜔 ∈ 𝑆1

𝐼(𝜔) := 𝑑𝐼(𝑔 ∘ ℎ(𝜔), 𝑔 ∘ ℎ(0)) = 𝑑𝐼(𝑔 ∘ ℎ(𝜔), 𝑔(0)).

We continue using a change of variables,
∫︁

𝑆1

|𝑔 ∘ ℎ(𝜔)|𝑝𝐼 d𝜔 =

∫︁

𝑆1

𝐼(𝜔)𝑝 d𝜔 =

∫︁

𝑆1

𝐼(ℎ−1(𝜔))𝑝 ·
⃒⃒
(ℎ−1)′(𝑒𝑖𝑠)

⃒⃒
d𝜔.

For almost every 𝜔 ∈ 𝑆1, Lemma 3.2 applied to ℎ−1(𝜔) gives

𝑔 ∘ ℎ(ℎ−1(𝜔)) := lim
𝑟→1−

𝑔
(︀
ℎ(𝑟 · ℎ−1(𝜔))

)︀
= lim

𝑟→1−
𝑔
(︀
𝑟 · 𝜔

)︀
=: 𝑔(𝜔).

Therefore 𝐼(ℎ−1(𝜔)) := 𝑑𝐼(𝑔 ∘ℎ(ℎ−1(𝜔)), 𝑔(0)) = 𝑑𝐼(𝑔(𝜔), 𝑔(0)) = |𝑔|𝐼 . So we can
continue with

∫︁

𝑆1

|𝑔 ∘ ℎ(𝜔)|𝑝𝐼 d𝜔 =

∫︁

𝑆1

|𝑔(𝜔)|𝑝𝐼 · |𝑔(𝜔)|𝑞−𝑝
𝐼 · 𝐶 d𝜔 = 𝐶 ·

∫︁

𝑆1

|𝑔(𝜔)|𝑞𝐼 d𝜔 < ∞.

Proof of Theorem 1.1. We start with the (conformal) Riemann map 𝑔 : D → Ω
from Theorem 2.4. By applying an auxiliary translation we may assume that
𝑔(0) = 0. We know that 𝑔 ∈ 𝐻𝑞 for all 0 < 𝑞 < 1

2
. Let us fix 𝑞 = 1

3
. Without

loss of generality we may assume that 𝑝 > 𝑞. Because of Theorem 2.5 (a) we also
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know that 𝑔 ∈ 𝐻𝑞
𝐼 . We want to define 𝑓 := 𝑔 ∘ ℎ where ℎ is as in Lemma 3.3. If

we find such an ℎ, then we are done because 𝑓 is quasiconformal, 𝑓 ∈ 𝐻𝑝
𝐼 , and

therefore because of Theorem 2.5 (b) we know that indeed 𝑓 ∈ 𝐻𝑝.
To find such an ℎ we firstly define ℎ̂ on 𝑆1 by setting

ℎ̂
−1
(𝑒𝑖𝑡) := exp

⎛
⎜⎜⎝𝑖

(︂∫︁ 𝑡

0

|𝑔
(︀
𝑒𝑖𝑠

)︀
|𝑞−𝑝
𝐼 d𝑠

)︂
· 2𝜋 ·

(︂∫︁ 2𝜋

0

|𝑔
(︀
𝑒𝑖𝑠

)︀
|𝑞−𝑝
𝐼 d𝑠

)︂−1

⏟  ⏞  
=:𝐶

⎞
⎟⎟⎠

for 𝑡 ∈ [0, 2𝜋). This is a homeomorphism on 𝑆1, and therefore ℎ̂ is well-defined
on 𝑆1. We want ℎ to be a quasiconformal extension of ℎ̂ to D. (Without loss of
generality ℎ(0) = 0.) The inverse of quasisymmetric map is quasisymmetric (see
[2, Lemma 3.2.2.]). Because of this and Theorem 2.10 it is enough to show that

∫︁

2𝐽

|𝑔(𝑒𝑖𝑡)|𝑞−𝑝
𝐼 d𝑡 ≤ 𝑐 ·

∫︁

𝐽

|𝑔(𝑒𝑖𝑡)|𝑞−𝑝
𝐼 d𝑡, (7)

whenever 𝐽 ⊆ 𝑆1 is an arc. Without loss of generality we may assume that
𝓁(2𝐽) < 1

2
.

