
BACHELOR THESIS

Miroslav Valach

Diplomacy-Based Strategy Game

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: Mgr. Martin Pilát, Ph.D.

Study programme: Computer Science

Study branch: System Programming

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the

cited sources, literature and other professional sources. It has not been used to

obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

Author’s signature

i

I dedicate this thesis to my godchildren, whose presence and joy have been a

constant inspiration. Additionally, I would like to express my gratitude to my

supervisor, Mgr. Martin Pilát, Ph.D., for invaluable guidance. Finally, I extend my

thanks to my family and friends for supporting me throughout my studies.

ii

Title: Diplomacy-Based Strategy Game

Author: Miroslav Valach

Department: Department of Theoretical Computer Science and Mathematical

Logic

Supervisor: Mgr. Martin Pilát, Ph.D., Department of Theoretical Computer Science

and Mathematical Logic

Abstract: Strategy games are known for allowing players to choose from a vast

array of different strategies that can be employed to achieve victory. The majority

of these games revolve around the standardized pillars of 4X (Explore, Expand,

Exploit, Exterminate) games such as Civilization or Stellaris. However, these

pillars often encourage conquest or aggressive means to achieve victory, thereby

rendering a peaceful approach as a rarely viable strategy to pursue.

In this project, our aim was to create a strategy game that focuses on player

interaction through diplomacy. The main goal is to provide players with freedom

similar to Diplomacy, where players can and have to utilize multilateral politics

in order to achieve victory.

As a proof of concept, we have successfully developed a game prototype using

Unreal Engine. The prototype showcases a diplomacy-based game with multilat-

eral diplomacy at its core. The gameplay demonstrates the viability of diplomacy

as the primary strategy for achieving victory in video games.

Keywords: strategy game, diplomacy, multilateral politics, multiplayer, diplomatic

victory

iii

Contents

Introduction 4

1 Analysis 6
1.1 Terminology . 6

1.2 Real-Time Strategy games . 7

1.2.1 Age of Empires IV . 7

1.3 Turn-Based Strategy games . 8

1.3.1 Sid Meier’s Civilization VI 9

1.4 Grand Strategy games . 11

1.4.1 Europa Universalis IV 12

1.4.2 In-between genres . 16

1.5 Board games . 17

1.5.1 Diplomacy . 17

1.6 Card games . 17

1.6.1 Marvel Snap . 17

2 Game Design 19
2.1 Player Count . 19

2.2 Timekeeping . 20

2.3 Game length . 21

2.4 Actions . 21

2.5 Diplomacy . 22

2.5.1 Decisions . 22

2.5.2 Deals . 23

2.6 Resources . 24

2.7 Map . 25

2.8 Possible design improvements 25

2.9 Premise . 26

1

3 Developer Documentation 27
3.1 Development environment and tools 27

3.2 Setting up development environment 27

3.3 Project Structure . 28

3.4 Architecture and Networking . 29

3.4.1 Synchronization . 29

3.5 Simulation . 31

3.5.1 World State . 33

3.5.2 Actions, Modifiers and Resources 33

3.5.3 Action Administrator . 34

3.6 Important Types . 34

3.6.1 User Interfaces . 34

3.6.2 Game Instance . 36

3.6.3 Maps . 36

3.6.4 Controls and Camera . 36

3.6.5 World Map . 36

3.7 Expanding Actions, Modifiers and Resources 37

3.8 Working with AI API . 37

4 User documentation 39
4.1 Obtaining and Running the Game 39

4.2 Menu and Settings . 39

4.2.1 Create and Join . 39

4.3 Lobby . 42

4.4 Gameplay . 43

4.4.1 Controls . 49

4.4.2 Gameplay Overview . 49

4.4.3 AI Players . 50

5 Results 53
5.1 Project Complexity . 53

5.2 Artificial Intelligence . 53

5.3 Future Extensions . 54

5.3.1 Importance of Incomplete Information and Espionage . 54

5.3.2 Stratagems . 55

5.4 Problems of Social Interaction 55

Conclusion 57

Abbreviations 59

2

Bibliography 60

3

Introduction

In this thesis, we seek to explore and create a prototype for a strategy game

focused on diplomacy. The interaction between players can empower the design

of strategy games. This allows players to express themselves in a way that is not

present in standard economic and military approaches. A secondary goal is to

create an API for artificial intelligence that enables players to utilize the system

with and against an AI opponent.

Motivation
Strategy games are diverse and each focuses on different type of strategies. From

city-builders to grand strategy games. Diplomacy is an aspect that these games

often lack or is contained as an afterthought. Even the common acronym 4X

stands only for Explore, Expand, Exploit and Exterminate. Games such as Sid
Meier’s Civilization® VI [1], Europa Universalis IV [2], Stellaris [3] and others fail

to make diplomacy equal to other aspects. In most cases, extermination in the

form of conquest is always preferred and in many cases it is the optimal choice.

The usefulness of diplomacy is very limited, and upholding or breaking a deal is

often inconsequential. Furthermore, all other game mechanics overshadow the

impact of diplomacy on the game’s outcome.

Goal
As a part of this thesis, we aim to create a prototype for a multiplayer strategy

game. This prototype should distinguish itself by being designed with diplomacy

in mind. Various mechanics and design decisions are expected to actively en-

courage players to engage in diplomacy. At the same time, we want to make it

an engaging and fun part of the core gameloop. The game should be playable

against artificial intelligence. Diplomatic mechanics need to be well defined as

part of the API.

4

Structure
In the first chapter, we analyze diplomatic mechanics across various strategy

games in different sub-genres and mediums. The second chapter explains design

behind our prototype. That is, how to design a game with diplomacy as the core of

its identity. The third chapter covers implementation of the prototype. The fourth

chapter describes how to use the prototype. Finally, the fifth chapter summarizes

the results and explores ways to expand upon them.

5

Chapter 1

Analysis

In this section, we take a closer look at a few games. They serve as the primary

source of inspiration for this thesis. We keep the analysis short by focusing

only on diplomatic interactions between players. Gathering resources, building

structures, combat and similar interactions are not covered. Our diplomacy model

should work with most common designs of these features. Games take different

approaches to designing diplomacy and player interaction. We are focused on

creating a strategy game in the spirit of Grand Strategy Games (GSG) like Stellaris
[3]. Traditional board games and card games are analyzed as well.

1.1 Terminology
Definition of diplomacy can be found in The Palgrave Macmillan Dictionary of
Diplomacy [4]:

The conduct of relations between *sovereign states through the medium of offi-
cials based at home or abroad, the latter being either members of their state’s
*diplomatic service or *temporary diplomats.Diplomacy is therefore the
principal means by which states communicate with each other, enabling them
to have regular and complex relations.

This definition is also explored in “Digitising Diplomacy: Grand Strategy Video

Games as an Introductory Tool for Learning Diplomacy and International Rela-

tions” [5], where it is used in terms of strategy games.

In terms of our game, players control factions, acting as diplomats. The commu-

nication is achieved through player interactions within the game mechanics.

6

1.2 Real-Time Strategy games
Common examples of Real-Time Strategy (RTS) games include Age of Empires
IV [6], StarCraft II [7], Warcraft III: Reforged [8] and The Lord of the Rings: The
Battle for Middle-earth [9]. The definition of RTS as a genre is subjective. In

general it covers all strategy games, where players act simultaneously in real-time.

The shared focus of aforementioned games is fast-paced playstyle in a 1v1 gamem-

ode, where two players face each other. Often, the focus is on player expression

through mechanical skill or simply maximizing effective Actions Per Minute

(APM). Match results depend more on APM than on the underlying strategy.

Especially for players of similar skill. Matches commonly take less then an hour.

1.2.1 Age of Empires IV
We chose Age of Empires IV due to its popularity and author’s familiarity with

the game. Age of Empires IV shares diplomacy and tributes mechanics with

other entries in the series. With author’s popular mod Advanced Game Settings
[10], diplomacy is covered in more extensive manner over the previous entries.

Diplomacy in the Age of Empires IV can be split between the Tributes and

Relations as seen in Figure 1.1.

Sending tributes is a mechanic that enables player to send resources to another

player. Each transaction is taxed. Changing relations is a mechanic that enables

players to switch attitude towards other players. Community refers to relations

as "Diplomacy". The available options are: friendly, neutral or enemy. A player

can view other players’ attitudes towards them and manage their own attitude

towards other players. An enemy player is attacked automatically by your units.

A neutral player can be attacked only manually. A friendly player can not be

attacked and their units can pass through your gates.

Players can choose to either play Free For All (FFA), each player against all other

players, or align themselves into static teams before the game begins. Players in a

team are mutually friendly. The other option is to have dynamic teams. Any group

of players is automatically counted as a team, if all members of the group are

mutually friendly. If at least one player triggers a victory condition, his team will

achieve victory. Relations and dynamic teams are part of the aforementioned mod.

The game has three victory conditions:

• Landmarks - destroy all enemy landmarks

7

• Sacred Sites - hold and defend map objectives

• Wonder - build and defend wonder

Neither of these victory conditions directly requires diplomacy to achieve victory.

As players cannot share victory, using relations for any purpose other than

undermining other players is counter-intuitive. Thus without dynamic teams the

use of relations in a positive sense is discouraged. Dynamic teams do not resolve

this issue, as winning member of the team can always leave the team and achieve

victory alone. Static teams do not encourage any form of diplomacy, except for

optimal distribution of resources within the team.

Figure 1.1 Diplomacy in Age of Empires IV, provided by Advanced Game Settings [10].

1.3 Turn-Based Strategy games
Common examples of Turn-Based Strategy (TBS) games include Sid Meier’s
Civilization® VI [1], Old World [11], HUMANKIND™ [12], Age of Wonders IV [13]

and Heroes® of Might and Magic® III HD [14]. In general, it covers strategy games,

where gameplay is split into turns. These turns can happen simultaneously

or sequentially between players. Very often, strategy turn-based games are

synonymous with 4X
1

strategy games.

