
BACHELOR THESIS

Dmitry Zhukov

Web application for keyword-aware
walking route search

Department of Software Engineering

Supervisor of the bachelor thesis: doc. Mgr. Martin Nečaský, Ph.D.
Study programme: Computer Science

Study branch: Programming and Software
Development

Prague 2024

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I am sincerely grateful to doc. Mgr. Martin Nečaský, Ph.D. for the time spent
guiding me through this thesis, all the great advice, and many fruitful discussions
that led to a better result.

ii

Title: Web application for keyword-aware walking route search

Author: Dmitry Zhukov

Department: Department of Software Engineering

Supervisor: doc. Mgr. Martin Nečaský, Ph.D., Department of Software Engineer-
ing

Abstract: Most mainstream web mapping applications implement location-based
direction search. The typical workflow involves constructing an explicit sequence
of places to visit. In this thesis, we aim to develop a web application that lets users
formulate search queries in terms of categories, each composed of a keyword and
attribute filters. A resulting route passes through at least one place from each cat-
egory. The search procedure is formalized as a variant of the generalized Traveling
Salesman Problem and solved with the help of polynomial-time heuristics.

The application follows the three-tier architecture pattern. The frontend is imple-
mented as a single-page application written in TypeScript using the React library,
while the backend is programmed using the ASP.NET framework. We utilize the
OpenStreetMap dataset and two knowledge graphs, Wikidata and DBPedia, as
the basis for the conceptual model. Data is preprocessed and stored in MongoDB,
which also serves as an efficient index. The OSRM routing engine helps calculate
shortest paths and estimate network distances.

Last but not least, the application stores user data in a decentralized way, either
in IndexedDB or a Solid pod. The former is a standardized in-browser database,
while the latter is part of an emerging technology that gives users control over the
physical location of their data and access rights.

Keywords: spatial queries route search personal data Solid open data

iii

Název práce: Webová aplikace pro vyhledávání pěších tras s ohledem na klíčová
slova

Autor: Dmitry Zhukov

Katedra: Katedra softwarového inženýrství

Vedoucí bakalářské práce: doc. Mgr. Martin Nečaský, Ph.D., Katedra softwaro-
vého inženýrství

Abstrakt: Většina mainstreamových webových mapových aplikací nabízí vyh-
ledávání tras založené na poloze. Uživatel zadává konkrétní místa a určuje jejich
pořadí. Na základě těchto vstupů systém naplánuje cestu. V předložené práci se
věnujeme vývoji webové aplikace, která umožní uživatelům formulovat vyhledá-
vací dotazy pomocí kategorií, z nichž každá se skládá z klíčového slova a atribu-
tových filtrů. Nalezená cesta nutně prochází alespoň jedním místem z každé kat-
egorie. Vyhledávací procedura je pak formalizována jako varianta zobecněného
problému obchodního cestujícího a je řešena pomocí několika heuristik s poly-
nomiální časovou složitostí.

Aplikace využívá třívrstvou architekturu. Frontend je implementován jako jedno-
stránková webová aplikace psaná v jazyce TypeScript s použitím knihovny React.
Backend je navržen za pomocí ASP.NET frameworku. Používáme datovou sadu
OpenStreetMap a dva znalostní grafy, konkrétně Wikidata a DBPedia, jako pod-
klad pro konceptuální model. Data jsou předzpracována a uložena do databáze
MongoDB, která zároveň slouží pro efektivní dotazování. OSRM routovací služba
pomáhá s výpočtem nejkratších cest a odhadem vzdáleností.

Aplikace ukládá uživatelská data decentralizovaným způsobem, a to buď do In-
dexedDB nebo Solid podu. První možnost představuje databázi integrovanou do
webového prohlížeče, zatímco ta druhá je součástí nově vznikající technologie,
která svým uživatelům poskytuje úplnou kontrolu nad fyzickým umístěním jejich
dat a přístupovými právy.

Klíčová slova: prostorové dotazy vyhledávání tras osobní data Solid otevřená
data

iv

Contents

Introduction 3

1 Concepts 6
1.1 Linked Data . 6
1.2 Reclaiming data . 8
1.3 Solid Project . 9

2 Analysis 10
2.1 Definitions . 10
2.2 Requirements . 11
2.3 User stories . 15
2.4 Roles . 16
2.5 Use cases . 16
2.6 Data sources . 19
2.7 Conceptual model . 22
2.8 Existing solutions . 24

3 Design 30
3.1 User interface . 30
3.2 Architecture . 39
3.3 Data preparation . 44
3.4 Routing algorithms . 46

4 Implementation 54
4.1 Prerequisites . 54
4.2 Single-page application . 54
4.3 Web API application . 60
4.4 Querying with MongoDB . 63
4.5 Data pipelines . 64

5 Testing 65
5.1 Automated testing . 65
5.2 Performance testing . 67
5.3 Usability testing . 72

Conclusion 74

Bibliography 75

List of Tables 80

List of Figures 81

List of Abbreviations 83

1

A Attachments 84
A.1 Documentation . 84
A.2 Prerequisites . 84
A.3 Use cases . 87
A.4 Results of usability testing . 91
A.5 Electronic attachment . 92

2

Introduction
Maps have undoubtedly played an important role in human history, helping

to satisfy our innate urge to explore and navigate the surrounding world. Car-
tography, the science of mapmaking, has always evolved simultaneously with the
progress in other fields of knowledge, gradually enhancing its methods. The in-
vention of the World Wide Web has revolutionized numerous areas of our life. In
particular, many web mapping platforms emerged at that time, pushing forward
the frontiers of cartography.

Plewe [1] described four generations of web maps that appeared on the market
up to 2007, ranging from simple static pictures to more advanced ones with
dynamic elements. He pointed out that not only had they become available to
the public, but users had also got a tool for creating and sharing content. Tsou [2]
has speculated that these services would grow into more user-centered products
with ubiquitous access via mobile devices, crowdsourced by amateurs and part-
timers. A decade later, geocoding, satellite-based navigation, and real-time traffic
information, to name a few, are all examples of advanced services that we use on
a daily basis.

Let us consider one specific task that the majority of active travelers have
tackled at least once. Suppose a person has just arrived at the train station of an
unfamiliar city. Due to a late check-in, they might decide to visit several places
of different kinds (gallery, museum, etc.) on the way to the hotel. There are no
other limitations on where the points of interest reside, provided that the total
distance is not too large. While initial and terminal locations are known upfront,
extra effort needs to be made to define waypoints. A typical user interaction
with mainstream applications would involve an iterative process of building a
route that includes the following steps applied for each waypoint:

1. Searching a set of places that might satisfy imposed constraints.

2. Appending one of them to the sequence, with possible manual reordering.

3. New route is recalculated and presented to the user right after any change
is introduced into the sequence configuration.

The main advantage of this procedure is the ability of the user to decide which
points will appear on the route. We may also observe that once a place is added
to the sequence, it loses the connection to the search context. The place is then
treated as a simple point on the map. This leads to two significant drawbacks.
Firstly, the found routes become increasingly difficult to revisit and reason about
as time passes. The far more important problem is that all three steps must be
repeated for each waypoint, leading to a poor user experience.

Another issue we would like to address is related to user data management.
Modern web applications often function as centralized authorities, allowing third
parties to access their functionality through personal profiles. Typically, a user
agreement specifies that the service provider is responsible for storing and pro-
cessing data, transferring genuine data ownership from the signee.

Below, we give a non-exhaustive list of unpleasant situations that a subscriber
of such a service might encounter in practice.

3

• The service provider has decided to sell or grant access to user data to other
companies for profit.

• The user wants to access the same data from different applications or trans-
fer data to another provider offering better conditions.

• The service provider has permanently shut down servers without notifying
the client base.

• The user has accomplished all their goals and requested the deletion of their
profile along with the data. Instead, the service provider has deactivated it
until the user returns.

The goals of the thesis
The main goal of the thesis is to design, develop and test a web application

that attempts to deal with both concerns. The final solution shall incorporate
the following subgoals.

G1 Propose an alternative view on geographical data and devise a search pro-
cedure based on exact categorical matching that reduces user input while
keeping search context and results together.

G2 Manage personal data in a decentralized manner by decoupling them from
the application, allowing users to have full control over their physical loca-
tion and access rights.

G3 Provide a user experience similar to other mainstream applications.

Several aspects of the system are intentionally simplified as proper implemen-
tation would introduce non-trivial complexity with little gain for the thesis.

• Support for various commuting profiles (walking, driving, public transport,
hybrid, etc.) is limited to walking mode only.

• The system implements neither direct nor reverse geocoding.

Document overview
The thesis is divided into five chapters, evolving from an in-depth understand-

ing of the domain to the application of testing techniques.
Chapter 1 focuses on standards and principles for data organization and pub-

lishing on the modern Web. After that, we provide a brief overview of Solid tech-
nology, which stores user data in an external pod.

Chapter 2 analyzes the system requirements that the application should com-
ply with and the use cases it should support. Next, we explore available sources of
geodata and propose a conceptual model. In the final part, we compare existing
applications with similar capabilities based on eight criteria.

Chapter 3 discusses the user interface, architecture, the technology stack used
during implementation, and how the selected data sources should be queried. Last

4

but not least, the route search procedure is formalized, and efficient heuristics are
selected.

Chapter 4 outlines notable implementation details, libraries, limitations, and
potential pitfalls we addressed to achieve the desired functionality.

Chapter 5 explains the application of testing techniques, including automated,
performance, and usability tests, for improving the quality of the application, with
the results presented in the form of graphs and tables.

In addition, the Administrator’s guide in Attachment A.1 describes a step-by-
step procedure for preparing a dataset and running the application on a personal
computer.

5

1. Concepts
The purpose of this chapter is to clarify the conceptual difference between our

and other mainstream web applications. We start with standards and principles
related to data organization and publishing on the modern Web. Then, different
kinds of decentralized storage are covered concerning operational risks. Finally,
we give an overview of Solid technology — our choice for storing personal data.

1.1 Linked Data
The World Wide Web has gradually evolved into a dynamic and heterogeneous

environment for social interactions, collaboration, and innovation. Consequently,
the amount of available data has increased tremendously. It is safe to assume
that no human, without the help of a machine, can organize them and uncover
their hidden potential.

Suppose a user has published a photo without any attached metadata. Per-
haps their friends and relatives would be able to understand the context of the
picture and its value, but the same task does not appear so easy for an intelligent
agent. The Semantic Web is an extension of the standard “Web of documents”
to give data additional dimension and enable machines to navigate resources,
read and reason about them. This term was introduced by Tim Berners-Lee, the
creator of the Web, long before the exponential data growth became an issue.

At first, this task may seem very ambitious, yet achievable if communicated
through standards and recommendations, allowing other participants to con-
tribute. As one might expect, the topic is indeed vast. Therefore, we discuss only
a subset relevant to this thesis. So, how can we make the Web machine-readable?

The initial step in the right direction is to provide a tool for describing data.
The Resource Description Framework (RDF) [3] is an abstract syntax for repre-
senting information on the Web. It is well-suited for modeling structures similar
to directed, labeled multigraphs. Every edge of a graph is a statement — a triple
consisting of a subject, predicate, and object — applicable in a given context. An
RDF document is a collection of RDF graphs.

For example, the sentence “Alice knows Bob.” can be expressed by the state-
ment illustrated in Figure 1.1, provided that additional information about entities
is available upon dereferencing the corresponding links.

Figure 1.1: An RDF graph with one triple.

6

There are multiple options to choose from while serializing RDF data. Let us
demonstrate two very different examples.

The most obvious ones are N-Triples [4] and N-Quads [5], that is to write each
triple (optionally with a graph name) on a separate row. Reading one triple at a
time is especially beneficial in case an RDF document is large enough so that it
does not fit into the main memory. An example of an RDF statement serialized
as N-Triple follows.

<http://example.org/people/alice#me>
<http://xmlns.com/foaf/0.1/knows>
<http://example.org/people/bob#me> .

↪→

↪→

A JSON-based Serialization for Linked Data (JSON-LD) [6] is another option
based on a well-known and widely used JavaScript Object Notation (JSON) data
format. Triples are contained within the @graph property. The @context defines
a mapping between properties of a JSON object and their corresponding links.

Our running example serialized into JSON-LD is shown in the code snippet
below, but it is important to note that this serialization is much more versatile.

{
"@context": {

"knows": {
"@id": "http://xmlns.com/foaf/0.1/knows",
"@type": "@id"

}
},
"@graph": [

{
"@id": "http://example.org/people/alice#me",
"knows": "http://example.org/people/bob#me"

}
]

}

We have learned how to model data and represent them in a machine-readable
form. The SPARQL Protocol and RDF Query Language (SPARQL) [7] enables
searching and modifying RDF data via basic graph pattern matching, property
paths and other advanced techniques.

The following query searches for all the people that Alice knows. If executed
on our running example, the result would be a table with the only cell containing
a link to Bob’s web page.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {
<http://example.org/people/alice#me> foaf:knows ?o .

}

7

Finally, we state four slightly adapted principles, so-called Linked Data, pro-
posed by Tim Berners-Lee [8]. If properly followed, there is a chance that the
Web will evolve into a standardized global-scale database.

1. Use Internationalized Resource Identifier (IRI) as names for things.

2. Use HTTP(S) IRIs so that people can look up those names.

3. When someone looks up an IRI, provide useful information in RDF.

4. Include links to other IRIs, so that they can discover more things.

1.2 Reclaiming data
Earlier, we mentioned operational risks that arise from centralized data man-

agement. The common reason behind all of them is that data are in the possession
of a service provider. Let us discuss three very different kinds of decentralized stor-
age — those not belonging to a service provider — applicable in web development
that could help to mitigate or even avoid these risks altogether.

Device storage
The simplest approach is to use the file system of the device used to access a

web page. The latest version of the application is fetched on page refresh. Then,
it behaves more like being installed on a desktop computer.

Such storage provides control over where data are stored and ensures privacy,
but it makes collaboration hard. There is no simple answer to how to access data
from multiple devices either.

Kleppmann et al. [9] formulated seven principles of local-first software. Their
vision was to harness the benefits of the software-as-a-service business model but
with the assumption that the application makes a local copy of all data and treats
it as a primary replica. The user does not need to wait for actions to finish or be
online all the time; changes made locally are eventually propagated to the cloud.

Peer-to-peer storage
BitTorrent1, IPFS2, SAFE Network3, and PingER [10] are examples of tech-

nologies based on peer-to-peer file sharing and communication protocols. Data are
split into chunks and replicated among agents available on the network; there is
no single point of failure.

It is worth noting that p2p-storages are decentralized from the user’s perspec-
tive as well, which brings additional challenges. Published data are hard or even
impossible to alter. If not encrypted, distributed chunks may potentially be used
in an unsolicited way. Therefore, additional measures for data protection might
need to be considered upfront.

1https://www.bittorrent.org/
2https://ipfs.tech/
3https://primer.safenetwork.org/

8

https://www.bittorrent.org/
https://ipfs.tech/
https://primer.safenetwork.org/

Personal storage
The last group in our classification comprises technologies that enable users

or system administrators to create a secure space for their data, decide the exact
physical location of data, grant and revoke permissions to access resources, and
so on. Individual spaces are interconnected and establish a federated network.

Mastodon4, Diaspora5, and Hubzilla6 are representatives of rather specialized
software for social interactions, aiming to meet the needs of groups. Solid7 stands
out as a technology for storing the personal data of individuals.

Assuming that the service application does not perform unintended operations
or act maliciously, personal storage offers the most flexibility concerning the risks
we address. Furthermore, we do not attempt to implement a social network but
focus on providing a novel way to search routes. Hence, Solid will be our choice
for storing user data.

1.3 Solid Project
Social Linked Data (Solid) [11] is a specification built on top of the existing

infrastructure and standards, and any Solid-compliant implementation acts as a
personal storage we described in the previous section.

Started as a research project by Tim Berners-Lee and other collaborators in
response to the improper use of the Web [12], the technology later developed into
the startup Inrupt8 to turn Solid into a market-ready product.

Within Solid, user data are stored in personal online data stores called pods,
following the principles of Linked Data. It distinguishes between structured RDF
datasets and unstructured binary blobs (text, images, etc.). Pods reside on a pod
server and are accessed via a well-defined HTTP API. Servers are also responsible
for authentication, authorization, access control, and request handling [13].

The concept of decentralization using Solid is shown in Figure 1.2. The owner
of a pod can grant and revoke permissions based on unique user identifiers. Agents
attempt to access a resource through Solid apps. Agent 1 is allowed, but Agent N
is not because their identifier does not appear in the list.

Figure 1.2: The concept of decentralization using Solid.

4https://mastodon.social/
5https://diasporafoundation.org/
6https://hubzilla.org/
7https://solidproject.org/
8https://www.inrupt.com/

9

https://mastodon.social/
https://diasporafoundation.org/
https://hubzilla.org/
https://solidproject.org/
https://www.inrupt.com/

2. Analysis
At the beginning of this chapter, we define abstract concepts useful for dis-

cussion and formalizing the problem at hand. Following that, the requirements
and use cases are stated, both of which are fundamental for proper system de-
sign. Next, possible sources of open geodata available on the Web are described,
and a conceptual model for the application is proposed. Lastly, we analyze and
compare competing applications tangibly related to our goals, aiming to identify
the set of features essential for a reasonable user experience.

2.1 Definitions
To simplify further communication, we give definitions used throughout the

thesis and then illustrate some of them in a real-life situation.

Public storage is a read-only collection of entities accessible to all users via a
predefined set of methods.

Private storage is a collection of entities accessible only to a specific user and
other actors authorized by the user.

Client is an integral part of the application, allowing user interaction with both
public and private storage.

Keyword is a string having an “instance of” relationship with a given place.

This place is an instance of a museum.

Attribute is a singleton or key-value pair having a “has a” relationship with a
given place.

This museum has a capacity of 100 people.

Attribute filter is a constraint imposed on a certain attribute. Only museums
with a phone number and a large enough capacity would be selected by the
query from the example.

Place is any location recognized by the public or private storage and associated
with at least one keyword and a (possibly empty) set of attributes.

Named location is a distinguished point on the map recognized by the private
storage. Possible candidates are locations with special meaning for the user,
such as place of work, home, and so on.

Path is a composite structure consisting of a starting point, destination, optional
waypoints in between, and a polygonal chain.

Direction is a path resulting from a search query based on an ordered sequence
of locations.

Category is a composite structure consisting of a keyword and attribute filters.

10

Categorical matching is the process of recognizing whether a place belongs
to a given category. Formally, we speak about the application of a binary
function m : V ×C → {0, 1}, where V is the set of places, and C is the set
of categories. Its value is equal to 1 if a place has the keyword of a category
and satisfies all attribute filters, and 0 otherwise.

Route is a path resulting from a search query based on a set of categories. It also
comprises the context in which the search has been conducted.

Suppose a group of N tourists wants to plan an excursion, starting at the hotel,
finishing in the city center, and visiting a castle and a museum. Not every facility
is suitable due to the group size. Furthermore, it is advisable to make a reservation
upfront by phone or other means.

The organizer marks two terminal points in a client and configures two cate-
gories similar to the one below that match only specific castles and museums.

(museum⏞ ⏟⏟ ⏞
keyword

, {phone, capacity ≥ N}⏞ ⏟⏟ ⏞
attribute filters

)

Once the query form is prepared, a request is issued. The application operates
over places stored in the public storage and suggests several routes. The organizer
saves one of them in their private storage for later use.

2.2 Requirements
In this section, we specify the properties that our solution (hereinafter referred

to as SmartWalk) should possess by expressing functional and non-functional
requirements.

