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1. Introduction
In the recent years, collections of graph-structured data are increasingly being made
available for analysis [1]. Examples of such graph data are different variants of net-
works [2]: social, biochemical, ecological, citation, communication, mobility, and
transport. Graphs provide a natural representation and visualization of data, allow-
ing us to easily represent the interactions between data elements through relations.

A great example of a graph is a social network. Here, people can be represented as
graph vertices, and the relations “a person knows another person” can be represented as
graph edges. Persons can have different properties, including their name, age, address,
and hobbies. Similarly, the edges can store information such as the place and date
of the persons’ first meeting. In addition to person-to-person connections, the graph
can also include vertices representing posts and comments, with the messages stored
within them as properties. These vertices can be connected to persons through the “a
person is the author of a post/comment” relation, forming edges called authors. An
example of a similar graph is depicted in Figure 2.1. This type of graph is referred to
as a property graph, which we define later in Section 2.1.1.

Hand-in-hand with the graph-data availability goes the need for the graph systems
allowing an analysis of the data, which tries to extract meaningful insights and in-
formation from it. To interact with graph systems for the purpose of analysis, the
systems provide an interface through query languages, such as PGQL [3], Gremlin [4],
GSQL [5], and Cypher [6]. The large number of query languages highlights the emi-
nent interest in graph analysis. The novelty and relevance of this topic underlines the
release of a new standard for SQL/PGQ [7] in June 2023, which is an SQL extension
for graphs, and a work on GQL [8], which is the new standard query languages for
graphs with potential standardization in early 2024.

For example, social network analysis can be interested in simple queries like “Who
knows Jan Novak?”, in PGQL:
SELECT friend.name
FROM MATCH (p:Person) -[:Knows]-> (friend:Person)
WHERE p.name = 'Jan Novak'

, or in much more complex queries, such as “Who is interacting with the posts of a
person who he/she does not know, and whose age is within the range ±5 years?”, in
PGQL:
SELECT

person1.name AS person,
person2.name AS potential_friend

FROM
MATCH (person1:Person) -[:Author]-> (post:Msg),
MATCH ANY (comment:Msg) -[:Reply]->* (post),
MATCH (comment) <-[:Author]- (person2:Person),

WHERE
NOT EXISTS (SELECT * FROM MATCH (person1) -[:Knows]-> (person2))
AND person1.age - 5 <= person2.age
AND person2.age <= person1.age + 5

to recommend new potential friends in the network, or “Is Jan Novak connected to
everyone else by a chain of no more than 6 acquaintances?”, in PGQL:
SELECT COUNT(*) = (SELECT COUNT(*) FROM MATCH (:Person))
FROM MATCH ANY (p:Person) -[:Knows]->{1,6} (other:Person)
WHERE p.name = 'Jan Novak'
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to validate the famous Six Degrees of Separation1 hypothesis [9, 10] for a given person.
As can be seen from the examples, graphs, and especially graph querying, give em-

phasis on the edges, i.e., relations between vertices. Graphs allow expressive and effi-
cient search for long connections and patterns compared to other models, like RDF [11]
or the relational model (both presented later in Section 2.1). These models allow a
graph representation that is quite cumbersome, not that intuitive, and potentially not
that efficient.

Graph-specific workloads have inherent characteristics in the context of data pro-
cessing. According to [12, 13, 14], these are the challenges that an effective engine
needs to overcome:

• Exponential explosion. Graph querying is hard. It is equivalent to the problem
of searching for subgraph homomorphisms that is known to be a NP-complete
problem (Section 2.3). Some instances of this problem that are easier to solve,
e.g., isomorphic patterns with a special metric, are domain of graph mining (Sec-
tion 2.3.2). Graph querying, being NP-complete, simply implies that there is an
exponential number of intermediate results with the length of a query that must
be processed. Therefore, the computation needs to be handled with care, other-
wise the intermediate results explode and it will not fit into the main memory.

• Poor locality. Graphs focus on relations, which are unstructured and irregular.
Edges drive the computation, and following the edge from the source to the des-
tination typically requires a jump to a distant memory, leading to poor spatial
location. With generic expression filtering, i.e., some edges or vertices are fil-
tered out during the execution, the computation can become irregular, which
complicates the work of hardware as it does not know where the computation
will go.

• Memory bound computation. Graph querying is dominated by memory accesses.
The querying consist of two operations: (i) graph structure exploration and (ii)
graph element filtering. The graph exploration implies reading of the graph
structure from memory and using the read information for further memory ac-
cesses. The graph element filtering involves evaluation of (simple) expressions
whose initial data, i.e., properties, need to be loaded from the memory as well.

The aforementioned challenges show that an efficient graph data processing is com-
plex by its nature. Other challenges arise when the engine wants to fully utilize modern
CPUs that have multiple physical and virtual cores. Following graph-specific factors
complicate the graph-processing parallelizations, as mentioned in [12, 13, 14]:

• Data-driven computation. Graph querying is data driven. The computation is
dictated by the shape of the graph, i.e., its vertices and edges, but mostly by
the user-submitted query, which can include a generic pattern with any dynamic
filtering. As a result, parallelization based on partitioning of the computation
work is hard and cannot be easily predicted because of the dynamic filtering.

• Unstructured problem. As already mentioned, graphs are typically unstructured
and irregular. On top of that, real-world graphs, e.g., social network graphs,

1This idea appeared first as a game in 1929 and was popularized by the play Six Degree of Separa-
tion [9] in 1990. The play explored the premise that every person is connected to every other person
through a chain of no more than six acquaintances.
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might be skewed following a power-law distribution, making the neighborhood
of some super-vertices extremely large, e.g., celebrities. On the opposite, some
vertices, e.g., newcomers or not-so-active users, might have small number of
connections.

Big data graphs emphasize all the aforementioned challenges. Big data means
that the data are so big they do not fit in the main memory of a single machine [15].
One of the possibilities is to use main storage, e.g., HDD or SSD. The unused data is
typically offloaded to the storage and brought to main memory when needed for the
computation. Some popular graph databases, e.g., Neo4j [16] and Tigergraph [17], are
using this approach. For obvious reasons, the buffer manager, i.e., the subsystem for
handling the data offloading, is one of the major bottlenecks in these systems. This is
a well-known problem in relational databases [18, 19] and graph databases are not an
exception.

Another possibility, how to handle big data graphs, is to store graphs in the main
memory, but scale out to multiple machines in a distributed matter. The advantage of
this approach is that the engine can use multiple machines for the computation, which
can result in better performance if the system scales well. This approach drew the
attention of many researchers and led to development in the field of distributed graph
processing [20, 21, 22, 23, 24, 25, 26, 27]. Given the popularity of cloud computing,
being able to run a distributed graph engine on multiple machines and scale out when
needed, these systems become interesting for industry [13, 28, 29, 17] as well.

However, the development of an efficient distributed system is difficult. In addition
to all the challenges mentioned above, which need to be scaled to the entire cluster,
there is a problem of distributed memory where the graph is partitioned across all ma-
chines. This means that each machine has access to only part of the graph. To minimize
query latency, distributed systems need to efficiently balance graph partitions, which
is NP-hard [30], and distribute computation equally among partitions. Because the
computation is data-driven, even perfectly balanced data partitions do not guarantee
well-balanced computation.
The first contribution of this thesis. (Distributed) graph querying uses two main ap-
proaches for pattern matching: breadth-first search (BFS) and depth-first search (DFS).
Both approaches have their advantages and disadvantages. BFS is a typical approach
used by most distributed graph querying systems [16, 31] for two main reasons. Im-
plementing an efficient distributed version of BFS is much easier compared to DFS.
Furthermore, BFS has a much better spatial locality of the IO patterns compared to
DFS, which implies better performance in practice. On the other hand, BFS results in
large memory consumption, which makes it suitable only for systems that do not have
to limit their memory, e.g., due to data offloading to the main storage.

In contrast, limiting and controlling the memory consumption is a crucial element
for systems running in the main memory only. DFS allows for limited memory con-
sumption, as it matches one result at a time. Unfortunately, this traversal also implies a
much worse spatial locality caused by eagerly following the chain of edges, basically
doing pointer-chasing in the memory. On top of that, parallelization and implemen-
tation of DFS is much harder than of BFS. The first relevant implementation of a
distributed DFS for querying was done by PGX.D/Async [32] that introduced an asyn-
chronous DFS query engine that uses a local DFS with message buffering of remote
edges.
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In this thesis, we extend this idea further and, as our first contribution, we present
aDFS (almost-DFS), a novel distributed graph querying algorithm that cleverly com-
bines breath-first search (BFS) and depth-first search (DFS) to be able to use efficient
parallel processing of graphs partitioned across multiple machines fully in-memory,
while bounding the maximum amount of memory used during execution.

To the best of our knowledge, aDFS is the first graph querying system capable of
strictly bounding runtime memory while operating with fully distributed in-memory
computations over distributed graphs. It builds on top of PGX.D/Async [32] (Sec-
tion 3) to cap the maximum amount of memory used during execution, while switching
to BFS for better locality and parallelization during execution.
The second contribution of this thesis. In addition to the performance improvement,
we extend the PGX.D/Async engine in another major way. As already mentioned,
query languages are evolving as users find new use cases for graphs. One of the
most expressive and powerful constructs in graph querying is the regular path queries
(RPQs) [33]. RPQs allow users to specify different path patterns using regular expres-
sions. For example, following query searches for “A number of all replies and their
first and last dates starting from a given message”, in PGQL:
SELECT

COUNT(*) AS num_replies
MIN(reply.date) AS first_date,
MAX(reply.date) AS last_date

FROM MATCH ANY (:Msg) -[reply:Reply]->+ (msg:Msg)
WHERE msg.id = 104

PGQL combines RPQs together with reachability queries in the form of a search for
any variable-length paths [34]. Reachability queries search for all the vertices reach-
able from a given source vertex. The semantics of PGQL allows finding any path from
the source to the destination vertex, and this path is accounted only once in the final re-
sult projections. This requires eliminating path duplications and also allows the engine
to avoid potential infinite cycles.

Our second contribution of this thesis is RPQd, a novel algorithm for distributed
asynchronous reachability regular path queries (RPQs). RPQd builds on the work of
PGX.D/Async (Section 3), extending its DFS querying engine, which allows for con-
trollable memory consumption with a small memory footprint. However, the nature of
the problem that requires support for unbounded RPQs, e.g.,
SELECT ARRAY_AGG(e.from)
FROM MATCH (:Person) -/e:Knows*/-> (:Person)

, does not allow one to fully limit the consumed memory of the matching, as aDFS does
for the fixed-size matching. Therefore, our solution caps the memory consumption of
the variable-size matching execution and limits the additional overflow memory to an
absolute minimum in order to continue with the execution of the matching. Other
algorithms, typically using some sort of shortest path algorithm, cannot guarantee this.
A predictable memory footprint is required for an efficient configuration of the system
and its deployment, e.g., to the cloud.

In addition to that, RPQd builds a reachability index on the fly to detect cycles in
the graph and to avoid infinite loops during traversals. Moreover, our design allows
the support of generic cross-filtering between variable- and fixed-size patterns. Most
engines build the reachability graph/index before running the query; therefore, they
cannot support generic cross-filtering. To the best of our knowledge, RPQd is the first
distributed querying system that allows such feature.
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The third contribution of this thesis. As was already presented through this section,
an efficient distributed graph querying must overcome various challenges. A clever
design of a system can help overcome some challenges, as shown in aDFS and RPQd.
However, the execution depends on the complexity of the user-submitted query. The
process of translating the submitted query into the execution plan is called query plan-
ning and dictates the order of the pattern matching operations. Optimal ordering of
operations is essential for a good performance of the entire query execution.

Typically, query planning is done analytically with a potential to learn from run
queries. However, distributed graph querying poses numerous challenges that are hard
to cover analytically, if not outright impossible. For example, it is not easy to model
the data partitioning among different machines. Also, moving data across machines
requires messaging and communication that is difficult to include in the analytical
model. Furthermore, all these properties can change in dynamic environments, such as
in the cloud.

As our third contribution, we propose a pragmatic solution that builds on top of
the standard query planner to improve the chance of finding the best execution query
plan. Our solution uses scouting queries, which are short exploratory executions of
the actual queries used for quick benchmarking of different query plans. Thanks to
that, the engine can make an informed decision on which query plan to pick.
Organization of the thesis. The doctoral thesis is organized as follows:

• Chapter 2 discusses the background and related work regarding graph process-
ing with a focus on graph querying. The background and related work of the
topics related to our contribution is presented in respective chapters.

• Chapter 3 introduces PGX.D/Async [32], a distributed graph querying system,
which was used to evaluate all the improvements presented in this thesis.

• Chapter 4 introduces aDFS, a novel design for distributed graph querying that
allows efficient processing of practically any query fully in memory while main-
taining bounded runtime memory consumption.

This chapter is an extension of the published paper: Vasileios Trigonakis, Jean-
Pierre Lozi, Tomáš Faltín, Nicholas P. Roth, Iraklis Psaroudakis, Arnaud De-
lamare, Vlad Haprian, Calin Iorgulescu, Petr Koupy, Jinsoo Lee, Sungpack
Hong, Hassan Chafi. “aDFS: An Almost Depth-First-Search Distributed Graph-
Querying System” [14] USENIX ATC ’21.

• Chapter 5 presents a novel design for distributed reachability and regular path
queries that enables memory-controlled path explorations.

This chapter is an extension of the accepted paper: Tomáš Faltín, Vasileios
Trigonakis, Ayoub Berdai, Luigi Fusco, Călin Iorgulescu, Jinsoo Lee, Jakub
Yaghob, Sungpack Hong, Hassan Chafi. “Distributed Asynchronous Regular
Path Queries (RPQs) on Graphs“ International Middleware Conference Indus-
trial Track 2023.

• Chapter 6 introduces a solution to improve distributed query planning by ex-
ecuting short explanatory queries to benchmark the performance of different
query plans.
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This chapter is an extension of the published paper: Tomáš Faltín, Vasileios Trig-
onakis, Ayoub Berdai, Luigi Fusco, Călin Iorgulescu, Sungpack Hong, Hassan
Chafi. “Better Distributed Graph Query Planning With Scouting Queries” [35]
GRADES&NDA 2́3.

• Chapter 7 concludes this thesis and discusses potential future work of graph
querying. The future work of our contributions are described inside respective
chapters.

The parts of the text that appear in one of the above-mentioned papers are highlighted
with a vertical line of a respective color on the right side, as illustrated in this paragraph.
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2. Background
Graphs, mathematical structures used for modeling relations between objects, provide
a natural and intuitive representation and visualization of a wide range of data. Infor-
mally, graphs consist of elements called vertices and relations between the elements
called edges. As the name “graph” suggests, graphs can be visualized with dots repre-
senting elements and lines symbolizing relations between them.

There are many examples and applications of such data that played a large part
in motivating the creation of special graph data models, graph engines, and graph
databases. According to [36], the most important examples of such data are:

• Social networks [37, 38, 39], where vertices represent people or a group of peo-
ple, and the edges represent various types of relations between them, such as
friendships, business relationships, collaborations, or communications.

In addition to the relations, persons on the social network can have multiple
properties, including age and name, which provide further information about
them. Besides the person vertices, the network may also include other types of
vertices that arise due to interactions between people, such as messages, posts,
and comments.

To differentiate between the different types of vertices, we can assign labels to
each individual type. This labeling allows us to identify and categorize the ver-
tices based on their respective roles and characteristics within the social network.

We can see an example of a social network graph in Figure 2.1.

• Information networks, where the network represents information flow, for ex-
ample the World Wide Web [40, 41, 42, 43], peer-to-peer networks [44, 45],
preference networks [46], and knowledge-based graphs [47, 48].

• Technological networks [49], where the graph corresponds to the spatial or ge-
ographical property of the data, for example, the Internet, telephone networks,
or data modeled by Geographical Information Systems (GIS), which represent
roads, such as car roads, airline roads, railways, rivers, and pedestrian roads.

• Biological networks, that represent biological data, such as BioGRID [50] or
UniProtKB [51]. These networks typically cover chemical structures, neural net-
works, or some data from the genomic field. For example, biological networks
can represent proteins as vertices and interactions between them as edges.

Each of these types of graph requires and focuses on a different type of analysis.
For example, social networks might focus on distance, neighborhoods, clustering co-
efficient, connected components. Geographical Information Systems might focus on
geometrical operations (intersection, inclusion, etc.) or topological and metrics oper-
ations (connectivity, distance, etc.). On the contrary, biological graphs focus more on
pattern matching of specific patterns, querying, and similarity search.

Current interest in the field of graph analytics is evident through the large number
of publications, including surveys and books, that cover various aspects of this topic.
These publications span a wide range of areas, from surveys on graph data models
and query languages [36, 52, 53, 54, 55], to graph mining [56, 21, 57, 58], graph
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databases and graph querying [1, 59, 60, 61, 62, 63, 64, 65, 66], and distributed graph
processing [67, 68, 69, 70].
Organization. In this chapter, we present all the necessary background information
related to graph querying. We start by presenting the property graph model and other
related graph models in Section 2.1. Section 2.2 explains the problem of graph query-
ing in detail, and following this, Section 2.3 introduces other graph processing fields
closely related to querying, such as graph graph mining and graph algorithms. Sec-
tion 2.4 presents query languages and describes one of the languages, PGQL [3], which
is used throughout the thesis. Finally, Section 2.5 explains the relevant graph bench-
marks that we use for evaluations and benchmarking in this thesis.

2.1 Graph Data Models
A data model is “a collection of conceptual tools used to model representations of
real-world entities and the relationships among them” [71]. In this section, we intro-
duce a property graph model, which is the native graph model, along with other data
models that can model graphs and are used in some relevant systems in practice, e.g.,
RDF [11], relational [72], and NoSQL [73] models. There exist other theoretical graph
models, such as GOOD [74] or GROOVY [75], but to the best of our knowledge, they
are not used by any relevant graph system at the moment. For a complete description
of all graph data models, we refer to various surveys, such as [36, 53, 76, 77, 78].

2.1.1 Property Graph Model
Property graph can be informally described as follows [60]:

• It contains vertices and edges.

• Edges have names and directions with a starting and an end vertex.

• Vertices and edges can contain properties, i.e., key-value pairs.

• Vertices and edges can be labeled with one or more labels, i.e., key-only values.

v2[Person]
name: Jan

age: 28

v1[Person]
name: Eva

age: 28

e1[Knows]
from: 2020

v3[Person]
name: Iva

age: 67

v4[Person]
name: Jana

age: 32

e2[Knows]
from: 1995

e3[Knows]
from: 2022

v6[Msg]
id: 102

msg: ’…’

v5[Msg]
id: 101

msg: ’…’

e4[Reply]
date: 10/12

v7[Msg]
id: 103

msg: ’…’

v8[Msg]
id: 104

msg: ’…’

e5[Reply]
date: 10/12

e6[Reply]
date: 13/12

e7[Author]

e8[Author]
e9[Author] e10[Author]

Figure 2.1: A social network example graph Gex.

Figure 2.1 shows a running example of a social network graph Gex. In blue, we see
four vertices {v1, v2, v3, v4} representing persons and in orange, we see edges describ-
ing a “a person knows another person” relationship. Every person has a label Person,
a string property name, and an integer property age. Each orange edge has a label
Knows and a property from storing a year when the two persons started to know each
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other. The vertices in green {v5, v6, v7, v8} represent messages that are sent in the net-
work. Every message contains a label Msg, a unique identifier id, and a string property
msg that contains the actual message. If “a message is a reply to another message”, it
is connected through a yellow edge having a label Reply and a property date storing
a date of the message. The gray edges, with the Author label, represent relations “a
person is the author of a message”.

For the purpose of this work, we formally define a property graph [53] as follows:

Definition 1 (Property graph). Assume that L is an infinite set of labels (for vertices
and edges), P is an infinite set of property names, V is an infinite set of values, and
T is a finite set of datatypes (e.g., integer). Given a set X , we assume that SET+(X)
is the set of all finite subsets of X , excluding the empty set. Given a value v ∈ V , the
function type(v) returns the data type of v.

A property graph is a tuple G = (N, E, ρ, λ, δ) where:

• N is a finite set of vertices.

• E is a finite set of edges such that E does not have elements in common with N .

• ρ : E → (N ×N) is a total function that associates each edge in E with a pair
of vertices in N , i.e., ρ is the incidence function in graph theory.

• λ : (N ∪E)→ SET+(L) is a partial function that associates a vertex/edge with
a set of labels from L, i.e., λ is a labeling function for vertices and edges.

• δ : (N ∪E)×P → SET+(V ) is a partial function that associates vertices/edges
with properties, and assigns a set of values from V to each property.

Using this Definition 1 and the running example from Figure 2.1, we have Gex =
(N, E, ρ, λ, δ), where N = {v1, v2, ..., v8}, E = {e1, e2, ..., e10}, L = {Person, Msg,
Knows, Author, Reply}, P = {name,age,id,msg,date,from}, ρ is defined as visualized
as shown by the edges in the Figure (e.g., ρ(e1) = {v2, v1}, ρ(e2) = {v2, v3}, ρ(e3) =
{v3, v4}), λ is defined as visualized with colors (e.g., λ(v1) = Person, λ(v5) = Msg,
λ(e1) = Knows, λ(e4) = Reply, λ(e7) = Author), and δ is defined as: δ(v1, name) =
Eva, δ(v1, age) = 28, δ(v5, id) = 101, and so on.

The property graph model incorporates various characteristics [1] that other prop-
erty graph models can extend or restrict:

• Direction. All the edges are ordered pairs of vertices, i.e., edges have direc-
tion. Note that there also exist undirected graphs models, where the edges are
unordered pairs of vertices. Using the presented property graph model, the undi-
rected graphs can be emulated by including edges in both directions. The engine
shown in the thesis natively supports only directed edges.

• Multigraph. The model allows multiple edges between the same pair of vertices.
Some other graph models can prohibit multiple edges, because it simplifies the
modeling. The engine in this thesis supports multigraphs.

• Labels. The model allows vertices and edges to have zero or more labels. There
are models that allow exactly or at maximum one label per element. Other mod-
els can restrict the model by allowing labels for either vertices or edges only. The
system in this thesis supports any number of labels for both edges and vertices.
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• Properties. Each vertex or edge can contain any number of properties, i.e., key-
value pairs. Data-attributed models [1] allow values to be only a chunk of binary
data, i.e., {0, 1}∗. Other models allow only certain types of properties, either ver-
tex or edge properties. The engine described in the thesis supports any number
of properties for vertices and edges.

Property graph extensions. The engine described in the thesis supports only the stan-
dard property graph model presented before. However, there are various extensions
of the basic property graph, which we list here to provide a complete picture of the
property graph model. More details and definitions can be found in books and sur-
veys [36, 1, 79]. Some relevant property graph extensions are:

• Objectified paths that extend the model by allowing assigning properties and
labels to paths, i.e., sequences of edges.

• Objectified subgraphs that allow assigning properties and labels to whole sub-
graphs.

• Hypervertices that allow edges between any subgraph of the graph.

• Hyperedges that generalize edges as sets of one or more vertices. Note that this
model is useful for specialized use-cases, such as spectral clustering of relational
data [79].

Temporal property graphs. A temporal property graph [80, 81, 82, 83] is a native
graph model that takes into account the evaluation of the graph, i.e., changes of the
graph structure and properties over time. The standard non-temporal graph model
views the graph and properties as static, with a potential support for insertion, deletion,
or updates. However, the temporal property graph model treats all the changes as the
first class citizens. Given the complexity of the topic, there is not yet agreement on the
best approach [80, 84, 85, 86], and it is one of the interesting research areas related to
graphs these days. One can see that property graph models undergo a similar evolution
as SQL that incorporated the temporal model in 2011 [87, 88, 89].

2.1.2 Graph Related Models
Besides the native graph data models above, there exist also other models that present
graph-like features and allow modelling graphs, although they are not explicitly de-
signed for that. We present here the most relevant models, as well as the models used
by the engines that are used for comparison with our engine.

RDF Data Model

The Resource Description Framework (RDF) [11, 90, 78] was introduced by the W3C
for the purposes of the semantic web and has been used by different domains since
then, e.g., bioinformatics, social networks. It was the first model of choice for mod-
eling graphs in the early 2000s [91, 92]. RDF defines a mechanism for annotating
resources with triples subject, predicate and object, i.e., a resource (subject) is de-
scribed by a property (predicate) and a property value (object). The subject can be an
identifier called URI (Uniform Resource Identifier) or an empty node. The object is a
URI, an empty node, or a literal value. The predicates can be URIs only. In this text,
we refer to URI of an value as URI(x).
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There is also the RDF* extension [93, 94, 95] which allows more efficient encoding
by allowing triples to appear recursively as subjects or objects. For simplicity, we
assume the basic RDF model.

The property graph can be represented by RDF as follows [78, 95]:

• Vertices are mapped to URIs.

• An edge e={u,v} is connected through two RDF triples:
{URI(u),URI(“FROM”),URI(e)}, {URI(e),URI(“TO”),URI(v)}.

• Every vertex property {key,value} is connected with its owner vertex v
through the RDF triple {URI(v),URI(key),URI(value)}.

• Every edge property {key,value} is connected with its owner edge e through
the RDF triple {URI(e),URI(key),URI(value)}.

• Every vertex label {VL} is connected with its owner vertex v through the RDF
triple {URI(v),URI(“label”),URI(VL)}.

• Every edge label {EL} is connected with its owner edge e through the RDF
triple {URI(e),URI(“label”),URI(EL)}.

Figure 2.2 shows an example of the transformation from the property graph model
into the RDF model. On the left, we see a small property graph (a small part of the
graph from Figure 2.1), on the right, we see the RDF graph. Subjects and objects are
represented as vertices (the source vertex as the subject, the destination vertex as the
object), and predicates are represented as edges with the appropriate label.

v2[Person]
name: Jan

age: 28

v1[Person]
name: Eva

age: 28

e1[Knows]
from: 2020 v1 v2e1TO FROM

Person Person

Eva

28 28

Jan

vertex edge vertex

label label

typetypetype

name name

age age

Knows

from

2020

label

Figure 2.2: An example of a graph stored with the RDF graph model. All the presented
values are URIs.

Relational Data Model

The relational data model was one of the first data models [72]. It is consistent with
predicate logic, where all data are represented as tuples and grouped into different re-
lations. Data are typically stored in tables where each row represents an element and
columns typically represent attributes of that element. For defining relations between
data, table can contain a special column (or more columns in case of composite keys)
with a unique identifier per element, called a primary key. To implement one-to-one
or one-to-many relations, another table includes a “special copy” of the primary key

14



called a foreign key which connects the relations. Many-to-many relations are imple-
mented with a dedicated table containing all the foreign keys of the relation elements.

A property graph can be easily represented by relational data model [96] using
following approach:

• Vertices and edges each are stored in individual tables, where every column rep-
resents one key of their properties.

• Vertex and edge labels can be stored as additional columns.

• The edge table has two additional columns for storing the source and destination
vertices as foreign keys.

Figure 2.3 shows an example of a graph stored in the relational data model. The blue
table represents the vertices, and the orange table represents the edges. The src col-
umn stores an index (ID(V)) of the source vertex, the dst column stores an index
(ID(V)) of the destination vertex. The columns name, age and from represent the
properties.

v2[Person]
name: Jan

age: 28

v1[Person]
name: Eva

age: 28

e1[Knows]
from: 2020

v3[Person]
name: Iva

age: 67

v4[Person]
name: Jana

age: 32

e2[Knows]
from: 1995

e3[Knows]
from: 2022

ID (V) name age

1 Eva 28

2 Jan 28

3 Iva 67

4 Jana 32

ID (E) from src dst

1 2020 2 1

2 1995 2 3

3 2022 3 4

Figure 2.3: An example of a graph stored with the relational model.

NoSQL Data Models

There are various NoSQL databases that allow representation of graphs. Unlike the
previous models, there is typically no single recommended way how to represent
graphs within a specific NoSQL model. Therefore, the representation of graphs is
specific to the implementation of the database. For a more thorough analysis and de-
scription of the models and databases, one can refer to various surveys, such as [59,
36, 53, 76, 77, 78].

2.2 Graph Querying
Graph queries are a key tool for graph analysis, as indicated by the large number of ex-
isting systems and graph-query languages (presented in later sections). Graph queries
provide an expressive interface for interactive graph exploration with rich dynamic
projection and filtering support that is analogous to SQL for relational databases. They
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focus on data connections, i.e., edges, allowing users to submit queries with any pat-
tern, filter, or projection. For instance, the following PGQL [3] query:

SELECT p1.name, p2.name
FROM

MATCH (p1:Person)-[:Knows]->(p2:Person),
MATCH (p2)-[:Knows]->(p1)

WHERE ABS(p1.age - p2.age) <= 10
ORDER BY salary_diff DESC

enumerates the Persons of similar age that Knows each other. Answering such a
query requires finding all homomorphic matches (explained later in this section) of the
query pattern in the target graph, while enforcing filters (e.g., p1 IS Person) and
projecting the requested output, i.e., persons’ names. The use of homomorphic sub-
graph matching, together with support for general projections and filtering limits the
potential optimizations and requires an exhaustive search of all possible combinations.
In general, the homomorphic subgraph matching problem is NP-complete [1].

A query consists of two main parts: graph pattern matching and post-processing.
Graph pattern matching includes the subgraph search and projections of the returned
matches. The post-processing step includes all transformations done on top of the
found results:

• Aggregations with grouping (GROUP BY) that groups results into groups accord-
ing to a certain expression and returns aggregated results for each group.

• Group filtering (HAVING that filters the aggregated groups according to a given
filter.

• Ordering (ORDER BY) that is responsible for sorting the results according to
specified criteria.

