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Abstract: Predictive rendering, a part of computer graphics, is based on the light
transport equation and focuses on accurately predicting the appearance of objects
and materials under various conditions. A variety of problems can be formulated
as appearance prediction: from generating photorealistic images to enhancing
color 3D printing. The accuracy relies on the materials’ optical properties, which
must either be estimated from first principles, or measured with expensive and
sophisticated optical devices. Could we obtain these properties in an efficient and
affordable way optimized for predictive rendering?

To answer the question, this thesis bridges the boundary between computer graph-
ics and optics. We develop simpler and more affordable methods for measuring
optical properties with a focus on color accuracy, thus making predictive render-
ing more accessible. We aim at two types of materials that are both ubiquitous
but usually neglected because of their complex characteristics: translucent ma-
terials and fluorescent materials. For each, we present a separate measurement
approach that only uses low-cost optical components, yet has a high spectral
resolution for color-accurate applications.

Our first method is motivated by measuring translucent inks, which is required for
accurate full-color 3D-printing algorithms. We develop an acquisition technique
for the three unknown material parameters, namely, the absorption and scat-
tering coefficients, and the phase function anisotropy factor. Only three point
measurements with a spectrometer are required, as we found a three-dimensional
appearance map, computed using Monte Carlo rendering, that allows the conver-
sion between the three observables and the material parameters.

Our second method focuses on fluorescent materials. A Donaldson matrix is
estimated for each material, which corresponds to a two-dimensional spectral
characterization of the fluorescence and reflectance properties. Only a few mea-
surements of the material’s reflectance under a few illuminants are needed for the
estimation with our algorithm. It is enabled by representing each Donaldson ma-
trix with a multivariate Gaussian mixture model and bounded MESE (maximum
entropy spectral estimate) and using gradient-descent optimization.

Keywords: predictive rendering, optical properties, measurement, translucent
materials, fluorescent materials, affordable
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Preface
When I started my Ph.D. in the Computer Graphics Group at Charles University
in 2019, I faced the following problem. We wanted to accurately predict the
appearance of 3D-printed objects without actually printing them, so we could
improve the printing quality by algorithmically optimizing the ink placement in
the 3D printer. Essentially, the goal was to follow up on the previous research of
our group, mainly by Elek et al. [2017] and Sumin et al. [2019], but in a more
general and accurate approach that would allow previously unseen applications.

It was obvious from the beginning that high-quality predictions will require
measuring the optical properties of the printing materials with high accuracy.
While Elek et al. [2017] had already measured the properties, their method had
several limitations, such as the inability to acquire the properties spectrally. At
that time, we also noticed that the printing materials were not only translu-
cent, with significant subsurface scattering, but they were also showing signs of
fluorescence, which was especially difficult to measure.

The goal was very clear: measure the material properties spectrally, including
their translucency and fluorescence, and use these measurements in 3D printing
optimizations. The obstacles were also very clear: the existing methods were
limited or relied on expensive optical setups, and we had virtually no budget to
afford sophisticated measurements. This gave birth to what eventually became
the mission of my Ph.D.: figure out how the complex optical properties could be
measured in an affordable way, optimized for predictive rendering.

Meanwhile, I collaborated on an important publication on 3D printing opti-
mization based on differentiable rendering [Nindel et al., 2021]. As side projects,
I also co-authored our sky radiance model [Wilkie et al., 2021], a deep network
generator of cloud distributions [Mirbauer et al., 2022], and a method for recon-
structing 3D wood textures from 2D photographs [Nindel et al., 2023].

Most importantly, we managed to achieve what had been my main mission:
the affordable material measurements. In our two journal publications, we showed
a new method for affordable measurements of translucent materials [Iser et al.,
2022], published in ACM Transactions on Graphics and presented in South Korea,
and of fluorescent materials [Iser et al., 2023], published in Optics Express.

This thesis is a so-called cumulative thesis, which is a concept at certain
universities and institutions, including our faculty. Instead of being a monograph,
the thesis is rather a collection of the two inserted publications, which are linked
together with an extended introduction, background on material rendering and
inverse problems, and conclusion. I hope that this thesis manages to communicate
the motivation, effort, and achievements in our material measurements, but also
helps anyone who finds themselves researching similar problems on the boundary
between computer graphics and optics.
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1 Introduction

1.1 High-level motivation
Visual content such as movies, marketing materials and advertisements, images
in catalogs and e-shops, are more and more often not real photographs or video
recordings. Instead, they are based on computer-generated imagery tailored to
look similar to a real photograph or video taken by an actual camera. This is
called photorealistic rendering, and these days, artists can choose from various
computer algorithms and software responsible for such results.

The term photorealistic denotes that the rendered image fooled the viewer into
thinking it was an actual photograph. Historically, photorealism is a genre of art
that responded to photography, and it includes paintings and drawings by artists
such as Richard Estes, which have nothing to do with computers and algorithms.
However, modern algorithms paired with powerful computers brought something
that hand-painted images can hardly compete with: physically-based render-
ing. It is an approach that uses accurate physical equations and optical models
to compute how light interacts with materials in the world around us, and based
on that, pixel by pixel, creates an image corresponding to what a real camera
would see, following the laws of physics.

Even in physically-based rendering, one often takes various shortcuts to sim-
plify the simulation and make it more tangible and faster to compute at the cost
of accuracy. To denote a precise light simulation whose results are desired to be
indistinguishable from reality for the given intentions and purposes, we sometimes
use the term predictive rendering. The term comes from the desire to predict
the true appearance of a certain material or optical phenomenon.

Such accuracy then allows replacing a physical product with its virtual equiv-
alent, often called the digital twin. This is often motivated financially: if we
can reliably examine an object on the computer, we can save manufacturing costs
and avoid material waste on physical prototypes. Examples range from presenting
customers with accurate previews of bespoke furniture manufactured on demand,
to simulating the exact sky radiance for architectural visualizations. Additionally,
predictive rendering has applications in computational optimization. For exam-
ple, by predicting the appearance of 3D printouts, their ink distribution can be
numerically optimized to improve contrast and color fidelity.

In this thesis, we focus on an inherent problem of predictive rendering: to
render an object, the optical properties of the object’s material need to be
known beforehand. Sometimes, the properties are well-known or can be derived
from first principles. For example, the light absorption and scattering of molecules
can be computed from the Mie solution to Maxwell’s equations, given we know
which molecules they are and what their statistical distribution is. Often, though,
it is unfeasible to determine the precise composition, and the goal is to measure
the optical properties of an exact sample at hand.

While properties like temperature or weight can be measured directly with
simple tools like thermometers or scales, optical properties usually need to be
measured indirectly. Indirect measurements rely on designing and solving an
appropriate inverse problem. It is called inverse because it is reversed compared
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to the rendering itself: in rendering, we know the optical properties and use
them to compute the material’s appearance in an arbitrary scene; in the inverse
problem, we observe the material in controlled conditions, and then we infer the
previously unknown optical properties that the material most likely had.

The key is to design a measurement method optimized for predictive ren-
dering. On its input, the method should only rely on a small set of simple,
affordable, sparse observations of the material sample. Based on that input, the
method should output the material’s optical properties with accuracy sufficient to
predictively render the same material in any arbitrary virtual scene. This thesis
first investigates the problem in general (Chapters 2 and 3) and then proposes
solutions for two specific kinds of materials that exhibit non-trivial light-matter
interactions and for which such solutions were not available: translucent ma-
terials (Chapter 4) and fluorescent materials (Chapter 5).

1.2 Affordability
The core idea of our thesis is not only to somehow measure the optical properties
for predictive rendering but to design measurement methods that are affordable.
That does not only concern the price of the optical components but also minimiz-
ing the number of measurements and the time and effort required for executing
the method without compromising the accuracy. In this section, we interpret af-
fordability in the broader sense and explain why it is a crucial research objective.

Low number of observations The method should require as few observations
of the material sample as possible to achieve sufficient predictive rendering accu-
racy. This significantly impacts the usability of the method. If too many obser-
vations are required, the method is usually unsuitable for manual measurements,
leading to the construction of specialized sensor arrays, robotic arms, or auto-
mated stages that are unnecessarily complicated. The ideal measurement method
would require only one observation, yet that is usually impossible in practice. The
key is to study how exactly the optical properties influence the appearance of the
material and then reduce the complex problem to a low-dimensional one while
minimizing ambiguities. That requires the understanding of both the forward
and inverse problem, which we cover in Chapters 2 and 3, respectively.

Low-cost components As the problem’s dimensionality is reduced to a few
observations, these observations must be acquirable mostly with low-cost and
off-the-shelf optical components. This excludes expensive hardware such as hy-
perspectral cameras, tunable filters, monochromators, stabilized and calibrated
light sources, and various automated rotational stages. As we will see in specific
examples in Chapters 4 and 5, existing methods often rely on costly devices,
which makes the whole method expensive to replicate.

Easy to build, calibrate, and use An affordable method should also be
reasonably effortless and fast to build, calibrate, and use. We will see that existing
methods often require sophisticated calibration procedures that may take hours
or even days of work, or they require purchasing expensive reference materials.
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We prefer a simpler physical setup at the cost of more complicated and longer
computations, because computers are continuously becoming faster and more
accessible, while manual labor is becoming more expensive.

Benefits and impact Measurement methods that are affordable, as defined
above, have several benefits and a large potential impact. The most obvious
benefit is the saving of time and budget. Our thesis enables accurate measure-
ments optimized for predictive rendering without accessing a fully-equipped op-
tical laboratory. Affordability also opens doors to miniaturizing and integrating
the method into standalone measurement devices. Furthermore, a low-cost mea-
surement setup can be left assembled and only used rarely, whereas expensive
setups are often disassembled every time to reuse their expensive components for
different measurements. Finally, if the calibration is not complicated, the mea-
surement may be done by an inexperienced student without requiring a qualified
physicist always to be around.

1.3 Original contribution
In Chapters 4 and 5, this thesis presents two original methods that we designed for
affordable optical measurements targeted at spectrally precise predictive render-
ing. The first method aims at translucent and the second at fluorescent materials.

1.3.1 Translucent materials (Chapter 4)
First, we focus on translucent materials, specifically absorbing and light-scattering
participating media, which includes common liquids, aerosols, tissue, and even
many solids. Our main motivation is measuring inks used in full-color 3D printers,
as their optical properties are crucial for enhancing printing quality. We cover the
fundamental light transport theory in participating media in Section 2.2. Later,
in Sections 3.2.1 and 3.2.3, we explain the problems that arise when measuring
translucency as an inverse problem, including non-linearities in RGB approaches
and the similarity relations. Especially, it becomes clear that for use in predic-
tive rendering, our measurement method needs to resolve the unknown properties
spectrally, which is a non-trivial problem.

To solve the problem, we designed what we called the appearance map, which is
a relation between the unknown optical properties and the appearance of the ma-
terial. With this relation, it becomes affordable to spectrally resolve the absorp-
tion and scattering coefficients and the phase function anisotropy of the translu-
cent material. For that purpose, we built a simple and low-cost optical setup
based on acquiring the spectral intensity of the material sample against a black
background, white background, and against a collimated beam. We demonstrated
the quality of our results on a specially designed 3D-printed color checker.

1.3.2 Fluorescent materials (Chapter 5)
Second, we focus on fluorescent materials, which includes natural and synthetic
objects, specifically pigments that are intended for color enhancement and optical
brightening. We cover the fundamentals of fluorescent materials in Section 2.3,
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where it becomes clear that the Donaldson matrix, which characterizes fluores-
cence of a material, can be measured in a brute-force method by simply scanning
through all incoming and outgoing wavelengths. Since that has significant prac-
tical problems, sparse measurement methods were eventually developed.

Our solution is also based on sparse acquisitions, specifically, we only illumi-
nate the sample with a few spectra and measure the corresponding reflectances.
However, our method significantly outperforms the quality of the state of the art
thanks to our parametrization. While the previous methods typically reduce the
dimensionality by building a set of basis functions based on a dataset of materials,
we instead rely on Gaussian mixtures and bounded maximum entropy spectral
estimates. That ensures that our estimates have the necessary degrees of freedom
while still being constrained to avoid physically implausible results.

1.4 List of all publications
This section contains the list of all publications that Tomáš Iser contributed to
during his doctoral studies in the period from October 2019 to the submission of
this thesis in July 2023.

1.4.1 First-authored journal publications
This thesis is based on the following two journal publications. Tomáš Iser was
their first author, and they were published in high-ranking journals in computer
graphics and optics, namely ACM Transactions on Graphics and Optics Express.

• Iser et al. [2022]
Affordable Spectral Measurements of Translucent Materials.
Tomáš Iser, Tobias Rittig, Emilie Nogué, Thomas Klaus Nindel, and
Alexander Wilkie.
ACM Transactions on Graphics, 41(6), December 2022.
The content of this paper is inserted as a part of Chapter 4.

• Iser et al. [2023]
Affordable method for measuring fluorescence using Gaussian distributions
and bounded MESE.
Tomáš Iser, Löıc Lachiver, and Alexander Wilkie.
Optics Express, 31(15):24347–24362, July 2023.
The content of this paper is inserted as a part of Chapter 5.

1.4.2 Other publications
During his doctoral studies, Tomáš Iser also co-authored the following publica-
tions. While each publication is related to this thesis, which we explain for each
of them separately, they together do not form any cohesive framework, and they
are not the main contribution of this thesis.
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A Gradient-Based Framework for 3D Print Appearance Optimization

[Nindel et al., 2021]

Authors Thomas Klaus Nindel, Tomáš Iser, Tobias Rittig, Alexander Wilkie,
and Jaroslav Křivánek.

Journal ACM Transactions on Graphics, 40(4), 2021.

Abstract In full-color inkjet 3D printing, a key problem is determining the
material configuration for the millions of voxels that a printed object is made of.
The goal is a configuration that minimizes the difference between desired target
appearance and the result of the printing process. So far, the techniques used
to find such a configuration have relied on domain-specific methods or heuristic
optimization, which allowed only a limited level of control over the resulting
appearance. We propose to use differentiable volume rendering in a continuous
material-mixture space, which leads to a framework that can be used as a general
tool for optimizing inkjet 3D printouts. We demonstrate the technical feasibility
of this approach and use it to attain fine control over the fabricated appearance,
and high levels of faithfulness to the specified target.

Author’s contribution Tomáš Iser significantly contributed to this publica-
tion by researching and designing appropriate error metrics and a suitable halfton-
ing algorithm for the material-mixture space. He also prepared and executed
many experiments and contributed to the paper writing.

Relation to this thesis The publication shows applications of the concepts
explained in this thesis. First, optimizing the 3D printouts in the publication is
based on inverse rendering, just like our measurements are. However, the pub-
lication relies on differentiable rendering using radiative backpropagation, which
we cover in Section 3.4, but do not directly use in our thesis. Second, the publi-
cation relies on the optical properties of the translucent 3D-printing inks, whose
measurements we focus on in Chapter 4.

A fitted radiance and attenuation model for realistic atmospheres

[Wilkie et al., 2021]

Authors Alexander Wilkie, Petr Vévoda, Thomas Bashford-Rogers, Lukáš Hošek,
Tomáš Iser, Monika Kolářová, Tobias Rittig, and Jaroslav Křivánek.

Journal ACM Transactions on Graphics, 40(4), 2021.

Abstract We present a fitted model of sky dome radiance and attenuation
for realistic terrestrial atmospheres. Using scatterer distribution data from at-
mospheric measurement data, our model considerably improves on the visual
realism of existing analytical clear sky models, as well as of interactive methods
that are based on approximating atmospheric light transport. We also provide
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features not found in fitted models so far: radiance patterns for post-sunset con-
ditions, in-scattered radiance and attenuation values for finite viewing distances,
an observer altitude resolved model that includes downward-looking viewing di-
rections, as well as polarisation information. We introduce a fully spherical model
for in-scattered radiance that replaces the family of hemispherical functions orig-
inally introduced by Perez e.a., and which was extended for several subsequent
analytical models: our model relies on reference image compression via tensor
decomposition instead.

Author’s contribution Tomáš Iser contributed to this publication by con-
structing and executing validation examples against the atmospheric simulation
package libRadtran and preparing the supplemental document.

Relation to this thesis This publication is only weakly related to this thesis.
The sky is a participating medium whose properties are related to the particle
concentrations in the atmosphere. This work is a great example of predictive
rendering, where the optical properties can be calculated from first principles
from known distributions of the particular atoms and molecules.

SkyGAN: Towards Realistic Cloud Imagery for Image Based Lighting

[Mirbauer et al., 2022]

Authors Martin Mirbauer, Tobias Rittig, Tomáš Iser, Jaroslav Křivánek, and
Elena Šikudová.

Conference Eurographics Symposium on Rendering, 2022.

Abstract Achieving photorealism when rendering virtual scenes in movies or
architecture visualizations often depends on providing a realistic illumination and
background. Typically, spherical environment maps serve both as a natural light
source from the Sun and the sky, and as a background with clouds and a horizon.
In practice, the input is either a static high-resolution HDR photograph manually
captured on location in real conditions, or an analytical clear sky model that is
dynamic, but cannot model clouds. Our approach bridges these two limited
paradigms: a user can control the sun position and cloud coverage ratio, and
generate a realistically looking environment map for these conditions. It is a
hybrid data-driven analytical model based on a modified state-of-the-art GAN
architecture, which is trained on matching pairs of physically-accurate clear sky
radiance and HDR fisheye photographs of clouds. We demonstrate our results on
renders of outdoor scenes under varying time, date, and cloud covers.

Author’s contribution Tomáš Iser contributed to this research topic by ex-
perimenting with the connection of volumetric differentiable rendering and deep
networks, which was, in the end, not published yet and remains future work.
For this particular publication, Tomáš Iser assisted with the methodology and
prepared an automated processing and error correction pipeline that turns input
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sky photographs into a cohesive and accurate dataset. He also contributed to the
paper writing.

Relation to this thesis This publication is a great example of connecting
accurate predictive rendering based on real optical properties (the sky radiance)
with imprecise, artificially generated content from a deep network (clouds). In
Section 3.3.3, we briefly talk about inverse transport networks, which combine
differentiable rendering with deep learning. In this case, the principle is different,
although one could, in principle, also use a differentiable renderer to constrain
the physical plausibility of the generated cloud cover. This remains future work
that was not yet published.

Automatic inference of an anatomically meaningful solid wood texture
from a single photograph

[Nindel et al., 2023]

Authors Thomas Klaus Nindel, Mohcen Hafidi, Tomáš Iser, and Alexander
Wilkie.

Venue This work is yet to be published, its current revision is available on
arXiv.

Abstract Wood is a volumetric material with a very large appearance gamut
that is further enlarged by numerous finishing techniques. Computer graphics
has made considerable progress in creating sophisticated and flexible appearance
models that allow convincing renderings of wooden materials. However, these do
not yet allow fully automatic appearance matching to a concrete exemplar piece
of wood, and have to be fine-tuned by hand. More general appearance matching
strategies are incapable of reconstructing anatomically meaningful volumetric in-
formation. This is essential for applications where the internal structure of wood
is significant, such as non-planar furniture parts machined from a solid block
of wood, translucent appearance of thin wooden layers, or in the field of den-
drochronology. In this paper, we provide the two key ingredients for automatic
matching of a procedural wood appearance model to exemplar photographs: a
good initialization, built on detecting and modelling the ring structure, and a
phase-based loss function that allows to accurately recover growth ring deforma-
tions and gives anatomically meaningful results. Our ring-detection technique
is based on curved Gabor filters, and robustly works for a considerable range of
wood types.

Author’s contribution Tomáš Iser contributed to this publication by prepar-
ing the processes, data, and visualizations, assisting with the methodology, and
contributing to the paper writing.

Relation to this thesis This publication demonstrates wood as a translucent
material, whose internal composition needs to be studied and its optical prop-
erties understood for accurate predictive rendering of wooden objects, including
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furniture. It is capable of reconstructing the internal structure based on a sin-
gle photograph, utilizing the principles of differentiable rendering and automatic
differentiation (Section 3.4).

1.5 Organization of the thesis
In Chapter 2, we briefly introduce the relevant background in rendering, from
the elementary knowledge such as radiometric quantities and the light transport
equation, to translucency and fluorescence. In Chapter 3, we review how material
measurements can be understood as an inverse problem to rendering, and we dis-
cuss recent work on that topic, including differentiable rendering. The following
two chapters contain the core of the thesis, the main contribution of the author.
Chapter 4 describes our novel method on measuring translucent materials based
on Iser et al. [2022], and Chapter 5 continues with our novel method on measur-
ing fluorescent materials based on Iser et al. [2023]. The thesis is concluded in
Chapter 6 together with a discussion on future research.
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2 Rendering materials
In general, rendering is a process that generates an image based on objects and
materials in a virtual scene. The material properties must be known in advance
so that the rendering algorithm can simulate the image of the scene. This chapter
is devoted to the relevant topics about rendering, such that later, in Chapter 3,
we can introduce the inverse problem. Because rendering is a broad term with
hundreds of books written on it, we only cover the topics that are critical for the
context of the thesis. Throughout the text, we always refer to relevant publica-
tions that provide more detail.

From a broader perspective, rendering does not need to output an image.
The rendering algorithms merely compute what a light sensor (e.g., a digital
camera) would detect if it were placed in the scene. This involves calculating
how light spreads within the scene, from one object to another, and how exactly
the light interacts with the materials. The sensor can be purely hypothetical.
For example, in 3D printing appearance optimization, we compute the light on
the surface of a three-dimensional object, so the output is not an image, but a
three-dimensional grid [Sumin et al., 2019, Nindel et al., 2021]. Or, in Chapter 4,
in our translucency measurements, we simulated a monochromatic dataset of
translucency appearance using a single-pixel monochrome sensor.

In all of these cases, the rendering is based on mathematical equations and ra-
diometric quantities. The recursive equations contain multi-dimensional integrals,
so they are often solved with Monte Carlo integration methods and path-tracing
algorithms. Such equations and algorithms are generally suitable for simulating
simple materials, including various kinds of diffuse and glossy surfaces. We cov-
ered all of these fundamentals in Section 2.1. In Sections 2.2 and 2.3, we focus
on extending these equations to govern the light interactions in more complex
materials: translucent materials (participating media) and fluorescent materials,
which are of our interest in Chapters 4 and 5.

2.1 Fundamental background
Rendering materials is a complex research topic that may feel like a jigsaw puzzle:
to truly understand rendering, one must assemble individual pieces of knowledge
about different subtopics into a coherent mental picture. Instead of repeating the
full theory and derivations found in excellent books, we attempt here to point out
the most important pieces of the puzzle and show them in the context of our thesis
and the material measurements. For the actual details, we refer the readers to
two excellent publications: Pharr et al. [2023, primarily Chapters 2, 4, 5, and 13]
for a more tutorial-like introduction, and Veach [1997, mainly Chapters 2 and 3]
for a mathematically formal derivation.

2.1.1 Radiometric quantities
The mathematical equations behind rendering describe how light energy is dis-
tributed throughout the scene upon interacting with the scene and its materials.

14



Power Φ

n

Irradiance E(x)

n

x

Radiance L(x, ω)

n

x

dω

dA⊥

incoming
light

Figure 2.1: Visualization of the fundamental radiometric quantities.

To objectively describe the light energy in rendering, we rely on radiometric quan-
tities such as power, irradiance, and, most importantly, radiance (Figure 2.1).

Energy The light energy is denoted by Q and is measured in joules (J). Every
single photon carries energy derived from its wavelength λ, the speed of light,
and Planck’s constant. If we think of light as a stream of photons, then the total
energy would refer to the cumulative energy of all the photons that reached a
certain area, e.g., a sensor in a camera, over a certain time.