Functional requirements are statements about the system that clarify the
services and features it should provide to users and external systems, as well as
how it should behave with respect to the surrounding environment.

On the contrary, non-functional requirements, also called quality attributes,
define characteristics that improve the ability of the system to deliver function-
ality and meet stakeholders’ expectations [14].

2.2.1 Functional requirements
Here, we outline the features our system implements, some implied by the

goals of the thesis and others derived from the analysis of existing solutions in
Section 2.8.

Place search

F1 The system allows users to search places around some center point within
a crow-fly (or great circle) distance of at most 15 km.

F2 The user can choose a center point on the map or from the stored options.

F3 The user is allowed to adjust a maximum distance (radius of a circle).

11

F4 The user can provide a list of categories for place matching. If the list re-
mains empty, the system retrieves all places within the bounding area.

F5 The result is paginated (5, 10, 20, or 50 places per page) and sorted by the
distance in ascending order.

F6 The user is able to filter the result by category. Only places associated with
at least one active category are listed.

Route search

F7 The application enables users to search routes leading from a starting point
to a destination with walking distance of at most 30 km.

F8 The user can choose a starting point and destination on the map or from the
stored options. Furthermore, points are swappable and might be distinct.

F9 The user is allowed to adjust a maximum walking distance.

F10 The user is required to provide at least one category for place matching.

F11 The user can define an order in which categories should be visited by config-
uring a set of arrows. Arrows have the same meaning as the word “before”
and are not allowed to form cyclic dependencies. Given categories {1, 2, 3}
and the only arrow (1→ 2), the following orders are valid:

3→ 1→ 2, 1→ 3→ 2, 1→ 2→ 3.

F12 The result contains only routes satisfying the following conditions:

• a route starts at the starting point, ends at the destination, and visits
at least one place from each category,

• the “before” relation is preserved for all arrows,
• the distance of the route is less than or equal to the maximum.

F13 The result is paginated (one route per page) and sorted by the distance in
ascending order.

F14 The user can (un-)hide places associated with a selected category.

Direction search

F15 The system allows users to search directions for a given sequence of loca-
tions; a result contains those passing through all points in the given order.

F16 The user can extend the sequence by selecting a point on the map, choosing
from the stored options, or appending from a detailed view.

F17 The user can move points of the following entities to the sequence:

• routes from the result of a search query,
• directions and routes in the private storage.

12

F18 The application enables the user to rearrange points of the sequence one by
one and reverse them.

F19 The result is paginated (one direction per page) and sorted by the distance
in ascending order.

Entity management

F20 Search queries consider only entities of the public storage and ignore those
stored privately.

F21 The user can create named locations within their private storage.

F22 For every place, the system maintains a unique persistent identifier and
provides a detailed view of all information available in the public storage.

F23 The detailed view of a place contains an embedded JSON-LD representation
of that place. The object should include only specific predetermined fields.

F24 The user can save a partial copy of a place linked to the original object and
redefine the name. Its detailed view indicates the existence of that copy.

F25 The system generates routes and directions on demand without granting
identifiers. Search queries for these kinds always yield “new” objects. The
user can save them in their original state.

F26 If an entity of the public storage has a unique identifier, only one copy of
that object may exist in a given private storage.

F27 The application permits the user to view, edit, and delete routes, directions,
copies of places, and named locations in their private storage.

F28 The application enables the user to authenticate against a Solid server and
activate an available pod as private storage.

F29 The system supports all use cases without extra effort from the user regard-
ing entity management and the concept of decentralization.
Rationale: To ensure the user has a gentle learning curve. Essentially, this
requirement mandates the use of two interchangeable storages. Please refer
to Requirement N4 for implementation details.

User interface

F30 The system provides users the option to request their current location.

F31 When configuring a category, the system suggests possible keywords based
on a prefix. Once a keyword is selected, the system provides the user with
the corresponding keyword-specific attribute filters and their bounds.

F32 The removal of a category also resets the list of arrows.

F33 The system enables users to clean up request forms and alter entered items,
including points, categories, and arrows.

13

F34 The result panels contain information regarding the number of objects found
and summarize the input from the request form.

2.2.2 Non-functional requirements
The quality of a software system can be evaluated in different dimensions,

including performance, testability, and modifiability. Below, we list the essential
attributes that our application possesses. The reasons behind these requirements
and the decisions made to meet them are discussed in the following chapters.

N1 The application follows the three-tier architectural pattern and consists of
the frontend, backend, and infrastructural nodes.

N2 The frontend is designed as a single-page application and written in Type-
Script using the React library and Material UI components.

N3 The frontend implements a panel-centric layout and provides the same level
of user experience on both desktop and mobile devices.

N4 The frontend employs IndexedDB as device storage and a Solid pod as ex-
ternal storage. Both of them are instances of private storage.

N5 The frontend prevents users from entering invalid input while interacting
with panels and the map.

N6 The map performs marker clustering if the number of drawn objects exceeds
a predefined limit.

N7 The backend is designed as a Web API application written in C# using the
ASP.NET Core framework and asynchronous primitives.

N8 From the algorithmic point of view, the implementation of a route planner
prioritizes efficiency and a variety of results over optimality.

N9 The system uses MongoDB for both storing entities and facilitating search
queries.

N10 The application utilizes the OSRM backend as a routing engine to calculate
paths and distance matrices.

N11 The application maintains an in-memory data structure to index keywords
and lists of corresponding attributes and their bounds.

N12 The frontend communicates with the backend via API based on the HTTP
protocol and the JSON data format.

N13 The response time of reasonably large place search queries does not exceed
1 second on average.

N14 The response time of reasonably large route and direction search queries
does not exceed 2 seconds on average.

N15 The system integrates information from at least three data sources: Open-
StreetMap datasets, Wikidata, and DBPedia.

14

N16 The data ingestion strategy supports filtering based on bounding boxes and
enables incremental updates.

N17 The architecture enables horizontal scaling as the number of active users or
data volume increases.

N18 The solution provides a cross-platform deployment procedure optimized for
running on a stand-alone personal computer.

N19 The frontend is supported in Mozilla Firefox, Google Chrome, and Microsoft
Edge browsers.

N20 The source code depends on the existing open-source software and is pub-
lished on GitHub as a monorepo, enabling easy collaboration with other
developers.

N21 The source code is testable, reusable, and decently documented. The solu-
tion uses standard techniques for code organization.

2.3 User stories
To justify the relevance of our application and understand the target audience,

we list several examples of actors which would benefit from using it. All examples
are given in the form of user stories, following the template “As a <role>, I can
<capability> so that/to <receive benefit>.”

• As a self-guided tourist, I can create an itinerary providing a unique local
experience to harness the full potential of my journey.

• As an international student, I can explore my local area to fulfill everyday
duties, including doctor, shop, or leisure.

• As a family, we can visit the zoo and include a restaurant on the way home
so that no one feels hungry after a long day.

• As a tourist guide, I can create routes that pass through numerous categories
to satisfy the interests and needs of different people.

• As a person waiting for the train, I can find a short route through a souvenir
shop and an ATM to ensure I return before the train departs.

• As an information point, I can answer questions from my clients so that I
always send them in the right direction.

• As an entrepreneur, I can identify missed opportunities in a specific area to
expand my business and increase my chances of success.

• As a person looking for an apartment, I can learn more about services within
walking distance to choose an option that fits my needs best.

• As an urban planner, I can reflect on the development of areas I have been
responsible for to help me improve my expertise.

• As a culture vulture, I can look for art galleries, theaters, cinemas, and more
in one request so that I do not have to explore each category separately.

15

https://github.com/

2.4 Roles
The system primarily caters to the needs of individuals and legal entities with

diverse backgrounds that do not know their local area well or seek insights. It
also does not support collaborative scenarios or interactions other than searching
and storing results.

Therefore, we define only one role within the system, which is a user. Due to
F29, users authenticated against a Solid server behave the same way as if they
were guests.

2.5 Use cases
In addition to the requirements, we provide the essential use cases that users

might need to perform within the system. Each consists of up to five parts: the
initial state of the system, the normal flow, the final state, and optional alterna-
tives and extensions. To grasp how use cases are organized, it may be beneficial
to review Figures 2.1, 2.2, 2.3, and 2.4 before delving into implementation details.
Their detailed descriptions are provided in Attachment A.3.

The following use cases guarantee the ability to search for and save entities.

• UC01: Select point

• UC02: Add category

• UC03: Add arrow

• UC04: Search routes

• UC05: Show detailed view of a place

• UC06: Save place

• UC07: Search directions

• UC08: Modify route

Users are allowed to view, delete, and edit stored entities. The process of dele-
tion is similar to editing metadata and is therefore excluded from consideration.

• UC09: View entity • UC10: Edit entity

The following use cases explain the interplay between device storage and Solid
pod so that user data is never lost or compromised.

• UC11: Activate Solid pod • UC12: Deactivate Solid pod

While designing scenarios, the following principles have been applied to sim-
plify human-computer interaction and make application behavior predictable.

• Actions that modify the application state, such as saving entities or adding
arrows, are always bound to the corresponding dialog. The user is allowed
to close the dialog as long as the action has not been confirmed. Otherwise,
they should wait until the request is resolved.

• Actions initiating a search prevent users from leaving the panel until the
request is resolved.

• Errors that appear within a dialog or panel do not corrupt its state. In other
words, information entered before the error has occurred remains intact.

16

Figure 2.1: The use cases related to searching routes.

Figure 2.2: The use cases related to searching places.

17

Figure 2.3: The use cases related to searching directions.

Figure 2.4: The use cases related to entity and storage management.

18

2.6 Data sources
We have introduced abstract concepts that form the foundation of our system

and have outlined the procedures it will support. However, data is the key element
that connects ideas to the real world and makes applications usable for end users.
The goal of this section is to discuss the properties and internal organization of
the selected sources of open geographic data. Their actual usage is tightly related
to the conceptual model and is covered later in Section 3.3.

We will deal with two types of datasets: semi-structured and structured. The
former usually has some internal organization but does not explain the meaning of
individual items or constrain them. The latter is completely defined by schema or
abstract model. For example, recall the code snippet with JSON-LD serialization
from Section 1.1. The meaning of the property knows is precise in the presence
of @context and becomes ambiguous without it.

All sources of structured data that we consider further are represented by large
knowledge graphs. Although this term is rather general [15], our experience will
be limited to publicly available HTTP endpoints capable of processing SPARQL
queries.

2.6.1 OpenStreetMap
OpenStreetMap (OSM)1 is a community-driven initiative to create freely avail-

able global-scale geographic data. The project was founded in 2004 and, over the
years, has become the largest dataset of its kind available on the Web, thanks to
volunteers and regular contributors.

Perhaps one of the main reasons OSM has taken off so well and attracted the
attention of thousands of people is that everyone can get started with minimal
effort. Its conceptual data model defines the following three types of elements.

• Nodes are point-like objects that either represent standalone real-world en-
tities or are used as building blocks for other composite elements.

• Ways are ordered sequences of nodes suitable for modeling line features or
area features, depending on whether the terminal points are distinct.

• Relations are the most generic elements designed to aggregate other primi-
tives, including relations, and describe new meanings and behavior. Typical
examples are polygons with holes, transportation routes, or even adminis-
trative boundaries.

Furthermore, each OSM entity could have a set of key-value pairs (tags) at-
tached. Both key and value are free-form text entries. A key could occur within
the same entity only once. Tag statistics are collected and published on Taginfo2.

An example of a widely used pair is tourism=museum. One might argue that
museums have a broader meaning and are not necessarily associated with tourism.
That is another significant disadvantage of the OSM data model, making it hard
to deal with in real applications.

1https://www.openstreetmap.org/
2https://taginfo.openstreetmap.org/

19

https://www.openstreetmap.org/
https://taginfo.openstreetmap.org/

To fix the problem, we could try to map tags to some ontology or a schema.
Sophox3 and WorldKG4 attempt to create knowledge graphs from OSM data, but
none of the projects help to convert textual values to structured ones.

There are multiple options for how to obtain the OSM dataset. Full and partial
dumps for selected regions are available on Geofabrik5 in binary and textual data
formats. More customized queries are realizable via Overpass API6.

Despite incompleteness and heterogeneity, OSM remains a significant source
of geographic data for our application. We were able to extract about 115000 dis-
tinct entities, including polygons and relations, within a bounding box of Prague,
the capital of the Czech Republic. Wikidata discussed just below contained about
35000 point-like objects for the same area.

2.6.2 Wikidata
Wikidata7 is one of the largest publicly accessible sources of general-purpose

structured data on the Web. The original idea behind this project was to create
a database shared among other Wikimedia projects to deduplicate and interlink
already existing information. The repository is maintained and extended by edi-
tors and robots. In addition, it integrates knowledge from various datasets with
compatible licenses while keeping links to originals.

In Wikidata, anything — a real-world entity or abstract concept — can be
represented by an item with a label, description, and aliases. Each item is granted
a unique, persistent identifier starting with Q. For example, Q188112 denotes the
National Museum in Prague.

Facts about items are expressed using property-value pairs called statements.
In the following example, the property P31 is translated to English as “instance
of,” and Q33506 stands for the concept of “museum” as an institution:

Q188112(item) → P31(property) → Q33506(value).

To put it simply, a property describes a relation between an item and a value.
Moreover, it restricts the data type of the value and possibly its range so that
facts have a predictable structure and are easy to work with.

The data model of Wikidata is built upon RDF but extends it with internal
conventions. Please refer to Figure 2.5 for a detailed view of its structure as pre-
sented in a web browser.

The purpose of a qualifier is to provide additional context about a statement,
such as the timestamp when it started being true.

More than one value may exist for a given item and property. For example, an
object could be an instance of a “museum” and “gallery” simultaneously. Ranks
help to order values by relevancy.

One of the characteristics Wikidata mentions about itself in the product state-
ment is being a secondary database. References are intended to point to the source
of information, making statements verifiable.

3https://sophox.org/
4https://www.worldkg.org/
5https://download.geofabrik.de/
6http://overpass-api.de/
7https://www.wikidata.org/

20

http://www.wikidata.org/entity/Q188112
http://www.wikidata.org/prop/direct/P31
http://www.wikidata.org/entity/Q33506
http://www.wikidata.org/entity/Q188112
http://www.wikidata.org/prop/direct/P31
http://www.wikidata.org/entity/Q33506
https://sophox.org/
https://www.worldkg.org/
https://download.geofabrik.de/
http://overpass-api.de/
https://www.wikidata.org/

Figure 2.5: Simplified data model of Wikidata [16].

Wikidata follows the principles of Linked Data; entity representation can be
requested in different data formats, including JSON-LD, using content negotia-
tion. The database can also be accessed via the SPARQL-based Wikidata Query
Service (WDQS)8. Furthermore, WDQS offers service extensions, with the most
relevant ones in the context of this thesis being geospatial around and box. The
following snippet demonstrates how to retrieve all instances of museums with
their locations within the bounding box of Prague.

SELECT ?wikidataId ?location WHERE {
?wikidataId wdt:P31/wdt:P279* wd:Q33506. # an instance of a museum
SERVICE wikibase:box {

?wikidataId wdt:P625 ?location.
bd:serviceParam wikibase:cornerSouthWest

"Point(14.18 49.90)"^^geo:wktLiteral.
bd:serviceParam wikibase:cornerNorthEast

"Point(14.80 50.20)"^^geo:wktLiteral.
}

}

2.6.3 DBPedia
DBPedia9 is another project in the field of Linked Data that aims to convert

Wikipedia into a structured form. Its core component, the information extraction
framework initially developed by Auer et al. [17], parses articles into an abstract

8https://query.wikidata.org/
9https://www.dbpedia.org/

21

https://query.wikidata.org/
https://www.dbpedia.org/

syntax tree, performs the algorithm, and transforms the structure into an RDF
graph. This workflow implies that the resulting dataset is read-only and the only
meaningful way to update it is through repeated extraction.

Although both DBPedia and Wikidata are related to Wikipedia, these projects
differ in many aspects [18]. For example, DBPedia utilizes a more general RDF
as its data model. Fortunately, if the range of the property is defined for a given
triple, the extraction framework accepts only valid values.

Information from DBPedia is accessible through methods similar to Wikidata,
including dumps, content negotiation, and the SPARQL endpoint. Due to the
generality of the extraction procedure, certain data items might be challenging to
interpret and work with. Therefore, we will use this dataset as an auxiliary source
to enrich existing entities.

2.7 Conceptual model
We have reached the point where we can interconnect abstract ideas with the

available datasets. Let us show the UML class diagram of the conceptual model,
depicted in Figure 2.6. It mostly incorporates the entities from Section 2.1 that
we have already covered. Nonetheless, several aspects deserve extra attention.

All concepts evolve alongside Keyword, which is essential in the context of
this thesis. Place represents the simplest form of a geographic entity that is sen-
sible to consider. Certain locations, such as tourist attractions, are inherently
data-rich. ExtendedPlace helps accommodate additional information, where the
attributes data field can be understood as a collection of key-value pairs. More-
over, we assume that each key clearly defines the data type of its value, akin to
properties in Wikidata.

To search for routes, a user must provide at least one Category. In the initial
version of the application, we implement six types of attribute filters, formally de-
fined in Table 2.1. The variable v holds the result of accessing attributes [key].
Values for other variables are supposed to be set by the user.

Filter Variables Predicate

Existential v : any defined(v)
Boolean v, b : boolean v = b

Numeric v, a, b : number a ≤ v ≤ b

Textual v, t : string v.contains(t)
Set (include)

v, s ̸= ∅ : ⟨string⟩ ∃w ∈ s : w ∈ v

Set (exclude) ∀w ∈ s : w ̸∈ v

Table 2.1: Attribute filters.

The first type, existential, is applicable when we do not care about the shape of
the value, such as an email or phone number. The meaning of the next three rows
is obvious, whereas the last two filters are less common. Suppose the user wants
to have dinner in a restaurant with Czech or Slovak cuisine. Any instance of a
restaurant with the attribute cuisine that includes czech, slovak or both would
work. The last filter is the negation of the previous one.

22

To enable effective communication between the user and system and reduce
the number of meaningless queries, bounds within an AdviceItem restrict ranges
of their corresponding filters. The user can select only values valid for at least one
place in the public storage while configuring a category. Bounds are essential for
numeric and set filters.

A careful reader might have noticed that named locations do not appear in
the drawing. Instances of this type have the same structure as Place but are not
associated with any Keyword. Routes and directions could still visit them.

The diagram highlights some of the elements. The green boxes are concepts
of the global state and exist in the public storage. The blue entities are generated
by the application in response to queries, and users can choose to store them.

Figure 2.6: A UML class diagram of the conceptual model.

The last point we should discuss here, which eventually impacts the user in-
terface and the technology stack, is how to define attributes. Since the selected
data sources offer different experiences in terms of data quality, the preprocessing
phase is necessary. There are at least two general approaches to this issue.

We could explicitly define keys, data types, value constraints, and mapping
between our attributes and items of an external data source. This representation
enables the extraction of parsable data from the OSM dataset. Moreover, result-
ing entities would be easier to work with for tasks like configuring categories or
presenting detailed views. However, the internal structure of knowledge graphs
would be underutilized.

Another method takes advantage of the fact that both knowledge graphs define
the notion of a data type. For instance, property P2043 in Wikidata and predicate
length in DBPedia both describe the “length” of an object. The former expresses
values in terms of Quantity, while the latter uses simple doubles.