We claim that there is 0 < 𝑐0 < ∞ such that

1

𝑐0

∫︁

𝐽

|𝑔(𝑒𝑖𝑡)|𝑞−𝑝
𝐼 d𝑡 ≤ 𝓁(𝐽)

(︃∫︁ 1− 𝓁(𝐼)
2

0

|𝑔′(𝑠 · 𝑒𝑖𝑡𝐽 )| d𝑠
)︃𝑞−𝑝

≤ 𝑐0

∫︁

𝐽

|𝑔(𝑒𝑖𝑡)|𝑞−𝑝
𝐼 d𝑡. (8)

The first inequality follows directly from Lemma 3.1 (a), because 𝑞 − 𝑝 < 0 and
𝑡𝐽 does not depend of 𝑡:

∫︁

𝐽

|𝑔(𝑒𝑖𝑡)|𝑞−𝑝
𝐼 d𝑡 ≤ 𝑐𝑞−𝑝

1

∫︁

𝐽

(︃∫︁ 1− 𝓁(𝐼)
2

0

|𝑔′(𝑠 · 𝑒𝑖𝑡𝐽 )| d𝑠
)︃𝑞−𝑝

d𝑡

= 𝑐𝑞−𝑝
1 · 𝓁(𝐽) ·

(︃∫︁ 1− 𝓁(𝐼)
2

0

|𝑔′(𝑠 · 𝑒𝑖𝑡𝐽 )| d𝑠
)︃𝑞−𝑝

.

To show the second inequality in (8) we use Lemma 3.1 (b). We get
∫︁

𝐽

|𝑔(𝑒𝑖𝑡)|𝑞−𝑝
𝐼 d𝑡 ≥

∫︁

{𝑡∈𝐽 :(3) holds}
|𝑔(𝑒𝑖𝑡)|𝑞−𝑝

𝐼 d𝑡

≥ 𝑐𝑞−𝑝
2 ·

∫︁

{𝑡∈𝐽 :(3) holds}

(︃∫︁ 1− 𝓁(𝐼)
2

0

|𝑔′(𝑠 · 𝑒𝑖𝑡𝐽 )| d𝑠
)︃𝑞−𝑝

d𝑡

= 𝑐𝑞−𝑝
2 ·ℋ1({𝑡 ∈ 𝐽 : (3) holds}) ·

(︃∫︁ 1− 𝓁(𝐼)
2

0

|𝑔′(𝑠 · 𝑒𝑖𝑡𝐽 )| d𝑠
)︃𝑞−𝑝

≥ 𝑐𝑞−𝑝
2

8
· 𝓁(𝐽) ·

(︃∫︁ 1− 𝓁(𝐼)
2

0

|𝑔′(𝑠 · 𝑒𝑖𝑡𝐽 )| d𝑠
)︃𝑞−𝑝

.
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Obviously 𝑡𝐽 = 𝑡2𝐽 . To finish we take 𝑡0 ∈ 𝐽 from the “furthermore” of Lemma
3.1 applied for 2𝐽 . We use the estimate (8) twice, firstly for 2𝐽 and then for 𝐽 .