1
Explore, Expand, Exploit and Exterminate

8

The 4X subgenre is based on four pillars:

• Exploration - focuses on discovery of new areas on the game map

• Expansion - occupying as much space on the map as possible

• Exploitation - taking advantage of owned resources in various forms and

using them in an efficient way

• Extermination - waging conflict against other players and removing them

from a game

These games are mostly the opposite of RTS games. Matches are played against

multiple opponents and take tens to hundreds of hours to finish. Strategy and

optimization play greater role than APM and related mechanical skill. The player

is presented with multitude of victory conditions, each supporting a different

playstyle.

1.3.1 Sid Meier’s Civilization VI
We chose Civilization VI as the best known representative of 4X games. Civiliza-

tion offers players an opportunity to engage in both bilateral and multilateral

diplomacy.

Bilateral diplomacy has two forms. The first one is a leader interaction, where

player can take direct action against another player. The second is making a deal

or a demand in a system called The Bargaining Table. Both are accessed through

the leader interaction screen as seen in Figure 1.3a. The player can select items

they request or demand from the target and what they are willing to offer in

exchange. Items include resources, various types of alliances and other. This can

be seen in Figure 1.3b.

The lead designer of the previous Civilization games and recently of Old World

mentioned in My Elephant in the Room: An ’Old World’ Postmortem [15] that

The Bargaining Table was a mistake and defines it as one of the cursed prob-

lems as described by Jaffe [16]. It crates a disconnect between the power and

the flexibility of real diplomacy, where personality flaws come into play, and

the simplified system of The Bargaining Table. In real diplomacy offending

the other side generally ends the process and has consequences. In Civiliza-

tion the consequences are meaningless as you can restart the process immediately.

9

Multilateral diplomacy is in the form of a voting screen. This is part of the

The World Congress mechanic. All players can vote in favor or against certain

resolutions that impact the specified player or all players. The World Congress

allows players to access the diplomatic victory condition. The result of a single

session is shown on Figure 1.2.

World Congress is intertwined with The Bargaining Table as the player is required

to obtain diplomatic favor to force his goals in a vote. As we mentioned before, the

table is flawed, so it is very easy to abuse the table to gain favors from other players.

From our point of view, diplomacy as a mechanic in Civilization lacks impact and

consequences. Diplomacy can be safely ignored as other mechanics have a bigger

role in determining the outcome of the game. Wide play
2

mitigates any benefits

a player could receive from diplomacy with other players. Sharing resources is

not as valuable as controlling them directly. Wide play can be also achieved by

conquest, which makes it the superior choice as you eliminate rivals.

Figure 1.2 The World Congress in Civilization VI

2
strategy focused on expansion of your land

10

(a) The Leader Interaction in
Civilization VI

(b) The Bargaining Table in
Civilization VI

Figure 1.3 Bilateral diplomacy in the Civilization VI.

1.4 Grand Strategy games
Common examples of Grand Strategy games include Crusader Kings III [17],

Europa Universalis IV [2], Hearts of Iron IV [18] and Victoria 3 [19].

11

The aforementioned games share common aspects. For example: Real-time game-
play with active pause. The map is based on a historical state of our world. The

map is used for visualized data and relations. Games usually contain hundreds
of players or AIs controlling political entities. Game mechanics are usually com-

plex and require deeper understanding to make effective use of them. Gameplay,

including warfare, is done in a more abstract manner as the player controls the

whole political entity. The victory condition is often absent. The player is left to

define his own goals over the course of the play-through. The only way to lose is

to be completely conquered.

1.4.1 Europa Universalis IV
We choose Europa Universalis IV for further analysis of diplomacy in grand

strategy games. Based on our experience, Europa Univeralis IV has the greatest

focus on diplomacy. This game was also chosen as a subject in “Digitising

Diplomacy: Grand Strategy Video Games as an Introductory Tool for Learning

Diplomacy and International Relations”[5]

Europa Universalis IV covers primarily bilateral diplomacy in the form of diplo-

matic interactions. These can be split between requests, offers, demands and

gifts. Interactions commonly result in relations such as alliances, vassalisations,

political marriages, military accesses and others. Relations have various effects

each with different consequences, if they are not upheld. Figure 1.4 illustrates

various options available to a player and Figure 1.5 shows current relations of the

player.

In declarations of both war and peace, warfare incorporates multiple entities

based on existing alliances. Peace deals as seen in Figure 1.6 have the form of a

one-sided bargaining table similar to the one in Figure 1.3b.

Multilateral diplomacy is present in a very limited form. Most prominent example

would be Holy Roman Empire and the associated selection of the next Holy

Roman Emperor. In this mechanic, current electors can vote for any eligible

nation to inherit the emperorship once the current ruler perishes as seen in

Figure 1.7.

Diplomacy in Europa Universalis IV generally serves as a stepping stone for

conquest. Although player goals are not specified, players usually fall back on

conquest as either the most intuitive goal or the necessary step to achieve other

goals. Because of this, diplomacy in general serves only as a tool for further

conquest or as a defense against being conquered.

12

Figure 1.4 Diplomacy Actions in Europa Universalis IV

13

Figure 1.5 Diplomacy Overview in Europa Universalis IV

14

Figure 1.6 Peace deal in Europa Universalis IV

Figure 1.7 HRE in Europa Universalis IV

15

1.4.2 In-between genres
We can find games that stand between different genres such as Total War:
WARHAMMER III [20] or Stellaris [3]. In terms of diplomacy, however, they do

not fare any better than the previously mentioned titles.

For example, Stellaris is associated with both the 4X and the GSG genres. Stellaris

fully covers all four pillars of the 4X genre and combines it with mechanical depth

of GSG intertwined systems. But the additional complexity serves very little to

no advantage in encouraging diplomacy. In Figure 1.8 we can see the Galactic

Community mechanic similar to The World Congress mentioned in Figure 1.2.

Galactic Community provides an option to shape galactic rules affecting all

members of the galaxy. Resolutions passed by the Galactic Community have

usually no immediate payoff and have minimal effect on the player during the

play-through. This often creates situations, where players barely interact with

the system.

In conclusion, while Stellaris offers a higher degree of flexibility, its impact on

diplomacy is not significantly positive. The presence of various other mechanics

tends to overshadow the importance of diplomacy within the game.

Figure 1.8 Galactic Community in Stellaris

16

1.5 Board games
Most board games rarely have any form of diplomacy. In many cases interaction

between players is not defined by the game rules. In games that have rules for

interactions between players, it’s heavily restricted. For example, by being limited

to drawn cards such as in Terraforming Mars [21]. Other games impose rules that

might not always be intuitive. The Settlers of Catan [22] allows trading only with

the player that is currently playing.

1.5.1 Diplomacy
Diplomacy[23] is a board game created by Calhamer in 1959.

Game rules of Diplomacy are simple. In the negotiation phase players bargain

over which actions they should take. Actions are executed in the movement phase.

Players can lie during the negotiation phase and perform differently during the

movement phase.

The key takeaway is that player actions are simple and do not overshadow diplo-

macy in the negotiation phase. This means that social interaction, interpersonal

skills and overall strategy determines the winner. Resources of a single player are

often not enough to achieve anything on their own.

In comparison, video games have much more complex mechanics. These me-

chanics occupy most of the player’s attention and are entertaining on their own

without having to engage in diplomacy. Consequently, players are not reliant on

other players in achieving their goals. This implies that players do not feel an

immediate need to hold each other accountable for deception. Thus, diplomacy

often ends up as the least important mechanic.

1.6 Card games
One unlikely game, where we can find an important element required for func-

tional diplomacy is Marvel Snap [24]. This collectible card game takes inspiration

from the classic card game Poker as is stated in Designing ’MARVEL SNAP’ [25].

1.6.1 Marvel Snap
This game is played as duel of two players that wager currency called cubes
on their victory. The card mechanics of the game itself are not important for

17

understanding the mechanic we are interested in:

1. The game starts with forced bet of one cube by both players.

2. In the final turn of the game, the bets are doubled.

3. At any point during the game each player can snap once. Each snap doubles

both players’ bet at the start of the next turn.

4. A player can retreat at any point, losing their current bet, but mitigating

the loss of additional cubes.

This unique mechanic distinguishes it from other collectible card games. The

cubes are desirable to advance the meta progression of the game.

"Snapping" in the game usually implies being in the winning position. This puts

pressure on the other player to determine whether it is a bluff and to evaluate the

risks. In a disadvantageous position the player can retreat to mitigate his losses.

This makes bluffing also a viable tool to win a game, making the other player

retreat from his winning position.

Strategy videogames often do not present viable opportunities for deception. In

order to bluff, the game needs to be designed with this in mind. As we learned in

the game Diplomacy 1.5.1, it is a vital part of diplomacy in general.

18

Chapter 2

Game Design

In this chapter, we discuss game design for creating Koruna – a multiplayer

diplomacy-based strategy game. As mentioned in the Analysis chapter, most

current video games fail to implement diplomacy as a core mechanic. Conse-

quently, other game mechanics, such as warfare or economic management tend

to overshadow the role of diplomacy.

Game design goals:

1. Diplomacy is a core mechanic.

2. Diplomacy contains elements of espionage and deception.

3. Diplomacy is led by both bilateral and multilateral interactions.

4. Multilateral interactions have more impact than bilateral interactions.

5. The game is extendable and open to inclusion of additional mechanics, such

as the ones commonly found in strategy games.

6. The game can be played by AI players through the provided API.

In the following sections, we explain and argue for the game’s design decisions.

These were made to uphold the game design goals.