Power To express the amount of energy in an instant, with respect to time t, we
use power (flux) Φ = Q/t, measured in joules per second (J/s), a unit equivalent
to watts (W). Power depends on the area: for example, sunlight detected by a
large sensor will read a larger power than sunlight detected by a microsensor.
In rendering, we often normalize the sensor such that the rendered image would
have the same brightness no matter the sensor’s resolution or size.

Irradiance To express the density of the radiant power over a given surface
area A, we often work with irradiance E = Φ/A, measured in watts per meter
squared (W/m2). Irradiance at a surface position x with a differential area dA is
E(x) = dΦ/dA. Irradiance depends on the illumination angle, which is known as
Lambert’s law: a sensor receives lower irradiance with a higher angle θ between
the sensor and light source, and the factor is cos θ (nicely illustrated in Pharr
et al. [2023, Section 4.1.1]). It is also known as the foreshortening factor.

Radiance While irradiance measures the energy from all directions, radiance is
a directionally-dependent quantity. Radiance is defined cleverly to eliminate the
foreshortening factor cos θ, so it does not change with the mutual orientation of
the light ray and the surface. For that purpose, we define radiance L as irradiance
of a surface that is perpendicular to a ray in the given direction and with respect
to the solid angle ω in the direction of the ray: L(x, ω) = dE⊥(x)/dω. The unit
is watts per meter squared per steradian (W/m2/sr).

Significance of radiance Following the paragraphs above, radiance is the most
fundamental of the quantities, and it is defined in a way that is convenient for at
least three reasons. First, the quantity is independent of the cos θ factor. Second,
radiance is constant along a light ray traveling in a vacuum. Third, all the other
quantities can be derived by integrating radiance (see below).
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Relations Following the definitions above, flux and irradiance can be expressed
by integrating radiance over the sphere S2 around a point x:

E(x) =
∫︂

S2
L(x, ω)| cos θ|dω, (2.1)

Φ =
∫︂

A

∫︂
S2

L(x, ω)| cos θ|dωdA. (2.2)

The expressions above are written without taking time t and wavelength λ
into account. In reality, the variables are time and wavelength-dependent. In the
context of our thesis, the time dependence is rather irrelevant, but the wavelength
dependence is critical. For example, for a camera sensor of area A detecting light
with an exposure time in a time range from t0 to t1, sensitive to wavelengths in
a certain range from λ0 to λ1, the total detected energy would be:

Q =
∫︂ t1

t0

∫︂ λ1

λ0
Φ(t, λ)dλdt =

∫︂ t1

t0

∫︂ λ1

λ0

∫︂
A

∫︂
S2

L(x, ω, t, λ)| cos θ|dωdAdλdt. (2.3)

2.1.2 Measurement equation
The previous equation brings us to the measurement equation [Veach, 1997, Pharr
et al., 2023], which describes what a sensor measures (Figure 2.2). The mea-
surement equation has no exact definition, and its exact form differs between
publications and implementations, but the overall concepts are equivalent.

In a sensor consisting of M pixels, each pixel will measure a certain value
I1, . . . , IM representing the light intensity arriving at that pixel. Each pixel has
a certain sensitivity to incoming light, and it may differ for photons that arrived
with wavelength λ, at time t, at position x, or under an angle ω. For example,
a camera sensor typically consists of red, green, and blue pixels, which are each
sensitive only to a small range of wavelengths. This is generally encompassed in
the pixel responsivity function W (j)

e (x, ω, t, λ), which may differ for each pixel j.
Using the responsivity function, we can then rewrite Eq. (2.3) to measure the

j-th pixel’s intensity as follows:

Ij =
∫︂

t

∫︂
λ

∫︂
A

∫︂
S2

W (j)
e (x, ω, t, λ)Li(x, ω, t, λ)dωdAdλdt, (2.4)

sensor

Li(x, ω, t, λ)

Figure 2.2: A sensor may consist of multiple pixels. Each pixel is sensitive to
radiance incoming from a certain range of directions and wavelengths, and over
a certain period of time. The pixels may have different sensitivities, which is
common in color sensors sensitive to red, green, and blue.
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where Li(x, ω, t, λ) is radiance incoming at the sensor, specifically to point x,
from direction ω, at time t, and with wavelength λ.

For the purposes of rendering, a sensor is not a standalone element; rather,
it is often paired with an aperture and lens, and together they form a camera
(Figure 2.3). The measurement equation may be formally adjusted such that
the pixel responsivity functions correspond to the whole camera geometry. We
often distinguish between various models such as the ideal pinhole camera (an
infinitesimally small aperture with no lens) or the thin-lens camera (based on the
thin lens approximation, capable of simulating focal blur).

lens

optical axis

plane of focus

x

sensor

incoming light

camera

ap
er

tu
re

Figure 2.3: A simple model of light incoming to a sensor through the lens and
aperture of a camera.

In our thesis, we only measure static material samples, so from this point
onwards, we will consider radiance to be time-independent, and we will drop the
time notation. Time is only important in specific cases, such as rendering dynamic
scenes with motion blur or simulating phenomena such as phosphorescence.

2.1.3 Measuring colors
Spectral sensitivities The pixel’s responsivity We often depends on wave-
length λ. A typical color camera has red, green, and blue pixels in a mosaic grid,
and their spectral sensitivities are usually similar to those in Figure 2.4b. When
measuring materials, it is often beneficial to use sensors with more spectral chan-
nels than just red, green, and blue, such that the material’s spectral behavior can
be properly resolved (the shortcomings of RGB approaches are discussed later in
Section 3.2.1). For example, the AMS AS7341 multispectral sensor, reviewed in
Chapter 5, consists of eight pixels with narrowband sensitivities (Figure 2.4c). An
even higher spectral resolution is possible with a spectrometer, whose pixels can
have a sub-nanometer resolution, because the incoming light’s spectrum is split
using a diffraction grating and projected onto the individual pixels. Nonetheless,
we can use the same measurement equation if we treat the spectrometer as a
black box, i.e., we are only interested in its inputs and outputs.

Converting a spectrum to a color Often, we want to visualize the measured
intensities as a color, which is possible using color spaces and color conversions.
Light intensity L(λ) can be converted to color using color-matching functions.
The CIE XYZ standard defines three color-matching functions x̄(λ), ȳ(λ), z̄(λ)
(Figure 2.4a) [Carter et al., 2004] for the CIE 1931 standard colorimetric observer,
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Figure 2.4: Spectral sensitivities of the CIE 1931 standard colorimetric observer
based on real human vision (a), a color camera (b) [Kawakami et al., 2013], and
a multispectral sensor (c).

based on real human vision. An (x,y,z)-triplet is then computed by integrating
the actual incoming light spectrum L(λ) with the color matching functions, e.g.,
x =

∫︁
λ L(λ)x̄(λ)dλ. The (x,y,z)-triplet can then be converted to a different color

space, e.g., to the commonly used sRGB, using a 3 × 3 transformation matrix
specific to each color space [Pharr et al., 2023].

Converting sensor measurements to a color The spectral sensitivities of a
real sensor typically look different than the CIE XYZ curves (compare Figure 2.4b
to 2.4a), or the sensor can have more than three channels (Figure 2.4c). Color
conversions are then necessary. A transformation matrix that converts from the
sensor’s space to CIE XYZ can be found, e.g., by running an optimization al-
gorithm on a set of known reflectance spectra [Pharr et al., 2023, Section 5.4.2].
Afterward, converting the sensor’s image into sRGB is possible by first converting
the sensor measurement into CIE XYZ and then from CIE XYZ to sRGB.

2.1.4 Light transport equation
The measurement equation (Eq. 2.4) formalizes what the sensor’s pixels measure
given an incoming radiance Li that reaches the camera. To compute the actual
radiance Li that comes from light interacting with the scene before it reaches the
camera (Figure 2.5), we need to refer to the light transport equation, also known
as LTE, which is introduced, for example, in Veach [1997, Section 3.7.2] and more
extensively described in Pharr et al. [2023, Chapter 13].

Formally, we first need to define the ray casting function r(x, ω) that returns
the closest surface intersection for a ray that originated at x and traveled in the
direction ω. Then, because light in a vacuum travels in a straight line:

Li(x, ω) = Lo(r(x, ω), −ω). (2.5)

With that, we can now write the LTE as below. The LTE states that the radiance
that leaves the point x in the direction ωo is composed of two parts: first, the
radiance that the object at point x emits, in case it is a light source; second,
the radiance that is reflected from or transmitted through the surface at point x.
The latter radiance is computed by integrating the incoming radiance from all
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Figure 2.5: The radiance that reaches the camera sensor may come from any-
where in the scene, and it is common that the light reflects multiple times between
the light source and the camera.

directions and weighting it by the bi-directional scattering distribution function
(BSDF) f(x, ωi, ωo) (Section 2.1.5):

Lo(x, ωo) = Le(x, ωo)⏞ ⏟⏟ ⏞
emission

+
∫︂

S2
f(x, ωi, ωo)⏞ ⏟⏟ ⏞

BSDF

Lo(r(x, ωi), −ωi)| cos θi|⏞ ⏟⏟ ⏞
light incoming from ωi

dωi

⏞ ⏟⏟ ⏞
reflection and/or transmittance

. (2.6)

The LTE is recursive because the term Lo appears on both sides. This makes
the equation infinitely-dimensional, because inside the two-dimensional integral,
there is an infinite number of nested two-dimensional integrals. Fortunately, the
equation can be solved numerically, which we show in Section 2.1.6.

2.1.5 Bi-directional scattering distribution function
The BSDF in Eq. (2.6) is a parameter of the material’s surface, and it is a
statistical distribution function describing how light scatters (reflects and refracts)
on the surface. Formally, it is the radiance leaving in the direction ωo per unit of
irradiance incoming from ωi:

f(x, ωi, ωo) = dLo(ωo)
dE(ωi)

= dLo(ωo)
Li(ωi)| cos θi|dωi

. (2.7)

If the object’s properties are not spatially varying, it is possible to drop the
position x from the notation and simply refer to the material’s BSDF as f(ωi, ωo).
Further simplifications can be made for isotropic materials.

Different materials generally have different BSDF (Figure 2.6). The LTE and
BSDF defined in these sections are enough to describe a large variety of materials,
including conductors and dielectrics, or, more specifically, perfect mirrors, glossy,
rough, and diffuse surfaces, transparent surfaces with refraction, and so on. The
materials are either modeled with exact formulas for f(ωi, ωo) (and such formulas
can be found, for example, in Pharr et al. [2023, Chapter 9]), or the BSDF can
be even interpolated from measurements of real material samples, shown, for
example, by Dupuy and Jakob [2018], whose database is publicly available1.

However, more complex materials, such as participating media or fluorescent
materials, cannot be described by these simple equations and require adjustments
described later in Sections 2.2 and 2.3.

1https://rgl.epfl.ch/materials

19



incoming

incoming

mirror surface glossy surface diffuse surface

transparent surface

incoming

reflected

refracted

reflected reflected incoming

reflected

Figure 2.6: An identical shape rendered with four different materials: gold,
plastic, diffuse, and glass. Each material scatters the incoming light differently,
which is formally described by their BSDF. The diagrams above visualize the
light interactions on each material’s surface.

2.1.6 Solving the equations with Monte Carlo
In predictive rendering, we typically rely on Monte Carlo methods to solve the
equations above. Without going into formal mathematical definitions and proofs,
which are available in Veach [1997, Chapter 2] and Pharr et al. [2023, Chapter 2],
we can simply state that the idea behind Monte Carlo integration is to use random
sampling to evaluate an integral of the following form:

I =
∫︂

Ω
f(x)dµ(x), (2.8)

where Ω is the integration domain and µ is a measure function on Ω, such as the
surface area A, solid angle ω, or other measures mentioned earlier in this section.

The estimation then works by choosing an arbitrary probability density func-
tion p, with the only requirement being that for all x for which the integrated
function is non-zero, f(x) ̸= 0, the density must also be non-zero: p(x) ̸= 0.
We then draw N independent samples X1, . . . , XN according to the density p.
Finally, the value of the integral I is estimated as:

Î = 1
N

N∑︂
i=1

f(Xi)
p(Xi)

. (2.9)

More formally, the estimator above is known as the Horvitz-Thompson estima-
tor, and the estimate is a random variable whose properties have been extensively
studied. The goal is to sample from such density functions that lead to the lowest
variance, meaning only a few random samples are needed for the estimate to be
close to the correct result. For that purpose, the commonly used techniques in-
clude importance sampling [Pharr et al., 2023, Section 2.2.2], multiple importance
sampling (MIS) [Veach, 1997, Kondapaneni et al., 2019], Russian roulette [Arvo
and Kirk, 1990, Vorba and Křivánek, 2016, Pharr et al., 2023, Section 2.2.4], and
path guiding [Müller et al., 2017, Vorba et al., 2019].
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2.1.7 Implementation
Finally, the aforementioned process must be implemented into the predictive ren-
derer. The exact implementations differ as the mathematical equations may be
adjusted and re-formulated to suit certain rendering scenarios more than oth-
ers. The two fundamental approaches are path tracing (PT) [Kajiya, 1986] and
light tracing (LT, also known as particle tracing) [Dutré et al., 1993]. These
two approaches together form bi-directional path tracing (BDPT) [Lafortune and
Willems, 1993, Veach and Guibas, 1995, Veach, 1997]. Other variants include
photon mapping (PM) [Jensen, 2001]; vertex connection and merging (VCM)
[Georgiev et al., 2012]; unified points, beams, and paths (UPBP) [Křivánek et al.,
2014]; Metropolis light transport (MLT) [Veach and Guibas, 1997]; and many
more, including modern implementations of the previous techniques.

Path tracing All rendered images in this thesis, including in the inserted pub-
lications in Chapters 4 and 5, were computed using path tracing, which is suffi-
cient in most common scenarios. It is a straightforward technique implemented
in common rendering software such as Mitsuba 3 [Jakob et al., 2022a], PBRT
[Pharr et al., 2023], or ART [Wilkie and Tobler, 2022]. Path tracing follows nat-
urally from the measurement and light transport equations (Eqs. 2.4 and 2.6).
Specifically, the algorithm is constructed such that for each pixel of the sensor,
Monte Carlo is employed to solve the measurement equation, which in turn de-
pends on the light transport equation, which is solved by applying Monte Carlo
recursively. In practice, the algorithm begins by randomly sampling directions
originating at the sensor’s pixels and aiming in front of the camera. Following
the light transport equation, we know that light travels in straight lines, so the
incoming radiance can be traced by finding the closest intersection along the ray
and recursively computing the reflected light by sampling the BSDF. A new ray
is created at the new point, and this process continues. It is called path tracing
because by tracing the new intersections along the random rays and directions, a
path is constructed between the camera and a light source.

Light tracing Light tracing, also known as particle tracing, follows virtually
the same principle as path tracing, with one critical difference: the sampling does
not begin at the sensor’s pixels, but at the illuminants, so the light is traced in
reverse. While light tracing resembles the actual physical process more, as pho-
tons indeed originate at the illuminants, this approach typically suffers from high
variance (noise). However, it is useful in specialized scenarios such as simulating
scenes with collimated light, which we relied on while computing the detected
scattered light from a collimated beam in Chapter 4, Figure 6.

Sidenote: RGB rendering Instead of tracing the spectrally-varying radiance
L(x, ω, λ), it is also possible to split radiance into three channels: red, green,
and blue, essentially tracing the triplet

(︂
LR(x, ω), LG(x, ω), LB(x, ω)

)︂
. This ap-

proach is significantly more efficient with less noise as it reduces the Monte Carlo
dimensionality: the color information is pre-integrated into the scene and its
materials, and the color is traced directly in the light paths instead of being re-
constructed from individual Monte Carlo-sampled wavelengths. Working in RGB
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color spaces is also natural to artists and designers, who usually prepare assets
for rendering. Unfortunately, losing the original spectral information has signifi-
cant shortcomings, introduced in more detail in Section 3.2.1, which makes RGB
workflows generally unsuitable for predictive rendering. Furthermore, RGB ren-
dering cannot support more advanced phenomena such as fluorescence. For these
reasons, we always aim to measure the optical properties spectrally in this thesis,
and we never refer to them in RGB.

2.2 Translucent materials, participating media
The introduction to predictive rendering in the previous section is sufficient for
simulating many simple materials. In this section, we focus on more complex
participating media, which are a special case of translucent materials that inter-
act with light within their interior, under the surface. This includes many liquid
materials like water, wine, or milk; aerosols such as fog, clouds, or smoke; bio-
logical matter like tissue, skin, or blood; and many solids such as plastic, wood,
or porcelain. In Chapter 4, we focus on measuring such materials, which we
demonstrate on translucent inks used in 3D printers.

The information in this section is based primarily on the following publications
that contain more details on participating media: Pharr et al. [2023, Chapters 11
and 14], Novák et al. [2018], and Jarosz [2008, Chapter 4].

Sidenote: Translucent vs. participating We would like to point out that
translucent materials and participating media are two terms that are sometimes
used interchangeably. One could argue that translucent material is the more
general term: for example, frosted glass is a translucent material, although it is
not technically a participating medium: the light interacts only with its surface, so
it is sufficient to describe the scattering with BSDF. On the other hand, not every
participating medium is translucent; if the absorption coefficient is sufficiently
high, the material will be fully opaque. The goal of this thesis is not to settle this
debate, and since we focus on materials, we find the term translucent materials
perhaps more understandable and appropriate than participating media.

2.2.1 Light interactions
We can no longer assume that light only interacts with surfaces and travels in
straight lines without losing energy until it hits another surface. In participating
media, light is partially absorbed and scattered along its whole travel throughout
the material (Figure 2.7). The material is a collection of microscopic particles
participating in the light transport, hence participating media (Figure 2.8). The
individual material parameters significantly influence appearance (Figure 2.9).

Assumptions To build a reasonable mathematical model, we commonly make
the following assumptions. We model a participating medium as a collection of
microscopic, randomly positioned, and randomly oriented particles. For simplic-
ity, we assume that the particle distribution is uncorrelated, although models for
correlated media also exist [Bitterli et al., 2018].
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participating medium
glass container

Figure 2.7: A visualization of light being scattered through a participating
medium enclosed in a glass container.

Boundary Many participating media, especially solids and liquids, have a well-
defined boundary where the material starts and ends. For example, a glass of
water has an exterior air-to-glass boundary and an interior glass-to-water bound-
ary. At this boundary, the light is partially reflected and partially transmitted or
refracted, which is described by the BSDF (Section 2.1.5), and it depends mainly
on the index of refraction n. For our intentions and purposes, the BSDF is in-
dependent on the interior of the medium, meaning what the light does on the
surface is one concept (covered by the previous section), and what happens on
the inside is a separate concept (covered in this section).

Absorption As light travels through a medium, the photons have a certain
probability of being absorbed by interacting with the medium particles. The
probability density of the absorption event is given by the absorption coeffi-
cient σa(x, ω, λ), which may generally depend on the position x inside the medium,
the incoming light direction ω, and the wavelength λ. For simplicity, we often
just write σa(x). The unit is a reciprocal meter (m−1), and statistically, we can
think of the inverse value 1/σa as the mean free distance (in meters) that an
average photon can travel until absorbed.

Scattering Similarly to absorption, the photons have a certain probability of
being scattered (i.e., changing their direction) by interacting with the medium
particles. The probability density of the scattering event is given by the scat-
tering coefficient σs(x, ω, λ) with the same unit and principle as the absorption

participating medium

emission

absorption

(multiple) scattering

(single) scattering

Figure 2.8: A diagram of the light interactions in a participating medium.
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coefficient. In computer graphics, we almost exclusively assume that scattering is
elastic for the visible wavelength range, meaning the photon is not losing any en-
ergy by being scattered, and its wavelength remains constant. In other fields, such
as radiography working with X-rays, we also encounter inelastic scattering, such
as Compton scattering, when the photon’s energy decreases and its wavelength
changes [Mery, 2015, Choppin et al., 2013].

Emission Although not used in this thesis, one can also simulate an emissive
medium, where light energy is created from within the medium itself. This allows
for simulating media such as fire or explosions.

(a) The identical participating media with different boundaries with an increasing
index of refraction n, from 1.00 (left) to 1.33, 1.50, and 2.40 (right).

(b) The effect of the single-scattering albedo α = σs/(σa +σs), ranging from 0.95 (left),
to 0.80, 0.50, and 0.10 (right). The refractive index is n = 1.00.

(c) The effect of the extinction coefficient σt = σa + σs, which is the highest in the left
image, and is 10×, 50×, and 250× lower in the other images. The refractive index is
n = 1.50.

Figure 2.9: Practical visualization of how the individual parameters (index of
refraction, absorption coefficient, and scattering coefficient) influence the actual
appearance of an object. The object’s shape and its surrounding are identical.
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2.2.2 Transmittance
The energy of a light beam traveling through a medium decreases with the trav-
eled distance due to the combined effect of absorption and scattering.

Extinction coefficient and albedo The absorption and scattering can be
aggregated into a single quantity called the extinction coefficient σt = σa + σs.
The ratio between the scattering events and all the events is called the single-
scattering albedo α = σs/σt.

Beer’s law Following the extinction coefficient, one can derive the energy loss
for a light beam traveling inside the medium between two points x and x′ = x+tω
that are the distance t apart in the direction ω. According to Beer’s law [Jarosz,
2008], the energy loss is exponential, and transmittance T defines the fraction of
radiance that is transmitted along the beam between the two points (Figure 2.10):

T (x, x′, λ) = exp
(︃

−
∫︂ t

0
σt(x + tω, ω, λ)dt

)︃
. (2.10)

It is important to remember that transmittance only accounts for the loss of
energy in a collimated beam. In a scattering medium, the beam will also gain
certain energy from light that is scattered from outside towards the beam. To
differentiate between light scattered out compared to towards the beam, we of-
ten use the terms out-scattering and in-scattering. The distinction will become
important later in the volume rendering equation (Section 2.2.4).

loss of energy due to transmittance

participating medium

t

x x′

Figure 2.10: The energy of a collimated pencil of light decreases as it travels
through a medium.

2.2.3 Phase function
The final building block for deriving the modified light transport equation for
participating media is the phase function, which is, very loosely speaking, an
alternative to BSDF, except it does not describe scattering on a surface but
inside a medium. When light scatters in the medium, the light is distributed in
other directions, and the phase function describes the angular distribution of the
scattering between the incoming ωi and outgoing ωo angles: p(ωi, ωo).

In general, we can denote the phase function p(x, ωi, ωo, λ), as it depends
also on the position in the medium x and the wavelength λ. The phase function
always needs to be normalized, i.e.:

∀x ∀ωi ∀λ :
∫︂

S2
p(x, ωi, ωo, λ)dωo = 1. (2.11)
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Asymmetry or anisotropy factor Statistically, for each phase function, we
can compute the average cosine of the scattering angle, denoted g ∈ [−1, 1]:

g =
∫︂

S2
p(ωi, ωo) cos θdωo, (2.12)

where θ is the angle between the two directions ωi and ωo. The quantity g
has many names: apart from the scattering average cosine, it is also called the
asymmetry parameter [Pharr et al., 2023, Section 11.3.1] or the anisotropy factor
[Pickering et al., 1993]. We prefer the latter because an isotropic phase function
has g = 0, whereas anisotropic phase functions have g < 0 or g > 0 for dominantly
backward and forward scattering, respectively (Figure 2.11).

(a) Illumination facing the camera, g = 0.6 (left image), 0.3, 0.0, and −0.6 (right).

(b) Illumination behind the camera, g = 0.6 (left image), 0.3, 0.0, and −0.6 (right).

Figure 2.11: The effect of varying anisotropy factors g in different illumination
conditions. When looking against the light source (a), forward scattering appears
brighter than backward scattering. When looking from the light source position
(b), backward scattering appears brighter as it reflects back toward the camera.