∫︁

2𝐽

|𝑔(𝑒𝑖𝑡)|𝑞−𝑝
𝐼 d𝑡

(8)
≤ 𝑐0 · 𝓁(2𝐽) ·

(︃∫︁ 1− 𝓁(2𝐼)
2

0

|𝑔′(𝑠 · 𝑒𝑖𝑡2𝐽 )| d𝑠
)︃𝑞−𝑝

(3)
≤ 𝑐0 · 𝓁(2𝐽) · 𝑐𝑝−𝑞

2 · |𝑔(𝑒𝑖𝑡0)|𝑞−𝑝
𝐼

(2)
≤ (2 · 𝑐0 · 𝑐𝑝−𝑞

2 · 𝑐𝑞−𝑝
1 ) · 𝓁(𝐽) ·

(︃∫︁ 1− 𝓁(𝐼)
2

0

|𝑔′(𝑠 · 𝑒𝑖𝑡𝐽 )| d𝑠
)︃𝑞−𝑝

(8)
≤

(︀
2 · 𝑐20 · 𝑐𝑞−𝑝

1 · 𝑐𝑝−𝑞
2

)︀
⏟  ⏞  

=:𝑐

·
∫︁

𝐽

|𝑔(𝑒𝑖𝑡)|𝑞−𝑝
𝐼 d𝑡.

This is the asserted inequality (7).

4 Proof of Theorem 1.3
We will increase the maximal growth order of a given quasiconformal map by

pre-composing it with a quasiconformal self-map.

Lemma 4.1. Let 0 < 𝛼 < 𝛽 < 2𝛼 < ∞. Let 𝑓 be 𝐾– quasiconformal on the
upper half-plane H and let there be a sequence of points {𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛} ⊆ H,
𝑧𝑛 → 0 such that

|𝑓(𝑧𝑛)| ≥ 𝑐 · 𝑦−𝛼
𝑛 .

Then there is a sequence { ̂︀𝑧𝑛 = ̂︁𝑥𝑛+𝑖 ̂︀𝑦𝑛} ⊆ H, ̂︀𝑧𝑛 → 0 and a
(︁

𝛽
2𝛼−𝛽

𝐾
)︁
– quasi-

conformal map ̂︀𝑓 : H → C such that 𝑓(H) = ̂︀𝑓(H) and

| ̂︀𝑓( ̂︀𝑧𝑛)| ≥
𝑐

2𝛽−𝛼
· ̂︀𝑦𝑛−𝛽.

Proof. We want to use radial stretching(s) to move 𝑧𝑛 “further away form the
boundary”. There are two (in principle non-exclusive) options:

(i) There is a subsequence (after relabeling) 𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛 → 0 with |𝑓(𝑧𝑛)| ≥
𝑐 · 𝑦−𝛼

𝑛 and
𝑦𝑛 ≥ 𝑥2

𝑛,

(ii) or there is a subsequence (after relabeling) 𝑧𝑛 = 𝑥𝑛+ 𝑖𝑦𝑛 → 0 with |𝑓(𝑧𝑛)| ≥
𝑐 · 𝑦−𝛼

𝑛 and
𝑦𝑛 < 𝑥2

𝑛.

Hence it is sufficient to find ̂︀𝑓 and { ̂︀𝑧𝑛} in both cases. We will do this below.
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The case (i):

|𝑧| = 1

𝑥2

0
In this case it is enough to use one radial stretching in the half-disk {𝑥 + 𝑖𝑦 :
𝑥2 + 𝑦2 ≤ 1, 𝑦 > 0}. Without loss of generality we may assume that {𝑧𝑛} ⊆ D.
Set

ℎ(𝑧) := 𝑧 · |𝑧|
𝛽

2𝛼−𝛽
−1.

Notice that 𝛽
2𝛼−𝛽

> 1 and that ℎ is 𝛽
2𝛼−𝛽

– quasiconformal and identity for |𝑧| = 1.
Let us furthermore define

̂︀𝑓(𝑧) =
{︃

𝑓(𝑧), |𝑧| ≥ 1,

𝑓(ℎ(𝑧)), |𝑧| < 1,
̂︀𝑧𝑛 = 𝑧 · |𝑧|

2𝛼−𝛽
𝛽

−1.