2.1 Player Count
Multilateral diplomacy only makes sense with at least three players. Multiplayer

strategy games can involve up to hundreds of players. Thus we do not put a limit

for the maximum players involved. Most of the strategy games in competitive

19

settings involve two to eight players. Too many players may make the game over-

whelming to play. Therefore, eight players seems to be a reasonable compromise

for an expected and suggested amount of players as our game is competitive in

nature.

2.2 Timekeeping
Player activity in the game can be handled in two major ways. Turn-based

approach separates player activity into turns. Real-time approach allows players

to act continuously and without interruption. There are examples of mixed

approaches in various games. For example Europa Universalis IV uses real-time

approach with an active pause mechanic. Active pause means you can queue up ac-

tion during the paused state. Once the game is unpaused, the actions are executed.

For social interaction to play a bigger role in the game, players need space for

discussion. Real-time games pressure players to focus on the highest priority

tasks. This inhibits the development of diplomacy as a mechanic. In other

words, players need time to talk and analyze the situation. Turn-based approach

naturally allows allocation of time for social interaction. However, the turn-based

approach results in slow and sluggish gameplay. Therefore, we start at a real-time

approach. Then we modify it to accommodate the needs of diplomacy-driven

gameplay. This leads us into combining the turn-based and the real-time approach.

The gameplay is separated into turns. However, during each turn all players act

simultaneously in real-time. Turns are important as each turn allows for only

one deal to be created. For the turn to end, each player has to indicate that they

are ready, by using the finish turn action. This creates space for negotiations as

players that are participating in the deal can postpone the next turn. Only in the

new turn are players attributed additional resources to perform more actions and

a new deal can be created. Figure 2.1 demonstrates the flow of the game.

20

START
ENDTURN 1 TURN 2 TURN 3 TURN 4

P1 DEAL

P2 DEAL

P3 DEAL

ACTIONS
USED

DEAL PHASES DELAYED EXECUTION EXECUTED
BY

REGENT

Figure 2.1 Timeline showcasing the flow of the game. Actions are available for use at
any point during the turn as seen in Turn 2 and Turn 3. Deals can be contained either
within a single turn or be a part of multiple turns as is shown by P2 Deal that was
initiated by the second player.

2.3 Game length
Availability of players greatly influences length of individual matches in multi-

player environments. Shorter length of matches makes the game more approach-

able. At the same time, very long matches are rarely preferred in competitive

settings, which often appear around multiplayer games.

With this in mind, we have decided to focus the game on the shorter end of the

game length spectrum. However, diplomacy is a lengthy process and predicting

the exact an amount of time is difficult. Regardless, we still aim for approximately

one hour long matches that should easily fit into a single session.

2.4 Actions
There are multiple problems related to actions in the previously mentioned games.

1. Diplomacy is not a requirement of victory conditions.

2. Actions are the more optimal way to reach victory.

3. Diplomacy lacks payoff.

4. Deception and subterfuge against other players lacks consequences.

In our game the actions that immediately impact the game world are called

stratagems. They consist of either direct interaction with the world (take land,

exploit land) or bilateral diplomacy (give land, give resources). Stratagems cost a

finite amount of resources to execute. Our final list of stratagems and description

21

of their effects can be found in Table 4.2 and Table 4.3.

We choose to design stratagems so they don’t have a lot of power by themselves.

Additionally, players are limited by the amount of available stratagems they can

use during the match. Each player can select only a few stratagems from all

available stratagems before the start of the match. This is akin to building a deck

in deck building card games. To access additional stratagems they need to engage

and interact with other players during the game.

These limitations placed on stratagems ensure that they are not the optimal way

to reach victory. Players need to engage in diplomacy to take an advantageous

position. Consequently, this ensures that diplomacy has a proper payoff.

The need for diplomacy also solves the problem of subterfuge. For example, sabo-

taging a deal has both positive and negative consequences. The immediate result

is beneficial, as player gains an advantage over the opponents. But the gradual

result is mostly negative, as trust issues will interfere with the smoothness of fu-

ture deals. Other players will be less likely to include the player in the future deals.

Stratagems play a role in determining the initial strategy, how each player

approaches the match. As a result stratagems feel impactful and shape various

strategies.

Besides stratagems, players can engage in multilateral diplomacy. This mechanic

is called a Deal and is discussed in the Deals subsection of the next section.

2.5 Diplomacy
Bilateral diplomacy is done by what we call decision actions: interactions, offers,

requests and demands.

Multilateral diplomacy is covered by deals. Deals also have an important role in

communication, as it is the only place where players can communicate via text

messages.

2.5.1 Decisions
Some stratagems provide us with decision actions. These further subdivide into:

22

• Interactions - A player can directly affect the target player. That player

does not get a say in this.

• Offers - A player can offer to use his stratagem on the target player. That

player can either accept or decline the offer.

• Requests - A player can request another player to use their stratagem

on the requester. That player can accept or decline without immediate

consequences.

• Demands - A player can demand another player to use their stratagem on

the requester. That player can accept or decline. However, declining can

have automatic consequence based on other stratagems such as Burglary.

2.5.2 Deals
Each deal is composed out of multiple phases. Each phase serves a specific

purpose and aims to simplify the potential back-and-forth that would happen

in unregulated discussion. Thus structure of deals aims to prevent stalemates in

negotiations. Flow of the deal can be seen in a Figure 2.2.

These are the phases of a deal:

1. Assembly of participants.

2. Definition of discussion points.

3. The vote to accept or refuse the deal.

4. Resolution of the points.

5. The deal execution by the regent.

These phases are implemented in following manner.

Only one player can make a single deal each turn. This player is referred to as

the regent. When the regent makes a deal, they can choose which players are

invited. Players can reject this offer. The position of the regent is rotated among

the players across the game turns.

Each deal consists of points. A point describes a single usage of a stratagem by a

participant. Any participant can create any number of custom points. Players

can specify any stratagem from the collective pool of all stratagems belonging to

23

all players participating in the deal.

Once the points are made, the regent can start a vote for the execution of the deal.

Participants can either accept or reject. If any participant rejects, the deal fails.

Otherwise the deal passes.

If the deal passes, each participant has a choice of how to approach the points.

The actors of each point can choose to accept, refuse or alter the point. Each

participant can additionally choose to sabotage the points of other actors. Once

each participant finishes his response, the regent can execute the deal either

immediately or in a later turn. Once the deal is executed all participants receive

some amount of the reputation resource.

ASSEMBLY RESOLUTION EXECUTEDVOTEDISCUSSION

FAILED
CLOSED
BY

REGENT

Figure 2.2 Flow of the deal phases.

2.6 Resources
The primary resource of our game is called Reputation. The amount of repu-

tation a player has is the primary win condition of the game. The details are

expanded upon in future sections.

We implemented some additional resources that are needed to execute stratagems.

At the start of each turn, all players receive these resources, based on default

gains and the tiles they own. The amount of resources a player has limits

which stratagems they can use. This limitation encourages players to engage in

diplomacy to trade for resources they need to use their stratagems.

24

From this perspective, the particulars of which resources are implemented do not

matter.

2.7 Map
In addition to the numerical resources, players can also take control of sections

of the game world’s map. Owning these can be considered to be a resource. For

the purposes of diplomacy, map presentation is not all that relevant. From this

perspective, only a few abstract functionalities are required. The map can be

separated into sections that can be owned by players. Any additional functionality

and purpose is determined by the actions and the associated game mechanics.

For example, map sections can generate additional resources.

In our implementation we choose to represent map as square grid of tiles. Each

tile and its resources can be utilized by stratagems.

2.8 Possible design improvements
Here we outline several possible future improvements that could be made to the

game:

1. Events. Strategy games such as Europa Universalis IV incorporate rich

event systems. The player is presented with a random offer, where they

have to make a choice. This can make each play-through more diverse and

unique as is outlined in My Elephant in the Room: An ’Old World’ Postmortem
[15].

2. City-Management. Each player is given a city. They can manage the

city to improve it and again benefits. Different benefits encourage different

strategies. Stratagems are used to improve and manage the city. Cities

can become objectives, enabling new win conditions and choices to be

considered when planning a path to victory.

3. Incomplete information. Players can use diplomacy to trade for infor-

mation. For example, the amount of resources a player has, or insight into

that player’s actions. Forcing players to consider credibility of information

provides further interesting design decisions.

(a) Espionage allows players to gather information.

(b) Subterfuge allows fabricating false information.

25

4. Congress. Players can vote on global changes to the nation. For example,

transforming the country to non-authoritative form of government. Similar

to implementations present in Stellaris (Galactic Community) or Civilization

VI (The World Congress).

5. Extending deals. The Third phase, Definition of additional discussion
points., can be extended to improve the deal process by introducing different

types of points.

(a) Supplementary points as reactions to the primary points. Point sug-

gesting alliance between two players, can be supplemented to also

include guarantees on third players.

(b) Appeasement points that would allow other players to bid counterof-

fers similarly to an auction.

2.9 Premise
Politics between countries is an interesting concept and provides grander scale to

the game. However, once nations are involved, player expectations are drawn

towards conquest. This jeopardizes diplomacy as the main focus of our game.

For these reasons, we choose to focus on small-scale politics internal to single

country. The player’s ultimate goal is to seize the throne, as the country starts

the game without a ruler. This gives players a clear goal from start to finish.

The default way to seize the throne is to achieve the highest reputation. Reputa-

tion is obtained by taking part in successful deals based on the amount of points

and the participant count. This win condition alone would make players lacking

in reputation lose interest as their chances to win are diminished. In order to

amend this there is a stratagem that lets its user usurp an empty throne. If the

throne is occupied, players can negotiate to make the ruler abdicate or resort to

violence and remove him forcefully. Usurping the throne, however, involves a

gamble as there is no certainty of the ability of your adversaries to remove you

from power. Finally, an opponent with the right stratagem can offer to support

the usurper’s right to the throne. The usurper can accept or reject this offer. This

serves as a way to avoid complete defeat as the supporters are listed as partial

winners, if their chosen usurper wins. Such option mitigates the frustration of

losing.