Isotropic phase function There exists exactly one isotropic phase function,
i.e., one that scatters light in all directions uniformly, and its value is:

p(ωi, ωo) = 1
4π

, (2.13)

where the value 1/4π is a factor that ensures normalization. As already stated,
its anisotropy factor is g = 0.

One-dimensional phase functions Whereas the isotropic phase function is
technically zero-dimensional (it is a constant), the phase function’s angular depen-
dency can generally be four-dimensional (it has two two-dimensional directions).
A common simplification is to reduce the dimensionality such that the angular
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dependency is only one-dimensional. Instead of the phase function depending
on both directions p(ωi, ωo), we write p(cos θ), and the phase function then only
depends on the angle θ between the two directions.

Henyey-Greenstein phase functions A special example of a one-dimensional
phase function was introduced by Henyey and Greenstein [1941]. It is not one
phase function but rather a family of phase functions containing one function per
each anisotropy factor g. They are defined by the following formula:

p(cos θ) = 1
4π

1 − g2

(1 + g2 − 2g cos θ)3/2 . (2.14)

Because of the simplicity and universality, the Henyey-Greenstein (HG) phase
functions are commonly used to approximate more complicated real phase func-
tions. In Chapter 4, our measurement method is based on the Henyey-Greenstein
phase function, and it can estimate the anisotropy factor g(λ) per wavelength λ.

2.2.4 Volume rendering equation
Using the building blocks from above, we now modify the light transport equa-
tion from Section 2.1.4 to support the absorption, scattering, and emission of
participating media. The resulting equation is also known as the volume render-
ing equation (VRE), and it is derived from the radiative transfer equation (RTE)
[Chandrasekhar, 1960].

We begin with the RTE, which describes what happens to radiance L(x, ω)
in a light beam traveling through a participating medium (Figure 2.12). For a
differential distance dz along the beam, the differential change in radiance can
be written as:

dL(x, ω)
dz

= − σa(x, ω)L(x, ω)⏞ ⏟⏟ ⏞
absorption

− σs(x, ω)L(x, ω)⏞ ⏟⏟ ⏞
out-scattering

+ σa(x, ω)Le(x, ω)⏞ ⏟⏟ ⏞
emission

+ σs(x, ω)Ls(x, ω)⏞ ⏟⏟ ⏞
in-scattering

, (2.15)

where Ls denotes light coming from all other directions towards the beam:

Ls(x, ω) =
∫︂

S2
p(x, ωi, ω)Li(x, ωi)dωi. (2.16)

in-scattering
absorption

out-scattering

outgoing radiance
emission

incoming radiance

participating medium

Figure 2.12: For a collimated pencil of light entering the medium, the outgoing
radiance in the beam changes due to absorption, in-scattering, out-scattering,
and emission.
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The individual terms of the RTE, in the order of appearance, describe the amount
of radiance that is: lost due to absorption; lost due to light being scattered from
the beam towards outside; gained by emission of the medium; and gained by all
the light that is in-scattered from all other directions towards the beam.

The final VRE, which can be used as a direct replacement of LTE (Eq. 2.6)
for rendering participating media, is obtained by integrating the RTE (Eq. 2.15)
along a line segment between an initial point x0 and another point xz, which is
on a surface in the distance z (Figure 2.13):

Lo(x0, ω) = (2.17)∫︂ z

0
T (x0, xy) [σa(xy, ω)Le(xy, ω) + σs(xy, ω)Ls(xy, ω)] dy⏞ ⏟⏟ ⏞

total contribution from the medium

(2.18)

+ T (x0, xz)Lo(xz, ω)⏞ ⏟⏟ ⏞
contribution from the surface

. (2.19)
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transmittance T (x0, xy)

xzxy

Ls(xy , ω)

sensor

x0

illuminant

in-scattered light

Lo(x0, ω)
Lo(xz , ω)

transmittance T (x0, xz)

reflected light

participating medium

Figure 2.13: The volume rendering equation describes the light transport in a
scene that contains not only surfaces but also participating media.

2.3 Fluorescent materials
This section extends the light transport theory to support fluorescent materials.
We introduce their properties and a modified light transport equation, which will
provide the baseline for our measurement method in Chapter 5.

The information in this section is based primarily on the following publications
that contain more details on rendering fluorescent materials: Hullin et al. [2010]
and the more recent extension by Mojźık et al. [2018].

2.3.1 Light interactions
When a non-fluorescent material is illuminated, a fraction of the incoming pho-
tons is reflected or refracted according to the BSDF (Section 2.1.5). While the
scattering properties are wavelength-dependent, the photons never change their
wavelength during the interactions, so the wavelength along the whole light path
is always constant. In this section, the assumption is no longer valid. We focus
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on materials that absorb and re-emit a fraction of the incoming photons at a dif-
ferent wavelength than the photons originally had. In other words, the photons
change their wavelength during the interactions, throughout the light path, even
multiple times. This is called wavelength shifting, and it can be caused by mul-
tiple phenomena, including Compton scattering, Raman scattering, fluorescence,
and phosphorescence.

Fluorescence This thesis focuses specifically on fluorescence (Figure 2.14). It
is a prominent phenomenon in the visible spectrum, common in natural (minerals,
corals, tissues) and synthetic (optical brighteners, pigments in papers, textiles,
plastics) objects. A fluorescent material absorbs an incoming photon, which ex-
cites the electrons for a certain period of time (in the order of 10−8 s), and upon
relaxing back to the ground state, a new photon is emitted with lower energy
(longer wavelength). Fluorescence is usually assumed to be mostly diffuse, i.e.,
almost independent on the angle [Hullin et al., 2010, Section 5], because the new
photons are emitted in random directions without remembering under what angle
the original photon arrived from.

(a) Daylight (b) λ = 410 nm (violet) (c) λ = 520 nm (green)

Figure 2.14: Photographs of fluorescent (sticky notes, liquid detergent) and non-
fluorescent (color chart) materials under different illuminants. Under daylight,
everything appears colorful. The monochrome illuminants reveal that the sticky
notes and the liquid are fluorescent materials emitting different wavelengths than
they received from the illuminants.

2.3.2 Bi-spectral light transport equation
To accommodate that photons can change their wavelength, we must adjust the
original light transport equation (Eq. 2.6) accordingly. First, we must formally
include the incoming and outgoing wavelengths λi and λo into the notation. Sec-
ond, we must add an integral over all incoming wavelengths because the outgoing
radiance may have a different wavelength than the incoming radiance. The equa-
tion then becomes [Hullin et al., 2010]:

Lo(x, ωo, λo) =Le(x, ωo, λo)+ (2.20)∫︂
S2

∫︂
λ

f(x, ωi, ωo, λi, λo)⏞ ⏟⏟ ⏞
bi-spectral BSDF

Lo(r(x, ωi), −ωi, λi)| cos θi|⏞ ⏟⏟ ⏞
light incoming from ωi and λi

dλidωi.

The equation now contains a bi-spectral BSDF. If we limit ourselves to re-
flections only, it is also known as the BRRDF (bi-directional reflectance and
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reradiation distribution function). Formally, we can adapt the standard BSDF
formula (Section 2.1.5) and re-write it for a bi-spectral case:

f(x, ωi, ωo, λi, λo) = d2Lo(ωo, λo)
Li(ωi, λi)| cos θi|dλidωi

. (2.21)

Implementing the equation into a renderer is a relatively straightforward mod-
ification, yet rendering fluorescence efficiently is still a challenging problem. Full
implementation was described by Mojźık et al. [2018] and is available in the
open-source ART renderer [Wilkie and Tobler, 2022].

Sidenote: Fluorescent participating media Nothing prevents combining
fluorescence and participating media and merging the concept into a single bi-
spectral volume rendering equation, which was introduced and implemented by
Mojźık et al. [2018, Section 5] and is currently available in ART. In fact, translu-
cent fluorescent materials exist in the real world, from rare specimens such as
uranium glass to commonly used plastics with fluorescent pigments. The main
problem seems to be measuring the optical properties of such complex materials,
which has not been shown in computer graphics yet, at least to our knowledge.
We believe that such measurements are demanding but achievable by combining
our approaches in Chapters 4 and 5, but researching the exact methodology still
remains a challenging future work.

2.3.3 Simplified BRRDF
The bi-spectral BSDF or BRRDF are high-dimensional, making them challeng-
ing to work with. First, representing fluorescence in memory is non-trivial: as
the high-dimensional structure is demanding on storage, specialized compression
techniques were invented for the wavelength shifting itself [Hua et al., 2022]. Sec-
ond, while acquiring the full BRRDF is possible with bi-spectral goniophotometer
setups such as the one from Hullin et al. [2010], that is far from affordable. For-
tunately, the general solution can be simplified in a few ways.

Simple separability If we could split the BRRDF into independent wave-
length shifting component fλ(λi, λo) and the angular component fω(ωi, ωo), i.e.:

f(ωi, ωo, λi, λo) = fλ(λi, λo)fω(ωi, ωo), (2.22)

we could not only save memory, but also acquire the material properties in an
easier way: once for the spectral component, and once for the angular compo-
nent. Real fluorescent materials are usually not separable in this way, because
they contain both the diffuse fluorescence and specular highlights, which are not
fluorescent. In other words, a real fluorescent material can be thought of as
having at least two layers: the outer surface layer is like any other surface of a
non-fluorescent material, it can be glossy, but underneath, the fluorescent layer
is diffuse [Wilkie et al., 2006].
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Series of separable terms Hullin et al. [2010, Equation (7)] proposes that if
the material cannot be separated as in Eq. (2.22), then we can instead write it
as a summed contribution of individual separable terms:

f(ωi, ωo, λi, λo) =
∑︂

n

fλ
n (λi, λo)fω

n (ωi, ωo), (2.23)

where some of the parts can be diffuse and some specular (Figure 2.15), which
becomes applicable to a wide range of real materials.

regular reflection term fluorescent term
incoming

incoming

reflected reflected

Figure 2.15: The reflectance of a fluorescent surface can be modeled as a sum
of individual contributions. The contributions can be, for example, a glossy
reflection term with no fluorescence, and a separate diffuse fluorescent term.

Sidenote: Layered BSDFs In the previous paragraphs, we mentioned that
fluorescent materials are more like layered materials, with glossy outer and diffuse
inner layers. Layered models are a concept that is not limited to fluorescence:
layered materials are commonly implemented in non-fluorescent renderers as well.
There is a difference between simulating a layered BSDF model as described by
Pharr et al. [2023, Section 14.3], and the blending model in Eq. (2.23), which is
more in the realm of Wilkie et al. [2006] and Hullin et al. [2010]. In the former
layered model, we simulate the light scattering between the two layers, which are
assumed to be a certain distance apart (Figure 2.16, middle image). In the latter
model, in Eq. (2.23), the layers are assumed to be at the same position, only
blended together, which is a simplified approach (Figure 2.16, right image).

regular reflection fluorescence fluorescence
(simplified model)

absorption and re-emission
under the surface layer

reflection on the surface absorption and re-emission
on the surface

(layered model)

Figure 2.16: Regular reflection occurs on the surface of a material. In the
layered model, fluorescence occurs under the surface in a certain depth in which
the molecule or particle actually re-emitted the photon. In the simplified model,
both the reflection and fluorescence are modeled to happen on the surface at the
same position.
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2.3.4 Donaldson matrix
The important problem that is unique to fluorescent materials is how to mea-
sure the spectral component fλ(λi, λo), which we call the Donaldson matrix and
also denote Φ(λi, λo). Our method in Chapter 5 is devoted exactly to measuring
this matrix, which is the critical ingredient to the measurements of fluorescent
materials. We now assume that the position x and the illumination and ob-
servation angles ωi, ωo are fixed, such that we can focus purely on the spectral
behavior. When a fluorescent material is illuminated by a light source with spec-
trum l(λi) = Li(x, ωi, λi), then the reflected intensity r(λo) = Lo(x, ωo, λo) is:

r(λo) =
∫︂

Φ(λi, λo) l(λi) dλi, (2.24)

where Φ(λi, λo) jointly describes the material’s reflectance and fluorescence, and
λi and λo are incoming (excitation) and outgoing (reflected, emitted) wavelengths,
respectively. For practical purposes, the whole equation is often discretized into
Ni incoming and No outgoing wavelengths, such that l ∈ RNi and r ∈ RNo become
vectors, Φ ∈ RNo×Ni becomes a matrix, and Eq. (2.24) becomes a matrix-vector
multiplication visualized in Figure 2.17:

r = Φ · l. (2.25)

The matrix Φ is called the Donaldson matrix after Donaldson [1954], who mea-
sured the matrix values directly using monochromatic light. The matrix implicitly
exists also for non-fluorescent materials, where it is zero everywhere except for
the diagonal (λi = λo), representing the pure reflectance. As Figure 2.17b shows,
it is natural to separate the matrix Φ = Φdiag + Φfluo into its diagonal Φdiag (pure
reflectance) and the off-diagonal elements Φfluo (pure fluorescence).

Sometimes, assumptions are made to simplify the shape of Φ [Donaldson, 1954,
Blasinski et al., 2020, Hua et al., 2022]. First, we expect the emitted photons to
have longer wavelengths than the excitation, hence Φ(λi, λo) = 0 for λi > λo, or
equivalently, the matrix is zero below the diagonal. Second, by following Kasha’s
rule, Φfluo would be a separable function Φfluo(λi, λo) = ϕem(λi) · ϕex(λo) with
one-dimensional emission ϕem(λi) and excitation ϕex(λo) spectra [Blasinski et al.,
2020]. Unfortunately, it does not generally hold, especially for materials with
multiple fluorophores that we also work with later in Chapter 5.
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Figure 2.17: Illustration of Eqs. (2.24) and (2.25). The reflected spectrum (a)
is computed from the Donaldson matrix (b) and illuminant spectrum (c). While
the illuminant is green, the fluorescent reflection is orange and has two peaks.

32



3 Measuring materials as an
inverse problem
In Chapter 2, we covered how the appearance of various materials can be pre-
dicted or rendered, given we know the material’s optical parameters beforehand.
This chapter is devoted to the inverse problem: how to measure unknown optical
parameters of a material, given we know how the material looks in specific condi-
tions. The problem is not hypothetical, in fact, it is exactly how various optical
properties are measured, and it is how our methods in Chapters 4 and 5 work.

3.1 Problem statement
Forward problem The forward problem is the rendering itself: we know all
the parameters of the scene, and we predict what the sensor or the camera in the
scene would detect. We can denote the rendering function by I(π), where π are
the scene’s parameters. In this chapter, we will use the symbol π only for those
parameters that are of our interest, for example the material parameters that
we want to measure. The rendering function will implicitly assume all the other
parameters that are our prior knowledge about the scene, including the object
shapes, positions, spectra, and properties of the illuminants and the sensor.

Inverse problem The inverse problem is when we do not know the values of the
parameters π, and we want to infer them from a known reference image or sensor
measurement Iref. For example, we can use a real camera to take the picture Iref
of the material in specific conditions, and we now want to find what material
parameters π correspond to that picture Iref. In other words, we must find the
parameters π for which the renderer generates a similar picture I(π) ≈ Iref.
Formally, this is an optimization problem of the following form:

π̂ = argmin
π

e(Iref, I(π)), (3.1)

where π̂ are the estimated parameters and e(·, ·) is the objective function (also
known as cost function or error metric) that computes how much the two inputs
differ from each other.

The objective function is typically chosen such that its lowest value is zero,
and it only returns zero for identical inputs. Often, we use the ℓ1 or ℓ2 norm. If
π̂ match the reference, then I(π̂) = Iref, so e(Iref, I(π̂)) = 0. In real conditions,
the predictions will not be completely identical to the real sensor, but it is still
assumed that the error will be the lowest. Unfortunately, the reverse implication
is not true, i.e., it does not hold that when I(π̂) = Iref, then it must hold that π̂
are correctly estimated. As we will see in Section 3.2, this is caused by ambiguities
in the parameter space.

Trivial example We demonstrate the inverse problem on a trivial example in
Figure 3.1. Suppose we have a plastic rabbit model and a reference photograph Iref
captured in a controlled environment. We aim to measure how red the model is,
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so our only parameter π is the rabbit’s redness π ∈ [0, 1]. We can render the
exact scene with a varying redness π using a Monte Carlo renderer I(π). As the
objective function, we use the ℓ2 difference between the pixels in the reference
image and the render:

e(Iref, I(π)) =
⌜⃓⃓⎷∑︂

j

(︃
I

(j)
ref − I(π)(j)

)︃2
, (3.2)

where (j) denotes the j-th pixel. In Figure 3.1, we can see the plot of the objective
function with respect to the redness parameter π, and we can see that its global
minimum corresponds to π = 0.4, which is indeed the correct parameter of the
reference image Iref.

Of course, in real scenarios, the situation is usually way more complicated:
there are more parameters, so the global optimum cannot be found so trivially;
the controlled environment is never perfect and introduces additional errors; and
there might be ambiguities that make it impossible to find the real parameters.
Our goal is to make the problem as simple yet unambiguous as possible: minimize
the number of free parameters, make the controlled environment affordable and
easy to replicate in a renderer, and remove any ambiguities.
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Figure 3.1: Demonstration of a trivial inverse problem. The parameter π of the
reference image (left) is found by rendering the same scene with varying π and
then picking the one whose image is the most similar to the reference.

3.2 Ambiguities and similarity relations
An ambiguity occurs when the optimization problem has at least two global
minima π1 ̸= π2, such that I(π1) = I(π2) = Iref. In that situation, it becomes
impossible to know which parameters correspond to the real material that was
captured in the reference Iref. In general, the existence of ambiguities means that
the chosen methodology simply cannot distinguish between certain parameters.
Apart from completely redesigning the whole scene, it can also be solved by
introducing more information into the inverse problem, such as by choosing a fixed
value for a subset of the parameters, or by optimizing more references I

(1)
ref , I

(2)
ref , . . .

taken under different conditions. In the rest of this section, we introduce examples
of ambiguities that are relevant in the context of our thesis.
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3.2.1 Spectral ambiguities, metamerism, and other short-
comings of RGB optical properties

A typical color camera does not capture the full spectrum of the scene. Instead,
it captures a photograph whose individual pixels have their colors stored in the
form of RGB triplets (Section 2.1.3). Working with RGB values became nat-
ural and has many benefits: a significantly smaller memory footprint, intuitive
color editing for artists, or simpler rendering algorithms (Section 2.1.7). Fur-
thermore, measuring material optical properties in RGB is common in computer
graphics, as it allows acquiring the material using a standard color camera. Un-
fortunately, replacing full spectra with RGB values has critical shortcomings and
serious consequences, which we introduce in the following paragraphs. Note that
in our measurement methods in Chapters 4 and 5, we always reconstruct the full
spectra and never rely only on RGB triplets.

Metamerism and illuminant dependence For any non-trivial RGB color
value, there exists an infinite number of spectra I(λ) that all correspond to the
identical RGB value. This phenomenon is called metamerism [Wyszecki and
Stiles, 1982]. One of the consequences is that two different materials with spec-
tral reflectances R1 ̸= R2, or transmittances T1 ̸= T2, can both result in an
identical rgb-triplet under a given illumination spectrum L1(λ), but they can
have mismatched appearance under a different illuminant L2 ̸= L1 (Figure 3.2).
For example, in the red channel with a spectral sensitivity r(λ), it can hold:∫︁

r(λ)R1(λ)L1(λ)dλ =
∫︁

r(λ)R2(λ)L1(λ)dλ, although (3.3)∫︁
r(λ)R1(λ)L2(λ)dλ ̸=

∫︁
r(λ)R2(λ)L2(λ)dλ. (3.4)

Consequently, when we capture the material under one illuminant, the RGB
optical properties are fixed to the illuminant and cannot be used to render the
material’s appearance under a different illuminant. In Figure 3.2, we demonstrate
this issue on two rabbit models observed under three illuminants. If we measured
the rabbits with a color camera under D65, we would think that both rabbits
are made of the same material. However, this would conceal the fact that the
materials have, in fact, different reflectance spectra, and they do not appear
identical under illuminants other than D65.

Spectal upsampling Attempting to reconstruct the actual spectra back from
RGB values is called spectral upsampling, which is an important research topic
with many recent publications [Jendersie, 2021, Jakob and Hanika, 2019, Jung
et al., 2019]. As we showed above, the original spectrum cannot be found from
only an RGB capture; however, estimates can be made by constraining the prob-
lem. For example, it is often assumed that a reflectance spectrum has to be
smooth and cannot be spiky (however, this assumption is not true for illuminant
spectra, which can be and often are spiky). One can also measure a large dataset
of real reflectance spectra, decompose them into a set of basis functions, and
then assume that the unknown reflectance spectrum is a linear combination of
the basis functions. In Chapter 5, we constrain the reflectance spectra by assum-
ing smooth curves represented by a small number of trigonometric moments, and
then we recover the spectra using bounded MESE [Peters et al., 2019].
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Figure 3.2: Two rabbit models observed under three different illuminants de-
fined in the CIE standard: D65 (standard daylight), A (incandescent bulb), and
FL4 (fluorescent lighting). While the materials look identical under D65, observ-
ing the rabbits under A and FL4 reveals that their reflectance spectra actually
differ. The true illuminant and reflectance spectra are visible in (a), (b).

Color gamut and energy conservation Every RGB color space can repre-
sent a particular subset (gamut) of all possible colors. One of the issues with
using common color spaces for measurements is that reflectances that are out
of the gamut need to be represented with negative values or values above unity.
Such values are not physically meaningful and break energy conservation by ei-
ther creating or negating energy. Mapping these values back to the gamut, e.g.,
by clipping them to the permissible range, introduces inaccurate color shifts.

Transmission color shifts A problem that is specific to translucent materials
and participating media stems from Beer’s law (Section 2.2.2, Eq. 2.10), which
says that light transmittance through a translucent medium has an exponential
dependency on the distance ℓ traveled through the material. Because this non-
linear equation affects each wavelength independently, it causes color shifting as
light propagates further through the medium with increasing ℓ – an effect that
we call spectral sharpening. In Figure 3.3, we compare color predictions based on
Eq. (2.10) applied to RGB extinction coefficients, in contrast to actual spectral
σt(λ). The results are visualized with their corresponding colored squares. The
initial color is marked with a black outline, and the colors on the left and right
correspond to shorter and longer distances ℓ, respectively. We can clearly see
that the RGB and spectral predictions differ.
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Figure 3.3: A comparison of applying Beer’s law, Eq. (2.10), to spectral extinc-
tion coefficients σt(λ), versus applying it to RGB triplets (σR

t , σG
t , σB

t ). The solid
lines in the plots show original spectral data for various colored materials. The
dotted lines show the resulting spectral shapes for shorter (above the solid line)
and longer (below) transmission distances. The colored squares show the result-
ing transmission colors based on spectral data (top) and on RGB data (bottom).
While the outlined squares match as the RGB extinction coefficients were fitted
to them, the colors of all other squares diverge from the correct spectral results.

3.2.2 Donaldson matrix ambiguities
A spectral ambiguity similar to metamerism occurs in the Donaldson matrix Φ in
fluorescent materials (Section 2.3.4). By observing a fluorescent material under
only a few illuminants and spectral channels, we cannot find the correct Donald-
son matrix, as infinitely many matrices correspond to the observations. However,
most of these matrices will not be physically plausible and will not correspond to
any realistic materials and fluorophores.

In Chapter 5, we look into this problem in more detail. Some publications
solve the ambiguity by splitting the matrix into two parts: the diagonal, which
represents the reflectance, and the rest. For the reflectance, they use an approach
like in the previous subsection, based on basis functions that were fitted to com-
mon reflectance spectra. For the fluorescence, they use basis functions that are
fitted to a dataset of real fluorophores.