23

http://www.wikidata.org/prop/direct/P2043
https://dbpedia.org/ontology/length
https://www.wikidata.org/wiki/Help:Data_type#quantity

In principle, we could ingest only property-value pairs with reasonable data
types, such as boolean or double, while preparing our attributes. This approach
is more generic than the previously discussed and, at the same time, problematic
in several aspects.

• The OSM dataset remains beyond the scope; we still have to parse it.

• A user might encounter too many attribute filters while configuring a search
query.

• A detailed view of a place would lose appeal if it had to implement a generic
layout.

• General ranges could potentially complicate the user interface. Recall the
scenario from Definitions, where the group of people was looking for a
museum to visit with a specific capacity requirement. In Wikidata, values of
the property P1083 are constrained within the range of 0 and 9×105. Con-
sequently, using a slider to obtain user input is no longer feasible. Instead,
entered values must be validated, and errors should be reported.

Taking into account the goals of the thesis, we prioritize usability over gener-
ality. Hence, our final decision is to choose the first option and implement a fixed
set of attributes.

2.8 Existing solutions
Web maps have been around for almost three decades [1]. As a result, there

are implicit expectations regarding the functionality a typical application should
offer and the behavior of its user interface.

In this section, we consider three types of products and compare them with
our solution: commercial platforms backed by large technology companies, less
popular applications implementing innovative features, and research-oriented pro-
totypes. Table 2.2 summarizes the differences and commonalities in eight criteria.

While most websites are usable out of the box, extended capabilities might be-
come accessible upon login. We assume that authentication has been performed.

2.8.1 Mapy.cz
Our starting point is Mapy.cz10, a web mapping platform that originated in the

Czech Republic. It is undoubtedly one of the most popular projects in the local
market, integrating numerous industry best practices as well as several distinctive
features. We use Mapy.cz as a reference point for other alternatives.

The opening page contains a vertical panel on the right side with three tabs:
Search, Directions, and My Maps; the rest is filled with raster tiles containing
interactive points of interest. If the width of the viewport becomes sufficiently
small, the layout switches to the mobile version. The panel moves to the bottom
but keeps its layout unchanged.

10https://en.mapy.cz/

24

http://www.wikidata.org/prop/direct/P1083
https://en.mapy.cz/

The Search tab includes a search bar and category buttons. Clicking on a
button has the same effect as if we had entered its label into the input. Based
on provided text, autocomplete could suggest two kinds of objects that act very
differently. Place items lead to the detailed view. Category items initiate search
and return a list of relevant places with basic refinement filters. Filter configura-
tion seems identical for all categories. The result is relative to the visible part of
the map; shifting or zooming causes immediate recalculation. Different states of
this tab are presented in Figure 2.7.

Figure 2.7: Mapy.cz – Search tab: 1 initial view, 2 autocomplete options with
places and categories, 3 the results of a categorical search.

The Directions tab allows a user to construct a path in iterations. The se-
quence can be extended and customized in various ways; users can insert or ap-
pend new points, rearrange points through drag-and-drop, and even reverse the
order. The result is calculated for every sequence configuration (see Figure 2.8
for an example). Nevertheless, this workflow suffers from all the drawbacks men-
tioned in the Introduction.

Figure 2.8: Mapy.cz – Directions tab: 1 initial view, 2 a list of directions.

Mapy.cz also supports automatic route planning, addressing one of our con-
cerns. Given a point on the map and a maximum distance, the Circuit Route
Planner11 generates a round trip and a list of tourist attractions nearby. Even
though user input is reduced to two items, we can identify several drawbacks of
their approach:

• the route is eventually circular,

• found points might lie far from the polygonal chain,

• the user has no control over what categories will be included in the list.
11https://napoveda.seznam.cz/en/circuit-route-planner-biking-and-walking/

25

https://napoveda.seznam.cz/en/circuit-route-planner-biking-and-walking/

An integral part of flawless user experience is the ability to store and reuse
previously obtained assets. The application enables storing all types of entities
and accessing them through the My Maps tab later. When saving a place, users
can assign it any desired name. Paths in the storage are editable. Users have the
option to duplicate a path by resaving it as a new entity. To enhance personal-
ization, users can also label any position on the map and treat it as a distinct
place in their collection.

2.8.2 Komoot
Komoot12 is a web application aimed at active individuals who enjoy outdoor

sports such as hiking, cycling, or running. The startup page contains two sections:
Discover and Route Planner.

The Discover section offers a community-driven tour recommendation system
with filtering capabilities (duration, difficulty, elevation, etc.); routes are gener-
ated by an algorithm based on user activities13.

If none of the routes meet all the requirements, users have the option to modify
a discovered path or create a new one. In contrast to Mapy.cz, a total of 22 hard-
coded category filters are available to users and activated by corresponding check-
boxes while manually constructing a sequence of points, as shown in Figure 2.9.
The resulting direction can be saved and updated later. The storage functionality
allows filtering by location, date, sport, or searching by name.

Outdooractive14 is another website with similar objectives and features.

Figure 2.9: Komoot: category filters.

2.8.3 Kurviger
Kurviger15 is a web application intended to cover the needs of motorcyclists. It

shares several similarities with the aforementioned web pages, such as the ability
to filter places by category (up to 10), store places and routes, and rename places.

Additionally, users are able to generate randomized round trips based on a
starting point, compass direction, and tortuosity (refer to Figure 2.10 for an
example). Repeated searches with the same parameters yield distinct results.

12https://www.komoot.com/
13https://support.komoot.com/hc/en-us/articles/360058879211
14https://www.outdooractive.com/en/
15https://kurviger.de/about/

26

https://www.komoot.com/
https://support.komoot.com/hc/en-us/articles/360058879211
https://www.outdooractive.com/en/
https://kurviger.de/about/

Applications Naviki16 and cycle.travel17 offer a similar user experience for
cyclists.

Figure 2.10: Kurviger: a randomized round trip.

2.8.4 City Trip Planner
Until now, none of the considered applications have sufficiently addressed the

goals related to route search, mainly due to limited customization capabilities.
A different approach was demonstrated by Vansteenwegen et al. in [19], where

they introduced an expert system, City Trip Planner, capable of planning tourist
trips based on personal preferences.

In their system, users begin by entering trip constraints such as the duration
of the visit, terminal points, and lunch breaks along with their interests spec-
ified through groups of keywords. Using this information, the server performs
calculations and generates a multi-day trip itinerary. Additionally, places of high
significance that have not been selected are presented alongside it. In subsequent
iterations, users have the flexibility to improve the route by adding or removing
points and request recalculations as needed.

The web page was organized as a multi-step questionnaire. The authors re-
ported positive user feedback on the application, highlighting that the layout of
the user interface posed no problems for the majority.

It is worth noting that although the City Trip Planner might no longer be
available, recent projects have adopted similar principles and algorithms [20, 21].

2.8.5 WISER
Friedman et al. [22] developed and presented WISER, an experimental mobile

application for iterative route search over probabilistic geospatial datasets.
We should acknowledge that some of the SmartWalk requirements and the cur-

rent algorithmic implementation of the search procedure were inspired by WISER
and other articles written by its authors.

Both applications allow users to enter keywords and a set of arrows. In each
iteration, WISER presents only the next place to be visited. The rationale be-
hind this approach was that a calculated path might include waypoints the user
would find irrelevant upon visiting. Instead, the system builds the route based on

16https://www.naviki.org/en/
17https://cycle.travel/map

27

https://www.naviki.org/en/
https://cycle.travel/map

provided feedback. A negative response triggers a repeated calculation, while pos-
itive feedback removes the keyword from the list. The process continues as long
as at least one keyword or candidate to visit is present.

2.8.6 Feature comparison
We have discussed different solutions that are freely available on the market.

Table 2.2 compares SmartWalk with them based on eight criteria. In the list be-
low, we elaborate on three less obvious ones.

[Place search] Mapy.cz has the most expressive mechanism for searching places
out of other alternatives. The set of keywords is unbounded, and a user can
apply filters to the result (post-filtering). SmartWalk improves its approach
by allowing the user to search for multiple categories and embed filters into
a query (pre-filtering).

[Route search] The purpose of City Trip Planner was to provide tourists with
a somewhat imprecise solution for navigation with no guarantees to satisfy
all entered constraints. SmartWalk, on the other hand, strives to fulfill a
given task precisely. Unlike City Trip Planner, SmartWalk does not define a
notion of time, as its perception is highly individual and, therefore, difficult
to capture accurately.

[Saving places] An attached copy maintains a link to the original, whereas a de-
tached one does the opposite.

28

Fe
at

ur
e

M
ap

y.
cz

K
om

oo
t

K
ur

vi
ge

r
C

it
y

T
ri

p
P

la
nn

er
W

IS
E

R
Sm

ar
tW

al
k

En
tit

y
se

ar
ch

Pl
ac

e
se

ar
ch

G
eo

co
di

ng
,u

nb
ou

nd
ed

se
t

of
ke

yw
or

ds
,p

os
t-

fil
te

rs
G

eo
co

di
ng

,b
ou

nd
ed

se
t

of
ke

yw
or

ds
G

eo
co

di
ng

,b
ou

nd
ed

se
t

of
ke

yw
or

ds
✗

✗
C

at
eg

or
ic

al

D
ire

ct
io

n
se

ar
ch

✓
✓

✓
✗

✗
✓

R
ou

te
se

ar
ch

R
ou

nd
,v

ia
ne

ar
by

at
tr

ac
tio

ns
Pr

e-
ca

lc
ul

at
ed

by
an

al
go

rit
hm

R
an

do
m

iz
ed

,r
ou

nd
,

co
m

pa
ss

di
re

ct
io

n
Pe

rs
on

al
iz

ed
,

tim
e-

/k
ey

w
or

d-
aw

ar
e

O
rd

er
ed

,
ke

yw
or

d-
aw

ar
e

O
rd

er
ed

,
ca

te
go

ric
al

En
tit

y
m

an
ag

em
en

t

D
at

a
ow

ne
rs

hi
p

Se
rv

ic
e

pr
ov

id
er

Se
rv

ic
e

pr
ov

id
er

Se
rv

ic
e

pr
ov

id
er

✗
✗

U
se

r
C

re
at

in
g

na
m

ed
lo

ca
tio

ns
✓

✗
✓

✗
✗

✓

Sa
vi

ng
pl

ac
es

Li
nk

to
an

or
ig

in
al

,
us

er
-d

efi
ne

d
na

m
e

Li
nk

to
an

or
ig

in
al

D
et

ac
he

d
pa

rt
ia

lc
op

y
✗

✗
A

tt
ac

he
d

pa
rt

ia
lc

op
y

Sa
vi

ng
ro

ut
es

an
d

di
re

ct
io

ns
✓

✓
✓

✗
✗

✓

U
se

r
in

te
rf

ac
e

La
yo

ut
Pa

ne
l

Pa
ne

l
Pa

ne
l

Q
ue

st
io

nn
ai

re
M

in
im

al
,

ta
sk

-o
rie

nt
ed

Pa
ne

l

✓
de

no
te

s
“i

m
pl

em
en

ts
”,

an
d

✗
de

no
te

s
“d

oe
s

no
t

im
pl

em
en

t.”

Ta
bl

e
2.

2:
Fe

at
ur

e
co

m
pa

ris
on

.

29

3. Design
The objective of this chapter is to lay the foundations for future implementa-

tion. The user interface is designed based on use cases and communicated with
the help of simplified wireframes. Then, we discuss the main parts of the system,
including applied design principles and the technology stack. Next, we explain
how to acquire data from the selected sources. The last section establishes a the-
oretical framework that enables us to select appropriate routing algorithms.

3.1 User interface
The user interface of SmartWalk will be panel-based, following the approach

used in many industrial solutions. The proposed navigation schema1, depicted in
Figure 3.1, consists of ten interconnected panel views. The layout of the “Entity
Viewer” is similar to that of other panels; therefore, we omit it for brevity.

It is worth mentioning that the schema enforces a specific workflow focused on
task completion. While on “Place Result,” a user can only access “Place Search”
and “Detailed View.” This relation is expressed in terms of direct accessibility.

Figure 3.1: Navigation schema.

The home page of the application is designed to carry out route searches.
To fill out the request form, users need to provide a starting point, destination,
arrows, and at least one category. Figures 3.2, 3.3, and 3.4 illustrate wireframe
prototypes for the respective dialogs. Subsequently, the panel might reach the
state shown in Figure 3.5. Please note that the starting point is yet to be defined.

After issuing a search query, the user is presented with the results, as demon-
strated in Figure 3.6. Waypoint names are hyperlinked to their respective places.
Additionally, users have the option to center the map on a specific waypoint and

1If not stated otherwise, the pictures were created with Draw.io drawing software.

30

https://draw.io/

access the list of categories it belongs to by clicking the pin object within the
route sequence.

Panels for searching places and directions utilize the same supporting dialogs
and have only minor differences compared to route search. Their wireframes are
represented in Figures 3.7, 3.8, 3.9, and 3.10.

The only thing we have not discussed regarding directions is how the system
allows users to rearrange the sequence mentioned in F18. Its points are draggable
by elements consisting of six dots, and the “Rv” button reverses their order.

Each place in the public storage is assigned a detailed view showing all avail-
able information in a standard form, as depicted in Figure 3.11. If present, the ex-
act geometry is drawn under the pin. One interesting aspect of this wireframe is
that the place is already saved with a different name. The application detects the
entity by its identifier and informs the user via the message box. Furthermore,
the “Save” button is deactivated. This functionality fulfills Requirement F24.

Figure 3.12 and 3.13 shed light on how to log in against a Solid server and acti-
vate an available pod. After entering an address and clicking the “Log in” button,
the user is redirected to an external web page where they complete the authen-
tication process. The appearance and actual procedure depend on the provider.

After pod activation, the user is redirected to the panel where the collection
of entities is maintained. The layout of this panel view is rather straightforward;
Figure 3.14 defines three separate sections for places, routes, and directions in the
given order. All operations on entities assumed by F27 are accessible via menu
buttons. The user is also informed about the type of decentralized storage used.
In particular, three states are possible: device storage, Solid storage, and emer-
gency in-memory storage as a fallback for an outdated web browser.

Up to this point, we should have gained the impression that having more than
one pin drawn on the map is a common situation. All markers in the presented
wireframes were drawn as circles colored with shades of grey. To enhance visual
perception and improve the user experience with the application, we propose the
schema listed in Table 3.1, which will determine pin colors in a given context.

Pin color Description

■ #2aad27 Starting point
■ #cb2b3e Destination
■ #797979 Center point
■ #2a81cb Not stored places
■ #9c2bcb Stored places

Table 3.1: Possible colors of pins on the map and their meaning.

The meaning of the first three rows is evident; let us concentrate on the rest.
The main objective is to visually separate places in the result of a query based on
whether they appear in the private storage or not. According to F22, every point
of interest in the public storage is assigned a unique identifier. Therefore, we can
incorporate these identifiers into partial copies and use them while analyzing the
results.

Please note that wireframes are intended for design simplification. For details
on the actual user interface and its behavior, refer to Attachments A.1 and A.3.

31

Figure 3.2: Wireframe with the dialog for selecting a point.

Figure 3.3: Wireframe depicting the state of the dialog for configuring arrows.
The arrow with a solid line represents a “confirmed” arrow, and the one with a
dashed line represents a “not confirmed” arrow.

32

Figure 3.4: Wireframe depicting the state of the dialog for configuring categories
after selecting a keyword, including all five types of attribute filters.

33

Figure 3.5: Wireframe with the panel for searching routes.

Figure 3.6: Wireframe with the panel showing the results of a route search.

34

Figure 3.7: Wireframe with the panel for searching places.

Figure 3.8: Wireframe with the panel showing the result of a place search.

35

Figure 3.9: Wireframe with the panel for searching directions.

Figure 3.10: Wireframe with the panel showing the results of a direction search.

36

Figure 3.11: Wireframe with the detailed view of a place.

Figure 3.12: Wireframe with the Solid
login dialog.

Figure 3.13: Wireframe with the panel
for activating a Solid pod.

37

Figure 3.14: Wireframe with the panel containing stored (favorite) entities.

38

3.2 Architecture
Solving algorithmic problems in the presence of modern web technologies re-

quires dozens of smaller parts glued together to perform specific tasks efficiently.
Their integration would be challenging without the proper level of abstraction.
For this reason, the architecture of the SmartWalk solution is demonstrated using
the C4 model [23], which defines the following hierarchy of elements.

• A software system brings value and makes sense to consider in isolation, as
is the case with SmartWalk.

• A container is a runnable part of a software system (database, mobile ap-
plication that communicates over the network, web server, or even script).

• A component represents a non-deployable implementation of an interface
used by a container.

• Code describes the internal organization of a component through the use of
UML classes or similar notation.

Although the model defines four types of diagrams into which blocks are gath-
ered, we only utilize two of them — container and component views — as others
do not provide the desired level of detail.

The architecture of our solution comprises six essential parts, as illustrated in
Figure 3.15. It can be viewed as an implementation of the three-tier architectural
pattern with the adjustment that users store their data externally. Moreover, the
backend (or service provider) lacks access to user data, thus addressing G2.

Figure 3.15: C4 container diagram of the SmartWalk software system.

The frontend serves as an entry point to the application, offering a rich user ex-
perience. It communicates with the application tier and personal storage through
a well-defined Application Programming Interface (API).

All searching and planning functionality resides within the backend. Since user
data are stored elsewhere, we assume that only read operations, such as generating
new paths or fetching places, should be supported.

The database and routing are containers that supply business logic with actual
data. The former acts as an entity store and search index, whereas the latter is a
specialized routing engine.

39

3.2.1 Frontend
The frontend is a part of the presentation tier that is exposed to a user via a

web browser, providing all intended functionality. We further decompose it into
five smaller components drawn in Figure 3.16.

PanelDrawer mimics the user interface and navigation schema shown in Sec-
tion 3.1. SessionProvider ensures the login dialog and handles the proper switch
over to the “Solid Session” panel. Other parts make possible interaction with the
environment. In particular, Map is responsible for loading tiles, drawing markers
and vector geometries on the map. SmartWalkAPI provides a set of functions for
retrieving data from the backend. Finally, Storage is an abstraction that unifies
methods for accessing both device and personal storages.

Figure 3.16: C4 component diagram of the Frontend container.

If the frontend were programmed as a classic multi-page application, navigat-
ing between pages would trigger a reload of the entire map. Hence, it is designed
as a single-page application; once loaded, the state is altered via small updates in
response to user actions, and tiles are left intact. In the remainder, we discuss the
technology stack employed in later implementation.

JavaScript is a natural choice for programming web solutions. However, its
weak typing could make development challenging as a project grows, and catch-
ing potential errors becomes crucial. To address this issue and improve the main-
tainability and clarity of the codebase, we choose TypeScript2, a statically typed
JavaScript dialect with built-in type inference.

It is evident from the functional requirements that our use cases on the client
side do not require extensive data processing and are limited to sending search
queries and showing results. Since performance is not a top priority, the frontend
employs the React3 library. Despite not being the most efficient compared to other
libraries and frameworks, it offers several advantages: a composable component-
based architecture, a declarative syntax with JSX4 extension similar to HTML
markup, and an intuitive unidirectional data flow where changes are propagated
from parents to their nested components.

2https://www.typescriptlang.org/
3https://react.dev/
4https://react.dev/learn/writing-markup-with-jsx

40

https://www.typescriptlang.org/
https://react.dev/
https://react.dev/learn/writing-markup-with-jsx

3.2.2 Backend
The next container, the backend, is related to the application tier. Its internal

structure, revealed in Figure 3.17, loosely follows the Action Domain Responder
(ADR) pattern [24]. ADR is an alternative to the classic Model View Controller
(MVC), offering better abstractions for HTTP-based services with distinct client
and server sides.