26

Chapter 3

Developer Documentation

We recommend becoming familiar with the game before delving into this chapter.

The game is described in Chapter 4. Setting up development environment is

covered in Section 3.2.

3.1 Development environment and tools
The game is being developed in Unreal Engine 5 [26]. The primary motivation

for choosing it over alternatives such as Unity [27], Godot [28] and others, is its

proper built-in multiplayer support. Compared to alternatives, Unreal Engine

has an out-of-the-box built-in multiplayer, making it easier to prototype and

develop multiplayer games. When considering other aspects such as familiarity,

documentation, and overall productivity of tools, Unreal Engine might not rank

as the best choice individually. However, as a comprehensive package, it stands

out as the best choice.

Among other tools used primarily for temporary asset creation were free or

open-source tools, such as Krita [29] and Blender [30].

3.2 Setting up development environment
Setting up the development environment from source requires Unreal Engine 5.2.1
and Visual Studio. The setup can be done by following these steps:

1. Download Unreal Engine 5.2.1 following the instructions at:

https://docs.unrealengine.com/5.2/en-US/
installing-unreal-engine/

27

https://docs.unrealengine.com/5.2/en-US/installing-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/installing-unreal-engine/

2. Download Visual Studio following the instructions at:

https://docs.unrealengine.com/5.2/en-US/
setting-up-visual-studio-development-environment
-for-cplusplus-projects-in-unreal-engine/

3. Clone repository from:

https://github.com/Woprok/UnrealDiplomacy

4. Go to ../Sources/UnrealDiplomacy.

5. Right click on UnrealDiplomacy.uproject and select Generate Visual
Studio-project files.

6. Open UnrealDiplomacy.sln using Visual Studio.

7. Choose either DebugGame Editor or Development Editor build config-

uration and compile and run the solution.

8. You can now run the game through play in editor:

https://docs.unrealengine.com/5.2/en-US/

in-editor-testing-play-and-simulate-in-unreal-engine/

9. Alternatively you can follow instructions to package the project and then

running it: https://docs.unrealengine.com/5.2/en-US/
packaging-unreal-engine-projects/

3.3 Project Structure
The project is primarily written in C++ following the Unreal Engine conven-

tions. The main use for Unreal Engine Blueprints is for user interfaces (UI) and

instancing types that require further configuration. Blueprints types explicitly

mentioned in this chapter contain BP prefix, such as BP_UDSkirmishHUD.

The project uses the following file structure:

• Core - base types for UI, game logic and world simulation.

• Menu - types used by Menu map.

• Lobby - defines UI used in lobby.

• Skirmish - types used by Skirmish map and blueprint instances for re-

sources, tiles, materials and more.

28

https://docs.unrealengine.com/5.2/en-US/setting-up-visual-studio-development-environment-for-cplusplus-projects-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/setting-up-visual-studio-development-environment-for-cplusplus-projects-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/setting-up-visual-studio-development-environment-for-cplusplus-projects-in-unreal-engine/
https://github.com/Woprok/UnrealDiplomacy
https://docs.unrealengine.com/5.2/en-US/in-editor-testing-play-and-simulate-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/in-editor-testing-play-and-simulate-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/packaging-unreal-engine-projects/
https://docs.unrealengine.com/5.2/en-US/packaging-unreal-engine-projects/

3.4 Architecture and Networking
Unreal Concepts

1. Game Mode - handles game rules and players

2. Game State - object for sharing state of the game, owned by server and

replicated on clients

3. Player Controller - represents client connected to server

The default for Unreal Engine is to operate as client-server application [31].

Consequently, one of the main points we had to define was responsibilities

for both client and server. The server side holds all authority and verifies that

actions done by clients are valid. Thus clients responsibilities are limited to

presenting local state of the world that is updated only by server approved actions.

GameMode provided by Unreal Engine is available only on the server and in

general it’s responsible for handling players and game rules for a game match

[32]. This led us to define boundaries between client and server as shown in

Figure 3.1. Each client owns single PlayerController [33] and server owns both

GameMode and GameState. PlayerController is responsible for communicating

player actions with server through the GameState and managing its local world

state, based on actions received by server. The GameMode receives actions from

the GameState that are processed and then send back to players.

GAME STATE

PLAYER CONTOLLER

CLIENT 1 GAME MODE

AI CONTROLLER

AI PLAYER 1

RPC

RPC

M.RPC

SERVER

Figure 3.1 Split between the client and the server. The client is represented by Player-
Controller, AI agents are a part of the server, each represented by a single AIController.

3.4.1 Synchronization
Unreal Engine offers multiple ways to synchronize Client and Server state of the

world. For our project we choose to utilize as main method of synchronization

Remote Procedure Calls (RPCs) [34]. Alternatives in form of actor and property

29

replication are not reliable for deterministic simulation that is required to keep

all clients and server synchronized.

Client and server communicate changes to the state of the game by exchanging

either FUDCommandData or FUDActionData. FUDCommandData is used

to communicate non game state related changes: start of the game, host clos-

ing the game and player leaving the game. FUDActionData on the other hand

communicates all changes that are requested by client or needs to be applied

to UUDWorldState once verified by server. Finally, FUDActionArray is used for

initial synchronization of the UUDWorldState between newly connected client

and the server.

Table 3.1 lists all RPCs used for synchronizing client and server. AUDSkirmish-
PlayerController, AUDSkirmishGameState and AUDSkirmishGameMode are our

implementaions of PlayerController, GameState and GameMode. Client invokes

RPCs on PlayerController and these are processed by GameState. The GameMode
on the server can invoke RPC directly on the PlayerController or indirectly by

invoking a multicast on the GameState that is processed on local instance of

GameState on the client.

RPC function Caller
UFUNCTION(Client, Reliable)

void ClientcastReceiveActionFromServer

(FUDActionData serverData)

Server

GameMode

UFUNCTION(BlueprintCallable, Server, Reliable)

void ServercastSendActionToServer

(FUDActionData clientData)

Client

PlayerController

UFUNCTION(Client, Reliable)

void ClientcastInitialSyncReceiveFromServer

(FUDActionArray actions)

Server

GameMode

UFUNCTION(Server, Reliable)

void ServercastInitialSyncRequestToServer

(int32 controllerId, int32 firstKnown)

Client

PlayerController

UFUNCTION(BlueprintCallable, Server, Reliable)

void ServercastSendCommandToServer

(FUDCommandData clientData)

Client

PlayerController

UFUNCTION(NetMulticast, Reliable)

void MulticastSendActionToAllClients

(FUDActionData serverData)

Server

GameState

Table 3.1 Table of RPCs

30

3.5 Simulation
The central part of the game is simulation of the world. All actions done by

players and by the world are applied to the world in form of actions. Each

action is represented by a simple struct FUDActionData that holds all necessary

information for an action to be executed. Actions requested by players or AI agents

are received by AUDSkirmishGameMode and passed to AUDWorldSimulation for

execution. AUDWorldSimulation verifies execution of the action over the server

world state. Verifying the action on the server prevents players from potentially

cheating. Once the action is verified and executed on the server it is sent to all

clients. AUDSkirmishPlayerController receives the action and passes it to local

AUDWorldSimulation to be directly executed without any verification. Finally,

local simulation propagates update notification on the client so changes can be

shown to the user. This process is showcased in Figure 3.2. The server maintains

a separate copy of a UUDWorldState for each player, but only the server world

state is checked for validity.

USER INPUT ACTION

ACTION
SEND OVER
RPC

VERIFIED ACTION
SEND OVER
MULTICAST RPC

ACTION

ACTION
VERIFIED
ACTION

VERIFIED
ACTION

ACTION ADMINISTRATOR

WORLD SIMULATION

PLAYER CONTROLLER

GAME STATE

GAME MODE

WORLD SIMULATION

VERIFIED
ACTION

UPDATE

CLIENT
SERVER

Figure 3.2 The processing of an action invoked by the client.

The process of verification and execution of the action is done in multiple steps

by processing the FUDActionData. The process can be summarized into following

steps:

1. Action responsible for execution of FUDActionData is retrieved from

UUDActionManager.

2. Action checks if provided FUDActionData can be applied to server owned

UUDWorldState. If the check fails, execution halts.

31

3. UUDStratagemOperationManager checks for additional restrictions and

requirements that are applied to stratagems, such as execution limit and cost.

If these requirements are met, additional actions are executed. Otherwise,

the execution is halted. Actions that are not stratagems are skipped.

4. FUDActionData are assigned new UniqueActionId.

5. FUDActionData are stored in execution history.

6. Action is executed on all available world states.

7. FUDActionData are send to all clients and AI agents

8. Action checks, if it requires specific continuations, retrieves them from the

action and executes them.

9. AUDWorldArbiter verifies, if the action triggered end of the game and

determines the winner and ends the game.

The process for verification and execution of the action can trigger execution of

multiple actions. All checks are repeated for subsequent actions before attempting

their execution. Thus single actions, such as UUDDealActionContractExecute
triggers execution of multiple actions. This solves the problem with execution

of larger changes to the UUDWorldState as all that is required for an action is

to be able to create continuations, that achieve desired outcome. For example

UUDDealActionContractExecute triggers execution of all points defined in the deal

by executing their resolutions, that are already present as part of UUDDealState
as FUDActionData. Thus a complex customization that is required in deals is

achieved by creating new actions and updating their parameters. Then they are

converted to a FUDActionData that can be executed as any other action.

The details concerning UUDActionManager and actions are expanded upon in

future subsection.

UUDStratagemOperationManager has two roles. First is to verify that stratagems

are executed only once per turn for each player. Second is to apply resource cost

to actions that are not free.

UUDWorldArbiter is used to ensure that game ends and always has a winner. By

default it applies victory to player with highest total reputation.