In our method, we also split the matrix into its two components, but we
instead parametrize the diagonal using bounded MESE, and the fluorescence by
Gaussian distributions. This ensures high smoothness and physically plausible
shapes of the estimated Donaldson matrix and yields highly accurate estimates
even from very sparse measurements.
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3.2.3 Similarity relations in participating media
In participating media, we encounter ambiguities when it comes to measuring
their absorption coefficient σa, scattering coefficient σs, and phase function p.
These ambiguities are described by the so-called similarity relations [Wyman
et al., 1989, Zhao et al., 2014], which show that there are equivalences in the
appearance of translucent materials.

The theorem states that under certain illumination and geometry conditions
that result in a linearly anisotropic radiance field, which may happen under a
uniform diffuse light, there exist infinitely many combinations of material pa-
rameters (σa, σs, p) that yield identical appearance. For a single-parameter phase
function like Henyey-Greenstein (HG, Eq. 2.14), it is enough to satisfy the first-
order similarity with the anisotropy factor g:

σ∗
a = σa, σ∗

s (1 − g∗) = σs(1 − g), (3.5)

where an HG-scattering material with parameters (σa, σs, g), and a different ma-
terial with parameters (σ∗

a, σ∗
s , g∗), will appear identical. We demonstrate this in

Figure 3.4. However, notice in (b) that the appearance is not exactly identical:
the difference can be observed in the rabbit’s ears, which are very thin geometric
features, compared to the rabbit’s body which looks almost perfectly identical.

(a) Constant σa and σs, varying g = 0.0 (left), 0.3, 0.6, and 0.9 (right).

(b) Constant σa, varying σs following Eq. (3.5) for g = 0.0 (left), 0.3, 0.6, 0.9 (right).

Figure 3.4: Demonstrating the similarity relations using the Henyey-Greenstein
phase function. Varying anisotropy factor g influences the appearance of the
material (a). However, materials whose scattering coefficient σs and anisotropy g
follow Eq. (3.5) look similar or even identical (b).

This has two interesting consequences. First, on the positive side, this means
that there are circumstances under which one actually does not have to know the
exact phase function shape to achieve correct rendering results: in such scenarios,
assuming a simple HG phase function with any fixed parameter g is sufficient,
with the other parameters being scaled accordingly. Zhao et al. [2014] apply this
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principle to speed up Monte Carlo rendering of optically dense materials by recal-
culating their parameters to lower material densities with identical appearance.

On the flip side of the coin, the similarity theorem also means that measuring
the phase function is a decidedly non-trivial problem: one has to identify the one
correct parameter triplet (σa, σs, g) out of the potentially infinitely many possible
solutions under the given measurement geometry.

Breaking the similarity relations The key to “breaking out of” the similarity
relations to allow measuring the phase function seems to be using a combination
of measurement geometries that together disambiguate between the forward and
backward scattering in the material. In our method (Chapter 4), we solve this
by illuminating the measured sample from the front using diffuse illuminants,
and from the back using a collimated beam. Other methods rely on shining
a collimated beam through the sample and observing it from various angles.
Such angular (gonio-photometric) measurements were presented for example by
Gkioulekas et al. [2013] and Leyre et al. [2014].

3.3 Solving the inverse problem
After introducing the ambiguities that influence whether the problem has a unique
global optimum, we focus on methods for solving the inverse problem. In general,
optimization problems have the following form [Antoniou and Lu, 2021]:

minimize f(π) subject to π ∈ Π, (3.6)

where Π is the feasible parameter region that constrains the valid range of the
parameters. In our context, following Eq. (3.1), we have f(π) = e(Iref, I(π)),
and the parameters π are inputs to the rendering algorithm I(π). The feasible
region Π is used to ensure that the parameters are physically meaningful. For ex-
ample, in rendering participating media, we could constrain the input absorption
and scattering coefficients to non-negative numbers.

3.3.1 Analytical solutions
When the whole forward problem can be described in mathematical terms and
in analytical closed-form expressions (mainly without any integrals and limits),
it might be feasible to find the inverse analytically.

Generally, there are two analytical approaches. First, we can try to rewrite
the equations of the forward problem such that the unknown variables appear on
the left side of the equations, which allows us to trivially compute the solution.
Second, we can rely on computing the derivatives (gradient) of the minimiza-
tion problem and finding the parameters that cause the derivatives (gradient) to
be zero, or further also using the second derivatives (Hessian), hence obtaining
parameters that correspond to a local minimum. The necessary and sufficient
conditions for local minima in terms of gradients and Hessians are described for
example by Antoniou and Lu [2021, Section 2.5].

We now show three examples of how an analytical solution can be used in
computer graphics.
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Measuring spectral reflectance A trivial example of an analytical inverse
problem is measuring the reflectance spectrum of a diffuse object. The forward
problem is simply defined as follows:

I(λ) = r(λ) l(λ), (3.7)

where I(λ) is the spectrum measured by a spectrometer that is pointed at a
diffuse object with reflectance r(λ) illuminated by an illuminant of spectrum l(λ).
The inverse problem is finding the reflectance r(λ) given we know the illuminant
spectrum l(λ) and what the spectrometer measured Iref(λ). The solution is trivial:

r(λ) = Iref(λ) l−1(λ). (3.8)

Beer’s law Another straightforward analytical solution is often used for mea-
suring the extinction coefficient σt of homogeneous participating media. From
the Beer’s law, Eq. (2.10), we can derive that the light intensity I of a collimated
beam traveling through the medium for a distance ℓ is:

I = I0 · exp(−ℓ · σt), (3.9)

where I0 is the beam intensity without any participating medium present. In-
verting this equation allows us to measure the extinction coefficient σt of a homo-
geneous medium by simply capturing the beam’s intensity through the medium:

σt = ℓ−1(ln I0 − ln I). (3.10)

Kubelka and Munk While the previous two examples were rather trivial,
there exist more sophisticated light transport models for which analytical solu-
tions are available. An example is the model of Kubelka and Munk [1931]. It is
a 1D radiative transfer model for translucent materials, which assumes a semi-
infinite layer of a homogeneous medium illuminated by a diffuse hemispherical
light. It is based on calculating the upward and downward flux, so it can approx-
imate the total reflectance and transmission from that medium. Even though it
is a very crude approximation, it used to be very popular in the textiles, paints,
and printing industries for its simplicity, and it was later generalized to support
refractive boundaries, non-diffuse illumination, and 3D radiative transfer [Nobbs,
1985, Yang and Hersch, 2008, Sandoval and Kim, 2015].

Most importantly, the KM formulas can be easily inverted, as shown for ex-
ample by Vargas [2002]. The idea is to first measure the light that is reflected
from a layer of the translucent material on a black absorbing background, and
then on a white reflective background, which is rather similar to our method in
Chapter 4, although we do not rely on Kubelka and Munk at all. Once these two
measurements are available, it is possible to analytically compute the scattering
parameters of the KM model for the given material.

3.3.2 Lookup tables
In a lot of cases, finding the solution analytically is not viable, so alternative
approaches have to be used. A rather straightforward approach is based on
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building a lookup table, also known as performing a grid search or a parameter
sweep, as we simply search through the parameter space to find the optimal value.
Formally, we could write that a lookup table T consists of N pre-computed values
of the rendering function I for varying parameters π:

T =
{︂

i ∈ {1, . . . , N} | Ti = I(πi)
}︂
, (3.11)

where π1, . . . , πN ∈ Π are N arbitrarily sampled parameters anywhere from the
feasible region. To find which parameters π̂ best correspond to the reference
image Iref using the error metric e, one simply iterates over all indices in the
lookup table to find the minimum:

π̂ = πk such that e(Iref, Tk) ≤ e(Iref, Ti) ∀i ∈ {1, . . . , N}. (3.12)

Example Suppose we want to measure the absorption and scattering coeffi-
cients σa, σs of a diffusely illuminated cube. Assuming the parameters are in
the range of [0, 10] mm−1, i.e., Π = [0, 10] × [0, 10], we could decide to uniformly
sample the parameter space into 11 · 11 = 121 parameters:{︂

πi | πi = (m, n) : m, n ∈ {0, . . . , 10}
}︂

=
{(0, 0), (1, 0), . . . , (10, 0), (0, 1), (1, 1), . . . , (10, 10)}. (3.13)

The lookup table would then consist of 121 renders of the cube with the varying
absorption and scattering coefficients. Given a reference image Iref of a cube, we
find the best match π̂ by comparing the reference to each image in the lookup
table and picking the one with the lowest difference.

Applicability It is clear that this approach does not scale well: with each
additional dimension of the parameter space, the memory demands to store the
table increase exponentially, and so does the computation time required to pre-
compute the whole table. However, this solution is still extremely useful because
of its inherent simplicity and the ability to approximately find the global minimum
even if multiple local minima are present. It is viable whenever the dimensionality
is low and the rendering function only returns a small image with a tiny memory
footprint. For example, in Chapter 4, we use three-dimensional lookup tables
to store the absorption and scattering coefficients together with the scattering
anisotropy factor. The rendering function only returns a single monochromatic
intensity, so the values stored in the lookup table are just individual floating
point numbers. Similarly, in Elek et al. [2021], a lookup table is built for one-
dimensional scattering profiles, so each stored value is only a 1D curve.

Other uses Building a lookup table is useful even if the actual inverse problem
is solved in a different way. The lookup table allows studying the behavior of
the problem’s objective function, specifically, whether it has a single minimum
or there are any ambiguities (Section 3.2). Examples include Gkioulekas et al.
[2013, Section 6.2, Figure 5] and Zhao et al. [2014, Figure 3].
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3.3.3 Learning-based approaches with deep networks
Instead of building a lookup table, it is possible to build a deep network whose
purpose is to estimate the matching parameters π̂ on the output, given the refer-
ence image Iref on the input. In the context of computer graphics, this approach
was proposed by Che et al. [2020], who called it the inverse transport network.

Without going into too many details of deep networks, which are not the core
topic of this thesis, we explain at least the basic principle (Figure 3.5). First, the
network is given an image I as its input. The input is fed to an encoder, which is
a sub-network that converts a large input (an image I, in this case) into a small
encoding (the parameters π, in this case). If the network was trained well, these
parameters are close to the actual parameters that we were looking for, so the
network solved our inverse problem.

During the training of the network, the encoding π is fed through an actual
renderer to give an output image Io. The goal is that the input and output images
match I = Io, so the internal weights of the encoder sub-network are iteratively
adjusted during the training to ensure this behavior.

π differentiable
renderer

encoder

sub-network used for measurements
full network used during training

Figure 3.5: The inverse transport network consists of a sub-network that takes
an image and returns its estimated parameters, and a differentiable renderer that
converts the parameters back into an image. During training, the network is
conditioned to ensure the input and output images are similar.

Applicability As with most deep networks, this approach is suitable mainly
when it is plausible to generate a large training dataset on which the network
can be trained. On low-dimensional inverse problems, it might be more efficient
and more accurate to build a lookup table, as the performance of a lookup table
is guaranteed and can be easily evaluated. On the other hand, a deep network
typically has a much smaller memory footprint, as it is sufficient to store the
architecture and its weights, and it is less rigid, meaning it might be able to
recognize even inputs that it has never seen before, or that are slightly different
from the assumptions. The publication of Che et al. [2020] is a prime example,
since they trained the network on different object shapes than they used in the
evaluation, proving that the network is not sensitive to specific details. This
would be hardly achievable with a lookup table.
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3.3.4 Gradient-based iterative approaches
The whole discipline that is encompassing the theory and practice of solving the
general optimization problem, as in Eq. (3.6), is called mathematical program-
ming. These days, the name is confusing as it has nothing to do with computer
programming, but comes from the historical use of the word programming in the
military. Based on the mathematical properties of the optimization problem,
e.g., if it is a linear or a quadratic function, we have linear programming, inte-
ger programming, quadratic programming, non-linear programming, or dynamic
programming [Antoniou and Lu, 2021].

In general, the algorithms for solving the problems are iterative and descending
at the same time. The former refers to the fact that the algorithms obtain the
solution iteratively, starting with an initial estimate π1 ∈ Π, and then calculating
a sequence of new estimates based on the previous estimates. The latter refers
to each consecutive estimate resulting in a decrease in the objective function, so
the algorithm descends towards the minimum. Formally, f(πk+1) < f(πk).

General form Many iterative optimization algorithms compute the successive
steps following a simple formula that can be generalized as follows:

πk+1 := πk + αkSkdk, (3.14)

where dk is the direction along which the new parameter estimate is located, Sk

is a transformation matrix that may further modify the direction, and αk is the
step size that modifies how far the new parameter is along the direction.

Gradient descent Many of the standard approaches are based on the gradient
(first derivative) ∇f(π) of the objective function with respect to the parameters.
Such an approach is called gradient descent optimization, and the direction in
Eq. (3.14) is simply the opposite of the gradient: dk = −∇f(πk). The idea
follows from calculus: if a function is continuous and has continuous first-order
partial derivatives, then if f(π) is a local minimum, then ∇f(π) = 0. Hence,
following the path towards a lower gradient ensures that we will find a local
minimum, although it is not guaranteed to be the global minimum, and it may
also be a saddle point [Antoniou and Lu, 2021, Chapter 2]. In the simplest
approach, called the steepest descent, the transformation matrix is not used and
may be replaced by an identity matrix Sk = 1.

Newton direction In more advanced approaches based on the quadratic ap-
proximation of the Taylor series, such as in the Newton, Gauss-Newton, or quasi-
Newton methods [Antoniou and Lu, 2021, Sections 5.3 and 5.4 and Chapter 7],
the transformation matrix is equal to, or at least approximates, the inverse of the
Hessian matrix (second-order partial derivatives) Sk = H−1

k , and the final vector
Skdk = −H−1

k ∇f(πk) is called the Newton direction. Unfortunately, relying on
the second-order derivatives is not always ideal: for high-dimensional problems,
the Hessian may be a large matrix; numerical inaccuracies often occur due to a
noisy input signal; and the inverse of the Hessian may not even exist. This is
why the inverse of the Hessian is often only approximated.
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Conjugate directions The basic approach based on dk = −∇f(πk) often re-
sults in the successive steps πk+1 essentially “zig-zagging” around the parameter
space, which is not very efficient. Instead, to decrease the number of steps re-
quired for convergence, it is possible to use conjugate directions [Antoniou and
Lu, 2021, Chapter 6], which are sequentially constructed using the previous di-
rection and the gradient. Constructing the conjugate directions can be done in
more ways, including those by Fletcher and Reeves [1964] and Powell [1964].

Heuristics for step sizes The step sizes αk are an important ingredient of
the optimization algorithms. Once we know the direction dk, or rather Skdk,
the problem collapses into a one-dimensional optimization along the direction,
and the ideal step size αk can be found numerically using a one-dimensional
search method [Antoniou and Lu, 2021, Chapter 4]. Unfortunately, that requires
additional evaluations of the objective function, which may take a very long time
in the case of computer graphics, where the function may be a Monte Carlo
renderer. A similar problem occurs in deep learning, which resulted in a growing
interest in finding the step sizes heuristically. The most trivial heuristic is to use
a constant step size, but that generally does not perform very well. In Chapter 5,
we use a more sophisticated method: the adaptive moment estimation algorithm
Adam [Kingma and Ba, 2017], which is very popular in training deep networks.

Applicability The gradient-based iterative optimization is applicable for dif-
ferentiable objective functions whose gradient is reasonably fast to compute. In
computer graphics, the use of gradient-based optimization has risen together with
the new research in differentiable rendering (Section 3.4), which allows efficiently
computing the gradient of a Monte Carlo renderer. Unfortunately, gradient-based
optimization does not generally guarantee that the global optimum will be found,
especially if the objective function has many ripples and saddle points. If that
is the case, we can either initialize the optimization with an estimate π1 that
is already close to the optimum, if we have such an estimate; or we can try to
run the optimization algorithm progressively, starting from low-resolution and
low-quality images, slowly converging to the actual optimum by increasing the
resolution gradually, which may avoid being stuck in a local minimum.

3.3.5 Gradient-free iterative approaches
Finally, we have a look at special cases of iterative approaches that do not need
information on the objective function’s gradient, and in fact, the function does not
even need to be differentiable. That is beneficial if we want to treat the objective
function as a black box without really knowing what happens inside, which is
sometimes valuable in the case of complex Monte Carlo rendering. Compared to
the lookup tables (Section 3.3.2), these iterative approaches are viable even for
higher dimensions as they do not require excessive storage and evaluations.

Gradient-free conjugate directions In the previous subsection, we men-
tioned that certain conjugate directions methods do not require computing the
Hessian matrix. In fact, some of them do not even require the gradient. An exam-
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ple is the Powell method [Powell, 1964], which generates the conjugate directions
through a series of line searches.

Hill climbing Hill climbing was described, for example, by Russell et al. [2010]
for use in artificial intelligence, originally for maximization (climbing), which is
equivalent to minimization with a negated objective function (descent). Follow-
ing the description of Miao et al. [2016], the algorithm starts with initial parame-
ters π1 and step sizes α1. The objective function is evaluated at 2 · ∥π∥ neighbors
of πk by changing a single parameter of πk by ±αk. The neighbor with a higher
objective function value f(πk ± αk) is selected. If no such neighbor exists, αk is
reduced by half.

Nelder-Mead simplex The algorithm by Nelder and Mead [1965] [Miao et al.,
2016, Johnson, 2019] uses a simplex with ∥π∥+1 vertices in the ∥π∥-dimensional
parameter space. In one dimension, the simplex is a line segment; in two dimen-
sions, it is a triangle; in three dimensions, it is a tetrahedron; and so on. We
start with an initial simplex whose vertices correspond to the objective function
values at that initial parameters. In each iteration, we replace the vertex with the
highest objective function value by another point according to a set of rules. The
simplex adapts itself and should contract to the final minimum. In the context
of computer graphics, this method was used, for example, by Narasimhan et al.
[2006] to measure participating media.

3.4 Differentiable rendering
To use the gradient-based iterative approaches in Section 3.3.4, the objective func-
tion’s first partial derivatives (the gradient) must be known, sometimes alongside
the second-order derivatives (the Hessian). How exactly one can obtain the gra-
dient of a Monte Carlo renderer is the core question of differentiable rendering,
which is an important topic of computer graphics. Since our measurement meth-
ods in Chapters 4 and 5 do not rely on differentiable rendering, we only introduce
the topic very briefly.

Derivation by hand In principle, it is possible to differentiate the light trans-
port equation and its individual parts by hand. Unfortunately, this solution does
not scale with the addition of new types of illuminants, material types with dif-
ferent BSDF, and so on. Deriving the gradient by hand was used, for example,
in the volumetric representation of Vicini et al. [2021a]. A hybrid approach that
combines manual derivatives with automatic differentiation was presented, for
example, by Li et al. [2018], whose solution we will mention later again.

Finite differences Apart from deriving the gradient by hand, we can also
rely on numerical differentiation. The most straightforward solution is based on
finite differences. For example, for a one-dimensional function f(x) : R → R, we
can approximate its partial derivative ∂f/∂x using central differences [Schroeder,
2022, Section 3.2]:

∂f

∂x
≈ f(x − ε) + f(x + ε)

2ε
, (3.15)
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where ε ∈ R is a real number with a very low value. However, this approach
is numerically unstable, choosing the value of ε is experimental, and evaluating
the finite differences requires evaluating the objective function many times. In
the case of rendering, such evaluations may be very costly, and the Monte Carlo
noise may result in significant numerical issues. Hence, it makes sense to rely on
more sophisticated automatic differentiation.

3.4.1 Automatic differentiation
A computer graphics renderer is a computer program, and a computer program
is essentially a collection of elementary operations such as additions, multiplica-
tions, exponentiations, and similar. Derivatives of the elementary operations are
trivially defined, for example, ∂x2/∂x = 2x or ∂ sin x/∂x = cos x. The chain rule
then defines the partial derivative of the composition of two functions, which al-
lows the nesting of the elementary operations into each other. Applying the chain
rule repeatedly for the whole computer program execution then yields the partial
derivatives of the whole program. Formally, a computer program takes N input
parameters and outputs M parameters, so the program is a map RN → RM . Its
derivative is then the Jacobian matrix J of size N × M , where the individual
elements are partial derivatives: J(n,m) = ∂fn/∂πm.

Execution graph and its traversal The program’s execution can be thought
of as a graph of elementary operations, with inputs on one side, and outputs
on the other side. Implementing the automatic differentiation means applying
the chain rule to the graph. Practically implementing this process was covered,
for example, in the course of Schroeder [2022]. Generally, there are two major
approaches: if the chain rule is applied from the inputs towards the outputs,
it is called the forward mode differentiation; otherwise, it is the reverse mode
differentiation [Bartholomew-Biggs et al., 2000]. Both approaches have benefits
and downsides. For N > M , performing the reverse mode differentiation results
in fewer operations than the forward mode. However, the reverse mode typically
requires storing the whole computation graph, or constructing an adjoint pass.

Open-source implementations There are many open-source automatic dif-
ferentiation frameworks, many of them motivated by deep learning. Examples
include JAX [Bradbury et al., 2018], PyTorch [Paszke et al., 2019], TensorFlow
[Mart́ın Abadi et al., 2015], or approaches more targeted at computer graphics
and physics include Dr.Jit [Jakob et al., 2022b] and Taichi [Hu et al., 2020]. In
our method in Chapter 5, we use JAX to differentiate our objective function.

3.4.2 Challenges and solutions
Differentiable Monte Carlo rendering is, unfortunately, not as straightforward as
simply applying automatic differentiation to the rendering algorithm. In the fol-
lowing paragraphs, in no particular order, we try to emphasize the key challenges
that differentiable rendering has to overcome. We also refer the reader to two
excellent courses on differentiable rendering that were prepared by Zhao et al.
[2020] and Zhao et al. [2021].
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Magnitude Suppose the algorithm renders an image in a relatively low reso-
lution of 800 × 600 pixels, and each pixel has 128 samples, which is not many.
Even then, the renderer had to simulate almost 62 million distinct light paths.
Furthermore, suppose that the optimized parameters are the pixels of a spatially
varying texture or the single-scattering albedo of a heterogeneous participating
medium. If we relied on naive automatic differentiation, we would need to con-
struct computation graphs and Jacobian matrices of more than 1012 elements,
which is unacceptable. Specialized solutions have been developed to overcome this
issue, including the radiative backpropagation [Nimier-David et al., 2020], and its
later improvement path replay backpropagation [Vicini et al., 2021b], which has
a constant memory and linear time complexity. In our 3D printing optimiza-
tion publication [Nindel et al., 2021], we relied on radiative backpropagation to
significantly reduce the time required for executing our method.

Discontinuities Another challenging problem occurs when the objective func-
tion is discontinuous with respect to the parameters π. For example, parametriz-
ing the diffuse reflectance of an object is usually continuous. On the other hand,
parametrizing the position or rotation of complex geometry is often discontinu-
ous because the object suddenly occupies different pixels of the image. Solutions
to this problem often rely on the Reynolds transport theorem, which allows de-
composing an integral containing discontinuities into an interior and boundary
integral, which may be solved independently. Probably the first method address-
ing the discontinuities in a general-purpose renderer was published by Li et al.
[2018], and the discontinuities were handled via edge sampling. A later solution
by Zhang et al. [2020] is based on a path-space formulation and detecting those
paths that contain a boundary segment, which was also extended to participating
media [Zhang et al., 2021]. Finally, reparametrizing the problem such that the
discontinuities are eliminated or reduced was proposed by Loubet et al. [2019].

Sampling strategies When differentiating a Monte Carlo renderer, there are
also more approaches to handling the random sampling. Zeltner et al. [2021]
formally investigated the approaches and proposed terminology such as detached
and attached strategies. In a more specialized publication, Nimier-David et al.
[2022] proposed differential ratio tracking for sampling participating media with
unbiased gradients.