TController receives a request object and performs validation or parsing to
reject malformed input early, similar to the Action in ADR. Well-formed data is
then handed over to the corresponding domain-level THandler, a realization of a
targeted use case. TResponder is responsible for completing the response object
based on three possible outcomes: a valid result of a calculation, an internal server
error, or failed validation. Finally, Gateways are entities of the data access layer
that implement abstract interfaces.

Please note the letter T in the names of some elements, indicating the generic
nature of the diagram. A total of five distinct pipelines are implemented following
the same concepts. The actual routing and invocation of the proper controller
are details delegated to the framework.

Figure 3.17: C4 component diagram of the Backend container.

Another design approach we apply while writing source code, which positively
influences code modifiability and testability, is the Onion Architecture [25]. The
pattern relies on a more general Dependency Inversion Principle (DIP) and places
the domain model at the top of the hierarchy. In our solution, the entities defined
in Section 2.7 and planning algorithms are positioned at the center. Use cases are
implemented with the help of specific handlers that depend on the core primitives,
and instances of infrastructural gateways are injected into controllers.

As in the previous section, we provide an overview of the technologies used
later. Let us begin with a discussion of the programming language. The backend
is expected to perform computationally intensive tasks. Reasonable assumptions
regarding its runtime include a managed environment with garbage collector,
support for asynchronous operations, native multi-threading, and accessibility to
other developers. The most suitable languages appeared to be Java and C#5,
and we choosed the latter due to the author’s prior experience.

The next step is to select a technology for creating the API. The most obvious
approach is to implement separate endpoints over HTTP protocol for each query

5https://learn.microsoft.com/en-us/dotnet/csharp/

41

https://learn.microsoft.com/en-us/dotnet/csharp/

type. An advantage is that, since the backend is essentially stateless, calculated
results could be effectively cached by the server and intermediaries. Other op-
tions, such as GraphQL6, SOAP7, and gRPC-Web8, were considered but deemed
too advanced or atypical for our use cases.

A standard framework for building web applications in C# is ASP.NET Core9.
It offers configurable request processing pipelines and out of the box dependency
injection container.

There are two main approaches to creating an HTTP interface with ASP.NET
Core: minimal and controller-based APIs10. The first approach skips most of the
boilerplate code; endpoints are defined in terms of lambda functions directly at-
tached to respective routes. Despite its simplicity, minimal API lacks support for
model validation, among other things. Thus, we select the second, which enforces
design patterns and conventions for code organization.

3.2.3 Database
Data collected from various sources ends up in the database, a container within

the data tier. This segment of the architecture should ultimately behave as public
storage from Section 2.1 accessible through the backend. Based on the require-
ments analysis, we have divided the capabilities into two semantically independent
subsets, each designed to accomplish certain tasks.

The first group enforces the database to act as a store. Those include fetching
places by an identifier and the ability to accommodate arbitrarily large amounts
of possibly incomplete entities (the presence of keys in the attributes is not
stable across the collection).

The second role is an index with a focus on facilitating search queries. In some
sense, these capabilities are orthogonal to the previously mentioned ones but are
equally important, as they directly affect the system’s ability to fulfill Require-
ments N13 and N14. We expect this container to be able to:

1. suggest the k most relevant keywords for a given prefix,

2. find all places around some center point ordered by the crow-fly distance or
within an arbitrary polygon with no distance constraints,

3. and have a mechanism to express all six types of attribute filters.

A commonly applied practice is to implement these roles as two services: the
store with entities and the index holding only the information to be queried. To-
gether with the routing engine, this separation would make the system challenging
to run on a personal computer, as the setup would require allocating substantial
hardware resources. Therefore, the goal is to consolidate all functionality into one
container without compromising performance.

We should note that a relational database with ACID properties would not
be a good fit, mainly due to the unbounded size of the place collection and its

6https://graphql.org/
7https://www.w3.org/TR/soap12-part1/
8https://grpc.io/docs/platforms/web/
9https://learn.microsoft.com/en-us/aspnet/core/?view=aspnetcore-6.0

10https://learn.microsoft.com/en-us/aspnet/core/fundamentals/apis?view=aspnetcore-6.0

42

https://graphql.org/
https://www.w3.org/TR/soap12-part1/
https://grpc.io/docs/platforms/web/
https://learn.microsoft.com/en-us/aspnet/core/?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/apis?view=aspnetcore-6.0

heterogeneity. At the same time, spatial queries are well-supported by PostGIS11

extension for PostgreSQL, and the database itself is used by the OSM project.
The alternative is to consider a NoSQL database with support for spatial

queries, a weak schema, and horizontal scaling. To simplify the decision-making
process, we refer to the article by Guo and Onstein [26], where they reviewed ten
of the most popular NoSQL solutions. Taking into account their overview and the
fact that places, as defined by the Conceptual model, exist as isolated bundles, we
conclude that MongoDB12, a document-oriented database, successfully addresses
our needs.

The last observation is that keyword suggestions are likely to be the most
frequent requests, primarily because place and route search queries depend on
their results. Answering them without disturbing the database is highly desirable.
We assume that the collection of keywords is small enough to fit in the main
memory, and such requests can be carried out by the PruningRadixTrie13, a high-
performance data structure written in C#.

3.2.4 Routing
According to Figures 3.6 and 3.10, the application should present any route or

direction to the user using points of interest and a polygonal chain drawn on the
map. The segments of this chain should overlap with the actual street network to
achieve the desired level of precision. Since most of our locations come from OSM,
it is also rational to use this dataset as the basis for finding traversals.

Implementing a routing engine would have a scale infeasible for one developer.
For this reason, we rely on one of the most popular open-source projects in this
field. Please refer to the overview [27] for more details.

Due to the focus on efficiency and variety of results stated in N8, we select
Open Source Routing Machine (OSRM)14 written in optimized C++. To achieve
high performance in calculations, this engine builds hierarchies of pre-computed
shortcuts that enable early pruning of candidate vertices that would fail to con-
tribute to the final result. As a tradeoff, OSRM is quite resource consuming, but
we have already freed up sufficient computation power and memory by merging
store and index in one container.

3.2.5 Personal storage
As specified in Requirement N4, both device and personal storages should be

used interchangeably. In principle, only a Solid pod would be enough, but several
drawbacks led us to incorporate a fallback.

• Solid is a promising technology with far-reaching implications concerning
data ownership, and it requires an understanding of the related concepts.
However, not many users are willing to invest additional effort.

11https://postgis.net/
12https://www.mongodb.com/
13https://github.com/wolfgarbe/PruningRadixTrie
14https://project-osrm.org/

43

https://postgis.net/
https://www.mongodb.com/
https://github.com/wolfgarbe/PruningRadixTrie
https://project-osrm.org/

• The Solid protocol does not have a finalized version. According to the doc-
umentation: “This document may be updated, replaced or obsoleted by other
documents at any time. It is inappropriate to cite this document as other
than work in progress [11].”

• There is currently no market-ready Solid implementations or providers with
guaranteed quality of service.

In this thesis, we target only Inrupt PodSpaces15 with instances of Enterprise
Solid Server (ESS)16. We use Inrupt JavaScript Client Libraries17 to authenticate
against servers and perform data access operations. The frontend has also been
tested on Community18 and Node19 Solid Servers, yielding positive outcomes.

Solid allows for storing both structured and unstructured data. The former
would be advantageous if we were to expose this information to other agents, but
this is not the case. As a simplification, it is assumed that entities are saved as
separate JSON files in the hardcoded folder ${storage-root}/smartwalk/.

3.2.6 Tile provider
Results of queries are presented on the map together with square-shaped tiles,

visually representing the corresponding local area. Tiles are typically distributed
in two forms: raster pictures rendered on the server side and vector graphics ren-
dered by a client. As smartphones are among the supported platforms, pictures
fit better due to their optimized power consumption pattern.

We use OSM standard tile provider. It is permitted20 as long as the application
does not generate too much traffic. Tiles are downloaded using the following link,
where s stands for a subdomain (optional parameter), x and y point to a rectangle
in the grid, and z is a zoom level:

https://${s}.tile.openstreetmap.org/${z}/${x}/${y}.png.

3.3 Data preparation
Potential data sources and distribution methods were discussed in Section 2.6,

but not all of them were equally good for our needs. We utilize only the following
five distributions in the prescribed way.

OSM dump files, published in PBF format, are used to build graph structures
for OSRM and populate the database. The first procedure is done automatically
by standard tools, with details given in Attachment A.1, Administrator’s guide.
The other part is our responsibility.

PBF files can be handled as a stream of elements using the OsmSharp21 library
written in C#. Unfortunately, the OSM data model does not restrict the shape of
tags. Hence, we need to implement custom parsers.

15https://docs.inrupt.com/pod-spaces/
16https://docs.inrupt.com/ess/latest/
17https://docs.inrupt.com/developer-tools/javascript/client-libraries/
18https://github.com/CommunitySolidServer/
19https://github.com/nodeSolidServer/
20https://operations.osmfoundation.org/policies/tiles/#requirements
21http://www.osmsharp.com/

44

https://docs.inrupt.com/pod-spaces/
https://docs.inrupt.com/ess/latest/
https://docs.inrupt.com/developer-tools/javascript/client-libraries/
https://github.com/CommunitySolidServer/
https://github.com/nodeSolidServer/
https://operations.osmfoundation.org/policies/tiles/#requirements
http://www.osmsharp.com/

The community recognized this problem and established naming conventions
and guidelines. Taginfo helps to identify the most popular keys and frequencies of
values associated with them. This information allows us to filter out infrequent
strings by setting a threshold and develop finer-grained extractors. The service ex-
poses an HTTP endpoint so that the statistics for a given key can be retrieved via
a simple GET request.

Determining a location for relation-type OSM elements is not straightforward.
We must retain all references to nodes and ways with coordinates in the main
memory, and the task becomes too large to accomplish on an ordinary computer.
Instead, these smaller requests are delegated to Overpass API. The service pre-
computes the centers of multi-polygonal bodies, which we retrieve in bulk using
the following query sent in the data parameter of an HTTP GET request:

/* s, w, n, e should form a valid bounding box */
[out:json];
relation(${s},${w},${n},${e})[type=multipolygon];
out center;

We mentioned earlier that Wikidata has a predictable internal structure and
can be considered an independent source of geographic data. In contrast, triples
in DBPedia are inherently more abstract. Hence, it makes sense to separate the
process of ingesting data from knowledge graphs into two self-contained steps:
creating simple stubs with georeferences from Wikidata that do not yet exist and
enriching (or updating) places.

To obtain locations, we utilize a slightly modified version of the query men-
tioned in Section 2.6.2. In particular, matching by the property path P31/P279*
is a time-consuming operation and should be omitted.

The following query serves a generic template to handle the enrichment step.

PREFIX my: <http://www.example.com/#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

CONSTRUCT {
?wikidataId

my:dbpedia ?dbpediaId;
my:param ?param.

}
WHERE {

VALUES ?wikidataId {
${l} # expand a list of Wikidata identifiers

}
?dbpediaId owl:sameAs ?wikidataId.
OPTIONAL {

?dbpediaId ${p} ?param. # replace by a predicate
}
... more OPTIONAL blocks follow ...

}

45

The result of this query is a new RDF graph due to the CONSTRUCT clause.
To narrow the search and focus solely on relevant entities, the VALUES block pre-
scribes possible values that the wikidataId variable can hold. This block is pop-
ulated with Wikidata identifiers available in our database. Some targeted prop-
erties might be missing, and we should consider partial matches as valid results.
The OPTIONAL block encloses optional parts of the graph pattern. Furthermore,
the predicate owl:sameAs establishes an equality relation between entities from
different knowledge graphs.

Wikidata and DBPedia are queried via HTTP endpoints that accept percent-
encoded SPARQL queries in the query parameter. To simplify response handling,
we employ content negotiation in the way described below.

1. Request data with the Accept header set to application/n-triples for
DBPedia and application/n-quads for Wikidata.

2. Parse response string into JSON-LD, and compact the graph using injected
@context. This step is carried out by the jsonld22 library.

3. We receive a plain JavaScript object with the known property configuration
as the output.

Eventually, a place could have up to 40 distinct attributes. Some of these at-
tributes are aggregated into larger objects, resulting in only 29 that are queryable.

Below, we note two more rules that should be followed to ensure the feasibility
of data preparation procedures and the correctness of the input.

• Routines extracting or fetching places have a bounding box as a compulsory
input parameter.

• As a matter of fact, MongoDB uses coordinates given in the WGS84 Coordi-
nate Reference System (CRS) to index spatial objects. Fortunately, all the
information repositories we consider comply with that CRS. Otherwise, lo-
cation references would need to be translated before writing to the database.

3.4 Routing algorithms
The final piece of information we need before moving to the next chapter is

how to map the route search defined by Requirements F7 to F12 onto a theoreti-
cal framework. A better understanding of the underlying mathematics positively
affects our reasoning abilities and later implementation.

First, various formalizations are described, culminating in one that best aligns
with our needs. Subsequently, two polynomial-time heuristics are presented, ca-
pable of finding “valid” routes from F12.

We expect thorough knowledge of the basic courses on discrete mathematics
and theory of computation, typically covered in a standard Computer Science cur-
riculum. Please refer to [28, 29, 30] for a refresher, or feel free to skip this section
if theoretical aspects are not of interest to you.

22https://www.npmjs.com/package/jsonld

46

https://www.npmjs.com/package/jsonld

3.4.1 Notation
Imagine a map of some city as a collection of objects, where business centers,

pharmacies, and shops are interconnected by sidewalks, highways, and roads. A
finite graph is an abstract model that accurately describes structures of this kind.
To avoid misunderstanding, we provide formal definitions of concepts used in this
section; most of them can be found in the literature referred to just above.

A graph G is an ordered pair (V, E), where V is a set of vertices (points drawn
on the map), and E is a set of edges (roads and sidewalks). We do not consider
multigraphs, and thus, E ⊆ V 2. |V | is the order of a graph, and |E| is its size.
If all edges of a graph satisfy the property (u, v) ∈ E ⇔ (v, u) ∈ E, the graph is
said to be undirected and directed otherwise. Complete graphs are those having
all possible edges, that is, E = V 2.

A walk is an alternating sequence of vertices and edges (v0, e1, v1, . . . , vn), such
that vi ∈ V and ei = (vi, vi+1) ∈ E. A trail is a walk with distinct edges. A path is
a walk with distinct vertices. A Hamiltonian path is a path containing all vertices
of a graph. Similarly, a closed walk, closed trail, cycle, and Hamiltonian cycle are
defined by setting v0 = vn. We occasionally use s to denote a starting vertex and
t to represent a target.

Distances between vertices are determined by a non-negative distance function
d : E → R≥0. The total distance of a (closed) walk is calculated as the sum of
the distances of all visited edges and, if necessary, is bounded above by Dmax.

Please recall the function m : V × C → {0, 1} for categorical matching intro-
duced in Section 2.1; its definition remains the same. The existence of an arrow
between any two categories is given by an arrow function a : C2 → {0, 1} whose
value a(c1, c2) = 1 if a place matched by c1 must precede another place matched
by c2 on a path, and 0 if this is not the case.

3.4.2 Formalization
The goal is to gradually generalize problem statements until we find a suitable

one. Figure 3.18 summarizes our endeavor. Let us start with the definition of a
particular decision problem; a proof of its NP-completeness can be found in [31].

Definition 1 (HamCycle). Does a graph G have a Hamiltonian cycle?

Even though this problem is NP-complete, and the existence of an efficient
algorithm solving it is unlikely, there is no way to express the distance of a cycle,
among other limitations. Therefore, we propose the following extension: the well-
known Traveling Salesman Problem (TSP).

Definition 2 (TSP). How long is the shortest Hamiltonian cycle in a complete
graph G with a distance function d?

A careful reader might argue that there is a decision variant of the TSP. One
interesting aspect of Definition 2 is that it seeks the shortest cycle, representing
the best possible or optimal solution for the given settings. Moreover, the Ham-
Cycle is reducible to the TSP by setting values of the distance function to 1 for all
e ∈ E, and 2 otherwise. Then, we ask whether the shortest Hamiltonian cycle in
G has the length of |V |. This shows the NP-hardness of the TSP.

47

All route search formalizations targeted in this thesis, including the TSP, are
NP-optimization problems defined over possibly large but finite graphs. In prin-
ciple, we could solve them by enumerating all configurations. Unfortunately, this
idea becomes impractical for sufficiently large instances. In the TSP, the number
of cycles grows factorially with the order of G.

Considering the current state of knowledge, we cannot hope to obtain an op-
timal solution in a reasonable time, even for the simplest problems, leaving aside
categories and arrows. Sometimes, a near-optimal solution is enough if computed
efficiently.

Definition 3 (α-approximation algorithm [32]). An α-approximation algorithm
for an NP-optimization problem is a polynomial-time algorithm that for all in-
stances of the problem produces a solution whose value is within a factor of α of
the value of an optimal solution.

Sahni and Gonzalez [33] showed that an α-approximation for the TSP, with no
further restrictions on the distance function, implies the solvability of the Ham-
Cycle in polynomial time. The existence of such an algorithm is unlikely.

The reason HamCycle could be solved is that the distance function does not
always respect the triangle inequality ∀u, v, w ∈ V : d(u, w) ≤ d(u, v) + d(v, w).
Together with this inequality, d becomes a quasimetric. In practice, one might
encounter two cases of the TSP equipped with such a function: the Asymmetric
TSP (ATSP) and the Symmetric TSP (STSP).

The asymmetric alternative covers everyday needs better because transporta-
tion networks typically disregard symmetry. However, this generalization appears
particularly difficult to deal with. Only recently, Traub and Vygen [34] designed a
highly non-trivial (22 + ε)-approximation algorithm based on the results of many
other researchers.

Fortunately, STSP is approximable by polynomial-time heuristics with a much
better constant ratio. Christofides [35] employed a composition of minimum span-
ning tree and minimum-weight perfect matching to devise a 3/2-approximation.
Since then, only subtle progress has been made towards achieving a lower factor.

Till now, we have been discussing the TSP that aims to obtain a Hamiltonian
cycle, but certainly, finding a path would reflect Requirement F12 better. Again,
the best approximation algorithms achieve ratios of 43 + ε for the ATSP due to
Traub and Vygen [34] and 3/2 for the STSP due to Zenklusen [36].

Taking into account the fundamental difficulty of the ATSP, we conclude that
the STSP is the most appropriate formalization to consider when selecting or de-
signing more capable algorithms. This was also one of the reasons we support only
the walking mode, since sidewalks are assumed to be passable in both directions,
ensuring that the distance function of a problem instance is symmetric.

In the remainder, we discuss more relevant problem statements without details
on known approximation ratios. Instead, we leave pointers for further exploration.

Let us proceed with an extension of the TSP, the Orienteering Problem (OP).
Its input also includes a starting point s and destination t, non-negative function
score : V → R≥0, and upper bound Dmax. An instance of the OP seeks for a path
from s to t with a length no longer than Dmax that visits a subset of V , maximizing
the total collected score [37].

48

Although we have addressed the distance, it is not clear how to map a category
to the set of real numbers. The City Trip Planner used a variant of the OP, the
Tourist Trip Design Problem (TTDP), and accomplished this task by converting
user input into the sum of type, category, and keyword search scores [19].

The OP enables us to reason about places in terms of relevancy, but our cat-
egories match them precisely. The Generalized TSP (GTSP) offers a toolset that
captures the discrete nature of keywords and attribute filters.