Then 𝑓(H) = ̂︀𝑓(H), ̂︀𝑓 is
(︁

𝛽
2𝛼−𝛽

·𝐾
)︁
– quasiconformal and ̂︀𝑓( ̂︀𝑧𝑛) = 𝑓(𝑧𝑛). We

finish with the computation

̂︀𝑦𝑛−𝛽 =
(︁
Im

(︁
𝑧 · |𝑧|2

𝛼−𝛽
𝛽

)︁)︁−𝛽

= 𝑦−𝛽
𝑛

(︀
𝑥2
𝑛 + 𝑦2𝑛

)︀ 1
2(2

𝛽−𝛼
𝛽 )𝛽

≤ 𝑦−𝛽
𝑛

(︀
𝑦𝑛 + 𝑦2𝑛

)︀𝛽−𝛼 ≤ 2𝛽−𝛼 · 𝑦−𝛼
𝑛

≤ 2𝛽−𝛼

𝑐
|𝑓(𝑧𝑛)| = 2𝛽−𝛼

𝑐
| ̂︀𝑓( ̂︀𝑧𝑛)|.

The case (ii):

𝑥𝑛

𝑥𝑛
4

𝑧𝑛

𝑥2

Here we need one radial stretching for each 𝑧𝑛. Without loss of generality we may
assume that 𝑥𝑛+1 <

3
5
𝑥𝑛. Then the disks 𝐵

(︀
𝑥𝑛,

𝑥𝑛

4

)︀
are disjoint. Set

ℎ𝑛(𝑧) := 𝑥𝑛 +
(︁𝑥𝑛

4

)︁1− 𝛽
2𝛼−𝛽

(𝑧 − 𝑥𝑛) · |𝑧 − 𝑥𝑛|
𝛽

2𝛼−𝛽
−1.

Then, for each 𝑛, the map ℎ𝑛 is 𝛽
2𝛼−𝛽

-quasiconformal and identity for |𝑧−𝑥𝑛| = 𝑥𝑛

4
.

Let us furthermore define

̂︀𝑓(𝑧) :=
{︃
𝑓(ℎ𝑛(𝑧)), |𝑧 − 𝑥𝑛| < 𝑥𝑛

4
,

𝑓(𝑧), otherwise
,

̂︀𝑧𝑛 := 𝑥𝑛 + 𝑖

(︂
𝑥
2𝛽−𝛼

𝛽
𝑛 · 𝑦

2𝛼−𝛽
𝛽

𝑛

)︂
.
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Then 𝑓(H) = ̂︀𝑓(H), ̂︀𝑓 is
(︁

𝛽
2𝛼−𝛽

·𝐾
)︁
-quasiconformal and ̂︀𝑓( ̂︀𝑧𝑛) = 𝑓(𝑧𝑛). Fi-

nally

̂︀𝑦𝑛−𝛽 = 𝑥2(𝛼−𝛽)
𝑛 · 𝑦𝛽−2𝛼

𝑛 ≤
(︁
𝑦

1
2
𝑛

)︁2(𝛼−𝛽)

· 𝑦𝛽−2𝛼
𝑛 = 𝑦−𝛼

𝑛

≤ 1

𝑐
· |𝑓(𝑧𝑛)| ≤

2𝛽−𝛼

𝑐
· | ̂︀𝑓( ̂︀𝑧𝑛)|.

Lemma 4.2. Let 0 < 𝑎 < 𝑏 < ∞. Let 𝑓 be 𝐾– quasiconformal on the upper
half-plane H and let there be a sequence of points {𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛} ⊆ H, 𝑧𝑛 → 0
such that

|𝑓(𝑧𝑛)| ≥ 𝑐 · 𝑦−𝑎
𝑛 .

Then for every 𝜀 > 0 there is a sequence { ̂︀𝑧𝑛 = ̂︁𝑥𝑛+𝑖 ̂︀𝑦𝑛} ⊆ H, ̂︀𝑧𝑛 → 0, constant
𝑐4.2 = 𝑐4.2(𝑎, 𝑏, 𝑐) and a

(︁
(1 + 𝜀) · 𝑏2

𝑎2
·𝐾

)︁
– quasiconformal map ̂︀𝑓 : H → C such

that ̂︀𝑓(H) = 𝑓(H) and
| ̂︀𝑓( ̂︀𝑧𝑛)| ≥ 𝑐4.2 · ̂︀𝑦𝑛−𝑏.