Open-source implementations Currently, the state-of-the-art open-source
implementation of a differentiable renderer seems to be Mitsuba 3 [Jakob et al.,
2022a], which is based on the aforementioned Dr.Jit automatic differentiation
framework. An older differentiable renderer, which does not seem to be developed
anymore, is Redner1, which is based on the publication of Li et al. [2018].

1https://github.com/BachiLi/redner
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Part II

Journal publications
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4 Our measurement method for
translucent materials
The first journal publication inserted in this thesis, Iser et al. [2022], focuses on
measuring translucent materials, whose fundamental theory we covered in Sec-
tion 2.2. Such materials are truly ubiquitous: examples include many liquid-state
materials (water, wine, milk), aerosols (fog, clouds, smoke), biological matter (tis-
sue, skin, blood), and many solids (plastic, wood, porcelain). Characterizing and
measuring such materials is, therefore, an important topic not only for predic-
tive rendering but also for various other fields, including biology and medicine
[Tuchin, 1993, Jacques, 2013] or atmospheric sciences [Emde et al., 2016].

Problem To characterize the translucent materials, we use their bulk opti-
cal properties: the absorption and scattering coefficients, and phase function
anisotropy (Section 2.2). These properties are spectrally varying, i.e., they de-
pend on wavelength. The existing measurement methods are either very compli-
cated, require expensive optical components, or the affordable methods rely on
RGB cameras, so the results are not spectrally resolved. Relying on RGB prop-
erties leads to many inherent issues that we covered in Section 3.2.1, including
transmission color shifts, metameric failures, or out-of-gamut colors. Hence, spec-
tral measurements are a requirement for predictive rendering, but such a method
that would also be affordable did not exist yet.

Our contribution and solution Our core question in the publication is whether
it is possible to estimate the unknown material parameters using only three point
measurements with a spectrometer. This is not a simple question, as we must
account for ambiguities, including the similarity relations (Section 3.2.3). After
studying the existing approaches and their behavior, we found and proved that
there exists a simple and easy-to-visualize relation between material appearance
and its optical properties, which we call the appearance map. This allows for
building an affordable setup for fast spectral measurements of a given sample.
The core of our approach is how light intensity changes in three different set-
tings: first, a given material sample is diffusely illuminated and placed against a
black background and a white background; then, it is observed with a collimated
illumination. These three combinations are not only easy to simulate using a
Monte Carlo renderer (Section 2.2), but also easy to capture in real life, which
allows spectrally resolving the whole parameter triplet as an inverse problem us-
ing pre-computed lookup tables (Section 3.3.2). The results are demonstrated
on materials used in full-color 3D printing. We measure the base CMYKW inks
(cyan, magenta, yellow, black, white) and validate our method’s accuracy by pre-
dicting the spectral appearance of these inks mixed in various proportions within
a halftoned color checker.
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The full publication is inserted and begins on the next page.

The publication is published as open access and licensed under a Creative
Commons Attribution International 4.0 License. The full citation follows.
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der Wilkie. Affordable Spectral Measurements of Translucent Materials.
ACM Transactions on Graphics, 41(6):1–13, December 2022. ISSN 0730-
0301, 1557-7368. doi: 10.1145/3550454.3555499. URL https://dl.acm.
org/doi/10.1145/3550454.3555499

Please note that the supplement of this publication is available in the ACM
Digital Library under the link above.

50

https://dl.acm.org/doi/10.1145/3550454.3555499
https://dl.acm.org/doi/10.1145/3550454.3555499


Affordable Spectral Measurements of Translucent Materials

TOMÁŠ ISER, Charles University, Czech Republic

TOBIAS RITTIG, Charles University, Czech Republic

EMILIE NOGUÉ, Imperial College London, United Kingdom

THOMAS KLAUS NINDEL, Charles University, Czech Republic and Berufsakademie Sachsen, Germany

ALEXANDER WILKIE, Charles University, Czech Republic

Input: 3 spectral measurements Processing: 3D appearance map Output: scattering properties

Albedo
𝛼

Extinction
𝜎t

Phase
𝑔

Fig. 1. We present a method for measuring bulk optical properties of translucent materials, such as the base inks of a full-color 3D printer. Starting from a thin
sample, we measure three spectral intensities: on a black background, white background, and of a collimated light beam. After a fitting step through our
precomputed 3D appearance map, we obtain the material’s spectrally-varying albedo, extinction coefficient, and phase function anisotropy.

We present a spectral measurement approach for the bulk optical properties
of translucent materials using only low-cost components. We focus on the
translucent inks used in full-color 3D printing, and develop a technique
with a high spectral resolution, which is important for accurate color repro-
duction. We enable this by developing a new acquisition technique for the
three unknown material parameters, namely, the absorption and scattering
coefficients, and its phase function anisotropy factor, that only requires three
point measurements with a spectrometer. In essence, our technique is based
on us finding a three-dimensional appearance map, computed using Monte
Carlo rendering, that allows the conversion between the three observables
and the material parameters. Our measurement setup works without labora-
tory equipment or expensive optical components. We validate our results
on a 3D printed color checker with various ink combinations. Our work
paves a path for more accurate appearance modeling and fabrication even
for low-budget environments or affordable embedding into other devices.
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1 INTRODUCTION

The world around us is filled with translucent materials which
partially absorb or scatter light that passes through them. Examples
include many liquid-state materials (water, wine, milk), aerosols
(fog, clouds, smoke), biological matter (tissue, skin, blood), and many
solids (plastic, wood, porcelain). Characterizing and measuring the
optical properties of such materials is therefore an important topic
not only for appearance predictions in computer graphics, but also
for various other fields, including biology and medicine [Jacques
2013; Tuchin 1993] or atmospheric sciences [Emde et al. 2016].

Its importance also shows in full-color 3D printing, where recent
advances enabled fabricating customized objects with desired ap-
pearances. The appearance reproduction is achieved by depositing
base printing inks layer-by-layer, forming a high-resolution opti-
cally heterogeneous grid. Each voxel of this grid is translucent, and
finding their adequate arrangement is important to realize the de-
sired color mixing. Hence, for accurate printouts without texture
blurring or color inaccuracies, it is key to know the inks’ optical
properties [Elek et al. 2017; Nindel et al. 2021; Sumin et al. 2019].

Measuring these optical properties is our main goal. More impor-
tantly, we focus on estimating them spectrally, allowing for accurate
predictions of the colors when the base inks are spatially mixed
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within the 3D printouts. As we show in our supplemental docu-
ment, spectral simulations of translucent materials eliminate color
inaccuracies caused by metameric ambiguities and attenuation non-
linearity, as opposed to three-channel RGB simulations.

The optical properties are estimated by designing and solving an
appropriate inverse problem, which consists of first measuring light
interacting with the material particles in bulk, and then numeri-
cally finding which optical properties must have led to such results.
For simplicity (unlike recently studied non-exponential media [Bit-
terli et al. 2018]), we model each material as homogeneous, with
molecules distributed in an uncorrelated, uniform fashion. Under
this assumption, the material is characterized by the wavelength (𝜆)
dependent extinction coefficient 𝜎t (𝜆) mm−1 , the single-scattering
albedo 𝛼 (𝜆), and the phase function 𝑝 (𝜆, 𝜃 ). The extinction coef-
ficient 𝜎t (𝜆) characterizes the exponential attenuation (known as
Beer’s law [Jarosz 2008]) of the light intensity 𝐼 (ℓ) after traveling
through the medium for a distance ℓ with the initial intensity 𝐼0:

𝐼 (ℓ) = 𝐼0 · exp (−ℓ · 𝜎t) . (1)

The attenuation is caused by absorption and out-scattering of the
photons, parametrized by the absorption and scattering coefficients

𝜎a (𝜆) and 𝜎s (𝜆). It holds that 𝜎t (𝜆) = 𝜎a (𝜆) + 𝜎s (𝜆), and 𝛼 (𝜆) =

𝜎s (𝜆)/𝜎t (𝜆). The phase function 𝑝 (𝜆, 𝜃 ) characterizes the angular 𝜃
distribution of the light scattering. We assume a simple single-
parameter phase function of Henyey and Greenstein [1941], which
approximates the more accurate Mie scattering model, but only
requires a single parameter 𝑔 ∈ [−1, 1]; 𝑔 < 0, 𝑔 = 0, and 𝑔 > 0 for
dominantly backward, isotropic, and dominantly forward scattering,
respectively. We acquire the parameters (𝛼 (𝜆), 𝜎t (𝜆), 𝑔(𝜆)) for the
given materials with a high spectral resolution of approximately
1000 wavelengths within the visible spectrum.

Such measurements using the existing methods (Sec. 2.2) require
complicated calibrations and/or expensive laboratory-grade equip-
ment such as gonio-photometers, rotating platforms, integrating
spheres, time-resolved detectors, or lasers. Although there are al-
ternative approaches with emphasis on simplicity and affordability,
they rely on acquiring one-dimensional spatial profiles, which is
impossible with a spectrometer that can only measure a single point.
Hence, these methods only use RGB cameras, and using them for
spectral measurements would require expensive hyperspectral pho-
tography. Furthermore, many of these setups suffer from ambiguities
that make them unable to estimate the phase function.

Our contribution. To enable high-resolution spectral measure-
ments, our core question is how to resolve the three unknown ma-
terial parameters (𝛼 (𝜆), 𝜎t (𝜆), 𝑔(𝜆)) as quickly as possible per each
wavelength, and with a minimum number of point measurements
with a spectrometer. This is not a simple question, as we need to ac-
count for various factors, including the similarity relations [Wyman
et al. 1989; Zhao et al. 2014]. After studying the existing approaches
and their behavior, we found and proved that there exists a simpler
and easy-to-visualize relation between material appearance and its
optical properties (Sec. 3), which we call the appearance map. The
core of our approach is how light intensity changes in three different
settings: first, a given material sample is diffusely illuminated and
placed against a black background, and a white background; then,

it is observed with a collimated illumination. These three combina-
tions are not only easy to simulate using a Monte Carlo renderer, but
also easy to capture in real life with a simple and affordable physical
setup with single spectrometer (Sec. 4), which allows spectrally
resolving the whole parameter triplet (𝛼, 𝜎t, 𝑔).

While we believe our method to be applicable in many fields, we
remain concise and demonstrate the results on the inks for full-color
3D printing. We measure the base CMYKW (cyan, magenta, yellow,
black, white) inks and validate our method’s accuracy by predicting
the spectral appearance of their various mixtures within a halftoned
color checker (Sec. 5). This implies the promised applicability of our
method to the aforementioned printing optimization pipelines.

2 RELATED WORK

We begin by introducing relevant prediction models for simulating
light behavior in translucent materials (Sec. 2.1). Using these models
inversely is then the core of all measurement methods (Sec. 2.2),
which show strategies for capturing materials and inversely fitting
their matching optical properties. Lastly, we relate our work to the
context of translucency appearance and 3D printing (Sec. 2.3).

2.1 Prediction models

We briefly look at prediction models that have been extensively
used by methods for estimating the bulk optical properties in the
past. We refer to Frisvad et al. [2020] for a complete survey.

The following models have been developed for a simplified situa-
tion of diffusely illuminated, infinitely wide, homogeneous layers
of translucent materials. Kubelka and Munk [1931] show the com-
putation of the total reflectance and transmission, a model popular
for modeling textiles, paints, and 2D printing. It was later general-
ized to support refractive boundaries, non-diffuse illumination, and
3D radiative transfer [Nobbs 1985; Sandoval and Kim 2015; Yang and
Hersch 2008]. More accurate is the adding-doubling model [Prahl
1995; van de Hulst 1980], which generalizes the problem to multi-
layer material stacks (stacked in one dimension), including correctly
handling refractive boundaries. It is also useful for fast rendering
of layered materials [Jakob et al. 2014; Zeltner and Jakob 2018].
While these models are fast, they lack flexibility and simplicity in
defining the complete 3D geometry, including the light sources and
sensors, and samples of finite dimensions, which are important in
our method to accurately compute the appearance map.
The diffusion approximation [D’Eon and Irving 2011; Haskell

et al. 1994; Jensen et al. 2001] is another often used model. It is
based on the assumption that scattering events are more frequent
than absorption. This makes it inaccurate for low-albedo materials,
excluding the application for example to inks of dark colors.

In the end, we decided to rely on Monte Carlo methods that solve
the radiative transfer by probabilistically sampling the space of
possible light paths through the scene, and calculating their radiance
contribution [Kajiya 1986]. This is the most flexible solution that
supports various scenes including translucent materials [Elek et al.
2017; Novák et al. 2018], and offers accurately simulating a wide
range of material properties within our method’s geometry. We
used a modified fast and flexible implementation of Nimier-David
et al. [2019] and Jakob et al. [2022].
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2.2 Measurement methods

The simplest measurement can be performed by shining a colli-
mated beam of intensity 𝐼0 through a material sample of thickness ℓ ,
measuring its attenuated intensity 𝐼 , and simply inverting Eq. (1):

𝜎t = ℓ−1 (ln 𝐼0 − ln 𝐼 ) , (2)

but this approach gives no information on light scattering, necessi-
tating a more sophisticated approach.

A common spectral measurement method is based on capturing
the total hemispherical reflectance and transmittance of a material
sample [Pickering et al. 1992, 1993; Prahl et al. 1993] using two
integrating spheres, or a Coblentz hemisphere [Schröder et al. 2015].
Two material parameters (either 𝛼, 𝜎t; or 𝛼,𝑔; assuming that the
third parameter is known, e.g., from Eq. (2)) are then fitted using
inverse adding doubling [Prahl 2011]. Our method does not require
integrating spheres and instead uses significantly less expensive
and easily switchable reflective and absorptive backgrounds.

Another group of methods relies on fitting the optical properties
to one-dimensional brightness curves. They illuminate a sample in
a specific way, and then capture how the brightness changes spa-
tially over a certain region. These methods are affordable, because
they use a simple RGB camera to take a photograph, from which
the brightness curve is extracted. The main downside is that one
cannot use a spectrometer as it can only measure a single point
of interest, and hyperspectral cameras or various spectral filters
would be an expensive alternative. Examples of such methods in-
clude the one of Narasimhan et al. [2006], which uses dilution to
reach such low concentrations of the material that single scattering
dominates over multiple scattering. Other methods combine fitting
the one-dimensional profile to the diffusion-based prediction model
with also measuring the total diffuse reflectance [Jensen et al. 2001;
Weyrich et al. 2006]. Papas et al. [2013] used a similar approach with
a custom-made container with five LEDs of different spectra, and
used a combination of Monte Carlo and quantized diffusion [D’Eon
and Irving 2011] as their prediction models.
Elek et al. [2021] presented an alternative method acquiring a

lateral scattering profile on a step-edge black and white background.
Similarly to us, they demonstrate their results on 3D printing, fit the
properties to a Monte Carlo simulated dataset, and use contrasting
backgrounds. However, they have exactly the same disadvantage as
above, requiring a camera capture. A similar idea of using different
backgrounds, including a mirror, was also opened in a short con-
current work by Pranovich et al. [2021]. However, they only used a
simplistic light transport model, did not estimate phase functions,
and did not analyze the appearance map like we did.
With the exception of the hemispherical reflectance and trans-

mittance measurements, none of the methods above are capable of
measuring the phase function. Elek et al. [2021] hinted that it might
be possible with their profile, but our own experiments concluded
that the discriminability is not high enough. In our supplemental
document, we discuss similarity relations that are the general cul-
prit: there exist equivalent optical properties that give the same
material appearance under given conditions.

Methods that are primarily aimed at measuring the phase function
are based on measurements of a collimated beam from various an-
gles [Gkioulekas et al. 2013; Leyre et al. 2014], or assume that (𝛼, 𝜎t)

is already known [Minetomo et al. 2018]. While Gkioulekas et al.
[2013] accurately match various phase function shapes of reference
materials, not limited to the simple Henyey-Greenstein model, they
require rotation platforms, accurate calibrations, and bright colli-
mated illuminants. Ourmethod can only estimate a single-parameter
phase function, but is affordable and less complicated.

2.3 Translucency appearance and color 3D printing

While our measurements aim to be objective and give physically
meaningful parameters, it is important to note that the human vi-
sual system perceives translucency and translucent objects in a
bigger context, combining parameters such as lighting direction or
object’s shape, especially its edges [Fleming and Bülthoff 2005; Xiao
et al. 2014, 2020]. This has led to the important question of how to
define and measure translucency in a both physically and percep-
tually meaningful way [Urban et al. 2019]. Especially in full-color
3D printing, the complex heterogeneous light scattering inside the
printouts poses challenges such as texture blurring or inaccurate
color reproduction. Methods that aim to counteract these problems
and control the printout’s appearance can be roughly categorized
into two classes: "top-down" phenomenological approaches [Brun-
ton et al. 2018, 2015; Chen and Urban 2021; Urban et al. 2019], and
"bottom-up" simulation-based methods [Elek et al. 2017; Nindel
et al. 2021; Rittig et al. 2021; Sumin et al. 2019]. The latter works
use Monte Carlo simulations to predict the appearance of a given
heterogeneous 3D grid of solidified droplets of various base inks,
which is then used inside an optimization loop. So far, these ap-
proaches relied on RGB measurements, which suffered from the
issues discussed in our supplemental document. Our spectral results
overcome these issues and are directly applicable and pluggable into
the existing pipelines.

3 METHOD

Our method is based on constructing a mapping, or a relation, be-
tween optical properties of a given material sample, and light inten-
sities in simple geometrical configurations that are easy to capture
with a spectrometer. We have to ensure that the mapping is one-
to-one between the optical properties and different measurements,
at least for physically meaningful settings. We call the mapping
the appearance map because it contains every possible material ap-
pearance in the given setting. In the following sections, we define
and study a three-dimensional and an attendant two-dimensional
appearance maps using Monte Carlo simulations, and we explain
the actual measurement procedure later in Sec. 4.

Separation of surface and volume light transport. Solid and liquid
translucent materials typically have a well-defined boundary where
the material starts and ends. For example, a glass of water has an
exterior air-to-glass boundary, and an interior glass-to-water bound-
ary. Because light interacts not only with the medium itself, but
also its boundary, it is beneficial to treat surface and internal optical
properties independently. Our work focuses on volume properties
of translucent materials. Hence, throughout this work, we elimi-
nate the influence of the surface as much as possible by assuming
that it is a simple, perfectly smooth dielectric surface layer governed
by Fresnel equations. This assumption is valid both in theory and
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Fig. 2. Our two-dimensional appearance map relates the appearance of a material sample to its optical properties, here assuming the Henyey-Greenstein
phase function 𝑔 = 0.4, sample thickness ℓ = 0.5mm, and refractive index 𝑛 = 1.0. The black and white backgrounds are assumed to be perfectly diffuse with
reflectances 1% and 99%. The contours in (a) are of constant 𝛼 and 𝜎t, respectively. Refer to Sec. 3.1 for a detailed analysis. In (b), we show rendered examples
with their layout roughly corresponding to their position in the triangle in (a): the left edge contains purely absorbing, non-scattering materials; the top edge
purely scattering, non-absorbing materials; and the diagonal perfectly opaque materials. In (c), we expand the visualization spectrally for 8 examples, with the
colored curves in the small triangles representing per-wavelength coordinates in the appearance map, from shorter (blue) to longer (red) wavelengths.

in practice: liquids can be placed in a smooth glass container, and
solid samples’ rough surface can be sanded, polished, or optically
smoothed by adding a thin layer of liquid and a microscope glass
slide on top (Figs. 8 and 9, and Elek et al. [2021]; Pickering et al.
[1993]; Prahl et al. [1993]).

3.1 Material appearance against diffuse backgrounds

A trivial property of translucent materials is that their appearance
depends on the background behind them. For example, in Fig. 3, red
wine appears red over a white background, but is black over a black
background, while a strongly scattering milk remains white in both
conditions. Our crucial observation is that there exists a structured
mapping between the material’s optical properties 𝛼, 𝜎t and the

Fig. 3. Three translucent materials in glass cuvettes placed against ideal
black and white diffuse backgrounds. Water (left) is virtually non-absorbing
and non-scattering, so one can see the backgrounds clearly without any color
cast. Red wine (middle) is similar, but strongly absorbs light of wavelengths
other than red, giving it a red color cast. Milk (right) is a strongly scattering
material, so most of the light is scattered before reaching the backgrounds,
which makes it appear white even against the black background.

observed light intensities 𝐼b, 𝐼w against wavelength-independent
diffuse black and white backgrounds. We call this mapping the two-
dimensional appearance map 𝐴2 (𝐼b, 𝐼w) → (𝛼, 𝜎t), and we show
its example diagram in Fig. 2. With this mapping, one can simply
determine the material properties (𝛼, 𝜎t) from the contours by mea-
suring the intensities (𝐼b, 𝐼w) on the horizontal and vertical axes, per
each wavelength independently, since the diagram is wavelength-
independent (assuming the black and white backgrounds are both
wavelength-independent reflectors). Generating the mapping was
done in the inverse way: we ran Monte Carlo simulations on pairs
of (𝛼, 𝜎t) and acquired the corresponding (𝐼b, 𝐼w), which led to the
contours. The simulations used the same geometry as in Fig. 7a.

Basic properties. As shown in Fig. 2, this notion of appearance
map is only valid in the upper left triangle, as anything below the
diagonal would break the principle of energy conservation. The
diagonal 𝐼b = 𝐼w represents perfectly opaque materials, as they
appear the same regardless of the background. The materials along
the diagram’s left edge 𝐼b = 0 represent non-scattering absorptive
materials with 𝛼 = 0, and the intensities along that edge trivially
follow Eq. (1): 𝐼w ∝ exp (−ℓ · 𝜎t). Likewise, materials towards the
top edge 𝐼w → 1 represent non-absorbing scattering materials
with 𝛼 → 1. The bottom-left corner 𝐼b = 𝐼w = 0 represents a
perfectly absorbing material: 𝜎t → ∞, 𝛼 = 0. The top-right corner
𝐼b = 𝐼w = 1 represents an ideal diffuse reflector: 𝜎t → ∞, 𝛼 = 1. The
top-left corner represents a perfectly transparent material: 𝜎t = 0.

Uniqueness. We conclude that there is a unique pair (𝛼, 𝜎t) for
each pair (𝐼b, 𝐼w), hence the appearance map is one-to-one, from the
fact that the 𝛼 and 𝜎t-contours in Fig. 2 always intersect at exactly
one particular point. Very importantly, the individual contours are
also not self-intersecting, with the following exceptions. The ex-
ceptions are the 𝛼-contours collapsing at 𝐼b = 0, 𝐼w = 1, and the
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𝜎t-contours collapsing along the diagonal, where 𝜎t → ∞. This
essentially means that there is a large 𝜎t gradient and uncertainty
for highly-absorbing materials, because after a certain threshold, the
material absorbs so much light that any further difference becomes
negligible. The ambiguity likewise happens for a low 𝛼 value, where
the detected backscattered light intensity gets too low to discrimi-
nate the exact 𝛼 . Also note that the 𝛼-contours show exponential
spacing, with most of the map covered by 𝛼 > 0.9.

Triangle deformations. The appearance map contours’ shapes also
depend on other parameters (Fig. 4), e.g., the sample thickness ℓ ,
the phase function parameter 𝑔, or the material refractive index 𝑛,
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Fig. 4. Visualizing how the appearance map changes with different parame-
ters 𝑛, ℓ, 𝑔. For example, increasing the refractive index 𝑛 shrinks the map,
as according to Fresnel equations, some energy is simply reflected away
from the geometry (Sec. 3.3). Increasing the sample thickness ℓ shifts the
𝜎t-contours towards the diagonal, as more light is being absorbed in the
thick sample. Changing the phase function anisotropy 𝑔 shrinks the whole
map, which we discuss in Sec. 3.2 and show in three dimensions in Fig. 5.