Definition 4 (GTSP [38]). Given a complete graph G whose vertices are divided
into a given number of mutually exclusive clusters, denoted by L1, L2, . . . , Lk, and
a distance function d, the GTSP searches for the shortest cycle visiting a collection
of vertices with the property that at least one vertex from each cluster is visited.

Li et al. [39] proposed the Trip Planning Query (TPQ), a path version of the
GTSP with a symmetric distance function. Cao et al. [40] studied approximation
algorithms and heuristics for the Keyword-Aware Optimal Route Query (KOR),
a modification of the GTSP in which the total distance is bounded above. In both
TPQ and KOR, clusters are expressed by means of distinct keywords.

It is worth mentioning that our places could satisfy more than one category at
once; a simple reduction to an instance of the GTSP is to define V as a set of tuples
(place, category).

Finally, we need to provide users with a way to order clusters. The Precedence
Constrained GTSP (PCGTSP) [38] incorporates arrows and enforces specific ar-
rangements using directed acyclic graphs. Similar to the GTSP, there are less ab-
stract interpretations of the same problem focused on real-world applications. In
particular, the Multi-Rule Partial Sequenced Route (MRPSR) [41] and Optimal
Sequenced Route (OSR) [42] cover partial and linear orders, respectively.

In this thesis, we consider the GTSP and PCGTSP as baseline formalizations
for unordered and ordered instances, respectively, around which all algorithms
and heuristics should evolve. Both lack a mechanism for limiting the distance of
a path. As we will see in Section 3.4.3, calculating a network distance is a time and
resource consuming process, leading us to opt for estimation. Hence, satisfying
this constraint at all costs becomes meaningless.

Figure 3.18: An overview of the related NP-optimization problems.

49

3.4.3 Finding a sequence
Two polynomial-time heuristics without performance guarantees are described

at the beginning of this section, one for the GTSP and another for the PCGTSP.
Relaxed requirements on optimality are aligned with N8. Finally, the geometric
justification of the place retrieval process is given, and two realizations of a dis-
tance function are considered.

Unordered categories

To solve unconstrained instances, we utilized Infrequent-First Heuristic (IFH)
designed by Kanza et al. [43]. This iterative procedure unfolds as follows.

Algorithm 1 Infrequent-First Heuristic.
function IfHeuristic(V, C = {c1, . . . , ck}, m, d, s, t)
S ← [s, t] ▷ Initialize a sequence
for ci ∈ C do

Mi ← {v : v ∈ V ∧m(v, ci) = 1} ▷ Find matching places
end for
M← [M1, . . . , Mk] sorted by cardinality in ascending order
for all M of M in a given order do

v, i← SelectBest(S, M, d)
S ← InsertAt(S, v, i)

end for
return S

end function

The SelectBest determines a place in the given set M and an index within
the current sequence S that, if inserted, minimizes the impact on the length. The
selection criterion is illustrated in Figure 3.19, where the blue dot is the candidate
place, two blue edges with “+” contribute to the total distance, and the one with
“–” is removed from the configuration.

Figure 3.19: Infrequent-First Heuristic, selection criterion.

The time complexity of this algorithm is dominated by the for-cycle overM
resulting in O(|V ||C|2).

After finding a feasible route, we could try to improve the sequence via local
search. One of the most popular and simple heuristics is called 2-Opt. For every
pair of edges, {u1, v1} and {u2, v2}, we redefine them as {u1, u2} and {v1, v2} and
accept change if the total length decreases. The procedure is repeated as long as
such a pair exists.

50

Even though 2-Opt has a very concise description, there are graphs proposed
by Englert, Röglin, and Vöcking [44] on which it can make an exponential number
of steps. Despite this, we include it as a subroutine because our paths are typically
short.

Ordered categories

Kanza et al. [45] developed the Oriented Greedy Heuristic (OGH) to address
precedence constraints, the implementation details are shown in Algorithm 2.

Algorithm 2 Oriented Greedy Heuristic.
function OgHeuristic(V, C = {c1, . . . , ck}, m, d, a, s, t)
S ← [s, t] ▷ Initialize a sequence
for ci ∈ C do

Mi ← {(v, i) : v ∈ V ∧m(v, ci) = 1} ▷ Find matching tuples
end for
M← {M1, . . . , Mk}
while M ≠ ∅ do

U ← ⋃︁{Mi : Mi ∈M∧ (̸ ∃Mj ∈M : a(cj, ci) = 1)} ▷ Find candidates
(v, i′)← SelectBest(S, U, d)
M←M\ {Mi′}
S ← InsertAt(S, v, |S|)

end while
return S

end function

The semantics of the SelectBest here are slightly different than that of the
corresponding function in IFH, as illustrated in Figure 3.20. The candidate vertex
is always inserted between t and the one just before it. Furthermore, only the blue
(+)-edges participate in decision-making. The criterion, defined as the sum of the
distances, ensures that places are selected as close to the straight line connecting
s and t as possible and that the sequence does not progress too fast towards the
target. The blue edges with arrow tips are added to the final configuration, and
the black one marked “×” is removed.

Figure 3.20: Oriented Greedy Heuristic, selection criterion.

Since each Mi can contain at most |V | tuples, an iteration of the while-cycle
has a time complexity of O(|V ||C|). Therefore, this heuristic runs in O(|V ||C|2),
which is as fast as IFH.

51

Bounding shape

The next aspect directly affecting the search speed is the cardinality of V . We
should agree that places lying too far from s or t are of little interest to us due to
an upper bound on the length of a path and should be eliminated before entering
an algorithm. However, it is not entirely clear how to measure distances.

First, we need an abstract geometric shape to model the surface of the Earth.
The WGS8423 geographic coordinate system uses an oblate spheroid, as specified
in the EPSG public registry. Calculations on an ellipsoidal body achieve higher
precision but are more computationally demanding. As a result, most web maps,
including OSM, have adopted the Web Mercator24 as a baseline projected coordi-
nate system for translating WGS84 points into two-dimensional space, assuming
they are drawn on a sphere. Thus, we make a similar assumption.

Once the geometry is known, a straight line distance between two given points,
denoted by dH , can be expressed using the Haversine formula. As an alternative,
we could also query the OSRM to determine a network distance dN . Clearly, the
relation dH ≤ dN holds for all pairs of vertices.

In order to filter out points lying too far from s or t and eventually reduce |V |,
we should retrieve only those within some bounding shape. The most appropriate
approach is to utilize the mathematical properties of an ellipse. We set foci F1 and
F2, major axis a, and focal distance c as follows, provided that dH(s, t) < Dmax:

F1 = s, F2 = t, a = Dmax

2 , c = dH(s, t)
2 .

As dH(s, v) + dH(v, t) ≤ Dmax holds for any v ∈ V inside the ellipse or on the
boundary, we may safely skip points outside, especially if final distances are de-
termined by dN .

Our use cases assume that a starting point and destination need not lie on a
horizontal line, and a basic ellipse almost always requires rotation and translation.
The major obstacle related to drawing figures on a sphere is that its parallels have
different lengths. The following subroutine handles transformation properly.

1. Calculate the coordinates of the midpoint o between s and t (in degrees).

2. Define an ellipse e with its center at the origin (0, 0), F1 at (−c, 0), and F2
at (c, 0), where c is measured in meters.

3. Approximate e by a polygon p whose points lie precisely on the boundary.

4. Rotate p about the origin so that it has the same orientation as the straight
line connecting actual s and t.

5. Transform x- and y-components of points of p to degrees with respect to the
parallel at the latitude of o, which defines the cost of one radian along the
x-axis. The cost of a radian along the y-axis remains constant.

6. Translate p so that its center coincides with o.

23https://epsg.io/4326: WGS84 – World Geodetic System 1984, used in GPS
24https://epsg.io/3857: WGS84 / Pseudo-Mercator – Spherical Mercator

52

https://epsg.io/4326
https://epsg.io/3857

Please note that this is only an approximation that works well on small scales.
An example of a rotated and translated ellipse is presented in Figure 3.21.

Figure 3.21: Geojson.io: rotated and translated ellipse drawn on the map.

Distance function

If we carefully review the bodies of the aforementioned heuristics, neither IFH
nor OGH explicitly bounds the total distance of a constructed sequence. This be-
havior is intentional, and the reason is that obtaining the length of the shortest
path between two arbitrary points is a costly operation.

The OSRM has route and table services suitable for our needs. The former
focuses on finding a full representation of the shortest path for a given sequence of
points, while the latter performs bulk distance calculations and can be used to ful-
fill the second step in the following scenario.

1. Fetch the |V | most relevant places within a bounding ellipse.

2. Request an R|V |×|V | matrix containing distances between all pairs of places.

3. Use this matrix as a distance function, d = dN .

Recall that category matching is a boolean-valued function, implying that
places cannot be sorted by relevancy. If we were to accept all matches, large
values of |V | would inevitably increase CPU usage and memory consumption.

The only viable option, which does not require additional effort regarding data
preparation, is to set d = dH , let an algorithm construct any sequence preserving
arrows, find the shortest path for this sequence using the route service, and
discard those with distances larger than Dmax.

53

4. Implementation
High-level architectural decisions and a brief overview of the technology stack

have already been covered in the previous chapter. This part of the thesis clarifies
notable implementation details and the reasons behind them.

4.1 Prerequisites
To acquire the tools necessary for setting up the development environment,

preparing the dataset, and writing and testing source code, follow the steps out-
lined in Attachment A.2. The source code of the application is published at

https://github.com/zhukovdm/smartwalk.

4.2 Single-page application
The frontend is a single-page application written in modern React, with com-

ponents and hooks serving as its basic building blocks. Components are functions
that return renderable structures, while hooks are functions that provide limited
access to React global state and other features.

The corresponding source code is located in the ./app/frontend/ folder.

4.2.1 Toolchain
To streamline the configuration process, SmartWalk was bootstrapped with

Create React App (CRA)1. The initial template is a small, production-ready ap-
plication that includes a transpiler, development server with hot reload, bundler,
and various other tools. It is worth noting that CRA is no longer recommended
by the React team, as their focus has shifted towards React-based frameworks.

4.2.2 Visual components
Branding is unnecessary for SmartWalk at this phase of development. Hence,

Material UI2 has been added as an external dependency. This advanced library
consists of visually appealing components designed for desktop and mobile devices
and the collection of icons. Moreover, navigation Drawer and Autocomplete with
asynchronous data fetching were found particularly useful and less common across
other popular React-based libraries.

The only functionality we missed in Material UI was a special handling for img
HTML elements. Since the detailed view of a place might point to a high-quality
image, it could take time for a browser to load it. We have employed mui-image3

to indicate that the picture is loading by displaying a spinner that reserves space
and prevents unexpected content shifts.

1https://create-react-app.dev/
2https://mui.com/material-ui/
3https://github.com/benmneb/mui-image

54

https://github.com/zhukovdm/smartwalk
https://create-react-app.dev/
https://mui.com/material-ui/
https://github.com/benmneb/mui-image

4.2.3 Client-side routing
Navigation between panels is realized by means of the React Router4 library.

The BrowserRouter wraps the entire application and makes the desired function-
ality accessible within the nested components. The Routes component acts as a
selector, ensuring the proper panel is rendered based on the current path.

The code snippet below is a simplified showcase from the codebase; the content
of a panel should appear within the Drawer, assuming that the PanelDrawer is a
child of a BrowserRouter.

function PanelDrawer() {
return (

<Drawer>
<Routes>

<Route path={"/search/routes"} element={<SearchRoutesPanel />} />
... more Route instances follow ...

</Routes>
</Drawer>

);
}

A total of 12 distinct paths were defined to accommodate the panels proposed
in Section 3.1.

• /search + /routes, /places, /direcs (search panels)

• /result + /routes, /places, /direcs (result panels)

• /entity/places/{smartId} (detailed view of a place)

• /favorites (view into the private storage)

• /viewer + /route, /place, /direc (entity viewer)

• /session/solid (Solid session)

Hooks useNavigate and useParams are used to navigate between panels and
extract smartId from the path, respectively.

4.2.4 State management
Suppose a user has configured a couple of categories with many attributes for

a route search. Before submitting the query, they decide to check whether a route
with similar preconditions exists. The panel is then switched to the “Favorites”
view and back to the request form.

Changing a path also entails removing (or unmounting) elements associated
with the previous panel from the DOM tree of the browser. If categories were kept
in the component’s local state, they would disappear just before the new content
is rendered. We need a systematic approach to avoid this undesired behavior so
that the state of a panel is restored as long as a hard reset or page reload has not
been performed.

4https://reactrouter.com/

55

https://reactrouter.com/

Redux Toolkit5 is a library for modeling and managing an application state
composed of slices. Reducers are functions that, given the previous state and an
input value, unambiguously define how to transition to the next state. Properties
of a slice can be modified directly due to the Immer6 library used in the back-
ground; the slice is an immutable proxy. A simple example is shown in the code
snippet below.

const slice = createSlice({
name: "slice",
initialState: { item: 0 },
reducers: {

setItem: (state, action) => { state.item = action.payload; }
}

});

A distinct slice is implemented for each panel, see files ending with Slice.ts
in the ./src/features/ folder.

The state is accessed and manipulated through custom hooks useAppDispatch
and useAppSelector as follows. A new value of item appears in the h1 upon each
increment automatically.

function Component() {
const dispatch = useAppDispatch();
const { item } = useAppSelector((state) => state);
return (

<h1>{item}</h1>
<button onClick={() => { dispatch(setItem(item + 1)); }}>

Increment
</button>

);
}

Unfortunately, Redux Toolkit is not recommended for keeping non-serializable
data7, such as class instances. For this reason, we store Map, Storage, and cached
backend responses (keyword suggestions based on prefixes and full representa-
tions of retrieved places) using the standard Context API8. In principle, only this
container would be enough to achieve the same functionality. Nonetheless, there
are two hidden drawbacks: components cannot subscribe for a part of the value,
and we would need to write custom logic for modifying nested objects.

4.2.5 Device storage
The DeviceStorage class is an implementation of the Storage abstraction

for storing entities on the user’s device. The open question is which technology
we should utilize. Saving files within the file system of an operating system brings
additional overhead for users, as their addresses must be determined manually.
Alternatively, we can employ one of the storages that come with a web browser.

5https://redux-toolkit.js.org/
6https://immerjs.github.io/immer/
7https://redux.js.org/faq/organizing-state
8https://react.dev/learn/passing-data-deeply-with-context

56

https://redux-toolkit.js.org/
https://immerjs.github.io/immer/
https://redux.js.org/faq/organizing-state
https://react.dev/learn/passing-data-deeply-with-context

The DeviceStorage is a wrapper over IndexedDB [46], a standardized data-
base for storing (un-)structured data with support for transactions and indexing.
We distinguish the following two consecutive phases of its lifecycle.

1. Initialization of the database via creating three object stores for each entity
type: routes, places, and direcs. If it fails, the instance internally falls
back to the InmemStorage and informs the user via the message box at the
top of the “Favorites” panel, similar to the one in Figure 3.14.

2. Create, Retrieve, Update, and Delete operations performed on the entities.
Failed attempts raise exceptions that are eventually reported to the user.

One disadvantage that many programmers may encounter when working with
IndexedDB is that its API does not support modern promises but instead accepts
event handlers. The DeviceStorage injects resolve and reject into the bodies
of the corresponding callbacks.

4.2.6 Solid pod session
The SolidStorage class maintains a connection between the frontend and a

Solid pod. This class implements the same Storage interface; using it does not
make any difference from the programmer’s perspective compared to other stor-
ages. However, the lifecycle of a Solid pod session is more involved and includes
four steps.

4.2.6.1 Authentication

First, the application should authenticate against a Solid server and acquire
an identity. There are two mechanisms to achieve the same result: Solid-OIDC
(recommended) and WebID-TLS [11, Authentication].

We do not delve deep into the subject, as our concerns are fulfilled by merely
calling login from the solid-client-authn9 library and waiting until the browser
opens an external page with an authentication form. Once the user enters creden-
tials and allows the application to read the identity and access pods, the browser
redirects back and opens the “Solid Session” panel depicted in Figure 3.13.

4.2.6.2 Initialization

An activated pod should go through the process of initialization. Recall Sec-
tion 3.2.5 where we have assumed that all data will be stored on a certain address.
Thus, the procedure performs the following actions.

1. Attempt to create a destination folder for each entity type. Failures are not
reported, and existing resources are not affected.

2. Retrieve the folder as a SolidDataset (prove the existence).

3. Verify that this dataset is of type BasicContainer.
9https://github.com/inrupt/solid-client-authn

57

https://github.com/inrupt/solid-client-authn

4.2.6.3 CRUD operations

Entities are created and altered using primitives from the solid-client10 library,
such as asynchronous overwriteFile, getFile, and deleteFile. Data is stored
in the form of binary Blob objects with the application/json media type.

4.2.6.4 Logging out

After a user clicks the “Log out” button, logout is called on the Solid default
session, application’s state resets, and the storage switches to a DeviceStorage
instance.

4.2.7 Custom hooks
Standard React hooks were found to be insufficient to cover the needs of our

application. The following custom hooks were implemented to hide the complex-
ity of stateful logic.

useFavorites loads entities from the private storage into the Redux-based state
container so that reading queries are resolved locally.

useStoredSmarts constructs a set of places with defined smartId that appear in
the private storage.

usePlaces merges places in the result of a search and those in the private storage
(with name replacement).

useSmartPlace retrieves the cached representation of a place for a given smartId
or fetches the object from the backend in case of a cache miss.

useKeywordAdvice retrieves the cached keyword advice for a given prefix or calls
the backend API, similar to the previous hook.

There are a couple more supporting hooks. See source files whose names end
with Hooks.ts in the ./src/features/ folder.

4.2.8 Calling API
The SmartWalkAPI abstraction is realized by the collection of functions defined

in the smartwalk.ts file. The communication protocol is hidden in the bodies
of these functions. A query could resolve with a value or fail with an exception.

4.2.9 Marker clustering
The map is one of the essential visual parts of the application, without which

navigation through the road network would be hard to imagine. We use Leaflet11,
a minimalistic library, for managing map state, loading tiles, and drawing markers
and geometries. The basic functionality of this library is extended via plugins.

10https://github.com/inrupt/solid-client-js
11https://leafletjs.com/

58

https://github.com/inrupt/solid-client-js
https://leafletjs.com/

One interesting observation about SmartWalk is that, according to Require-
ment F4, place search queries are bounded only by a circle. There is a good chance
that a response might return thousands of places. Since Leaflet mounts each pin
as a separate node to the DOM tree, rendering a large number of elements might
cause the browser to hang or even crash.

The current implementation imports the markercluster12 plugin as an external
dependency to cluster markers on the client side in the main thread. We should
admit that this solution is still not ideal; the user interface might hang for a while
with large inputs. There are two possible approaches to improve clustering.

• Render clusters by a dedicated Web Worker on the client side. For example,
supercluster13 is a library independent of Leaflet with suitable primitives.

• Render clusters on the server side. It is certainly an interesting option that
simplifies the programming of new frontends. However, we might need to
introduce additional containers into our architecture to facilitate this type
of spatial query.

As we encountered performance issues with the clustering functionality later
during implementation, improvements are deferred for future development.

4.2.10 JSON-LD representation
Earlier, we stated the principles of Linked Data and their positive impact on

data discoverability and interoperability. This section is dedicated specifically to
Requirement F23.

The detailed view of any place from the public storage includes a JSON-LD ob-
ject with the following properties: name, longitude, latitude, keywords, and links
to the original entities with the owl:sameAs semantics. These properties are guar-
anteed to be present due to the way data is prepared.