The post-processing step is presented separately, because in most systems it is sepa-
rated from the process of pattern matching and is handled by two different subsystems.
Performing post-processing after the matching is equivalent to the post-processing in
relational databases, which is a well-researched and covered topic outside of the scope
of this thesis. Despite all this, there are some cases of aggregations, e.g. COUNT(*) or
generic (simple) accumulators in GQL [97], that the systems perform during pattern
matching for performance reasons and because of its simplicity.

2.2.1 Subgraph Matching
Subgraph matching is the core functionality of graph querying. Given a graph G and a
query q, the goal of a subgraph pattern matching query is to return all subgraphs of G
that are isomorphic or homomorphic to q.

Now we formally define the problem of subgraph pattern matching queries. In
theory [1], the queries are called conjunctive graph queries. In this thesis, we focus
only on such queries. Therefore, we will refer to them simply as queries For a more
detailed description and other types of queries, please refer to [1].

A subgraph query pattern is a set of edge predicates. Every predicate consists of
an edge label and a pair of vertex variables, representing the source and the destination
of the edge. Note that in practice, we often see queries without labels. For the sake of
theory in this thesis, we can safely assume that all edges have a unique label _EDGE_.

Formally, we define a graph query as follows:
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Definition 2 (Graph query). Let V be a set of vertex variables, the conjunctive graph
queries are all expressions of the form: (z1, z2, ..., zm) ← a1(x1, y1), ..., an(xn, yn),
where

• m ≥ 0, n > 0,

• x1, y1, ...xn, yn ∈ V (vertices),

• a1, ..., an ∈ L (labels),

• for each 0 < i ≤ m, it holds that zi ∈ {x1, y1, ..., xn, yn}

m is called the arity of the expression.

The query semantics is given by the variable bindings to graph vertices. A set of
variable bindings is valid iff all the predicates hold on the data graph. Formally:

Definition 3 (Query mapping). Let G = (V, E, ρ, λ, δ) be a property graph and let
q = (z1, z2, ..., zm)← a1(x1, y1), ..., an(xn, yn) be a conjunctive graph query.

A mapping for q on G is a function µ with domain V (vertex variables) and range V
such that, for each 1 ≤ i ≤ n, there exists an edge ei ∈ E where ρ(ei) = (µ(xi), µ(yi))
and ai ∈ λ(ei). The semantics of evaluating q over G is an m−ary relation [q]G ⊆
V × ... × V (m-times) defined as follows:
[q]G = {(µ(z1), ..., µ(zm))|µ is a mapping for q on G}.

We use Figure 2.1 as an example graph G for the next queries. A query q1:
(a, b) ← Knows(a, b) returns a mapping [q1]G = {(v2, v1), (v2, v3), (v3, v4)}. Another
query q2: (p1, p2, m1) ← Knows(p1, p2), Author(p2, m1) returns a mapping [q2]G =
{(v1, v2, v6), (v3, v4, v8)}.

Query languages (presented in Section 2.4) implement conjunctive graph queries,
hence both queries could be also described using PGQL [3]:
/* Q1 */
SELECT id(a), id(b)
FROM MATCH (a) -[:Knows]-> (b)

/* Q2 */
SELECT id(p1), id(p2), id(m1)
FROM MATCH (p1) -[:Knows]-> (p2) -[:Author]-> (m1)

We can see that query languages describe the query in a more natural way. For that
reason, for all the examples in this thesis, we use the PGQL query language.
Homomorphic and isomorphic matching. The above presented definition of map-
ping µ specifies that the mapping is a function, i.e., each variable is mapped to exactly
one vertex. However, multiple variables can be bound to the same vertex, which im-
plies a homomorphic semantic of the subgraph search. For isomorphic semantics, the
mapping µ is injective, i.e., each variable is mapped to a unique variable.

For example, a query that searches for “common persons that are known by two
people” in the example graph in Figure 2.1. In PGQL:
SELECT id(a), id(b), id(c)
FROM MATCH (a:Person) -[:Knows]-> (b:Person) <-[:Knows]- (c:Person)

In case of the homomorphic matching, the following query returns results:
{(v2, v1, v2), (v2, v3, v2), (v3, v4, v3)}. On the other hand, isomorphic matching returns
no results because none of the mappings is mapped to unique variables.
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Algorithms

Each subgraph found is encoded by a mapping µ of q on G. Subgraph matching algo-
rithms are based on finding, extending, or combining a partial mapping of q. A partial
mapping is the binding of some vertices to the query variables. Formally:

Definition 4 (Partial mapping). Given a graph pattern q[z1, ..., zm], a graph G, and
0 ≤ k ≤ m, a partial mapping µk of q on G is a sequence of pairs
⟨(v1, µ(v1)), ..., (vk, µ(vk))⟩ such that ⟨v1, ..., vk⟩ is a sequence of distinct vertices of q,
and µ is a mapping of q on G. k is called the length of the mapping µk.

There are two main algorithms when it comes to homomorphic or isomorphic sub-
graph matching: depth-first search (DFS) and breadth-first search (BFS), which are
sometimes called equivalently depth-first traversal (DFT) and breadth-first traversal
(BFT), respectively. We present both approaches along with algorithms, similar to
those shown in [1].
Depth-First search (DFS). The DFS algorithm for subgraph homomorphism is based
on backtracking. The algorithm builds the matching one query vertex at a time. If
a partial solution cannot be extended, it is discarded, and the matching backtracks
(returns) back to the previous partial solution and continues the matching from there.

There are two possible implementations: the first one uses a recursion, i.e., the op-
erating system’s call stack, and the other avoids the recursion and implements its own
stack data structure. The Algorithm 1 presents the implementation without recursion.

As an example of the DFS algorithm, we use the graph in Figure 2.1 and the above-
mentioned query q2: (p1, p2, m1)← Knows(p1, p2), Author(p2, m1).

We start the algorithm with variable initialization and setting the vertex order V 0
q

to {p1, p2, m1}. This step decides the vertex ordering and is typically called query
planning. With static refinements, we simply check whether the potential vertex graph
candidates have correct vertex labels and a valid number of labeled incoming and out-
going edges. The static refinement step sets: Cstat

p1 ←{v2, v3} (p1 has one outgoing
Knows edge), Cstat

p2 ←{v1, v4} (p2 has one incoming Knows edge) and one outgoing
Author edge, and Cstat

m1 ←{v5, v6, v7, v8} (m1 has only one incoming edge Author).
To bootstrap the computation, we push an initial tuple into the state stack, i.e.,
S.push({p1,{},0}).

The first iteration of the algorithm takes the vG←v2, adds it into the mapping
mc = {p1←v2}, updates the state entry with {p1,{},1}, and adds the next query
vertex into the search stack, i.e., S.push(p2, {p1←v2}, 0). The second iteration takes
{p2, {p1←v2}, 0}, creates a mapping mc = {p1←v2, p2←v1}, updates the state entry
with {p2, {p1←v2}, 1}, and pushes {m1, {p1←v2, p2←v1}, 0} onto the stack. The third
iteration starts with the top of the stack, i.e., {m1, m = {p1←v2, p2←v1}, 0}, and refines
Cdyn

m1,m←{v6}, because v6 is the only neighbor of v2 that is also within the previous static
refinement. We then update the entry to {m1, m = {p1←v2, p2←v1}, 1}, and because the
current candidate mapping mc = {p1←v2, p2←v1, m1←p6} is homomorphic, we store it
into M as a result mapping.

The following iteration picks {m1, m = {p1←v2, p2←v1}, 1}, i.e., does the back-
tracking step back, and requests the candidate vG. Because there is none, it pops
this state, and continues (backtracks) to the next iteration with {p2, {p1←v2}, 1}. The
algorithm continues in the same manner until it finishes and returns M with all the
mappings found.
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Algorithm 1: Depth-First Search Matching
Input: Graph G = (VG, EG) and a query pattern q = (Vq, Eq)
Result: A set of mappings M of q into G

M = ∅;
V 0

q ← order(Vq);
foreach vq ∈ V 0

q do
Cstat

vq
← refine(G, q, vq); // static refinement

end

S ← ∅; // search state
m.init() ; // candidate mapping
S.push(V 0

q .next(), m, 0);
while !S.empty() do
{vq, m, n} ← S.peek();
if n = 0 then

Cdyn
vq ,m ← refine(G, vq, Cstat

vq
, m); // dynamic refinement

end
vG ← Cdyn

vq ,m.get(n); // get n-th candidate graph vertex

if vG ̸= ∅ then
mc ← m.copy();
mc.add(vq, vG); // map vq ← vG

if isHomomorphic(mc, G, q) then
vnext

q ← v0
q .next(); // get next query vertex

if vnext
q ̸= ∅ then
S.pop();
// update to next vq for backtracking
S.push(vq, m, n + 1);
// add next query vertex for DFS
S.push(vnext

q , mc, 0);
else

M .add(mc);
end

end
else

S.pop(); // done processing
end

end

return M ;
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Breadth-First search (BFS). Lots of matching algorithms use the breadth-first search
algorithm as their underlying mechanism. Compared to DFS, BFS is not a recursive
algorithm. It processes each query vertex match independently, and once finished with
all the mappings for the given query vertex, it continues to the next one, combining it
with the matches from the previous match. Another perspective to BFS is that the graph
query is broken into a set of smaller subqueries, which are processed independently. In
the end, the memoized solutions are combined together to produce the final mapping.

Algorithm 2: Breadth-First Search Matching
Input: Graph G = (VG, EG) and a query pattern q = (Vq, Eq)
Result: A set of mappings M of q into G

M ← ∅;
V 0

q ← order(Vq);
foreach vq ∈ V 0

q do
Cstat

vq
← refine(G, q, vq) ; // static refinement

end

S ← ∅ ; // search state
m.init() ; // candidate mapping
S.enqueue(V 0

q .next(), m);
while !S.empty() do
{vq, m} ← S.dequeue();
Cdyn

vq ,m ← refine(G, vq, Cstat
vq

, m) ; // dynamic refinement

foreach vG ∈ Cdyn
vq ,m do

mc ← m.copy();
mc.add(vq, vG);
if isHomomorphic(mc, G, q) then

vnext
q ← vnext

q .next() ; // get next vertex
if vnext

q ̸= ∅ then
// add next query vertex for BFS
S.enqueue(vnext

q , mc);
else

M .add(mc);
end

end
end

end
return M ;

BFS algorithm is presented in Algorithm 2. The following algorithm example
uses the graph from Figure 2.1 and the already mentioned query q2 : (p1, p2, m1) ←
Knows(p1, p2), Author(p2, m1).

The initial steps are the same as for the DFS algorithm, i.e., the static refinement
step sets: Cstat

p1 ←{v2, v3} (p1 has one outgoing Knows edge), Cstat
p2 ←{v1, v4} (p2 has

one incoming Knows edge and one outgoing Author edge), and Cstat
p3 ←{v5, v6, v7, v8}

(p3 has only one incoming edge Author). To bootstrap the computation, we push an
initial pair into the state queue with S.enqueue({p1, {}}). Compared to DFS, BFS
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uses a queue instead of a stack for storing states. In the first iteration, BFS deques
{p1, {}} and stores a dynamic refinement for the pair (Cdyn

p1,{}←{v2, v3}). BFS now
iterates through the set of vertices from the refinement, creates copies of the initial
mapping, and because both mappings are homomorphic, it enques {p2, {p1←v2}}
and after that {p2, {p1←v3}}. The next iteration picks {p2, {p1←v2}} and refines
the next potential values for p2 from {v1, v4} to Cdyn

p2,{p1←v2}←{v1}. The vertex v4
is avoided, because it is not a neighbor of the matched v2. Since the new mapping
{p1←v2, p2←v1} is homomorphic, BFS enques {m1, {p1←v2, p2←v1}}. The next it-
eration processes {p2, {p1←v3}}: It refines Cdyn

p2,{p1←v3}←{v4} (v1 is avoided because
it is not a neighbor of v3), checks the homomorphism of the mapping, and enques
{m1, {p1←v3, p2←v4}}. The following iteration processes {m1, {p1←v2, p2←v1}}:
BFS refines the static candidates for m1 to Cdyn

m1,{p1←v2,p2←v1}←{v6}, since only v6 is
the neighbor of v1 and the created mapping {p1←v2, p2←v1, m1←v6} gets added to
the final mapping set M . Similarly, the last iteration processes {m1, {p1←v3, p2←v4}}
and stores the mapping {p1←v3, p2←v4, m1←v8} to the final set M

Refinement. Both algorithms use a step called refinement. The purpose of it is to cut
down the number of visited graph vertices by filtering out the graph vertices that will
not be matched. Static refinement can be done based on the neighborhood structure.
The engine can check that the degree of the vertex graph candidate vG is at least the
same as the degree of the pattern vertex vq. Dynamic refinement employs a dynamic
validity check of each incremental partial match. After mapping a graph vertex vG to a
pattern vertex vq, all the mapped vq’s neighbors {vq1 , ..., vqk

}must be also neighbors in
the vG, i.e., the newly bound vertex has the same structure. Also, in case of isomorphic
matching, the engine must check that the graph vertex vG is always mapped to only
one variable.

Another important part of the refinement in the case of querying is the evaluation
of filtering on the newly added graph vertex, and validation of the labels. Again, after
mapping a graph vertex vG to a pattern vertex vq, all the pattern filters of vq must also
be valid for the bound instance vG.

The refinement pruning can be pushed down toward the end of the execution. Some
engines evaluate filters at the end of the execution, which is not great for performance
given the exponential nature of the algorithm. Generally, the sooner we prune the
computation, the better the performance.
DFS characteristic. Depth-first search matching is attractive because of its low mem-
ory consumption, pipelined results, and efficient refinement through advanced pruning
of partial mappings [1]. Given the incremental nature of the algorithm, its memory
consumption corresponds to the memory consumption of storing a single visited path.
Further, the pipelined results generation makes it well-suited for the interactive analy-
sis, e.g., queries eagerly returning top-K results.

There are two main disadvantages of DFS: the complexity of the algorithm and
suboptimal IO access patterns. The complexity of DFS comes from its recursive na-
ture. Even when replaced with an iterative algorithm, the algorithm has more complex
states compared to its BFS counterparts. More importantly, the DFS access patterns
require visiting a chain of neighbors, i.e., following pointers to random access memory
locations, which implies a bad locality.
BFS characteristic. The main advantages of BFS compared to DFS are its simple
and adaptible tuple flow, easy parallelization, and sequential IO patterns. The algo-
rithm does not need to incorporate backtracking, which simplifies the algorithm flow.
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Due to the potential splitting into smaller independent subqueries, the parallelization is
straightforward, compared to DFS. Also, BFS has much friendlier access patterns. De-
pending on the graph representation, the accessed neighbors are in most cases stored
locally next to each other.

The large disadvantage of BFS is the extensive memory consumption. All partial
mappings are fully materialized before matching another query vertex specified by the
query plan. The space complexity of BFS is exponential in the diameter of the matched
subgraph [1].

2.2.2 Graph Data Structures
Graph querying through BFS or DFS focuses on traversing neighbors. Therefore, it
requires adjacency-centric data structure to allow efficient neighborhood lookup for a
given vertex. In property graphs with edge labels, this data structure can be partitioned
by the edge label, i.e., maintaining a single index per edge label set. Here, we present
two graph representations: (i) “the basic” matrix representation, and (ii) CSR represen-
tation that is used in many graph engines and is also used by PGX.D/Async. For more
graph data structures, we refer to Bonifati et al. [1].
Matrix. A matrix representation is the most basic representation of graphs. A matrix
m represents a graph by setting mi,j = 1 for every graph edge (vi, vj), and by setting
mi,j = 0 otherwise. The matrix can be linearized into an array of bits, which can
be further optimized, e.g., by compression. The space complexity is O(|V |2), which
is efficient only for very dense graphs. An advantage is that many complex graph
operations, e.g., the graph isomorphism test, can be implemented on top of matrix
representation and leverage well-optimized libraries for linear algebra.
Compressed Sparse Row (CSR). CSR is concise and efficient lookup representa-
tion [1]. It consists of two arrays A and B. The array B stores the neighbors of vi

consecutively in such way that the first neighbor is stored at index A[i] and the last
neighbor (if any) is stored at index A[i + 1] − 1. Therefore, the number of neighbors
of vertex vi is A[i + 1] − A[i]. To iterate over all neighbors of vertex vi, the engine
does a O(1) lookup to find the range [A[i], A[i + 1]) for the iteration. The array B can
also be semi-sorted, i.e., every individual neighborhood is sorted, to efficiently find a
neighbor for a given vertex using the binary search.

Figure 2.4 shows the representation of graph Gex (Figure 2.1) in CSR. Pointers
point directly to the element at the given index. Notice that the vertex v5 without edges
stores the same index as the vertex v6. Also, the array A stores one additional element
that points beyond the array to compute the upper bound of the neighborhood for the
last vertex (v8 in our example).

v2[Person]
name: Jan

age: 28

v1[Person]
name: Eva

age: 28

e1[Knows]
from: 2020

v3[Person]
name: Iva

age: 67

v4[Person]
name: Jana

age: 32

e2[Knows]
from: 1995

e3[Knows]
from: 2022

v6[Msg]
id: 102

msg: ’…’

v5[Msg]
id: 101

msg: ’…’

e4[Reply]
date: 10/12

v7[Msg]
id: 103

msg: ’…’

v8[Msg]
id: 104

msg: ’…’

e5[Reply]
date: 10/12

e6[Reply]
date: 13/12

e7[Author]

e8[Author]
e9[Author] e10[Author]

B v6 v1 v3 v5 v7 v4 v8 v5 v6 v7

A 0 1 5 6 7 7 8 9 10

v1 v2 v3 v4 v5 v6 v7 v8

Figure 2.4: CSR representation of graph Gex.
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2.2.3 Graph Querying Systems
Graph querying is a domain of graph databases. Angles et al. [53] defines graph
databases as “systems specifically designed for managing graph-like data following
the basic principles of database systems, i.e., persistent data storage, physical/logical
data independence, data integrity, and consistency”. In addition to graph databases,
there are graph processing systems that allow management of graph data, but does not
support all the requirements of the definition of the database systems. According this
definition, PGX.D/Async, a system that we use for the evaluation of improvements
presented in this thesis (introduced later in Section 3), is a graph processing system,
because it does not persist data. In this section, we present graph query systems and
graph databases in detail.

Native Graph Databases

Native graph databases [60] were explicitly built for managing graphs and are opti-
mized for such workloads, e.g., by leveraging the property graph model (Section 2.1.1).

Neo4j [16] is the graph database that made the property graph model popular and
is the most popular graph database at the moment. It is a single-machine disk-based
database supporting distributed storage for data replication. It implements the property
graph model using a set of fixed-size records [60]. Thanks to that, the records are easily
addressable. The vertex record stores a pointer to vertex labels, a pointer to the linked
list of vertex properties, and a pointer to the first adjacent edge. The edge record stores
a label, a pointer to the linked list of edge properties, two pointers to the source and
destination vertex records, and a pointer to the adjacency lists of the adjacent vertices.
Each property record can store up to four primitive types. For additional space, there
exists a separate dynamic store. Thanks to this index-free adjacency [60] design of
records, Neo4j can easily traverse relationships just by multiple pointer hops.

Sparksee [98], formerly known as DEX [99], is a graph database that implements
a property graph model using B++ trees and bitmaps. Vertices and edges are identified
using unique IDs. There exist multiple trees, one for labels, one per each property key,
and two for vertices (one for source vertices, the second one for destination vertices).
The reverse lookup, from values to keys, is done using a bitmap. Each value points to
a bitmap where the position of the value 1 implies the index of key. The bitmaps for
sparse graphs, i.e., bitmaps with mostly zeros, are clustered into 32 bits, and stored as
{clusterId,bitData} pairs in the sorted tree.

Tigergraph [17, 97] is a distributed database. It is a disk-based database, but it
tries to store all data into main memory if it fits, and overflowed data are spilled to
disk. Data are compressed and generally decompressed [100] only for displaying. The
vertices and edges are referenced by hash indices. Given the fact that Tigergraph is a
commercial product, there is not a lot of publicly-available information.

RDF Stores and Tuple Stores

RDF stores [101, 102, 103, 104, 105, 28], sometimes called triple stores after the RDF
triples that they store, implement the RDF model (Section 2.1.2). Tuple stores [106,
107] generalize the RDF model of triples and allow storage of any size tuples.

AllegroGraph [108] is a distributed multi-model database combining the document
and graph model together. It supports geospatial and temporal datatypes as native data
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structures. For graphs, it extends the implementation of the RDF model and stores an
arbitrary number of immutable attributes along with the RDF triples.

BlazeGraph [109] is a single-machine database implementing the RDF* exten-
sion [110, 93, 94, 95], which allows attaching multiple triples to one triple predicate
for storing labels or properties. This allows attaching edge properties and labels more
naturally than with RDF.

Cray Graph Engine [111] is a scalable distributed in-memory graph query engine.
It stores quads (4-tuples) instead of triples by extending the RDF triple with a graph
ID. This makes it possible to easily store multiple graphs in a single storage. Quads are
grouped by graph IDs and predicates into hash tables (a single hash table per a single
group) storing only the subject-object pairs.

WhiteDB [106] is a single-machine in-memory NoSQL tuple store. It allows stor-
ing tuples of any size. A tuple can contain any primitive datatypes or pointers to other
tuples. Larger types, i.e., strings, are stored separately with a tuple storing only a
pointer to it. It does not support any specific graph constructs: One needs to encode
the graph structure into the tuples as shown, for example, in [107].

GraphFrames [31] is a package for Apache Spark [112] which provides a graph
specific functionality for Spark DataFrame [113]. It offers native support for vertices
and edges, along with motif search and graph queries. GraphFrames internally uses
the underlying Spark DataFrame, i.e., distributed table storage. For that reason, graph
querying and motif are implemented using the BFS approach.

Other worth mentioning RDF-based engines are Amazon Neptune [28], that is built
for the Amazon cloud, and Wukong [105], a distributed graph-based RDF store that
leverages hardware features, such as RDMA and GPUs.

Relational Stores

Relational Database Management Systems (RDBMSes) store data in tables as was
described in Section 2.1.2. Row-oriented tables [114, 115] store rows continuously
in memory. This is an efficient representation if the system frequently accesses a
few rows with most of their columns. On the other opposite, column-oriented ta-
bles [116, 117, 19, 118, 119] store columns continuously in memory, which is an ef-
ficient representation if the system frequently accesses only a few columns for most
rows. An example of such workload is JOINing, which performs a linear scan on a
column ID.

In general, relational databases are the most used, developed, and optimized data-
bases at the moment. There is long ongoing research in that field, and covering the
field in detail is out of the scope of this thesis. We mention here systems that are typ-
ically used for benchmarking [120] with other graph systems, i.e., PostgreSQL [119,
121], MonetDB [118], Umbra [19], SAP HANA [116], AgensGraph [122], and Mari-
aDB [117].

From a graph processing point of view, it is interesting to see the recent adoption
of the worst-case optimal JOIN [123, 124, 125], which optimizes queries with many
JOINs by performing traversals similar to depth-first search in order to avoid a memory
explosion. This improves the overall performance of long JOINs, i.e., consecutive
JOINing of many tables. This is a typical workload for graphs during edge traversals.
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Key-Value Stores

In key-value stores [13, 126, 127], the graphs are built without applying one specific
graph model. Each engine uses its own approach for storing graphs.

Trinity [13], newly called Microsoft Graph Engine, is a distributed key-value stor-
age with globally addressable memory RAM storage. It leverages graph access pat-
terns to optimize memory and communication for best performance. It stores graphs
as follows: The keys are vertex IDs. The values, called cells, store all the vertex prop-
erties as well as lists to store all the IDs of the vertex neighbors. For directed graphs,
the vertex stores two neighbor lists, one for outgoing edges and the second for incom-
ing edges; for undirected graphs, a single list is enough. For a small number of edge
properties, the properties are stored along with the vertex ID in the neighbor list. In
the case of many edge properties, individual edges are represented by individual cells,
similar to vertices.

HyperGraphDB [127] is a general-purpose distributed hypergraph database built
on top of key-value storage. The key-value pairs are called atoms. Every atom has a
cryptographically strong ID used as a key. Atoms use a recursive design to store either
a binary value or a list of other atom IDs. With that design, the vertices are represented
as atoms with a type ID representing labels and a value ID representing properties.
Edges are encoded with a type ID and a value ID representing labels and properties,
and with a list of vertex IDs representing the vertices of the edge.

JanusGraph [128] is a distributed graph query engine. It is an example of an en-
gine built on top of a wide-column store. It works as a two-dimensional key-value
store. A key returns a row of sorted cells where each cell contains a key-value pair.
Practically, the final cell value is identified by a row key and a cell key. JanusGraph is
modular and allows picking different types of underlying data storage: Apache Cassan-
dra [129], Apache HBase [130], or Oracle Berkeley DB [131]. The graph is modeled
as follows: Each row represents a vertex. Each cell represents either properties or ad-
jacent edges together with their properties. The cell keys are encoded in such a way
that after the cell sorting, the properties go first, and the edges second.

TuGraph [132], formerly known as LightGraph [133], is a large-scale distributed
graph database used by Alipay [132]. Internally, it uses key-value storage implemented
using multiversion B++-tree and write-ahead log. On top of that, it builds the graph
index for graph processing.

Document Stores

Document stores [134, 135, 136, 137] use a document data model to organize data
as a collection of documents. Documents have data in semi-structured formats, e.g.,
JSON [138] or XML [139]. The document data model is similar to a key-value model
with values having a structure. This structure can consist of various types, collections,
key-value pairs, or recursive structures, similar to what one can find in JSON or XML.

OrientDB [135] is a distributed document database. Documents are using a re-
cursive design where every document has a Record ID (RID), and consists of RIDs of
other documents and offsets within that document. This forms links between docu-
ments. A vertex document stores labels, properties, a list of RIDs of incoming edges,
a list of RIDs of outgoing edges, and a list of lightweight edges. The lightweight edges
are inlined edges that have no properties or labels. The heavyweight edges are stored
as an edge document that contains edge properties, labels, and RIDs of source and
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destination vertices.
ArangoDB [134] is a scalable document graph database. It stores documents in a

compacted binary JSON format called VelocyPack. Documents are stored in different
collections with unique IDs for these collections. A graph is encoded as a vertex and an
edge collection. Vertex documents store properties and labels. Edge documents store
properties along with the source and destination vertices. All the edge documents are
also connected into a linked list which allows a direct access to a neighbor vertex
without revisiting the source vertex.

Object-Oriented Databases

The Object-oriented data model [140, 141, 142] stores graphs using a collection of ob-
jects linked together, similar to what one would program in object-oriented program-
ming languages, such as Java or C#. Given this fact, graph modeling is implementation
specific.

VelocityGraph [143] is built on top of the distributed object-oriented database Ve-
locityDB [141]. The vertices, edges, and their properties are stored as C# objects. Each
object has a unique object ID pointing to its physical storage. Every vertex and edge
stores a single label and its properties in a dictionary. Edges are stored as a collection
of neighbor vertices within each vertex.

InfiniteGraph [142, 144] builds on top of the distributed object-oriented disk-base
database server Objectivity/DB [145]. It allows partitioning and distributed processing
of the stored data. For querying, it uses its own Infinity DO query languages [146].

2.3 Other Approaches
In this thesis, we focus on graph querying. However, there are also other graph pro-
cessing fields, such as graph algorithms and graph mining, which are close to graph
querying. Some complex queries, such as shortest/cheapest path, might use a com-
bination of querying and algorithms. Graph mining, on the other hand, performs a
specialized pattern matching similar to querying.

2.3.1 Graph Algorithms
One of the main reasons for the appearance of the specialized graph systems, was the
ability to run graph specific algorithms on the data. Nowadays, graph systems can run
simple breadth-first, depth-first, shortest path searches [147], or more complex algo-
rithms covering different categories of data analysis [148], i.e., centrality for determin-
ing the importance of distinct nodes in the network (e.g., Pagerank [149], Eigenvector
centrality, Betweenness centrality), community detection for figuring how are the ver-
tices clustered and their tendency strengthen or break apart (e.g., label propagation,
weakly connected components, local clustering coefficient), similarity to find similar
pairs of nodes based on their neighborhoods or properties (e.g., node similarity algo-
rithms based on Jaccard or Overlap metrics), path finding for searching a path between
two or more vertices (e.g., already mentioned breadth-first search (BFS) and depth-
first search (DFS), Dijkstra and A* shortest path or random walks), topological link
prediction to determine closeness of some vertices using the topology (e.g., common
neighbors, same community, Adamic Adar), and node embedding to compute low-
dimensional vector representations of the vertices, which is very useful in machine
learning (e.g., FastRP, Node2Vec, GraphSAGE, HashGNN).
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The systems typically have a set of optimized hard-coded algorithms, and allow
additional flexibility by implementing new algorithms. A more high-level approach
uses domain specific languages [150, 151, 152] for letting users program algorithms
using predefined language constructs and transforming these constructs into system-
specific operations.

The other approach employs special graph programming iterative models [153,
154, 24, 25, 29, 155, 156, 157, 158, 159, 160, 161, 162, 163] to calculate values of
vertices and edges iteratively based on the values of the neighborhood. Influenced by
the runtime systems, the values between iterations are propagated by using the push
model [164], i.e., pushing the values to neighbors, by using the pull model [165], i.e.,
pulling the values from neighbors, or by using some kind of hybrid model [163, 160,
151]. In distributed systems, the push model means that the data are sent to the remote
machine once they are available. On the contrary, the pull model implies requesting
the necessary data first and processing the data once they arrive.

2.3.2 Graph Mining
Graph mining aims to extract structural properties of the graph by exploring its sub-
graph structures to understand the graph. More specifically, graph mining problems
search for isomorphic projections (explained in Section 2.4.1) from a subgraph of in-
terest to a given input graph.