Proof. Let us fix 1 < 𝑠 < 2. Let 𝑚 =
⌊︁
log 𝑏−log 𝑎

log 𝑠

⌋︁
+ 1, where ⌊∙⌋ is the floor

function, that is ⌊𝑥⌋ := max{𝑚 ∈ Z : 𝑚 ≤ 𝑥}. Then 𝑠𝑚𝑎 > 𝑏. We will use the
Lemma 4.2 𝑚-times. For 𝑘 ∈ {0, 1, . . . ,𝑚− 1} let

𝛼𝑘 = 𝑠𝑘𝑎, 𝛽𝑘 = 𝑠𝑘+1𝑎.

Then 0 < 𝛼𝑘 < 𝛽𝑘 < 2𝛼𝑘 < ∞. Let ̂︀𝑓0 = 𝑓 . Then ̂︀𝑓0 is
(︀

𝑠
2−𝑠

)︀0·𝐾– quasiconformal.
Using Lemma 4.2 inductively for 𝛼𝑘, 𝛽𝑘 and ̂︀𝑓𝑘, where 𝑘 = 0, 1, . . . ,𝑚 − 1, we
obtain a

(︁(︀
𝑠

2−𝑠

)︀𝑘+1 ·𝐾
)︁
– quasiconformal 𝑓𝑘+1 (because 𝛽𝑘

2𝛼𝑘−𝛽𝑘
= 𝑠

2−𝑠
). Set ̂︀𝑓 =

̂︀𝑓𝑚. Then from the inductive process we obtain a sequence ̂︀𝑧𝑛 and a (possibly
small but positive) constant 𝑐4.2 such that

| ̂︀𝑓( ̂︀𝑧𝑛)| ≥ 𝑐4.2 · ̂︀𝑦𝑛−𝑠𝑚𝑎 ≥ 𝑐4.2 · ̂︀𝑦𝑛−𝑏.

The map ̂︀𝑓 is
(︀(︀

𝑠
2−𝑠

)︀𝑚 ·𝐾
)︀
– quasiconformal, that is

(︂(︀
𝑠

2−𝑠

)︀⌊ log 𝑏−log 𝑎
log 𝑠 ⌋+1 ·𝐾

)︂
–

quasiconformal. It is easy to check that

lim
𝑠→1+

(︃(︂
𝑠

2− 𝑠

)︂⌊ log 𝑏−log 𝑎
log 𝑠 ⌋+1

·𝐾
)︃

=
𝑏2

𝑎2
𝐾.

Therefore we can fix 𝑠 > 1 such that
(︃(︂

𝑠

2− 𝑠

)︂⌊ log 𝑏−log 𝑎
log 𝑠 ⌋+1

·𝐾
)︃

<

(︂
(1 + 𝜀) · 𝑏

2

𝑎2
·𝐾

)︂
.

Then ̂︀𝑓 is
(︁
(1 + 𝜀) · 𝑏2

𝑎2
·𝐾

)︁
– quasiconformal and we are done.
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Lemma 4.3. Let 𝑓 ∈ 𝐻𝑞(D). Then for each 𝑧 ∈ D

|𝑓(𝑧)| ≤ 𝑐4.3(1− |𝑧|)− 1
𝑞 .

Proof. If 𝑓 ∈ 𝐻𝑞 then
∫︀
D |𝑓 |2𝑞 < ∞ by [4, Theorem 9.1.]. And [15, Theorem 3.1.]

implies that in this case there is 𝑐4.3 > 0 such that |𝑓(𝑧)| ≤ 𝑐4.3(1− |𝑧|)− 2
2𝑞 .

Theorem 4.4. Let 0 < 𝑞 < 𝑝 < ∞. Let 𝑔 be a 𝐾 – quasiconformal map with
𝑔 /∈ 𝐻𝑝(D). Then for every 𝜀 > 0 we can find a

(︁
(1 + 𝜀) · 𝑝2

𝑞2
·𝐾

)︁
– quasiconformal

map ̂︀𝑔 such that ̂︀𝑔(D) = 𝑔(D) and ̂︀𝑔 /∈ 𝐻𝑞.