Since the frontend is a single-page application, and representations are fetched
on demand by useSmartPlace, it is obvious that this object should be generated
dynamically. EntityPlaceHelmet, a custom component, injects a script ele-
ment with the application/ld+json media type into the head of the page once
the hook succeeds in retrieving a record by smartId.

One might argue that the resulting JSON-LD object has only a small number
of properties, and the potential of knowledge graphs is underutilized. We neglect
RDF because the majority of records originate from the OSM dataset, where the
meaning of keys is not defined.

Another disadvantage of our approach is that JavaScript code should be exe-
cuted to construct the JSON-LD representation. This directly impacts the ability
of intelligent agents to understand the content. Perhaps a better approach would
be to incorporate the @context into a backend response.

Thus, the current implementation offers rather limited capabilities regarding
data friendliness. These concerns and potential improvements in the way data is
stored in a Solid pod are mentioned as directions for future research.

12https://github.com/Leaflet/Leaflet.markercluster
13https://github.com/mapbox/supercluster

59

https://github.com/Leaflet/Leaflet.markercluster
https://github.com/mapbox/supercluster

4.3 Web API application
The backend is a .NET solution that consists of the following four projects.

SmartWalk.Core defines entities, algorithms, solvers, and core-level abstract in-
terfaces used across the application.

SmartWalk.Application prescribes the shape of query objects, provides domain-
level input parsers and validators, along with separate handlers for each type
of supported queries.

SmartWalk.Infrastructure implements gateways to the containers discussed in
Section 3.2.2.

SmartWalk.Api serves as an entry point to the application with HTTP endpoints,
middlewares, and controllers.

The source code is located in the ./app/backend/ folder. The toolchain re-
quired for building, running, testing, and publishing the application is simplified
to just one command-line utility named dotnet.

4.3.1 HTTP endpoints
We define five HTTP-based endpoints with the supported application/json

media type to facilitate the needs of the frontend. Words written in an emphasized
typewriter font symbolize query parameters.

GET /api/advice/keywords
Obtain the count most relevant keywords starting with prefix and their
attribute bounds.

GET /api/search + /routes, /places, /direcs
Three endpoints for handling search queries, with the only query parameter
set to a serialized and percent-encoded JSON object.

GET /api/entity/places/{smartId}
Parameterless request fetching the full representation of a place by smartId.

The first and last endpoints are trivial. However, there are multiple options for
passing complex nested objects via the Hypertext Transfer Protocol (HTTP).

The first idea that we may come up with is to place the object in the request’s
body. The POST method accepts bodies, but such a request could introduce side
effects and alter the state of the server, ruling out caching. GET requests with
bodies are less supported by standard libraries and are harder to send and cache.
Nonetheless, the well-known search engine Elasticsearch defines APIs that accept
this kind of request14 to perform search queries.

Thus, we opted for the solution adopted by Wikidata and DBPedia, where a
percent-encoded SPARQL query is expected in the query parameter.

14https://www.elastic.co/guide/en/elasticsearch/reference/8.11/api-conventions.html

60

https://www.elastic.co/guide/en/elasticsearch/reference/8.11/api-conventions.html

Our API is documented using the Swashbuckle15 library, a toolset compatible
with the OpenAPI16 specification, and published at

https://app.swaggerhub.com/apis/zhukovdm/smartwalk/.

4.3.2 Controllers
In ASP.NET Core, every HTTP request goes through a series of middleware

components, collectively forming a pipeline. A middleware performs an intended
action on the input and invokes the next middleware or short-circuits the request.

As part of the pipeline, the framework routes a request and calls an appropri-
ate method on a custom TController, distinct for each HTTP endpoint defined
in Section 4.3.1. All implemented controllers have internal structures similar to
the one shown below.

class TController : ControllerBase {
public async Task<ActionResult<T>> Action([FromQuery] TRequest request) {

if (!new TValidator(...).Validate(request)) {
return new TResponder().Invalid();

}
try {

return new TResponder().Respond(await new THandler().Handle(request));
}
catch (...) {

return new TResponder().Failure();
}

}
}

Request-level and domain-level validations occur before a query object reaches
the corresponding handler. The former is a standard middleware hidden in the
pipeline before the TController, parsing the content of a request into a schema-
constrained JSON object. The latter, executed by the TValidator, checks if the
parsed object meets constraints imposed by the conceptual model. For example,
ensuring the acyclicity of an arrow configuration is a domain-level concern.

A malfunctioning database or routing engine may lead to an exception in the
THandler. The catch-block gracefully manages unexpected failures.

Errors are communicated to the frontend in the form of JSON objects, with the
corresponding HTTP status set by the TResponder. The reason for a failure is in-
cluded, as shown in the code snippet below.

{
"type": "https://tools.ietf.org/html/rfc7231#section-6.5.1",
"title": "One or more validation errors occurred.",
"status": 400,
"traceId": "...",
"errors": {

"query": ["Cycle 0 → 1 → 2 → 0 detected."]
}

}

15https://github.com/domaindrivendev/Swashbuckle.AspNetCore
16https://www.openapis.org/

61

https://app.swaggerhub.com/apis/zhukovdm/smartwalk/
https://github.com/domaindrivendev/Swashbuckle.AspNetCore
https://www.openapis.org/

4.3.3 Gateways
As a result of Section 3.2, we identified four abstractions vital for handling all

types of queries. Hence, their implementations are proposed based on the selected
technology stack.

The TrieKeywordAdvicer is a simple wrapper over PruningRadixTrie for find-
ing the k most relevant keywords. Please note that relevancy is measured based on
keyword occurrence; a higher value indicates that the number of places with this
keyword is greater compared to other keywords. An instance of this abstraction is
populated with precalculated data from the database upon application start.

The MongoEntityStore and MongoEntityIndex are gateways to the database,
each with a distinct set of methods discussed in Section 3.2.3. Data is retrieved us-
ing the MongoClient from the MongoDB.Driver17 library, which internally main-
tains a thread-safe18 connection pool.

Data is fetched from an instance of OSRM through simple HTTP GET requests.
The OsrmRoutingEngine is a stateless component that constructs a destination
URL from the input, calls the API [47], and converts the response into an output
object.

Infrastructural gateways are added to the dependency injection container as
singletons during application start in the source file Program.cs and then injected
into a controller’s constructor.

builder.Services.AddSingleton<IContext>(new TContext()
{

Gateway = new Gateway()
});

class TController : ControllerBase {
public TController(IContext ctx) {

this.ctx = ctx;
}

}

4.3.4 Handlers
The purpose of handlers is to calculate results given the current context and

valid user input. There is a one-to-one correspondence between HTTP endpoints,
controllers, and handlers. One might observe that all of them, with the exception
of the SearchRoutesHandler, have trivial implementations. Let us focus on this
particular example.

To calculate routes, the SearchRoutesHandler performs the following steps.

1. Retrieve places matched by at least one category and lie within a bounding
ellipse.

2. Given places, create an instance of the HaversineDistanceFunction.
17https://www.nuget.org/packages/MongoDB.Driver
18https://www.mongodb.com/docs/drivers/csharp/v2.21/faq/#std-label-csharp-faq-

connection-pool

62

https://www.nuget.org/packages/MongoDB.Driver
https://www.mongodb.com/docs/drivers/csharp/v2.21/faq/#std-label-csharp-faq-connection-pool
https://www.mongodb.com/docs/drivers/csharp/v2.21/faq/#std-label-csharp-faq-connection-pool

3. Create an instance of the SolverFactory that accepts a distance function,
arrow configuration, source, and target. Since the input parameters are the
same for all routes, only one instance of the factory is necessary.

4. Repeat unless the time has expired or there are no more places left.

(a) Calculate a sequence of places using a solver instance provided by the
factory. The FloatSolver solves the unconstrained variant, while the
ArrowSolver is designed for the PCGTSP.

(b) Find the shortest path connecting the points of this sequence.
(c) Include this path into the result if its distance is less than or equal to

the upper bound; otherwise, disregard it.
(d) Filter out places that have appeared in the sequence.

4.4 Querying with MongoDB
Places and keywords are stored in MongoDB, a document-oriented NoSQL

database with support for horizontal scaling and geospatial queries [48]. This sec-
tion addresses two concerns: indexes for achieving adequate performance and the
query language for modeling attribute filters.

4.4.1 Indexes
In NoSQL databases, indexes might be expensive due to possible sharding or

the size of a collection. Therefore, only the 2dsphere spatial index applied to the
mandatory location field for each place is actively utilized.

The indexed field is required to hold a GeoJSON object or a legacy coordinate
pair19. Since GeoJSON points contain arrays of coordinates, we adopt the latter
approach, setting longitude to lon and latitude to lat. Using explicit fields makes
them easier to access and improves the readability of generated documentation.

There are a few more key-based indexes, but they are not interesting from an
implementation perspective.

4.4.2 Operators
We claimed that MongoDB has the capability to express all types of attribute

filters. The following operators of the MongoDB Query Language are used exactly
for this reason.

• $exists checks whether an attribute is defined on an object.

• $eq compares a boolean-valued attribute with a given value.

• $gte and $lte bound numeric attributes above and below, respectively.

• $in matches strings using a regular expression. When applied to an array,
the same operator checks whether an element is present.

19https://www.mongodb.com/docs/v4.4/core/2dsphere/#2dsphere-indexed-field-
restrictions

63

https://www.mongodb.com/docs/v4.4/core/2dsphere/#2dsphere-indexed-field-restrictions
https://www.mongodb.com/docs/v4.4/core/2dsphere/#2dsphere-indexed-field-restrictions

• Individual filters are concatenated by the operator $and.

The geospatial operators listed below are utilized to perform search queries.

• $nearSphere retrieves a set of places lying within a bounding circle. The set
is ordered by the distance from the center.

• $geoWithin returns places within an arbitrary polygon, with no assumed or-
dering.

4.5 Data pipelines
Besides the application source code, there are small task-oriented programs in

the ./data/ folder to carry out the data preparation phase outlined in Section 3.3.

taginfo/ loads key statistics from Taginfo into key-specific .json files.

osm/ combines information stored in Taginfo files, OSM binary files, and fetched
from Overpass API to create new places or update existing ones.

wikidata-create/ creates simple stubs for places that do not exist yet.

wikidata-enrich/ updates the current dataset with the latest information from
the Wikidata knowledge graph.

dbpedia/ does the same action as wikidata-enrich/ but for DBPedia.

advice/ collects statistics about keywords and attributes across the dataset and
recreates advice items.

dump/ dumps places and keywords into .txt files.

restore/ restores place and keyword collections from .txt dump files.

These programs are organized using one of the following general patterns. The
way they are executed is described in Attachment A.1, Administrator’s guide.

The first type of program iterates over entities from a source, processing them
one by one. Records are transformed and loaded into a target individually. This
approach is applied whenever there is a risk that a dataset is larger than the main
memory.

Another type of program includes an explicit “Extract, Transform, and Load”
(ETL) pipeline in its main function. It loads the dataset into the main memory,
transforms raw objects, and loads them into a provided target. The code snippet
below captures the internal structure of these programs.

{
const e = await pipeline.e(new Source());
const t = await pipeline.t(e);
const l = await pipeline.l(new Target(), t);

}

64

5. Testing
This chapter is dedicated to various testing techniques applied during imple-

mentation to improve the quality of the application in multiple dimensions.

5.1 Automated testing
Numerous unit and integration (without infrastructural dependencies) tests

were written for both the frontend and backend to verify that individual modules
and their assemblies meet functional requirements. Life containers were replaced
by failing, stalling, or ordinary mocks.

Please note that end-to-end tests were not conducted, mainly because inter-
actions among parts of the system involve straightforward scenarios. If necessary,
frontend integration tests may be converted to end-to-end tests using the Play-
wright1 framework or similar.

Frontend
The frontend was tested with the Jest2 framework and React Testing Library3.

Test files reside in __tests__/ folders close to the corresponding components and
functions.

In total, 676 tests were implemented, covering a range of tasks from simple
rendering to simulating user actions, such as advanced search, entity saving and
removal, and navigation between panels. Test suites have the following structure:

// Component.test.tsx
describe("<Component />", () => {

it("should allow users to search for routes", () => {
const { getByRole, getByText } = render(...);
fireEvent.click(getByRole("button", { name: "Search" }));
expect(getByText("Found a total of")).toBeInTheDocument();

});
... more tests follow ...

});

The describe function forms a test suite. Test recipes are passed as lambdas
in the parameters of it functions. The Jest test runner discovers them automat-
ically. HTML elements are accessed via getByRole and getByText. The expect
function asserts whether a test condition is met. More primitives are used in the
actual tests; however, their descriptions are omitted for brevity.

We estimate the test coverage to be between 60–80%, depending on one’s per-
ception. Please note that this estimation is somewhat subjective. While writing
tests, we focused on black-box testing, examining large chunks of code, as well as
white-box testing, targeting individual components. Since tests were written for
each component separately, adding new ones is straightforward.

1https://playwright.dev/
2https://jestjs.io/
3https://testing-library.com/docs/react-testing-library/intro/

65

https://playwright.dev/
https://jestjs.io/
https://testing-library.com/docs/react-testing-library/intro/

Because we keep the state in Redux and Context API containers, components
that access them cannot be tested in isolation, and some sort of mocking is re-
quired. The renderWithProviders function helps to solve this issue by wrapping
a component instance in standard providers. Then, rendering is customized via
props and options parameters.

function render(props = getProps(), options = getOptions()) {
return renderWithProviders(<Component {...props} />, options);

}

Furthermore, the testing library recommends4 accessing elements of the DOM
tree by roles and names. The frontend provides a reasonable level of accessibility
so that all tested elements can be reached and identified without referring to the
data-testid attribute.

To execute tests, navigate to the ./app/frontend/ folder and type in:

$ npm run tests

Backend
Tests are located in projects whose names end with .Test. The MSTest5 test

framework was our choice to describe and run individual test cases.
The layout of the backend is much simpler compared to the frontend; requests

are processed by dedidated handlers in isolation. As a result, the number of tests
is only 135. We focused on modeling typical scenarios with malfunctioning infras-
tructure, individual handlers returning expected objects, and randomized tests
for heuristics. By applying the DIP throughout the application, we were able to
inject custom implementations of abstract interfaces defined by the Core into our
tests. Test suites are expressed in the form of classes discoverable by the runner:

// ComponentTests.cs
[TestClass]
public class ComponentTests {

[TestMethod]
public void ShouldAssertNull() {

Assert.IsNull(null);
}
... more tests follow ...

}

Similar to the previous section, we estimate the test coverage to a value be-
tween 50–70%. Since each request invokes the corresponding pipeline that defines
methods and functions to be called, overly detailed tests are unnecessary. The
ability of the backend to provide a valid response is partly covered by performance
tests that check whether HTTP responses contain the status code 200.

To run tests, navigate to the ./app/backend/ folder and enter:

$ dotnet test

4https://testing-library.com/docs/queries/about#priority
5https://github.com/microsoft/testfx

66

https://testing-library.com/docs/queries/about#priority
https://github.com/microsoft/testfx

5.2 Performance testing
The purpose of this testing phase is to justify that the system can meet Re-

quirements N13 and N14. Given that we have only one personal laptop, our focus
is solely on the response times of individual requests rather than on the system’s
throughput.

The term “reasonably large queries” was mentioned in the requirements. We
assume that only a minority of people are interested in casual walks longer than
five kilometers.

It is also specified that waiting 1 second for a place search and 2 seconds for
a route search is deemed acceptable for the majority of users. This conclusion is
drawn from [49], where the author claims that a response time under 1 second
ensures a user stays uninterrupted. Requests lasting between 1 and 10 seconds
should indicate progress. Nonetheless, we should not overly restrict route search
queries, as more time spent on calculations often leads to better results.

The parameters of the performance test environment are listed in Table 5.1.
There are two more assumptions we should state explicitly:

• responses were not rendered in a web browser,

• and no network delay was included in the calculations.

The dataset for performance tests consisted of objects from the 10 largest
cities of the Czech Republic, resulting in around 3×105 places and 817 keywords.
It should be noted that the data are skewed; tourist cities often have a much
higher number of places with no dependency on population.

Since we are interested only in a general trend, the results are presented in two
types of graphs. The first type is a box-and-whisker diagram, whose interquartile
range (IQR) is set to the distance between the lower quartile covering 25% of the
dataset, and the upper quartile covering 75% of the dataset. The whiskers extend
up to 1.5× IQR, and measurements outside of this range are considered outliers.
The second type is a simple scatter plot.

Parameter Value

Machine Lenovo ThinkPad E580

Processor Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz,
1801 Mhz 4 Core(s), 8 Logical Processor(s)

Primary memory DDR4, 8GB, 2.40GHz

Secondary memory LENSE30256GMSP34MEAT3TA
PCIe NVMe SSD, 256GB

Operating system Microsoft Windows 11 Home, ver. 10.0.22621
WSL version 2.0.9.0
Kernel version 5.15.133.1

Table 5.1: Parameters of the performance test environment.

The source code for all performance tests is in the ./misc/perf/ folder, along
with instructions on how to run them. The dataset is included in the electronic
attachment for the thesis, as described in Attachment A.5.

67

Let us present the results of the tests, distinct for each HTTP endpoint. Please
note that the orange lines inside the boxes are medians.

GET /api/advice/keywords
The input for this test consists of all keyword labels and the probability mass

function determined by their frequencies. A trial randomly selects a keyword and
then its prefix of length between 1 and 5. An API call is issued for a fixed count
and this prefix.

Four different values of the count parameter were considered, as shown along
the x-axis of Figure 5.1. For each of them, 100 trials were performed.

These queries typically respond in ≤ 4 ms. Outliers took at most 6 ms.

GET /api/entity/places/{smartId}
In one trial of this test, a place identifier is randomly selected from all possi-

bilities, and an API call is made. The script performs 100 consecutive trials.
Figure 5.2 illustrates that requests for retrieving places by smartId are about

1.5× longer than those for keywords.

1 3 5 7

Max number of options

3

4

5

R
es

p
on

se
ti

m
e,

m
s

Figure 5.1: Response times for fetching
keywords by prefix.

1

Number of retrieved places

5

6

7

R
es

p
on

se
ti

m
e,

m
s

Figure 5.2: Response times for retriev-
ing places by smartId.

68

GET /api/search/direcs
As part of the route search procedure, the SearchRoutesHandler class finds

the shortest path connecting a sequence of places. Hence, direction search queries
require a different approach because we are also interested in concrete numbers.

We want to test how the number of places visited by the shortest path and its
total length affect the response time of a request. The following pseudocode cap-
tures the main ideas of the iterative testing procedure.

for count in [2, 3, 5, 7]:
for city in 10 imported cities:

for trial in [1, ..., 50]:
locs <- SampleLocations(count, city)
time, distance <- SearchDirecs(locs)
result.append(count, time, distance)

The graphs in Figure 5.3 illustrate the results. There is a strong tendency to
complete a query in ≤ 30 ms, even though distances may vary up to 200 km. The
explanation for how OSRM achieves such performance is that it starts returning
less detailed polygonal chains for very long paths.

0 10 20 30 40 50

10

20

30

40

R
es

p
on

se
ti

m
e,

m
s

2 points

0 20 40 60 80 100

10

15

20

25

3 points

0 50 100 150

Distance, km

10

20

30

R
es

p
on

se
ti

m
e,

m
s

5 points

50 100 150 200

Distance, km

10

20

30

40

50

7 points

Figure 5.3: Response times for direction search queries.