32

3.5.1 World State
Current state of the world is represented by UUDWorldState. The most impor-

tant parts of the UUDWorldState are represented by UUDMapState, collection of

UUDFactionState and collection of UUDDealState. Actions registered with UUD-
ActionManager update the UUDWorldState by their Execute method. Factions are

represented as UUDFactionState and controlled either by player or AI agent. Gaia

faction is unique faction that has unique id set to 0 and is controlled by AI agent of

type AUDSkirmishGaiaAIController. UUDDealState represents single deal created

by players. UUDMapState is wrapper over individual tiles of type UUDTileState
and map specific details such as seed and size.

3.5.2 Actions, Modifiers and Resources
UUDActionManager is responsible for providing actions to UUDWorldSimulation
as well as filtering and access to details about actions. IUDActionInterface defines

common interface used by all actions. We differentiate between following action

types based on their purpose:

• System - creation of the world state and turn management.

• Gaia - world updates defined by game rules.

• Game - stratagems and related actions.

• Deal - creation, updates and management of deals.

• Decision - creation of interactions, offers, requests and demands and their

resolution.

• Setting - updates to settings in lobby for both world and player.

UUDModifierManager handles all modifiers from creation on UUDFactionState
and UUDModifierState to their eventual removal. IUDModifierInterface is used to

define two types of modifiers:

• UUDTileModifiers - associated with UUDTileState.

• UUDFactionModifiers - associated with UUDFactionState

UUDResourceManager manages all resources and common operations with the

resources over the UUDFactionState. Resources are defined as types implementing

IUDResourceInterface.

33

3.5.3 Action Administrator
UUDActionAdministrator main purpose is to act as a model for viewmodels and

map. Thus it provides extensive list of functions for transforming raw UUDWorld-
State to more specialized structs defined in UDModelStructs.h.

HUDPLAYER CONTOLLER

VIEW MODEL

SQUARE GRID

ACTION ADMINISTRATOR

NOTIFY
UPDATE

WORLD STATE
UPDATED

READ STATE

TILE SELECTED EVENT
TRIGGERED BY USER INPUT

NOTIFY
UPDATE

SELECTION
CHANGED
EVENTS

READ
STATE

Figure 3.3 The overview of the UUDActionAdministrator role in the updates on the
client.

3.6 Important Types

3.6.1 User Interfaces
User Interfaces (UI) are written in Model-View-ViewModel pattern using UMG
ViewModel Plugin [35].

The entry point for UI is either BP_UDMenuHUD and BP_UDSkirmishHUD both

derived from common ancestor AUDHUD. The UI is defined by screens that are

composed of one or more widgets. Each widget has a viewmodel that is associated

with it. For example LobbyScreen that is part of BP_UDSkirmishHUD is defined as

combination of:

• Lobby - WBP_LobbyView and UUDLobbyViewModel

• LobbyBackground - WBP_BackgroundView and UUDBackgroundViewModel

AUDHUD is responsible for creating, displaying and switching between screens.

The individual views and viewmodels are created and managed by UUDUser-
WidgetManager and UUDViewModelManager both are part of AUDHUD. UUD-
SkirmishHUD provides UUDViewModelManager with a reference to the UUD-
ActionAdministrator that is used as the model by skirmish viewmodels. In

34

addition, AUDHUD exposes API for creating new viewmodels for nested widgets.

UUDViewModel is ancestor for all viewmodels used by the game. UMG ViewModel
Plugin does not have sufficiently rich options for binding all fields on widgets.

Thus binding FText is done by function specialization. Nested viewmodels are

bound to their widgets by utilizing FUDViewModelList and FUDViewModel-
Content that wrap the underlying viewmodel and bind it to a custom property

UUDListView and UUDContentUserWidget.

Views are designed in blueprints. Each view has a C++ ancestor that defines

viewmodel binding and subscribes delegates, such as button click to a specific

viewmodel function. We distinguish four types of UserWidgets based on their

functionality and purpose:

1. UUDUserWidget - basic functionality required by all widgets, used by static

screen views.

2. UUDListEntryUserWidget - represents single item that will be part of list,

used by item views.

3. UUDContentUserWidget - enables binding viewmodel to nested widgets,

used by views that are part of another view.

4. UUDWindowUserWidget - movement functionality for various windows,

used by movable screen views.

The visualization of the UI and its dependencies can be observed in Figure 3.4.

-UUDUserWidgetManager
-UUDViewModelManager

HUD

PLAYER CONTOLLER

SKIRMISH
PLAYER CONTOLLER
-UUDActionAdministrator

SCREENS
-CreateGame
-Menu
...

MENU HUD
SCREENS
-Lobby
-Game
...

SKIRMISH HUD

READ STATE

Obtain
UUDResourceItemViewModel

Collection

NOTIFY UPDATE

-BP_UDResourcePanelView:
 UUDResourcePanelUserWidget
-UUDResourcePanelViewModel

Resource Panel

Figure 3.4 Structure of the UI dependencies for Resource Panel that is part of Game
Screen.

35

3.6.2 Game Instance
Each client has singleton of UUDGameInstance for the runtime of a game [36].

UUDGameInstance is used for instancing all important stateless managers:

UUDActionManager, UUDModifierManager and UUDResourceManager.
The following subsystems are part of UUDGameInstance:

• UUDSessionSubsystem covers session functionality provided by online sub-

systems [37]. Our current implementation uses default OnlineSubsystem-
Null.

• UUDExceptionManagerSubsystem tracks network errors and stores most

recent error that needs to be displayed to user.

3.6.3 Maps
The project has two main maps Menu and Skirmish.

Menu is default starting map for the game. BP_UDMenuGameMode is set as a

game mode for the Menu map. This map is used for all non-game sections of the

game.

Skirmish is map used for playing the game. It loads when player enters

the lobby and remains active throughout the entire duration of the game

match. After game ends, players are returned to the Menu map. Skirmish uses

BP_UDSkirmishGameMode as a game mode.

3.6.4 Controls and Camera
AUDPlayerController defines input mode as both game and UI. Camera controls

are defined as part of invisible AUDSkirmishPawn controlled by player using the

Enhanced Input Plugin [38] for managing input.

3.6.5 World Map
The world map consists of tiles. Each represented as UDSquareTile and dynami-

cally created by AUDSquareGrid based on current UUDWorldState. The UUDMap-
State is generated by UUDWorldGenerator and factions are distributed on the

generated world map by UUDWorldFactionGenerator. Blueprints are used to define

individual tile types and configure additional details, such as resource to tile type

binding. These are part of the BP_UDSquareGrid.

36

3.7 Expanding Actions, Modifiers and Resources
The project was aimed to be built as extensible as possible. Thus adding

most common types: Actions, Modifiers or Resources can be done by creating

new instance inheriting from their respective interfaces: IUDActionInterface,

IUDModifierInterface or IUDResourceInterface. Once new type is created, it needs

to be registered to UUDActionDatabase, UUDModifierDatabase or UUDResource-
Database respectively.

Action cost is defined in table that’s part of BP_UDStratagemOperationManager.

Resources can be spawned on the map. Each resource that can be gener-

ated on the map, needs new instance of BP_AUDSquareTile, that is added to

BP_AUDSquareGrid. Finally resources that have blueprint instance can be add to

BP_UDResourceManager.

3.8 Working with AI API
All AI agents that are part of the game are either AUDSkirmishAIController for

faction agents or AUDSkirmishGaiaAIController for server world agent. Both are

derived from AUDAIController. AUDAIController defines interface required by

AUDSkirmishGameMode to be able to communicate with AI agents.

AUDAIController has access to UUDActionAdministrator. UUDActionAdministrator
utilizes types defined in UDModelStructs.h to provide variety of functions that

make UUDWorldState easier to work with. Current options provided by UUD-
ActionAdministrator might not be sufficient for more complex agents. In that

case, the world state can be accessed directly through method

UUDWorldState* GetOverseeingState() provided by UUDActionAdministrator.

AUDAIController exposes following overridable virtual methods:

• void ProcessPlayableAction(const FUDActionData& executedAction) - receives

all action from the lobby until the end of game.

• void ProcessPreGamePlay() - enables selection of the stratagems, invoked

only before the game starts.

• void ProcessInTurnPlay() - called at the start of a new turn and invoked by

received actions until the agent uses UUDSystemActionTurnFinish.

37

• void ProcessOutTurnPlay() - invoked by received actions after the agent used

UUDSystemActionTurnFinish in the current turn. The agent can perform

any action, but it’s no longer able to delay the end of the current turn.

• void ProcessIntermezzoPlay() - reserved for the world agent to manage

transition between the turns.

These methods simplify the actions received by

void OnActionExecuted(FUDActionData executedAction) into more manageable

parts, based on the current state of the world.

The current API is limited and unsuitable for extended calculations as it’s in-

voked directly by AUDSkirmishGameMode whenever it receives actions from

AUDWorldSimulation.

38

Chapter 4

User documentation

In this chapter, we will briefly go over how to run and play the game.

4.1 Obtaining and Running the Game
Game requires at least Windows 10 operating system. We advise to run it on a

decent modern hardware.

1. Download latest version from:

https://github.com/Woprok/UnrealDiplomacy/releases

2. Extract the game and navigate to the Windows folder.

3. Run UnrealDiplomacy.exe.

4.2 Menu and Settings
Game has menu, that enables to either create new game, join game or modify

settings. Figure 4.1 shows the menu.

Settings are limited to resolution and window mode. As seen in Figure 4.2.

4.2.1 Create and Join
At the moment the game is using the default null online subsystem. Thus only

local and LAN play is supported.

39

https://github.com/Woprok/UnrealDiplomacy/releases

Create

Creating a game is shown in Figure 4.3.