Proof. Let us fix ̂︀𝜀 < 1. We know that 𝑔 /∈ 𝐻𝑝(D). Therefore [4, Theorem 3.3.]
yields ∫︁ 1

0

𝑀(𝑟, 𝑔)𝑝 = ∞,

where 𝑀(𝑟, 𝑔) is the maximal function defined as 𝑀(𝑟, 𝑔) := sup{|𝑔(𝑧)| : |𝑧| = 𝑟}.
Hence we can find a sequence {𝑟𝑛} such that 𝑟𝑛 → 1 and 𝑀(𝑟𝑛, 𝑔)

𝑝 ≥ |1−𝑟𝑛|−1+̂︀𝜀.
Consequently we can find a sequence of points {𝑢𝑛} ⊆ D such that |𝑔(𝑢𝑛)| ≥
|1− |𝑢𝑛||

−1+̂︀𝜀
𝑝 and 𝑢𝑛 → 1.

Using a simple Möbius transformation 𝑇 we obtain a sequence {𝑧𝑛} ⊆ H,
{𝑧𝑛} → 0 and 𝐾 – quasiconformal 𝑓 : H → C such that 𝑔(D) = 𝑓(H) and

|𝑓(𝑧𝑛)| ≥ 𝑐 · | Im(𝑧𝑛)|
−1+̂︀𝜀

𝑝 .

Lemma 4.2 gives us ̂︀𝑧𝑛 and a
(︁
(1 + ̂︀𝜀) ·

(︀
1+̂︀𝜀
1−̂︀𝜀

)︀2 · 𝑝2

𝑞2
·𝐾

)︁
– quasiconformal map ̂︀𝑓 ,

̂︀𝑓(H) = 𝑓(H) = 𝑔(D), for which

| ̂︀𝑓( ̂︀𝑧𝑛)| ≥ 𝑐4.2 · | Im( ̂︀𝑧𝑛)|
−1−̂︀𝜀

𝑞 .

Reversing the transformation 𝑇 we obtain a sequence of points {̂︁𝑢𝑛} ∈ D and
a
(︁
(1 + ̂︀𝜀) ·

(︀
1+̂︀𝜀
1−̂︀𝜀

)︀2 · 𝑝2

𝑞2
·𝐾

)︁
– quasiconformal map ̂︀𝑔 : D → C, ̂︀𝑔(D) = 𝑔(D) such

that
|̂︀𝑔(̂︁𝑢𝑛)| ≥ 𝑐4.4 · |1− |̂︁𝑢𝑛||

−1−̂︀𝜀
𝑞 .

To conclude that ̂︀𝑔 is not in 𝐻𝑞 it is enough to use Lemma 4.3.
Finally, choosing a sufficiently small ̂︀𝜀 > 0 we get the required

(︁
(1 + 𝜀)𝑝

2

𝑞2
𝐾

)︁
–

quasiconformality of ̂︀𝑔.

Proof of Theorem 1.3. Let us assume that the condition (1) is not met, that is
there exists 0 < 𝑝 < ∞ and a quasiconformal map 𝑔 : D → Ω, 𝑔 /∈ 𝐻𝑝. Let 𝑞 > 0
be given. Without loss of generality we may assume that 𝑞 < 𝑝. Theorem 4.4
applied to 𝑔 gives the conclusion.



Existence of quasiconformal mappings in a given Hardy space 15

5 Corollaries
Corollary 5.1. Let Ω ⊊ C be a non-empty, simply connected domain. Let 𝑝 < 2.
Then there is a quasiconformal map 𝑓 : D → Ω such that

|𝐷𝑓 | ∈ 𝐿𝑝(D).

Proof. Let 𝑞 = 2+𝑝
2−𝑝

. By Theorem 1.1 we know that there is a quasiconformal map
𝑓 : D → Ω, 𝑓 ∈ 𝐻𝑞. Then Theorem [4, Theorem 9.1] implies that 𝑓 ∈ 𝐿2𝑞(D) and
Theorem [4, Theorem 9.3] yields that |𝐷𝑓 | ∈ 𝐿𝑝(D).