Graph mining has a fixed set of problems on which it focuses. There are two
versions of each problem, the first is focusing on counting, i.e., returning number of
matched subgraphs, the second one is focusing on enumeration, i.e., returning all the
matched subgraphs. Below are the graph mining problems. For simplicity, we mention
the counting versions only:

• Motif counting. A motif is any connected unlabeled subgraph pattern. The prob-
lem is counting occurrences of all possible motifs up to a certain size.

• Frequent subgraph mining. This problem focuses on listing all labeled patterns
with k edges that appear more than a given threshold τ . The frequency of appear-
ance (called support) is measured using an anti-monotonic metric, i.e., given a
pattern Q and its subgraph P, support(P ) ≥ support(Q). Since simple subgraph
counting (known from querying) is not anti-monotonic, graph mining uses spe-
cial metrics [166, 167, 168]. The metrics allow efficient computation with opti-
mizations. Without it, exhaustive search is unavoidable [167, 168].

• Clique counting. A k-clique is a fully-connected graph with k vertices. The
problem counts the number of such patterns in the graph. There are differ-
ent variations of this counting problem with slightly different patterns, such as
counting pseudo-cliques, i.e., patterns where a density of the edges goes over a
threshold, a counting of maximal cliques, i.e., cliques that are not included in
any other cliques, or a search for frequent cliques, i.e., cliques that appear more
than a given threshold.

• Pattern matching. This problem counts the number of subgraphs that are iso-
morphic to a given pattern. There is also a variation of this problem called con-
strained subgraph that constrains the searched subgraphs in a given way.

There are many general purpose graph mining engines [23, 20, 169, 170, 22, 171,
172, 173]. Peregrine [23] is a state-of-the-art single-machine graph mining system
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that is fully pattern-aware. It also supports additional performance optimizations such
as symmetry breaking or using the notions of anti-vertices and anti-edges to express
absences of vertices and disconnections. Automine [171] is another single-machine
system that is not pattern-aware, but supports memory/disk-resident graphs. It pro-
vides user algorithms with a high-level abstraction of representing subgraph patterns
via vertex composition sets, enumerates their subgraph patterns, generates their sched-
ules, for identifying the subgraph patterns, and finally compiles them in C++ by con-
sidering re-using subgraph patterns across schedules to reduce memory consumption.
RStream [170] is a single machine graph mining system that expresses mining tasks as
relational JOINs, and allows processing large graphs by offloading intermediate results
to SSD.

Several distributed graph mining engines exist as well. Arabesque [20] is imple-
mented using map-reduce and proposes the “think like an embedding” model, i.e., a
high-level filter-process computational model that passes subgraphs to the application
to decide upon their further exploration. Fractal [169] adapts load-balancing to the
workload via a hierarchical and locality-aware work-stealing mechanism, and enumer-
ates subgraphs with a depth-first strategy while recomputing subgraphs from scratch
to avoid numerous in-memory intermediate results. G-Miner [22] is a task-oriented
engine with load-balancing processing that uses a distributed task queue with asyn-
chronous communication to hide communication overhead. BiGJoin [173] uses a
data-parallel dataflow computation with a worst-case optimal approach that dynam-
ically joins the columns with the least matches.

2.4 Graph Query Languages
In addition to graph engines and databases, many languages for graph querying exist,
such as PGQL [3] (from Oracle [174]), Cypher [6] (from Neo4j [16]), GSQL [5] (from
Tigergraph [17]), SPARQL [175] (for RDFs), or Gremlin [4]. Because of this fragmen-
tation, two new graph query language standards emerged: SQL/PGQ [7] (published in
June 2023) as a graph extension for SQL, and GQL [8] (planned to be standardized
in April 2024) as a new graph query language, semi-compatible with SQL/PGQ. For
example, the pattern matching in GQL should be identical to the pattern matching in
SQL/PGQ. Additionally, GQL should also include constructs related to graph modifi-
cations, e.g., create graph, insert/update/delete.

Given the novelty of SQL/PGQ and the lack of support for some more advanced
features, such as RPQs (presented in Section 5), for all query examples in this the-
sis, we use PGQL 2.0 [3] which is close to SQL/PGQ, as it was modeled after SQL.
Nevertheless, the other languages offer similar functionality. In this section, we use
PGQL to describe various features of graph query languages that we use in this thesis.
More complex features not needed in our work, such as subqueries, SHORTEST and
CHEAPEST paths, are omitted. For these features and more details, please refer to the
PGQL documentation [3].

2.4.1 Querying and Pattern Matching
Similar to SQL queries, PGQL queries consist of multiple clauses with predefined
meanings, of which some are mandatory and some are optional. We will go over all
the relevant clauses in the order in which they appear in queries.
SELECT. The SELECT clause specifies data entities that the query returns. More
specifically, it defines the columns of the result table. It can contain any graph ele-
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ment, i.e., vertex, edge, its properties, or any expression consisting of those values. We
can refer to the graph elements using the variable names and also create their name
aliases using the keyword AS. To refer to all properties of a graph element, one can
use * (star). To avoid duplicate entries within the result data rows, PGQL specifies
keyword DISTINCT that filters out all the duplicate entries and returns only unique
elements. In case of missing values, the data is reported as NULL. Also, one can use
predefined aggregated functions, e.g., COUNT, MIN, MAX, AVG, to return scalar val-
ues. Note that we cannot combine the scalar values with the table results. An example
of the clause is shown later.
FROM and MATCH. The FROM clause describes the searched pattern. The clause
can consist of multiple MATCH clauses that specify a searched pattern or multiple
GRAPH_TABLE clauses that define a SQL/PGQ compatible way of expressing the sear-
ched pattern.

The MATCH clause specifies a (partial) subgraph pattern that the engine is going to
search for. It consists of one or more vertices and relations between them. A relation
can be an edge or a path (Section 2.4.3). Each vertex and edge are specified using an
optional variable, which is a symbolic name to reference the element in other clauses
further in the query, e.g., in projections, filters, or post-processing.

A single vertex is specified using parentheses () with the optional name of the vari-
able inside, i.e., (x). An edge, named or anonymous, can be specified between two
vertices only. To mark the edge, we use: an arrow -> for directed outgoing edges, <-
for incoming edges, or a single dash - for any-directed edges (the edge pattern can be
matched to the edge with any direction). The optional edge variable is specified using
square brackets inside the edge pattern, i.e, -[e]->, <-[f]- and -[g]-, to define
an outgoing edge e, an incoming edge f, and any-directed edge g, respectively. Mul-
tiple patterns can be chained together or specified using an individual MATCH clause.
The semantics is the same in both cases, i.e., every result must match all the patterns
together.
WHERE. The WHERE clause specifies filtering. Filtering is defined in the form of
boolean expressions that are evaluated on every match. If the expression evaluates to
true, the filter passes, and in case of false, the matched result is removed. PGQL
allows usage of typical mathematical numerical and boolean expressions, e.g., +, -,

*, /, AND, OR, >, <, =(equality), string functions, e.g., SUBSTR, LOWER,

JAVA_REGEXP_LIKE, functions for date-time manipulations, as well as user-defined
functions, and CASE predicate that allows branching. In addition to manually specify-
ing labels, there is a function has_label().
An example. Here are two example queries with the graph Gex (Figure 2.1):
/* Q1 */
SELECT p.name, p.age
FROM MATCH (p:Person)
WHERE p.age < 30

/* Q2 */
SELECT a, b, c, d
FROM

MATCH (a:Person)-[:Knows]-(b:Person)-[:Author]-(c),
MATCH (c)-[:Reply]-(d)-[:Author]-(a)

The query Q1 matches every person that is younger than 30 years and returns its prop-
erty name and age. The query Q2 searches for any-directed 4-hop cycles in the graph
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with given labels. Note that the labels are specified using : (colon) with filters names
separated with the | (pipe), e.g., (p:Person|Men|Employee). The results are:
{v1, v2, v7, v6}, {v1, v2, v5, v6}, {v2, v1, v6, v5}, and {v2, v1, v6, v7}. If we do not in-
clude labels, other mappings, such as {v1, v2, v1, v2} or {v1, v6, v1, v2}, would also be
valid due to homomorphic matching.

2.4.2 Grouping, Aggregation, and Sorting
The aggregations are responsible for aggregating the results along all the results or a
group of results. Groups are created based on a given expression. Each aggregated
value is created per a group of the expression results. The aggregated value can be any
valid expression, e.g., COUNT(2 * a.prop1 + 3).
GROUP BY. This clause allows specifying the grouping of the results based on prop-
erties having the same value. Within those groups, one can aggregate results of result
values or expressions. There are predefined aggregation operators that do what their
name suggests, i.e., COUNT, MIN, MAX, SUM, AVG, as well as ARRAY_AGG that
constructs an array from all the aggregated values, and LISTAGG that concatenates the
aggregated values with a given separator. Similarly as in projections, all expressions
can be combined together with DISTINCT to eliminate duplicated values.
HAVING.HAVING specifies the aggregation filtering. It filters out particular groups in
the results based on a given expression.
ORDER BY. This clause specifies the ordering of the returned results. Without it, the
returned order of the results is undefined. The parameter of the ORDER BY can be
any number of values or expressions. There are also two keywords: ASC and DESC

specifing the ordering direction.
OFFSET and LIMIT.OFFSET specifies the start index of the first result. LIMIT gives
a limit on the number of results returned.
An example. Here we present an example of a non-trivial query and its execution in
Gex. However, there is no fixed order of the operations, and every engine can optimize
this process.
SELECT AVG(p.age), COUNT(*) AS msg_count
FROM MATCH (p:Person) -[:Author]-> (m:Msg)
GROUP BY p
HAVING msg_count < 10
ORDER BY msg_count ASC, AVG(p.age) DESC
LIMIT 2

The query evaluation proceed in following steps:

1. Matching the given pattern and returning mappings together with the properties
that are needed for next steps: (p,m,p.age) = {(v1, v6, 28), (v2, v5, 28),
(v2, v7, 28), (v4, v8, 32)}.

2. Creating groups with the same p: gv1 = {(v1, v6, 28)}, gv2 = {(v2, v5, 28),
(v2, v7, 28)}, and gv4 = {(v4, v8, 32)}.

3. Aggregating the groups. AVG(p.age) computes average age for each group,
COUNT(*) counts the number of entries in each group, and AS msg_count

creates an alias for the result of the counting: (AVG(p.age),msg_count)=
{gv1(28, 1), gv2(28, 2), gv4(32, 1)}.

30



4. Filtering out groups with msg_count < 10. Because all groups meet this cri-
teria, we continue to the next step.

5. Ordering of groups. First, we order according the msg_count in ascending
order, and second, we order according the AVG(p.age) in descending order:
[(32, 1), (28, 1), (28, 2)].

6. Finally, processing LIMIT 1 by taking the first two entries from the sorted re-
sults. The query result is: (AVG(p.age),msg_count) = [(32, 1), (28, 1)].

2.4.3 Variable-Length Path Pattern Matching
Section 2.4.1 introduced fixed-length path matching. However, PGQL also supports
variable-length path matching that allows matching a certain part of the query (called
path) multiple times within a given limit in such a way that every matched result can
have a different number of repetitions, i.e., have different (variable) number of matched
vertices and edges. The variable-length queries also allow different search strategies
to find paths between matched vertices, which present two powerful, and easy to use,
constructs that unlock the true potential of graph querying.

To specify the number of repetitions of the path, PGQL uses a syntax similar to
regular expressions. Table 2.1 shows the quantifiers with their number of repetitions.

Quantifier Number of repetitions

* zero or more
+ one or more
? zero or one
{m} exactly m
{m,} m or more
{m, n} between m and n (inclusive)
{, n} between zero and n (inclusive)

Table 2.1: Variable-Length Path Quantifiers.

There are different path-finding goals, i.e., strategies on how to find the given
path between the source and destination vertices, and also specifying the number of
returned paths. The options are: ANY, ALL, ANY SHORTEST, ALL SHORTEST,

SHORTEST K, ANY CHEAPEST, ALL CHEAPEST, and CHEAPEST K. Here we fo-
cus only on ANY and ALL. The others relate to other path-finding strategies that use
different search algorithms, which is out of the scope of this thesis.
ANY paths. In the previous versions of PGQL, this was called reachability since it
uses reachability queries to find the searched path. This goal searches for any path
with no restrictions on the length between the source and destination vertices. This
can be used to test the existence of paths between two vertices. Reachability semantics
implies that multiple found paths between the same source and destination vertex pairs
are counted only once. For example, a query that “returns all pairs of persons that
contributed in a discussion under a message”, in PGQL:
SELECT p1, m1, m2, p2
FROM

MATCH (p1:Person) -[:Author]-> (m1:Msg),
MATCH (p2:Person) -[:Author]-> (m2:Msg),
MATCH ANY (m1) (-[:Reply]-)* (m2)
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returns following results/mapping: {p1, m1, m2, p2} = {
{v1, v6, v5, v2}, {v1, v6, v6, v1}, {v1, v6, v8, v4}, {v1, v6, v5, v2},
{v2, v5, v6, v1}, {v2, v5, v5, v2}, {v2, v5, v7, v2}, {v2, v5, v8, v4},
{v2, v7, v5, v2}, {v2, v7, v6, v1}, {v2, v7, v7, v2}, {v2, v7, v8, v4},
{v4, v8, v7, v2}, {v4, v8, v6, v1}, {v4, v8, v5, v2}, {v4, v8, v8, v4}}.
Notice that homomorphic matching together with the any-direction Reply edge gen-
erates many results that can include loops.
ALL paths. This goal matches all paths between a given pair of vertices. Compared
to ANY this counts all the found paths. In order to avoid infinite cycles in the case
of non-tree graphs, PGQL forbids unbounded quantifiers, i.e., * (star), + (plus), and
{m,}.

2.5 Benchmarking
In this section, we provide a brief overview of the benchmarks typically used by graph
querying systems and the benchmarks used in this thesis. More detailed information
together with queries can be found in the appendix.

2.5.1 LDBC
The Linked Data Benchmark Council (LDBC) [120] is a non-profit organization aim-
ing to standardize graph benchmarks. It consists of organizations and individuals from
industry and academia. Current benchmark consists of following benchmarks:

• Graphalytics [176]: A benchmark for graph algorithms.

• Financial Benchmark [177]: A benchmark for financial workloads (work in
progress in July 2023).

• Semantic Publishing Benchmark [178]: An industry-grade benchmark for RDF-
based semantic databases.

• Social Network Benchmark: A benchmark for graph database management sys-
tems.

Social Network Benchmark

The Social network benchmark [179] is currently the most interesting benchmark for
all graph database management systems. It uses choke points to design the workloads.
The choke points are challenging aspects of query processing that motivate databases
to employ more complex optimizations. An example of a choke point is the ability
to compute the shortest paths between a vertex and a set of vertices. The benchmark
consists of two workloads, Business Intelligence (BI) and Interactive (I) workloads.
Business Intelligence (BI). The Business Intelligence (BI) workload [180] is the an-
alytical (OLAP) workload focusing on aggregation and join-heavy complex queries
accessing a large portion of the graph with microbatches of insert/delete operations.
It contains 20 parameterized read queries consisting of 38 choke points divided into
9 categories: aggregation, join, data access locality, expression calculation, correlated
subqueries, parallelism and concurrency, graph specifics, language features, and up-
date operations.
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Interactive (I). The workload [181] captures OLTP scenarios, i.e., it focuses on com-
plex read queries accessing the vertex neighborhood and concurrent update operations
continuously inserting new data. There are four types of operations: 14 complex (CR)
and 7 short (SR) read queries, 8 insert (INS) queries, and 8 delete queries. The work-
load is mixed using 8% CR, 72% SR, 20% INS, and 0.2% DEL operations.
Datasets. The data consist of different scales from SF1 to SF10,000. The initial dataset
of SF10,000 contains more than 23 billion vertices and around 173 billion edges. The
update dataset employs 26 billion insert operations and 250 million delete operations.
Within this thesis, we use SF10, SF100, and SF300. The total number of individual
elements is shown in Table 2.2.

2.5.2 TPC-H
TPC is a non-profit corporation developing data-centric benchmark standards that can
be used easily by the industry. TPC-H [182] is a decision support benchmark of busi-
ness oriented ad-hoc queries and data modifications. It simulates a decision support
system that performs complex business analysis. It consists of 22 complex queries and
two database refresh functions. The total number of elements is shown in Table 2.2.
TPC-H is not a classic graph benchmark since it was developed for RDBMSes. Nev-
ertheless, given its popularity for relation databases, we port the dataset as a graph and
use it in some of the experiments in this thesis.

LDBC TPC-H

SF10 SF100 SF300 SF100 SF300

Total vertices 27M 255M 738M 786M 2.4B
Total edges 170M 1.7B 5.1B 2.0B 6.1B

Table 2.2: The number of elements in LDBC and TPC-H for different scales in mil-
lions (M) and billions (B).
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3. PGX.D/Async Query Engine
PGX.D [29] is a fast distributed graph processing engine that supports the most com-
mon way to process graphs, namely graph analytics, i.e., graph algorithms, and graph
querying. In this chapter, we describe parts of the engine relevant to the graph querying
as well as the underlying system infrastructure. The original design of the graph query-
ing engine, PGX.D/Async, is described in [32]. The parts related to graph analytics
and infrastructure can be found in [29].
Organization. This chapter presents PGX.D/Async. Section 3.1 shows the architec-
ture of the engine. Section 3.2 explains how query planning works. Section 3.3 de-
scribes the runtime and how the matching and other important parts work. Section 3.4
explains the post-processing part of the engine, i.e., GROUP BY and ORDER BY. Fi-
nally, Section 3.5 evaluates selected parts of the engine and explains their performance.

3.1 Architecture
Figure 3.1 shows the high-level architecture of PGX.D/Async. Different components
of the systems are described in the following sections.
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Figure 3.1: High-level architecture of PGX.D/Async.

3.1.1 Communication Management
For handling communication, PGX.D/Async uses an internally developed library that
allows efficient communication over different network layers, e.g., Ethernet or Infini-
Band. This library incorporates zero-copy messaging which directly registers a set
of pre-allocated buffers with the network card. This library uses a standard message
passing approach, similar to one in Open MPI [183].

For message communication, the system pre-allocates a fixed number of messages
at the beginning of the program that are used for all the communication. There are
two threads on each machine dedicated to sending and receiving. One thread manages
the sender queue and the other manages the receiver queue. When sent, the message
is pushed into the sender queue and eventually sent by the receiver thread. On the
receiving side, the sender thread pushes the received message into the receiver queue,
where it is eventually picked up by one of the other worker threads.
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3.1.2 Data Management
Graphs are stored in memory using the conventional CSR (Compressed Sparse Row)
format (Section 2.2.2). A CSR is created per each edge and vertex provider. This al-
lows fast vertex and edge iterations based on given provider. Providers are specified in
a graph schema and are typically mapped to labels. In case of no labels, edges/vertices
can use a single unnamed provider or can be split into multiple ones. If there are more
labels, one can pick one main label as a provider, and let the other labels be encoded as
normal labels, i.e., using dictionary encoding. Another approach creates a provider per
each label subset. Vertex and edge properties are stored in a columnar format and allow
a direct lookup based on the vertex/edge ID. String properties incorporate dictionary
encoding for performance.

All data arrays are partitioned across the cluster during the graph loading. PGX.D
uses edge partitioning [184] as a partitioning strategy that results in a similar number
of edges in each partition. The primary goal of this strategy is to balance workloads
between machines [30, 185]. Once the graph is partitioned, PGX.D assigns a global
64-bit ID to every vertex. The vertex ID allows for a quick lookup of the vertex and its
properties and labels.
Ghost vertices. As mentioned in Section 1, the number of neighbors in real social
networks follows the exponential distribution [12]. This implies the existence of high-
degree vertices that are connected to almost every vertex in the graph. In combination
with a suboptimal partitioning, this can create an imbalance between machines even
with the edge partitioning.

To mitigate this problem, the engine selects high-degree vertices and creates copies
of them on every machine, called ghost copies [186, 29]. Each copy holds only a part
of the neighborhood. As a side effect, in well-balanced edge partitioning, almost all
the edges of ghost copies should be local.

Along with the ghost copies, there exists also a ghost origin that stores all the
properties and is used as an edge vertex destination in CSR. Note that compared to a
normal vertex, accessing all ghost-vertex neighbors requires broadcasting the request
to all its copies.

Later in the evaluation Section 3.5, we show the benefits of using ghosts with a real
workload.

PGQL query Logical query plan Distributed query plan

SELECT a, b.addr
MATCH
  (a)->(b),
  (a)<-(c),
  (c)-[e]-(a)
WHERE
  a.age >= 18 AND
  a.type = c.type AND
  has_label(e, ‘Knows’)
  

ab c

<vertex match>
  a: age >= 18
<neighbor match: out>
  a->b
<neighbor match: in>
  a<-c: a.type = c.type
<edge match: any>
  c-[e]-a: label(e) = Knows

(Various plans possible for the same 
query; one is chosen in the next step)

<stage a: age >= 18>
  hop: out neighbor b
<stage b>
  hop: inspection a
<stage a>
  hop: in neighbor c
<stage c: a.type = c.type>
  hop: any-directed edge a
    label(e) = Knows
<stage a>
  hop: output

Stage 0:  filter : age >= 18
vertex a  hop    : out neighbor b
          capture: a.type
          output : +a
Stage 1:  hop    : inspection a
vertex b  output : +b.addr
Stage 2:  hop    : out neighbor c
vertex a
Stage 3:  filter : a.type = c.type
vertex c  hop    : any-directed edge a
Stage 4:  hop    : output
vertex a

i ii iii

Exe
cu

tio
n

ivExecution plan

Figure 3.2: From a PGQL query to PGX.D/Async execution. Three transformation
steps before execution.
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3.2 Query Planning
Users submit declarative PGQL [3] queries to PGX.D/Async. As Figure 3.2 illustrates,
each query goes through three transformation steps before being executed in step iv.
Step i: Logical query planner. The first step translates the PGQL query into a log-
ical query plan, which consists of the logical operators of Table 3.1. Similar to re-
lational query planning, a given query can be executed by multiple logical query
plans. In the example of Figure 3.2, an alternative plan could rewrite the query as
(a)-[e]-(c)->(a)->(b). This first step directly translates the query to an admis-
sible plan, which is then optimized in the following steps.
Step ii: Distributed query planner and optimizer. This step specializes the logical
query plan by taking into account the specific characteristics of PGX.D/Async’s run-
time. The query planner rewrites the logical plan in terms of stages and transitions
from one stage to another (called hops). A stage is responsible for matching or ac-
cessing exactly one vertex and contains all the information necessary for matching the
corresponding vertex and for transitioning to the next vertex with a hop. In the exam-
ple of Figure 3.2, the topmost stage “a” matches the first vertex a of the query, while
the next one matches b. An out-neighbor hop takes the execution from a to b.

PGX.D/Async supports four types of hops that specialize for distributed execution:
neighbor match, edge match, output, and inspection. Neighbor and edge hops have
the same behavior as the corresponding logical operators in Table 3.1. An output hop
produces a final match using the current intermediate result and is always used in the
last stage of a match.

Operator Example Description

Vertex
(x)->(y)

Matches vertices without
match following edges

Neighbor
(x)->(y)

Matches neighbors
match of the current vertex

Edge (x)->... Matches again an
match (y)->(x) already matched vertex

Inspection (x)->(y)->(z), Transfers the execution back to
match (y)->(w) an already matched vertex

(the last hop) — Stores the intermediate results

Table 3.1: Graph operators used in the logical query plan.

Inspection hops are specific to distributed processing: They bring the current interme-
diate result back to an already matched vertex in order to continue query evaluation. In
the example of Figure 3.2, after matching a and b of (a)->(b), the query again needs
the neighbor list of the already matched vertex a in order to continue with matching
(a)<-(c). Since the matched vertex b might be in a different machine than a, the
query planner introduces an inspection step to “link” this disconnected pattern and
bring back the context to the machine of a. If a resides in the current machine, an
inspection hop is essentially a no-op.

In this step, PGX.D/Async rewrites the logical query plan with a cost-based op-
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timizer, implemented using dynamic programming, that is based on the following
heuristics:

• Heavily filtered vertices are preferred for the earlier stages of the plan.

• Inspection hops are not free and increase the plan’s cost.

• The cost of an edge hop is approximately log of the cost of a neighbor hop, as it
can be implemented with a binary search in the neighbor list of the source vertex.

The optimizer further detects whether a query has a single starting vertex, by extract-
ing ID equality filters (e.g., ID(person) = 123). In the example of Figure 3.2, the
optimizer rewrites the query as (a)-[e]-(c)->(a)->(b) because it avoids an in-
spection hop and a and e are more filtered as compared to b.
Steps iii–iv: Execution plan and execution. Finally, PGX.D/Async generates a con-
crete execution plan. Apart from stages and hops, the execution plan contains filters
(on vertices and edges), as well as information on what data should be included in
the intermediate results in order to execute filters of later stages and produce the fi-
nal output. For example, in the query of Figure 3.2, Stage 0 must collect a.type,
since it is required by the filter of Stage 3. Similarly, Stage 0 must put vertex a in
the intermediate result as it is part of the projection of the query. Overall, each stage
builds up the intermediate result such that another thread, local or remote, can pick it
up and continue the computation. The resulting execution plan is then submitted to the
PGX.D/Async runtime, on which we focus next.

3.3 PGX.D/Async Runtime
As was presented in Section 2.2, recent graph-mining and graph-querying sys-

tems [187, 23] adopt a pattern-matching approach that relies on intersecting neigh-
borhood lists. Instead of being vertex-centric (i.e., starting from vertices and following
edges), the intersection approach focuses on edges. The benefit of the intersection-
based model is that it takes O(|V |) steps since it allows intersecting multiple incoming
edges at a time, as compared to the vertex-based approaches that are O(|E|). However,
intersections require complete subgraph parts to operate. This necessitates pulling/-
gathering possibly large amounts of data from remote machines. To make things worse,
queries enumerate all automorphisms (i.e., the exploration space could locally explode)
and offer arbitrary user filters and projections, meaning that in an intersection-based
model, one would need to pull not only the vertex/edge data, but also all the proper-
ties required by the query. Therefore, PGX.D/Async uses a vertex-centric approach
that builds mini-frontiers based on the first query vertex and enables PGX.D/Async to
operate on fully partitioned graphs with limited memory.
Runtime. The runtime of PGX.D/Async is based on the stage and hop constructs de-
scribed above. PGX.D/Async initiates query execution by applying Stage 0 (matching
of the first vertex variable of the execution plan) to each vertex of the graph. This
bootstrapping process happens (i) across machines, i.e., each machine starts from the
locally-stored vertices, and (ii) concurrently within each machine, i.e., each worker
thread handles a distinct set of vertices and performs the bootstrapping process on
these vertices one after the other. Hops that follow remote edges send the intermediate
match (batched) to the destination remote machine where they are picked up and taken
over by a local thread.
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Figure 3.3: Matching operations starting from a given vertex. The yellow box “Handle
messages” connects to the activity diagram in Figure 3.5.

Query

Execution plan

Machine 2Machine 1

v2[Person]
name: Jan

age: 28

v1[Person]
name: Eva

age: 28

e1[Knows]
from: 2020

v3[Person]
name: Iva

age: 67

e2[Knows]
from: 1995

v5[Msg]
id: 101

msg: ’…’

v7[Msg]
id: 103

msg: ’…’

e8[Author]
e9[Author]

MATCH (p1:Person) -[:Knows]-> (p2:Person)
WHERE p1.name = ‘Jan’ AND p2.age < 30

S0: match(p1)
p1.label = ‘Person’
p1.name = ‘Jan’

S1: match(p2)
p2.label = ‘Person’
p2.age < 30

hop: nghbr_out
e.label = ‘Knows’ output

Figure 3.4: Example query on a distributed graph. Rounded rectangles represent ver-
tices. Remote edges are dotted, local edges use full line. The execution plan depicts
Stage 0 in blue, Stage 1 in red, neighbor hop in orange, and output hop in yellow.
Vertices matched to Stage 0 are inside blue rectangle, vertices matched to Stage 1 are
inside red rectangles.

Matching. Figure 3.3 includes a high-level activity diagram of the PGX.D/Async run-
time. Completing the execution of this diagram from Stage 0 to the last query stage
implements the complete matching starting from a single vertex of the graph. We ex-
plain these steps using the example of Figure 3.4. Text in the blue italic face represents
the activities in Figure 3.3. The PGX.D/Async runtime assigns vertex v2 in Figure 3.4
to a worker thread t, which tries to generate new matches. The thread first tries to
match v2 with Stage 0’s p1 using Apply stage. If the filter p1.name = ’Jan’ re-
turned FALSE, the thread would try to backtrack to a previous stage and, because there
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is none, it would simply complete this invocation. If there were more top-level vertices
to explore, t would start again with a different vertex.

In the example of Figure 3.4, we assume that the execution plan matches vertex
p1 as Stage 0. p1 matches v2 and t continues with the Try hop: follow next edge
operation, starting from edge e1. Since the :Knows label filter is satisfied and the edge
is local, t proceeds via DFS to next stage to Stage 1 where p2 is matched with the
vertex v1 that has age = 28. At this point, since the filter p2.age < 30 is satisfied
and there is no next stage, t produces a query output row and backtracks to Stage 0 to
continue with the next edge. Thread t then tries hop to the edge e8, but the label filter
is not satisfied.