Fig. 5. The 𝑔-contours of the three-dimensional appearance map seen from
two different angles. The three axes are (𝐼b, 𝐼w, log10 𝐼c ) , the contours corre-
spond to 𝑔 ∈ {0.0, 0.2, 0.4, 0.6, 0.8}. Note how the contours are sufficiently
spaced and non-intersecting, except for their collapse to a single line at
𝐼b = 0, where no scattering occurs and the phase function plays no role.

which we discuss in detail later (Secs. 3.2 and 3.3). The contours also
stretch if the assumed background materials are not ideally diffuse
with reflectances 0% for the black, and 100% for the white back-
ground, which is impossible to achieve in real measurements. In the
measurement procedure (Sec. 4), the true background reflectances
need to be modeled in the simulations to prevent a bias.

3.2 Phase function

While the two-dimensional appearance map 𝐴2 allows estimating
(𝛼, 𝜎t), it assumes that we have chosen a known phase function
with a fixed anisotropy 𝑔. While the map’s contours change with
various 𝑔 (Fig. 4 bottom), there are infinitely many possibilities to
which 𝑔 was the correct one. To pin down this unknown 𝑔, we need
to include a third observable to match the number of observables
to the number of unknowns. We need to account for the similarity
relations [Wyman et al. 1989; Zhao et al. 2014] (see our supplemental
document), such that this third observable indeed allows for the
disambiguation of 𝑔, while keeping the setup still affordable.

Three-dimensional appearance map. To disambiguate the phase
function anisotropy factor 𝑔, we introduce a collimated beam placed
at the backside of the material sample (Fig. 7b). The combination
of front-illuminating diffuse lights and a back-illuminating colli-
mated beam gives more specific information regarding backward
and forward scattering. Together, this allows “breaking out ofž the
assumptions in the similarity relations. Formally, we extend the pre-
vious two-dimensional map 𝐴2 into a three-dimensional appearance

map 𝐴3 (𝐼b, 𝐼w, 𝐼c) → (𝛼, 𝜎t, 𝑔), i.e., 𝐴2 is a partial map of 𝐴3, where
𝐼c is an attenuated intensity of a collimated beam passing through
the medium (Fig. 7b). We show an example diagram of 𝐴3 in Fig. 5.

Unscattered transmission. We generate the contours similarly to
the two-dimensional case. Even though we used a Monte Carlo
simulation also for computing 𝐼c, we discovered that computing it
analytically using Eq. (1) has an accuracy indistinguishable from
Monte Carlo. This analytical intensity, referred to as unscattered
transmittance in literature [Prahl 2011], seemingly differs from the
actual measured intensity for highly-scattering materials (𝛼 ≫ 0)
because of light in-scattering to the non-zero solid angle captured
by a real sensor. However, as we compare in Fig. 6, the differences

ACM Trans. Graph., Vol. 41, No. 6, Article 199. Publication date: December 2022.



199:6 • Tomáš Iser, Tobias Rittig, Emilie Nogué, Thomas Klaus Nindel, and Alexander Wilkie

0 1 2 3 4 5 6 7 8 9 10
Extinction coefficient t [mm 1]

10 6

10 5

10 4

10 3

10 2

10 1

100

Tr
an

sm
itt

an
ce

12-bit sensor dynamic range

16-bit sensor dynamic range

Beer's law: exp ( t )

= 0.000
= 0.300
= 0.600
= 0.875

= 0.920
= 0.960
= 0.990
= 1.000

Fig. 6. Transmittance observed with a 4mm aperture detecting a 1mm di-
ameter collimated beam passing through a ℓ = 1.8mm thick sample of
varying (𝛼, 𝜎t) and a dominantly forward-scattering Henyey-Greenstein
phase function 𝑔 = 0.8. Notice how the transmittance of low-scattering
materials with a small 𝛼 follows the Beer’s law, Eq. (1). For highly scattering
materials, the in-scattering from the beam is superimposed on the detected
transmittance, which causes the true measured intensity to be higher than
Beer’s law. However, this arguably only affects measurements whose dy-
namic range falls below what an ideal 16-bit sensor could capture. For lower
𝑔 and thinner samples, this becomes even more negligible.

are not noticeable in our setup, even for a dominantly forward-
scattering phase function and a relatively thick sample, though still
thin enough compared to the inverse of the extinction coefficient.

Uniqueness. We show that the parameter 𝑔 can be uniquely found
in the 𝐴3-map. It follows from Fig. 5, as the 𝑔-contours are not
self-intersecting and they only collapse into a single line at 𝐼b = 0,
corresponding to a non-scattering material with 𝛼 = 0; and at
𝐼w = 0, a strongly absorbing material. It is reasonable, as one cannot
measure a scattering phase function of a non-scattering material,
or of a material that absorbs all the light it was illuminated with.

3.3 Index of refraction

The material’s index of refraction 𝑛 is the last factor that noticeably
influences the appearance map. Our Monte Carlo simulations follow
the Fresnel equations governing the reflection and transmission
of light from the material boundary. As some incoming light gets
completely reflected away, it is expected that the contours shrink
towards lower values of 𝐼w for increasing𝑛 (see Fig. 4, top). However,
it may seem unintuitive that the peak of the top 𝛼-contours is not
in the top-left corner, but rather the contours form a hill that raises
with an increasing 𝜎t. This is a result of two factors: first, highly-
scattering materials with a high 𝛼 and 𝜎t back-scatter a lot of light
before it even reaches the background boundary; second, our Monte
Carlo simulations show that there are significant multiple reflection
bounces occurring between the white background and the material
boundary, which also explains why the top-left corner for 𝑛 = 1.5 is
higher than one would expect from the Fresnel equations alone.

4 MEASUREMENT

We design a simple, affordable physical setup and measurement
procedure that follows from our proposed appearance maps 𝐴2
and 𝐴3 (Sec. 3). The end goal is to place a material sample into the

setup (Sec. 4.1), spectrally measure the intensities 𝐼b, 𝐼w, and 𝐼c with
a spectrometer (Sec. 4.2), and then interpolate within the appearance
map to find the material’s corresponding optical properties (𝛼, 𝜎t, 𝑔)
independently for each wavelength (Sec. 4.3).

For an affordable setup, we eliminated expensive and specialized
equipment as much as possible: we used a simple pocket-size spec-
trometer, household illuminants, inexpensive electronics, a limited
number of optical components, and a custom-made background
holder. The calibrations that we require are simple and not time-
consuming. In principle, our method is also usable for various sam-
ples, including liquids in glass cuvettes.

4.1 Measurement setup overview

We propose the following setup for capturing the intensities 𝐼b, 𝐼w,
and 𝐼c, illustrated in Fig. 7. The main components are the material

sample, two reflective diffuse backgrounds (black and white), the de-
tector part, and the illuminants (diffuse for 𝐼w and 𝐼b, and collimated
for 𝐼c). For detailed technical specifications of all the components
mentioned in this section, please refer to the supplemental: this lists
the exact supplier and part numbers for each component.
Our setup supports quickly switching between three different

configurations: behind the sample, there can be a black background,
a white background, or a collimated light beam (Fig. 7a, Fig. 7b).
Using an inexpensive FDM 3D printer, we printed a custom sliding
background holder to change between those three configurations in

diffuse illuminant

lens, fiber optic,
and spectrometer

material sample
sandwich

diffuse background
(white and/or black)

pinhole

(a) Diffuse illumination setup for measuring 𝐼b, 𝐼w

LED lens

diffuser
with pinhole

lens, fiber optic,
and spectrometer

material sample
sandwich

pinholepinhole

(b) Collimated illumination setup for measuring 𝐼c

Fig. 7. Diagram of our measurement setup, in two different configurations.
The first configuration is used to measure 𝐼b and 𝐼w and is composed of the
sample over a black or white diffuse background, illuminated by two diffuse
illuminants. The reflected light is filtered through a pinhole, collected by
a lens, and focused at an optical fiber connected to a spectrometer. The
second configuration is used for the phase function estimation: the diffuse
illuminants are covered, the background is removed, and the sample is
backlit by a beam that was collimated from an LED.
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a matter of seconds. The printable STL file for this holder is attached
in the supplement. The holder, visible in Fig. 9, is split into three
parts: a rectangular hole for collimated measurements, a Spectralon
holder for the white background, and a rectangular space for gluing
the black background.
In the end, measuring all three 𝐼b, 𝐼w, and 𝐼c can be performed

within a minute, with the only manual activity being sliding the
background holder twice, and covering the diffuse illuminants for
the collimated measurement. Since the intensities are measured
spectrally with a spectrometer, the wavelength dependency is im-
plicitly incorporated into each of the three measurements.

Material sample. The sample of the material needs to conform to
certain requirements. First of all, samples of materials with a high 𝜎t
have to be thin, otherwise we would detect zero transmitted light 𝐼c.
In our case, this was critical for the white ink that approaches 𝜎t =
25mm−1 in the blue spectral region. Then, as mentioned in Sec. 3.1,
we assume the sample to have a smooth surface with a known
refractive index 𝑛. For liquids, we recommend using a rectangular
glass cuvette. Its geometry has to be modeled in the appearance
map simulation to compensate for the additional layers of material.
For moderately rough solid samples, such as the 3D printed samples,
we used a combination of manual polishing and then layering both
sides with a small quantity of index-matched immersion oil and
a thin borosilicate-glass microscope cover slide (Fig. 8). The glass
slides adhere to the sample with the help of the oil. The sample and
the slides can then be washed with soap and reused.

Reflective diffuse backgrounds. Ideally, the backgrounds would
be perfectly diffuse materials with a uniform spectral response,
with a 100% reflectance (for the white one), and a 0% reflectance
(for the black one) over the whole visible range. As such materials
do not physically exist, we use the closest commercially available
alternatives. We use a 1-inch Spectralon disk with a 99% diffuse
reflectance as the white material, but one could also use a much
cheaper 92% high-reflectance PTFE sheet. For the absorbing black
material, we use a black flocked paper with a reflectance around
2%, which unfortunately substantially increases for 𝜆 > 650 nm.
Alternatively, a black aluminum foil with a more uniform reflectance
around 5% could be used, but it is noticeably more glossy than the
flocked paper. Another option would be a larger cavity lined with
black material, analogous to a beam dump in laser experiments.

Detector. The light that has transmitted or reflected from the
sample first passes through a pinhole, which spatially filters only a
small region of interest on the sample. This beam is then collected
by a small camera lens mounted on an optical post and centered
on the optical path. Finally, the light is focused on the entry of an
optical fiber, which delivers it to the spectrometer.

Diffuse illumination. For the diffuse illumination for measuring
𝐼b and 𝐼w, we use two off-the-shelf 28.3 × 14.1 cm floodlight LED
panels. They are placed at a distance of approximately 30 cm with
an orientation of ±45◦ with respect to the sample surface.

Collimated illumination. The illumination for measuring 𝐼c was
created by collimating a simple, bright, warm-white LED with a
small beam angle. Its light first passes through a diffuser immediately

rough refractive interface

n = 1.0 1.5 1.0 n = 1.0 1.51.5 1.5 1.0

sandwich with immersion oil
and microscope slides

Fig. 8. Solid materials, such as 3D printed samples, still have a somewhat
rough surface even after moderate polishing. Such a rough refractive inter-
face scatters light away from the measurement geometry, which is difficult
to calibrate. To compensate, we łsandwichž solid samples between two
borosilicate glass microscope cover slides (0.14 − 0.17mm thick), and a
thin layer of index-matched immersion oil. Since all these materials have a
very similar index of refraction 𝑛 ≈ 1.5, the only significant reflections and
refractions occur at the smooth outer layer.

followed by a pinhole, which approximates a point light source. The
light is then gathered by a lens that collimates it. We further restrict
the beam diameter with a bigger pinhole in order to limit the in-
scattering intensity within the sample.

4.2 Measurement procedure

Measuring the material consists of a trivial illuminants calibration,
and then measuring the sample against the three backgrounds.

Calibrations. We begin by turning all illuminants on and letting
them stabilize and warm up for several minutes. We proceed by
measuring the three backgrounds without any sample. This directly
gives us the spectrum of the collimated LED, and indirectly gives
us the spectrum of the diffuse light (by dividing the measured value
by the white background’s uniform reflectance of 99%), and the
reflectance of the black background (by dividing the measurement
by the diffuse light spectrum acquired in the previous step). In case
the illuminants are not perfectly stable, it is useful to perform these
calibrations during the measurement of every sample again.

Sample measurement. Each sample is first prepared according
to Sec. 4.1: in the case of the 3D printed inks, each sample is pol-
ished and then sandwiched with immersion oil and microscope

Fig. 9. Measuring a sample against a white background on our custom
3D printed background holder. Note how the appearance of the rough
sample changes under the microscope slide, which optically smoothens the
rough interface (see also Fig. 8).
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glass slides. The sample is then inserted in a sample holder and
centered within the optical path. The measurements can be done
subsequently in any order by simply sliding the background holder.
When measuring the collimated intensity 𝐼c, we cover the diffuse
illuminants by cardboards to make sure the spectrometer does not
measure any parasitic diffuse backscattering from the sample.

Automation. While we only performed the described measure-
ments manually, we believe that parts of the process could be easily
automated, for example by using a motorized digitally controlled
slider for the background holder. Such a setup could then be embed-
ded into a self-contained device, to which a sample is inserted, and
it then performs all three measurements fully automatically.

4.3 Fitting the optical properties

Once the relative intensities (𝐼b, 𝐼w), or (𝐼b, 𝐼w, 𝐼c), are measured,
the actual optical properties (𝛼, 𝜎t), or (𝛼, 𝜎t, 𝑔), respectively, have
to be fitted via the appearance maps 𝐴2, or 𝐴3.

Datasets. We begin by constructing the appropriate appearance
map for the given material refractive index 𝑛 and sample thickness ℓ .
As explained in Sec. 3, this is done using Monte Carlo simulations:
first, we densely sample the space of possible parameters (𝛼, 𝜎t, 𝑔),
and then we use Monte Carlo rendering to get the correspond-
ing monochromatic intensities (𝐼b, 𝐼w, 𝐼c) on a single-pixel sensor,
according to the geometry in Fig. 7. Note that following the argu-
mentation in Sec. 3.2 and Fig. 6, we can also compute 𝐼c analytically
from Eq. (1) without Monte Carlo. The range of parameters that
we simulated was inspired by Elek et al. [2021], with low values
of 𝜎t and high values of 𝛼 simulated with finer steps due to the
exponential behavior of light attenuation and scattering. We used a
modified Monte Carlo implementation of Nimier-David et al. [2019]
and Jakob et al. [2022], which already contained a volumetric path
tracer for the diffuse measurements, but we needed to implement a
simple volumetric light tracer for the collimated measurements, as
such a simulation is impossible with a path tracer.

Fitting. As the dataset points do not form a regular grid (it is
impossible to know the spacing of the intensities beforehand), we
use a multi-dimensional linear interpolation of an irregular grid.
Specifically, we used a SciPy [Virtanen et al. 2020] implementation
based on constructing the interpolants through a triangulation of
the dataset, and then performing linear barycentric interpolation on
each triangle. We experimented with non-linear interpolations, but
we were unable to find a solution that would be more robust than the
linear one. Note that the interpolation is wavelength-independent
(Fig. 2b), which means that spectral measurements are fitted sepa-
rately per each wavelength (Fig. 2c). For example, our spectrometer
had a resolution of about 1000 wavelength bins, so we performed
1000 independent interpolations to fit the spectrum. This operation
is very fast, only taking a few second for a full spectrum.

Ensuring robustness. The triangulation and linear interpolation
are not stable in certain regions of the appearance map, especially
towards the diagonal, where all extinction coefficients collapse into
a single line. Hence, naïvely interpolating the optical parameters

from the exact measured values will not be robust, since any additive
noise can cause instability of the 𝜎t estimate along the diagonal.

Our solution is based on random sampling: we randomly sample a
small 𝜀-neighborhood around the actual measured values (𝐼b, 𝐼w, 𝐼c),
we interpolate the optical properties for all of these samples, and
then we choose the median result. We found that using 250 to 1000
random samples in an 𝜀 ∈ [0.01, 0.04] neighborhood creates suffi-
ciently robust results. Furthermore, we always combine data from
at least two different thicknesses of the same material. For this, we
simply combine the randomly sampled and interpolated values to-
gether, and choose the median of them. This also proves to be a
useful consistency check, since both thicknesses should ideally re-
sult in identical optical parameter estimates. In Fig. 10, we show the
results separately for each thickness, and for the combined estimate.
It is also useful to visualize the 𝜎t estimates based on Eq. (2) to verify
that the fitting was indeed robust.

5 RESULTS

We now demonstrate and validate our method on 3D printing inks
from the Stratasys PolyJet material family. These inks have a wide
range of properties, from almost non-scattering color primaries,
to a strongly-scattering white material. This variety serves as a
good stress test of our approach, and it also results in a wide gamut
of appearances realizable by combining these inks together. For
example, by combining a transparent yellow with a scattering white,
we get an opaque yellow (Fig. 13).

In Sec. 5.1, we apply our measurement procedure to estimate the
spectral optical properties of the cyan, magenta, yellow (VeroVivid),
black (BlackPlus), and white (PureWhite) inks. We also discuss
the repeatability of our method, its performance, sources of error,
and some practical remarks on processing these samples. In Sec. 5.2,
we perform an indirect validation of our results. We 3D print a
color checker that contains various mixtures of the base materials,
and we compare their real appearance and spectral reflectances to
Monte Carlo simulations of the same virtual mixtures, based on the
properties estimated in Sec. 5.1.

5.1 Measuring the base inks

We 3D printed two samples of each of the five inks with the di-
mensions 40 × 40mm, and thicknesses 0.4mm and 0.8mm. As the
printed objects have a rough surface, we polished all samples with
sandpapers of grit sizes 400 to 2000, which also reduced the sam-
ple thicknesses by about 0.02mm on average. In theory, one could
continue polishing the samples to an almost perfect finish, but that
becomes laborious with diminishing returns, so we instead sand-
wiched the samples in immersion oil and glass slides as in Fig. 8.

After applying our method, we obtain the results in Fig. 10, which
include the spectrally resolved single-scattering albedo 𝛼 , extinction
coefficient 𝜎t, and phase function anisotropy 𝑔. The plots feature
estimates from both sample thicknesses individually, and a robust
combined estimate based on the procedure described in Sec. 4.3.
The 𝜎t plots also contain estimates obtained from Beer’s law (Eq. 2),
which offers another consistency check.

From these measurements, we can trivially conclude that the
color primaries and black are virtually non-scattering materials,
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Fig. 10. Fitting the three optical properties (𝛼, 𝜎t, 𝑔) of the base 3D printing materials, specifically, the Stratasys materials VeroVivid (cyan, magenta, yellow),
BlackPlus, and PureWhite. The thick black curves show a combined estimate from both thicknesses to ensure robustness (Sec. 4.3), while the dashed curves
are based on only one thickness. In the 𝜎t plots, we also visualize the corresponding Beer’s law estimates as a consistency check. Note that the 𝛼-axis is in an
exponential scale, because changes in low 𝛼 values have a very small effect on the material appearance compared to values above 0.9, as shown by Elek et al.
[2017], who numerically fitted a mapping that linearizes the effect, which we use in the axis scaling.

while the white material is strongly scattering. This is in contrast
to the older family of Stratasys materials, which had significantly

more scattering color primaries, as measured in RGB channels by
Elek et al. [2021].
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Sources of error. From Fig. 10, we can see that both the 𝛼 and
𝜎t estimates are consistent throughout the materials, with a few
exceptions. In the 𝜎t estimates, we can see inconsistencies in the blue
wavelengths (around 400 to 500 nm). We suspect it may be caused
by fluorescence, a wavelength-shifting effect of absorbing photons of
lower wavelengths and re-emitting them at higher wavelengths. Our
experiments with violet lasers indicated that wavelength shifting
indeed occurs in these materials. This effect is not accounted for
in the simulations, it is generally hard to measure, and none of
the related methods could measure it either, so it remains as a
challenging future work. This may also affect the white albedo, as
the thicker sample would contain more fluorescent particles and
appear more scattering than the thinner sample. We also observe
some inconsistencies in the anisotropy 𝑔, however, one has to keep
in mind that the estimates do not make physical sense for those
wavelengths and materials, where scattering events seldomly occur,
i.e., 𝛼 (𝜆) ≈ 0 or 𝜎t (𝜆) ≈ 0.

Repeatability. We assess the repeatability of our method by mea-
suring the cyan ink several times, including different rotations of
the sample. This experiment answers whether the samples are suffi-
ciently homogeneous and rotationally invariant. From our results in
Fig. 11, we conclude that the results are repeatable enough within
the expectations from an affordable measurement method. For curi-
ous readers, Fig. 11 also includes a few failed measurements, where
the sample was measured closer to its edge, where its thickness
changes due to the manual polishing. It indicates the importance
of accurately measuring the sample thickness at exactly the point
that ends up being in the optical path of the measurement setup, for
example using a micrometer screw gauge.

Time performance. The performance of our method can be split
into two parts: precomputation of the appearance map, which is
only done once per sample thickness, and the actual fitting process
per material sample. The precomputation is using Monte Carlo,
ideally with a very high sample count to avoid noise (for the final
results, we used 640,000 samples per each datapoint). On a single
machine, it takes less than a day, and it could be further improved by
a significant factor by reusing the Monte Carlo path space samples
for various 𝛼 values. In contrast, the actual fitting process per each
material sample is very fast, taking roughly two seconds for the
whole spectrum of about 1000 wavelength bins.

5.2 Validation

We validate the measurements of the base inks by 3D printing a
custom color checker and verifying its appearance. It is a 5mm thick
grid of 8 × 8 = 64 different mixtures of the base inks (Figs. 1 and 12).
Themixtures correspond to 64 colors, each color being 15×15×5mm
large and consisting of a different ratio of the base inks. Because 3D
printers cannot physically mix the inks, the colors are printed in a
3D halftoned fashion: each color is made of voxels, and each voxel
is randomly assigned a base ink such that the overall ink ratio is
correct (similarly to mixture halftoning of Nindel et al. [2021]).

Using the optical properties measured in Sec. 5.1, we run a Monte
Carlo simulation of this color checker to simulate each square’s
resulting reflectance. We then take the physically printed color
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Fig. 11. Assessing the repeatability of our method by measuring the cyan
ink several times, including various rotations. Poorly centered invalid mea-
surements are also included. Refer to the text in Sec. 5.1 for discussion.

checker, and we measure each square with a real spectrometer. The
goal is to compare the simulated reflectances to the real measure-
ments, which we show for 20 of the squares in Fig. 13, visualized
both with spectral curves, and with the corresponding sRGB colors.