Following Astala and Gehring [1] we write

𝑎𝑓 (𝑥) := exp

(︂∫︁

𝐵𝑥

log 𝐽𝑓 (𝑦)

2|𝐵𝑥|
d𝑦

)︂
,

where |𝐵𝑥| is the Lebesgue measure of 𝐵𝑥. Notice that for conformal 𝑓 the mean
value property implies that 𝑎𝑓 = |𝐷𝑓 |.

Proof of Corollary 1.2. Let us define the annulus 𝐴𝑟 of width 1 − 𝑟 by setting
𝐴𝑟 = {𝑧 : 2𝑟 − 1 < |𝑧| < 𝑟} for 0 < 𝑟 < 1. For the area of 𝐴𝑟 it holds that
|𝐴𝑟| = 𝜋(1− 𝑟)(3𝑟 − 1) < 2𝜋(1− 𝑟).

Let us consider 𝑎𝑓 in the annulus 𝐴𝑟 for a given quasiconformal map 𝑓 . We
know that 𝑎𝑓 is almost constant on Whitney balls, that is if we consider a Whitney
ball 𝐵 then for all 𝑥 and 𝑦 in 𝐵 we have

𝑎𝑓 (𝑥) < 𝑐 · 𝑎𝑓 (𝑦). (9)

This is a consequence of the Koebe distortion theorem [3, Theorem 3.2.]. See also
the first half of the proof of [3, Theorem 3.3.].

If we consider the Whitney ball covering a radial segment of 𝐴𝑟,

1

𝑟

2𝑟−1

𝐴𝑟𝐴𝑟 𝑧𝑧
𝐵𝑧𝐵𝑧

1−
𝑟

that is 𝐵
(︀
𝑧, 1−𝑟

2

)︀
, then from (9) it follows that 𝑎𝑓 is on this radial segment (up

to the constant 𝑐) constant. Therefore, using Hölder inequality with 𝑞 > 1 and
𝑝 < 𝑞 < 2,

∫︁ 1

0

(︂∫︁

𝜕𝐵(0,𝑟)

𝑎𝑓

)︂𝑝

d𝑟 ≤ 𝑐

∫︁ 1

0

(︂∫︁

𝐴𝑟

𝑎𝑓
1− 𝑟

)︂𝑝

d𝑟
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≤ 𝑐

∫︁ 1

0

(1− 𝑟)−𝑝|𝐴𝑟|
𝑞−1
𝑞

·𝑝
(︂∫︁

𝐴𝑟

𝑎𝑞𝑓

)︂ 𝑝
𝑞

d𝑟

≤ (2𝜋)
𝑝
𝑞 𝑐

(︂∫︁ 1

0

(1− 𝑟)−
𝑝
𝑞 d𝑟

)︂

⏟  ⏞  
=:𝐼1

·
(︂∫︁

D
𝑎𝑞𝑓

)︂ 𝑝
𝑞

⏟  ⏞  
=:𝐼2

.

Because 𝑝 < 𝑞 < 2 we know that 𝐼1 < ∞. Corollary 5.1 yields that there is a
quasiconformal map 𝑓 : D → Ω such that |𝐷𝑓 | ∈ 𝐿𝑞(D). Moreover, for such an 𝑓
it holds that

∫︀
D 𝑎

𝑞
𝑓 < ∞ by [4, Lemma 2.5.]. Therefore 𝐼2 < ∞, so for this 𝑓 we

have ∫︁ 1

0

(︂∫︁

𝜕𝐵(0,𝑡)

𝑎𝑓

)︂𝑝

d𝑟 < ∞.

Finally, the Sullivan-Tukia-Väisälä approximation theorem [26, Corollary 7.12.]
provides us with a (locally Lipschitz) quasiconformal map ̂︀𝑓 : 𝐷 → Ω for which

∫︁ 1

0

(︂∫︁

𝜕𝐵(0,𝑡)

| ̂︀𝑓 ′|
)︂𝑝

d𝑟 < ∞.
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