1. Go to Create Game.

2. Optional change session name.

3. Click New Game to create new lobby for others to join.

Join

The easiest way to connect two devices is through the Direct Connect. One player

has to create a game. The other player can join through the Direct Connect. In

such a case players should have devices on the same LAN or VLAN. Default Port

is 7777 assuming only one instance is running and hosting the game. Joining a

game is shown in Figure 4.4.

1. Go to Join Game.

2. Refresh will attempt to find lobbies.

3. Either click on one of the found lobbies or connect through the Direct

Connect.

Figure 4.1 Main menu

40

Figure 4.2 Settings

Figure 4.3 Create Game

41

Figure 4.4 Join Game

4.3 Lobby
Lobby as seen in Figure 4.5 enables configuration of both game and faction

parameters. The host can define following game parameters.

1. AI Count - determines the amount of AI opponents.

2. Map Seed - randomness used by map generator.

3. Map Width and Map Height - amount of tiles to generate in rows and

columns.

4. Stratagems Points - amount of points players can use to select stratagems.

All players can change:

1. Faction Name - their identifier visible to other players.

2. Stratagems - can be selected, their total point cost has to be at most the

specified point cap.

Once all players are prepared, the host can start the game by clicking Start.

42

Figure 4.5 Lobby from the host perspective.

4.4 Gameplay
Once the game starts players are shown initial game screen. Initial game screen

is detailed in Figure 4.6.

Resource Panel

Game has 6 resources:

Reputation [Purple] is the primary resource and having most reputation is the

default condition for winning a game after the final turn.

Gold [Yellow] is used to pay for activating almost all stratagems.

Food [Green] and Materials [Brown] are spent on stratagems that create build-

ings.

Luxuries [Pink] are used on stratagems and are paid on maintenance at the start

of each turn for each owned tile.

Manpower [Blue] is used on military stratagems such as Burglary, Raid and

most throne related stratagems such as Usurp Throne.

Resources are obtained at the start of each turn automatically and by stratagems

such as Exploit Tile or Raid Tile. Reputation is a special resource that is also

rewarded for participating in deals that passed.

43

Figure 4.6 Initial game screen. In the bottom left corner (1) is a resource panel for the
current player. In the bottom right corner (2) is a turn panel. In the upper right corner
(3) is a faction panel. In the upper center of the screen in order from left to right deals
(4), crown (5), messages (6).

Turn Panel

Top of the turn panel shows current regent. Regent is a faction that has right to

create one new deal during regent’s turn. Game is played in 12 turns as is shown

in the panel. Finish turn button will lock you in for waiting in for next turn. All

players needs to finish their turn for next turn to begin as is shown at the bottom

of the panel.

Faction Panel

This panel shows all factions that are participating in the game. Clicking on a

faction in the list will open a Faction Management window as seen in Figure 4.7.

Here, player can perform bilateral diplomacy with the selected faction. It also

shows any stratagems used by the faction this turn. Interactions will execute

stratagems directly without other faction’s consent. Offers, Requests and Demands

require other faction’s consent for execution. They have option to either accept

or reject it. Interactions and Offers concern current player’s stratagems, where

Requests and Demands concern other player’s stratagems. Finally, Demands can

utilize stratagems such as Illicit Rumour or Burglary as a threat for rejecting.

44

Figure 4.7 Faction Management.

Crown

Crown can be usurped by a player using the Usurp Throne stratagem. Once

usurped, all players can see usurper’s name under the crown as is shown in

Figure 4.8b. If usurper stays on the throne until the end of the game, they will

claim victory regardless of reputation. Player can abdicate voluntarily or as a

part of a deal. Option to abdicate can be seen in Figure 4.8a. Contest Throne

stratagem is used to overthrow the usurper and take throne for yourself. Liberate

Throne stratagem will remove usurper from the throne and liberator will receive

all of usurper’s reputation. Both Liberate and Contest are resolved by amount of

manpower on both sides of conflict. Manpower is counted as a sum of faction’s

manpower and all of its military supporters manpower.

Messages

Messages display amount of pending messages. By clicking on the messages will

open Message Management window. This window contains Offers, Requests and

Demands that you can either accept or reject. Consequences of rejecting are also

presented as seen in Figure 4.9.

Tiles and Tile Management

In middle of the screen game shows current game map. Map is composed of

square tiles. Each tile has a color of a resource it contains as described in the

Resource Panel section. Each owned tile has a flag with a faction color. Clicking

on the tile opens Tile Management window as seen in Figure 4.10. This window

contains basic information about the tile, stratagems used on the tile this turn

and tile specific stratagems that player can use.

45

(a) Usurper version of the crown. (b) Usurped crown as seen by others.

Figure 4.8 Crowns.

Figure 4.9 Demand from other faction in Message Management window.

Figure 4.10 Selected tile and Tile Management window.

46

Deals

Deals display amount of active deals in which player is participating. By clicking

on the deals will open Deal Management window. Players can view either current

or previous deals by switching between Active and History and then using arrows

to navigate.

Current regent can create deal by clicking the Create button in header of the

window. Deals progress in five phases:

1. Assemble Phase covers invitation and assembly of participants. See Fig-

ure 4.11.

2. Discussion Phase allows creation of the discussion points. See Figure 4.12.

3. Vote Phase bids players to express their satisfaction with the deal.

4. Resolution Phase bids players to decide whether they accept or abandon

each point that concerns them. See Figure 4.13.

5. Execution Phase allows regent to execute all the decisions made by players

during the resolution phase.

Figure 4.11 Deal Overview.

47

Figure 4.12 Deal Point Discussion.

Figure 4.13 Deal Resolution.

48

4.4.1 Controls
A list of keybinds is presented in Table 4.1.

Key Effect
W / Arrow Up move camera up

S / Arrow Down move camera down

A / Arrow Left move camera left

D / Arrow Right move camera right

Q rotate left

E rotate right

R reset camera

Middle Mouse Button + Mouse Movement rotate camera

Left Control + Left Shift increment parameter by 100

Left Shift increment parameter by 50

Left Control increment parameter by 10

Table 4.1 Hotkeys

4.4.2 Gameplay Overview
Game can be won by two different means. The game is won by the current holder

of the crown by the end of the final turn. If there is no holder, the game is won

by the faction with the highest reputation. Alternatively player can avoid defeat

by having in use Throne Support stratagem on winning player.

Once players are in the lobby, they can choose their stratagems. Choice of

stratagems creates unique strategies and options available in the match to use as

well as paths that can lead to victory. The individual stratagems can be seen in

Table 4.2 and Table 4.3.

The game is played in 12 turns. The first regent is player that created the game. At

the beginning of each turn the regent title is passed to next in order players joined.

During the turn players can utilize stratagems they selected before the game

or obtained from other faction with Stratagem Share stratagem. Due to limited

natures of stratagems, players must rely on diplomacy to outsmart opponents

and achieve the victory.

It’s important to remember that the regent is the only one who can create the

deal and invite other players to participate. Participating is very beneficial as

49

deals are the main source of reputation, and they allow players to work with or

against each other. In addition deals enable players to use stratagems owned by

other participants. The Gift stratagem and Abdicate throne actions are always

available for use in the deals.

4.4.3 AI Players
One of our goals was to create an environment for development of complex AI

agents. The prototype has an example AI agent. This AI agent is capable of

showcasing the basic functionality.

Before the game starts, the example AI agent will attempt to select following five

stratagems in this order: Gift, Take Tile, Military Support, End Military Support

and Throne Liberate.

At the start of each turn and after every action, the AI agent will resolve all

pending messages. If the message is of type demand, the author of the message is

marked as an enemy until the end of the game. Otherwise the message is accepted.

For any deal requiring the AI agent to vote, it decides to vote no if any enemy is

included, otherwise it votes yes. The AI agent always accepts all points in the

resolution phase of the deal.

Each time the AI agent receives a gift of any size and resource, it will mark the

giver as a friend unless they are already an enemy.

Once per turn, before the AI agent finishes the turn it will perform following

sequence of actions:

• It will end military support of the usurper or one enemy faction that already

had AI agent support.

• If any usurper is present, it will attempt to liberate the throne.

• If AI agent has over 100 gold, it will give it to a friendly player. Otherwise

it will grant it military support. The player is then removed from the list of

friends.

• Finally, it tries to take neutral tile for itself.

50

Stratagem Cost Description
Stratagem Share 5 Gold Allows the player to share his

stratagem with the target. The

target can use the stratagem in-

dependently as his own.

Gift 5 Gold Allows the player to send his

resources to another player.

Throne Usurp 20 Reputation

600 Manpower

Claims the crown for yourself.

Usable only once per game.

Throne Contest 5 Gold Fights the Usurper and if victo-

rious, claims the crown. Thus

replacing the usurper.

Throne Liberate 5 Gold Fights the Usurper and if vic-

torious, take all his remaining

reputation for yourself. Thus

removing the usurper.

Throne Support 5 Gold Provides reputation to the tar-

get. Does not lose when the tar-

get wins.

End Throne Support 5 Gold Removes the throne support

modifier from the target.

Military Support 5 Gold Provides manpower to the tar-

get.

End Military Support 5 Gold Removes the military support

modifier from the target.

Illicit Rumour 75 Gold The target loses 5 Reputation.

Burglary 25 Gold

275 Manpower

Target loses 50 Gold and 10 Lux-

uries. Invoker gains 50 Gold

and 10 Luxuries.

Table 4.2 Stratagems

51

Stratagem Cost Description
Tile Exploit Permit 5 Gold Grants the permission to ex-

ploit the tile to the target.

Exploit Tile 5 Gold Takes resources from the tile’s

stockpile.

Take Tile 5 Gold Claims the tile as your own.

Transfer Tile 5 Gold Transfers the ownership of the

tile to the target.

Tile Raid 25 Gold

275 Manpower

Devastates the tile’s stockpile

by at least 200 and takes some

resources for yourself.