69

GET /api/search/places
Place search requests were tested for various radii and different numbers of

categories. Categories were represented by randomly selected keywords using a
probability mass function similar to the first test; no attributes were configured.

When the number of categories is equal to∞, the script sends an empty array
instead of sampling, as specified in F4.

for count in [1, 2, 3, ∞]:
for radius in [1, 3, 5, 7, 10, 15]:

for trial in [1, ..., 50]:
center <- SampleLocation()
categories <- SampleKeywordsWithPmf(count)
time <- SearchPlaces(center, radius, categories)
result.append(count, radius, time)

Figure 5.4 confirms that radii up to 5 km are manageable within 1 s, but larger
values may result in longer request times.

We may find the current level of performance acceptable. However, clustering
delegated to the server or a Web Worker becomes especially relevant for the ability
of the system to provide a seamless user experience. Hence, this extension should
be prioritized in later development.

1.0 3.0 5.0 7.0 10.0 15.0

0

250

500

750

1000

R
es

p
on

se
ti

m
e,

m
s

1 category

1.0 3.0 5.0 7.0 10.0 15.0

0

500

1000

2 categories

1.0 3.0 5.0 7.0 10.0 15.0

Radius, km

0

500

1000

1500

R
es

p
on

se
ti

m
e,

m
s

3 categories

1.0 3.0 5.0 7.0 10.0 15.0

Radius, km

0

1000

2000

∞ categories

Figure 5.4: Response times for place search queries.

70

GET /api/search/routes
This test has a structure similar to the previous one; please refer to the code

snippet below for details. The for-cycle iterates over distances rather than radii.
The source and target are set to the same location so that the generated routes
are circular. The presence of arrows does not make a difference because the IFH
and OGH have the same worst-case time complexity, O(|V ||C|2).

for count in [1, 2, 3, 5]:
for distance in [1, 3, 6, 10, 15, 30]:

for trial in [1, ..., 50]:
source <- SampleLocation()
categories <- SampleKeywordsWithPmf(count)
time <- SearchRoutes(source, distance, categories)
result.append(count, distance, time)

According to Figure 5.5, finding a route is a more computationally demanding
task compared to the previous ones. For distances ≤ 6 km, all requests were an-
swered in ≤ 2 s. Rendering is not a problem either, as only one route at a time is
displayed on the map.

1.0 3.0 6.0 10.0 15.0 30.0

0

500

1000

1500

2000

R
es

p
on

se
ti

m
e,

m
s

1 category

1.0 3.0 6.0 10.0 15.0 30.0

0

500

1000

1500

2000

2 categories

1.0 3.0 6.0 10.0 15.0 30.0

Max distance, km

0

1000

2000

3000

R
es

p
on

se
ti

m
e,

m
s

3 categories

1.0 3.0 6.0 10.0 15.0 30.0

Max distance, km

0

2000

4000

5 categories

Figure 5.5: Response times for route search queries.

71

5.3 Usability testing
The usability of the user interface was measured using the System Usability

Scale (SUS) questionnaire, as proposed by Brooke [50]. Respondents were asked
to perform the following tasks in the given order on an attribute-rich dataset with
places extracted from a bounding box around Prague6.

1. Find routes between two arbitrary points on the map with a distance at
most 5 km that visits a castle and museum. Save any of the found routes.

2. Create a custom place, such as your favorite attraction, home, work, etc.

3. Find all restaurants with internet access and Italian cuisine around your
favorite place. Navigate to the detailed view of any found restaurant and
save it.

4. Find directions connecting your favorite place and the saved restaurant.
Save any direction that appears in the result.

5. Delete the entities you have created.

Before attempting to complete tasks, respondents were given a brief explana-
tion of the application’s purpose without significant showcases. If they got stuck,
we guided them by directing their attention to clues left in the test descriptions.
Right after the tests, the respondents were asked to provide feedback by evaluat-
ing the statements from Attachment A.4.

We successfully contacted four participants from diverse backgrounds. The
first respondent was somewhat familiar with the concepts addressed in this thesis
but had never independently accomplished any task. The second participant had
a deep understanding of the theory behind algorithms and web development in
general. The third respondent possessed practical experience in developing com-
mercial web applications. Finally, the fourth respondent lacked specific knowledge
or experience.

The results presented in Table A.1 indicate that the average SUS score for all
participants is 85.00. A score equal to 68 out of 100 is considered average, with
higher scores indicating a more intuitive and usable application [51].

Below, we state several valuable conclusions drawn from the survey evaluation
and follow-up discussions.

1. The user interface was easy to learn but seemed cumbersome at first im-
pression. Several participants expressed concerns about the structure of the
dialog for adding a category as being too long or ill-aligned.

2. The conceptual difference between routes and directions was not immedi-
ately clear.

3. The test cases were not well-structured, particularly in the transition be-
tween the first and second steps. Also, starting with a test case other than
searching for routes might be more effective.

6This dataset is not included in the electronic attachment due to license conditions. Please
refer to https://wiki.openstreetmap.org/wiki/Wikidata#Importing_data for more information.

72

https://wiki.openstreetmap.org/wiki/Wikidata#Importing_data

4. The dialog for selecting a point might contain one more option that allows
filtering based on address or arbitrary keywords, similar to Mapy.cz.

5. When searching for routes, the system checks if the starting point and des-
tination are not too far from each other at the time of clicking the “Search”
button. Some participants found it more convenient to be informed upfront.

6. In the results of a place search, sorting by the distance from the center
point did not play a significant role. It was suggested to include a link to
the corresponding detailed view and a “Save” button in each place’s popup.

7. Some participants pointed out that three-dotted menu buttons should be
considered to hide extra functionality, and separating the “Save” button
might be beneficial. In contrast, other participants found the menu layout
for managing results and favorite entities consistent.

Despite all the efforts to create an intuitive user interface for accomplishing
G3, there is still room for improvement. At the same time, the results showed
that the application is easy to learn and get used to.

73

Conclusion
The primary goal of this thesis was to address the iterative nature of explicit

location-based routing implemented by most mainstream web mapping applica-
tions. We designed, developed, and tested the web application that lets users to
formulate route search queries in terms of categories, each composed of a keyword
and attribute filters. A resulting route passes through at least one place from each
category. The search procedure is formalized as a variant of the generalized Trav-
eling Salesman Problem.

We analyzed existing solutions and derived the unique set of requirements and
properties that our application should possess. Furthermore, we justified its rel-
evancy by providing user stories based on real-life situations.

The application follows the three-tier architectural pattern. The frontend im-
plements a panel-based layout compatible with both desktop and mobile devices.
The backend, database, and routing engine together form an efficient solver. We
integrate information from several publicly available semi-structured and struc-
tured data sources to facilitate search queries. User data is stored in a decentral-
ized way, with an in-browser database and Solid pod being used interchangeably.

The application was tested using a variety of techniques. The performance
tests confirmed that the technology stack was sufficient to meet the requirements,
while the usability tests provided directions for improving the user experience.

We may conclude that the application satisfies all the requirements stated in
the analysis phase; however, it cannot be considered complete. First, we should
recall the performance drain caused by rendering a large number of markers on the
client side in the main thread. Thus, delegating this task to a Web Worker or the
backend should be prioritized.

Another possible extension briefly mentioned in relation to Requirement F23
is to make the application follow the principles of Linked Data. In simpler terms,
the backend should generate RDF for all types of entities. Once the application
data is structured, we will be able to harness the full potential of Solid pods.
For example, Van de Wynckel and Signer [52] recently presented a Solid-based
architecture with interoperable location data for an indoor positioning system
and a prototype application. Their experience and results can serve as a valuable
starting point.

In addition, we identify four possible directions for future development that
might be interesting from both theoretical and practical points of view.

• Enhance the user experience by designing a richer system of metadata and
advanced use cases for entities in private storage, such as searching, tagging,
grouping, filtering, etc.

• Enable collaboration via Solid pods. Allow users to share and comment on
entities.

• Experiment with path-finding algorithms and heuristics to strike a new bal-
ance between the variety of search results and optimality.

• Apply advanced data mining and keyword extraction techniques to improve
the quality of application data.

74

Bibliography
[1] Brandon Plewe. “Web Cartography in the United States”. In: Cartography

and Geographic Information Science 34.2 (2007), pp. 133–136. doi: 10.
1559/152304007781002235.

[2] Ming-Hsiang Tsou. “Revisiting Web Cartography in the United States: the
Rise of User-Centered Design”. In: Cartography and Geographic Information
Science 38.3 (2011), pp. 250–257. doi: 10.1559/15230406382250.

[3] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1. Concepts
and Abstract Syntax. W3C Recommendation. 2014. url: http://www.w3.
org/TR/2014/REC-rdf11-concepts-20140225/ (visited on 22/10/2023).

[4] Gavin Carothers and Andy Seaborne. RDF 1.1. N-Triples. A line-based
syntax for an RDF graph. W3C Recommendation. 2014. url: http://www.
w3.org/TR/2014/REC-n-triples-20140225/ (visited on 22/10/2023).

[5] Gavin Carothers. RDF 1.1. N-Quads. A line-based syntax for an RDF
graph. W3C Recommendation. 2014. url: http://www.w3.org/TR/2014/
REC-n-quads-20140225/ (visited on 22/10/2023).

[6] Gregg Kellogg, Pierre-Antoine Champin, and Dave Longley. JSON-LD 1.1.
A JSON-based Serialization for Linked Data. W3C Recommendation. 2020.
url: https://www.w3.org/TR/2020/REC-json-ld11-20200716/ (visited
on 22/10/2023).

[7] The W3C SPARQL Working Group. SPARQL 1.1. Overview. W3C Rec-
ommendation. 2013. url: http://www.w3.org/TR/2013/REC-sparql11-
overview-20130321/ (visited on 22/10/2023).

[8] Tim Berners-Lee. Linked Data. Personal View. 2006. url: https://www.
w3.org/DesignIssues/LinkedData.html (visited on 23/10/2023).

[9] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark Mc-
Granaghan. “Local-first software: you own your data, in spite of the cloud”.
In: Proceedings of the 2019 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software.
ACM, 2019, pp. 154–178. isbn: 9781450369954. doi: 10.1145/3359591.
3359737.

[10] Saqib Ali, Guojun Wang, Bebo White, and Roger Leslie Cottrell. “A block-
chain-based decentralized data storage and access framework for PingER”.
In: 2018 17th IEEE International Conference On Trust, Security And Pri-
vacy In Computing And Communications/ 12th IEEE International Confer-
ence On Big Data Science And Engineering (TrustCom/BigDataSE). 2018,
pp. 1303–1308. doi: 10.1109/TrustCom/BigDataSE.2018.00179.

[11] Sarven Capadisli, Tim Berners-Lee, Ruben Verborgh, and Kjetil Kjernsmo.
Solid Protocol. Version 0.10.0 (work in progress). Solid Technical Report.
2022. url: https://solidproject.org/TR/2022/protocol-20221231
(visited on 24/10/2023).

75

https://doi.org/10.1559/152304007781002235
https://doi.org/10.1559/152304007781002235
https://doi.org/10.1559/15230406382250
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-n-triples-20140225/
http://www.w3.org/TR/2014/REC-n-triples-20140225/
http://www.w3.org/TR/2014/REC-n-quads-20140225/
http://www.w3.org/TR/2014/REC-n-quads-20140225/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00179
https://solidproject.org/TR/2022/protocol-20221231

[12] Tim Berners-Lee. Socially Aware Cloud Storage. Personal View. 2009. url:
https://www.w3.org/DesignIssues/CloudStorage.html (visited on
24/10/2023).

[13] Essam Mansour, Andrei Vlad Sambra, Sandro Hawke, Maged Zereba, Sar-
ven Capadisli, Abdurrahman Ghanem, Tim Berners-Lee, and Ashraf Aboul-
naga. “A Demonstration of the Solid Platform for Social Web Applications”.
In: Proceedings of the 25th International Conference Companion on World
Wide Web. WWW ’16 Companion. International World Wide Web Confer-
ences Steering Committee, 2016, pp. 223–226. isbn: 9781450341448. doi:
10.1145/2872518.2890529.

[14] Martin Glinz. “On Non-Functional Requirements”. In: 15th IEEE Interna-
tional Requirements Engineering Conference (RE 2007). 2007, pp. 21–26.
doi: 10.1109/RE.2007.45.

[15] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard
de Melo, Claudio Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo,
Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel
Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Se-
queda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. En-
glish. Synthesis Lectures on Data, Semantics, and Knowledge 22. Springer,
2021. isbn: 9783031007903. doi: 10.2200/S01125ED1V01Y202109DSK022.
url: https://kgbook.org/.

[16] Charlie Kritschmar. Graphic representing the datamodel in Wikidata with
a statement group and opened references. June 2016. url: https://www.
mediawiki.org/wiki/File:Datamodel_in_Wikidata.svg (visited on
2/11/2023).

[17] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-
ganiak, and Zachary Ives. “DBpedia: A Nucleus for a Web of Open Data”.
In: The Semantic Web. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 722–735. isbn: 978-3-540-76298-0. doi: 10.1007/978-3-540-76298-
0_52.

[18] Ali Ismayilov, Dimitris Kontokostas, Sören Auer, Jens Lehmann, and Se-
bastian Hellmann. “Wikidata through the eyes of DBpedia”. In: Semant.
Web 9.4 (2018), pp. 493–503. issn: 2210-4968. doi: 10.3233/SW-170277.

[19] Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe, and Dirk
Van Oudheusden. “The City Trip Planner: An expert system for tourists”.
In: Expert Systems with Applications 38.6 (2011), pp. 6540–6546. issn: 0957-
4174. doi: 10.1016/j.eswa.2010.11.085.

[20] Daniel Herzog, Christopher Laß, and Wolfgang Wörndl. “Tourrec: a tourist
trip recommender system for individuals and groups”. In: Proceedings of the
12th ACM Conference on Recommender Systems. RecSys ’18. Association
for Computing Machinery, 2018, pp. 496–497. isbn: 9781450359016. doi:
10.1145/3240323.3241612.

76

https://www.w3.org/DesignIssues/CloudStorage.html
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.1109/RE.2007.45
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://kgbook.org/
https://www.mediawiki.org/wiki/File:Datamodel_in_Wikidata.svg
https://www.mediawiki.org/wiki/File:Datamodel_in_Wikidata.svg
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.3233/SW-170277
https://doi.org/10.1016/j.eswa.2010.11.085
https://doi.org/10.1145/3240323.3241612

[21] Daniel Herzog, Sherjeel Sikander, and Wolfgang Wörndl. “Integrating route
attractiveness attributes into tourist trip recommendations”. In: Compan-
ion Proceedings of The 2019 World Wide Web Conference. Association for
Computing Machinery, 2019, pp. 96–101. isbn: 9781450366755. doi: 10.
1145/3308560.3317052.

[22] Roi Friedman, Itsik Hefez, Yaron Kanza, Roy Levin, Eliyahu Safra, and
Yehoshua Sagiv. “WISER: a web-based interactive route search system
for smartphones”. In: Proceedings of the 21st International Conference on
World Wide Web. Association for Computing Machinery, 2012, pp. 337–
340. isbn: 9781450312301. doi: 10.1145/2187980.2188043.

[23] Simon Brown. The C4 Model for Software Architecture. June 2018. url:
https://www.infoq.com/articles/C4-architecture-model/ (visited
on 12/11/2023).

[24] Paul M. Jones. Action Domain Responder. url: https://pmjones.io/
adr/ (visited on 14/11/2023).

[25] Jeffrey Palermo. The Onion Architecture: part 1. July 2008. url: https:
//jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
(visited on 14/11/2023).

[26] Dongming Guo and Erling Onstein. “State-of-the-Art Geospatial Informa-
tion Processing in NoSQL Databases”. In: ISPRS International Journal of
Geo-Information 9.5 (2020). issn: 2220-9964. doi: 10.3390/ijgi9050331.

[27] Nils Nolde. Open Source Routing Engines And Algorithms – An Overview.
Dec. 2020. url: https://gis-ops.com/open-source-routing-engines-
and-algorithms-an-overview/ (visited on 18/11/2023).

[28] Jiří Matoušek and Jaroslav Nešetřil. Invitation to Discrete Mathematics.
2nd ed. Oxford: Oxford University Press, 2008. isbn: 978-0-19-857043-1.

[29] Reinhard Diestel. Graph Theory. 5th Electronic Edition. 2016. url: http:
//diestel-graph-theory.com/ (visited on 21/11/2023).

[30] Michael Sipser. Introduction to the Theory of Computation. 3rd ed. Boston:
Course Technology Cengage Learning, 2013. isbn: 978-1-133-18779-0.

[31] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Com-
plexity of Computer Computations. The IBM Research Symposia Series.
Boston, MA: Springer US, 1972, pp. 85–103. isbn: 978-1-4684-2001-2. doi:
10.1007/978-1-4684-2001-2_9.

[32] David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms. 2010. url: https://www.designofapproxalgs.com/ (visited
on 23/12/2022).

[33] Sartaj Sahni and Teofilo Gonzalez. “P-Complete Approximation Problems”.
In: J. ACM 23.3 (1976), pp. 555–565. issn: 0004-5411. doi: 10 . 1145 /
321958.321975.

[34] Vera Traub and Jens Vygen. “An improved approximation algorithm for
ATSP”. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing. Association for Computing Machinery, 2020, pp. 1–
13. isbn: 9781450369794. doi: 10.1145/3357713.3384233.

77

https://doi.org/10.1145/3308560.3317052
https://doi.org/10.1145/3308560.3317052
https://doi.org/10.1145/2187980.2188043
https://www.infoq.com/articles/C4-architecture-model/
https://pmjones.io/adr/
https://pmjones.io/adr/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://doi.org/10.3390/ijgi9050331
https://gis-ops.com/open-source-routing-engines-and-algorithms-an-overview/
https://gis-ops.com/open-source-routing-engines-and-algorithms-an-overview/
http://diestel-graph-theory.com/
http://diestel-graph-theory.com/
https://doi.org/10.1007/978-1-4684-2001-2_9
https://www.designofapproxalgs.com/
https://doi.org/10.1145/321958.321975
https://doi.org/10.1145/321958.321975
https://doi.org/10.1145/3357713.3384233

[35] Nicos Christofides. Worst-Case Analysis of a New Heuristic for the Travel-
ling Salesman Problem. Technical report 388. Carnegie Mellon University,
1976.

[36] Rico Zenklusen. “A 1.5-Approximation for Path TSP”. In: CoRR (2018).
doi: 10.48550/arXiv.1805.04131.

[37] Aldy Gunawan, Hoong Chuin Lau, and Pieter Vansteenwegen. “Orienteer-
ing Problem: A survey of recent variants, solution approaches and applica-
tions”. In: European Journal of Operational Research 255.2 (2016), pp. 315–
332. issn: 0377-2217. doi: 10.1016/j.ejor.2016.04.059.

[38] Petrică C. Pop, Ovidiu Cosma, Cosmin Sabo, and Corina Pop Sitar. “A
comprehensive survey on the generalized traveling salesman problem”. In:
European Journal of Operational Research (2023). issn: 0377-2217. doi:
10.1016/j.ejor.2023.07.022.

[39] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-
Hua Teng. “On Trip Planning Queries in Spatial Databases”. In: Advances
in Spatial and Temporal Databases. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 273–290. isbn: 978-3-540-31904-7. doi: 10.1007/
11535331_16.

[40] Xin Cao, Lisi Chen, Gao Cong, and Xiaokui Xiao. “Keyword-aware Optimal
Route Search”. In: Proc. VLDB Endow. 5.11 (2012), pp. 1136–1147. issn:
2150-8097. doi: 10.14778/2350229.2350234.