Thread t is now done with local edges and starts processing the remote ones (the
system does not necessarily match all local edges first). The first one, edge e2, has label
:Knows (edge properties and labels are stored with the source vertex), thus t places
the current intermediate result in a messaging buffer targeting Machine 2 (buffer into
message). This way, the matching of this sub-tree is sent to Machine 2 with all in-
termediate results and thread t can completely “forget” about it. Once the buffer is
filled up, t tries to send a message with the contents of the buffer to the destination.
As Section 3.3.2 describes in more detail, flow control might temporarily block t from
sending the message; in that case, t handles messages. Once the thread returns from
performing these other tasks, it retries sending the blocked message. Finally, t at-
tempts to match the last remote edge e9, which does not match because of its label.
With all the edges of vertex v2 explored and no previous stage to backtrack to, t com-
pletes the invocation.
Handling incoming messages (intermediate results). Workers eagerly try to receive
and process remote messages, always prioritizing the latest stage with available work.
Threads try to process messages:

• Before starting new work, i.e., before Apply stage at Stage 0 (new top-level ver-
tex).

• When flow control (temporarily) disallows message sending—in that case, the
impacted thread picks up a new message to process while waiting for flow con-
trol to release the blocked message.

• Once the matching operations (see Figure 3.3) have completed on all local ver-
tices. At that point, workers continuously wait for incoming messages to com-
plete any pending work from remote machines.

The activity diagram for handling incoming messages is depicted in Figure 3.5. We
continue the example of Figure 3.4 from the point of view of Machine 2 and a thread
r that has just started handling incoming messages. Thread r starts from the latest
stage and tries to unblock any potential computations first, i.e., it checks if the stage
is blocked and tries to send the blocked message. If the flow control allows sending,
it continues the matching from the vertex where it left before blocking. If the flow
control still disallows sending, the thread backs off and tries the previous stage.

In case the stage was initially unblocked, the thread r tries to get a received mes-
sage. If there is none, it proceeds to try the previous stage. In our case, r successfully
acquires the message sent from Machine 1 and continues/starts the matching by it-
erating over intermediate results of the message and Applying a stage to the vertices
(refer back to the activity diagram in Figure 3.3). Thread r eventually starts processing
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Figure 3.5: Handling incoming messages. The gray box continues to the previous
activity diagram showing matching in Figure 3.3.

the intermediate result of edge e2. Thread r applies stage 2 to match vertex v3, eval-
uates the filter p2.age < 30 to false, backtracks to previous stage, and continues
with other intermediate results. The matching continues until the whole message is
processed or the matching gets blocked by the flow control.

3.3.1 Query Termination
Detecting the termination of a query (or even of a single stage) is not straightforward
in PGX.D/Async, because workers operate asynchronously. PGX.D/Async solves the
termination-detection problem using a lightweight protocol inspired from the one by
Potter et al. [188] to incrementally detect the termination of each stage.

Each machine tracks the completion of a stage locally and notifies stage completion
to other machines with special COMPLETED messages. Machine k can finish processing
Stage n if it knows that all machines have finished processing all stages up to n − 1
and k has processed all received messages for this stage. At this point, k sends a
COMPLETED message to all other machines, informing them that they will not receive
further messages from k for Stage n. With this termination protocol, the termination
of a query is performed incrementally: Stage 0 cannot receive any messages from
previous stages by design, hence machines can send their first COMPLETED message
as soon as they finish bootstrapping the query. Then, Stage 1 can complete after all
Stage 0 COMPLETED messages are received and the machine has finished processing
all messages delivered to Stage 1, and so on.

The termination protocol is deadlock-free: The last stage n can always complete
locally, since it includes the always-local output hop. Accordingly, all messages from
Stage n−1 are eventually processed by Stage n, thus allowing more and more work to
be sent from Stage n−1 to Stage n. Recursively, as messages from Stage n−1 are sent,
more work of Stage n − 2 can be performed and buffered to Stage n − 1 messages.
With this same logic, Stage 0 can be reached, leading to a continuous non-blocking
flow from Stage 0 to Stage n. On the receiving end, there needs to be enough receive
buffers to guarantee that at least one message for Stage n can be received.
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3.3.2 Flow Control
PGX.D/Async allows specifying the total memory size M of the messaging buffers that
hold the intermediate results in any machine, making it possible to cap runtime mem-
ory utilization. Besides these buffers, PGX.D/Async only needs a small per-thread,
per-stage, additional memory allocation to hold the current ongoing local match and
metadata for thread blocking.

In order to enforce this memory cap, PGX.D/Async employs a simple flow con-
trol protocol. PGX.D/Async partitions the buffers that hold intermediate results across
the query stages, such that no stage can consume all buffers (required to prevent star-
vation). When a buffer with intermediate results is full, the corresponding worker
requests permission to send the contents of the buffer to the target machine. The flow
control protocol keeps track of the amount of data D that has been sent to that ma-
chine but not yet processed. If D is above a threshold (computed based on the memory
cap M; a machine does not accept more than M / #Machines worth of intermediate
results from any other), flow control blocks the message transmission (controlled per
stage, not for the whole query) and the thread continues with some other work before
retrying to send the message. Once a message has been processed, the handling thread
informs the source machine that its chunk of intermediate results has been completed
and makes the corresponding memory available for another message. Note that this
simple protocol strictly bounds memory consumption, i.e., no pattern can violate the
memory configuration of PGX.D/Async.

3.4 Relational Post-Processing Operations
PGX.D/Async implements the GROUP BY and ORDER BY relational operators as
post-processing steps after the pattern matching has produced its output. For both
GROUP BY and ORDER BY, the system uses “textbook” algorithms [189]. During
runtime, these relational operators use additional memory that is proportional to the
size of the result set (i.e., create roughly one copy of the data).

GROUP BY is implemented in three steps to capture the needs of different work-
loads. First, the worker threads perform a parallel iteration on all result rows and do a
machine-local aggregation using thread-local caches; if the cache has no space, they re-
sort to a machine-local map. Thread-local caches (a fixed capacity maps) brings large
performance benefits in case the number of distinct groups is small, e.g., in a query
such GROUP BY gender. In the second step, the thread-local maps are merged to the
machine-local map. For the implementation of maps we use an array-based hash ta-
ble [190], which preallocates key/value space and is very fast given that PGX.D/Async
can size the maps appropriately as it knows the maximum number of keys to be in-
serted. Accordingly, with a controlled number of buckets and the same hash functions
for the maps, merging the thread-local cache to the machine-local one happens with-
out any thread synchronization. Finally, In the third step, PGX.D/Async reshuffles and
merges the key-aggregation pairs based on a key hash to generate the final result.

ORDER BY also proceeds in three steps. First, PGX.D/Async samples the result
rows and generates a distribution histogram of the target values. Based on this his-
togram, PGX.D/Async assigns ranges of values to different machines in the system.
Thus, after the second step, where the results are reshuffled based on that histogram,
each machine is holding unique ranges with the invariant that max(range of machine i)
< min(range of machine i + 1). Finally, PGX.D/Async performs local parallel sorting
to generate the final ordered result set.
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3.5 Evaluation
This evaluation section presented here explains how some parts of PGX.D/Async con-
tribute to the overall performance. These benchmarks should also clarify some con-
figuration settings used in later benchmarks. We present two benchmarks: the first
focuses on the performance improvements with ghost vertices, and the second shows
the performance of the flow control. For the details on the experimental setup, we refer
to Section 4.3.

3.5.1 Performance Improvements with Ghost Vertices
We evaluate the performance of the ghosts. Figure 3.6 compares the latency of differ-
ent ghost vertex configurations in LDBC with various queries with the latency of the
configuration without ghost vertices. The metric is the latency speedup compared to
the non-ghost configuration (0%). We use variations of the three-hop query Q0:
SELECT COUNT(*)
FROM MATCH (a:Person) -[:Knows]-> (b:Person),

MATCH (b) -[:Knows]-> (c:Person),
MATCH (c) -[:Knows]-> (d:Person)

with different filters that limit the number of traversed vertex matches.
Looking at Figure 3.6, we see that using ghost nodes is always better than not us-

ing them. Ghosts are balancing the partitions better among the machines. Without
ghost vertices, the machines processing the high-degree vertices become stragglers.
On the other hand, we can see that the fastest queries use 20 − 30% of ghost vertices,
then the performance starts to get worse again. At that point, ghost message broad-
casting, which is required with every iteration over a ghost neighborhood, becomes
a bottleneck. Therefore, for social networks, where the number of neighbors follows
the exponential distribution, we use 20% ghost vertices.Note that this setting is valid
only for neighborhoods with the exponential distribution, e.g., the Person vertices in
LDBC. For neighborhoods with other distributions, we have not seen any benefits of
using ghosts (not shown in this thesis).
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Figure 3.6: Different ghost configurations in LDBC. Each color shows a percentage of
ghosts out of all graph vertices.
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3.5.2 Flow Control Performance
We evaluate the performance benefits of flow control. Figure 3.7 shows the query
execution latency of different flow control configurations in Twitter and Livejournal.

In this experiment, we use a buffer size of 256KB and eight machines. The per-machine
limit N is the total number of outgoing buffers that the query execution is allowed to
have, therefore it also dictates the maximum amount of memory M that a machine can
use during the execution of the query. Since all intermediate results could be targeting
a single machine at some point during execution, M = N × (size of one buffer) ×
(# machines).

We execute simple SELECT COUNT(*) queries that include basic one-hop pat-
terns (a)->(b) (Q1, Q2, Q3) and two-hop patterns such as (a)->(b)->(a) (Q4,
Q5) and (a)->(b)->(c) (Q6, Q7, Q8), with different filters. The figure shows that
PGX.D/Async is not very sensitive to different flow control limits, unless the limit is
very low, i.e., 512 messaging buffers. The runtime memory footprint of DFS is low on
its own, and is not limited by flow control in most cases.

In the case of 512 messaging buffers, we see an extreme case where the flow con-
trol allows a single message per worker per stage per machine. On the other hand,
the engine in such an extreme configuration, with only an additional 1GB of runtime
memory per machine, the engine is able to run and finish the query.

Livejournal Q6 in detail. Figure 3.8 gives more insight into the execution of Q6 with
Livejournal: SELECT COUNT(*) MATCH (a)->(b)->(c). The figure shows the
maximum number of incoming and outgoing messages for the busiest stage on any of
the eight machines, as well as the number of cases in which the flow control limits
were reached. For very low limits (N = 512 messages) the amount of blocking is very
high, which penalizes performance (more than 3× higher latency). Still, the overhead
for switching stages due to flow control is generally low: Setting N to 8,192 results
in only ~10% performance loss as compared to no flow control (OFF), while reaching
10× fewer maximum incoming messages (2,087 vs. 21,793) and 4× fewer outgoing
messages (1,636 vs. 6,430).

43



0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1024

2048

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q1 Q2 Q3 Q4 Q5 Q6

Twitter Livejournal

La
te

nc
y 

(s
ec

on
ds

, l
og

ar
ith

m
ic

)
512 (1GB) 1024 (2GB) 2048 (4GB) 4096 (8GB) 8192 (16GB) OFF

Figure 3.7: Performance of simple queries with eight machines on two graphs with dif-
ferent flow control limits and with flow control turned off. The numbers in parentheses
indicate the total per-machine maximum memory consumption.

0

50

100

150

200

250

300

0

5

10

15

20

25

512
(1GB)

1024
(2GB)

2048
(4GB)

4096
(8GB)

8192
(16GB)

OFF

# 
Fl

ow
-c

on
tr

ol
 B

lo
ck

s (
x 

10
6 )

# 
M

es
sa

ge
s (

x 
10

3 )

Flow-control Limit

Max in Max out #Blocks

Figure 3.8: Messaging and blocking statistics on Q6 in Livejournal with different flow
control limits. In parentheses: Total per-machine max. memory consumption.

44



4. An Almost Depth-First Search
Distributed Graph-Querying
In this chapter, we introduce aDFS: A novel distributed graph-querying approach that
allows to process practically any query fully in memory, while maintaining bounded
runtime memory consumption and great performance. To achieve this, aDFS builds on
top of PGX.D/Async (Section 3), which allows a non-blocking dispatching of inter-
mediate results to remote edges, and changes the runtime into using almost depth-first
(aDFS) explorations with some breadth-first characteristics.

We evaluate aDFS against state-of-the-art graph querying (Neo4J and GraphFrames for
Apache Spark), graph mining (G-Miner, Fractal, and Peregrine), as well as dataflow
joins (BiGJoin), and show that aDFS significantly outperforms prior work on a diverse
selection of workloads.
Organization. The rest of this chapter is organized as follows: Section 4.1 introduces
and motives the problem. It also presents other approaches and the related work. Sec-
tion 4.2 presents the aDFS runtime. Section 4.3 shows the evaluation of aDFS with
other state-of-the-art systems. Finally, Section 4.4 concludes this chapter.

4.1 Introduction
The dynamic user-defined patterns, filters, and projections, the focus on edges, and
the homomorphic matching make graph query execution a challenging workload that
needs to handle very large intermediate and final result sets, with a combinatorial ex-
plosion effect. For example, on the well-researched Twitter graph [191], the single-
edge query (a)->(b) matches the whole graph, amounting to 1.4 billion results, and
the two-edge query (a)->(b)->(c) amounts to 9.3 trillion matches. This means
matching the (a)->(b)->(c)->(a) cycle needs to consider 9.3 trillion intermediate
results. Compared to relational queries, graph queries can exhibit extremely irregular
access patterns [13, 192] and lack of spatial locality, while calling for low-latency data
access.

Query execution on graphs is typically based on one of the two classic graph-
traversal strategies (presented in Section 2.2: depth-first search (DFS) or breadth-first
search (BFS). Both DFS and BFS have major advantages and drawbacks for distributed
graph queries:

DFS can expand one intermediate result at a time, starting from the first variable
in the pattern and continuing to the next ones until the whole pattern is matched. This
reduces the size of intermediate results, but it is challenging to parallelize and results in
random data access patterns, which makes it impractical for distributed graph traversal:
the only way to continue with strict DFS is to directly send the intermediate result to
the remote machine and wait until it is picked up and completed.

Thus, graph exploration is traditionally done using BFS: For each query edge (hop),
the entire result set is computed, and only then does the exploration of the next hop
start. This approach has two main advantages: (i) it is easy to implement, as work is
naturally divided into simple steps (hops), and (ii) it is relatively easy to parallelize, as
the entire input is known before processing a hop (of course, skewed vertex degrees still
pose a problem). However, BFS has one major shortcoming: Because the intermediate
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result set is produced between stages, an intermediate result-set explosion can quickly
occur.

Figure 4.1 illustrates this issue showing the average total per machine memory
usage and execution time when matching cycles of various lengths using DFS and BFS
(both implemented on top of the PGX.D/Async) on a small graph [193] (875K vertices
and 5.1M edges). While both approaches are able to match cycles of length one to
four with similar performance, the memory consumption of BFS explodes for five-
hop cycles at approximately 60GB on each of the eight machines in the experiment,
and BFS crashes with six-hop cycles after 96 minutes when one machine runs out of
memory (~768GB). Meanwhile, the memory consumption of DFS is almost constant.
Note that we can see the same problem with BFS engines on real queries as well (see
evaluation in Section 4.3).
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Figure 4.1: Matching cycles using DFS vs. BFS.

In this chapter, we introduce aDFS (almost DFS): A novel distributed graph query-
ing algorithm that brings the best of both DFS/BFS worlds. aDFS improves the perfor-
mance of PGX.D (Section 3) by combining BFS and DFS traversals to bound the max-
imum amount of memory required for query execution, while achieving a high degree
of parallelism. DFS, together with a distributed flow control mechanism, guarantees
that the amount of runtime memory remains within limits, while the BFS exploration
allows for better locality and parallelization during execution.

Worker threads in aDFS mainly prioritize DFS execution for completing—and thus
freeing—intermediate results. The execution switches to BFS when matching a remote
edge (i.e., an edge pointing to a remote machine) or when the runtime detects that
the query contains limited parallelism (i.e., a small set of intermediate results). To
elaborate, for local edges, worker threads perform DFS, unless aDFS detects that there
is a limited amount of available work on the local machine, in which case they switch
to per-thread BFS exploration until there is enough parallelism. For remote edges,
threads buffer the matched intermediate results and continue with matching the next
edge in a BFS manner (i.e., the next edge is possibly at the same depth as the current
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one). Once a buffer is full, the worker thread sends its contents to the target machine,
unless it is blocked by the flow control mechanism, which enforces target memory
limits. Section 4.2 expands on the design and implementation of aDFS.

Section 4.3 thoroughly evaluates aDFS and shows that it is capable of executing
trillion-scale queries, with a 10GB per-machine runtime memory cap. When running
our largest query, aDFS computes a 9.3 trillion count pattern on the Twitter graph with
a rate of 3.5 billion matches per second. We compare aDFS to two graph systems
(i.e., Apache Spark GraphFrames [31] and Neo4j [16]) and two relational databases
(i.e., MonetDB [118] and PostgreSQL [119]) using adaptions of LDBC [194] bench-
marks. aDFS completes the set of queries 1,315 times and 56 times faster than Neo4j1

and PostgreSQL, respectively. The other two engines, GraphFrames and MonetDB,
struggle to finish all the queries, and time out or go out of memory. On the queries
that they are able to finish is aDFS 62 times and 15 times faster than GraphFrames and
MonetDB, respectively.

We also compare aDFS to these four systems with schema-less graphs and show
that either aDFS is 8 to 3,247 times faster than the rest, or the other systems simply
fail to complete the queries. Finally, we compare aDFS with (i) three state-of-the-
art graph mining systems: G-Miner [22], Fractal [169] and Peregrine [23], as well as
(ii) BiGJoin [173], a dataflow join system. We show that aDFS is up to 12×, 625×,
and 18× faster than G-Miner, Fractal and Peregrine, respectively, and performs com-
parably to BiGJoin on mining-oriented workloads.

4.1.1 Related Work
A number of single-node graph-querying systems were proposed by academia: Sun
et al. [195] and Lin et al. [196] build relational and transactional systems, Graph-
flow [197] is an active graph database that supports evaluating one-time and continuous
subgraph queries, and CECI [187] uses multiple embedding clusters and intersections
of neighborhood lists to optimize subgraph matching (CECI can be distributed through
graph replication, not through graph distribution as aDFS).

There are numerous industrial graph-querying solutions: Neo4j [16] is single-
machine graph database, Amazon Neptune [28] is a graph engine built for the Amazon
cloud, Microsoft Graph Engine is an in-memory data processing system based on Trin-
ity [13], and TigerGraph [17] distributes GSQL [5] queries based on the source vertex
data for a given query hop. Furthermore, there are also open-source distributed solu-
tions. JanusGraph [128] uses distributed graph storage but does not distribute compu-
tation. GraphFrames [31] implements graph pattern matching with Spark using joins
of dataframes. Wukong [105] is a distributed graph-based RDF store that leverages
hardware features, such as RDMA and GPUs.

To the best of our knowledge, aDFS is the first truly distributed graph-querying
system that works on fully-partitioned graphs and strictly bounds memory while main-
taining great performance.

Graph-Mining systems. Recent single-machine systems include RStream [170], Au-
toMine [171], and Peregrine [23]. Distributed systems include NScale [172], Ara-
besque [20], G-thinker [198], BiGJoin [173], G-Miner [22], ASAP [199], and Frac-
tal [169]. aDFS shares features with some of these systems. For example, forms of

1Using Neo4j Community Edition (benchmarks not audited by Neo4j).
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asynchronous computations are used in G-Miner [22] (with a “task-pipeline” to hide
communication overheads) and BiGJoin [173] (with data-parallel dataflow computa-
tions that pick up dynamically joined columns with the least matches). Techniques to
reduce memory consumption are used by G-Thinker [198] (buffering excess subgraph-
tasks in a disk-based priority queue), BiGJoin [173] (primarily using batching to limit
memory consumption but not for intermediate results as with aDFS) and Fractal [169].

Fractal combines a DFS strategy with a “from-scratch processing” paradigm which
leads to re-computation overheads (absent in aDFS), as well as imbalances across
workers that are mitigated by work stealing: workers break the DFS strategy to steal
enumerations, which can be at any level of the matched graph pattern, from other
workers. aDFS uses asynchronous DFS-based graph traversals together with flow con-
trol to strictly bound memory consumption, and can switch to BFS, in the same graph
pattern-matching level, to generate more local work and to buffer remote edges (see
Section 4.2). Our in-depth evaluation shows that the performance of aDFS for graph
pattern-matching is competitive with that of state-of-the-art graph-mining systems.
BFS/DFS. The BFS/DFS tradeoff has been explored in the context of single-machine
parallel task-scheduling runtimes. Typically, DFS is used to schedule a task graph in
order to curtail memory [200], and BFS is used opportunistically (often called “work
stealing”) to maximize parallelism [201, 202]. aDFS leverages these insights in the
context of distributed graph query processing.

4.2 aDFS: A Pattern Matching and Querying for Dis-
tributed Graphs

The main design goals of aDFS are (i) enabling fast, fully in-memory distributed
queries of any size, while (ii) allowing for limited, controllable memory consump-
tion during execution. The rationale for these two goals is as follows. First, high-
performance graph queries demand in-memory execution and the ever-increasing size
of data calls for distribution. Second, server systems, especially in cloud deployments,
are shared by multiple concurrent users, hence no single query can be permitted to sat-
urate the system memory. aDFS achieves these two goals through the following design
principles:

• DFS-first and asynchronous communication (Section 3.3). The eager match
completion of DFS gives aDFS fine-grained control on the size of intermediate
results during query execution, but strict DFS would be inefficient when match-
ing a remote edge, i.e., an edge that leads to a remote machine. For that rea-
son, worker threads do not block when encountering a remote edge, but place
the intermediate result in a message buffer and continue with other local work
instead. Buffers batch intermediate results: once full, a buffer’s contents are
asynchronously sent to the remote machine for further processing. Threads only
need to block if flow control dictates so. This buffering results in essentially BFS
exploration of the remote edges of a vertex. aDFS extends the DFS traversal and
asynchronous communication from PGX.D/Async (presented in Section 3.3).

• Flow control (Section 3.3.2). Cross-machine communication is controlled
through a flow control mechanism that caps the number of in-flight intermediate
result buffers. The finite nature of these message buffers allows strictly config-
uring the amount of runtime memory that aDFS requires, while the flow control
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mechanism guarantees query termination and deadlock freedom. For aDFS, we
reuse the flow control mechanism of PGX.D/Async presented in Section 3.7.

• Dynamic local DFS/BFS (Section 4.2.2). Besides the buffering style BFS for
remote edges, aDFS includes a dynamic approach for deciding whether to go
DFS or expand with BFS for local matches in order to improve parallelism,
locality, and work sharing across threads.

4.2.1 High-Level aDFS Architecture
The aDFS builds on top of the PGX.D/Async engine presented in Section 3. Therefore,
aDFS can reuse the infrastructure and the architecture of PGX.D/Async. Nevertheless,
aDFS requires some changes in runtime to allow BFS pattern matching together with
DFS, which we present here. For a more detailed architecture description, we refer to
Section 3.1.

Architecture overview. Graphs are kept in memory and partitioned across machines.
For efficient traversals, graphs are stored in the classic CSR (Compressed Sparse Row)
graph format. Due to graph partitioning, messaging is necessary for moving interme-
diate results to the machine which holds the target vertex. aDFS maintains two threads
on dedicated cores on each machine for messaging; a sender and a receiver. Conse-
quently, worker threads in aDFS place their messages in software queues, from where
they are picked up by the sender.

Before running an actual query, the query is transformed into an execution plan.
The transformation process, query planning, is the same as for PGX.D/Async (pre-
sented in Section 3.2). The execution plan consists of stages and hops forming con-
nections between stages. The aDFS runtime executes this plan by matching vertices to
the stages and edges to the hops. A detailed runtime execution is described below.

4.2.2 aDFS Runtime
aDFS initiates query execution by applying Stage 0 (matching of the first vertex vari-
able of the execution plan) to each vertex of the graph. This bootstrapping process
happens (i) across machines, i.e., each machine starts from the locally-stored vertices,
and (ii) concurrently within each machine, i.e., each worker thread handles a distinct
set of vertices and performs the bootstrapping process on these vertices one after the
other.
aDFS matching. Figure 4.2 includes a high-level activity diagram of the aDFS run-
time, similar to that presented for the PGX.D/Async runtime in Figure 3.3. The green
boxes depicts the activities related to BFS. Completing the execution of this diagram
from Stage 0 to the last query stage implements the complete matching starting from
a single vertex of the graph. Text in the blue italic face represents the activities in that
figure.

For remote edges aDFS essentially does (per-thread) BFS: A thread matching a re-
mote edge simply buffers the intermediate result (Buffer into a message) and continues
exploring and matching the same stage, which might produce new intermediate results.

While local processing could happen in pure DFS, doing so can result in artifi-
cially limited parallelism for queries that produce small sets of intermediate results. A
characteristic example is queries with a very narrow starting Stage 0, such as MATCH
(a)->... WHERE ID(a) = X; this narrow-start behavior appears in several real-
life queries (e.g., the LDBC queries of Section 4.3). In such a query, the whole Stage 0
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Figure 4.2: Matching operations starting from a given vertex in aDFS. The yellow box
“Handle messages” connects to the activity diagram in Figure 4.3.

might produce a single intermediate result, giving limited opportunities for parallelism.
For these workloads, DFS can significantly delay the expansion of intermediate results
that are produced in the system (both locally and through messages).

In aDFS, we solve this DFS limitation by dynamically switching from depth-first
exploration to per-thread breadth-first for local edges. aDFS maintains per-stage counts
of the number of buffers with intermediate results that are ready to be taken care of
by worker threads. A low number of intermediate results means that the stage has
not expanded enough, hence some threads could end up not having sufficient work to
perform. When threads in aDFS are processing a local edge, they use this information
to decide whether to go for BFS, i.e., buffer the intermediate result in a local buffer
(Buffer for BFS) and continue at the same stage.

Once the buffered BFS messages are full, they got enqued into a BFS software
queue for other threads to pick up. Threads can acquire the message in the Han-
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Figure 4.3: Handling incoming messages in aDFS. The gray box continues to the
previous activity diagram showing matching in Figure 4.2.
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dle messages before acquiring received messages from other machines. Figure 4.3
shows the action diagram of the message processing containing the BFS-related box in
green. Handle messages starts from the last stage. The work performed when a stage
is blocked is the same as in PGX.D/Async runtime presented in Figure 3.5. If the stage
is unblocked, aDFS tries to get a local BFS message first. If it is successful, it initiates
the matching from vertices of the BFS message. In the opposite case, it continues by
trying to get a received message as the original PGX.D/Async runtime does.

In practice, we keep these local BFS buffers small, i.e., up to a few kilobytes, in
order to promote quick local work creation. We further use a DFS threshold to decide
when to work depth-first: When the sum of the number of local buffers (produced by
the breadth-first expansion) plus the number of message buffers from remote machines
is greater than 4× the number of threads, threads switch to DFS. Having a low thresh-
old plus small local buffers allows aDFS to keep the maximum additional memory
consumption limited: If the DFS threshold is set to n, the maximum number of threads
is t, the size of local buffers is b, and the query contains s stages, the maximum addi-
tional memory in a machine is (n + t) ∗ (s− 1) ∗ b (n + t because the t threads could
concurrently detect that there is not enough work and produce local buffers. s − 1
because the last stage does not produce intermediate results.) In the configuration used
for our experiments (t = 28, n = 4t = 128, s ≤ 11, and b = 8,192), local buffers
consume less than 12MB additional memory.

4.3 Evaluation
The goals of our evaluation are (i) to understand how well aDFS performs as com-
pared to other systems (graph, relational, mining and dataflow join systems) that could
be used in similar use cases, (ii) explain how different parts of aDFS contribute to per-
formance and memory, and (iii) show how aDFS scales as we increase the number of
machines.

4.3.1 Experimental Settings
Hardware details. We use a cluster of eight nodes, each having two Intel Xeon E-2690
v4 2.60GHz CPUs with 14 cores (hyperthreads disabled/DVFS enabled), for 28 cores
in total. Each machine contains 756GB of DDR4-2400 memory and LSI MegaRAID
SAS-3 3108 storage. Each node includes a Mellanox Connect-X InfiniBand card, all
connected to an EDR 100Gbit/s InfiniBand network.
Graphs and queries. Unless specified otherwise, our experiments use the six graphs
in Table 4.1. More details about the LDBC graphs can be found in Section 2.5. For

Graph #V #E Schema Description

Livejournal [203] 484K 68.9M No Users and friendships
URandom 100M 1B No Uniform random edges

Twitter [191] 42.6M 1.47B No Tweets and followers
LDBC SF100 [194] 255M 1.7B Yes LDBC social graph
LDBC SF300 [194] 738M 5.1B Yes LDBC social graph
Webgraph-UK [204] 77.7M 2.97B No 2006 .uk domains

Table 4.1: The set of graphs we use in the evaluation. We show number of vertices
(#V) and number of edges (#E) in thousands (K), millions (M), and billions (B).
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comparison with other engines, we use the smaller-scale SF100, since the engines
(except for aDFS) struggle even with this smaller graph. For other experiments with
aDFS only, we use the larger SF300 scale.

We use adaptations of 13 LDBC Business Intelligence (BI) standard queries [180]
to test a graph-specific workload. We adapt the queries as the target of this work is
fixed-pattern read-only queries. Through the evolution of LDBC, the queries became
so complex that only one query (Q1) uses read-only fixed-pattern matching. The oth-
ers require more complicated features, such as subqueries, variable-size patterns, or
update queries. Therefore, we devised a simplified variant of these queries in order to
support the benchmark specification as closely as possible. We simplified the queries
by removing these extra constructs and replaced them with a fixed-pattern matching.
After that, we also removed queries that were too simple, e.g., with a small number of
hops, or queries that were similar to other queries. For reference, all queries can be
found in Appendix A.