Apart from visualizing the results obtained directly from the simu-
lation, we also show these simulated curves multiplied by correcting

factors, which were found individually for each square, minimizing
the color error. The necessity for these factors reveals that there
is a reasonable match in the wavelength dependency (in relative
sense), but a mismatch in the overall intensity. The factors attempt
to partially correct for geometry misalignments, e.g., because the
color checker was manually polished and did not have a perfectly
flat surface, and because it was manipulated by hand between every
measurement. There are also additional sources of error such as the
aforementioned fluorescence, which is unfortunately a wavelength-
dependent effect, and the simplified phase function model, which
only approximates the real light scattering. We also note that for

Fig. 12. Monte Carlo rendering of a demo scene containing our 120 × 120 ×
5mm large color checker, and five 0.8mm thick samples of the CMYKW
base inks that the color checker is mixed from. The base inks are also
located in the bottom row of the checker, leftmost four (CMYK) and the
rightmost (W) square.We used a background that shows how somemixtures
are significantly more translucent than others. A photograph of this color
checker is in Fig. 1, and some of its spectral reflectances are shown in Fig. 13.
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Fig. 13. A comparison between spectral reflectance measurements of a 3D printed color checker (Figs. 1 and 12) that mixes the five base inks (CMYKW) in
various ratios, and a corresponding Monte Carlo simulation based on the estimated optical properties from Sec. 5.1, Fig. 10. Each plot also includes a curve
with a correcting multiplicative factor (see Sec. 5.2 for discussion). The title of each plot describes the ink ratios corresponding to that measurement. The
colored rectangles on the right visualize the (potentially clipped) sRGB colors corresponding to the reflectance spectra, assuming a D65 illuminant. Each top
rectangle is the measured color, the middle one is the simulation with a correcting factor applied, and the bottom one is the pure simulation.

this simulation and rendering, our simulation software required fixing a certain phase function, so we used 𝑔 = 0.4, and the (𝛼, 𝜎t)

were refitted to that assumption.
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Results with the base inks. The most critical result in Fig. 13 is
that the predictions for the base inks themselves (left column, 100%
ratios) are very accurate. Because we measured these inks on 0.4 and
0.8mm thick samples, but the color checker is 5mm thick, which is
a significantly larger volume, the matching results are an important
evidence of correctness. The most noticeable discrepancies are in
the white and yellow inks, which we know to be fluorescent, which
would explain why the real measurements always had a higher
intensity in the longer wavelengths than the non-fluorescent simu-
lations. The slight discrepancy in the black ink could be described
by the fact that the absorbing black background used for the mea-
surements in Sec. 5.1 is not perfect, and its reflectance increases
around 𝜆 > 650 nm, causing a slight red shift.

Results with the mixtures. The highest accuracy was obtained in
the mixtures of the cyan and white ink (top row). That is mainly
because the cyan ink absorbs significantly above 𝜆 > 550 nm, so
the error in the white ink, which is the highest in that range, is not
being propagated to the final color. With all the other mixtures, we
have achieved results corresponding to reasonably similar colors,
although the exact color hues and saturation were mispredicted,
mainly for magenta and green.

Rendering. Since the main use case of our method is Monte Carlo
rendering andMonte Carlo based 3D printing optimization pipelines,
we demonstrate such result in Fig. 12, a rendering of a demo scene
containing the 120×120×5mm large color checker, and 0.8mm thick
samples of the base inks. The scene has a checkered background to
visualize the translucency of some of the material mixtures.

6 CONCLUSION

We have presented a simple and affordable technique for estimating
spectral bulk optical properties of translucent materials in a way
that is sufficient for predictive rendering purposes. Our results are
directly pluggable into existing rendering pipelines, and 3D print-
ing optimization pipelines based on Monte Carlo simulations. We
demonstrated our method on a set of 3D printing materials from
the Stratasys PolyJet family, and showed rendering of their various
mixtures in a 3D printed object.

The key discovery of our paper was that the bulk optical proper-
ties can be estimated from only three simple point measurements,
which is simpler than the existing solutions. A byproduct of this is
our two-dimensional appearance map, which we believe could also
be useful for artists as an intuitive tool for visualizing or editing
translucent appearance, because all relevant possible combinations
are encoded in the triangle in a perceptually meaningful way.

For the future, we see two additional measurement problems that
would benefit from a simple and more affordable solution. First, the
acquisition of bi-spectral (fluorescence) optical properties. Second,
measuring the index of refraction, which is currently a necessary
input to our method. Both problems currently require expensive
equipment such as a monochromator or an ellipsometer, which are
hardly found outside of specialized laboratories.
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5 Our measurement method for
fluorescent materials
The second journal publication inserted in this thesis, Iser et al. [2023], focuses
on fluorescent materials, whose fundamental theory we covered in Section 2.3.
Fluorescence is common in both natural (minerals, corals, tissues) and synthetic
(pigments in papers, textiles, plastics) objects, it is often used in optical bright-
eners, and it plays a crucial role in material appearance. Characterizing and
measuring such materials is hence important for predictive rendering [Johnson
and Fairchild, 1999, Hullin et al., 2010, Mojźık et al., 2018, Jung et al., 2019,
2020, König et al., 2020, Hua et al., 2022]. Other uses include remote sensing
of vegetation [Mohammed et al., 2019] and fluorescence imaging in biology and
medicine, including diagnostics in animals and humans [Choyke and Kobayashi,
2012], plants [Delalieux et al., 2009], and coral reefs [Roth and Deheyn, 2013].

Problem A seemingly trivial solution exists for measuring fluorescence: a sam-
ple is illuminated by monochromatic light, the whole reflected spectrum is mea-
sured, and this process is repeated for each illumination wavelength [Donaldson,
1954]. However, there are several downsides: it needs repeating for each wave-
length, it requires an expensive monochromator with a powerful broadband light
source, and the monochromatic light is weak, leading to even weaker fluorescent
emission and substantial measurement noise. Alternative solutions are based on
sparse measurements, but they often rely on expensive equipment, can only sup-
port one fluorophore, or they otherwise suffer from accuracy issues.

Our contribution and solution Our core question is whether one could use
only a few sparse measurements with low-cost equipment to robustly estimate
the material’s fluorescence with high accuracy. This is a high-dimensional in-
verse problem with infinitely many ambiguous solutions (Section 3.2.2), so find-
ing the correct Donaldson matrix is challenging. Several previous approaches use
a dataset of reflectances and fluorophores to reduce the dimensionality [Blasin-
ski et al., 2020, Zheng et al., 2014, Lam and Sato, 2013, Zheng et al., 2015, Fu
et al., 2016]. Instead, we represent the fluorescence with a multivariate Gaussian
mixture model and the reflectance with a bounded MESE (maximum entropy
spectral estimate), which, to our knowledge, is their first application in such
measurements. It parametrizes and constrains the estimate in a robust and sim-
ple way, allowing the use of gradient-descent optimization (Section 3.3.4). We
demonstrate how our method adapts to different optical setups that anyone can
easily build from low-cost illuminants and various possible detectors, including a
standard spectrometer or a low-cost multispectral sensor. We evaluate all on a
combination of real and synthetic data and compare to state of the art, showing
that we reach consistently lower errors and avoid the oscillations and ripples in
the estimates.
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Abstract: We present an accurate and low-cost method for measuring fluorescence in materials.
Our method outputs an estimate of the material’s Donaldson matrix, which is a commonly used
two-dimensional spectral characterization of its fluorescence and reflectance properties. To find
the estimate, only a few measurements of the material’s reflectance under a few illuminants are
needed, which we demonstrate using low-cost optical components. Internally, our algorithm
is based on representing each Donaldson matrix with a multivariate Gaussian mixture model
and its diagonal with a bounded MESE (maximum entropy spectral estimate). It parametrizes
and constrains the estimate in a robust and simple way, allowing the use of gradient-descent
optimization. We evaluate our algorithm on a combination of real and synthetic data, and four
examples of distinct optical components. We reach significantly lower errors than the current state
of the art on the exact same inputs, our estimates do not suffer from artifacts such as oscillations
of the spectra, and they are stable and robust.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

When a material is illuminated, a fraction of the incoming photons is reflected. The ratio between
the reflected and incoming photons is called the material’s surface reflectance. In general, the
reflectance varies per wavelength, which gives materials their various colors. Materials may
also absorb and re-emit a fraction of the incoming photons at a different wavelength than they
originally had, which is called wavelength shifting. For instance, minerals such as fluorite or
calcite will glow in color even when illuminated only with invisible ultraviolet light. This effect
is called fluorescence, and it is immediate and observable with bare eyes.

Fluorescence is common in both natural (minerals, corals, tissues) and synthetic (pigments in
papers, textiles, plastics) objects. Distinct fluorophores (chemicals) can also be combined in a
single object. Due to the re-emission of incoming photons into longer wavelengths, fluorescent
materials can appear brighter and more saturated than their non-fluorescent counterparts, and
their color or reflectance may significantly change under various illuminants (Fig. 1). This has
been studied in computer graphics to allow accurate visualizations and color rendering of such
objects [1–7], but also in remote sensing of vegetation [8], and in fluorescence imaging in biology
and medicine, including diagnostics in animals and humans [9], plants [10], and coral reefs [11].

All of these methods rely on measuring the fluorescence in the materials. A simple solution
is shining monochromatic light on the sample, measuring the whole reflected spectrum, and
repeating this for each illumination wavelength, e.g., in 10 nm steps (Sec. 2.1; [12]; partially
illustrated in Fig. 1(bc)). It has several downsides: it needs repeating for each wavelength,
it requires an expensive monochromator with a powerful broadband light source, and the
monochromatic light is weak leading to even weaker fluorescent emission and substantial
measurement noise.
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Fig. 1. Photographs of fluorescent (sticky notes, liquid detergent) and non-fluorescent (color
chart) materials under different illuminants. The monochrome illuminants reveal which
objects are fluorescent: they emit different wavelengths than the illuminants had.

Alternative solutions are based on sparse measurements (Sec. 2.2): instead of scanning all
combinations, only a few illuminants are used and the reflectances may be measured by a sensor
with a coarse resolution. The fluorescence is then estimated by solving an inverse problem,
i.e., by numerically finding which fluorescence could have resulted in the observed reflectances.
Some of these approaches still require expensive equipment such as programmable filters [13] or
high-frequency spectral illuminants [14], only assume RGB data [15], or can inherently only
support one fluorophore in each material [16–20]. The most important work in our context
is by Blasinski et al. [21], who not only summarize the previous approaches, but also unify
and generalize several of them into a new cohesive framework. Their method can estimate
fluorescence, even from multiple fluorophores simultaneously, using any arbitrary illuminant
spectra and sensor spectral sensitivities, which makes it compatible with low-cost optical setups.

However, their estimates can be significantly improved, which we show both quantitatively
and qualitatively in our evaluations, where our new method outperforms their results on the exact
same inputs. For example, their estimated spectra often suffer from oscillations and ripples: a
flat spectrum is reconstructed as a wavy spectrum oscillating around the ground truth value,
or a single peak is reconstructed as multiple peaks instead. Similar problems are common in
methods that represent the spectra with basis functions that were built from fluorophore and
reflectance datasets [17–21]. In our method, we represent fluorescence in a different way, using
Gaussian distributions and maximum entropy spectral estimates, which we picked to ensure that
the estimated fluorescence is accurate, including fluorescent peaks and potential flat spectra.

Our contribution We develop a robust algorithm for accurately estimating fluorescence and
reflectance from sparse measurements acquirable with low-cost optical setups. Our algorithm
is based on solving an inverse problem. While several previous approaches use a dataset of
reflectances and fluorophores to reduce the dimensionality of the problem [17–21], we instead
represent the fluorescence with a multivariate Gaussian mixture model and the reflectance with
a bounded MESE (maximum entropy spectral estimate), which, to our knowledge, is their first
application in such measurements. We show that our approach is simple, yet accurate and
robust, and even though the inverse problem is non-convex, it behaves well with our chosen
gradient-descent optimization strategy. We demonstrate how our method adapts to optical setups
of different equipment costs. We evaluate all on a combination of real and synthetic data and
compare to state of the art, showing consistently lower errors and higher-quality spectra.

2. Problem statement and prior work

The reflectance from fluorescent materials can be mathematically modeled (Sec. 2.1) and the
measurement problem can then be written and solved as an inverse problem (Secs. 2.2 and 2.3).
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2.1. Modeling fluorescence with the Donaldson matrix

Assuming fixed illumination and observation angles, when a fluorescent material is illuminated
by a light source with spectrum l(λi), then the reflected intensity r(λo) is (Fig. 2):

r(λo) =

∫
Φ(λi, λo) l(λi) dλi, (1)

where Φ(λi, λo) is a two-dimensional function jointly describing the material’s reflectance
and fluorescence, and λi and λo are incoming (excitation) and outgoing (reflected, emitted)
wavelengths, respectively. For practical purposes, we discretize the spectral dimension into
Ni incoming and No outgoing wavelengths, and then l ∈ RNi and r ∈ RNo become vectors,
Φ ∈ RNo×Ni becomes a matrix, and Eq. (1) becomes a matrix-vector multiplication (Fig. 2):

r = Φ · l. (2)

Finding the exact values of the Φ matrix for the given material is our goal. The matrix is often
called the Donaldson matrix after Donaldson [12], who measured the matrix values directly using
monochromatic light (as introduced in Sec. 1). Note that the matrix exists also for non-fluorescent
materials: it is simply zero everywhere except for the diagonal (λi = λo), which represents pure
reflectance. As Fig. 2 shows, it is natural to separate the diagonal Φdiag (pure reflectance) and the
off-diagonal Φfluo (pure fluorescence), and write Φ = Φdiag + Φfluo.

Fig. 2. Illustration of Eqs. (1) and (2). The reflected spectrum (a) is computed from
the Donaldson matrix (b) and illuminant spectrum (c). While the illuminant is green, the
reflection is orange with two peaks, which results from fluorescence.

Sometimes, assumptions are made to simplify the shape of Φ [7,12,21]. First, we expect the
emitted photons to have longer wavelengths than the excitation, hence Φ(λi, λo) = 0 for λi>λo, or
equivalently, the matrix is zero below the diagonal. Second, by following Kasha’s rule, Φfluo
would be a separable function Φfluo(λi, λo) = ϕem(λi) · ϕex(λo) with one-dimensional emission
ϕem(λi) and excitation ϕex(λo) spectra [21]. But this does not hold in general, especially for
materials with multiple fluorophores, so we do not assume such separability in this publication.

2.2. Sparse measurements

As measuring the Donaldson matrix Φ directly is expensive, slow, and suffers from noise, we
focus on the idea of estimating Φ from only sparse measurements (Fig. 3) that are typically
faster to acquire and do not always rely on expensive components [13–21]. In general, such a
measurement setup consists of:

• a set of nl illuminants with spectra l1(λ), . . . , lnl (λ), and

• a detector of the reflected light, which can detect ns spectral channels with spectral
sensitivities s1(λ), . . . , sns (λ).
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In our method, we impose no implicit restrictions. The detector can be an RGB camera with only
3 channels, as well as a spectrometer with a sub-nanometer resolution and hundreds of channels.
The illuminants can be individual LEDs, but also a single broadband lamp with switchable filters.

Fig. 3. Illustration of Eq. (3) (sparse measurements). In this example, the Donaldson matrix
(a) is unknown, and the sparse measurements are based on 8 illuminants (b) and an 8-channel
sensor (c), resulting in 8 × 8 detected intensity values Ij,k (d).

By discretizing the problem and using the notation above, we can write that when the fluorescent
sample is illuminated by the j-th illuminant, then the k-th channel of the detector should detect
the reflected intensity of (Fig. 3): (︁

Φ · lj
)︁
⊙ sk, (3)

where ⊙ is an element-wise multiplication (Hadamard product). In order to estimate an unknown
Φ, we can hence illuminate the sample once with each illuminant and detect the reflected
intensities per channel, which gives nl × ns measurements denoted as Ij,k. Estimating the
Donaldson matrix Φ̂ then becomes an inverse optimization problem, for which we chose the
Euclidean distance (ℓ2 norm) between the actual measurements and their estimation:

Φ̂ = argmin
Φ

⌜⃓⎷ nl∑︂
j

ns∑︂
k

(︂
Ij,k −

(︁
Φ · lj

)︁
⊙ sk

)︂2
. (4)

In general, this problem is significantly underdetermined and has infinitely many solutions,
most of which are not even physically plausible. Therefore, a good method needs not only to
minimize the error, but mainly converge to a realistic and plausible solution.

2.3. Previous approaches finding a solution of Eq. (4)

To simplify the space of possible solutions of Eq. (4), many approaches use basis functions derived
from a database of a priori known reflectances and fluorophores and essentially interpolating
between them [17–21]. As we explained in Sec. 1 and show in Sec. 4.5, fitting the spectra
onto the small linear bases results in artifacts such as a flat spectrum being reconstructed with
oscillations.

From the broader perspective, Blasinski et al. [21] categorized the existing sparse approaches
into two groups: bispectral separation [14,16–19] and computational separation [13,15,20,21].
Using our notation from Sec. 2.2, we could say that bispectral separation methods rely on
high-resolution spectral detectors, meaning ns>30. Such tailored methods can operate under a
very small number of illuminants nl, e.g., two broadband illuminants [16], two high-frequency
illuminants [14], or even just one spiky illuminant [18]. On the other hand, the computational
separation methods employ more complex algorithms to allow cheaper detectors, e.g., just a
simple RGB camera with two broadband illuminants [15] or a set of narrowband illuminants
[20]. Using this terminology, our method would certainly fall into computational separation.

Out of all of these methods, only these by Suo et al. [13], Blasinski et al. [21], and ours are
general enough to resolve materials with more than one fluorophore, mainly because they do not



Research Article Vol. 31, No. 15 / 17 Jul 2023 / Optics Express 24351

build on the assumption of Kasha’s rule and separability (Sec. 2.1). The algorithm of Blasinski
et al. reaches higher accuracy than Suo et al., it employs and unifies the concepts from the other
methods, and it is the most recent method. For the purpose of comparisons, we refer to it as the
state of the art.

3. Estimating fluorescence with Gaussian distributions and bounded MESE

We design a sparse measurement algorithm that finds a solution to Eq. (4). It ensures that the
Donaldson matrix is smooth and plausible by parametrizing it via Gaussian mixtures and bounded
MESE, and it finds the final estimate using gradient-descent optimization.

3.1. Overview

Input The inputs of our algorithm are sparse measurements of the material following Fig. 3
and Sec. 2.2. The inputs include the spectra l1(λ), . . . , lnl (λ) of the nl illuminants, the spectral
sensitivities s1(λ), . . . , sns (λ) of the detector’s ns spectral channels, and the nl ×ns detected values
of the material’s reflectances corresponding to Ij,k in Eq. (4) and Fig. 3(d).

Output The output of our algorithm is an estimate of the material’s Donaldson matrix Φ.
Because it is represented parametrically in our algorithm, it has a small memory footprint, and a
fully continuous signal Φ can be easily reconstructed with any spectral resolution.

Processing We split the estimate Φ = Φdiag + Φfluo into the off-diagonal elements Φfluo
(Fig. 4(ab)) and the diagonal Φdiag (Fig. 4(c)). The fluorescence Φfluo is represented by a
multivariate Gaussian mixture model (GMM), which consists of individual two-dimensional
Gaussian distributions parametrized by their intensity, mean, and covariance (Sec. 3.2). The
diagonal Φdiag is represented by a small set of trigonometric moments that define a continuous
signal given by the bounded maximum entropy spectral estimate (bounded MESE) (Sec. 3.3).
Using Eq. (4) then allows estimating the whole matrix via gradient-descent optimization (Sec.
3.4).

Fig. 4. Illustration of our parametric model. The Gaussian mixture model (GMM) consists
of independent distributions. Their contours and mean values (× symbols) are visualized in
(a), and their superposition Φfluo in (b). The pure reflectance Φdiag (c) is visualized with its
discrete samples (blue) together with the final bounded MESE (red).

3.2. Fluorescence as a Gaussian mixture

A two-dimensional Gaussian mixture model (GMM) is a linear superposition of Gaussian
distributions (Fig. 4(ab)). Following Hua et al. [7], we define it as a weighted sum of ng
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individual Gaussians:

f (x) =
ng∑︂

m=1
wmN(x | µm, Σm), (5)

where N(x | µ, Σ) : R2 → R is a two-dimensional Gaussian distribution:

N(x | µ, Σ) =
(︂
2π

√︁
|Σ|

)︂−1
exp

(︃
−

1
2
(x − µ)TΣ−1(x − µ)

)︃
, (6)

and wm>0, µm ∈ R2, and Σm ∈ R2×2 are the weight, mean, and covariance matrix of the m-th
distribution in the mixture. In our context, the GMM and Eq. (6) are interpreted to be in the
wavelength domain, meaning x = (λi, λo) is a vector of the incoming and outgoing wavelengths,
and µ = (µi, µo) represents the mean incoming and outgoing wavelengths. The pure fluorescence
of the Donaldson matrix is then defined as Φfluo(λi, λo) = f (x).

This concept follows the recent publication of Hua et al. [7], who worked on compressing
fluorescent textures in photorealistic rendering. They observed that the fluorescence distribution’s
shape resembles Gaussian distributions and it can be modeled as a sum of a few Gaussians.
We use this observation in the new context of measurements as it allows using only a few
parameters to control the fluorescence while also ensuring that the result will be physically
plausible to a certain degree. Furthermore, the estimate naturally supports multiple fluorophores,
it is continuous and can be evaluated at any wavelength resolution, and it is directly compatible
with efficient importance sampling in Monte Carlo rendering [7]. We observed that the GMM is
a smooth, differentiable function that behaves well in the gradient-descent optimization setting.

3.3. Diagonal as a bounded MESE

We represent the diagonal Φdiag as a one-dimensional bounded maximum entropy spectral
estimate (bounded MESE, Fig. 4(c)). Following Peters et al. [22], we know that a bounded
2π-periodic signal g(φ) ∈ [0, 1] can be represented by m + 1 complex Fourier coefficients
c = (c0, . . . , cm), which can also be viewed as the signal’s trigonometric moments:

c =
∫ π

−π
g(φ)F (φ)dφ ∈ Cm+1, (7)

where F (φ) is the Fourier basis:

F (φ) =
1

2π
(exp(−ijφ))mj=0 ∈ Cm+1. (8)

With the whole signal g(φ) reduced to only m + 1 complex coefficients, we also need a way to
solve the inverse problem: finding a signal that corresponds to the given coefficients. Broadly
speaking, MESE [22,23] is the result of such an inverse process: it is an estimated signal that best
corresponds to the given coefficients c, and by “best" we mean that it maximizes Burg entropy, so
the estimate is a relatively smooth signal. This is a memory compression mechanism, as a whole
curve is represented by only a few numbers, but it also acts as a smoothing operator, because after
computing the first few moments of a noisy signal, its MESE will be a smoother signal (Fig. 4(c),
compare the blue samples to the red curve).

Spectral reflectances, in our case Φdiag(λ) ∈ [0, 1], are generally not periodic signals and they
are additionally bounded due to energy conservation. Hence, in our algorithm, we follow Peters
et al.’s method [22] for computing bounded MESE and transforming them to reflectance spectra
by mirroring and wavelength-mapping the signals. Such transformed moments also lose their
imaginary part, so they become real instead of complex numbers. The meaningful ranges of the
moment values are c0 ∈ [0, 1] and cj ∈ [− 1

π , 1
π ] for j ∈ {1, . . . , m}. We confirm Peters et al.’s

observation that 8 moments (m = 7) are sufficient for reflectance spectra.
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3.4. Estimating the Donaldson matrix via gradient descent

The GMM and bounded MESE models from Secs. 3.2 and 3.3 together form a parametric model
that describes a continuous Donaldson matrix Φ with only a handful of parameters (Fig. 4).
Plugging our model into Eq. (4) leads to an inverse problem, in which these model parameters
are the unknown variables that we need to solve for.

This problem has significantly fewer parameters and is more constrained than just naïvely
discretizing the whole matrix, which in our early experiments did not lead to any meaningful
results. For example, a Donaldson matrix in the wavelength range of 400 to 700 nm discretized
with a 10 nm resolution has 496 free parameters (the whole matrix has 31 · 31 = 961 elements,
out of which 31 are the diagonal, 465 are the upper left triangle, and 465 are zero), whereas our
parametric model has almost ten times fewer parameters.

Our parametric model is non-linear and non-convex, since a sum of multiple Gaussian
distributions can have more local extrema. Fortunately, it has well-defined derivatives, which
allows using numerical optimization algorithms based on gradient descent [24]. We take
inspiration from the field of deep learning, where non-convex optimizations are often solved
by adaptive step sizes. Specifically, we noticed that the adaptive moment estimation algorithm
Adam [25] converges well to estimates with high accuracy.