[41] Haiquan Chen, Wei-Shinn Ku, Min-Te Sun, and Roger Zimmermann. “The
Multi-Rule Partial Sequenced Route Query”. In: Proceedings of the 16th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. GIS ’08. New York, NY, USA: Association for Com-
puting Machinery, 2008. isbn: 9781605583235. doi: 10.1145/1463434.
1463448.

[42] Mehdi Sharifzadeh, Mohammad Kolahdouzan, and Cyrus Shahabi. “The
Optimal Sequenced Route Query”. In: The VLDB Journal 17.4 (2008),
pp. 765–787. issn: 1066-8888. doi: 10.1007/s00778-006-0038-6.

[43] Yaron Kanza, Eliyahu Safra, Yehoshua Sagiv, and Yerach Doytsher. “Heuri-
stic Algorithms for Route-Search Queries over Geographical Data”. In: Pro-
ceedings of the 16th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems. GIS ’08. New York, NY, USA:
Association for Computing Machinery, 2008. isbn: 9781605583235. doi:
10.1145/1463434.1463449.

[44] Matthias Englert, Heiko Röglin, and Berthold Vöcking. “Worst Case and
Probabilistic Analysis of the 2-Opt Algorithm for the TSP”. In: Algorith-
mica 68.1 (2014), pp. 190–264. issn: 1432-0541. doi: 10.1007/s00453-
013-9801-4.

[45] Yaron Kanza, Roy Levin, Eliyahu Safra, and Yehoshua Sagiv. “Interactive
Route Search in the Presence of Order Constraints”. In: Proc. VLDB En-
dow. 3.1–2 (2010), pp. 117–128. issn: 2150-8097. doi: 10.14778/1920841.
1920861.

78

https://doi.org/10.48550/arXiv.1805.04131
https://doi.org/10.1016/j.ejor.2016.04.059
https://doi.org/10.1016/j.ejor.2023.07.022
https://doi.org/10.1007/11535331_16
https://doi.org/10.1007/11535331_16
https://doi.org/10.14778/2350229.2350234
https://doi.org/10.1145/1463434.1463448
https://doi.org/10.1145/1463434.1463448
https://doi.org/10.1007/s00778-006-0038-6
https://doi.org/10.1145/1463434.1463449
https://doi.org/10.1007/s00453-013-9801-4
https://doi.org/10.1007/s00453-013-9801-4
https://doi.org/10.14778/1920841.1920861
https://doi.org/10.14778/1920841.1920861

[46] Ali Alabbas and Joshua Bell. Indexed Database API 2.0. W3C Recommen-
dation. 2018. url: https://www.w3.org/TR/2018/REC-IndexedDB-2-
20180130/ (visited on 7/12/2023).

[47] Project OSRM. OSRM API Documentation. Version 5.24.0. url: https:
//project-osrm.org/docs/v5.24.0/api/ (visited on 14/12/2023).

[48] MongoDB Inc. MongoDB Documentation. Version 4.4. url: https://www.
mongodb.com/docs/v4.4/ (visited on 7/12/2023).

[49] Jakob Nielsen. Response Times: The 3 Important Limits. Jan. 1993. url:
https://www.nngroup.com/articles/response-times-3-important-
limits/ (visited on 16/12/2023).

[50] John Brooke. “SUS: A ‘Quick and Dirty’ Usability Scale”. In: Usability
Evaluation In Industry. 1st ed. London: CRC Press, June 1996, pp. 189–
194. isbn: 9780429157011. doi: 10.1201/9781498710411.

[51] Jeff Sauro. Measuring Usability with the System Usability Scale (SUS). Feb.
2011. url: https://measuringu.com/sus/ (visited on 26/12/2023).

[52] Maxim Van de Wynckel and Beat Signer. “A Solid-based Architecture for
Decentralised Interoperable Location Data”. In: Proceedings of IPIN 2022
(WiP), 12th International Conference on Indoor Positioning and Indoor
Navigation, Beijing, China, September 2022. Vol. 3248. CEUR Workshop
Proceedings, 2022, pp. 1–15. url: http://www.ipin-conference.org/
2022/.

79

https://www.w3.org/TR/2018/REC-IndexedDB-2-20180130/
https://www.w3.org/TR/2018/REC-IndexedDB-2-20180130/
https://project-osrm.org/docs/v5.24.0/api/
https://project-osrm.org/docs/v5.24.0/api/
https://www.mongodb.com/docs/v4.4/
https://www.mongodb.com/docs/v4.4/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://doi.org/10.1201/9781498710411
https://measuringu.com/sus/
http://www.ipin-conference.org/2022/
http://www.ipin-conference.org/2022/

List of Tables

2.1 Attribute filters. 22
2.2 Feature comparison. 29

3.1 Possible colors of pins on the map and their meaning. 31

5.1 Parameters of the performance test environment. 67

A.1 Results of usability testing. 92

80

List of Figures

1.1 An RDF graph with one triple. 6
1.2 The concept of decentralization using Solid. 9

2.1 The use cases related to searching routes. 17
2.2 The use cases related to searching places. 17
2.3 The use cases related to searching directions. 18
2.4 The use cases related to entity and storage management. 18
2.5 Simplified data model of Wikidata [16]. 21
2.6 A UML class diagram of the conceptual model. 23
2.7 Mapy.cz – Search tab: 1 initial view, 2 autocomplete options

with places and categories, 3 the results of a categorical search. . 25
2.8 Mapy.cz – Directions tab: 1 initial view, 2 a list of directions. . 25
2.9 Komoot: category filters. 26
2.10 Kurviger: a randomized round trip. 27

3.1 Navigation schema. 30
3.2 Wireframe with the dialog for selecting a point. 32
3.3 Wireframe depicting the state of the dialog for configuring arrows.

The arrow with a solid line represents a “confirmed” arrow, and
the one with a dashed line represents a “not confirmed” arrow. . . 32

3.4 Wireframe depicting the state of the dialog for configuring cate-
gories after selecting a keyword, including all five types of attribute
filters. 33

3.5 Wireframe with the panel for searching routes. 34
3.6 Wireframe with the panel showing the results of a route search. . 34
3.7 Wireframe with the panel for searching places. 35
3.8 Wireframe with the panel showing the result of a place search. . . 35
3.9 Wireframe with the panel for searching directions. 36
3.10 Wireframe with the panel showing the results of a direction search. 36
3.11 Wireframe with the detailed view of a place. 37
3.12 Wireframe with the Solid login dialog. 37
3.13 Wireframe with the panel for activating a Solid pod. 37
3.14 Wireframe with the panel containing stored (favorite) entities. . . 38
3.15 C4 container diagram of the SmartWalk software system. 39
3.16 C4 component diagram of the Frontend container. 40
3.17 C4 component diagram of the Backend container. 41
3.18 An overview of the related NP-optimization problems. 49
3.19 Infrequent-First Heuristic, selection criterion. 50
3.20 Oriented Greedy Heuristic, selection criterion. 51
3.21 Geojson.io: rotated and translated ellipse drawn on the map. . . . 53

5.1 Response times for fetching keywords by prefix. 68
5.2 Response times for retrieving places by smartId. 68
5.3 Response times for direction search queries. 69
5.4 Response times for place search queries. 70
5.5 Response times for route search queries. 71

81

A.1 The panel for searching routes with configured input parameters. . 85
A.2 The results of a route search. 86

82

List of Abbreviations
ADR Action Domain Responder

API Application Programming Interface

ATSP Asymmetric TSP

CRS Coordinate Reference System

DIP Dependency Inversion Principle

ESS Enterprise Solid Server

GTSP Generalized TSP

HTTP Hypertext Transfer Protocol

IFH Infrequent-First Heuristic

IRI Internationalized Resource Identifier

JSON JavaScript Object Notation

JSON-LD A JSON-based Serialization for Linked Data

KOR Keyword-Aware Optimal Route Query

MRPSR Multi-Rule Partial Sequenced Route

OGH Oriented Greedy Heuristic

OP Orienteering Problem

OSM OpenStreetMap

OSR Optimal Sequenced Route

OSRM Open Source Routing Machine

PCGTSP Precedence Constrained GTSP

RDF Resource Description Framework

Solid Social Linked Data

SPARQL SPARQL Protocol and RDF Query Language

STSP Symmetric TSP

SUS System Usability Scale

TPQ Trip Planning Query

TSP Traveling Salesman Problem

TTDP Tourist Trip Design Problem

WDQS Wikidata Query Service

83

A. Attachments
A.1 Documentation

The project documentation comprises the following three parts.

User’s documentation gives an overview of how to use the application and ac-
complish basic tasks, such as searching for and managing entities.
Please note that this is a simplified version of Attachment A.3 with screen-
shots. Examples of the user interface are depicted in Figures A.1 and A.2.

Programmer’s guide brings clarity into the application architecture and code
organization.
Please note that this is a condensed version of Section 3.2 and Chapter 4.

Administrator’s guide provides instructions for preparing a dataset, running
the application in development or production mode on a personal computer,
and troubleshooting potential issues.

The version of the documentation at the time of submitting the thesis is avail-
able in the ./docs/ folder of the electronic attachment, and the latest version is
hosted at

https://zhukovdm.github.io/smartwalk-docs/.

A.2 Prerequisites
SmartWalk is essentially cross-platform. However, Unix utilities simplify cer-

tain aspects of system maintenance. We assume that the application will run on
Unix-like environments, such as Linux or Windows Subsystem for Linux1.

Please ensure that the following programs are installed on the target system.
If mentioned, preserve versions of packages due to library dependencies.

• Docker

• .NET SDK, v6.0

• Git

• GNU Bash, Make, Tar, and Wget

• Node.js, v18.x (install via nvm2)

Clone the repository with submodules and navigate to its root folder:

$ git clone --recurse-submodules https://github.com/zhukovdm/smartwalk.git
$ cd ./smartwalk/

1https://learn.microsoft.com/en-us/windows/wsl/about
2https://github.com/nvm-sh/nvm#install–update-script

84

https://zhukovdm.github.io/smartwalk-docs/
https://learn.microsoft.com/en-us/windows/wsl/about
https://github.com/nvm-sh/nvm#install--update-script

Figure A.1: The panel for searching routes with configured input parameters.

85

Figure A.2: The results of a route search.

86

A.3 Use cases

A.3.1 UC01: Select point
Initial state

• A user has opened a panel for searching routes, places, or directions.
Normal flow

1. The user clicks the “Select point” button to fill the corresponding slot.
2. The system shows a dialog with two options:

(a) select a location on the map,
(b) select a place from the list of stored places.

3. The user performs one of the following workflows.
• They vote for option (a).

i. The user clicks the button “Select location”.
ii. The system hides the panel and dialog, presenting only the map.
iii. The user selects a location by clicking on the map.

• They vote for option (b).
i. The user selects a place from the list of stored places and confirms

their choice.
Final state

• The panel appears with the selected entity set as required.

A.3.2 UC02: Add category
Initial state

• A user has navigated to a panel for searching routes or places.
Normal flow

1. The user clicks on the “Add category” button.
2. The application opens the dialog and proposes to type in a keyword.
3. The user starts typing. For every prefix, the system suggests options.
4. The user clicks on one of the options confirming their choice.
5. The system shows keyword-specific attribute filters below the input field.
6. The user activates attribute filters relevant to their search and sets bounds.
7. The user clicks on the “Confirm” button once the desired configuration has

been achieved.
Final state

• The newly created category is appended to the list.
Alternatives

• The system raises an error upon a failed attempt to suggest options.
Extensions

• The configuration of the attribute filters of a category can be altered at any
time by clicking on the category element and applying changes.

87

A.3.3 UC03: Add arrow
Initial state

• A user has navigated to the panel for searching routes.
Normal flow

1. The user clicks on the “Add arrow” button.
2. The application opens the dialog, shows the current precedence graph, and

proposes to add a new arrow.
3. The user selects the left and right counterparts of the arrow and clicks on

the “Confirm” button.
Final state

• The newly created arrow is appended to the list.
Alternatives

• The system raises an error if the user attempts to create a cyclic dependency
or repeats an existing arrow.

A.3.4 UC04: Search routes
Initial state

• A user has navigated to the panel for searching routes.
Normal flow

1. The user performs the following steps:
• Select a starting point and a destination following UC01: Select point.
• Set a maximum walking distance using the corresponding slider.
• Configure a non-empty list of categories applying UC02: Add category

repeatedly.
• Configure an optional list of arrows applying UC03: Add arrow repeat-

edly.
2. The user clicks the “Search” button, finalizing their request.
3. The system navigates the user to the panel with a paginated list of routes.

Alternatives
• The system rejects the query if the crow-fly distance between the starting

point and destination exceeds the maximum limit.
• If the system fails to find routes, it proposes to alter search parameters.
• If the system fails to complete the query, it informs the user via an error.

A.3.5 UC05: Show detailed view of a place
Initial state

• The user has navigated to the detailed view of a place using a link or entered
the link directly into the browser.

88

Normal flow
1. The system shows a progress spinner and renders the view once the object

is ready to be presented.
Alternatives

• An object with the given identifier does not exist, or an error has occurred
while retrieving the object. Then, the system informs the user via an alert.

A.3.6 UC06: Save place
Initial state

• The user has obtained a detailed view of a place that has not been saved.
Normal flow

1. The user clicks the “Menu” button and then the “Save” menu item.
2. The system shows a dialog, proposes to enter metadata of the place and

informs that a personal copy is about to be created.
3. The user enters a name and confirms their choice by clicking the “Confirm”

button.
Final state

• The system updates the private storage, hides the dialog, and marks the
place as saved.

Alternatives
• The system fails to update the private storage and shows an alert.

A.3.7 UC07: Search directions
This use case has many similarities with UC04: Search routes. Instead of pro-

viding its full description, let us cover various options on how to extend a sequence
of points depicted in Figure 2.3. Most of them are implemented to enhance the
user experience.

The sequence can be extended by selecting a point directly on the map or from
the private storage using standard UC01: Select point. This use case implies that
the user interface shows the panel for searching directions.

Nevertheless, the user might want to browse through stored entities to recall
the content. The system enables them to append places and move points of paths
directly from the storage.

To avoid the overhead of storing and navigating, the user could also modify
a route that has appeared in the result of a search query or append a place from
its detailed view.

A.3.8 UC08: Modify route
Initial state

• A user has navigated to the panel with stored entities and sees the route to
be modified.

89

Normal flow
1. The user clicks the “Menu” button and then the “Modify” menu item.
2. The system shows a dialog with the message informing that points of this

route will replace those configured in the panel for searching directions.
3. The user clicks the “Confirm” button.

Final state
• The system redirects the user to the panel for searching directions. Points

of the selected path have replaced old ones.

A.3.9 UC09: View entity
Initial state

• A user has navigated to the panel with stored entities and sees the entity
to be viewed.

Normal flow
1. The user clicks the “Menu” button and then the “View” menu item.

Final state
• The system immediately redirects the user to the viewer panel.

A.3.10 UC10: Edit entity
Initial state

• A user has navigated to the panel with stored entities and sees the entity
to be edited.

Normal flow
1. The user clicks the “Menu” button and then the “Edit” menu item.
2. The system shows a dialog with editable fields containing current metadata.
3. The user sets new values for selected items and clicks the “Save” button.

Final state
• The system hides the dialog, indicating that the object has been updated.

Alternatives
• The system fails to update the object and shows an alert.

A.3.11 UC11: Activate Solid pod
Initial state

• A user has loaded the initial web page.
A Solid pod can be activated at any time unless another one is active.

Normal flow
1. The user clicks the “Log In” button outside the panel drawer and then the

“Solid” menu item.

90

2. The system shows a dialog with an input field and asks to enter the URL
of a Solid pod provider.

3. The user enters the URL or selects from the list and then clicks the “Log
In” button.

4. The system redirects to the web page of the selected pod provider so that
the user can enter their credentials and allow the application to access pods.

5. The user is redirected to the initial web page, and the “Solid” panel opens
up shortly after.

6. The user selects a pod from the list of pods associated with their account
and clicks the “Activate Pod” button.
Before this step, the application still uses entities from the device storage.

7. The system redirects to the panel with stored entities, and loads the content
from the Solid pod.

Final state
• The user ends up in the panel with entities stored in the activated pod.

Alternatives
• The system fails to activate pod and shows an error. No redirection to the

panel with stored entities occurs.
• The system fails to load the content of the activated pod. It shows an error,

and the loading spinner remains forever. The user should refresh the web
page so that the application can load entities from the device storage.

A.3.12 UC12: Deactivate Solid pod
Initial state

• The user has activated a pod following UC11: Activate Solid pod.
Normal flow

1. The user clicks the “Solid” button outside the panel drawer so that the
system redirects them to the “Solid” panel.

2. The user clicks the “Log Out” button.
3. The system redirects to the panel with stored entities, and loads the content

from the device storage.
Final state

• The user ends up in the panel with entities stored in the device storage.

A.4 Results of usability testing
The respondents were asked to express their opinions on the following state-

ments, which first appeared in [50].

S1 I think that I would like to use this system frequently.

S2 I found the system unnecessarily complex.

91

S3 I thought the system was easy to use.

S4 I think that I would need the support of a technical person to be able to
use this system.

S5 I found the various functions in this system were well integrated.

S6 I thought there was too much inconsistency in this system.

S7 I would imagine that most people would learn to use this system very
quickly.

S8 I found the system very cumbersome to use.

S9 I felt very confident using the system.

S10 I needed to learn a lot of things before I could get going with this system.

Responses were evaluated on a scale of 1 (strongly disagree) to 5 (strongly
agree). Individual scores were calculated using the formula

2.5 ·
⎛⎝ ∑︂

i∈{1,3,5,7,9}
(Si − 1) +

∑︂
j∈{2,4,6,8,10}

(5− Sj)
⎞⎠

and then averaged.

Resp. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Score

1 5 1 5 1 5 1 5 2 4 1 95.00
2 4 2 5 1 3 2 4 1 5 2 82.50
3 3 2 3 4 5 2 5 2 3 1 70.00
4 5 1 4 2 5 1 5 1 4 1 92.50

85.00

Table A.1: Results of usability testing.

A.5 Electronic attachment
The electronic attachment to the thesis follows the structure below.

code/ contains source code of the application (tag v1.0.0 on GitHub) and doc-
umentation (tag v1.0.0 on GitHub).

docs/ contains generated documentation for the tag v1.0.0 on GitHub. The file
./index.html represents the main page.

perf/ accommodates the dataset, two files place.txt and keyword.txt, for per-
formance tests we mentioned in Section 5.2.

92

https://github.com/zhukovdm/smartwalk/releases/tag/v1.0.0
https://github.com/zhukovdm/smartwalk-docs/releases/tag/v1.0.0
https://github.com/zhukovdm/smartwalk-docs/releases/tag/v1.0.0

	Introduction
	Concepts
	Linked Data
	Reclaiming data
	Solid Project

	Analysis
	Definitions
	Requirements
	User stories
	Roles
	Use cases
	Data sources
	Conceptual model
	Existing solutions

	Design
	User interface
	Architecture
	Data preparation
	Routing algorithms

	Implementation
	Prerequisites
	Single-page application
	Web API application
	Querying with MongoDB
	Data pipelines

	Testing
	Automated testing
	Performance testing
	Usability testing

	Conclusion
	Bibliography
	List of Tables
	List of Figures
	List of Abbreviations
	Attachments
	Documentation
	Prerequisites
	Use cases
	Results of usability testing
	Electronic attachment