Here is an example of the query Q7. The specification [180, 205] describes the
query as follows: “Find all Messages that have a given $tag. Find the related Tags
attached to (direct) reply Comments of these Messages, but only of those reply Com-
ments that do not have the given $tag. Group the related Tags by name, and get the
count of replies in each group.” The query can be represented in PGQL as follows:
// original
SELECT relatedTag.name, COUNT(DISTINCT comment) AS count
FROM

MATCH (m:Message) -[:hasTag]-> (tag:Tag),
MATCH (m:Message) <-[:replyOf] - (comment:Comment),
MATCH (comment) -[:hasTag]-> (relatedTag:Tag)

WHERE
tag.name = 'Enrique_Iglesias' AND
NOT EXISTS (SELECT * FROM MATCH (comment) -[:hasTag]-> (tag))

GROUP BY relatedTag
ORDER BY count DESC, relatedTag.name
LIMIT 100

// simplified
SELECT relatedTag.name, COUNT(DISTINCT comment) AS count
FROM

MATCH (m:Message) -[:hasTag]-> (tag:Tag),
MATCH (m:Message) <-[:replyOf] - (comment:Comment),
MATCH (comment) -[:hasTag]-> (relatedTag:Tag),
MATCH (comment) -[:hasTag]-> (tag)

WHERE tag.name = 'Enrique_Iglesias'
GROUP BY relatedTag
ORDER BY count DESC, relatedTag.name
LIMIT 100

The red color highlights the clause that we removed, i.e., an existential subquery,
and its transformation into new query. We cannot completely remove the subgraph
matching pattern because that would oversimplify the query. Therefore, we include
the pattern from the subquery into the parent query to emulate the “do not have the
given $tag” requirement from the description. Note that the new query might be even
more challenging, because it must enumerate all the (comment)->(relatedTag)

matches while with existential subqueries, a query engine can, e.g., enumerate until it
finds a match and continue to another matching instance, or use anti-edges [23].
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Methodology. We perform 10 runs of each query and report the median latency. For
each experiment set, we execute the queries in a per-graph round-robin fashion in
order to reduce caching effects (e.g., data in the LLC or instruction caches). There is a
timeout of 4 hours for a single query. We use eight machines for aDFS, GraphFrames,
G-Miner, Fractal as well as BiGJoin, and make sure all systems are configured to use
InfiniBand. The four other systems are single machine.
Engines and their configurations. We configure aDFS to use up to 4,096 messaging
buffers of 256KB per machine for messaging. This setting translates to approximately
1GB of intermediate results that can be produced per machine and limits the worst-
case maximum memory consumption of a single machine to approximately 8GB (1GB
outgoing, plus 7GB incoming). For the local-edge dynamic BFS, we use the configu-
ration mentioned in Section 4.2.2, i.e., t = 28, n = 4t = 128, s ≤ 11, and b = 8,192,
resulting in up to a few MBs of extra memory per machine. Altogether, the aDFS run-
time consumes approximately 10GB per machine. Of course, the graph (that resides
in memory) and the final query results consume extra memory than these 10GB. We
use such a low-memory configuration because (i) aDFS is designed for server deploy-
ments and we want to evaluate the performance at a realistic setting, where a single
query cannot monopolize memory, and (ii) as we showed in Figure 3.7, this configu-
ration is already sufficient for aDFS to perform well. We disabled ghosts vertices and
used a random vertex partitioning to be able closely compare the runtimes of other
engines that do not implement any of these improvements.

We first compare aDFS to two graph systems and two relational systems which
we describe below. In Section 4.3.6, we further compare aDFS to three graph mining
systems and a dataflow join system.

GraphFrames [31] is a distributed graph querying system built on top of Apache
Spark [112]; we use version 0.8.2 on top of spark 3.2.1 with 600GB executor mem-
ory per machine. Neo4j [16] is a single-machine graph database, which stores its data
on disk but uses an in-memory cache for performance (caching effects are obvious in
the first run of each query). We use Neo4j Community Edition 4.0.10 and allow it to
manage the full machine memory. Neo4j is configured according to the Neo4j-admin
Memrec [206] utility. We use this older version, because it has the best performance
with the same configuration compared to the new versions (tested up to version 5.4).
MonetDB [118] is an in-memory column-store relational database. Its distributed sup-
port is rather rudimentary, resulting in worse than single-machine performance for our
join-heavy workloads. Therefore, we use MonetDB v11.45.7 on a single machine, con-
figured to use the whole 756GB of memory. PostgreSQL [119] is a relational database.
We use version 15.2, tuned according the PGTune [207] for a single connection with
a memory cache size of 564GB and 198GB of shared buffers. For both MonetDB and
PostgreSQL, we use the optimized schema/indices designed for the original LDBC
evaluation paper [194]. We choose these four systems as they cover a broad spectrum
of data processing: Distributed graph dataframes, single-machine graph databases, and
in-memory or traditional relational databases.

4.3.2 Benefits of Local BFS
Figure 4.4 illustrates the benefits of the local-match BFS mode on 8 machines with the
following two queries:
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// Q1
SELECT COUNT(*)
FROM MATCH (a)->()->()
WHERE ID(a) < $i

// Q2
SELECT COUNT(*)
FROM MATCH (a)->()-[e]->()->()
WHERE e.cost < 0.5 AND ID(a) < $i

using the Twitter graph extended with a uniform random edge property with values in
[0.0, 100.0). In both queries, the ID(a) < $i filter determines the cardinality of the
first query stage and is used to narrow the starting point. In Q2, the edge filter also
guarantees that the third stage includes a small number of intermediate results.
Results. The dynamicity of aDFS brings significant performance benefits, especially
for queries with very narrow starting points. For example, for Q1 with $i = 1, Ma-
chine 0 hosts the match for Stage 0; without the breadth-first mode (“OFF”), a single
thread handles all the 55K local edges which lead to Stage 1. In contrast, enabling
dynamic local BFS (“ON”) generates more work early on and allows splitting the
work among local threads, each of which operates on approximately 2,000 vertices
for Stage 1.
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Figure 4.4: aDFS dynamicity based on the first stage cardinality

4.3.3 Dissecting aDFS
We use the LDBC benchmark to show how different design characteristics of aDFS
contribute to performance and memory usage. In particular, we compare the pattern-
matching latency of the default aDFS with flow control on (aDFS (FC ON)) to aDFS
with disabled flow control (aDFS (FC OFF)) without limiting memory, locDFS, and
BFS. locDFS here represents the PGX.D/Async engine before the aDFS performance
improvement. As mentioned in Section 3, it is not purely DFS. The local traversals
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are always DFS, however, the remote hops are buffered into messages and sent asyn-
chronously later, which does a partial BFS traversal. We did not test a pure DFS
traversal, since that would require a single message per hop without buffering, which
inherently performs much worse than the locDFS solution.
Results. Figure 4.5 includes the results for these configurations. The results show that
DFS is the slowest with a total execution time of 42.5s, then we have aDFS(FC ON)
with 29.9s, aDFS(FC OFF) with 27.7s, and BFS with 27.1s. In terms of memory
consumption, BFS is 5× worse than locDFS, aDFS without flow control is 4× worse,
and aDFS with flow control consumes slightly more memory than locDFS, not only
due to the local buffers, but also thanks to better parallelization, resulting in more
parallel message traffic.

As we described earlier, queries often have very “narrow” execution points with
a handful of intermediate results, which leads to poor parallelization with DFS. As
a reference, BFS implements a basic BFS-only runtime. As expected, BFS performs
the best compared to other configurations. aDFS without flow control is 2% worse in
performance but consumes less memory. aDFS with flow control is 10% worse, but
compensates for it with 4× less memory.

In conclusion, aDFS includes a set of design characteristics that when put together
achieve great performance with low and controlled memory consumption.
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Figure 4.5: LDBC SF100: locDFS vs. aDFS vs. BFS.

4.3.4 aDFS vs. Other Engines: LDBC
We perform an end-to-end comparison of aDFS to the four aforementioned systems.
We use the LDBC graph and BI queries as a graph specific benchmark.
Results. Figure 4.6 depicts the query latencies of the five systems. For most queries,
Neo4j is much slower than aDFS. Even though we compare single machine engine
to eight machine engine, the performance difference is huge, in total it is more than
1,315× slower, on average more than 963× slower. The minimum difference shows
Q07, which is still 10× slower.
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Figure 4.6: LDBC SF100: aDFS vs. other engines.

GraphFrames is a distributed engine that translates graph queries into dataframe
joins, offered by Apache Spark. One disadvantage of GraphFrames is that all the ver-
tices are stored as a single table and the edges are stores as another single table. There
is no partitioning into multiple tables according to labels as in most systems. Within
the four-hour time limit, GraphFrames was able to complete 10 out of 13 queries and
was 62× slower in total and 97× slower on average compared to aDFS. Addition-
ally, GraphFrames is memory hungry, consuming hundreds of gigabytes of memory
compared to the small footprint of aDFS.

We compare aDFS with two relational systems, MonetDB and PostgreSQL. Mon-
etDB was able to finish only 9 out of 13 queries due to going out of memory on a single
machine during the execution. Taking into consideration only the finished queries, it
was overall faster than PostgreSQL, but still 15× slower in total and 34× slower on av-
erage, compared to aDFS. On the opposite, PostgreSQL was able to finish all queries,
but it was much slower, with 56× slower execution in total and 67× slower on average,
compared to aDFS.

We can see that aDFS outperforms the other engines in all queries. The smallest
difference is with Q03 where the matching execution time is only 0.3 seconds (around
45% of time total time) and the remaining time is spent in post-processing. As men-
tioned earlier in Section 3.4, aDFS uses a basic implementation of those operations.
Also, those post-processing operations are not a graph specic, because they require a
relation-style of processing for which are RDBMSes (MonetDB or PostgreSQL) opti-
mized.

Focusing on queries with pattern matching only, such as Q11, Q14, Q15, and Q20,
we see that aDFS performs really well. In total, it is 2,967×, 57×, 40×, and 30× faster
than Neo4j, GraphFrames, Monet, and PostgreSQL, respectively. This clearly shows
the advantages of our graph system over relational system on graph-related workloads
due to a focus on pattern matching. The biggest advantage of our distributed graph
querying system is shown in large queries with a minimal ratio of post-processing time
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to the total time, i.e., in Q18 and Q19. On those large workloads, MonetDB goes out of
memory, GraphFrames runs out of time, and Neo4j with PostgreSQL are 1,056× and
3,235× slower, respectively.

In conclusion, aDFS achieves better overall performance than the four other sys-
tems while consuming lower/capped runtime memory. Both these characteristics are
essential for a graph processing server which targets large workloads and possibly
multiple concurrent users.

4.3.5 aDFS vs. Other Engines: Large Schema-Less Queries
The original property graph model is schema-less, which enables users to easily query
the whole dataset (unlike the relational model which requires several joins and unions
of results). Therefore, we now compare aDFS to the other four systems with the
schema-less graphs of Table 4.1: this workload shows the full power of aDFS in han-
dling very large queries. For the relational systems, the graphs consist of two tables:
One for vertices and another one for edges. Regarding queries, we use two simple
patterns, a cycle (a)->(b)->(a) as Q1 and a two-hop path (a)->(b)->(c) as Q2,
combined with aggregations in the SELECT clause (variant “a” performs a COUNT(*)
and variant “b” AVG aggregations on a random vertex property). The conclusions re-
main the same for other patterns and projections (not shown). Note that it is impossible
to evaluate more elaborate patterns, as the competing systems can barely handle the
simple patterns that we use.
Results. Figure 4.7 depicts the results. In most cases, aDFS is about 2 orders of mag-
nitude faster than the other systems. For the large queries and graphs, we also see
that the other systems are either not able to complete the queries within four hours, or
crash. In particular, GraphFrames crashes after having consumed its 600GB of execu-
tor memory.
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Figure 4.7: aDFS vs. other engines on simple pattern queries.
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The speedups of aDFS over the other systems (for the completed queries where
there is no timeout) are: 8 to 35× for GraphFrames, 541 to 3,247× for Neo4j, 14 to
269× for MonetDB, and 15 to 158× for PostgreSQL. Neither the join-based systems
(GraphFrames, MonetDB, and PostgreSQL) nor Neo4j are able to handle these im-
mense graph explorations well, although they have access to hundreds of gigabytes of
memory. In particular, Neo4j spills to disk, hence the extreme performance difference
compared to aDFS. Clearly, for graphs and queries at this scale, a fast graph-optimized
solution such as aDFS, which easily handles these queries, is required. With the largest
query (Q2a on Twitter) aDFS performs a 9.3T COUNT in 2,661 seconds, resulting in
3.5B matches per second, while consuming less than 10GB per-machine memory for
intermediate results.

4.3.6 aDFS vs. Graph Mining, Dataflow Joins
We compare aDFS to (i) three graph-mining systems2, namely G-Miner [22], Frac-
tal [169], and Peregrine [23], as well as a dataflow join system, BiGJoin [173]. We
use workloads from the G-Miner paper [22]: TC, i.e., Triangle Counting, and counting
instances of a more complex pattern referred to as the P-pattern, with the four graphs
that are used to evaluate these operations in the paper. All systems are distributed apart
from Peregrine. For BiGJoin, we only perform the evaluation on TC as it does not
support filters, and tune the batch size for performance (108). For aDFS, we express
both triangles and the P-pattern as graph queries.
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Figure 4.8: aDFS vs. graph mining engines.

Results. Figure 4.8 includes the performance of the four systems. Triangle counting
(TC) highlights the difference between matching and not matching automorphisms:
For the three graph mining systems, the search for “unique” triangles is baked in the
pattern-matching algorithm, whereas in aDFS, we implement isomorphism with auto-

2We requested the artifact of Automine [171] for evaluation, but the authors were not able to provide
us with it.
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morphism elimination using dynamic filtering (i.e., (a)->(b)->(c)->(a) WHERE

ID(a) < ID(b) AND ID(b) < ID(c)). This results in expensive filtering and
heavier cross-machine communication than with the other systems. Still, aDFS is
faster than G-Miner and Fractal for all graphs by up to 14× for G-Miner and by up
to several orders of magnitude for Fractal. Peregrine outperforms all other graph min-
ing systems including aDFS on three out of the four graphs, as it is able to intersect
adjacency lists to quickly find common neighbors, an optimization that performs par-
ticularly well for triangles and which can be implemented in a straightforward manner
on a single machine, where the whole graph is accessible. There is no clear winner
between aDFS and BiGJoin on TC, with each system outperforming the other on two
graphs. By intersecting local edges, BiGJoin’s approach allows for reduced commu-
nication and better performance on the two graphs with the highest average degrees
(Orkut and Friendster). The P-pattern does not require automorphism checks, as its
vertices are differentiated by labels. We express it as:
SELECT COUNT(*)
FROM MATCH (c:c)->(b1:b)->(:a)->(c)->(b2:b)->(:d)
WHERE b1 <> b2

in PGQL. When matching the P-Pattern, aDFS significantly outperforms all other sys-
tems for all but one datapoint (G-Miner on BTC); it is on average 12 and 366× faster
than Peregrine and Fractal, respectively, and 8× faster than G-Miner on three graphs.
G-Miner achieves the best performance on BTC mainly because it replicates the target
vertex label with each edge, which increases locality and reduces communication traf-
fic. Such an optimization is not practical in a real-world system in which vertices can
have many labels and properties of various types: Replicating these for each edge can
have unacceptable memory overhead.

Overall, although aDFS is designed for different workloads, i.e., expressive graph
queries, it is still very competitive with state-of-the-art graph mining systems and a
dataflow join system on triangle counting and/or a mining-oriented workload.

4.3.7 aDFS Scalability
We use the LDBC workloads to illustrate the scalability of aDFS as we vary the number
of machines. For measurements, we use SF300 with two, four, and eight machines.
Results. Figure 4.9 shows the latency of different machines with LDBC SF300. Over-
all, aDFS exhibits very good scalability: The average speedup is 1.9× from two to
four machines, 2.0× from four to eight machines, and 4.2× from two to eight ma-
chines. The median speedup is 1.8× from two to four machines, 1.8×, from four to
eight machines, and 3.5× from two to eight machines.

Overall, aDFS scales very well. In practice, systems hardly achieve perfect scal-
ability and our engine is pretty close to that on most of the queries. The potential
problems include various distributed coordination and query compilation overheads,
as well as additional fixed costs. Other performance is lost because of graph sharding.
When pattern matching on multiple machines, we pay the communication overhead.
The LDBC queries are designed in such a way that there is no possibility of avoiding
communication overhead even with ideal partitioning when we utilize all the threads
and machines. aDFS is designed to scale: More machines translate to more compute
resources, more buffers for intermediate results, and often more BFS exploration and
higher network utilization, as the percentage of remote edges increases with the num-
ber of machines.
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Figure 4.9: aDFS scalability on LDBC.

4.3.8 aDFS Parallel Execution
As the last experiment, we run the LDBC benchmarking suite using parallel execu-
tion. We again use SF300 to compare the sequential latency of queries when run con-
sequently one after the other with parallel execution of the same queries with eight
machines.
Results. Figure 4.10 shows the results of the sequential and the concurrent run of
LDBC queries. We see that the parallel execution is faster by 2% in total.

The parallel run of the queries can be faster due to better scheduling, which hides
the potential messaging latency and better balances the whole workload. As described
in Section 3.3, aDFS performs either a local work or a work from a message. It can
happen that a thread has no work, simply because the work is unbalanced, or because
it is waiting for flow control. In these cases, the sequential execution is just waiting for
a message to bring a new work for the threads. During parallel execution, the threads
waiting for a message can start working on other parallel queries that have messages
or local work to process.

The mentioned unbalancing can occur naturally when the data is not available on
a machine. aDFS helps with the generation of thread work within a single machine
if there is any available. However, in distributed graphs, the data for processing can
reside on a different machine, e.g., because of a filtering.

4.4 Concluding Remarks
In this chapter, we have introduced aDFS: An almost-DFS approach to execute pattern-
matching queries on distributed graphs. aDFS is able to execute virtually any query
on any in-memory graph using at most a fixed and configurable amount of memory.
aDFS is also very fast and scalable.

We compared aDFS to eight state-of-the-art systems with diverse characteristics —
graph or relational/join-based, distributed or single machine, in-memory or disk-based
— and showed that aDFS is up to orders of magnitude faster than them. We also show
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that aDFS scales very well and allows an efficient parallel execution.

Limitation and future work. In the future, we plan to make the DFS/BFS switching
more aggresive and dynamic. DFS has a small memory footprint, which also implies
that it is slower compared to BFS in some queries, as shown in Figure 4.5. We want to
allow a computation to use whole memory for BFS traversals and continue DFS only
in case the memory is close to being full. This behavior can be especially useful in
multi-user dynamic cloud environments.

Another direction is to use our approach on the scale of distributed graphs. aDFS
helps in queries with narrow start by generating work for other threads. However, if the
narrow start resides on a single machine only, other machines have no work and wait
for a work from messages. Sharing the work between machines should better balance
computations and lead to better performance.
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Figure 4.10: aDFS parallel execution on LDBC.
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5. Distributed Asynchronous
Reachability Regular Path Queries
One of the most expressive and powerful constructs in the graph querying is regular
path queries, also called RPQs. RPQs enable support for variable-length path patterns
based on regular expressions.

In this chapter, we introduce a novel design for distributed RPQs that is built on top
of distributed asynchronous pipelined traversals to enable (i) memory control of path
explorations, with (ii) great performance and scalability. Through our evaluation, we
show that with sixteen machines, it outperforms Neo4j by 91× on average and a rela-
tional implementation of the same queries in PostgreSQL by 230×, while maintaining
low memory consumption.

Organization. The chapter is organized as follows: Section 5.1 introduces the reach-
ability and regular queries together with the related work. Section 5.2 presents the
design and implementation of RPQs. Section 5.3 presents and discusses the RPQ eval-
uation. Finally, Section 5.4 concludes the chapter and highlights possible future work.

5.1 Introduction
Graph queries can express both fixed-size patternsand variable-length patterns, includ-
ing regular path queries (RPQs). Variable-length patterns represent the true power of
graphs, as they are far better suited in terms of expressiveness for graph query lan-
guages and in terms of performance on top of graph indices in graph engines. For
instance, a user can very intuitively express the following RPQ query in PGQL:
PATH p AS (:Person)-[:Knows]-(:Person)
SELECT COUNT(*)
FROM MATCH (p1:Person) -/:p+/-> (p2:Person)

that counts the pairs of persons connected through a non-empty chain of Knows edges.
However, expressiveness brings complexity: Variable-length patterns are a very chal-
lenging workload due to the potential explosion of intermediate explorations, espe-
cially in large graphs.

In this chapter, we present RPQd, a novel algorithm for implementing RPQs on
distributed graphs. RPQd deviates from the traditional breadth-first traversal (BFT)
shortest-path algorithm and instead takes advantage of asynchronous distributed traver-
sals of PGX.D/Async (presented in Section 3). In summary, RPQd executes recursive
depth-first traversal (DFT) explorations within a machine and buffers remote matches
together to reduce messaging overhead. This enables RPQd to implement flow control
to control the memory expansion of RPQ explorations. Unlike fixed patterns, RPQs
involve explorations of variable depth, requiring RPQd to implement dynamic flow
control combined with an incremental termination-detection protocol.

Additionally, RPQd implements min and max quantifiers and builds a reachability
index on-the-fly to detect cycles (to avoid infinite loops) and to eliminate duplicate
paths. Furthermore, the unique design enables support for generic cross-filters between
RPQ and non-RPQ patterns, such as:
SELECT COUNT(*)
FROM MATCH ANY (p1:Person) ((pa:Person)-[:Knows]-(pb:Person))* (p2)
WHERE p1.age <= pa.age AND pb.age <= p2.age
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that counts a number of persons who form a chain of people knowing each other and
having their age in ascending order. To the best of our knowledge, RPQd is the first
distributed RPQ querying system to support such a powerful feature.

We implement and test RPQd on top of PGX.D/Async. Our evaluation demon-
strates that with four machines, RPQd is on average more than 29× and 96× faster than
Neo4j1 [16] and PostgreSQL [119], respectively. Focusing on three original LDBC
queries, RPQd is on average 17× and 227× faster than Neo4j and PostgreSQL, re-
spectively. Moreover, we analyze two queries in depth and show that RPQd is able to
execute with low memory footprint due to its DFT matching style. Our last experi-
ment shows how RPQd behaves on queries of varying depths and identifies the primary
bottlenecks in our algorithm.

5.1.1 Reachability Queries
Reachability queries are a fundamental graph workload and are used in a large number
of applications, e.g., in financial fraud detections or bioinformatics [208]. In biological
networks, where a graph can be used to represent molecules, reactions, and the way
they interact, reachability queries are used to find how a given molecule influences
directly or indirectly the expression of genes.

Reachability tests if there exists a path between two vertices in a graph. PGQL sup-
ports variable-length paths for reachability queries in the form of regular path queries
(RPQs). A path pattern declaration starts with the PATH keyword. Any pattern con-
taining at least one vertex is a valid path pattern. Quantifiers allow for specifying an
upper and/or lower bound on the number of repetitions of the path pattern that makes
up the matched variable-length pattern.

Typical approaches for answering reachability queries perform the computation on
a directed acyclic graph (DAG) G′ built from the original graph G using its strongly-
connected components [209]. Two vertices x and y are in the same strongly connected
component iff x is reachable from y and vice versa. In particular, a vertex on G′

corresponds to a connected component in G, while an edge between two vertices of
G′ means that exists an edge between two vertices belonging to the corresponding two
separate strongly connected components in G. This operation can be performed in
O(n + m) [210].

Various approaches exist [211, 212, 213, 214, 215], finding different trade-offs
between building an offline index (i.e., transitive closure, which requires O(n2) space)
to answer queries faster in O(1) [216, 217] runtime, and performing online search
using depth-first or breadth-first search, with a runtime of O(n + m) without an index.
Beamer et al. [218] proposes a modern variant of BFS called DBFS, which takes O(n+
m) time and has lower memory requirements than the full transitive closure of the
graph. Another favorite approach is to use labeling schemas [219, 220, 221, 222]
running reachability queries on top of pre-labeled graph. For example, methods using
two-hop indexing work by determining for each vertex a set of intermediate vertices
it can reach, and a set of intermediate vertices it is reachable from, and use them to
answer queries at runtime. The original method introduced in [221] labels vertices in
O(n4), and executes queries in O(m1/2). Recent work [223] gives upper bounds on the
computational complexity and the number of sent messages for reachability, bounded
reachability, and regular reachability queries on a distributed property graph. We also

1Using Neo4j Community Edition (benchmarks not audited by Neo4j).
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refer to Xu and Cheng et al. [209] for more information.

5.1.2 Regular Path Queries.
Regular path queries express a path between two vertices as a regular expression on
the labels of the traversed edges. They were first proposed by Cruz et al. [33] and
have been extensively studied since in different variants [55, 52, 224, 225, 226], with
distributed graphs being a popular use case due to possible semantic web applications.
Label-constrained RPQs [227, 228, 229, 230] are limited to constraints on edge labels.
General path queries extend this concept to graphs with infinitely many labels [231]
which is equivalent to having arbitrary filters on properties in property graphs. Neo4j’s
Cypher [6] allows variable-length paths by specifying an edge with a range of repeti-
tions. PostgreSQL [119] supports the non-standard RECURSIVE WITH statement for
recursive queries, returning a table constructed by UNION of the output rows of queries
running recursively on preceding query’s output.

PGQL allows reachability queries with a subset of regular path semantics, in par-
ticular, it allows repetition of path patterns. When executing a query, the runtime
matches all destinations reachable from a given source by following paths that respect
the pattern. The pattern consists of (repeatedly) matched vertices and edges through
homomorphic matching.This differs from the traditional concept of RPQs that focuses
on isomorphic matching of vertices and edges to patterns, which automatically results
in acyclicity and duplication elimination (homorphic and isomorphic matching is de-
scribed in Section 2.2). The regular language (a)*bb(a)+ over the label alphabet
{a,b} can be translated into PGQL using two variable-length patterns in the same
query. The only restriction of PGQL is that the “OR” operation is limited to a single
vertex or label match.

5.2 Distributed Reachability RPQs
The main design goal of RPQd is to implement a fast, fully in-memory solution for
distributed variable-length queries of any size on top of asynchronous DFT distributed
queries, e.g., PGX.D/Async, to inherit the controllable memory consumption charac-
teristics of asynchronous traversals.

Figure 5.1 illustrates the design of RPQd. The query in the figure matches a 2-
hop pattern where the source vertex has a non-zero length path leading to the second
vertex restricted with filters. Section 5.2.1 describes the translation of queries to ex-
ecution plans, while Section 5.2.2 provides a description of the execution itself. We
then describe important RPQd runtime aspects: (i) limiting the execution memory in
Section 5.2.5, (ii) RPQ matching termination in Section 5.2.4, and (iii) duplication
removal and cycle avoidance in Section 5.2.6.

5.2.1 Query Planning
Every PGQL query undergoes multiple transformations, resulting in a distributed ex-
ecution plan. These transformations are depicted in Figure 5.1. RPQd extends the
planning mechanism of PGX.D/Async described in detail in Section 3.2.

PGQL Query⇒ Logical Plan. This step converts the submitted query into a logical
plan using operators from Table 5.1. Operators in red highlight the operators specific
to RPQs.

Multiple equivalent plans with different performance characteristics can exist, e.g.,
an alternative plan for our example query could swap the last two operators. The
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{ match: vertex((a))},
{ match: rpq_out((a)-/:Knows+/->(b)),

depth: <1, inf>,
path: [

{ match: vertex((x)), 
props: [x.age >= 18]

},
{ match: neighbor_out((x)-[f]->(y))

props: [f.label = ‘Knows’, y.age >= 18]
}]},

{ match: neighbor_in((b)<-[g]-(c)),
props: [g.label = ‘Work’, b.city <> c.city]},

{ match: edge_out((b)->(a))}

S1: rpq_ctrl(a)
+rpid, +depth

S4: match(b)
+b.id, +b.city

S0: match(a)
+a.id, +a.name

S2: match(x)
x.age >= 18

S3: match(y)
y.age >= 18
  

S5: match(c)
b.city <> c.city

S6: match(b)

S7: match(a)

hop: nghbr_out
f.label = ‘Knows’

hop: nghbr_in
g.label = ‘Work’

hop: edge
+label(e)

PATH p AS (x:Person)-[:Knows]->(y:Person)
  WHERE x.age >= 18 AND y.age >= 18
SELECT a.name, label(e)
FROM MATCH (a)-/:p+/->(b),
  MATCH (b) <-[:Work]- (c),
  MATCH (b) -[e]-> (a)
WHERE b.city <> c.city a b c
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Figure 5.1: Query planning, final execution plan and example graph (in green). RPQ-
related parts depicted in red. Transition hops in orange, inspection hops in blue, and
output in yellow.

engine employs a standard cost-based query planner that selects the best plan using the
following heuristics:

• Prefer single-match vertices, e.g., ID(v) = 123, as starting points.

• Prioritize vertices with heavy filtering in the early stages.

• Prefer edge matches over neighbor matches, since the cost of using the edge
operator is logarithmic compared to a standard neighbor match.

• Prefer RPQ matches over neighbor matches because RPQ matching is slower
and needs to run earlier due to potential match explosion.

Logical Plan ⇒ Distributed Query Plan. This step adds important distributed-spe-
cific information into the plan. All operators are transformed into a finite automaton
consisting of stages (states) and hops (transitions between them). The behavior of
stages and hops is described in Table 5.1.

The inspection hop is a special distributed operator designed to support non-linear
patterns. In the Figure 5.1 example, Stage 5 uses an inspection hop to send the compu-
tation back to the machine of the matched vertex b. To support RPQs, a special RPQ
control stage is added to the plan. This stage incorporates RPQ-specific logic (e.g.,
flow control, termination protocol) and data structures (e.g., reachability index). Tran-
sition hops are used to connect the RPQ path pattern with the RPQ control stage, as
well as the RPQ control stage with normal stages, enabling support for 0-hop matching.