Tile Build Farm 50 Gold

500 Materials

A Food Tile gains 525 Food in

its stockpile, other tiles gains

25 resource to their stockpile.

Tile Build Quarry 50 Gold

500 Materials

A Material Tile gains 525 Mate-

rials in its stockpile, other tiles

gains 25 resource to their stock-

pile.

Tile Build Manufactury 100 Gold

500 Food

500 Materials

A Luxury Tile gains 250 Lux-

uries in its stockpile, other

tiles gains 25 resources to their

stockpile.

Tile Build Palace 450 Gold

100 Luxuries

A Reputation Tile gains 100

Reputation in its stockpile.

Tile Build Fortress 100 Gold

500 Food

500 Materials

A Manpower Tile gains 550

Manpower in its stockpile,

other tiles gain 25 resources to

their stockpile. In addition the

tile can no longer be raided.

Tile Build Trade Guild 500 Food

500 Materials

A Gold Tile gains 250 Gold in

its stockpile, other tiles gain 25

resources to their stockpile.

Table 4.3 Tile Stratagems

52

Chapter 5

Results

We have developed a prototype that follows the design described in the Game De-

sign chapter. Final game developed as part of this thesis demonstrates diplomacy

focused gameplay, including multilateral deals.

5.1 Project Complexity
Complexity stems from both design and implementation. Diplomacy as a core of

the game requires different approach than the one used commonly by strategy

video games. The varied constraints of our desired game required us to come up

with creative solutions such as the stratagem system. On the implementation side,

our largest issue was the overall complexity of developing a multiplayer game

that requires large quantity of user interfaces and options. This was compounded

by the difficulty of having to learn an unfamiliar set of tools.

5.2 Artificial Intelligence
One of our goals was to create a suitable API for AI agents. We have achieved

this goal by providing a rudimentary extensible AI agent. However, we did not

attempt to create sophisticated AI agents and the API required by them would

require further extensions.

Development of capable AI agents is important considering the future contin-

uation of this project. Multilateral deals are already a complex problem for AI

agents to handle. Very often AI is not good at matching the behavior expected

by players even in bilateral environments. Often they are extremely stingy and

naive at the same time. Mixing multilateral diplomacy and concepts of trust and

53

betrayals can allow us to explore how to balance healthy nativity, stinginess and

willingness to betray others to seize the momentum.

5.3 Future Extensions
The nature of strategy games in general is that there is always a room for the

introduction of new systems and refining existing ones. The same can be applied

to our project.

Features worth considering have already been mentioned the section Possible

design improvements of the Game Design chapter. The ones that we consider

important are:

• Improved workflow for deals, to improve clarity and to speed up the process.

• Incomplete information and extensive espionage and subterfuge mechanics.

• Standard multiplayer features provided in modern competitive games: re-

connect, observing, replay, saves, etc.

• Single player focused experience to introduce players to concepts as well

as to provide alternative to online play.

• Extending core gameplay features and mechanics: world generation, re-

sources and paths to victory.

• Visual overhaul and properly defining the theme and the setting of the

game.

• Introducing new mechanics such as warfare, city management and many

more while keeping the diplomacy focus in mind.

5.3.1 Importance of Incomplete Information and Espionage
Incomplete information is the one thing we consider absolutely essential to

achieve reasonably good experience in playing this type of a game. Even in the

current very limited form the game shows some problems. Currently the players

have access to almost all information about the world and the opponents. There-

fore, they can make decisions very accurately and almost never get surprised by

the actions of other players. This heavily reduces the options that the players can

utilize to achieve victory and makes it hard to manipulate deals. If we provided

players with very limited information and tools to obtain new information, creat-

ing new (possibly false) information and spreading it would provide additional

layer of intrigue and social interaction. Thus introducing information warfare

and associated options would enrich the gameplay experience.

54

5.3.2 Stratagems
Stratagems are the addition which we consider to have contributed the most

positively to our game design. It could arguably also be considered the most

innovative approach compared to other games in the genre.

Commonly strategy games tend to lean toward either providing all options without

any real limits or just limiting the amount of actions a player can take.

Stratagems, on the other hand, are a fresh approach to this concept. Instead of

having access to a full toolkit, players start with only a very small portion. Ideally

they want to pick stratagems they consider fundamental for their strategy, but

also take options that help them engage in diplomacy with others.

One of the common problems with the standard approach is that many actions

start feeling inconsequential and like chores. Stratagems are allowed to be

powerful due to each player having access only to a few. Combination of this

with the aim for a small amount of turns can serve as an interesting concept

worth iterating and expanding upon.

Finally, stratagems are closely related to the concepts of card games and deck

building. These are very close to the modern audience, providing a clear path to

introducing new players to the game.

5.4 Problems of Social Interaction
Multiplayer games are well known for having never ending problem with toxicity.

We can consider this one of the major hurdles needing to be properly addressed

in all aspects of our game design. Negative player behavior such as intentionally

disrupting the game or improper social behavior can sour the experience for all

other players in the game.

Trying to fight the problem might result in creating a conflict with the original

design. A common approach to reducing toxicity is to reduce the interaction

surface between players. However, this goes directly against the core aspects of

our design. On the other hand, reducing the importance of victory and focusing

on not losing as the main goal might reduce the amount of problematic player

behavior.

Thus creating paths to victory as well as paths to not losing might be one of the

most important aspects to consider in overall game balance.

55

We will end this on a simple note: even losing should be fun. It should be the

moment where everyone accepts that they were truly outplayed and appreciates

the intrigues that led them there.

56

Conclusion

We have developed a prototype that serves as the proof of concept for a diplomacy-

based multiplayer strategy game.

1. Our prototype is a working client-server game that allows player to host

and join game sessions.

2. Our aim was for diplomacy to be the core mechanic. Once we realized the

design within our prototype, it is clear that diplomacy really is an important

aspect of the game and required to reach victory.

3. The game provides the player with a wealth of options, including bilateral

diplomacy in the form of interactions, offers, requests and demands. Multi-

lateral diplomacy is led by the deal mechanic that serves as the main way

of gaining reputation.

4. Multilateral interactions are built to provide more options and to over-

shadow bilateral interactions in how impactful they are on the final result

of the game.

5. Elements of espionage and deceptions are not included in any mechan-

ical way. But by the nature of multilateral deals, players can opt to act

dishonestly.

6. The current prototype is easy to extend with more Actions, Modifiers and

Resources. This allows for a decent level of possibilities to include more

gameplay options.

7. The AI API exists in a very basic form. AI is allowed to interact with the

game through the same system as a player. However, we did not include an

ability to provide external AI implementations in the prototype.

The scope of this project is just too extensive for a single person. To reach a better

result it would need either a lot more time or a small team. The inexperience

57

with designing a more complex game played a role as well.

We were able to successfully create a prototype that explores the possibility of

strategy games focused on diplomacy over other aspects of play.

Our design approach shows potential in exploring this area. Strategy games

that put much larger impact on diplomacy as a way of achieving goals can be

interesting to explore. In our case, using stratagems as the core mechanic helps

the players focus on overall strategy and encourages them to use diplomacy.

Deals work well in combination with the stratagems as a way to provide the

options that players lack compared to standard strategy games.

In the end, this project was derived from a different idea — multilateral peace

deals. Eventually we have reached the goal of making a game with multilateral

deals that focuses on diplomacy. It might be close to impossible to provide an

elegant solution to make multilateral deals interesting, dynamic and interactive.

The nature of complex processes that incorporate multiple people will often lead

to slow gameplay that ends with disagreement and is not an engaging and fun

experience.

For a future project we consider two aspects especially worth investigating:

1. AI capable of using multilateral deals in the context of diplomacy-based

strategy games.

2. Use of stratagems in a classic strategy game design space.

58

Abbreviations

RTS - Real-Time Strategy

TBS - Turn-Based Strategy

4X - Explore, Expand, Exploit and Exterminate

APM - Actions Per Minute

1v1 - A gamemode where two players face each other.

Team Games - match between two groups of players of equal size

FFA - Free For All, each player against all other players

Tall Play - strategy focused on developing small patch of land

Wide Play - strategy focused on expansion of your land

GSG - Grand Strategy Games

HRE - Holy Roman Empire

59

Bibliography

[1] Firaxis Games. Sid Meier’s Civilization® VI. Oct. 2016. url: https : / /
civilization.com/.

[2] Paradox Development Studio. Europa Universalis IV. Aug. 2013. url: https:
//www.paradoxinteractive.com/games/europa-universalis-iv/
about.

[3] Paradox Development Studio. Stellaris. May 2016. url: https://www.
paradoxinteractive.com/games/stellaris/about.

[4] G. Berridge and L. Lloyd. The Palgrave Macmillan Dictionary of Diplomacy.

Palgrave Macmillan UK, 2012. isbn: 9781137017611. url: https://books.
google.cz/books?id=jvarq4iy5MoC.

[5] Loban Rhett. “Digitising Diplomacy: Grand Strategy Video Games as an

Introductory Tool for Learning Diplomacy and International Relations”.

In: DiGRA Conference - Proceedings of the 2017 DiGRA International Con-
ference. Melbourne, Australia: Digital Games Research Association, 2017.

isbn: ISSN 2342-9666. url: http://www.digra.org/wp- content/
uploads/digital-library/19_DIGRA2017_FP_Loban_Digitising_
Diplomacy.pdf.

[6] Relic Entertainment and World’s Edge. Age of Empires IV. Oct. 2021. url:

https://www.ageofempires.com/games/age-of-empires-iv/.

[7] Blizzard Entertainment. StarCraft II. July 2010. url: https : / / www .
ageofempires.com/games/age-of-empires-iv/.

[8] Blizzard Entertainment. Warcraft III: Reforged. Jan. 2020. url: https://
warcraft3.blizzard.com/en-us/.