Optimized parameters In order to minimize Eq. (4), the optimization algorithm estimates
the following parameters:

• for each Gaussian distribution, its weight w>0, mean wavelength µ ∈ [400, 700]2, and
covariance matrix Σ ∈ R2×2 (we used only two non-zero elements to prevent rotations of
the distribution), in total 5 real numbers per distribution,

• for the diagonal, the trigonometric moments c0 ∈ [0, 1] and cj ∈ [− 1
π , 1

π ] for j ∈ {1, . . . , m}

defining the bounded MESE curve, in our case using 8 moments (m = 7).

While estimating the trigonometric moments directly via the optimization algorithm is possible
and leads to valid results, in practice, it is computationally expensive and also hinders the accuracy.
Hence, during the optimization, we instead discretize the diagonal with a 10 nm resolution,
leading to 31 parameters (visualized by the blue crosses in Fig. 4(c)), and we let the optimizer
estimate them individually with a simple penalization to keep them in the bounded [0, 1] range.
Only then, we compute the 8 trigonometric moments corresponding to the discretized diagonal,
which finally gives a continuous smooth bounded MESE curve (red curve in Fig. 4(c)).

Initial estimates For the optimization to converge, each parameter needs to be initialized within
a valid and meaningful range. Experimentally, we verified that the specific initialization does not
play such an important role. We initialized the diagonal as a constant function of 0.5 = 50%
reflectance, and each Gaussian distribution with a covariance matrix Σ = {{4000, 0}, {0, 4000}}
to make their support large enough to reach from the edges to the center, weight w = 100,
and their mean wavelengths covering the whole triangle, making sure every corner is covered,
i.e., for 6 Gaussian distributions: (400, 400), (550, 550), (700, 700), (550, 400), (700, 400), and
(700, 550) nm.

Iterations and step sizes To ensure fast convergence, we ran each optimization in three loops
with decreasing step sizes. Hence, the Adam algorithm is executed 3 times per Donaldson matrix:
first for 100 iterations with a step size of 0.10; second for 200 iterations and 0.05; and third for 800
iterations and 0.02. The second and third loops are initialized with the parameters that yielded
the lowest error in the previous loop. Furthermore, the step sizes need to be scaled for each
parameter separately, because different parameters have different ranges, e.g., the reflectance is
only valid between 0 and 1, whereas the Gaussian covariance matrix can reach large values. The
exact values are not critical, because Adam is an adaptive algorithm. In our case, we multiplied
the reflectance’s step size by 0.05, and each Gaussian parameter’s step size by 200, e.g., the
actual step size of the Gaussian mean wavelength in the first loop would be 0.10 · 200 = 20.
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3.5. Algorithm implementation

The algorithm itself was implemented in Python and the source codes together with accompanying
data are attached in Code 1, Ref. [26]. Most of the implementation is straightforward application
of the equations in the paper, with one exception, which is the optimization itself. The gradient-
descent algorithm requires computing the gradients (partial derivatives) of Eq. (4) w.r.t. the
parameters of the Gaussian distributions and the diagonal. We achieved that using the jax
auto-differentiation framework [27]. With such a naive implementation, the run-time per material
is a couple of minutes, but since it can be trivially executed in parallel, estimating a batch of
32 materials on a 32-core CPU takes the same time as a single material. For comparison, the
implementation of Blasinski et al. [21,28] is faster, taking a couple of seconds per material, but
that is for the price of lower accuracy.

4. Evaluation

We evaluate our method on a combination of synthetic data and real measurements. We first
introduce examples of optical setups compatible with our method (Sec. 4.1), then our synthetic
dataset (Sec. 4.2), and then our real measurements (Sec. 4.3). The evaluation itself is both
quantitative, based on commonly used error metrics (Sec. 4.4), and qualitative, based on visual
examinations of the matrices, spectra, and predictive image rendering (Sec. 4.5).

4.1. Optical setups

We introduce two sets of illuminants (LEDs and color filters) and two kinds of detectors (a
spectrometer and a multispectral sensor chip) to demonstrate the variability and compatibility of
our method. These illuminants and detectors can be used interchangeably, which gives 2 · 2 = 4
different examples of compatible measurement setups. We illustrate some of them in Fig. 5 and
their spectra in Fig. 6.
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Fig. 5. Examples of optical setups with different optical components compatible with our
algorithm. The abbreviations L1, L2, S1, and S2 are from Sec. 4.1.

Measurement geometry Figure 5 shows what is often called a 45°/0° measurement: a diffuse
material sample is illuminated under approximately 45°, while the detector is placed orthogonally
to the sample to avoid specular reflections. To measure how the material performs under varying
angles, our method could in principle be extended to a fully goniophotometric setup, e.g., with
the detector on a rotating arm. Our algorithm would then reconstruct one Donaldson matrix per
each angle separately, and these results could be interpolated if needed.

Calibration The Donaldson matrix is a unitless distribution that describes ratios of the reflected
and re-emitted energy, so the exact units of l1(λ), . . . , lnl (λ) and s1(λ), . . . , sns (λ) are arbitrary.
It is critical to normalize the values with respect to a single value to ensure that the estimated
ratios in the Donaldson matrix are meaningful. For example, Fig. 6(bd) are normalized to the
peak of the strongest spectrum. To calibrate the illuminants, we used Spectralon, which has a

https://doi.org/10.6084/m9.figshare.23567073
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Fig. 6. Measured spectra of our exemplar optical setups from Sec. 4.1 and Fig. 5.

guaranteed 99% diffuse reflectance in the whole visible spectrum. By illuminating the Spectralon
with each of the illuminants, the illuminant spectra are obtained from the known reflectance of
99%. It is also important that the detector’s spectral sensitivity is calibrated beforehand, such
that the detected peaks have correct intensities. Many spectrometers and detectors come factory
pre-calibrated, or their calibration is possible with a stabilized light source of a known spectrum.

Examples of illuminants (L1, L2) The goal is to have a set of illuminants distinctly covering
the intended spectral range, in our case the visible range from around 400 to 700 nanometers.
We demonstrate two affordable options. The first option (denoted L1) is light-emitting diodes
(LEDs), which are readily available with various spectra. In our example (measured in Fig. 6),
we use 6 narrowband and 2 broadband (warm white and cold white) LEDs from OptoSupply with
the cost of about 0.50 U.S. dollars per piece. The second option (denoted L2) is placing different
color filters in front of a white illuminant. In our example (measured in Fig. 6), we purchased
colored foils from a photography equipment store (about 25 U.S. dollars) and we placed them
in front of a 200 W white LED panel (about 140 U.S. dollars). Note that it was necessary to
add an additional near-ultraviolet LED (about 0.50 U.S. dollars), otherwise the spectrum would
not cover the wavelengths around 400 nm. The main difference between L1 and L2 is that L1
relies on multiple LEDs where each is electronically controlled, whereas in L2, the filters can be
exchanged quickly by hand.

Examples of detectors (S1, S2) An optimal spectral detector in our case can differentiate
between reflected light throughout the whole spectral range. The most straightforward option
(denoted S1) is a spectrometer, which can easily have a sub-nanometer resolution and hundreds of
spectral channels. An entry-level USB spectrometer (Ocean Insight USB-650) can be purchased
for around 2000 U.S. dollars. A significantly more low-cost solution (denoted S2) relies on a
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multi-spectral sensor, which is a small chip containing a few pixels, each with a different spectral
sensitivity. In our example (measured in Fig. 6), we used the 8 narrowband channels of the AMS
AS7341 sensor (about 25 U.S. dollars).

Cost comparison In Table 1, we summarize the aforementioned rough estimated costs of the
individual optical setups L1-S1, L1-S2, L2-S1, and L2-S2. We also compare these costs to the
reference setup that is used for ground truth measurements, which includes a monochromator,
a broadband Xenon light source including its power supply, and a spectrometer. Because the
manufacturer of our reference setup does not exist anymore, we instead decided to use the publicly
available price lists of Newport Corporation (newport.com, sections “CS130B 1/8m Configured
Monochromator" and “Low Power Xenon (Xe) Research Light Sources") to estimate the prices
for the monochromator and light source.

Table 1. Rough estimated costs for the individual optical setups.

Reference setup L1-S1 L1-S2 L2-S1 L2-S2

Illuminants
Monochromator: 8,500 USD

4 USD 4 USD 165 USD 165 USD
Xe light: 10,000 USD

Detector 2,000 USD 2,000 USD 25 USD 2,000 USD 25 USD

Total 20,500 USD 2,004 USD 29 USD 2,165 USD 190 USD

4.2. Synthetic dataset and simulated measurements

For evaluating fluorescence estimation methods, it is common to simulate measurements on
synthetic datasets of Donaldson matrices [14,16,21], i.e., instead of performing an actual
measurement, the optical setup is only simulated to evaluate the method’s performance. Such an
approach has many benefits: the ground truth matrices are precisely known, the simulations are
efficient, and the synthetic datasets can contain many materials, so the evaluation is statistically
meaningful compared to real measurements on only a few isolated samples.

Base dataset We use a dataset of real materials that were measured by Gonzales [29], who
directly acquired the Donaldson matrices using a specialized bi-spectral spectrophotometer
(Labsphere BFC-450), which has two monochromators measuring the ground truth as shown
by Donaldson [12] (Sec. 2.1). These ground truth matrices are available in a 10 nm resolution
and they cover our range of interest of 400 to 700 nm. As the matrices were acquired with a real
setup, they already contain significant noise, hence no synthetic noise was added. We picked 32
samples with strong fluorescence, including color pigments, polymer clays, golf balls, textiles,
papers, and index cards, all showing various reflectances and levels of fluorescence. Out of these
samples, 28 contained a single fluorophore, and we judged 4 to have two fluorophores.

Enlarging the dataset To enlarge the dataset, we further created 56 synthetic Donaldson
matrices containing two fluorophores. First, we sorted the original 28 matrices based on their
emission peaks (to prevent entirely overlapping spectra), and then we summed the Donaldson
matrices while preserving the original diagonals (reflectances). Physically, this would be roughly
equivalent to overlaying two transparent fluorescent slides with different fluorophores, which was
done by Blasinski et al. [21].

Simulating the measurements Because we know the parameters of the optical setups from
Sec. 4.1, mainly the illuminant and sensor spectra lj, sk (Fig. 6), and we know the ground truth
matrix Φ from the synthetic dataset, we can use Eq. (3) to compute Ij,k (the reflectances that
the sensor detects). These values are then used as the sparse inputs to the actual fluorescence
estimation method. The method then outputs the estimated matrix Φ̂. The similarity between Φ̂
and Φ is then evaluated (Secs. 4.4 and 4.5). A perfect estimation method would output Φ̂ = Φ.
The data and the algorithm for these simulations are part of the attachment Code 1, Ref. [26].

https://doi.org/10.6084/m9.figshare.23567073
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4.3. Real measurements

Apart from the synthetic measurements, we also performed real measurements. Specifically,
we measured fluorescent papers of different colors and fluorophores. To obtain ground truth
measurements of the same materials, we relied on a tunable monochromator by AMKO GmbH,
with a spectral range from 350 nm to 780 nm. We illuminated the sample in 10 nm steps, while
the reflected light was being measured by a spectrometer. From these data, the ground truth
Donaldson matrix was reconstructed [12]. When obtaining the ground truth matrices, the material
needs to be illuminated under the same measurement geometry as when obtaining the sparse
measurements. We solved this by using optical fiber to direct the light from the monochromator
and from the LEDs into the exact same spot on the material samples. Each measurement was
then performed once with the monochromator (for the ground truth Donaldson matrix), and once
with the LED spectra (for the Donaldson matrix estimated using our method). Our experiments
confirmed that our method works in real conditions, and we discuss the accuracy of the estimated
matrices of real and synthetic data together in Sec. 4.5.

4.4. Quantitative evaluation

We evaluate the accuracy of our method on the various low-cost optical setups from Sec. 4.1. We
focus on the synthetic dataset as it allows for drawing statistically meaningful conclusions. The
exact same inputs were also evaluated using fiToolbox [28], an open-source implementation
of the state-of-the-art method by Blasinski et al. [21]. This allows us to directly compare the
estimated matrices between our method, the state of the art, and ground truth.

Root-mean-square error A commonly used quantitative metric is the root-mean-square error
(RMSE) of the estimated matrices compared to the ground truths. Since the diagonal Φdiag
and fluorescence Φfluo can be separated, we evaluate their errors independently, which gives
more insight into the algorithms’ behaviors. We compare the RMSE on all combinations of the
exemplar optical setups from Sec. 4.1, namely L1-S1, L1-S2, L2-S1, and L2-S2, which vary by
their illuminants (L) and sensors (S). The resulting errors are visualized in Fig. 7 using standard
boxplots, which show the medians, quartiles, minimum and maximum errors, and outliers, all
separately for the four optical setups, and for one and two fluorophores.

Following Fig. 7, we can conclude that our algorithm reaches lower errors than the state of the
art, and it is also more stable with fewer outliers. The biggest difference is visible in the L1-S1
setup on the single fluorophore dataset, where our fluorescence median error is three times lower
than Blasinski et al. Notice that our algorithm’s error significantly decreases with better optical
setups (L1-S1 vs. L2-S2, the worst setup), whereas Blasinski et al. reaches similar errors in most
setups. In the original publication by Blasinski et al. [21], Fig. 4, we can see that for a small
number of illuminants, increasing the sensor resolution (camera filters) above some point does not
improve the accuracy anymore, whereas our algorithm still takes advantage of the extra resolution
to lower the estimation error. The only test in which our algorithm underperformed was the most
difficult L2-S2 setup on the two-fluorophores dataset, where Blasinski et al. benefitted from their
pre-learned basis functions.

Color accuracy Another important aspect is the color accuracy under narrowband illumination
provided by our estimates (Fig. 8) to ensure that our method is suitable for predictive rendering of
such scenarios in computer graphics. Given the estimated Donaldson matrices, we evaluated the
error in predicting the color that is reflected from the fluorescent materials when illuminated by
varying monochromatic illuminants. We calculated the color difference using the standardized
perceptual metric CIEDE2000 (denoted ∆E00, [30]). Following Fig. 8, our color predictions
are consistently and significantly more accurate than in the estimates of Blasinski et al. The
highest differences can be seen for low wavelengths, because most fluorophores in our dataset
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Fig. 7. Quantitative evaluation comparing the root mean square errors (RMSE) of Donaldson
matrices estimated with our method (orange) and the state of the art (blue, Blasinski et al.
[21]). The boxes show quartiles, horizontal lines are median errors, whiskers minimum and
maximum errors, and the plus symbols are outliers. The L1-S1, L1-S2, L2-S1, and L2-S2
correspond to different optical setups per Sec. 4.1.

are triggered with a blue illuminant. Towards red wavelengths, the reflected color becomes
independent of the fluorescence, it is given mostly by the pure reflectance (diagonal), and hence
the overall color difference is lower.

Fig. 8. Quantitative evaluation measuring the color difference (CIEDE2000, ∆E00 [30],
lower is better) between the ground truth materials and our estimates (orange boxplots), and
the state-of-the-art estimates (blue boxplots, Blasinski et al. [21]). The vertical axis shows
how much the predicted reflected color is wrong, given the material was monochromatically
illuminated with the wavelength on the horizontal axis. The dataset in this plot is the
single-fluorophore, L1-S1 optical setup.
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4.5. Qualitative evaluation

While the previous section focused on objective quantitative metrics using the synthetic dataset,
we now perform a qualitative examination of all our data to understand the behavior of the
estimation methods in various contexts.

Visualized matrices In Figs. 9 and 10, we show a small subset of ground truth Donaldson
matrices and their estimates using our algorithm and state of the art. We chose 2 examples from
the synthetic one-fluorophore dataset, 1 example from the synthetic two-fluorophores dataset,
and 2 examples from real measurements. While one can see that the RMSE is typically lower for
our estimates compared to Blasinski et al., the major observation is that the estimates of Blasinski
et al. suffer from the aforementioned oscillations.

Fig. 9. Examples of Donaldson matrices of five different materials and their estimates using
the L1-S1 optical setup, comparing our method (a,b) to ground truth (c) and the state of the
art (d,e). The top three measurements are synthetic, the bottom two are real.

For example, in Fig. 9, all the ground truth matrices have either a single fluorescent peak
or two peaks. While our estimates manage to reconstruct the number of peaks with a high
accuracy, Blasinski et al. often overestimate the number of peaks, and the Donaldson matrices
then resemble ripples on the water surface. In Fig. 10, we can see a similar effect in the reflectance
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Fig. 10. Examples of ground truth and estimated pure reflectances (diagonals) of the five
materials from Fig. 9 under identical conditions, comparing our method (a) to the state of
the art (b). The left three measurements are synthetic, the right two are real.

spectra: where the ground truth and our estimates have a relatively flat spectrum, the estimates of
Blasinski et al. often oscillate and create waves, which are not present in the ground truth spectra.

Using the estimates in predictive rendering Furthermore, we also present an example of
using our estimated Donaldson matrices in the Monte Carlo predictive renderer ART [31], which
is open-source and supports fluorescent materials. In Fig. 11, we show a comparison of six
images rendered with ground truth matrices, and matrices estimated with our method and by
Blasinski et al. [21] for two fluorescent materials lit by a monochromatic illuminant at 560 nm.
This is an illustration of Fig. 8: the importance of having a consistently low ∆E color error over
the illuminants to ensure high color accuracy. The renders have been tonemapped with the exact
same parameters to ensure that the exposure and contrast do not vary from result to result.

Fig. 11. A fluorescent ball is monochromatically illuminated (560 nm). The ball in each
rendered image has a different Donaldson matrix. The balls (a) and (d) use the ground truth
matrices from the material dataset, and the balls (b)-(c) and (e)-(f) use matrices estimated
with our method, and with Blasinski et al. [21].

5. Conclusion

We have presented a simple and affordable technique for estimating fluorescence in materials.
The inputs for our algorithm are easily acquirable with low-cost optical setups, and the output
is in the form of a parametrized Donaldson matrix with a small memory footprint, usable in
any standard application including predictive and photorealistic rendering. We showed that our
estimates have objectively lower errors than the state-of-the-art algorithm on the exact same
input data, our algorithm is also more stable and robust with a lower number of outliers, and our
estimates are qualitatively better and more suitable for color-accurate predictive rendering.

Our paper’s core principle was the parametrization of the Donaldson matrix by a Gaussian
mixture model (GMM) and bounded maximum entropy spectral estimate (bounded MESE), which
can be done in a differentiable way compatible with gradient-descent optimization algorithms.
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This makes it compatible with sparse measurements and makes it possible to measure fluorescence
accurately without specialized and expensive bi-spectral spectrophotometers.

Future work We can see several minor directions for future work. One improvement would
consist of a faster implementation that does not rely on auto-differentiation, and instead computes
derivatives using equations derived by hand, possibly accelerated on the GPU. Furthermore, the
optimization itself could consist of more adaptive steps, such that only one Gaussian distribution
is estimated at first, and more Gaussians are added subsequently to allow faster convergence for
materials with only one fluorophore. Finally, our method allows anyone to quickly build a dataset
of Donaldson matrices of common materials, which would be useful in computer graphics for
predictive and photorealistic rendering.
Funding. Grantová Agentura České Republiky (GAČR-22-22875S); Horizon 2020 Framework Programme (956585);
Univerzita Karlova v Praze (SVV-260699).
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6 Conclusion
Predictive rendering plays an important role in the modern digital era. It allows
the creation of digital twins, such that the appearance of real objects can be
precisely represented in the virtual world. That has numerous applications for
designers, prototyping, visualizations, or e-commerce, but also industrial appli-
cations that rely on computational optimization, such as in 3D printing.

Rendering, whose fundamentals were covered in Chapter 2, requires optical
properties of the materials in the scene. It is evident that rendering can only
be as accurate as the properties themselves. Measuring the optical properties is
often straightforward if we have unlimited time and finances and we can afford to
build specialized measurement setups in a fully equipped optical laboratory with
expensive equipment and calibrated samples. Unfortunately, measurement meth-
ods that would be affordable yet accurate enough for predictive rendering were
not available for more complex materials exhibiting translucency or fluorescence.

In this thesis, we interpreted material measurements as an inverse problem
to rendering (Chapter 3), which allowed us to carefully design two affordable
measurement methods. In Chapter 4, we included our publication specialized
in translucent materials [Iser et al., 2022]. Using only three point measurements
with a spectrometer, we recover the spectral absorption and scattering coefficients
and the phase function anisotropy factor of a material sample. The estimates are
based on Monte Carlo predictions and pre-computed lookup tables, and the ac-
curacy was demonstrated on full-color 3D printing. In Chapter 5, we included
our publication on affordable fluorescence measurements [Iser et al., 2023]. The
unknown Donaldson matrix of a material sample is estimated from sparse mea-
surements under a small set of illuminants, which is allowed by parametrizing the
matrix using Gaussian distributions and bounded MESE, and using gradient-
descent optimization. The accuracy significantly surpassed previous work.

We believe that both publications together have demonstrated that it is pos-
sible to design specialized measurement methods that are affordable, yet do not
compromise the accuracy that is required in predictive rendering. Working with
low-cost optical components is challenging and requires carefully examining the
problem domain, but the results have a significant potential impact by improving
the accessibility of measurements, showing which relations between optical prop-
erties and appearance are important, and allowing the potential miniaturization
and integration of the methods into affordable standalone optical devices. And
it is possible that one day, every smartphone will be capable of simply scanning
the materials around us and immediately integrating them into virtual reality.

Future challenges
In the grand scheme of things, we believe that the major future challenge is to
find a method that can estimate the optical properties of arbitrary materials from
as few observations as possible. Eventually, it may become possible with modern
inverse rendering approaches. Currently, our methods are specialized in specific
materials and do not scale to generic materials that may combine more of these
effects. For example, we are not aware of any method that would be capable
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of measuring fluorescent participating media that exhibit absorption, scattering,
and fluorescence together. While it may sound like a hypothetical problem at
first, such materials are actually common because many fabrics and plastics in
everyday items contain optical brighteners.

Fluorescence is still a phenomenon that is not integrated into many frame-
works, simply because its effect was usually considered negligible for photorealistic
rendering. However, in predictive rendering, the discrepancies caused by not tak-
ing fluorescence into account are, unfortunately, significant, especially when we
are expecting an exact match between a virtual material and a real one.

Even in 3D printing, there are still unsolved problems in the predictions. Even
though our method in Chapter 4 is capable of measuring the optical properties
of the base inks, when the inks are halftoned and printed together, various inac-
curacies that stem from the printing process itself propagate to the appearance
of the final printout. In the future, we would like to measure and characterize
the printing process including its inaccuracies, for example, the surface roughness
and anisotropy due to the printhead movements.

There are also other optical properties that are not trivial to measure with-
out specialized equipment. Examples include spectral measurements of spatially
varying translucent materials, such as fabrics, especially those with complex pat-
terns, or anisotropic materials that must be scanned from many angles. We look
forward to future research on material measurements optimized for predictive
rendering, and we hope that affordability remains an important factor.
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diative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable
Rendering. Transactions on Graphics (Proceedings of SIGGRAPH), 39(4):
146:1–146:15, July 2020. ISSN 0730-0301. doi: 10.1145/3386569.3392406.

Merlin Nimier-David, Thomas Müller, Alexander Keller, and Wenzel Jakob. Un-
biased inverse volume rendering with differential trackers. ACM Transac-
tions on Graphics, 41(4):44:1–44:20, July 2022. ISSN 0730-0301. doi: 10.
1145/3528223.3530073. URL https://dl.acm.org/doi/10.1145/3528223.
3530073.

Thomas K. Nindel, Mohcen Hafidi, Tomáš Iser, and Alexander Wilkie. Auto-
matic inference of a anatomically meaningful solid wood texture from a sin-
gle photograph, February 2023. URL http://arxiv.org/abs/2302.01820.
arXiv:2302.01820 [cs].
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