65



Distributed Query Plan⇒ Execution Plan. The engine proceeds to materialize the
execution plan based on the distributed query plan. This involves allocating data struc-
tures, (filter) expressions, and execution contexts. The execution context refers to pre-
allocated intermediate result storage for each stage on a per-thread basis. It has a fixed
layout and, for non-RPQs, a fixed length. RPQ context is preallocated up to a prede-
termined depth and dynamically allocated if further needed. In Figure 5.1, expressions
are depicted in gray, while the data inserted into the context are shown in blue.

Stage/Hop Operator Example Description

Stage
Vertex

(x)->(y)
Matches vertices without

match following edges

RPQ control RPQ
(x)-/:path*/->(y)

Matches vertices and
stage match controls RPQ matching

Neighbor hop
Neighbor

(x)->(y)
Matches neighbors

match of the current vertex

Edge hop
Edge (x)->... Matches again an
match (y)->(x) already matched vertex

Inspection hop —
(x)->(y)->(z), Transfers the execution back
(y)->(w) to an already matched vertex

Transition hop — —
Transfers the execution
between stages

Output hop (last hop) — Stores the intermediate results

Table 5.1: Query planning operators.

5.2.2 RPQd Execution Runtime
The engine uses an execution plan automaton to perform the graph depth-first traver-
sals similar to PGX.D/Async (Section 3.3).Each worker thread on each machine is
assigned a distinct local set of vertices and sequentially executes the initial stage of the
automaton on those vertices (known as the bootstrapping process). If a vertex satisfies
all its filters, the computation can transition (hop) to the following stage by matching
a graph edge. If the edge is local, i.e., the destination vertex is stored locally, the next
stage is applied recursively to the destination vertex. In the case of a remote edge,
the engine serializes the working context into a message and continues the computa-
tion with another edge. If there are no more edges to process from a matched vertex,
RPQd backtracks one stage and continues with the subsequent neighbor. Eventually,
the engine returns back to the initial stage after processing the entire graph sub-tree.

From the perspective of the runtime, RPQd does DFS matching as described in
Section 3.3. However, the internal logic of the RPQ-related stages and hops is ex-
tended. We will explain it using the example in Figure 5.1: For simplicity, we focus
on the execution of a single worker on a single machine, assuming that all properties
satisfy the query filters. We refer to Stage i as Si, and to graph vertex i as i⃝. In
parenthesis, we include additional comments to the given action.

The worker starts matching by applying 1⃝ on S0. It collects the properties a.name
(projection) and a.id=v1 (edge hop), transitions to S1, creates rpid (see
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Section 5.2.6) and stores depth=0 into the context.
The depth controls the number of RPQ iterations. It is incremented on each

matching iteration of the control stage. If depth<min_hop, the RPQ path match-
ing continues. If min_hop<=depth AND depth<=max_hop, (i) it atomically checks
and updates the reachability index for duplications, then (ii) it transitions to non-RPQ
stage moving the DFT matching closer to the output, and also (iii) transitions to RPQ
path stages for large depths. If
depth>max_hop, it declines the match and backtracks.

In our example, S1 checks the depth limit (0<min_hop=1) and transitions to S2

( 1⃝ match). Afterwards, the worker takes the first output neighbor edge to 2⃝, evaluates
edge filters, and hops on S3 ( 2⃝ match) and transitions to S1. S1 increments depth=1,
and successfully checks the limit (depth>=1). It checks the reachability index, creates
a new entry for path { 1⃝, 2⃝}, and transitions to S4 ( 2⃝ match). It tries to continue
using incoming neighbors (none), so it backtracks back to S1 and transitions again
to S2 ( 2⃝ match), hops to S3 ( 4⃝ match), and returns back to S1 which increments
depth=2. After that the worker checks and creates an entry for { 1⃝, 4⃝}.

It transitions to S4 ( 4⃝ match) and stores b.id=v4 (inspection hop) and b.city

(filters), then it hops to: (i) S5 ( 3⃝ match: evaluate filters using b.city), (ii) S6
( 4⃝ match: inspection hop back using b.id=v4), (iii) S7 ( 1⃝ match: edge match using
a.id=v1), and finally (iv) output (storing the projections from context into the output).
After that, the worker backtracks and continues with further matching. Note that it
cannot loop to 2⃝ because the reachability index contains the { 1⃝, 2⃝} entry.

5.2.3 Messaging
Messaging in RPQd follows the design of PGX.D/Async in Section 3.3. It involves
batching multiple contexts into a single message, which is then sent asynchronously
once it is full. When a message is received, a dedicated receiver thread places it into
the message queue of the corresponding stage.

The received messages are picked up eagerly, prioritizing the latest stages and
depths, and processed by the thread: (i) before bootstrapping new work from another
vertex, (ii) after processing all the edges and backtracking, and (iii) when flow control
prevents message sending.

The RPQ control stage handles incoming messaging for path stages using a prior-
ity queue rather than the per-stage queues of normal stages. Incoming messages are
processed based on their depth (a message with a larger depth is processed first) and
secondary based on their position (on the same depth, a message for later path stage
is processed first). Basically, RPQd prioritizes the deepest computation following the
principle of DFS traversal.

5.2.4 Termination Protocol
The engine executes the pattern matching until it visits all potential graph sub-trees.
RPQd extends the lightweight distributed protocol of PGX.D/Async (presented in Sec-
tion 3.3.1) to incrementally check termination conditions in stages 0 through N-1. The
conditions for stage i are:

• All local work is completed.

• All remote work is received and completed.

• The previous stage (i-1) terminated globally.
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To support RPQs, we extend the protocol with additional conditions that check all
the RPQ stages incrementally in depths from 0 through max_depth:

• RPQ stage i terminates if it terminates on every depth d ≤ max_depth).

• RPQ stage i terminates on depth d iff:

– All the path stages on depth <d have terminated.

– All the path stages preceding stage i on the same depth d have terminated.

Unbounded RPQs. To address unbounded RPQs, RPQd proposes a consensus-like
protocol to determine the maximum observed depth. Each machine independently
tracks its maximum observed depth locally. When a machine M terminates stages S at
depth D, it includes its maximum locally observed depth in the termination message
broadcasted to other machines. By analyzing these termination messages, the engine
deduces that there are no more remote messages from a specific machine, stage, and
depth, indicating that the machine cannot extend the maximum observed depth further.
Once all machines broadcast the same maximum observed depth D within the termina-
tion message for depth D, RPQd reaches a consensus on the maximum observed depth.

5.2.5 Flow Control
In RPQd, memory consumption for pattern matching is effectively managed during
depth-first traversal. The engine uses a local DFT for fixed pattern matching, ensur-
ing constant memory usage. Messaging between machines utilizes a fixed number of
preallocated buffers, partitioned equally among stages and machines. Each machine
requires at least two buffers (one for sending and the second for receiving).

Flow control is employed to regulate buffer allocation, limiting the number of
buffers sent to a destination machine. Once a buffer is processed, a special DONE
message is sent back to the source machine, indicating that it was released and made
available again (see Section 3.3.2).

For RPQ stages, RPQd equally partitions buffers among stages, machines, and up to
the preconfigured depth D. The remaining buffers are partitioned across the path stages
and shared within a single path stage for all the depths ≥ D. Additional overflow
buffers are included to prevent livelocks that occur when a path stage is blocked at
depth d ≥ D, but shared buffers become available only after matching at a depth
greater than d. The total number of consumed buffers for RPQs is O(#machines ∗ (P ∗
D+P)+#overflow_buffs), where P = #path_stages (a number of path stages). Unlike
fixed-pattern matching, with RPQs, we cannot fully control memory consumption due
to the need for overflow buffers. Still, as we detail in Section 5.3, the memory for a
few per-depth overflow buffers is negligible.

5.2.6 Reachability Index
The semantic of (homomorphic) reachability queries requires that, given a source, each
destination is accounted only once, e.g., following query (a)->(b)-/:p+/->(c)

with a graph { 2⃝-> 1⃝<- 3⃝, 1⃝-> 4⃝-> 9⃝, 1⃝-> 5⃝-> 9⃝, 1⃝-> 6⃝-> 9⃝} has only two
matched results: {{ 2⃝, 1⃝, 9⃝},{ 3⃝, 1⃝, 9⃝}}.

Therefore, alternative paths must be either avoided or eliminated. Additionally,
any path exploration must ensure that cycles are not infinitely followed. To solve these
problems, RPQd dynamically builds a reachability index.
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The reachability index is a distributed data structure that behaves as a map support-
ing atomic inserts and updates with (i) keys being reachability path IDs (rpid) and
(ii) values being the path depths.
Path Encoding. RPQd employs a specific encoding for source path ID: <machineId,
workerId, seqId>, where <machineId, workerId> (2 × 8-bits) is a unique
worker identifier and seqId (48-bits) is a thread local sequence ID of the source
matched path. RPQd uses the fact that every single path in DFT-based engine is pro-
cessed by a single thread before entering the RPQ stage. As for the destination path
ID, a simple vertex ID (64 bits) is used. rpid is constructed by combining source and
destination path IDs (2× 64-bits).
Implementation. RPQd implements the reachability index from scratch as a two-level
map. The first level map is indexed by the destination vertex ID. Due to the continuous
range of vertex IDs, it is implemented using an array of atomic pointers to the second-
level map. The second-level map is a parallel map that stores the source path ID and
the path’s depth.

The reachability index is partitioned based on the vertex destination ID, i.e., the
entry is stored on the path destination machine. This means that index entries cannot
be used to speed up traversals by avoiding duplicated paths. This is left for a future
work.

5.3 Evaluation
In this section, we evaluate the performance of RPQd and compare to state-of-the-art
graph and relational databases. We also analyze the behavior of RPQd with artificial
queries.

5.3.1 Experimental Settings
Methodology. Before starting the measurements, we run a single warm-up query. We
run each query 10 times and report the median latency. Each experiment executes the
queries in round-robin fashion in order to eliminate caching effects. We use 4 to 16
machines for running RPQd and a single machine for Neo4j and PostgreSQL.
Hardware. We use a cluster of 16 machines, each with two Intel Xeon CPU E5-2699
v3 2.30GHz CPUs with 18 cores (hyperthreads disabled/DVFS enabled), for 36 cores
in total. Each machine contains 384GB of DDR4-2400 memory and LSI MegaRAID
SAS-33108 storage. Each machine includes a Mellanox Connect-X InfiniBand card,
all connected to an EDR 100Gbit/s InfiniBand network.
Implementation and Configuration. We implement RPQd on top of the
PGX.D/Async engine (described in Section 3). We configure it to have 36 worker
threads consisting of two dedicated to messaging. We use 8192 message buffers of
256KB per machine for flow control. This setting translates to approximately 2GB
of intermediate results that can be produced by a single machine. This implies that
the maximum worst-case memory consumption for messaging is N ∗ 2GB, where
N is number of machines. For RPQs, flow control works with preallocated buffers
(out of the 8192 allowance) up to depth four. For larger depths, it allows five shared
messages per path stage with one extra overflow message per each depth. Contexts are
pre-allocated up to depth three.
Neo4j. Neo4j [16] is a single-machine disk-based graph database, but uses an in-
memory cache for performance. We ignore the first slow run that brings data from disk.
We run Neo4j Community Edition 4.0.10, because it has the best performance with
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Figure 5.2: Different configurations of RPQd vs. other systems.

the same configuration compared to the newer versions (tested up to version 5.4). To
support all LDBC queries, we use the APOC [232] library, version 4.0.0.16. Neo4j
is configured according to the Neo4j-admin Memrec [206] utility: 31GB of heap initial
and max size, 320GB pagecache and 36 worker threads.
PostgreSQL. PostgreSQL [119] is a single-machine open-source relational database.
We run version 15.2. The database is configured using the PGTune [207] utility:
99GB of shared buffers, 279GB effective cache size and 36 parallel workers.
Graphs and Queries. We use the latest LDBC graphs [194]: SF10 (27 million ver-
tices, 170 million edges) and SF100 (255 million vertices, 1.7 billion edges). As a
workload for comparison against the other engines, we take RPQs from the LDBC
Business Intelligence (BI) queries [205] and adjust them to run on all engines – Neo4j
supports reachability queries directly, PostgreSQL uses recursive queries to implement
reachability. In total, we use nine queries: Three queries are the original BI (Q3, Q9,
Q10) and the remaining are adaptations of the original ones. In the adapted queries,
we remove expressions unsupported by RPQd, such as correlated subqueries, and use
the part related to the reachability matching only. We show the RPQ queries in the
appendix for reference.

5.3.2 RPQd vs. Other Systems
Figure 5.2 includes the results for RPQd, Neo4j, and PostgreSQL on LDBC SF100.
Queries marked with “*” are the unmodified BI queries. In terms of total time (i.e.,
sum of all queries), RPQd with four machines is more than 18× and 16× on average
faster than Neo4j and PostgreSQL, respectively.

RPQd performs the best on queries that explore tree-subgraphs of LDBC (all except
Q10), e.g., with Reply labels. In these queries, a breadth-first approach brings no
advantages compared to RPQd, which is able to greatly contain memory usage.

RPQd delivers the lowest speedup and worst scalability on Q03*, due to the inter-
mediate-result explosion on depth one, which leads to flow control blocking the execu-
tion more than 82 million times, about 5× more than the number of matched vertices
at that stage. Still, with the evaluated settings, RPQd delivers the purpose of consum-
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ing approximately 2GB per machine for pattern matching (excluding the reachability
index) and better performance than the other engines.

5.3.3 RPQd Scalability
Figure 5.2 shows that RPQd scales very well overall. Comparing to the default con-
figuration with four machines, using eight and 16 machines is 2.3× and 4.4× faster,
respectively, meaning that the speedup is almost linear. Super-linear speedups happen
due to flow control: Every machine is configured with approximately 2GB of memory
for pattern matching; thus, 8 or 16 machines have more memory for computations.
The limited scalability to 16 machines (Q3, Q10) happens because of (i) partitioning
and narrow starting queries (Q3 filters country.name=’Burma’, thus starting from
a single vertex), and (ii) less local computations that can lead to excessive flow control
for some queries (to the point that it cannot be compensated by the higher flow con-
trol allowance). Note that the problem of narrow starting queries is solved by aDFS
(Section 4). An integration of RPQd with aDFS is left for future work.

5.3.4 Q9 and Q10 in Detail
We analyze the detailed statistics of two queries, Q9 and Q10, exhibiting fundamen-
tally different behaviors.

Q9 uses reachability in order to find recursively all replies to messages. The query
starts from a large number of messages (see Table 5.2) and then traverses their com-
ment trees, resulting first in an explosion of results (a message can have multiple an-
swers), followed by an exponential decrease (few Reply chains are long). Due to na-
ture of its filters and the graph, the reachability part of this query is always performed
on a tree, making the reachability index superfluous. This query without reachability
index on eight machines executes 3.4× faster than with the index (not shown in the
thesis).

depth 0 1 2 3 4 5 6 7 8 9 10

#matches 3.1M 5.9M 4M 1.5M 375K 62K 7K 658 52 1 0

Table 5.2: Statistics of the RPQ control stage of Q9 in thousands (K) and millions (M).

Q10, starting from a predefined single person, finds all persons in a within two
or three Knows hops. The reachability index is heavily used, allowing traversal back
and forth along Knows edges. Table 5.3 shows the number of visited vertices with
a number of eliminated (a vertex already reached at a lower or equal depth before)
and duplicated (a vertex already reached at a greater depth) vertices in reachability
index. The duplication can occur due to prioritizing depth-first work: It can match at
higher depths while some shallower computations are still pending. This essentially
represents the main limitation of a DFT-oriented engine compared to BFT. The large
number of depth three eliminations is due to that most vertices visited at depth three
have more than one neighbor matched already at depth two. The elimination count
would be the same in a BFT engine. Since RPQd favors deeper work first, many final
result materializations happen before the RPQ search at depth two is complete. This
property allows the engine to have very low runtime memory usage.

None of these two queries triggers flow control: With eight machines the engine
stayed below a total of 16GB memory. This is due the fact that RPQd uses DFT ap-
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proach that has a small runtime memory footprint (as was shown in previous sections,
e.g., Section 3.5). The number of elements saved in the reachability index is equal to
the sum of the matched vertices in the RPQ control stage minus the eliminations and
the duplications. Each entry in the reachability index occupies 12 bytes, resulting in a
total dynamic size of 181MB for Q09 and 4.4MB for Q10 (compared to 100GB worth
of data in LDBC SF100).

depth num. matches eliminated duplicated

0 1 0 0
1 35 0 0
2 20K 4K 13K
3 2,700K 2,334K 0

Table 5.3: Statistics of the RPQ control stage of Q10 (K means thousands).

5.3.5 Effects of Reachability Index
Figure 5.3 shows the performance of simple artificial queries with and without the
reachability index, highlighting the dynamic allocation of the index. We test a Reply
pattern, which is the worst-case scenario for the index, while controlling the min and
max depth of exploration. Hops {0, 0} represent 0-hop where RPQd inserts entries
{v, v} for each graph vertex v. This shows the overhead of dynamically allocated
index. All patterns with 0-min hop include this allocation overhead. Increasing inserts
and updates into the index, by increasing the max-hop, has a negligible effect. Bulk
(pre)allocation of the index can trade memory for performance which is left for future
work.

Increasing the min-hop with reachability index leads to a counter-intuitive perfor-
mance improvement. Larger min-hop values reduce the number of reachability entries
created, because any traversal with depth below the min hop creates no entry. In future
work, we plan to tune better the memory/performance trade-off of reachability indices.
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ity index on LDBC SF10.
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5.4 Concluding Remarks
In this chapter, we presented RPQd, a regular path query (RPQ) algorithm to answer
reachability queries on top of distributed asynchronous depth-first graph traversals.
RPQd supports both bounded and unbounded repetition of arbitrary path patterns, in-
cluding regular expressions over any labels, as well as advanced features like local-
and cross-filtering. It seamlessly integrates with asynchronous depth-first traversals
extending its runtime with new RPQ structures. The runtime achieves strong guaran-
tees on memory usage and outperforms state-of-the-art solutions.
Limitations and future work. RPQd builds upon the DFT engine, which implies afore-
mentioned strengths, but also imposes limitations on the RPQ engine itself. Our ap-
proach excels in tree topology graphs and real-world workloads like social networks.
However, as demonstrated in Section 5.3.5, when a graph-query combination gener-
ates numerous duplicated reachability paths, e.g., searching for long paths in complete
graphs, the DFT algorithm reaches its limit. In such cases, more specialized algorithms
like BFT might be a better fit if sacrificing low memory consumption for a faster evalu-
ation is acceptable. Alternatively, when provided with a generated reachability graph,
RPQd can run a fast RPQ pattern matching without compromising performance and
memory consumption.

The first proposed improvement leverages the aDFS algorithm (Section 4) and its
local BFS approach. This way, RPQd would leverage BFS traversals which eventually
lead to fewer duplicated paths. Another possibility of improving RPQs with DFS is
to use reachability index back-propagation. We could send the already-traversed paths
back for reusing during traversals. This should minimize the number of duplicated
paths and keep the benefits of DFS traversals, such as low memory consumption.

RPQs search for any reachable paths. However, PGQL and other query languages
allow queries that search for shortest or cheapest paths [34]. One possible implemen-
tation could use depth-first RPQs together with depth-first iterative deepening [233].
Follow-up improvements can also support a stronger RPQ model [1]. PGQL does not
support queries that allow path disjunctions, but other/future query languages might
support this. It would require implementing a support for path branching, e.g., by
using a state transition table.
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6. Better Distributed Graph Query
Planning With Scouting Queries
Query planning is essential for graph query execution performance. In distributed
graph processing, data partitioning and messaging significantly influence performance.
However, these aspects are difficult to model analytically, making query planning es-
pecially challenging. Therefore, this chapter introduces scouting queries, a lightweight
mechanism to gather runtime information about different query plans, which can then
be used to choose the “best” plan. In a pipelined depth-first-oriented graph processing
engine, scouting queries typically execute for a brief amount of time with negligible
overhead. Partial results can be reused to avoid redundant work. We evaluate scout-
ing queries and show that they bring speedups of up to 8.7× for heavy queries, while
adding low overhead for those queries that do not benefit.

Organization. The rest of this chapter is organized as follows: Section 6.1 introduces
the topic and mentions related work. Section 6.2 presents the design and implementa-
tion of scouting queries. Section 6.3 evaluates scouting queries. The last Section 6.4
concludes this chapter and highlights possible future work.

6.1 Introduction
Graph queries are a highly challenging workload. The number of edges traversed by a
query can easily cause a combinatorial explosion of the intermediate and final results.
Therefore, efficient query planning is key to improving graph query performance. The
query plan dictates the order of pattern matching operations, i.e., which vertex or edge
is to be matched first, second, and so on. An initial suboptimal decision by the graph
query planner can negatively impact the entire query execution. Queries over large
distributed graphs, in particular, can suffer from significantly worse performance.

Below, we show a simple query example (which represents TPC-H Q16; see Sec-
tion 6.3 for more details) that counts the number of suppliers per part brand, type,
and size with some rather complex constraints. The query plan starting from the
PART match results in almost 4× worse performance than starting from the SUPPLIER
match:
SELECT

p.BRAND, p.TYPE, p.SIZE,
COUNT(DISTINCT s.SUPPKEY) AS SUPPLIER_CNT

FROM MATCH
(p:PART)-[ps:PARTSUPP]->(s:SUPPLIER)

WHERE
p.BRAND != 'Brand#45'
AND NOT JAVA_REGEXP_LIKE(p.TYPE, '^MEDIUM POLISHED.*$')
AND p.SIZE IN (49, 14, 23, 45, 19, 3, 36, 9)
AND NOT JAVA_REGEXP_LIKE(s.CMNT, '.*Customer.*Complaints.*')

GROUP BY p.BRAND, p.TYPE, p.SIZE
ORDER BY SUPPLIER_CNT DESC, p.BRAND, p.TYPE, p.SIZE

However, computing a performant query plan is notoriously difficult. The problem is
exacerbated in the case of distributed query engines due to the need to additionally
account for data partitioning, messaging and communication costs. This is especially
true with distributed graphs, where the distributed query engine must take many more
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things into account compared to single-machine graph engines, such as partitioning of
the data and messaging or communication costs. Properly modeling partitioning and
the cost of networking for query planning is fairly complex (if not outright impossible).

The classic techniques for query planning look similar to the ones used in classic
relational databases and primarily use data statistics to compute the potential cardinal-
ity of each of the matches. Computing the cardinality depends highly on the query;
typically, the more complex the query (e.g., long patterns and extensive filtering), the
harder it is for the query planner to produce a good estimate.

In this chapter, we introduce scouting queries as a pragmatic solution to improve
query planning and enhance the overall performance of distributed graph pattern
matching. Scouting queries are short exploratory executions of the actual query used
to benchmark the performance of different query plans in order to find the best perfor-
ming plan. Scouting queries follow these steps:

1. Take the top N plans with traditional query planning.

2. Execute these N plans with a short timeout (e.g., 50ms) and record statistics
of their execution. If the system detects that the plan is close to completion, it
simply allows this plan to run to completion.

3. Combine the per-plan cardinality metric of the traditional query planner with the
scouting query statistics and choose the best candidate plan.

4. Execute the selected plan and, if there are opportunities to reuse the work of
scouting queries, merge the outputs.

Scouting queries are better suited for large graphs and queries, as are typical for
distributed graph engines, with any potential overheads amortized by the gains of the
improved query plan. Additionally, scouting queries best fit engines with pipelined
execution of pattern matching, i.e., engines that eagerly push intermediate results out as
final. On top of such engines, the scouting query metrics include the actual final-result
matching throughput, which gives a very good indication of the actual performance of
the engine. However, as we detail in Section 6.2, scouting queries can be applied to
any graph-processing engine.

We prototype scouting queries on top of the PGX.D/Async (presented in Chap-
ter 3) which uses distributed depth-first-oriented matching, eagerly pushing intermedi-
ate matches out as final. We evaluate our prototype on several LDBC-inspired queries
and 12 actual TPC-H queries expressed as graph queries. We find that the total work-
load execution time improves by 3.3× and 1.7× for LDBC and TPC-H, respectively,
with a maximum speedup of 8.7× on a TPC-H query and only two queries where
scouting selects a worse query plan than the default planner.

6.1.1 Query Planning
Query planning is a fundamental step of all declarative query languages. Since the user
only describes the computation logic, it is the duty of the data management engine to
come up with an execution sequence that returns the requested data. These engines
have a limited set of basic operations that can be composed together and executed one
after the other. The process of coming up with the right sequence of operations is
called query planning, where a query plan is a specific scheduling of operations.

Table 6.1 describes the set of basic match operators that any (vertex-centric) dis-
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tributed query engine needs to support for query planning in one way or another.
PGX.D/Async engine uses a similar set of operators as shown in Section 3.2. The
performance of any graph engine is highly influenced by the query-plan selection.
Query plans dictate the pattern-matching order, i.e., which vertex or edge is matched
first, second, and so on, regardless of the engine’s execution model.

Operator Example Description

Vertex
(x)->(y)

Matches vertices without
match following edges

Outgoing neighbor
(x)->(y)

Matches outgoing neighbors
match of the current vertex

Incoming neighbor
(x)<-(y)

Matches incoming neighbors
match of the current vertex

Edge (x)->... Matches again an
match (y)->(x) already matched vertex

Inspection (x)->(y)->(z), Transfers the execution back to
match (y)->(w) an already matched vertex

Table 6.1: Typical graph operators used in a distributed graph pattern matching engine.

Every query which involves more than a single vertex match has multiple query plans.
For example, without inspection matches, a simple pattern of two directed hops –
MATCH (a)->(b)->(c) – could be planned as (a)→(b)→(c) or as
(c)←(b)←(a). Adding inspection matches exponentially increases the number of
possible plans introducing (b)→(c)⇒(b)←(a) and (b)←(a)⇒(b)→(c).1

For this reason, traditional query-planner methods come up with different plans for
the same query, and pick the best one according to a cost metric. The cost of a query
plan QP (cost(QP ) = X) represents the predicted computational “costs” of the query
in arbitrary units of computations. The cost can be calculated based on a number of
factors. One of the most important aspects of graph querying is the cardinality of the
individual matches. The cardinality of a match is an estimation of the number of data
points it needs to process.

Of course, different query planners can quantify different aspects of the query plan.
Different operators can require different amount of work, and thus have different costs.
Filters can be taken into consideration in order to reduce the selectivity of operations
based either on fixed heuristics or static and runtime statistics. Choosing the optimal
query plan based on cost-based analysis is a well-explored topic and is outside of
the scope of this thesis. Our solution, scouting queries, builds directly on top of the
traditional query planning approaches.

6.1.2 Related Work
With data sets and queries becoming increasingly complex, a traditional static cost-
based query optimization as introduced by Selinger et al. [234] can become inefficient.
The statistics and assumptions on which this dynamic programming approach relies
can be inaccurate or sometimes even invalid. The limitations of the optimize-then-
execute paradigm have led to a plethora of new approaches that rely on runtime feed-

1→,← and⇒ are the query planner operators, i.e., outgoing and incoming edge match, and inspec-
tion match, respectively.
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back to correct the query plan [235]. This class of techniques is called adaptive query
processing.

Runtime statistics refinement [236, 237, 238, 239, 240, 241, 242, 243] is a tech-
nique where statistics collection is triggered during query execution, resulting in lit-
tle to no overhead. The newly collected statistics can be used for current or future
query execution. Proactive re-optimization is another technique where the query op-
timizer is invoked when estimation violations occur [244, 245, 246, 247, 248]. Fur-
ther improvements such as leveraging intermediate results or strategically delaying
re-optimization have also been proposed [245, 247, 249]. Multi-plan choices have the
query optimizer concurrently run multiple query plans, sometimes on different data
subsets [250, 251, 252]. This approach is the most closely related to our scouting
queries, but our solution is applied on distributed graph query execution with emphasis
on the engine’s throughput within a specified time frame, rather than on a restricted
subset(s) of the data. To the best of our knowledge, this particular emphasis has not
been previously documented in the literature. Approaches such as Smooth Scan [253]
avoid sensitivity to the quality of the statistics and estimations.

A hot topic in database research is embedding machine-learning models in the
query optimizer to improve its efficiency. These vary from using supervised learning
on previous execution plans to generating plans for future queries [254], to training
recommender systems on textual similarities between SQL queries, with the assump-
tion that textually similar queries should have similar query plans [255]. Using latency
to reward a reinforcement learning model in the query optimizer [256] has also been
proposed. Adjusting inaccurate statistics by learning from the query planner’s past mis-
takes [243] complements those works. Somehow similar to scouting queries, Trummer
et al. [257] propose learning about the best join order while training on slices of data
until the best order is found. Other approaches consist of enhancing instead of substi-
tuting the query optimizer, like BAO [258], which learns the best execution plans for
past queries and chooses from multiple query plans suggested by a traditional query
optimizer. While these approaches suffer from limitations, they herald even greater
improvement possibilities [254].

6.2 Scouting Queries
Scouting queries aim to augment traditional query planning, solving its shortcomings
by gathering information about the actual final runtime of the pattern matching part of
graph queries. They do so by executing various query plans of the same query for short
duration and collecting statistics to help decide which plan will be the best once fully
deployed.