[9] EA Los Angeles. The Lord of the Rings: The Battle for Middle-earth. Dec. 2004.

url: https://en.wikipedia.org/wiki/The_Lord_of_the_Rings:
_The_Battle_for_Middle-earth.

[10] Miroslav Valach. Advanced Game Settings. Version 4.1.0.0. May 2023. url:

https://github.com/Woprok/AOE4-AdvancedGameSettings.

60

https://civilization.com/
https://civilization.com/
https://www.paradoxinteractive.com/games/europa-universalis-iv/about
https://www.paradoxinteractive.com/games/europa-universalis-iv/about
https://www.paradoxinteractive.com/games/europa-universalis-iv/about
https://www.paradoxinteractive.com/games/stellaris/about
https://www.paradoxinteractive.com/games/stellaris/about
https://books.google.cz/books?id=jvarq4iy5MoC
https://books.google.cz/books?id=jvarq4iy5MoC
http://www.digra.org/wp-content/uploads/digital-library/19_DIGRA2017_FP_Loban_Digitising_Diplomacy.pdf
http://www.digra.org/wp-content/uploads/digital-library/19_DIGRA2017_FP_Loban_Digitising_Diplomacy.pdf
http://www.digra.org/wp-content/uploads/digital-library/19_DIGRA2017_FP_Loban_Digitising_Diplomacy.pdf
https://www.ageofempires.com/games/age-of-empires-iv/
https://www.ageofempires.com/games/age-of-empires-iv/
https://www.ageofempires.com/games/age-of-empires-iv/
https://warcraft3.blizzard.com/en-us/
https://warcraft3.blizzard.com/en-us/
https://en.wikipedia.org/wiki/The_Lord_of_the_Rings:_The_Battle_for_Middle-earth
https://en.wikipedia.org/wiki/The_Lord_of_the_Rings:_The_Battle_for_Middle-earth
https://github.com/Woprok/AOE4-AdvancedGameSettings

[11] Mohawk Games. Old World. May 2022. url: https://mohawkgames.com/
oldworld/.

[12] AMPLITUDE Studios. HUMANKIND™. Aug. 2021. url: https : / /
humankind.game/en.

[13] Triumph Studios. Age of Wonders IV. May 2023. url: https : / / www .
paradoxinteractive.com/games/age-of-wonders-4/about.

[14] DotEmu. Heroes® of Might and Magic® III HD.

[15] Soren Johnson. My Elephant in the Room: An ’Old World’ Postmortem. Ac-

cessed: 2023-07-12. 2022. url: https://gdcvault.com/play/1028038/
My-Elephant-in-the-Room.

[16] Alex Jaffe. Cursed Problems in Game Design. Accessed: 2023-07-12. 2019. url:

https://gdcvault.com/play/1025756/Cursed-Problems-in-Game.

[17] Paradox Development Studio. Crusader Kings III. Sept. 2020. url: https://
www.paradoxinteractive.com/games/crusader-kings-iii/about.

[18] Paradox Development Studio. Hearts of Iron IV. June 2016. url: https://
www.paradoxinteractive.com/games/hearts-of-iron-iv/about.

[19] Paradox Development Studio. Victoria 3. Oct. 2022. url: https://www.
paradoxinteractive.com/games/victoria-3/about.

[20] Creative Assembly. Total War: WARHAMMER III. Feb. 2022. url: https:
//warhammer3.totalwar.com/.

[21] Jacob Fryxelius and Isaac Fryxelius. Terraforming Mars. Accessed: 2023-12-

19. 2016. url: https://fryxgames.se/product/terraforming-mars/.

[22] Klaus Teuber. The Settlers of Catan. Accessed: 2023-12-19. 1995. url: https:
//www.catan.com/.

[23] Allan B. Calhamer. Diplomacy. 1959.

[24] Second Dinner. Marvel Snap. Accessed: 2023-12-19. Oct. 2022. url: https:
//www.marvelsnap.com/.

[25] Ben Brode. Designing ’MARVEL SNAP’. Accessed: 2023-07-12. 2023. url:

https://gdcvault.com/play/1029024/Designing-MARVEL-SNAP.

[26] Epic Games. Unreal Engine 5. Accessed: 2023-12-19. 1998. url: https :
//www.unrealengine.com/en-US/unreal-engine-5.

[27] Unity Technologies. Unity. Accessed: 2023-12-19. Aug. 2005. url: https:
//unity.com/.

[28] Ariel Manzur Juan Linietsky. Godot. Accessed: 2023-12-19. Jan. 2014. url:

https://godotengine.org/.

61

https://mohawkgames.com/oldworld/
https://mohawkgames.com/oldworld/
https://humankind.game/en
https://humankind.game/en
https://www.paradoxinteractive.com/games/age-of-wonders-4/about
https://www.paradoxinteractive.com/games/age-of-wonders-4/about
https://gdcvault.com/play/1028038/My-Elephant-in-the-Room
https://gdcvault.com/play/1028038/My-Elephant-in-the-Room
https://gdcvault.com/play/1025756/Cursed-Problems-in-Game
https://www.paradoxinteractive.com/games/crusader-kings-iii/about
https://www.paradoxinteractive.com/games/crusader-kings-iii/about
https://www.paradoxinteractive.com/games/hearts-of-iron-iv/about
https://www.paradoxinteractive.com/games/hearts-of-iron-iv/about
https://www.paradoxinteractive.com/games/victoria-3/about
https://www.paradoxinteractive.com/games/victoria-3/about
https://warhammer3.totalwar.com/
https://warhammer3.totalwar.com/
https://fryxgames.se/product/terraforming-mars/
https://www.catan.com/
https://www.catan.com/
https://www.marvelsnap.com/
https://www.marvelsnap.com/
https://gdcvault.com/play/1029024/Designing-MARVEL-SNAP
https://www.unrealengine.com/en-US/unreal-engine-5
https://www.unrealengine.com/en-US/unreal-engine-5
https://unity.com/
https://unity.com/
https://godotengine.org/

[29] Krita Foundation. Krita. Accessed: 2023-12-19. June 2005. url: https :
//krita.org/en/.

[30] Blender Foundation. Blender. Accessed: 2023-12-19. Jan. 1994. url: https:
//www.blender.org/.

[31] Epic Games. Unreal Engine 5 - Networking Overview. Accessed: 2023-12-19.

url: https://docs.unrealengine.com/5.2/en-US/networking-
overview-for-unreal-engine/.

[32] Epic Games. Unreal Engine 5 - Game Mode and Game State. Accessed: 2023-

12-19. url: https://docs.unrealengine.com/5.2/en- US/game-
mode-and-game-state-in-unreal-engine/.

[33] Epic Games. Unreal Engine 5 - Player Controllers. Accessed: 2023-12-19.

url: https : / / docs . unrealengine . com / 5 . 2 / en - US / player -
controllers-in-unreal-engine/.

[34] Epic Games. Unreal Engine 5 - RPCs. Accessed: 2023-12-19. url: https:
//docs.unrealengine.com/5.2/en-US/rpcs-in-unreal-engine/.

[35] Epic Games. Unreal Engine 5 - UMG Viewmodel Plugin. Accessed: 2023-12-19.

url: https://docs.unrealengine.com/5.2/en-US/umg-viewmodel.

[36] Epic Games. Unreal Engine 5 - Game Instance. Accessed: 2023-12-19. url:

https : / / docs . unrealengine . com / 5 . 2 / en - US / API / Runtime /
Engine/Engine/UGameInstance/.

[37] Epic Games. Unreal Engine 5 - Online Subsystems and Services. Accessed:

2023-12-19. url: https://docs.unrealengine.com/5.2/en- US/
online-subsystems-and-services-in-unreal-engine/.

[38] Epic Games. Unreal Engine 5 - Enhanced Input Plugin. Accessed: 2023-12-

19. url: https://docs.unrealengine.com/5.2/en-US/enhanced-
input-in-unreal-engine/.

62

https://krita.org/en/
https://krita.org/en/
https://www.blender.org/
https://www.blender.org/
https://docs.unrealengine.com/5.2/en-US/networking-overview-for-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/networking-overview-for-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/game-mode-and-game-state-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/game-mode-and-game-state-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/player-controllers-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/player-controllers-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/rpcs-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/rpcs-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/umg-viewmodel
https://docs.unrealengine.com/5.2/en-US/API/Runtime/Engine/Engine/UGameInstance/
https://docs.unrealengine.com/5.2/en-US/API/Runtime/Engine/Engine/UGameInstance/
https://docs.unrealengine.com/5.2/en-US/online-subsystems-and-services-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/online-subsystems-and-services-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/enhanced-input-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/enhanced-input-in-unreal-engine/

	Introduction
	Analysis
	Terminology
	Real-Time Strategy games
	Age of Empires IV

	Turn-Based Strategy games
	Sid Meier’s Civilization VI

	Grand Strategy games
	Europa Universalis IV
	In-between genres

	Board games
	Diplomacy

	Card games
	Marvel Snap

	Game Design
	Player Count
	Timekeeping
	Game length
	Actions
	Diplomacy
	Decisions
	Deals

	Resources
	Map
	Possible design improvements
	Premise

	Developer Documentation
	Development environment and tools
	Setting up development environment
	Project Structure
	Architecture and Networking
	Synchronization

	Simulation
	World State
	Actions, Modifiers and Resources
	Action Administrator

	Important Types
	User Interfaces
	Game Instance
	Maps
	Controls and Camera
	World Map

	Expanding Actions, Modifiers and Resources
	Working with AI API

	User documentation
	Obtaining and Running the Game
	Menu and Settings
	Create and Join

	Lobby
	Gameplay
	Controls
	Gameplay Overview
	AI Players

	Results
	Project Complexity
	Artificial Intelligence
	Future Extensions
	Importance of Incomplete Information and Espionage
	Stratagems

	Problems of Social Interaction

	Conclusion
	Abbreviations
	Bibliography