6.2.1 Query Planning to Scouting Query Execution
In what follows, we detail the steps to integrate scouting queries in a (distributed) graph
engine.
Preselect top N plans. We can use any traditional planner to preselect the top N query
plans. Most algorithms assign an explicit confidence value indicating how likely a
query plan is to be the optimal one. This confidence is internally used for ranking the
N query plans at the beginning, but can also be used at a latter step to combine the
power of traditional query planning with scouting queries.
Run scouting queries. We create a scouting query for each of the N query plans.
Scouting queries are short executions of a query, which run for a limited time (in the
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order of milliseconds) and collect runtime information about their execution. Note that
graph queries typically include pattern matching followed by post processing, such as
GROUP BY and ORDER BY. Scouting queries execute only the pattern matching part of
the query. We use these executions to choose the best performing query plan – out of
N – based on the collected data. In order to collect statistics along the whole matching
pattern, it is important for scouting queries to execute on top of a depth-first-oriented
engine (DFT), i.e., an engine that eagerly pipelines intermediate results out as final.
Breadth-first-oriented (BFT) engines (e.g, Neo4j [16]) collect all intermediate results
per each match and then proceed to subsequent matches.

On the one hand, scouting must run almost instantly compared to the actual ex-
ecution of the query in order to not add high overhead. On the other hand, scouting
should have enough time to explore the complete query pattern. One should ideally
configure the time limit for each scouting query based on the expected performance
of the graph engine. For example, if the engine is capable of delivering throughput in
the million matches per second, running the scouting query for a few milliseconds is
enough for almost any query. One must also account for the overhead of starting the
query. Altogether, scouting is best-suited for large graphs and/or large queries, where
the benefits can easily outweigh the overhead.
Scouting query statistics policies. The best scenario is for scouting to find some final
(output) results of pattern matching. The output throughput can be the main indication
of how good the query plan of the scouting query is. Our general assumption is that
the throughput of a limited execution of a query plan is roughly the same as that of
the entire execution (the experimental results in Section 6.3 validate this assumption).
This means that if the query plan QP1 returns more results than query plan QP2 in
the same amount of time, we expect query plan QP1 to be better than plan QP2. Our
assumption could fail in theory, as the engine could be lucky while executing a worse
query plan. Imagine a query SELECT COUNT(*) FROM MATCH (a)->(b) WHERE

ID(a) < 10 where the best query plan starts from matching (a) because of the filter-
ing (assuming all IDs are > 0) and continues to the matching of (b). In some extreme
cases, the bad plan starting matching from (b) can have higher or equal throughput
during scouting, e.g., it matches (b) and follows to (a) with ID(a) = 1...5.

In order to alleviate this problem, we can mix the scouting findings with the con-
fidence values of the default query planner. The query planner returns the confidence
for each of the N preselected query plans. The formula for picking the best query plan
can be as follows: argmax(confidence(QP ) ∗ (throughput(QP ) + 1)). Of course,
depending on the engine and the traditional query planner, one can devise different
policies for weighing the query-plan selection. (In our evaluation, Section 6.3, we use
for instance only the scouting query performance as the selection metric.)

Of course, there are queries that could have a small number or no results, which
means throughput 0 for all scouting queries. To solve that issue, the engine uses a
secondary metric (which requires deeper integration to the execution engine). The
engine records the number of visited vertices for each vertex match and combines
those as a metric. Matches at latter parts of the query mean that results flow faster
towards the output, i.e., the matching happens faster.

Additionally, depending on the engine and the optimization criterion, any other
statistics/metrics can be deployed. The aforementioned metric optimizes for the engine
performance. One can easily create a metric that aims for a different optimization
criterion, e.g., when the engine is low on memory, it can prefer memory consumption
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over performance. In that case, while executing a scouting query, it can monitor the
memory consumption and pick the query plan with the lowest consumption. Another
policy, important in cloud environments, is the one for minimizing the overall engine
cost. To minimize the cost for query execution, the engine can monitor the usage of
different modules (at their price) during scouting execution and pick the query plan
with the potentially lowest price for the user.
Execution of scouting queries. Every scouting query executes starting from a set of
vertices. If the graph vertex is fixed by the query, e.g., SELECT COUNT(*) FROM

MATCH (a)->(b)->(c) WHERE id(a) = 0, we use the filter for bootstrapping the
computation – for the plans that start with (a). If there are multiple options for the
starting vertex, we select the starting vertices randomly. By choosing the vertices ran-
domly, the collected statistics are more representative compared to incremental vertex
selection, e.g., in sorted order based on the vertex ID.

The actual execution of the scouting is up to the engine. As we mentioned above,
in order for the queries to be short, the execution must be somehow limited. One way
is to limit the execution time of the queries by the engine. To support this the engine
needs an efficient support for execution cancellation. Using cancellation, the engine
runs each of the scouting queries for the given amount of time and then the query is
stopped.

Another approach at obtaining meaningful results in a short time is to limit the
parts of the graph that are traversed. Instead of traversals navigating all edges, the
engine randomly chooses edges followed for pattern matching at each step. In this
case, the scouting queries are performing a random walk with the given query on the
searched graph. This can be implemented by adding a random filter on every element
of the scouting query that returns false with a certain probability, thus pruning further
exploration of some paths. This approach is not as clean or effective as the time-
capped method of the previous paragraph, but can be used to deploy scouting queries
in BFT-based engines, which have no control of pushing output results out eagerly.

Furthermore, while monitoring the number of matches for each vertex match, the
engine keeps track on whether the scouting query already traversed significant parts of
the graph. In that case, it gives up on the execution of other scouting queries and lets
the engine execute the current plan. To minimize the potential of running a worse query
plan, we execute scouting queries in order of the default query-planner confidence. We
predict when a query plan should continue by estimating the amount of remaining time
after a scouting query. For example, if the time limit for running each scouting query
is 10ms and we have 5 scouting queries, and if the first scouting query traverses 40%
of the graph in that time, we then make the assumption that the query will continue
with a similar pace, hence it could finish execution in another 10-20ms in comparison
to running the remaining four scouting queries in 40ms.

6.2.2 Reusing Scouting Query Results
One potential overhead of scouting is when throwing away perfectly correctly-

computed query matches. We can alleviate this issue by introducing scouting query
result reusing. By definition, all query plans return the same output results, but they
can differ in the order that intermediate results are expanded to generate final. DFT-
oriented engines return output matches eagerly compared to BFT. DFT engines explore
systematically all the matching subtrees with the same prefix and once they move to
another prefix there are no more results with that same prefix.
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We use this observation for building query-plan groups. If two query plans have
the same matching prefix, they belong to the same group. For instance, if we set the
prefix length to one (i.e., group query plans which start with the same vertex match)
for the query example MATCH (a)->(b)->(c) we have following grouping of query
plans, starting from different vertices:

• start from (a): (a)→(b)→(c), (a)→(b)⇒(c)←(b)

• start from (b): (b)←(a)⇒(b)→(c), (b)←(a)⇒(c)←(b), (b)→(c)⇒(b)←(a),
(b)→(c)⇒(a)→(b)

• start from (c): (c)←(b)←(a), (c)←(b)⇒(a)→(b)

The query plans within the same group can directly share scouting results and the
finally selected plan will reuse those results in its execution. The results can be shared
if a query traverses a whole subtree for the given matched prefix. For our example
with matched prefix (a=1)->(b=2) it means traversing and trying to match starting
from root vertex (2). Thanks to DFT, we know that there are no further matches after
traversing the whole subtree and we do not need to visit that part of the graph with the
same prefix again.

For reusing the results, we first split the query plans into groups according to their
prefix. The length of the prefix can be set statically or dynamically after analyzing
the top N scouting query plans. Because the engine needs to reuse results of scouting
from the same group, it keeps track of which matched prefixes were fully traversed
and the result for those prefixes. After running the next scouting query from the same
group, the engine should avoid those specific traversed prefixes in order not to duplicate
the same work. After finishing all scouting queries from the group, we have a set
of traversed prefixes and their results. After selecting the winning query plan, we
can easily continue the computation from the non-visited matched prefixes and the
final output is the union of results from the executed query and all the partial results
collected during scouting. Notice that even when each group contains a single query
plan, we can reuse the results collected during scouting execution.

The above-mentioned approach is the preferred approach for reusing the results.
Another possibility for avoiding duplicated work is to mark all the matched and visited
paths in the graph and store results for each of them. One can notice that this approach
is memory consuming. Nevertheless, compared to the prefix approach, this can be used
together with the random-walk scouting queries or potentially other approaches.

It is worth noting that result sharing with prefixes further avoids re-traversing the
non-matching paths of those prefixes. In our previous example, the (a=1)->(b=2)

prefix could lead to 10 matched (c) vertices and 20M non matched, e.g., because of
a filter WHERE c.value = 43. Having completed this prefix with scouting covers
both the matching and non-matching cs.

6.3 Evaluation
In this section, we evaluate the potential benefits, as well as the overhead of scouting
queries in distributed graph queries.
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6.3.1 Experimental Settings
Implementation and Configuration. We implement a prototype of scouting queries
on top of the PGX.D/Async graph query and pattern matching engine (Section 3),
which is the perfect target, as it is a distributed engine with eager, DFT-style comple-
tion of pattern matching. We configure the solution to scout the top N +1 query plans,
where N is the number of neighbor matches per query. For instance, pattern (a)->(b)
has N = 1, hence we run two scouting queries (for (a)->(b) and (b)<-(a)). This
way, we allow more scouting queries for longer patterns, which are expected to also
result in longer queries, while maintaining the overhead relatively contained. Further-
more, PGX.D/Async uses intermediate-result buffering for remote edges, which can
result in intermediate results flowing slower towards output. To reduce the effect of
buffering in the short scouting execution (which could bias the scouting metrics), we
reduce the size of buffers by 1

16 for scouting queries. Alternatively, one could incor-
porate the number of buffered intermediate results in the scouting performance metric,
weighing intermediate results in the later parts of the query plan more than those in
earlier parts.

Additionally, we configure scouting queries with 50ms timeout and use only the
scouting query throughput as the query plan selection criterion, such that we evaluate
strictly the efficiency of scouting queries. Finally, we do not implement the result
sharing solutions described in Section 6.2.2, thus the scouting query executions are
strict overhead on top of the selected query plan execution.
Hardware. We use a cluster of eight machines, each with two Intel Xeon CPU E5-2699
v3 2.30GHz CPUs with 18 cores (hyperthreads disabled/DVFS enabled), for 36 cores
in total. Each processor contains 384GB of DDR4-2400 memory and LSI MegaRAID
SAS-3 3108 storage. Every machine includes a Mellanox Connect-X InfiniBand card,
all connected to an EDR 100Gbit/s InfiniBand network.
Methodology. Our approach mainly affects the pattern-matching part of graph queries
and is oblivious to the post-processing operators, such as GROUP BY and ORDER
BY. Accordingly, in our experiments, we report the pattern matching execution time
for both non-scouting and scouting and additionally the scouting execution overhead
from all N queries for scouting.

We perform 10 runs of each query and report the median latency. Scouting is
not deterministic: With some queries, scouting could dictate different query plans in
different runs. We thus report the plans that are selected, and how often they did so,
under the result bars. For each experiment set, we execute the queries in a per-graph
round-robin fashion in order to reduce caching effects.
Graphs and queries. Our experiments use two classic graphs and the corresponding
queries. First, we use the latest LDBC graph [180] SF300 and a set of 12 queries de-
rived from the LDBC Business Intelligence (BI) standard queries [194]. This is not
the official LDBC standard. The scope of this evaluation covers user-provided fixed-
pattern queries, thus the latest LDBC BI queries are outside of the scope of this work.
We use the older/first version of BI: Out of the 24 original queries, four represent sim-
ple path patterns (i.e., Q2, Q4, Q12, Q23) and are directly used in our experiments. The
remaining ones include expressions not supported by PGX.D/Async, such as RPQs or
subqueries. We devise simplified variants of these to support the benchmark spec-
ification as close as possible. (An example of such transformation is presented in
Section 4.3).
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Second, we express the classic TPC-H [182] relational database workload as a
graph (both the data and the queries, scale factor 300, with 2.36 billion vertices and
6.14 billion edges) and optimize with scouting queries. For instance, the workload in-
cludes region vertices, which are connected with countries, in which customer vertices
reside. With PGQL, Q3 is expressed as:
SELECT

o.O_ORDERKEY, o.O_ORDERDATE, o.O_SHIPPRIORITY,
SUM(l.L_EXTENDEDPRICE *(1 - l.L_DISCOUNT)) AS REVENUE,

FROM
MATCH (l:LINEITEM) -[:LINEITEM_ORDERS]-> (o:ORDERS)
MATCH (o) -[:ORDER_CUSTOMER]-> (c:CUSTOMER)

WHERE
c.C_MKTSEGMENT = 'BUILDING'
AND o.O_ORDERDATE < DATE '1995-03-15'
AND l.L_SHIPDATE > DATE '1995-03-15'

GROUP BY o.O_ORDERKEY, o.O_ORDERDATE, o.O_SHIPPRIORITY
ORDER BY REVENUE DESC, o.O_ORDERDATE
LIMIT 10

We rewrite and use the 12 TPC-H standard queries that require no subquery sup-
port.

6.3.2 Results
Figures 6.1 and 6.2 include the results of PGX.D/Async with and without scouting
queries on LDBC and TPC-H workloads, respectively.

Overall. Scouting improves the total workload execution time, including scouting
overhead, by 3.3× for LDBC and 1.7× for TPC-H.

For both LDBC and TPC-H, we see that scouting queries result in the same query
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Figure 6.1: Query execution latencies for LDBC without (no-SQ) and with scouting
queries (SQ). Mosaic-pattern bars represent queries where the default query planner
and scouting queries give the same query plan. The query plans (QPi) and how many
times each was chosen are listed beneath each query, sorted from best to worst, with
the one preferred by scouting highlighted in red.

82



plan as the default query planner for only 4 out of 22 queries. Interestingly, even for
these four queries the overall performance is slightly faster with scouting queries, even
though we have not enabled result reuse. Our analysis shows that the scouting query
warmup gives a good performance boost to the actual execution (especially for Q4 on
LDBC that is tiny). The exact overhead from scouting queries is shown in orange and
depends on (i) the query execution duration and (ii) the number of neighbor matches
the query includes. As mentioned earlier, we run N + 1 scouting queries, where N is
the number of neighbor matches in that query.

A second class of queries are the ones that marginally benefit from scouting queries
(i.e., Q23 on top of LDBC and Q10 on TPC-H). For those, scouting queries cause the
engine to use a different query plan, however, this plan is not so much faster than the
original plan. For instance, query Q10 on TPC-H benefits by 40% (280ms faster) with
the new query plan, but the scouting query overheads (N = 4) cancel this speedup.

A third category includes queries that have overall worse performance with scout-
ing. This happens either because the queries are very short (Q2, Q4, Q15, Q17 on
LDBC) and the scouting overheads are higher than any possible benefits, or because
scouting queries choose a worse plan than the default query planer. The latter only
happens to Q20 from LDBC and Q19 from TPC-H. In Q20/LDBC, scouting consis-
tently in all 10 runs returns query plan 2, while in Q19/TPC-H, scouting takes the
wrong decision 6 out of 10 runs, resulting in 1.6× slower execution time, 1.8× with
the scouting overhead. In both cases, the scouting timeout is too short to select the
best query plan. For Q19/TPC-H, the collected statistics are almost identical in both
query plans, hence it is a matter of “luck”, which plan is selected. When choosing the
optimal timeout, one must strike a balance between collecting more precise statistics
and the overhead of executing scouting queries.

The five LDBC queries that are altogether slower with scouting are relatively short
(average execution time of 1.7s) and have an 1.8× average slowdown. With TPC-H,
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Figure 6.2: Query execution latencies for TPC-H without (no-SQ) and with scouting
queries (SQ). Mosaic-pattern bars represent queries where the default query planner
and scouting queries give the same query plan. The query plans (QPi) and how many
times each was chosen are listed beneath each query, sorted from best to worst, with
the one preferred by scouting highlighted in red.
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only three queries are slower (average execution time 0.9s) with 1.3× average slow-
down.

Finally, the remaining queries (Q12, Q14, and Q24 on LDBC and Q5, Q7, Q8,
Q9, and Q16 on TPC-H) represent the queries where scouting helps the most. In these
cases, the default query planner cannot find the best plan, while the actual scouting-
query execution successfully unveils a better plan. Intuitively, these tend to be longer
queries with complex connections and filters. The result is speedups from 1.3 to 8.7×
maximum, with 3.4× and 3.2× average speedups for LDBC and TPC-H, respectively.

In summary, the experimental results meet our intuition: Scouting is better suited
for large complex queries where (i) traditional query planning has a hard time finding
the best plan and (ii) the reduction of the long execution times outweighs any scouting
overheads.
Deep dive TPC-H Q7. We now analyze Q7 from TPC-H in order to explain the com-
plexities of query planning in distributed graph query engines that bring about the need
for dynamic planning approaches such as scouting queries. We choose Q7 as it com-
bines the complexities of long patterns with heavy filtering. Q7 calculates the total
money transfers between France and Germany over two years:

SELECT
N1.NAME AS SUPP_NATION, N2.NAME AS CUST_NATION,
EXTRACT(YEAR FROM li.SHIPDATE) AS L_YEAR,
SUM(li.EXTENDEDPRICE * (1 - li.DISCOUNT)) AS REVENUE

FROM MATCH
(li:LINEITEM)-[:LINEITEM_SUPPLIER]->(s:SUPPLIER),
(li)-[:LINEITEM_ORDERS]->(o:ORDERS),
(o)-[:ORDER_CUSTOMER]->(c:CUSTOMER),
(s)-[:SUPPLIER_NATION]->(N1:NATION),
(c)-[:CUSTOMER_NATION]->(N2:NATION)

WHERE
N1.NAME IN ('GERMANY', 'FRANCE')
AND N2.NAME IN ('GERMANY', 'FRANCE')
AND N1 != N2
AND li.SHIPDATE >= DATE '1995-01-01'
AND li.SHIPDATE <= DATE '1996-12-31'

GROUP BY SUPP_NATION, CUST_NATION, L_YEAR
ORDER BY SUPP_NATION, CUST_NATION, L_YEAR

The query plan proposed by the default planner (QP1) starts from the supplier nation,
goes to the supplier’s line-items, to the orders, to the customers, and then to the second
nation. Scouting queries instead choose the third query plan (QP3) that starts from the
customer nation, moves to the customer, the orders, the line-items, the suppliers, and
the suppliers’ nation. The default query planner gives 3× lower cardinality to QP1
than QP3, thus it is certain about the choice of this particular plan.

However, the default query planner misestimates how selective the line-item filter
is, bringing line-item matching as early in the plan as possible. As we see in Ta-
ble 6.2, this choice leads to an early explosion of visited vertices in Stage 2 (li),
compared to the smaller and later explosion in Stage 3 (li) for QP3. Looking at the
query, this explosion makes a big difference, leading to a greater number of interme-
diate matches that need to extract data out of the line-item vertices for projections and
to support the group-by operation, i.e., EXTRACT(YEAR FROM l_shipdate), and
SUM(l_extendedprice * (1 - l_discount)).
This data needs to be carried across machines in a distributed engine, leading to over-
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heads. In practice, expressing all these fine details in a default query planner is almost
impossible.

Stage QP1 Visited Matched QP3 Visited Matched

0 N1 225 18 N2 225 18
1 s 5,488 5,488 c 78,683 78,683
2 li 3,179,315 966,944 o 746,157 746,157
3 o 663,104 663,104 li 2,594,222 787,010
4 c 370,814 370,814 s 533,522 533,522
5 N2 370,814 14,877 N1 533,522 21,551

Table 6.2: Scouting query execution statistics of TPC-H Q7. Visited and Matched
correspond to vertices.

6.4 Concluding Remarks
This chapter introduces scouting queries, a mechanism built on top of traditional

query planners to enable selecting the best query plan for pattern matching in (dis-
tributed) graph queries. An efficient query plan is a critical part of any query engine
significantly affecting its performance. Our approach uses runtime statistics collected
during the execution of candidate query plans and is thus able to correct any misesti-
mations of the default query planner. Our evaluation shows that scouting queries can
significantly improve performance on real graphs, while maintaining low overhead.

In future work, we intend to test BFT-style scouting matching, scouting-result
reusing and different scouting metrics. Furthermore, we plan to use scouting queries in
a feedback loop to improve query planners, both manually and with machine-learning
techniques.
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7. Conclusion
In this thesis, we presented aDFS: A distributed asynchronous in-memory graph query-
ing algorithm capable of executing a fixed pattern-matching query of any size with a
strictly bound configurable amount of memory. To the best of our knowledge, aDFS
is the first truly distributed graph-querying system working on fully-partitioned graphs
that is capable of doing this. aDFS cleverly combines the two main approaches for
graph querying: breadth-first search and depth-first search, leveraging their advantages
and mitigating their disadvantages. The depth-first traversal allows capping the com-
putation memory to the bare minimum needed for the execution. The asynchronous
approach adds the possibility to “hide” the performance penalty caused by sending
messages across the machines. The breadth-first approach further improves the already
great performance and scalability of the system by distributing the parallel work more
equally among workers and using better memory access locality. We compared aDFS
to eight state-of-the-art systems with diverse characteristics — graph or relational/join-
based, distributed or single machine, in-memory or disk-based — and showed that
aDFS is up to orders of magnitude faster than them.

The second contribution is RPQd, an extension of DFS engine to support variable-
length pattern matching queries in the form of regular path queries with support for
reachability. RPQd supports both bounded and unbounded repetitions of arbitrary path
patterns in the form of regular expressions over any edge labels, as well as advanced
powerful features like local- and cross-filtering. Due to our unique design, to the best of
our knowledge, this is the first distributed querying system that supports cross-filtering
between RPQs and normal queries (shown in Section 5.1). The implementation en-
sures strong guarantees of memory usage during computation. Given the support of
unbounded queries, it cannot limit the consumed memory to the size of query, but
it can minimize potential memory overflows to a bare minimum to allow predictable
memory consumption, which is a highly demanded feature, e.g., in distributed elastic
cloud environments. We evaluated RPQd against Neo4j and PostgreSQL and showed
that with sixteen machines, it outperforms Neo4j by 91× on average and a relational
implementation of the same queries using recursive queries in PostgreSQL by 230×,
while maintaining low memory consumption.

The last contribution of this thesis is the improvement of distributed graph query
planning, which is an essential part of any query system and has a large influence on
the overall performance. Current analytical approaches are not sufficient to cover the
full complexity of a distributed system (e.g., graph partitioning, messaging, elasticity,
or dynamic (cloud) environments), which might lead to selecting a suboptimal query
plan and ultimately result in poor performance. We propose a simple yet powerful
solution that uses fast depth-first scouting queries that collect runtime statistics during
the exploration. These statistics are then used to make educated decisions about the
performance of potential query plans. We show that the potential overhead of scouting
queries can be mitigated by reusing the found results and by “prewarming” the system,
leading to faster query execution. We evaluated scouting queries and showed that they
bring speedups of up to 8.7× for heavy queries.
Future research directions. Each chapter of our contribution presents a section related
to future work at the end. In addition to that, we present here future research directions
with regard to whole field of graph querying.
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Most graph queries consist of multiple parts, e.g., pattern matching and post-
processing with aggregations, that are typically processed by different subsystems.
We presented two pattern matching approaches, aDFS and RPQd, which are both able
to limit/cap the memory consumption. However, if the other subsystems (e.g., post-
processing) do not limit the memory as well, the system as a whole might go out-of-
memory. Therefore, being able to cap the memory through the whole pipeline execu-
tion might be crucial for running the system with multiple users in cloud.

In this thesis, we focus on graph querying of static graphs. However, in most cases,
the amount of data is constantly growing, and graph analytics should take this into
account. There is a new model of temporal graphs [80, 81, 82, 83] that treats graph
modifications as first-class citizens. Adding native support for graph modifications to
(distributed) graphs and allowing efficient graph processing would require non-trivial
changes in various parts of these systems.

Graph query languages frequently add new features to accommodate growing num-
ber of user use-cases. We see a focus on specialized features combining standard
querying (well-known from relational databases) with graph-related algorithms (e.g.,
a shortest-path search). From our experience, an efficient implementation of such fea-
tures in distributed query engines is a highly challenging research area with a practical
impact on the users of big-data graph analytics. An example of a complex feature can
be full support for efficient distributed subqueries. There are also two completely new
query languages – SQL/PGQ and GQL – whose implementation on top of distributed
graphs will undoubtedly uncover many research problems.
Perspective. Distributed graph querying has proven to be a valuable analytics approach
that helps to analyze graph-specific data, e.g., social networks, but also helps to im-
prove the performance of other related fields, e.g., worst-case optimal joins [173] for
relation querying. Our clever combination of BFS and DFS, bringing a memory effi-
cient querying with great performance, inspired other graph systems [259, 260, 261]
to use a similar approach. We also described an algorithm that extends this idea for
RPQs, which is a powerful constuct in graph querying. Others can build on this idea
and use it to allow support for RPQs. The last contribution introduces an approach that
helps with finding the most efficient query plan in practice, even in complex and dy-
namic environments. This approach can be leveraged by any (not only graph) querying
systems.

All the improvements presented in this thesis help to develop an efficient distributed
graph system and are applicable to any distributed DFS graph-querying system.
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Sungpack Hong, and Hassan Chafi. 2023.
In Proceedings of the 6th Joint Workshop on Graph Data Management Experiences
& Systems (GRADES) and Network Data Analytics (NDA) (GRADES & NDA ’23).
Association for Computing Machinery, New York, NY, USA, Article 3, 1–9. https:
//doi.org/10.1145/3594778.3594884

aDFS: An Almost Depth-First-Search Distributed Graph-Querying System.
Vasileios Trigonakis, Jean-Pierre Lozi, Tomáš Faltín, Nicholas P. Roth, Iraklis Psa-
roudakis, Arnaud Delamare, Vlad Haprian, Calin Iorgulescu, Petr Koupy, Jinsoo Lee,
Sungpack Hong, Hassan Chafi. 2021.
USENIX Annual Technical Conference 2021: 209-224, Online, United States. hal-
03249229

BDgen: A Universal Big Data Generator.
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A. LDBC Social Network Benchmark
Business Intelligence Queries
All queries presented in the appendix are not the official LDBC [194] standard queries
and have not been audited by LDBC. We devised simplified variants of LDBC Busi-
ness Intelligence (BI) standard queries in order to support the benchmark specification
as closely as possible. The original queries are available in the official LDBC reposi-
tory [205]: Cypher queries [262] and PostgreSQL queries [263]. We present here the
queries in Cypher and SQL for comparison.

A.1 Fixed-size Pattern Queries
Fixed-size pattern queries were used for evaluation purpose of aDFS approach in Chap-
ter 4.

A.1.1 Cypher
Q1

MATCH (message:Message)
WHERE message.creationDate < datetime('2011-12-01')
WITH count(message) AS totalMessageCountInt
WITH toFloat(totalMessageCountInt) AS totalMessageCount
MATCH (message:Message)
WHERE message.creationDate < datetime('2011-12-01')

AND message.content IS NOT NULL
WITH

totalMessageCount,
message,
message.creationDate.year AS year

WITH
totalMessageCount,
year,
message:Comment AS isComment,
CASE

WHEN message.length < 40 THEN 0
WHEN message.length < 80 THEN 1
WHEN message.length < 160 THEN 2
ELSE 3

END AS lengthCategory,
count(message) AS messageCount,
floor(avg(message.length)) AS averageMessageLength,
sum(message.length) AS sumMessageLength

RETURN
year,
isComment,
lengthCategory,
messageCount,
averageMessageLength,
sumMessageLength,
messageCount / totalMessageCount AS percentageOfMessages

ORDER BY year DESC,
isComment ASC,
lengthCategory ASC

LIMIT 10;
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Q2

MATCH
(message:Message) -[:HAS_TAG]-> (tag:Tag)
-[:HAS_TYPE]-> (tagClass:TagClass {name: 'MusicalArtist'})

WHERE message.creationDate >= datetime('2012-09-09')
AND message.creationDate < datetime('2012-12-18')

RETURN
tag.id,
tagClass.id,
COUNT(*) AS cnt

ORDER BY cnt DESC
LIMIT 10;

Q3

MATCH
(:Country {name: 'Burma'}) <-[:IS_PART_OF]- (:City)
<-[:IS_LOCATED_IN]- (person:Person)
<-[:HAS_MODERATOR]- (forum:Forum)
-[:CONTAINER_OF]-> (post:Post)
<-[:REPLY_OF]- (message:Message)
-[:HAS_TAG]-> (:Tag)
-[:HAS_TYPE]-> (:TagClass {name: 'MusicalArtist'})

RETURN
forum.id,
forum.title,
forum.creationDate,
person.id,
count(DISTINCT message) AS messageCount

ORDER BY
messageCount DESC,
forum.id ASC

LIMIT 10;

Q7

MATCH
(tag:Tag {name: 'Enrique_Iglesias'})
<-[:HAS_TAG]- (message:Message)
<-[:REPLY_OF]- (comment:Comment)
-[:HAS_TAG]-> (relatedTag:Tag),
(comment) -[:HAS_TAG]-> (tag)

RETURN
relatedTag.name,
count(DISTINCT comment) AS count

ORDER BY
count DESC,
relatedTag.name ASC

LIMIT 10;
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Q9

MATCH
(person:Person) <-[:HAS_CREATOR]- (post:Post)
<-[:REPLY_OF*3]- (reply:Message)

WHERE post.creationDate >= datetime('2011-10-01T00:00:00')
AND post.creationDate <= datetime('2011-10-15T00:00:00')
AND reply.creationDate >= datetime('2011-10-01T00:00:00')
AND reply.creationDate <= datetime('2011-10-15T00:00:00')

RETURN
person.id,
person.firstName,
person.lastName,
count(DISTINCT post) AS threadCount,
count(DISTINCT reply) AS messageCount

ORDER BY
messageCount DESC,
person.id ASC

LIMIT 10;

Q11

MATCH
(a) -[k1:KNOWS]-> (b) -[k2:KNOWS]-> (c) <-[k3:KNOWS]- (a),
(a:Person) -[:IS_LOCATED_IN]-> (:City)
-[:IS_PART_OF]-> (:Country {name: 'Belarus'}),
(b:Person) -[:IS_LOCATED_IN]-> (:City)
-[:IS_PART_OF]-> (:Country {name: 'Belarus'}),
(c:Person) -[:IS_LOCATED_IN]-> (:City)
-[:IS_PART_OF]-> (:Country {name: 'Belarus'})

WHERE a.id < b.id AND b.id < c.id
AND datetime('2010-06-01T00:00:00') <= k1.creationDate
AND datetime('2010-06-01T00:00:00') <= k2.creationDate
AND datetime('2010-06-01T00:00:00') <= k3.creationDate

RETURN count(*) AS count;

Q12

MATCH
(person) <-[:HAS_CREATOR]- (message:Message)
-[:REPLY_OF]-> (post:Post)

WHERE message.content IS NOT NULL
AND message.length < 20
AND message.creationDate > datetime('2010-07-22T00:00:00')
AND post.language IN ['ar', 'hu']

WITH
person,
count(message) AS messageCount

RETURN messageCount
ORDER BY messageCount DESC
LIMIT 10;
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Q13

MATCH
(message:Message) <-[:LIKES]- (likerZombie:Person),
(zombie) <-[:HAS_CREATOR]- (message)

RETURN
zombie.id,
COUNT(*) AS zombieScore

ORDER BY zombieScore DESC
LIMIT 10;

Q14

MATCH
(country1:Country {name: 'Chile'}) <-[:IS_PART_OF]- (city1:City)
<-[:IS_LOCATED_IN]- (person1:Person),
(country2:Country {name: 'Argentina'})
<-[:IS_PART_OF]- (city2:City)
<-[:IS_LOCATED_IN]- (person2:Person),
(person1) <-[:HAS_CREATOR]- (c:Comment) -[:REPLY_OF]-> (:Message)
-[:HAS_CREATOR]-> (person2)

RETURN COUNT(*);

Q15

MATCH
(p1:Person) -[:KNOWS]-> (:Person) -[:KNOWS]-> (p2:Person)

WHERE p1.id <> p2.id
RETURN COUNT(*);

Q18

MATCH
(person1:Person) -[:KNOWS]- (mutualFriend:Person)
<-[:KNOWS]- (person2:Person)
-[:HAS_INTEREST]- (q:Tag {name: 'Frank_Sinatra'}),
(person1) -[:KNOWS]-> (person2)

WHERE person1 <> person2
RETURN

person1.id AS person1Id,
person2.id AS person2Id,
count(DISTINCT mutualFriend) AS mutualFriendCount

ORDER BY
mutualFriendCount DESC,
person2Id ASC

LIMIT 10;
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Q19

MATCH
(personA:Person) -[e:KNOWS]-> (personB:Person),
(personA) <-[:HAS_CREATOR]- (:Message)
-[replyOf:REPLY_OF]- (:Message)
-[:HAS_CREATOR]-> (personB)

RETURN
e,
COUNT(*) AS cnt

ORDER BY cnt DESC
LIMIT 10;

Q20

MATCH
(company:Company {name: 'Falcon_Air'})
<-[:WORK_AT]- (person1:Person),
(person1:Person) -[:KNOWS]-> (:Person)
<-[:KNOWS]- (person2:Person)

WHERE person1.id <> person2.id
RETURN COUNT(*);

A.1.2 PostgreSQL
Q1

WITH message_count AS (
SELECT 0.0 + count(*) AS cnt

FROM message
WHERE 1=1

AND m_creationdate < '2011-12-01T00:00:00.000+00:00'
)
, message_prep AS (

SELECT extract(year from m_creationdate) AS messageYear
, m_c_replyof IS NOT NULL AS isComment
, CASE

WHEN m_length < 40 THEN 0 -- short
WHEN m_length < 80 THEN 1 -- one liner
WHEN m_length < 160 THEN 2 -- tweet
ELSE 3 -- long

END AS lengthCategory
, m_length

FROM message
WHERE 1=1

AND m_creationdate < '2011-12-01T00:00:00.000+00:00'
AND m_ps_imagefile IS NULL

)
SELECT messageYear, isComment, lengthCategory

, count(*) AS messageCount
, cast(avg(m_length) AS INT) AS averageMessageLength
, sum(m_length) AS sumMessageLength
, count(*) / mc.cnt AS percentageOfMessages

FROM message_prep
, message_count mc

GROUP BY messageYear, isComment, lengthCategory, mc.cnt
ORDER BY messageYear DESC, isComment ASC, lengthCategory ASC;
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Q2

SELECT
tag.t_tagid as TagId,
tagclass.tc_tagclassid AS tc,
count(*) AS cnt

FROM message
JOIN message_tag

ON message.m_messageid = message_tag.mt_messageid
JOIN tag

ON message_tag.mt_tagid = tag.t_tagid
JOIN tagclass

ON tag.t_tagclassid = tagclass.tc_tagclassid
WHERE

tagclass.tc_name = 'MusicalArtist'
AND message.m_creationdate >= '2012-09-09T00:00:00.000+00:00'
AND message.m_creationdate < '2012-12-18T00:00:00.000+00:00'

GROUP BY tag.t_tagid, tagclass.tc_tagclassid
ORDER BY cnt DESC
LIMIT 10;

Q3

SELECT
forum.f_forumid,
forum.f_title,
forum.f_creationdate,
forum.f_moderatorid AS "personId",
count(DISTINCT message.m_messageid) AS messageCount

FROM country
JOIN place AS city
ON country.ctry_city = city.pl_placeid

JOIN person
ON city.pl_placeid = person.p_placeid

JOIN forum
ON person.p_personid = forum.f_moderatorid

JOIN message AS post
ON forum.f_forumid = post.m_ps_forumid

JOIN message
ON post.m_messageid = message.m_c_replyof

JOIN message_tag
ON message.m_messageid = message_tag.mt_messageid

JOIN tag
ON message_tag.mt_tagid = tag.t_tagid

JOIN tagclass
ON tag.t_tagclassid = tagclass.tc_tagclassid

WHERE
country.ctry_name = 'Burma'
AND tagclass.tc_name = 'MusicalArtist'

GROUP BY forum.f_forumid, person.p_personid
ORDER BY messageCount DESC, forum.f_forumid
LIMIT 10;
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Q7

SELECT
relatedTag.t_name,
COUNT(DISTINCT comment) AS count

FROM message AS m
JOIN message_tag AS mt1
ON m.m_messageid = mt1.mt_messageid

JOIN tag
ON mt1.mt_tagid = tag.t_tagid

JOIN message AS comment
ON m.m_messageid = comment.m_c_replyof

JOIN message_tag AS mt2
ON comment.m_messageid = mt2.mt_messageid

JOIN tag AS relatedTag
ON mt2.mt_tagid = relatedTag.t_tagid

JOIN message_tag AS mt3
ON
(comment.m_messageid = mt3.mt_messageid
AND mt3.mt_tagid = tag.t_tagid)

WHERE tag.t_name = 'Enrique_Iglesias'
GROUP BY relatedTag.t_name
ORDER BY count DESC, relatedTag.t_name
LIMIT 10;

Q9

SELECT
person.p_personid,
person.p_firstname,
person.p_lastname,
COUNT(DISTINCT message) AS threadCount,
COUNT(DISTINCT reply) AS messageCount

FROM person
JOIN message

ON person.p_personid = message.m_creatorid
JOIN message AS c1

ON message.m_messageid = c1.m_c_replyof
JOIN message AS c2

ON c1.m_messageid = c2.m_c_replyof
JOIN message AS reply

ON c2.m_messageid = reply.m_c_replyof
WHERE

message.m_c_replyof IS NULL
AND message.m_creationdate >= '2011-10-01 00:00:00'
AND message.m_creationdate <= '2011-10-15 00:00:00'
AND reply.m_creationdate >= '2011-10-01 00:00:00'
AND reply.m_creationdate <= '2011-10-15 00:00:00'
AND c1.m_creationdate >= '2011-10-01 00:00:00'
AND c1.m_creationdate <= '2011-10-15 00:00:00'
AND c2.m_creationdate >= '2011-10-01 00:00:00'
AND c2.m_creationdate <= '2011-10-15 00:00:00'

GROUP BY person.p_personid, person.p_firstname, person.p_lastname
ORDER BY messageCount DESC, person.p_personid ASC
LIMIT 10;
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Q11

SELECT COUNT(*)
FROM person AS a
JOIN knows AS k1
ON a.p_personid = k1.k_person1id

JOIN person AS b
ON k1.k_person2id = b.p_personid

JOIN knows AS k2
ON b.p_personid = k2.k_person1id

JOIN person AS c
ON k2.k_person2id = c.p_personid

JOIN knows AS k3
ON (c.p_personid = k3.k_person2id

AND k3.k_person1id = a.p_personid)
JOIN place AS place1
ON a.p_placeid = place1.pl_placeid

JOIN place AS city1
ON place1.pl_containerplaceid = city1.pl_placeid

JOIN place AS place2
ON b.p_placeid = place2.pl_placeid

JOIN place AS city2
ON place2.pl_containerplaceid = city2.pl_placeid

JOIN place AS place3
ON c.p_placeid = place3.pl_placeid

JOIN place AS city3
ON place3.pl_containerplaceid = city3.pl_placeid

WHERE
a.p_personid < b.p_personid AND b.p_personid < c.p_personid
AND '2010-06-01 00:00:00' <= k1.k_creationdate
AND '2010-06-01 00:00:00' <= k2.k_creationdate
AND '2010-06-01 00:00:00' <= k3.k_creationdate
AND city1.pl_name = 'Belarus' AND city1.pl_type = 'country'
AND place1.pl_type = 'city'
AND city2.pl_name = 'Belarus' AND city2.pl_type = 'country'
AND place2.pl_type = 'city'
AND city3.pl_name = 'Belarus' AND city3.pl_type = 'country'
AND place3.pl_type = 'city';

Q12

SELECT COUNT(message) AS messageCount
FROM person AS p
JOIN message

ON p.p_personid = message.m_creatorid
JOIN message AS post

ON message.m_c_replyof = post.m_messageid
WHERE

post.m_c_replyof IS NULL
AND message.m_content <> ''
AND message.m_length < 20
AND message.m_creationDate > '2010-07-22 00:00:00'
AND post.m_ps_language IN ( 'ar', 'hu' )

GROUP BY p
ORDER BY messageCount DESC
LIMIT 10;
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Q13

SELECT
zombie.p_personid,
COUNT(likerPerson) AS zombieScore

FROM person AS likerPerson
JOIN likes

ON likerPerson.p_personid = likes.l_personid
JOIN message

ON likes.l_messageid = message.m_messageid
JOIN person AS zombie

ON message.m_creatorid = zombie.p_personid
GROUP BY zombie.p_personid
ORDER BY zombieScore DESC, zombie.p_personid
LIMIT 10;

Q14

SELECT COUNT(*)
FROM country AS country1
JOIN place AS city1
ON country1.ctry_city = city1.pl_placeid

JOIN person AS person1
ON city1.pl_placeid = person1.p_placeid

JOIN message AS comment1
ON person1.p_personid = comment1.m_creatorid

JOIN message AS comment2
ON comment1.m_c_replyof = comment2.m_messageid

JOIN person AS person2
ON comment2.m_creatorid = person2.p_personid

JOIN place AS city2
ON person2.p_placeid = city2.pl_placeid

JOIN country AS country2
ON city2.pl_placeid = country2.ctry_city

WHERE
country1.ctry_name = 'Chile'
AND city1.pl_type = 'city'
AND country2.ctry_name = 'Argentina'
AND city2.pl_type = 'city';

Q15

SELECT COUNT(*)
FROM person AS p1
JOIN knows AS k1
ON p1.p_personid = k1.k_person1id

JOIN person AS p2
ON k1.k_person2id = p2.p_personid

JOIN knows AS k2
ON p2.p_personid = k2.k_person1id

JOIN person AS p3
ON k2.k_person2id = p3.p_personid

WHERE
p1.p_personid < p2.p_personid
AND p2.p_personid < p3.p_personid;
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Q18

SELECT
person1.p_personid AS person1Id,
person2.p_personid AS person2Id,
COUNT(DISTINCT mutualFriend) AS mutualFriendCount

FROM person AS person1
JOIN knows AS k1
ON person1.p_personid = k1.k_person1id

JOIN person AS mutualFriend
ON k1.k_person2id = mutualFriend.p_personid

JOIN knows AS k2
ON mutualFriend.p_personid = k2.k_person2id

JOIN person AS person2
ON k2.k_person1id = person2.p_personid

JOIN person_tag
ON person2.p_personid = person_tag.pt_personid

JOIN tag AS q
ON person_tag.pt_tagid = q.t_tagid

JOIN knows AS k3
ON (

person1.p_personid = k3.k_person1id
AND k3.k_person2id = person2.p_personid

)
WHERE

q.t_name = 'Frank_Sinatra'
AND k1.k_person1id < k1.k_person2id
AND k2.k_person1id < k2.k_person2id
AND k3.k_person1id < k3.k_person2id
AND person1.p_personid <> person2.p_personid

GROUP BY person1.p_personid, person2.p_personid
ORDER BY mutualFriendCount DESC, person2Id ASC
LIMIT 10;

Q19

SELECT
k1.k_creationdate,
COUNT(*) AS cnt

FROM person AS personA
JOIN knows AS k1

ON personA.p_personid = k1.k_person1id
JOIN person AS personB
ON k1.k_person2id = personB.p_personid

JOIN message AS pC1
ON personA.p_personid = pC1.m_creatorid

JOIN message AS pC2
ON (

pC1.m_messageid = pC2.m_c_replyof
AND personB.p_personid = pC2.m_creatorid

)
WHERE k1.k_person1id < k1.k_person2id
GROUP BY k1.k_creationdate
ORDER BY cnt DESC
LIMIT 10;
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Q20

SELECT COUNT(*)
FROM organisation AS company
JOIN person_company

ON company.o_organisationid = person_company.pc_organisationid
JOIN person AS person1

ON person_company.pc_personid = person1.p_personid
JOIN knows AS k1
ON person1.p_personid = k1.k_person1id

JOIN person AS mutualFriend
ON k1.k_person2id = mutualFriend.p_personid

JOIN knows AS k2
ON mutualFriend.p_personid = k2.k_person2id

WHERE
k1.k_person1id < k1.k_person2id
AND k2.k_person1id < k2.k_person2id
AND company.o_type = 'company'
AND company.o_name = 'Falcon_Air'
AND k2.k_person1id != person1.p_personid;

A.2 RPQ Queries
RPQ queries were used for evaluation purposes of RPQd engine in Chapter 5.

A.2.1 Cypher
Q3*

MATCH
(:Country {name: 'Burma'}) <-[:IS_PART_OF]- (:City)
<-[:IS_LOCATED_IN]- (person:Person)
<-[:HAS_MODERATOR]- (forum:Forum)
-[:CONTAINER_OF]-> (post:Post)
<-[:REPLY_OF*0..]- (message:Message)
-[:HAS_TAG]-> (:Tag)
-[:HAS_TYPE]-> (:TagClass {name: 'MusicalArtist'})

RETURN
forum.id,
forum.title,
forum.creationDate,
person.id,
count(DISTINCT message) AS messageCount

ORDER BY
messageCount DESC,
forum.id ASC

LIMIT 10;
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Q4

MATCH
(person:Person) <-[:HAS_CREATOR]- (message:Message)
-[:REPLY_OF*0..]-> (post:Post)

WHERE person.id < 1000000
RETURN

person.id,
person.firstName,
person.lastName,
person.creationDate,
COUNT(DISTINCT message) AS messageCount

ORDER BY
messageCount DESC,
person.id ASC

LIMIT 10;

Q9*

MATCH
(person:Person) <-[:HAS_CREATOR]- (post:Post)
<-[:REPLY_OF*0..]- (reply:Message)

WHERE post.creationDate >= datetime('2012-05-31T22:00:00')
AND post.creationDate <= datetime('2012-06-30T22:00:00')
AND reply.creationDate >= datetime('2012-05-31T22:00:00')
AND reply.creationDate <= datetime('2012-06-30T22:00:00')

RETURN
person.id,
person.firstName,
person.lastName,
count(DISTINCT post) AS threadCount,
count(DISTINCT reply) AS messageCount

ORDER BY
messageCount DESC,
person.id ASC

LIMIT 10;
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Q10*

:param personId => 19791209310731
:param country => 'Pakistan'
:param tagClass => 'MusicalArtist'
:param minPathDistance => 2
:param maxPathDistance => 3
MATCH (startPerson:Person {id: $personId})
CALL apoc.path.subgraphNodes(startPerson, {

relationshipFilter: "KNOWS",
minLevel: 1, maxLevel: $minPathDistance-1})

YIELD node
WITH startPerson,

collect(DISTINCT node) AS nodesCloserThanMinPathDistance
CALL apoc.path.subgraphNodes(startPerson, {

relationshipFilter: "KNOWS",
minLevel: 1, maxLevel: $maxPathDistance})

YIELD node
WITH nodesCloserThanMinPathDistance,

collect(DISTINCT node) AS nodesCloserThanMaxPathDistance
WITH [n IN nodesCloserThanMaxPathDistance

WHERE NOT n IN nodesCloserThanMinPathDistance]
AS expertCandidatePersons

UNWIND expertCandidatePersons AS expertCandidatePerson
MATCH

(expertCandidatePerson) -[:IS_LOCATED_IN]-> (:City)
-[:IS_PART_OF]-> (:Country {name: $country}),
(expertCandidatePerson) <-[:HAS_CREATOR]- (message:Message)
-[:HAS_TAG]-> (:Tag) -[:HAS_TYPE]-> (:TagClass {name: $tagClass})

MATCH (message) -[:HAS_TAG]-> (tag:Tag)
RETURN

expertCandidatePerson.id,
tag.name,
count(DISTINCT message) AS messageCount

ORDER BY
messageCount DESC,
tag.name ASC,
expertCandidatePerson.id ASC

LIMIT 10;

Q12

MATCH
(person:Person) <-[:HAS_CREATOR]- (message:Message)
-[:REPLY_OF*0..]-> (post:Post)

WHERE
person.id < 1000000
AND message.content IS NOT NULL
AND message.length < 50
AND message.creationDate > datetime('2010-07-22')
AND post.language IN ['ar', 'uz']

RETURN
person.id AS _,
COUNT(message) AS cnt

ORDER BY cnt DESC
LIMIT 10;
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Q15

MATCH
(forum:Forum) -[:CONTAINER_OF]-> (post:Post),
(post) <-[:REPLY_OF*]- (c2:Comment),
(c1:Comment) -[:REPLY_OF]-> (c2),
(p1:Person) <-[:HAS_CREATOR]- (c1),
(c2) -[:HAS_CREATOR]-> (p2:Person)

WHERE forum.creationDate >= datetime('2011-06-01')
AND forum.creationDate <= datetime('2012-05-31')
AND p1.id = 19791209303405 AND p2.id = 19791209308983

RETURN COUNT(*)
LIMIT 10;

Q19

MATCH
(person:Person) <-[:HAS_CREATOR]- (comment:Comment)
-[:REPLY_OF*0..]-> (message:Message),
(message) -[:HAS_CREATOR]-> (stranger:Person)

WHERE person <> stranger AND person.birthday > date('1989-01-01')
RETURN COUNT(DISTINCT comment.id + stranger.id);

Q20

MATCH
(tagClass:TagClass) <-[:IS_SUBCLASS_OF*0..]- (:TagClass)
<-[:HAS_TYPE]- (tag:Tag) <-[:HAS_TAG]- (message:Message)

WHERE
tagClass.name = 'Writer'
OR tagClass.name = 'Single'
OR tagClass.name = 'Country'

RETURN
COUNT(message) AS messageCount;
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A.2.2 PostgreSQL
Q3*

WITH RECURSIVE replyof AS (
-- initial
SELECT

message.m_messageid AS src,
message.m_messageid AS dst,
0 AS depth

FROM message
UNION ALL

-- recursion
SELECT

replyof.src AS src,
message.m_c_replyof AS dst,
replyof.depth + 1 AS depth

FROM replyof
JOIN message ON replyof.dst = message.m_messageid
WHERE message.m_c_replyof IS NOT NULL

)
SELECT

forum.f_forumid,
forum.f_title,
forum.f_creationdate,
person.p_personid,
count(DISTINCT message_tag.mt_messageid) AS messageCount

FROM place AS country
JOIN place AS city
ON country.pl_placeid = city.pl_containerplaceid

JOIN person
ON city.pl_placeid = person.p_placeid

JOIN forum
ON person.p_personid = forum.f_moderatorid

JOIN message AS post
ON forum.f_forumid = post.m_ps_forumid

JOIN replyof
ON post.m_messageid = replyof.dst

JOIN message_tag
ON replyof.src = message_tag.mt_messageid

JOIN tag
ON message_tag.mt_tagid = tag.t_tagid

JOIN tagclass
ON tag.t_tagclassid = tagclass.tc_tagclassid

WHERE
country.pl_name = 'Burma'
AND post.m_c_replyof IS NULL -- is post
AND tagclass.tc_name = 'MusicalArtist'

GROUP BY
forum.f_forumid,
forum.f_title,
forum.f_creationdate,
person.p_personid

ORDER BY
messageCount DESC,
forum.f_forumid ASC

LIMIT 10;
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Q4

WITH RECURSIVE replyof AS (
-- initial
SELECT

message.m_messageid AS src,
message.m_messageid AS dst,
0 AS depth

FROM message
UNION ALL

-- recursion
SELECT

replyof.src AS src,
message.m_c_replyof AS dst,
replyof.depth + 1 AS depth

FROM replyof
JOIN message ON replyof.dst = message.m_messageid
WHERE message.m_c_replyof IS NOT NULL

)

SELECT
person.p_personid,
person.p_firstname,
person.p_lastname,
person.p_creationdate,
COUNT(DISTINCT m1) AS messageCount

FROM person
JOIN message AS m1

ON person.p_personid = m1.m_creatorid
JOIN replyof AS p1

ON m1.m_messageid = p1.src
WHERE

person.p_personid < 1000000
GROUP BY

person.p_personid,
person.p_firstname,
person.p_lastname,
person.p_creationdate

ORDER BY messageCount DESC, person.p_personid ASC
LIMIT 10;
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Q9*

WITH RECURSIVE replyof AS (
-- initial
SELECT

message.m_messageid AS src,
message.m_messageid AS dst,
0 AS depth

FROM message
UNION ALL

-- recursion
SELECT

replyof.src AS src,
message.m_c_replyof AS dst,
replyof.depth + 1 AS depth

FROM replyof
JOIN message ON replyof.dst = message.m_messageid
WHERE message.m_c_replyof IS NOT NULL

)

SELECT
person.p_personid,
person.p_firstname,
person.p_lastname,
count(DISTINCT post1) AS threadCount,
count(DISTINCT reply) AS messageCount

FROM person
JOIN message AS post1

ON person.p_personid = post1.m_creatorid
JOIN replyof

ON post1.m_messageid = replyof.dst
JOIN message AS reply

ON replyof.src = reply.m_messageid
WHERE

post1.m_c_replyof IS NULL -- is post
AND post1.m_creationdate BETWEEN
'2012-05-31T22:00:00' AND '2012-06-30T22:00:00'

AND reply.m_creationdate BETWEEN
'2012-05-31T22:00:00' AND '2012-06-30T22:00:00'

GROUP BY
person.p_personid,
person.p_firstname,
person.p_lastname

ORDER BY
messageCount DESC,
person.p_personid ASC

LIMIT 10;
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Q10*

WITH RECURSIVE fixed_knows_3 AS (
-- initial
SELECT

p_personid AS dst,
0 AS depth

FROM person
WHERE person.p_personid = 19791209310731

UNION
-- recursion
SELECT

knows.k_person2id AS dst,
fixed_knows_3.depth + 1 AS depth

FROM fixed_knows_3
JOIN knows

ON fixed_knows_3.dst = knows.k_person1id
WHERE depth <= 3

),
fixed_knows_2_3 AS (

SELECT DISTINCT dst
FROM fixed_knows_3
WHERE

fixed_knows_3.depth = 2
OR fixed_knows_3.depth = 3

)
SELECT

person2.p_personid,
tag.t_name,
COUNT(DISTINCT message) AS messageCount

FROM fixed_knows_2_3
JOIN person AS person2

ON fixed_knows_2_3.dst = person2.p_personid
JOIN place AS city

ON person2.p_placeid = city.pl_placeid
JOIN place AS country

ON city.pl_containerplaceid = country.pl_placeid
JOIN message

ON person2.p_personid = message.m_creatorid
JOIN message_tag

ON message.m_messageid = message_tag.mt_messageid
JOIN tag

ON message_tag.mt_tagid = tag.t_tagid
JOIN message_tag AS message_tag2

ON message.m_messageid = message_tag2.mt_messageid
JOIN tag AS tag2

ON message_tag2.mt_tagid = tag2.t_tagid
JOIN tagclass

ON tag2.t_tagclassid = tagclass.tc_tagclassid
WHERE

person2.p_personid <> 19791209310731
AND tagclass.tc_name = 'MusicalArtist'
AND country.pl_name = 'Pakistan'

GROUP BY person2.p_personid, tag.t_name
ORDER BY messageCount DESC, tag.t_name, person2.p_personid
LIMIT 10;
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Q12

WITH RECURSIVE replyof AS (
-- initial
SELECT

message.m_messageid AS src,
message.m_messageid AS dst,
0 AS depth

FROM message
UNION ALL

-- recursion
SELECT

replyof.src AS src,
message.m_c_replyof AS dst,
replyof.depth + 1 AS depth

FROM replyof
JOIN message ON replyof.dst = message.m_messageid
WHERE message.m_c_replyof IS NOT NULL

)

SELECT
COUNT(message) AS cnt

FROM person
JOIN message

ON person.p_personid = message.m_creatorid
JOIN replyof

ON message.m_messageid = replyof.src
JOIN message AS post1

ON replyof.dst = post1.m_messageid
WHERE

post1.m_c_replyof IS NULL -- is post
AND person.p_personid < 1000000
AND message.m_content IS NOT NULL
AND message.m_length < 50
AND message.m_creationdate > '2010-07-22'
AND post1.m_ps_language IN ('ar', 'uz')

GROUP BY
person.p_personid

ORDER BY
cnt DESC

LIMIT 10;
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Q15

WITH RECURSIVE replyof AS (
-- initial
SELECT

message.m_messageid AS src,
message.m_messageid AS dst,
0 AS depth

FROM message
UNION ALL

-- recursion
SELECT

replyof.src AS src,
message.m_c_replyof AS dst,
replyof.depth + 1 AS depth

FROM replyof
JOIN message ON replyof.dst = message.m_messageid
WHERE message.m_c_replyof IS NOT NULL

)

SELECT COUNT(*)
FROM forum
JOIN message AS post

ON forum.f_forumid = post.m_ps_forumid

JOIN replyof
ON post.m_messageid = replyof.dst

JOIN message AS c2
ON replyof.src = c2.m_messageid

JOIN message AS c1
ON c1.m_c_replyof = c2.m_messageid

JOIN person AS p1
ON c1.m_creatorid = p1.p_personid

JOIN person AS p2
ON c2.m_creatorid = p2.p_personid

WHERE
post.m_c_replyof IS NULL -- is post
AND c1.m_c_replyof IS NOT NULL -- is comment
AND c2.m_c_replyof IS NOT NULL -- is comment
AND forum.f_creationdate BETWEEN '2011-06-01' AND '2012-05-31'
AND p1.p_personid = 19791209303405
AND p2.p_personid = 19791209308983

LIMIT 10;
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Q19

WITH RECURSIVE replyof AS (
-- initial
SELECT

message.m_messageid AS src,
message.m_messageid AS dst,
0 AS depth

FROM message
UNION ALL

-- recursion
SELECT

replyof.src AS src,
message.m_c_replyof AS dst,
replyof.depth + 1 AS depth

FROM replyof
JOIN message ON replyof.dst = message.m_messageid
WHERE message.m_c_replyof IS NOT NULL

)

SELECT
COUNT(DISTINCT comment.m_messageid + stranger.p_personid)

FROM person
JOIN message AS comment

ON person.p_personid = comment.m_creatorid
JOIN replyof

ON comment.m_messageid = replyof.src
JOIN message

ON replyof.dst = message.m_messageid

JOIN person AS stranger
ON message.m_creatorid = stranger.p_personid

WHERE
comment.m_c_replyof IS NOT NULL -- is comment
AND person <> stranger
AND person.p_birthday > '1989-01-01';
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Q20

WITH RECURSIVE issubclassof AS (
-- initial
SELECT

tagclass.tc_tagclassid AS src,
tagclass.tc_tagclassid AS dst,
0 AS depth

FROM tagclass
UNION ALL

-- recursion
SELECT

tagclass.tc_tagclassid AS src,
issubclassof.dst AS dst,
issubclassof.depth + 1 AS depth

FROM issubclassof
JOIN tagclass

ON issubclassof.src = tagclass.tc_subclassoftagclassid
)

SELECT
COUNT(message_tag) AS messageCount

FROM tagclass AS tc1
JOIN issubclassof
ON tc1.tc_tagclassid = issubclassof.dst

JOIN tagclass AS tc2
ON issubclassof.src = tc2.tc_tagclassid

JOIN tag
ON tc2.tc_tagclassid = tag.t_tagclassid

JOIN message_tag
ON tag.t_tagid = message_tag.mt_tagid

WHERE
tc1.tc_name = 'Writer'
OR tc1.tc_name = 'Single'
OR tc1.tc_name = 'Country';
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